JP2018081908A - 固体加熱装置におけるrf励磁信号パラメータの確立 - Google Patents

固体加熱装置におけるrf励磁信号パラメータの確立 Download PDF

Info

Publication number
JP2018081908A
JP2018081908A JP2017208126A JP2017208126A JP2018081908A JP 2018081908 A JP2018081908 A JP 2018081908A JP 2017208126 A JP2017208126 A JP 2017208126A JP 2017208126 A JP2017208126 A JP 2017208126A JP 2018081908 A JP2018081908 A JP 2018081908A
Authority
JP
Japan
Prior art keywords
excitation signal
reflected power
excitation
parameter values
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017208126A
Other languages
English (en)
Other versions
JP7033431B2 (ja
Inventor
マー ミンヤン
Minyang Ma
マー ミンヤン
ジェイ.ダーナン グレゴリー
J Durnan Gregory
ジェイ.ダーナン グレゴリー
ワイ.ドゥ スティーブン
Y Do Steven
ワイ.ドゥ スティーブン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
NXP USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NXP USA Inc filed Critical NXP USA Inc
Publication of JP2018081908A publication Critical patent/JP2018081908A/ja
Application granted granted Critical
Publication of JP7033431B2 publication Critical patent/JP7033431B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/664Aspects related to the power supply of the microwave heating apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/044Microwave heating devices provided with two or more magnetrons or microwave sources of other kind
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

【課題】改良された加熱装置を提供する。【解決手段】負荷が固体加熱システムの加熱用空洞内に載置されると、処理部は、パラメータ値の組み合わせの構成要素となる励磁信号周波数及び1つ又は複数の位相シフトを示す制御信号を生成する。マイクロ波生成モジュールが、周波数及び位相シフトによって特徴付けられるRF励磁信号を生成する。マイクロ波エネルギー放射器が、マイクロ波生成モジュールから受信したRF励磁信号に対応する電磁エネルギーを加熱用空洞に放射する。処理部が、電力検出回路が取得した反射RF電力測定値に基づいて反射電力示度を決定する。このプロセスは、パラメータ値の異なる組み合わせに対して繰り返され、パラメータ値の許容可能な組み合わせが決定されて、加熱システムのメモリに記憶される。異なる負荷特性を有する他の負荷に対して、同様に、パラメータ値の許容可能な組み合わせを決定し記憶することができる。【選択図】 図2

Description

本明細書に記載する主題の実施形態は、一般的に、無線周波数(RF)エネルギーを使用して負荷を加熱するための装置及び方法に関する。
長年の間、電子レンジでは、食品、飲料、又は他の物品を加熱する目的でマイクロ波エネルギーを生成するために、マグネトロンが一般的に使用されてきた。マグネトロンは、縁の周りに離間した複数の円筒形の空洞を有する円形のチャンバと、チャンバの中心に組み込まれたカソードと、磁界を生成するように構成された磁石と、から基本的に構成される。マイクロ波システムに組み込まれるときには、カソードは、カソードに高圧電位を供給するように構成される直流(DC)電源に結合される。磁場及び円筒形の空洞が、空洞内の電子に、共振高周波無線周波数(RF)場を空洞内に誘発させ、プローブを介して空洞からこの場の一部を抽出することができる。プローブに結合された導波路が、RFエネルギーを負荷に導く。例えば、電子レンジでは、負荷は加熱用空洞であることがあり、加熱用空洞のインピーダンスはその内部の物体によって影響されることがある。
マグネトロンは、マイクロ波及び他の用途では良好に機能しているが、欠点が無いわけではない。例えば、マグネトロンは典型的に、動作するのに非常に高い電圧を必要とする。更に、マグネトロンは、動作期間が長期に渡ると、出力電力の低下を招きやすいことがある。従って、マグネトロンが含まれているシステムの性能は、時間の経過と共に低下することがある。更には、マグネトロンは、振動に敏感で、かさばり、重い部品になりがちであり、従って、携帯用途での使用が望ましくない。
より最近では、加熱用空洞内に放射されるRF信号を生成するために固体ハードウェアを使用するマイクロ波加熱装置が提案されている。固体マイクロ波加熱装置によって必要とされる電力は、マグネトロンベースのシステムによって必要とされる電力よりも非常に小さくて済むことがある。加えて、固体マイクロ波加熱装置の性能は、時間の経過と共に低下しない。更に、固体ハードウェアの実装は、調理動作全体に渡ってRF信号特性を変化させることを可能にする。従って、開発者は、調理動作の品質を改善することができるRF信号の制御の方法及び装置を模索している。
米国特許第8759729号明細書 米国特許第4268828号明細書
ヤング ワイ他(Yang, Y. et al.)著、「RF NEMSシリーズスイッチを用いた600GHz 3ビット遅延線位相シフタの設計(Design of 600 GHz 3-bit delay-line phase shifter using RF NEMS series switches)」、アンテナ・伝搬研究における米国電気電子学会国際シンポジウム(IEEE Int’l. Symp. on Antennas and Propagation)、2011年6月、3287−3290頁
例示的な実施形態による、外部のコンピュータに結合された固体加熱システムの斜視図である。 例示的な実施形態による、固体加熱装置の簡略化されたブロック図である。 例示的な実施形態による、許容可能な励磁信号パラメータを決定するために固体加熱装置を動作させる方法の流れ図である。 別の例示的な実施形態による、許容可能な励磁信号パラメータを決定するために固体加熱装置を動作させる方法の流れ図である。 更に別の例示的な実施形態による、許容可能な励磁信号パラメータを決定するために固体加熱装置を動作させる方法の流れ図である。 一実施形態による、固体加熱動作を実施する方法の流れ図である。
