WO2021020375A1 - マイクロ波処理装置 - Google Patents

マイクロ波処理装置 Download PDF

Info

Publication number
WO2021020375A1
WO2021020375A1 PCT/JP2020/028817 JP2020028817W WO2021020375A1 WO 2021020375 A1 WO2021020375 A1 WO 2021020375A1 JP 2020028817 W JP2020028817 W JP 2020028817W WO 2021020375 A1 WO2021020375 A1 WO 2021020375A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
unit
heating
control unit
output power
Prior art date
Application number
PCT/JP2020/028817
Other languages
English (en)
French (fr)
Inventor
和樹 前田
大介 細川
大森 義治
吉野 浩二
小笠原 史太佳
高史 夘野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021535349A priority Critical patent/JPWO2021020375A1/ja
Priority to CN202080033851.XA priority patent/CN113812212A/zh
Priority to US17/603,023 priority patent/US20220201813A1/en
Priority to EP20847613.5A priority patent/EP4006425A4/en
Publication of WO2021020375A1 publication Critical patent/WO2021020375A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/32Time-controlled igniting mechanisms or alarm devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/687Circuits for monitoring or control for cooking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/02Stoves or ranges heated by electric energy using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B11/00Heating by combined application of processes covered by two or more of groups H05B3/00 - H05B7/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning

Definitions

  • the present disclosure relates to a microwave treatment device (Microwave Treatment Device) provided with a microwave generating unit.
  • a microwave treatment device Microwave Treatment Device
  • Patent Document 1 There is known a conventional microwave processing apparatus that cooks an object to be heated by using radiant heating by a tube heater or the like and microwave heating by microwaves (for example, Patent Document 1). As a prior art, there is known a technique of detecting the progress of cooking by detecting the amount of reflected power returned from the heating chamber without being absorbed in the heating chamber, and determining the timing of the end of cooking (for example, patent documents). 2).
  • microwave heating has the advantage that the inside of the food can be heated in a short time, but it also has the disadvantage that the heating is locally concentrated and the food is dried due to overheating.
  • a heating source such as a tube heater or convection
  • overheating may occur due to microwave heating depending on the type and amount of foodstuff.
  • microwaves that do not affect cooking are supplied to the heating chamber, and the amount of reflected power returned from the heating chamber. Is detected. It is an object of the present invention to provide a microwave processing apparatus capable of grasping the progress of cooking.
  • the microwave processing device of one aspect of the present disclosure includes a heating chamber for accommodating an object to be heated, a microwave generating unit, a heating unit, a feeding unit, a detecting unit, and a control unit.
  • the microwave generator generates microwaves.
  • the heating unit has a heating source other than microwaves and heats the inside of the heating chamber.
  • the feeding unit supplies microwaves to the heating chamber.
  • the detection unit detects the reflected power from the power feeding unit.
  • the control unit controls the heating unit and the microwave generation unit.
  • the control unit generates microwaves in the microwave generation unit that have an output power that returns the reflected power at a level that can be detected by the detection unit when the heating unit heats up.
  • the microwave processing apparatus of the present disclosure can appropriately cook an object to be heated by grasping the progress of cooking while suppressing adverse effects of microwaves such as overheating of the object to be heated.
  • FIG. 1 is a schematic configuration diagram of a microwave processing apparatus according to a first embodiment of the present disclosure.
  • FIG. 2A is a diagram showing a temporal change in the output power of the microwave in the first embodiment.
  • FIG. 2B is a diagram showing the temporal change of the reflected power in the first embodiment.
  • FIG. 3A is a diagram showing an example of a temporal change in the output power of the microwave in the second embodiment.
  • FIG. 3B is a diagram showing an example of a temporal change in the reflected power according to the second embodiment.
  • FIG. 4A is a diagram showing another example of the temporal change of the output power of the microwave in the second embodiment.
  • FIG. 4B is a diagram showing another example of the temporal change of the reflected power in the second embodiment.
  • FIG. 4A is a diagram showing another example of the temporal change of the output power of the microwave in the second embodiment.
  • FIG. 4B is a diagram showing another example of the temporal change of the reflected power in the second
  • FIG. 5 is a diagram showing a temporal change in the output power of the microwave in the third embodiment.
  • FIG. 6A is a flowchart showing the flow of cooking control according to the third embodiment.
  • FIG. 6B is a flowchart showing the details of the reflected power detection process according to the third embodiment.
  • the microwave processing apparatus of the first aspect of the present disclosure includes a heating chamber for accommodating an object to be heated, a microwave generating unit, a heating unit, a feeding unit, a detecting unit, and a control unit.
  • the microwave generator generates microwaves.
  • the heating unit has a heating source other than microwaves and heats the inside of the heating chamber.
  • the feeding unit supplies microwaves to the heating chamber.
  • the detection unit detects the reflected power from the power feeding unit.
  • the control unit controls the heating unit and the microwave generation unit.
  • the control unit generates microwaves in the microwave generation unit that have an output power that returns the reflected power at a level that can be detected by the detection unit when the heating unit heats up.
  • control unit sets the output power of the microwave to a predetermined output power smaller than the output power of the heating unit, based on the first aspect. Controls the microwave generator.
  • the control unit sets the microwave output power to less than 500 W on average per predetermined time. To control.
  • control unit controls the microwave generation unit so as to continuously generate microwaves, based on any one of the first to third aspects.
  • control unit controls the microwave generation unit so as to intermittently generate microwaves, based on any one of the first to third aspects.
  • control unit changes the time interval of the intermittently supplied microwaves according to the progress of cooking. Control the generator.
  • control unit provides a time zone for setting the output power of the microwave to be larger than a predetermined output power. Control the generator.
  • control unit controls the heating unit based on the reflected power detected by the detection unit, based on any one of the first to seventh aspects.
  • FIG. 1 shows a schematic configuration diagram of the microwave processing apparatus according to the first embodiment of the present disclosure.
  • the microwave processing apparatus according to the present embodiment includes a heating chamber 1, a microwave generating unit 3, a feeding unit 4, a detecting unit 5, a control unit 6, and a heating unit 7.
  • a storage unit 8 is provided.
  • the heating chamber 1 has a metal wall and accommodates a load to be heated 2.
  • the heating unit 7 is a heating source other than microwaves.
  • the heating unit 7 is a tube heater arranged on the ceiling of the heating chamber 1 for radiant heating.
  • the heating unit 7 may further have a convection heater and a circulation fan (not shown) arranged outside the heating chamber 1.
  • the heating unit 7 performs convection heating in which hot air is circulated in the heating chamber 1 by a tube heater, a convection heater, and a circulation fan.
  • the microwave generator 3 has an oscillator and an amplifier made of a semiconductor.
  • the microwave generation unit 3 generates microwaves having a frequency selected by the control unit 6 from a predetermined frequency band.
  • the microwave generator 3 amplifies the generated microwave according to the instruction of the control unit 6 and outputs a microwave having a desired frequency and output power.
  • the microwave generated by the microwave generating unit 3 propagates to the feeding unit 4 through a transmission line such as a coaxial line.
  • the power feeding unit 4 is composed of an antenna, and the microwave output by the microwave generating unit 3 is supplied to the heating chamber 1 as incident power. Of the incident power, the power that is not consumed by the object to be heated 2 or the like is the reflected power that returns from the heating chamber 1 to the microwave generation unit 3 via the power supply unit 4.
  • the detection unit 5 is composed of, for example, a directional coupler, detects incident power and reflected power, and notifies the control unit 6 of the detected incident power and reflected power amount. That is, the detection unit 5 functions as both an incident power detection unit and a reflected power detection unit.
  • the storage unit 8 is composed of a memory or the like, stores data from the control unit 6, reads out the stored data, and transmits the stored data to the control unit 6.
  • the control unit 6 is composed of a microcomputer equipped with a CPU.
  • the control unit 6 controls the microwave generation unit 3 and the heating unit 7 based on the information from the detection unit 5 and the storage unit 8 to execute cooking control in the microwave processing device.
  • the object to be heated 2 is cooked by using only the heating unit 7.
  • the microwave is not used to heat the object 2 to be heated, but is used by the control unit 6 to grasp the progress of cooking based on the reflected power detected by the detection unit 5.
  • the control unit 6 controls the heating unit 7 according to the progress of cooking.
  • FIG. 2A shows the temporal change of the microwave output power in this embodiment.
  • FIG. 2B shows the temporal change of the reflected power in this embodiment.
  • the output power of the microwave is set so that the magnitude of the reflected power falls within the range that can be detected by the detection unit 5.
  • the microwave output power Pm is set to be smaller than the output power Ph of the heating unit 7 so that the object to be heated 2 is mainly heated by the heating unit 7.
  • FIG. 2A microwaves are continuously supplied from the feeding unit 4.