詳細な説明及び特許請求の範囲を参照し、以降の図面と併せて考慮することにより、主題のより完全な理解が得られる。添付の図面では、同様の参照番号は図面全体を通じて同様の要素を指す。
以下の詳細な説明は、本質的に単に例示に過ぎず、主題の実施形態又はそのような実施形態の応用及び使用を限定することを意図してはいない。本明細書で使用する場合、「例示的な」及び「例」という語は、「例、実例、又は例示として働く」ことを意味する。例示又は一例として本明細書で説明される実施例は、必ずしも他の実施例よりも好ましい又は有利であると解釈されるべきではない。更に、前述の技術分野、背景、又は以降の詳細な説明において提示される、理論の表現又は示唆により制限することは意図されていない。
本明細書に記載する主題の実施形態は、スタンドアローンの器具又は他のシステムに組み込むことができる固体加熱装置に関し、かつそのような固体加熱装置を様々な負荷特性を有する負荷に対して特徴付けかつ動作させる方法にも関する。以下でより詳細に説明するように、実施形態は、様々な負荷特性を有する負荷上で実施される加熱動作の間に、許容可能な反射電力及び/又は反射損失を生じる、無線周波数(RF)励磁信号(即ち、加熱用空洞に放射されるRF信号)のためのパラメータを決定する方法を含む。加えて、実施形態は、決定されたRF励磁信号パラメータに従ってRF励磁信号を生成するように構成された固体加熱装置を含む。
一般的に、「加熱」という語は、負荷(例えば、食品負荷又は他の種類の負荷)の温度をより高い温度に上昇させることを意味する。本明細書で使用する場合、「加熱」という用語は、より広義には、負荷にRF電力を供給することによって負荷の温度又は熱エネルギーを増加させるプロセスを意味する。従って、様々な実施形態において、「加熱動作」は、負荷の温度を初期温度よりも高い任意の最終温度に上昇させるために、任意の初期温度を有する負荷にRFエネルギーを供給することとして定義することができる。よって、本明細書に記載する「加熱動作」及び「固体加熱システム又は装置」は、代わりに「熱上昇動作」及び「熱上昇システム又は装置」と呼ばれてもよい。
図1は、例示的な実施形態による、固体加熱システム100の斜視図である。固体加熱システム100は、加熱用空洞110、制御パネル120、1つ又は複数のマイクロ波エネルギー放射器131、132、133、134、135、136、1つ又は複数のRF信号源(例えば、図2のRF信号発生器240)、1つ又は複数の電力検出回路(例えば、図2の電力検出回路260〜262)、及び処理部(例えば、図2の処理部280)を含む。加熱用空洞110は、上部、底部、側部、及び背面部の空洞壁111、112、113、114、115の内側表面、並びにドア116の内側表面によって画定される。ドア116が閉じられると、加熱用空洞110は密閉された空気空洞を画定する。本明細書で使用する場合、「空気空洞」という用語は、空気又は他の気体を収容する密閉領域(例えば、加熱用空洞110)を意味することがある。
一実施形態によると、マイクロ波エネルギー放射器131〜136の各々は、チャンバ壁111〜115又はドア116に近接して配置される。更に、マイクロ波エネルギー放射器131〜136の各々は、マイクロ波発電モジュール(例えば、図2のモジュール250〜252)からマイクロ波信号を受信する。後程より詳細に説明するように、各マイクロ波信号は、励磁信号周波数及び位相シフトによって特徴付けられ、マイクロ波エネルギー放射器131〜136は、受信したマイクロ波信号を加熱用空洞110に放射する。
一実施形態では、外部コンピュータ180は、システム100の動作の様々な態様を制御するために、かつ、検知された若しくは測定された変数及び/又は他の情報を示すシステム100からの情報を受信するために、固体加熱システム100に通信可能に結合されることがある。例えば、そのような設定は、システム100を消費者に対して利用可能にする前にシステム100を設定するために、実験室又は工場の設定で実施されることがある。そのような実施形態では、外部コンピュータ180の処理部(図示せず)は、概念的には、固体加熱システム100の処理部(例えば、図2の処理部280)の一部であるとみなすことができる。
後程より詳細に説明するように、システム設定プロセスは、複数の異なる負荷条件(即ち、加熱用空洞110内部に置かれた負荷の特性)を考慮して、システム100のマイクロ波発電モジュールがマイクロ波エネルギー放射器131〜136に供給するRF信号の所望される位相、周波数、及び/又は他の特性を決定することを含むことがある。より具体的には、様々な負荷の種類、状態、及び重量の各々について、外部コンピュータ180は、システム100を制御して複数の異なる位相及び/又は周波数特性を有するRF信号を生成すること、システム100から反射電力及び/又は反射損失を示す信号を受信すること、および特定の負荷の特性を考慮して、許容可能な又は最良の反射電力又は反射損失を生じる励磁信号パラメータ(例えば、位相及び/又は周波数の組み合わせ)を決定することがある。例えば、そのような決定は、外部コンピュータ180内部の処理部(図示せず)によって行われることがある。一旦決定されると、外部コンピュータ180は、システム100に励磁信号パラメータ情報を(例えば、図2のメモリ288に)記憶させることができ、この励磁信号パラメータ情報は、負荷の種類、状態、及び重量と相関付けられており、後に続く加熱動作の間にシステム100によってアクセスされることができる。そのような後に続く加熱動作の間に負荷の特性についての情報が与えられると、これにより、システム100が後に、許容可能な反射電力及び/又は反射損失を再度もたらし得るRF信号を生成することが可能になる。他の実施形態では、外部コンピュータ180の機能は、システム100内部に完全に内蔵されることがある。加えて、実施形態によっては、システム100は上述した制御、監視、及び評価のプロセスを、これらのプロセスをシステム設定活動として実施するのではなく、又はシステム設定活動として実施するのに加えて実施して、(例えば、システム100が最終消費者に提供された後を含めて)各加熱動作の間に許容可能な反射電力及び/又は反射損失を決定することがある。
固体加熱システム100の動作の間、ユーザ(図示せず)は加熱用空洞110内に負荷(例えば、食品、液体、及び/又は他の種類の負荷)を置くことができ、かつ任意選択的に、制御パネル120又は外部コンピュータ180を介して、負荷の特性を指定する入力を提供することができる。例えば、指定される特性には、負荷のおよその重量が含まれることがある。加えて、指定される負荷の特性は、負荷を形成する材料(例えば、骨付きの又は骨なしの肉、パン、液体、等)を示すことがある。更に、指定される特性は、負荷の状態(例えば、冷凍済又は解凍済、およその温度、液体か固体か、等)を示すことがある。代替の実施形態では、負荷特性は、負荷のパッケージ上のバーコードをスキャンしそのバーコードに対応する負荷情報を引き出すことによって、負荷上の又は負荷に埋め込まれたRFIDタグからRFID信号を受信しそのRFIDに対応する負荷情報を引き出すことによって、(例えば、図2の重量センサ290から)負荷重量の示度を受信することによって、かつ/又は、(例えば、図2の温度及び/又は赤外線(IR)センサ290を使用して)負荷のおよその温度を測定することによって、などの他の方法で取得されることがある。どの方法でも、後でより詳細に説明するように、そのような負荷特性に関する情報により、処理部(例えば、図2の処理部280)又は外部コンピュータ180は、加熱動作の間に許容可能な反射電力及び/又は反射損失を達成するために、マイクロ波エネルギー放射器131〜136に供給されるRF励磁信号に対する周波数及び/又は位相の設定にアクセスすること又は設定を容易に決定することが可能になる。或いは、加熱動作の開始前には負荷特性を入力または受信しないことがある。