  • FIG. 2B shows the temporal change of the reflected power with respect to the incident power of an arbitrary frequency in that case.
  • the electric power absorbed by the object to be heated 2 and the resonance pattern in the heating chamber 1 change for each frequency.
  • the temperature and the amount of water of the object to be heated 2 change, and the electric power absorbed by the object to be heated 2 changes.
  • the dielectric constant in the heating chamber 1 changes, and the resonance pattern also changes.
  • the reflected power also changes according to the change in the power consumed in the heating chamber 1.
  • the progress of cooking can be grasped by detecting the minimum value (time t1 in FIG. 2B) and the maximum value (time t2 in FIG. 2B) in the temporal change of the reflected power with the progress of cooking.
  • the microwave output power is set to 500 W or 600 W. That is, an output power of at least 500 W is required to sufficiently heat the object to be heated 2.
  • control unit 6 determines the output power of the microwave supplied at the time of heating by the heating unit 7 so that the microwave supplied to the heating chamber 1 does not contribute to the heating of the object 2 to be heated.
  • the average is set to less than 500 W per predetermined time.
  • the control unit 6 sets the microwave output power so that the reflected power falls within the range that can be detected by the detection unit 5. This saves the trouble of changing the cooking sequence.
  • FIG. 3A shows an example of a temporal change in the output power of the microwave in the present embodiment.
  • FIG. 3B shows an example of the temporal change of the reflected power in the microwave processing apparatus according to the present embodiment.
  • the microwave processing apparatus according to the present embodiment has the same configuration as that of the first embodiment shown in FIG.
  • the control unit 6 intermittently generates the microwave so that the output power of the microwave is less than 500 W per 10 seconds.
  • the control unit 6 causes the microwave generation unit 3 to repeatedly execute a sequence of generating microwaves for 5 seconds with an output power of 900 W and then stopping the microwaves for 5 seconds.
  • control unit 6 controls the microwave generation unit 3 so as to increase the output power of the microwave supplied intermittently so that the level of the detected reflected power increases.
  • the reflected power is also detected at the same time intervals as the microwave supply. Therefore, as shown in FIG. 3B, it is necessary to set the time interval of the microwave output so that the feature points in the temporal change of the reflected power can be captured.
  • FIG. 4A shows another example of the temporal change of the output power of the microwave in the microwave processing apparatus according to the present embodiment.
  • FIG. 4B shows another example of the temporal change of the reflected power in this embodiment.
  • the power consumption in the heating chamber 1 may change suddenly. Especially at the end of cooking, the process of cooking and browning affects the quality of the dish. Therefore, it is necessary to detect the reflected power with high accuracy. For high-precision detection, it is necessary to set the time interval of microwave output narrow, that is, to increase the frequency of microwave output.
  • the microwave processing apparatus of the present embodiment can appropriately determine the progress of cooking and end the cooking.
  • control unit 6 may change the time interval of the intermittently supplied microwaves according to the progress of cooking.
  • the microwave output power at the end of cooking is smaller than the microwave output power at the beginning of cooking.
  • the microwave output power may be set to the same value at the end of cooking and the beginning of cooking.
  • the microwave output power and output frequency are reduced. As a result, the effect of energy saving can be expected.
  • FIG. 5 is a diagram showing a temporal change in the output power of the microwave in the present embodiment.
  • the microwave processing apparatus according to the present embodiment has the same configuration as that of the first embodiment shown in FIG.
  • microwave heating may effectively affect the finish of the dish. Therefore, not only the progress of cooking may be grasped by microwaves as in the first and second embodiments, but also microwave heating may be performed at the same time.
  • ingredients for which microwave heating is effective include croissants, lasagna, etc.
  • the croissant dough is heated by the heating unit 7, and microwave heating is also used in the early stage of cooking. As a result, the dough swells well and the inside of the dough can be heated uniformly. As a result, it can be expected that the finish will be improved and the time will be shortened.
  • the microwave output power is set to be larger than the microwave output power in the first embodiment and larger than the output power Ph of the heating unit 7.
  • the microwave output power in the first embodiment is an average output power of less than 500 W per predetermined time.
  • the microwave processing apparatus of the present embodiment performs microwave heating and at the same time grasps the progress of cooking by detecting reflected power.
  • the microwave output power is set to the output power in the first embodiment and use the microwave output power only for grasping the progress of cooking.
  • control unit 6 controls the microwave generation unit 3 so as to provide a time zone for setting the microwave output power to be larger than the predetermined output power in the first embodiment. May be good.
  • the temperature inside the heating chamber 1 is first raised to, for example, 200 ° C., and the surface of the object to be heated 2 is baked. Next, the temperature inside the heating chamber 1 is lowered to, for example, 170 ° C., and the inside of the object to be heated 2 is heated. In such a case, it is useful to grasp the progress of cooking based on the detection result of the reflected power and determine whether or not to shift the cooking process.
  • FIG. 6A is a flowchart showing the flow of cooking control by the microwave processing device of the present embodiment.
  • the control unit 6 starts heating by the heating unit 7 and then performs a detection process (step S2).
  • FIG. 6B is a flowchart showing the details of the detection process (step S2).
  • the microwave generation unit 3 When the detection process is started (step S11), the microwave generation unit 3 generates microwaves in a predetermined frequency band (for example, 2.40 GHz to 2.50 GHz) while sequentially changing the frequencies at predetermined intervals (step S11).
  • Step S12 the operation of sequentially changing the frequency at a predetermined interval over a predetermined frequency band is referred to as frequency sweep.
  • the microwave generation unit 3 generates microwaves while performing frequency sweep, and the detection unit 5 detects the reflected power for each frequency.
  • the control unit 6 measures the frequency characteristic of the reflected power and obtains the frequencies of the minimum point, the maximum point, the maximum point, and the minimum point in the frequency characteristic (step S13).
  • the control unit 6 stores the amount of reflected power obtained in step S13, the minimum point, the maximum point, the frequency of the maximum point and the minimum point, and the elapsed time from the start of heating in the storage unit 8 (step S14), and performs detection processing. (Step S15).
  • step S3 The process returns to FIG. 6A, and the control unit 6 grasps the progress of cooking based on the time-dependent change of the obtained information (step S3).
  • the control unit 6 determines the transition of the cooking process based on the progress of cooking (step S4). If the determination result is "continuation", the control unit 6 returns the process to the detection process (step S2).
  • step S5 the control unit 6 switches the output of the heating unit 7 (step S5).
  • the output switching of the heating unit 7 includes changing the output power of the heating unit 7 and changing the heating source from the heating unit 7 to the microwave generating unit 3.
  • the control unit 6 updates the determination criteria for shifting to the next cooking step (step S6), and returns the process to the detection process (step S2). If the determination result in step S4 is "finished”, the control unit 6 ends cooking (step S7).
  • one power feeding unit 4 is arranged.
  • a plurality of power feeding units 4 may be arranged.
  • the microwave generation unit 3 has an oscillator made of a semiconductor.
  • the microwave generator 3 may be composed of another oscillator such as a magnetron.
  • the microwave processing apparatus of the present disclosure is used for industrial applications such as a drying apparatus, a heating apparatus for ceramics, a garbage processor, a semiconductor manufacturing apparatus, and a chemical reaction apparatus, in addition to a heating cooker for dielectrically heating food. It is applicable to microwave heating equipment.
  • Heating unit 1 Heating chamber 2 Heated object 3 Microwave generator 4 Feeding unit 5 Detection unit 6 Control unit 7 Heating unit 8 Storage unit