負荷を加熱用空洞110内に置いた後で、特徴付け及び/又は加熱動作を開始するために、ユーザは制御パネル120又は外部コンピュータ180を介して、「開始」入力を提供することができる。これに応答して、システム100内部のコントローラ(例えば、図2の処理部280)又は外部コンピュータ180内部の処理部が、マイクロ波発電モジュール(例えば、図2のモジュール250〜252)の各々に、複数のマイクロ波エネルギー放射器131〜136の各々に向けて所与の周波数及び位相のRF信号を供給させる。マイクロ波エネルギー放射器131〜136は、応答して、加熱用空洞110に電磁エネルギーを放射する。
RFエネルギーが負荷に供給されているとき、システム100は反射電力及び/又は反射損失を測定し、その情報をシステム100内部の処理部及び/又は外部コンピュータ180に提供する。より具体的には、1つ又は複数の電力検出回路(例えば、図2の電力検出回路260〜262)が、マイクロ波発電モジュールと各マイクロ波エネルギー放射器131〜136との間の伝送経路の一部又は全部に沿って、反射電力(及び場合によっては順方向電力)を連続的に又は周期的に測定する。このとき、システム100は、マイクロ波エネルギー放射器に供給されるRF信号の一部又は全部の励磁信号パラメータ(例えば、周波数及び/又は位相シフト)を繰り返し変更することがあり、かつ複数の反射電力及び/又は反射損失の測定値を決定し記憶することがある。これらの反射電力及び/又は反射損失の測定値は、システム100及び/又は外部コンピュータ180の内部に記憶されることがある。次いで、システム100又は外部コンピュータ180は、最適な(例えば、最良の)及び/又は許容可能な(例えば、閾値未満の)反射電力及び/又は反射損失をもたらす励磁信号パラメータの組み合わせ(例えば、周波数及び/又は位相シフトの組み合わせ)を決定することがある。次いで、最適な及び/又は許容可能な励磁信号パラメータの組み合わせを示す情報は、同じ又は類似の負荷条件での後に続く加熱動作の間で使用するために、システム100内部に記憶されることがある。
加熱動作の間、負荷に供給される電磁エネルギーは、負荷の熱エネルギーを増加させる(即ち、電磁エネルギーが負荷を暖める)。従って、負荷の状態(例えば、負荷のインピーダンス)は、負荷の熱エネルギーが増加するにつれて変化する。インピーダンスの変化は、RFエネルギーの負荷への吸収率を変化させ、従って、反射電力の大きさを変化させる。一実施形態によると、上述の反復プロセスは、加熱プロセスにおいて様々な間隔で、又は類似の負荷に対して異なる温度で、繰り返されることがある。例えば、所与の負荷の種類及び重量について、様々な負荷の状態ごとに複数の許容可能な励磁パラメータの組み合わせが決定されて、システム100内に記憶されることがある。本明細書で使用する場合、「負荷の種類」は、負荷を形成する材料(例えば、骨付き牛肉、骨なし鶏肉、パン、だし汁、ピザ、バター、包装済みの食事、等)、負荷の形状又は加工状態(例えば、未加工、さいの目に刻まれた、千切りにされた、等)、及び負荷の単位の量(例えば、3巻、4個の鶏もも肉、2個の包装済の冷凍食事、等)などの1つ若しくは複数の材料及び/又は物理的特性を、他の材料及び/又は物理的特性に加えて、含むことがある。負荷の重量は、既知の固体及び液体の度量法(例えば、オンス、ポンド、液体オンス、等)の点から規定されることがある。「負荷の状態」は、負荷の温度、物質の状態などの、負荷の変動する特性を示すことがある。
図示されるように、図1の固体加熱システム100は、スタンドアローンの、調理台タイプの器具として具現化される。或いは、固体加熱システムの構成要素は、他の種類のシステム又は器具に組み込まれてもよい。例えば、固体加熱システム100の構成要素及び機能は、冷蔵庫/冷凍機、オーブン、携帯装置、等の、別の種類の器具に組み込まれることがある。当業者であれば、本明細書の記載に基づいて、図1に図示された構成以外の構成を有するシステム又は器具に、固体加熱システムの実施形態を組み込むことができることを理解するであろう。従って、特定の種類の器具における固体加熱システムの上述の実施態様は、本発明の主題の用途を、図示され説明された種類のシステムのみに限定することを意味するものではない。
更に、固体加熱システム100は、その構成要素が互いに対して特定の相対的な向きにあるように示されているが、当然ながら、様々な構成要素は、同様に異なる向きに配置されてもよい。加えて、様々な構成要素の物理的構成が異なっていてもよい。例えば、制御パネル120は、より多くの、より少ない、又は異なるユーザインターフェース要素を有することがあり、かつ/又は、ユーザインターフェース要素は異なって配置されることがある。加えて、図1では実質的に立方体の加熱用空洞110が図示されているが、他の実施形態では、加熱用空洞は異なる形状(例えば、円筒形、等)を有することがあることは、言うまでもない。更に、固体加熱システム100は、図1には具体的に示されていない追加の構成要素(例えば、ファン、静止プレート又は回転プレート、トレイ、電気コード、等)を含むことがある。
図2は、例示的な実施形態による、固体加熱システム200(例えば、図1の固体加熱システム100)の簡略化されたブロック図である。一実施形態では、固体加熱システム200は、加熱用空洞210、ユーザインターフェース220、N個のマイクロ波エネルギー放射器230〜232(例えば、Nは2〜10以上の任意の整数であり得る)、RF信号発生器240、N個のマイクロ波生成モジュール250〜252、N個の電力検出回路260〜262、処理部280、電源及びバイアス回路286、及びメモリ288を含む。加えて、実施形態によっては、固体加熱システム200は、温度センサ、赤外線(IR)センサ、及び/又は重量センサ290を含むことがあるが、これらのセンサ部品のうちの一部又は全部は、除外されることがある。図2は、説明の目的のため及び説明を容易にするために固体加熱システム200を簡略化した表現であり、実際の実施形態は、他の機器及び部品を含んで追加の機能及び特徴を提供することがあり、かつ/又は、固体加熱システム200は、より大きな電気システムの一部であることがあることを、理解されたい。
加熱されるべき負荷212を収容するように構成される加熱用空洞210(例えば、図1の空洞110)は、底部、上部、及び側部の壁の内側表面によって画定される。一実施形態によると、空洞210は、(例えば、図1のドア116を用いて)密閉されて、加熱動作の間に空洞210に導入される電磁エネルギーを収容することがある。システム200は、加熱動作の間に密閉が維持されていることを確実にする、1つ又は複数のインターロック機構を含むことがある。1つ又は複数のインターロック機構が、密閉が維持されていないことを示した場合、処理部280は加熱動作を停止させることがある。
加熱用空洞210及び加熱用空洞210内に配置された任意の負荷212(例えば、食品、液体、等)は、N個のマイクロ波エネルギー放射器230〜232によって空洞210に放射される電磁エネルギー(又はRF電力)に対する、累積負荷を示す。より具体的には、空洞210及び負荷212は、本明細書で「空洞入力インピーダンス」と呼ばれるインピーダンスをシステムに提示する。空洞入力インピーダンスは、負荷212の温度が上昇するにつれて、加熱動作の間に変化する。
ユーザインターフェース220は、制御パネル(例えば、図1の制御パネル120)を含むことがあり、これにより例えば、ユーザが、加熱動作用のパラメータ(例えば、加熱されるべき負荷の特性、加熱動作の持続時間、等)、開始ボタン及びキャンセルボタン、機械的制御(例えば、ドア/引き出しオープンの掛け金)、等に関する入力をシステムに提供することが可能になる。加えて、ユーザインターフェース220は、加熱動作の状態を示すユーザが知覚可能な出力(例えば、カウントダウンタイマー、加熱動作の進行又は完了を示す可視の印、及び/又は加熱動作の完了を示す可聴トーン)及び他の情報を提供するように構成されることがある。実施形態によっては、システム200との通信は、データポート222を使用して実施されることがあり、データポート222は、外部システム(例えば、図1の外部コンピュータ180)とシステム200(例えば、処理部280)との間でコマンド及び他の情報を伝達するように構成されることがある。
処理部280は、1つ又は複数の汎用又は特殊用途プロセッサ(例えば、マイクロプロセッサ、マイクロコントローラ、特定用途向け集積回路(ASIC:Application Specific Integrated Circuit)、等)、揮発性及び/又は不揮発性メモリ(例えば、ランダムアクセスメモリ(RAM)、読出し専用メモリ(ROM)、フラッシュ、様々なレジスタ、等)、1つ又は複数の通信バス、及び他の部品を含むことがある。一実施形態によると、処理部280は、ユーザインターフェース220、データポート222(含まれる場合)、RF信号発生器240、マイクロ波発電モジュール250〜252、電力検出回路260〜262、電源及びバイアス回路286、及びセンサ290(含まれる場合)に結合される。処理部280は、ユーザインターフェース220及び/又はポート222を介して受け取られた入力を示す信号を受信し、センサ290(含まれる場合)を介して温度及び/又は重量を示す信号を受信し、かつ接続部263〜265を介して電力検出回路260〜262から反射電力測定値を受信するように構成される。加えて、実施形態によっては、処理部280は、電力検出回路260〜262から順方向電力測定値を受信することがある。ユーザインターフェース220、ポート222、及びセンサ290から受信された入力信号に基づいて、処理部280は、励磁信号パラメータの組み合わせを決定し、1つ又は複数の決定された励磁信号パラメータを示す制御信号を、RF信号発生器240及びマイクロ波生成モジュール250〜252に供給する。本明細書で使用する場合、「励磁信号」とは、任意のマイクロ波発電モジュール250〜252によって、接続部256〜258を介してマイクロ波エネルギー放射器230〜232に供給されるRF信号である。「励磁信号パラメータ」は、励磁信号の周波数、励磁信号の別のインスタンスに対する励磁信号の位相シフト、励磁信号の電力レベル、又は励磁信号の別の電気的特性を、これらに限定するものではないが含む、励磁信号の電気的特性である。
例えば、励磁信号パラメータは、RF信号発生器240がマイクロ波発電モジュール250〜252にRF信号を供給すべき周波数又は周波数範囲であることがある。ユーザインターフェース220、ポート222、及び/又はセンサ290から受信された入力信号に基づいて周波数又は周波数範囲を決定すると、処理部280は、決定された周波数又は周波数範囲を示す制御信号をRF信号発生器240に供給することがある。制御信号の受信に応答して、RF信号発生器240は、示された周波数の又は示された周波数範囲内の励磁信号を生成する。一実施形態によると、RF信号発生器240は、ISM(工業的、科学的、及び医療の)帯域の周波数を有する発振電気信号を生成するように構成されることがあるが、システムは、同様に他の周波数帯域での動作をサポートするように修正されることもできる。例示した実施形態では、単一のRF信号発生器240のみが示されている。代替の実施形態では、システム200は、複数のRF信号発生器(例えば、N個のRF信号発生器)を含むことがあり、その各々が処理部280から制御信号を受信する。いずれにしても、様々な実施形態において、各RF信号発生器240を制御して異なる電力レベル及び/又は異なる周波数の発振信号を生成することがある。例えば、RF信号発生器240は、約2.0メガヘルツ(MHz)から約200MHzの範囲で発振する信号を生成することがある。望ましい周波数範囲としては、例えば、13.56MHz(±5パーセント)、27.125MHz(±5パーセント)、40.68MHz(±5パーセント)、及び2.45ギガヘルツ(GHz)(±5パーセント)が挙げられる。1つの特定の実施形態では、例えば、RF信号発生器240は、約2.40GHz〜約2.50GHzの範囲で、かつ約10デジベル(dB)〜約15dBの範囲の電力レベルで発振する信号を生成することがある。或いは、発振の周波数及び/又は電力レベルは、上記で与えられた範囲又は値よりも小さいことも又は大きいこともある。
励磁信号周波数に加えて、励磁信号パラメータは、マイクロ波発電モジュール250〜252によってRF信号発生器240から受信された励磁信号に印加されることになる位相シフトであることがある。一実施形態では、各マイクロ波発電モジュール250〜252は、増幅器255(1つのみが示されている)と直列に結合される可変移相器254(1つのみが示されている)を含む。ユーザインターフェース220、ポート222、及び/又はセンサ290から受信した入力信号に基づいてマイクロ波生成モジュール250〜252の各々に対する位相シフトを決定すると、処理部280は、接続部282〜284を介して、マイクロ波発電モジュール250〜252の各々の内部の移相器254に制御信号を供給することがあり、この制御信号は、RF信号発生器240から受信されたRF信号に移相器254によって印加されるべき位相シフトを示す。制御信号の受信に応答して、移相器254は、RF信号発生器240から受信された励磁信号に、対応する位相シフトを印加する。
図2は、RF信号発生器240に結合された入力部、及び増幅器255に結合された出力部を有する可変移相器254を示す(即ち、移相器254は、発生器240と増幅器255との間に結合されている)。代替の実施形態では、増幅器255は、RF信号発生器240と可変移相器254との間に結合されることがある(即ち、増幅器255への入力部が信号発生器240に結合されることがあり、増幅器255の出力部が移相器254への入力部に結合されることがある)。いずれにしても、各マイクロ波発電モジュール250〜252の入力部はRF信号発生器240に結合され、各マイクロ波発電モジュール250〜252に出力部は、伝送線256〜258を通じてマイクロ波エネルギー放射器230〜232に結合される。
図示した直列構成では、可変移相器254は、RF信号発生器240からRF信号を受信するように構成され、かつこの信号に、処理部280から接続部282〜284のうちの1つを介して受信された制御信号に示される位相シフトに対応する位相シフトを印加するように構成される。増幅器255は、可変移相器254から位相シフトされたRF信号(又は、0度の位相シフトが付与された場合にはシフトされていない信号)を受信し、このRF信号を増幅して、増幅されかつ潜在的に位相シフトされた出力RF信号を生成する。各増幅器255は、様々な増幅器トポロジーのうちの任意のものを使用して具体化されることがある。例えば、各増幅器255は、シングルエンド増幅器、ダブルエンド増幅器、プッシュプル増幅器、ドハティ増幅器、スイッチモード電力増幅器(SMPA)、又は別の種類の増幅器の、様々な実施形態を含むことがある。