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

本開示のマイクロ波処理装置は、被加熱物(2)を収容する加熱室(1)と、マイクロ波発生部(3)と、加熱部(7)と、給電部(4)と、検出部(5)と、制御部(6)とを備える。マイクロ波発生部(3)はマイクロ波を発生する。加熱部(7)はマイクロ波以外の加熱源を有し、加熱室(1)の内部を加熱する。給電部(4)はマイクロ波を加熱室に供給する。検出部(5)は給電部(4)からの反射電力を検出する。制御部(6)は加熱部(7)とマイクロ波発生部(3)とを制御する。制御部(6)は、加熱部(7)による加熱時において、検出部(5)により検出可能なレベルの反射電力が戻るような出力電力を有するマイクロ波をマイクロ波発生部(3)に発生させる。本開示によれば、調理の進捗を把握することで、被加熱物を適切に調理することができる。

Description

マイクロ波処理装置
 本開示は、マイクロ波発生部を備えたマイクロ波処理装置(Microwave Treatment Device)に関する。
 従来のマイクロ波処理装置において、管ヒータなどによる輻射加熱とマイクロ波によるマイクロ波加熱とを用いて被加熱物を調理するものが知られている(例えば、特許文献1)。従来技術として、加熱室内で吸収されず加熱室から戻ってくる反射電力の量を検出することで調理の進捗を把握し、調理終了のタイミングを判定するものが知られている(例えば、特許文献2)。
特開昭59-37697号公報 特開平11-83325号公報
 上記従来のマイクロ波処理装置では、マイクロ波による加熱調理は、反射電力の検出による調理の進捗の把握とほぼ同時に行われる。マイクロ波加熱には、短時間で食材内部まで加熱できるという長所がある一方、局所的に加熱が集中したり、過加熱により食材が乾燥したりするなどの短所もある。マイクロ波を管ヒータ、コンベクションなどの加熱源と併用する場合、食材の種類、量によってマイクロ波加熱により過加熱が生じることがある。
 本開示は、マイクロ波以外の加熱源を用いて食材を加熱調理する際に、加熱調理に影響を与えない程度のマイクロ波を加熱室に供給するとともに、加熱室から戻ってくる反射電力の量を検出する。これにより、調理の進捗を把握することができるマイクロ波処理装置を提供することを目的とする。
 本開示の一態様のマイクロ波処理装置は、被加熱物を収容する加熱室と、マイクロ波発生部と、加熱部と、給電部と、検出部と、制御部とを備える。マイクロ波発生部はマイクロ波を発生する。加熱部はマイクロ波以外の加熱源を有し、加熱室の内部を加熱する。給電部はマイクロ波を加熱室に供給する。検出部は給電部からの反射電力を検出する。制御部は加熱部とマイクロ波発生部とを制御する。
 制御部は、加熱部による加熱時において、検出部により検出可能なレベルの反射電力が戻るような出力電力を有するマイクロ波をマイクロ波発生部に発生させる。
 本開示のマイクロ波処理装置は、被加熱物の過加熱などのマイクロ波による悪影響を抑えつつ調理の進捗を把握することで、被加熱物を適切に調理することができる。
図1は、本開示の実施の形態1に係るマイクロ波処理装置の概略構成図である。 図2Aは、実施の形態1におけるマイクロ波の出力電力の時間的変化を示す図である。 図2Bは、実施の形態1における反射電力の時間的変化を示す図である。 図3Aは、実施の形態2におけるマイクロ波の出力電力の時間的変化の一例を示す図である。 図3Bは、実施の形態2における反射電力の時間的変化の一例を示す図である。 図4Aは、実施の形態2におけるマイクロ波の出力電力の時間的変化の他の例を示す図である。 図4Bは、実施の形態2における反射電力の時間的変化の他の例を示す図である。 図5は、実施の形態3におけるマイクロ波の出力電力の時間的変化を示す図である。 図6Aは、実施の形態3における調理制御の流れを示すフローチャートである。 図6Bは、実施の形態3における反射電力の検出処理の詳細を示すフローチャートである。
 本開示の第1の態様のマイクロ波処理装置は、被加熱物を収容する加熱室と、マイクロ波発生部と、加熱部と、給電部と、検出部と、制御部とを備える。マイクロ波発生部はマイクロ波を発生する。加熱部はマイクロ波以外の加熱源を有し、加熱室の内部を加熱する。給電部はマイクロ波を加熱室に供給する。検出部は給電部からの反射電力を検出する。制御部は加熱部とマイクロ波発生部とを制御する。
 制御部は、加熱部による加熱時において、検出部により検出可能なレベルの反射電力が戻るような出力電力を有するマイクロ波をマイクロ波発生部に発生させる。
 本開示の第2の態様のマイクロ波処理装置では、第1の態様に基づきながら、制御部は、マイクロ波の出力電力を、加熱部の出力電力よりも小さい所定の出力電力に設定するようにマイクロ波発生部を制御する。
 本開示の第3の態様のマイクロ波処理装置では、第1または第2の態様に基づきながら、制御部は、マイクロ波の出力電力を所定時間あたり平均500W未満に設定するようにマイクロ波発生部を制御する。
 本開示の第4の態様のマイクロ波処理装置では、第1から第3の態様のいずれかに基づきながら、制御部は、マイクロ波を連続的に発生するようにマイクロ波発生部を制御する。
 本開示の第5の態様のマイクロ波処理装置では、第1から第3の態様のいずれかに基づきながら、制御部は、マイクロ波を間欠的に発生するようにマイクロ波発生部を制御する。
 本開示の第6の態様のマイクロ波処理装置では、第5の態様に基づきながら、制御部は、間欠的に供給されるマイクロ波の時間間隔を調理の進行に応じて変化させるようにマイクロ波発生部を制御する。
 本開示の第7の態様のマイクロ波処理装置では、第2の態様に基づきながら、制御部は、マイクロ波の出力電力を、所定の出力電力よりも大きく設定する時間帯を設けるようにマイクロ波発生部を制御する。
 本開示の第8の態様のマイクロ波処理装置では、第1から第7の態様のいずれかに基づきながら、制御部は、検出部により検出された反射電力に基づいて加熱部を制御する。
 以下、本開示の実施の形態について、図面を参照しながら説明する。
 (実施の形態1)