各電力増幅器255は、単一段又は多段の電力増幅器(例えば、ドライバ増幅段及び最終増幅段を含む)として具体化されることがある。電力増幅器255は、可変移相器254から(又は、直列構成が反転されている場合には、RF信号発生器240から)発振信号を受信し、この信号を増幅して、電力増幅器255の出力部において非常に高い電力信号を生成するように構成される。例えば、出力信号は、約100ワットから約400ワット以上の範囲の電力レベルを有することがある。
電力増幅器255によって印加される利得は、増幅器255の各段に電源及びバイアス回路286によって供給されるゲートバイアス電圧及び/又はドレイン供給電圧を使用して制御することができる。より具体的には、電源及びバイアス回路286は、処理部280から受信される制御信号に従って、各RF増幅段にバイアス及び供給電圧を供給することがある。従って、更なる実施形態によると、処理部280は制御信号を電源及びバイアス回路286に供給することがあり、これにより、回路286は、マイクロ波発電モジュール250〜252内部の増幅器255に供給されるゲートバイアス電圧及び/又はドレインバイアス電圧を調節するようになる。
一実施形態では、各増幅段は、入力端子(例えば、ゲート又は制御端子)、及び2つの電流伝送端子(例えば、ソース端子及びドレイン端子)を有する、電界効果トランジスタ(FET)などの、電力トランジスタとして具体化される。単一段増幅器の場合、インピーダンス整合回路(図示せず)が、単一増幅段の入力部(例えば、ゲート)、及び/又は、単一増幅段の出力部(例えば、ドレイン端子)に結合されることがある。二段増幅器の場合、様々な実施形態では、インピーダンス整合回路(図示せず)が、ドライバと最終増幅段との間のドライバ増幅段の入力部(例えば、ゲート)、及び/又は、最終増幅段の出力部(例えば、ドレイン端子)に結合されることがある。一実施形態では、各増幅段の電力トランジスタは、横方向拡散金属酸化膜半導体FET(LDMOSFET:laterally diffused metal oxide semiconductor FET)トランジスタを含む。しかしながら、トランジスタを何等かの特定の半導体技術に限定することは意図されておらず、他の実施形態では、各トランジスタは、窒化ガリウム(GaN)トランジスタ、別の種類のMOSFETトランジスタ、バイポーラ接合トランジスタ(BJT)、又は別の半導体技術を利用したトランジスタとして実現されることがあることに、留意されたい。
マイクロ波発電モジュール250〜252によって生成される、増幅されかつ潜在的に位相シフトされたRF信号の各々は、伝送経路256〜258を介してN個のマイクロ波エネルギー放射器230〜232のうちの1個に供給される。例えば、伝送経路256〜258の各々は、インピーダンス整合ネットワーク及び導線(例えば、同軸ケーブル、又は他の種類の導線)を含むことがある。
一実施形態によると、電力検出回路260〜262は、各マイクロ波発電モジュール250〜252の出力部と各マイクロ波エネルギー放射器230〜232への入力部との間に、各伝送経路256〜258に沿って、結合されている。各電力検出回路260〜262は、伝送経路256〜258に沿って進行する反射信号(即ち、N個のマイクロ波エネルギー放射器230〜232のうちの1つからマイクロ波生成モジュール250〜252のうちの1つに向かう)の電力を監視し、測定し、又は検出するように構成される。更なる実施形態によると、各電力検出回路260〜262は、順方向信号(即ち、マイクロ波生成モジュール250〜252のうちの1つからN個のマイクロ波エネルギー放射器230〜232のうちの1つに向かう)の電力を監視し、測定し、又は検出するように構成されることもある。
電力検出回路260〜262は、接続部263〜265を介して、反射信号電力(及び、場合によっては順方向信号電力)の振幅を搬送する信号を処理部280に供給する。次には、処理部280は、受信された測定値から、反射信号電力と順方向信号電力との比及び/又は反射損失を計算することがある。以下でより詳細に説明するように、処理部280は、特定の負荷特性を有する負荷を考慮して許容可能な又は最適な反射電力及び/又は反射損失をもたらす励磁信号パラメータの組み合わせを見つけるために、RF励磁信号パラメータを変更することがある。
上述したように、固体加熱システム200の幾つかの実施形態は、温度センサ、IRセンサ、及び/又は重量センサ290を含むことがあり、これらのセンサは負荷特性を決定するのに有用であることがある。温度センサ及び/又はIRセンサは、加熱動作の間に負荷212の温度を感知できるような位置に配置されることがある。温度情報が処理部280に供給されると、処理部280が、励磁信号パラメータの組み合わせを選択して、RF信号発生器240によって供給されるRF信号の電力を(例えば、電源及びバイアス回路286によって供給されるバイアス電圧及び/又は供給電圧を制御することにより)変更すること、かつ/又は加熱動作をいつ終了するべきかを決定することが可能になる。重量センサは、負荷212の下に配置され、負荷212の重量の推定値を処理部280に提供するように構成される。処理部280はこの情報を使用して、例えば、励磁信号パラメータの組み合わせを選択すること、RF信号発生器240によって供給されるRF信号の所望の電力レベルを決定すること、及び/又は加熱動作のおよその持続時間を決定することがある。
一実施形態によると、システム200は、既知の又は決定された負荷特性を有する負荷に対して、許容可能な反射電力及び/又は反射損失をもたらす励磁信号パラメータの組み合わせを決定するように構成される。励磁信号パラメータの決定は、例えば、システム較正プロセスの間に工場において実施されることがある。加えて、又は代替的に、励磁信号パラメータの決定は、システムが消費者に販売された後で、「現場で」実施されてもよい。図3〜図5の状況下でカバーされるような幾つかの実施形態によると、特定の負荷特性を有する負荷212が加熱用空洞210内に載置され、負荷212にマイクロ波エネルギーを照射し反射電力を測定するという反復プロセスが実施され、この反復プロセスの間に、許容可能な反射損失をもたらす励磁信号パラメータが決定される。
決定された励磁信号パラメータは、後に続く加熱動作の間に使用するために、(例えば、メモリ288に)記憶される。例えば、そのような後に続く加熱動作の間に、既知の又は決定された負荷特性は、システム内部(例えば、図2のメモリ288内部)に記憶された周波数及び/又は位相シフトの情報にアクセスするためのキーとして使用されることがある。例えば、システムのメモリに記憶された多次元表(本明細書では「励磁表」と呼ぶ)が、複数の負荷の種類、重量、及び状態(例えば、負荷温度)に対する許容可能な周波数及び位相シフトの設定を示すことがある。そのような励磁表の、値を入力していないバージョンの例を以下に示す。
図3〜図5に関連して、許容可能な励磁信号パラメータを決定するためのプロセスの様々な実施形態を以下で詳細に説明しており、これらのプロセスは、上記で示した表のような励磁表のデータを埋めるために使用される。各励磁表は、一旦データを埋められると、単一のシステム(例えば、1つの電子レンジ)に固有に対応することがあり、又は、同じシステム構成を有するシステムのグループ(例えば、全く同様に製造された電子レンジのグループ)に対応することがある。以下で説明する方法の実施形態が、様々な特性を有する複数の負荷に対して完了され、かつ励磁表が完全にデータが埋められると、この励磁表は、後に続く加熱動作の間に使用するために、システムメモリ(例えば、図2のメモリ288)内部に記憶されることがある。
図3は、例示的な実施形態による、許容可能な励磁信号パラメータを決定するために固体加熱システム(例えば、図1、図2のシステム100、200)を動作させる方法の流れ図である。以下の説明では、処理部(例えば、図2の処理部280)によって実施されるプロセスへの多数の参照がなされる。当然ながら、他の実施形態では、処理部によって実施されるものとして示されるプロセスの一部又は全部は、外部コンピュータ(例えば、図1のコンピュータ180)内部の処理部によって実施されてもよい。加えて、以下に説明するプロセスの間に生成されるデータは、システム内部に(例えば、図2のシステムメモリ288に)、又は外部メモリ(例えば、図1の外部コンピュータ180のメモリ)に、記憶されることがある。
図3の方法は、複数の負荷に対して実施することがあり、各負荷は、特定の初期負荷特性(例えば、華氏(F)20度(摂氏−6.7度)の鶏肉1ポンド(454グラム)、華氏60度(摂氏15.6度)のだし汁8オンス(227グラム)、等)を有する。次いで、異なる負荷ごとに、この方法を使用して決定された励磁信号パラメータの組み合わせが、その初期負荷特性に対応する励磁表内部のセル(例えば、華氏20度の鶏肉に対応する、上記の励磁表の「x」で印を付けられたセル、又は、華氏60度のだし汁に対応する「y」で印を付けられたセル)に記憶されることがあり、この方法は、他の初期負荷特性を有する負荷に対して繰り返されることがある。
いずれの場合でも、この方法は、ブロック302で、負荷(例えば、図2の負荷212)がシステムの加熱用空洞(例えば、図2の加熱用空洞210)内部に載置され、(例えば、図1のドア116を閉めることにより)加熱用空洞が密閉されると、開始することができる。実施形態によっては、空洞は、1つ又は複数の安全インターロック機構が係合されると、密閉されているとみなされる。
ブロック304では、負荷の1つ又は複数の特性を決定することができる。例えば、先に考察したように、負荷特性には、負荷を形成する材料(例えば、肉、パン、液体)、負荷の状態(例えば、冷凍済み又は解凍済、特定の温度である、液体か固体か)、負荷の重量、等を含むことがある。実施形態によっては、負荷特性を示す情報は、システムのユーザインターフェース(例えば、図1、図2のユーザインターフェース120、220)を介して、又は、データポート(例えば、図2のデータポート222)を通じてシステムと通信する外部コンピュータ(例えば、図1のコンピュータ180)を使用して、ユーザによって入力されることがある。代替の実施形態では、負荷特性は、負荷のパッケージ上のバーコードをスキャンしそのバーコードに対応する負荷情報を(例えば、メモリ288から、又は外部ネットワークへのリンクから)引き出すことによって、負荷上の又は負荷に埋め込まれたRFIDタグからRFID信号を受信しそのRFIDに対応する負荷情報を(例えば、メモリ288から、又は外部ネットワークへのリンクから)引き出すことによって、センサ(例えば、図2の重量センサ290)から負荷重量の示度を受信することによって、かつ/又は、(例えば、図2の温度及び/又はIRセンサ290を使用して)負荷のおよその温度を測定することによって、などの他の方法で取得されることがある。負荷特性は、励磁信号パラメータの組み合わせが決定されるセル(例えば、上記の表1などの励磁信号表の)を示す。
一実施形態によると、励磁信号パラメータの組み合わせの各々は、少なくとも1つの励磁信号周波数及び少なくとも1つの位相シフトを含む。より具体的な実施形態では、励磁信号パラメータは、1つの励磁周波数f、及びN個の位相シフト値p…pを含む。1つの励磁周波数パラメータ及びN個の位相シフトパラメータを有すると、各組み合わせにおける励磁信号パラメータの数は、N+1に等しい。励磁周波数fは、RF信号発生器(例えば、図2のRF信号発生器240)によって生成される励磁信号の周波数に相当し、各位相シフト値は、マイクロ波発電モジュール(例えば、図2のモジュール250〜252)内部のN個の可変移相器(例えば、図2の移相器254)のうちの1つによって印加される位相シフトに相当する。実施形態によっては、励磁信号パラメータは、2つ以上の励磁周波数を含むことがあり(例えば、システムが2つ以上のRF信号発生器を含む場合)、かつ/又は励磁信号パラメータは、N個よりも少ない位相シフト値を含むことがある。更に、RF信号発生器によって生成される励磁信号の電力、及び/又は増幅器(例えば、図2の増幅器255)によって印加される利得が、励磁信号パラメータの組み合わせに含まれることがある。そのような実施形態では、励磁信号パラメータの数は、N+1より少ないことも又は多いこともある。本明細書で説明する実施形態では、1つの励磁信号周波数パラメータ及びN個の位相シフトパラメータを含む、励磁信号パラメータの組み合わせ例を使用する。本発明の主題の実施形態は、より多くの、より少ない、かつ異なる励磁信号パラメータを含む励磁信号パラメータの組み合わせ(及びその決定方法)を含むことが意図されている。
各励磁信号パラメータは、一実施形態では、ある範囲に制限されていることがあり、その範囲内の複数の離散値のいずれかを有することがある。例えば、励磁信号周波数パラメータfは、一実施形態では、約2.40GHz〜2.50GHzの間の範囲に制限されることがあり、10メガヘルツ(MHz)離れている複数の離散値のうちの1つを有することがある。これは、11通りの可能なRF信号源周波数設定をもたらす。そのような例では、励磁信号周波数は、2.40、2.41、2.42、2.43、…、2.48、2.49、及び2.50の値(GHz単位)を有することができる。更なる例として、位相シフトパラメータの各々は、一実施形態では、0度〜360度の間の範囲に制限されることがあり、15度離れた複数の離散値のうちの1つを有することがある。そのような例では、任意の所与の位相シフトは、0、15、30、45、…、330、345、及び360という値(度単位)を有することができる。これは、N個の移相器の各々に対して、25通りの可能な位相設定をもたらす。限定のためではなく説明の目的のために、上記で与えられた範囲及び(値同士の間の)ステップサイズを、以下のプロセスの更なる説明において使用する。他の実施形態では、他の範囲及び/又はステップサイズを使用することができる。
励磁信号パラメータ決定プロセスを開始するために、ユーザは、制御パネル(例えば、図1、図2の制御パネル120、220)を介して、又は外部コンピュータ(例えば、図1のコンピュータ180)を介して、「開始」入力を提供することができる。これに応答して、ブロック306で、処理部(例えば、図2の処理部280)が、全ての励磁信号パラメータをデフォルト値に設定することによって、プロセスを初期化する。例えば、デフォルト値は、可能な値の各範囲の最低限度値、可能な値の各範囲の最高限度値、又は、各範囲内の何らかの中間値であることがある。説明の目的のために、デフォルト値は各範囲の最低限度値に一致するものと仮定する。例えば、上記で与えられた例示的な周波数及び位相シフトの範囲を使用すると、デフォルトの励磁信号周波数パラメータfは2.40GHzであり、N個の位相シフトパラメータp、…、p、の各々は0度であることがある。