 図1は、本開示の実施の形態1に係るマイクロ波処理装置の概略構成図を示す。図1に示すように、本実施の形態に係るマイクロ波処理装置は、加熱室1と、マイクロ波発生部3と、給電部4と、検出部5と、制御部6と、加熱部7と、記憶部8とを備える。
 加熱室1は、金属壁を有し、負荷である被加熱物2を収容する。加熱部7は、マイクロ波以外の加熱源である。本実施の形態では、加熱部7は、輻射加熱を行うために加熱室1の天井に配置された管ヒータである。
 加熱部7は、加熱室1の外に配置されたコンベクションヒータおよび循環ファン(図示せず)をさらに有してもよい。この場合、加熱部7は、管ヒータとコンベクションヒータと循環ファンとにより、加熱室1内に熱風を循環させるコンベクション加熱を行う。
 マイクロ波発生部3は、半導体で構成された発振器および増幅器を有する。マイクロ波発生部3は、所定の周波数帯域の中から、制御部6により選択された周波数のマイクロ波を発生する。マイクロ波発生部3は、発生したマイクロ波を制御部6の指示に応じて増幅し、所望の周波数および出力電力のマイクロ波を出力する。マイクロ波発生部3により発生されたマイクロ波は、同軸線などの伝送路を通じて給電部4に伝播する。
 給電部4はアンテナで構成され、マイクロ波発生部3により出力されたマイクロ波を入射電力として加熱室1に供給する。入射電力のうち、被加熱物2などにより消費されない電力は、加熱室1から給電部4を介してマイクロ波発生部3に戻ってくる反射電力となる。
 検出部5は例えば方向性結合器によって構成され、入射電力および反射電力を検出し、検出された入射電力、反射電力の量を制御部6に通知する。すなわち、検出部5は、入射電力検出部および反射電力検出部の両方として機能する。記憶部8はメモリなどで構成され、制御部6からのデータを記憶し、記憶したデータを読み出して制御部6に送信する。
 制御部6は、CPUが搭載されたマイクロコンピュータで構成される。制御部6は、検出部5および記憶部8からの情報に基づいて、マイクロ波発生部3と加熱部7とを制御して、マイクロ波処理装置における調理制御を実行する。
 本実施の形態では、加熱部7のみを用いて被加熱物2を加熱調理する。マイクロ波は被加熱物2を加熱するためではなく、検出部5により検出される反射電力に基づいて制御部6が調理の進捗を把握するために用いられる。制御部6は、調理の進捗に応じて加熱部7を制御する。
 図2Aは、本実施の形態におけるマイクロ波の出力電力の時間的変化を示す。図2Bは、本実施の形態における反射電力の時間的変化を示す。
 一般的に、給電部4から放射されるマイクロ波の出力電力、すなわち、入射電力が大きいほど、反射電力は大きくなる。本実施の形態では、反射電力の大きさが検出部5で検出可能な範囲に収まるように、マイクロ波の出力電力が設定される。
 図2Aに示すように、被加熱物2が主に加熱部7によって加熱されるように、マイクロ波の出力電力Pmは、加熱部7の出力電力Phよりも小さく設定される。
 図2Aに示す例では、マイクロ波が給電部4から連続的に供給される。図2Bは、その場合における任意の周波数の入射電力に対する反射電力の時間的変化を示す。被加熱物2に吸収される電力、および、加熱室1内の共振パターンは周波数ごとに変化する。
 例えば、調理の進行に伴って、被加熱物2の温度および水分量が変化し、被加熱物2に吸収される電力が変化する。被加熱物2からの蒸気が加熱室1内に充満すると、加熱室1内の誘電率が変化し、共振パターンも変化する。加熱室1内で消費される電力の変化に応じて、反射電力も変化する。調理の進行に伴う反射電力の時間的変化における極小値(図2Bの時刻t1)、極大値(図2Bの時刻t2)を検出することによって、調理の進捗を把握することができる。
 一般的に、スーパーマーケット、コンビニエンスストアなどで販売される弁当、パン、総菜などを電子レンジなどのマイクロ波処理装置で温める場合、マイクロ波の出力電力は500Wまたは600Wに設定される。すなわち、被加熱物2を十分に温めるには最低500Wの出力電力が必要である。
 従って、本実施の形態では、制御部6は、加熱室1に供給されるマイクロ波が被加熱物2の加熱に寄与しないように、加熱部7による加熱時に供給されるマイクロ波の出力電力を所定時間あたり平均500W未満に設定する。
 マイクロ波加熱を輻射加熱またはコンベクション加熱と併用する場合、輻射加熱またはコンベクション加熱による調理シーケンスを、マイクロ波加熱を加えた調理シーケンスに変更する必要がある。しかしながら、本実施の形態では、制御部6は、反射電力が検出部5で検出可能な範囲に収まるようにマイクロ波の出力電力を設定する。これにより、調理シーケンスを変更する手間を省くことができる。
 (実施の形態2)
 図3A~図4Bを用いて、本開示の実施の形態2に係るマイクロ波処理装置について説明する。図3Aは、本実施の形態におけるマイクロ波の出力電力の時間的変化の一例を示す。図3Bは、本実施の形態に係るマイクロ波処理装置における反射電力の時間的変化の一例を示す。本実施の形態に係るマイクロ波処理装置は、図1に示す実施の形態1と同様の構成を有する。
 図3Aに示すように、本実施の形態では、マイクロ波の出力電力が10秒あたり平均500W未満になるように、制御部6は、間欠的にマイクロ波を発生するようにマイクロ波発生部3を制御する。例えば、制御部6は、マイクロ波発生部3に、900Wの出力電力でマイクロ波を5秒間発生した後、マイクロ波を5秒間停止するというシーケンスを繰り返し実行させる。
 検出部5の性能によっては反射電力の変化を十分に検出できない場合がある。そのような場合、検出される反射電力のレベルが増加するように、制御部6は、間欠的に供給されるマイクロ波の出力電力を増加させるようにマイクロ波発生部3を制御する。
 マイクロ波が所定の時間間隔で供給されると、反射電力もマイクロ波の供給と同様の時間間隔で検出される。そのため、図3Bに示すように、反射電力の時間的変化における特徴点を捉えられるように、マイクロ波出力の時間間隔を設定する必要がある。
 図4Aは、本実施の形態に係るマイクロ波処理装置におけるマイクロ波の出力電力の時間的変化の他の例を示す。図4Bは、本実施の形態における反射電力の時間的変化の他の例を示す。