次いで、反復プロセスを実施して、許容可能な励磁信号パラメータ(即ち、許容可能な(閾値未満の)又は最適な(最小の)反射電力及び/又は反射損失をもたらす励磁信号パラメータ)の組み合わせを決定する。一実施形態によると、反復プロセスは、(例えば、N+1個の)パラメータの各々に対して1度実行される外側ループ310と、現時点で変化させられているどのパラメータに対しても、全ての可能なパラメータ値を「掃引」する内側ループ320と、を含む。外側ループ310を開始するために、ブロック312で、(ループ310の第1の反復のために)掃引されるべき第1のパラメータ、又は(ループ310の次に続く反復のために)掃引されるべき次のパラメータが選択される。例えば、掃引されるべき第1のパラメータは励磁信号周波数であることがあるが、或いは、掃引されるべき第1のパラメータは、N個の位相シフトのうちの1つであることもある。
ブロック314では、掃引されるべき第1のパラメータは励磁信号周波数であると仮定すると、ループ320の第1の反復のために、処理部(例えば、図2の処理部280)は、RF信号発生器に1つ又は複数の制御信号を送信することによって、RF信号発生器(例えば、図2のRF信号発生器240)を作動させる。この制御信号は、RF信号発生器が、ブロック306で設定されたデフォルトの励磁信号周波数と等しい周波数を有する励磁信号を生成すべきであるということを示す。加えて、処理部は、各マイクロ波発電モジュールの可変移相器(例えば、図2の移相器254)に制御信号を(例えば、図2の接続部282〜284を介して)送信し、この制御信号は、各可変移相器が、RF信号発生器から受信した励磁信号に、ブロック306で設定されたデフォルトの位相シフトと等しい位相シフトを印加すべきであるということを示す。制御信号に応答して、RF信号発生器は指定された周波数の励磁信号を生成し、移相器はこの励磁信号を指定された位相シフトだけ(位相シフトがゼロ以外の場合)位相シフトさせ、各増幅器(例えば、図2の増幅器255)は受信された励磁信号を増幅して、潜在的に位相シフトされた励磁信号をマイクロ波エネルギー放射器(例えば、図2のマイクロ波エネルギー放射器230〜232)に供給する。換言すると、処理部は、各マイクロ波発電モジュール(例えば、図2のモジュール250〜252)に、所与の周波数及び位相を有する複数のRF励磁信号を複数のマイクロ波エネルギー放射器の各々に供給させ、ここで、複数のRF励磁信号は、RF励磁信号パラメータ値の選択された組み合わせに従って規定される信号特性を有する。マイクロ波エネルギー放射器は、応答して電磁エネルギーを加熱用空洞(例えば、図1、図2の空洞110、210)に放射し、従って、負荷にRFエネルギーを供給する。
複数のRF励磁信号がマイクロ波エネルギー放射器に供給され、かつRFエネルギーが負荷(例えば、図2の負荷212)に供給されている間に、システムは、マイクロ波発電モジュールとマイクロ波エネルギー放射器との間の伝送経路(例えば、図2の経路256〜258)に沿って配置される電力検出回路(例えば、図2の回路260〜262)を使用して、少なくとも反射RF電力を測定する。一実施形態によると、電力検出回路は、伝送経路に沿った順方向電力を測定することもある。とにかく、各電力検出回路は、測定された反射電力の大きさ(及び、決定される場合には、測定された順方向電力の大きさ)を示す1つ又は複数の信号を処理部に送信する。
次いで、処理部は、「反射電力示度」を決定し、本明細書では「反射電力示度表」と呼ばれる揮発性の表に記憶する。本明細書で使用する場合、「反射電力示度」は、反射電力の大きさ、反射損失の大きさ、反射電力又は反射損失を計算するのに使用されるデータ、又は他の類似のデータ、を表す任意のデータを含むことがある。「反射電力示度表」は、反射電力示度が記憶される、電子的に記憶される表であり、この表では、記憶された反射電力示度は、励磁パラメータ値によってインデックス付けされることがある。
実施形態によっては、反射電力示度表は、各反射電力示度(即ち、N個の電力検出回路の各々から受信されたN個の測定値)の生成に関連して収集された生データの全てを含むことができる。例えば、反射電力示度表はN+1次元の表であることがあり、各次元は、N+1個の励磁信号パラメータのうちの1つに対応する。表の行は、各励磁パラメータに関連付けられ、表の列は、各パラメータに対する各可能なパラメータ値に関連付けられる。従って、上述の例によると、1つのRF信号源及び4つの移相器を実装するシステムでは、11通りの可能なRF信号源周波数設定と、4つの移相器の各々について25通りの可能な位相設定が存在し、反射電力示度表は11×25=4,296,875個のセルを含むことがあり、各セルはパラメータ値の異なる組み合わせに関連付けられている。
異なる特性を有する複数の負荷に対する約430万通りのパラメータの組み合わせの各々を試験することは、時間の観点から非実用的であり得る。従って、本明細書で説明するように、励磁信号パラメータの許容可能な組み合わせを決定するための方法の実施形態は、可能な組み合わせの部分集合を評価する。即ち、反射電力示度表内部の各セルは、理論的には、パラメータ値の所与の組み合わせに対して反射電力又は反射損失の大きさを示す1つ又は複数の値を記憶するために使用されることがある。例えば、ブロック314の第1の反復について、N=4を仮定すると、セルには、励磁信号が周波数f=2.40GHzによって規定され、移相器がp=0度、p=0度、p=0度、及びp=0度の位相シフトを印加する場合の反射電力又は反射損失の大きさを反映する反射電力示度が入力されることがある。
処理部は、N個の電力検出回路の各々から少なくとも1つの大きさの測定値を受信するので、処理部は、反射電力示度表に、大きさの測定値の全てに関連付けられた生データを記憶するように構成されることがある。或いは、処理部は、N個の電力検出回路から同時に受信された測定値に数学的関数を適用し、この数学的関数を用いて算出された値である反射電力示度を反射電力示度表に記憶することがある。例えば、処理部は、同時に受信されたN個の反射電力測定値の平均として、反射電力示度を算出し記憶することがある。或いは、順方向電力が測定される実施形態では、処理部は、同時に受信された反射電力測定値及び順方向電力測定値に基づいてN個の反射損失測定値の平均として、反射電力示度を算出し記憶することがある。代替的に、他の数学的関数を、反射電力示度(例えば、スライドする時間窓内で取得された測定値から得られる値を含む)を決定するために適用することがある。処理部は、反射電力示度として、生の又は平均の反射電力測定値、生の又は平均の順方向電力測定値、及び/又は反射電力測定値及び順方向電力測定値から導出された反射損失計算値を記憶することがある。例えば、処理部は、各電力検出回路によって検出された反射電力と順方向電力との比の対数として、反射損失を算出することがある。繰り返し述べるが、処理部はN本の伝送線の各々について反射損失値を記憶することがあり、又は、同時に受信された複数の反射電力測定値及び順方向電力測定値に基づく複数の反射損失計算値の数学的平均(又は何らかの他の関数)を表す反射損失値を記憶することがある。別の代替の実施形態では、システムはN個より少ない電力検出回路(例えば、1個の電力検出回路)を含むことがあり、かつシステムは、N個より少ない数の測定値に基づいて反射電力示度を決定することがある。