 調理工程によっては、加熱室1内の消費電力が急激に変化することがある。特に調理終盤においてよく火を通す、焦げ目を付けるなどの工程は料理の出来ばえを左右する。このため、精度よく反射電力を検出することが必要である。高精度の検出のためには、マイクロ波出力の時間間隔を狭く設定する、すなわち、マイクロ波の出力頻度を増加させることが必要である。
 図4Aに示すように、調理終盤における時間間隔T2を調理序盤における時間間隔T1よりも狭く設定する。これにより、反射電力が細かく変化する場合でも、極大値および極小値を検出することができる。従って、本実施の形態のマイクロ波処理装置は、調理の進捗を適切に見極めて調理を終了させることができる。
 このように、制御部6は、間欠的に供給されるマイクロ波の時間間隔を、調理の進行に応じて変化させてもよい。図4Aに示す例では、調理終盤におけるマイクロ波の出力電力は、調理序盤におけるマイクロ波の出力電力よりも小さい。しかし、調理終盤と調理序盤とでマイクロ波の出力電力を同じ値に設定してもよい。
 例えば、調理中盤において反射電力の時間的変化が少ない、または、反射電力が単調に変化し続ける場合、マイクロ波の出力電力と出力頻度を減少させる。これにより、省エネルギーの効果を期待することもできる。
 (実施の形態3)
 図5~図6Bを用いて、本開示の実施の形態3に係るマイクロ波処理装置について説明する。図5は、本実施の形態におけるマイクロ波の出力電力の時間的変化を示す図である。本実施の形態に係るマイクロ波処理装置は、図1に示す実施の形態1と同様の構成を有する。
 被加熱物2の種類および状態によっては、マイクロ波加熱が料理の仕上がりに効果的に作用する場合がある。このため、実施の形態1および2のようにマイクロ波で調理の進捗を把握するだけでなく、同時にマイクロ波加熱を行ってもよい。
 マイクロ波加熱が有効な食材には、クロワッサン、ラザニアなどが含まれる。クロワッサン生地を加熱部7で加熱するとともに、調理序盤においてマイクロ波加熱を併用する。これにより生地がよく膨らみ、生地の内部まで均一に加熱することができる。その結果、仕上がりの向上と時間短縮とが期待できる。
 具体的には、調理序盤はマイクロ波の出力電力を、実施の形態1におけるマイクロ波の出力電力よりも大きく、かつ、加熱部7の出力電力Phよりも大きく設定する。実施の形態1におけるマイクロ波の出力電力とは、所定時間あたり平均500W未満の出力電力である。本実施の形態のマイクロ波処理装置は、マイクロ波加熱を行うと同時に反射電力の検出による調理の進捗把握を行う。
 しかしながら、調理終盤においてクロワッサンの焼き色付けを行う工程では、マイクロ波加熱によって水分が飛び過ぎるなどにより、仕上がりを劣化させる恐れがある。このため、調理終盤ではマイクロ波の出力電力を実施の形態1における出力電力に設定し、マイクロ波の出力電力を調理の進捗把握のみに用いるのがよい。
 このように、本実施の形態では、制御部6は、マイクロ波の出力電力を実施の形態1における所定の出力電力よりも大きく設定する時間帯を設けるようにマイクロ波発生部3を制御してもよい。
 (調理制御の流れと反射電力の検出処理)
 調理メニューによっては、調理の開始から終了まで同一の出力電力を続けるのではなく、被加熱物2の調理の進捗によって出力電力を変更し、調理工程を移行させることが必要である。
 例えば、加熱部7を用いてローストチキンを調理する場合、まず加熱室1内の温度を例えば200℃まで上昇させて被加熱物2の表面を焼く。次に加熱室1内の温度を例えば170℃まで低下させて、被加熱物2の内部まで火を通す。このような場合、反射電力の検出結果に基づいて調理の進捗を把握し、調理工程を移行させるか否かを判断することが有用である。
 図6Aは、本実施の形態のマイクロ波処理装置による調理制御の流れを示すフローチャートである。使用者がマイクロ波処理装置に加熱調理の開始を指示すると(ステップS1)、制御部6は加熱部7による加熱を開始した後、検出処理(ステップS2)を行う。
 図6Bは、検出処理(ステップS2)の詳細を示すフローチャートである。検出処理が開始される(ステップS11)と、マイクロ波発生部3は、所定の周波数帯域(例えば2.40GHz~2.50GHz)において所定の間隔で周波数を順に変化させながらマイクロ波を発生する(ステップS12)。以下、所定の周波数帯域にわたって所定の間隔で周波数を順に変化させる動作を周波数掃引という。
 マイクロ波発生部3は周波数掃引を行いながらマイクロ波を発生し、検出部5は周波数毎の反射電力を検出する。これにより、制御部6は、反射電力の周波数特性を測定し、その周波数特性における極小点、極大点、最大点、最小点の周波数を求める(ステップS13)。制御部6は、ステップS13で得られた反射電力の量、極小点、極大点、最大点、最小点の周波数、加熱開始からの経過時間を記憶部8に記憶し(ステップS14)、検出処理を終了させる(ステップS15)。
 処理は図6Aに戻り、制御部6は、得られた情報の経時変化に基づいて調理の進捗を把握する(ステップS3)。制御部6は、調理の進捗に基づいて調理工程の移行判定を行う(ステップS4)。制御部6は、判定結果が「継続」なら処理を検出処理(ステップS2)に戻す。
 判定結果が「移行」なら、制御部6は加熱部7の出力切換を行う(ステップS5)。加熱部7の出力切換には、加熱部7の出力電力の変更、加熱部7からマイクロ波発生部3への加熱源の変更が含まれる。制御部6は、次の調理工程に移行するための判定基準を更新し(ステップS6)、処理を検出処理(ステップS2)に戻す。制御部6は、ステップS4における判定結果が「終了」なら調理を終了する(ステップS7)。
 上記の通り、本実施の形態では、一つの給電部4が配置される。しかし、複数の給電部4が配置されてもよい。本実施の形態では、マイクロ波発生部3は半導体で構成された発振器を有する。しかし、マイクロ波発生部3はマグネトロンなど他の発振器で構成されてよい。
 以上のように、本開示のマイクロ波処理装置は、食品を誘電加熱する加熱調理器の他、乾燥装置、陶芸用加熱装置、生ゴミ処理機、半導体製造装置、化学反応装置などの工業用途のマイクロ波加熱装置に適用可能である。
 1 加熱室
 2 被加熱物
 3 マイクロ波発生部
 4 給電部
 5 検出部
 6 制御部
 7 加熱部
 8 記憶部

Claims (8)

  1.  被加熱物を収容するように構成された加熱室と、
     マイクロ波を発生するように構成されたマイクロ波発生部と、
     前記マイクロ波以外の加熱源を有し、前記加熱室の内部を加熱するように構成された加熱部と、
     前記マイクロ波を前記加熱室に供給するように構成された給電部と、
     前記給電部からの反射電力を検出するように構成された検出部と、
     前記加熱部と前記マイクロ波発生部とを制御するように構成された制御部と、を備え、
     前記制御部は、前記加熱部による加熱時において、前記検出部により検出可能なレベルの前記反射電力が戻るような出力電力を有する前記マイクロ波を前記マイクロ波発生部に発生させるように構成された、マイクロ波処理装置。
  2.  前記制御部が、前記マイクロ波の前記出力電力を、前記加熱部の前記出力電力よりも小さい所定の出力電力に設定するように前記マイクロ波発生部を制御するように構成された、請求項1記載のマイクロ波処理装置。
  3.  前記制御部が、前記マイクロ波の前記出力電力を所定時間あたり平均500W未満に設定するように前記マイクロ波発生部を制御するように構成された、請求項1に記載のマイクロ波処理装置。
  4.  前記制御部が、前記マイクロ波を連続的に発生するように前記マイクロ波発生部を制御するように構成された、請求項1に記載のマイクロ波処理装置。
  5.  前記制御部が、前記マイクロ波を間欠的に発生するように前記マイクロ波発生部を制御するように構成された、請求項1に記載のマイクロ波処理装置。
  6.  前記制御部が、間欠的に供給される前記マイクロ波の時間間隔を調理の進行に応じて変化させるように前記マイクロ波発生部を制御するように構成された、請求項5記載のマイクロ波処理装置。
  7.  前記制御部が、前記マイクロ波の前記出力電力を、前記所定の出力電力よりも大きく設定する時間帯を設けるように前記マイクロ波発生部を制御するように構成された、請求項2記載のマイクロ波処理装置。
  8.  前記制御部が、前記検出部により検出された前記反射電力に基づいて前記加熱部を制御するように構成された、請求項1に記載のマイクロ波処理装置。
PCT/JP2020/028817 2019-07-31 2020-07-28 マイクロ波処理装置 WO2021020375A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021535349A JPWO2021020375A1 (ja) 2019-07-31 2020-07-28
CN202080033851.XA CN113812212A (zh) 2019-07-31 2020-07-28 微波处理装置
US17/603,023 US20220201813A1 (en) 2019-07-31 2020-07-28 Microwave treatment device
EP20847613.5A EP4006425A4 (en) 2019-07-31 2020-07-28 MICROWAVE TREATMENT DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019140414 2019-07-31
JP2019-140414 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021020375A1 true WO2021020375A1 (ja) 2021-02-04

Family

ID=74229168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028817 WO2021020375A1 (ja) 2019-07-31 2020-07-28 マイクロ波処理装置

Country Status (5)

Country Link
US (1) US20220201813A1 (ja)
EP (1) EP4006425A4 (ja)
JP (1) JPWO2021020375A1 (ja)
CN (1) CN113812212A (ja)
WO (1) WO2021020375A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141668A (ja) * 1991-11-20 1993-06-08 Tiger Vacuum Bottle Co Ltd トースターレンジ型高周波加熱装置
JPH0727343A (ja) * 1993-07-13 1995-01-27 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH1183325A (ja) 1997-08-29 1999-03-26 Shunichi Yagi 被乾燥物の乾燥方法およびその装置
JP2004311050A (ja) * 2003-04-02 2004-11-04 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2013092303A (ja) * 2011-10-26 2013-05-16 Mitsubishi Electric Corp 加熱調理器
JP2020102440A (ja) * 2018-12-20 2020-07-02 エヌエックスピー ユーエスエイ インコーポレイテッドNXP USA,Inc. Rf及び熱による複合加熱システム並びにその動作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648038A (en) * 1995-09-20 1997-07-15 Lambda Technologies Systems and methods for monitoring material properties using microwave energy
JP4967600B2 (ja) * 2006-10-24 2012-07-04 パナソニック株式会社 マイクロ波処理装置
EP2306785B1 (en) * 2008-06-25 2019-04-03 Panasonic Corporation Microwave heating device
WO2011004561A1 (ja) * 2009-07-10 2011-01-13 パナソニック株式会社 マイクロ波加熱装置およびマイクロ波加熱制御方法
KR102414251B1 (ko) * 2015-10-13 2022-06-29 삼성전자주식회사 조리 장치 및 이의 제어 방법
ES2767721T3 (es) * 2016-11-22 2020-06-18 Miele & Cie Procedimiento para calentar un líquido detectando un punto de ebullición
WO2018125151A1 (en) * 2016-12-29 2018-07-05 Whirlpool Corporation Electromagnetic cooking device with automatic anti-splatter operation and method of controlling cooking in the electromagnetic device
US20220353960A1 (en) * 2019-07-31 2022-11-03 Panasonic Intellectual Property Management Co., Ltd. Microwave treatment device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141668A (ja) * 1991-11-20 1993-06-08 Tiger Vacuum Bottle Co Ltd トースターレンジ型高周波加熱装置
JPH0727343A (ja) * 1993-07-13 1995-01-27 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPH1183325A (ja) 1997-08-29 1999-03-26 Shunichi Yagi 被乾燥物の乾燥方法およびその装置
JP2004311050A (ja) * 2003-04-02 2004-11-04 Matsushita Electric Ind Co Ltd 高周波加熱装置
JP2013092303A (ja) * 2011-10-26 2013-05-16 Mitsubishi Electric Corp 加熱調理器
JP2020102440A (ja) * 2018-12-20 2020-07-02 エヌエックスピー ユーエスエイ インコーポレイテッドNXP USA,Inc. Rf及び熱による複合加熱システム並びにその動作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4006425A4

Also Published As

Publication number Publication date
US20220201813A1 (en) 2022-06-23
CN113812212A (zh) 2021-12-17
EP4006425A1 (en) 2022-06-01
JPWO2021020375A1 (ja) 2021-02-04
EP4006425A4 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
EP2589262B1 (en) Processing objects by radio frequency (rf) energy
JP4972905B2 (ja) 誘導加熱調理器
KR20200077446A (ko) 복합형 rf 및 열적 가열 시스템과 그 동작 방법
JP2015135823A (ja) Rfエネルギーを使用して加熱するためのデバイスおよび方法
JP2007218545A (ja) 加熱調理器
JP4278502B2 (ja) 高周波加熱調理器
CN107850313A (zh) 加热烹调器
JP2005147604A (ja) 高周波加熱調理装置とその装置を用いた加熱調理法
CN112190139A (zh) 烹饪装置的控制方法、烹饪装置和可读存储介质
WO2021020375A1 (ja) マイクロ波処理装置
JP2020514944A (ja) 自動沸騰検出を備えた電磁調理装置および電磁調理装置の調理を制御する方法
CN114208394A (zh) 微波处理装置
JP5496165B2 (ja) 加熱調理器
JP7538999B2 (ja) マイクロ波処理装置
EP3832211B1 (en) High-frequency heating apparatus
JPH06260276A (ja) 高周波加熱装置
JPH06260275A (ja) 高周波加熱装置
JP3063643B2 (ja) 加熱装置
WO2024185595A1 (ja) 高周波加熱装置および高周波加熱方法
JP3841090B2 (ja) マイクロ波加熱装置
WO2021166563A1 (ja) マイクロ波処理装置
EP4017218A1 (en) Method for dielectrically heating a comestible object, appliance, and computer-program product
JP2021196100A (ja) 加熱調理器
US20230047831A1 (en) High-frequency processing device
JP2011052852A (ja) マイクロ波加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847613

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535349

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020847613

Country of ref document: EP

Effective date: 20220228