一実施形態によると、励磁信号パラメータの現在の組み合わせに対して反射電力示度を生成した後、処理部は、値が掃引されているパラメータ(例えば、ループ310の第1の反復の間の励磁信号周波数)に対する次の値を含む組み合わせを試験するために準備をする。そうするのに先立って、ブロック316で、最後に選択されたパラメータ(即ち、ブロック312で最後に選択されたパラメータ)について全てのパラメータ値が試験されたか(又は「掃引されたか」)どうかの判定が行われる。試験されていない場合は、ブロック318で、処理部は、パラメータを次の(まだ試験されていない)値に設定する。例えば、処理部は、パラメータ値をステップサイズだけ増加又は減少させることがある。例えば、試験されているパラメータが励磁信号周波数であり、ステップサイズが10MHzである場合、処理部は、励磁信号周波数を、たった今試験された値(例えば、2.40GHz)からステップサイズだけ増加させた値(例えば、2.40GHz+10MHz=2.41GHz)に変更することがある。次いで、ブロック314及び316が、新しいパラメータ値を含む励磁信号パラメータの組み合わせに対して、繰り返される。ループ320の反復は、ブロック312で一番最近選択されたパラメータに対する全てのパラメータ値が試験される(例えば、最後に選択されたパラメータに対する全ての可能な値が掃引される)まで実施され続け、結果として得られる反射電力示度は反射電力示度表に記憶される。
ブロック316を再び参照すると、最後に選択されたパラメータに対する全てのパラメータ値が試験された(例えば、全ての周波数が試験され、反射電力示度表に反射電力示度が入力された)場合、ブロック322で、全てのパラメータが掃引されたかどうかの更なる判定が行われる。より具体的には、例えば、ブロック322は、励磁周波数f及び全てのN個の位相シフトが掃引されたかどうかを判定する。
掃引されていない場合、ブロック324で、揮発性の反射電力示度表に記憶された結果から、最後に選択された(かつ、たった今掃引された)パラメータに対する許容可能な値が決定される。様々な実施形態によると、「許容可能な値」は、最後に選択されたパラメータに対する、最小の反射損失又は反射電力をもたらしたパラメータ値、所定の閾値(例えば、−15dB)未満の反射損失をもたらしたパラメータ値、又は、所定の閾値(例えば、−15dB)未満の反射電力をもたらしたパラメータ値、であることがある。たった今掃引されたパラメータに対する許容可能な値が一旦決定されると、処理部は、たった今掃引されたパラメータをこの許容可能な値に再設定する。例えば、たった今掃引されたパラメータが励磁信号周波数であり、かつ、2.47GHzの励磁周波数が最小の反射損失又は最小の反射電力をもたらしたと処理部が判定したと仮定すると、処理部は、本方法の今後の反復のたびに、励磁信号周波数パラメータを2.47GHzに設定することがある。或いは、処理部は、試験された周波数の全てに対して、反射損失又は反射電力測定値を上述の所定の閾値と比較することがあり、閾値未満の結果をもたらした周波数を「許容可能」であるとみなすことがある。次いで、処理部は、所定の閾値と比べて遜色がない任意の値(例えば、所定の閾値未満である任意の値)を「許容可能な値」とするように選択することがあり、システムはループ310の更なる反復の間にこの値を使用する。一実施形態によると、この負荷に対する較正プロセスの間(即ち、まだ掃引されていないパラメータの全てが掃引される間)、励磁信号周波数は、許容可能な値(例えば、上記の例では2.47GHz)に設定されたままになる。選択された許容可能な反射電力示度に関連付けられた励磁周波数値は、以下では、fACCと呼ばれる。
一旦、たった今掃引されたパラメータがそのパラメータに対する許容可能値に設定されると、外側ループ310の次の反復が実施される。より具体的には、ブロック312で、試験のために次のパラメータが選択される。例えば、試験された第1のパラメータが励磁周波数fであった場合、試験されることになる次のパラメータは、N個の位相シフト値p…pのうちの1つであることがある。説明の目的のために、以下の説明では、試験のために選択される次のパラメータは、N個の移相器のうちの第1の移相器(例えば、図2の移相器254)によって印加されることになる位相シフトpであると仮定する。プロセスのこの時点では、励磁信号周波数はf=fACCに設定され、位相シフト値はp=0度(デフォルト値)、p=0度(デフォルト値)、p=0度(デフォルト値)、及びp=0度(デフォルト値)に設定される。0度であるpに対する位相シフトは、励磁信号周波数を掃引している間にf=fACCで既に試験されているので、処理部は、ブロック314を実施するのに先立って、pを次の(まだ試験されていない)値に設定することがある。例えば、処理部はpをステップサイズだけ増加させることがある。例えば、位相シフトを試験するためのステップサイズが15度である場合、処理部は、pの値を0度からステップサイズ(例えば、15度)だけ増加させた値に変更することがある。この時点では、励磁信号周波数はf=fACCに設定され、位相シフト値はp=15度、p=0度(デフォルト値)、p=0度(デフォルト値)、及びp=0度(デフォルト値)に設定される。前述したように、各位相シフトに対するデフォルト値は、0度以外の値であってもよい。次いで、上述のように、ブロック314及び316が実施される。
より具体的には、ブロック314では、掃引されるべき次のパラメータはp1であると仮定すると、処理部(例えば、図2の処理部280)は、RF信号発生器に1つ又は複数の制御信号を送信することによって、RF信号発生器(例えば、図2のRF信号発生器240)を作動させる。この制御信号は、RF信号発生器が、ブロック324で設定された、選択された「許容可能な」周波数fACCと等しい周波数を有する励磁信号を生成すべきであるということを示す。加えて、処理部は、第1のマイクロ波発電モジュール(例えば、図2のモジュール250)の可変移相器(例えば、図2の移相器254)に制御信号を(例えば、図2の接続部282を介して)送信し、この制御信号は、第1の可変移相器が、RF信号発生器から受信した励磁信号に、試験されている現在の値(例えば、15度の位相シフト)と等しい位相シフトを印加すべきであるということを示す。最後に、処理部は、残りのマイクロ波発電モジュールの各々の可変移相器に制御信号を(例えば、図2の接続部283、284を介して)送信し、この制御信号は、残りの可変移相器の各々が、RF信号発生器から受信した励磁信号に、ブロック306で設定されたデフォルトの位相シフト(例えば、0度の位相シフト、即ち位相シフト無し)と等しい位相シフトを印加すべきであるということを示す。制御信号に応答して、RF信号発生器は許容可能な周波数fACCの励磁信号を生成し、移相器はこの励磁信号を指定された位相シフトだけ(位相シフトがゼロ以外の場合)位相シフトさせ、各増幅器(例えば、図2の増幅器255)はこの励磁信号を増幅して、潜在的に位相シフトされた励磁信号をマイクロ波エネルギー放射器(例えば、図2のマイクロ波エネルギー放射器230〜232)に供給する。
マイクロ波エネルギー放射器は、応答して、加熱用空洞(例えば、図1、図2の空洞110、210)に電磁エネルギーを放射する。RFエネルギーが負荷(例えば、図2の負荷212)に供給されているとき、システムは、電力検出回路を使用して少なくとも反射電力(及び、場合によっては順方向電力)を測定する。上述したように、システムは、反射電力、順方向電力、及び/又は反射損失測定値を、揮発性の反射電力示度表の適切なセルに記憶する。
ループ320の反復は、ブロック312で一番最近に選択されたパラメータ(例えば、p)に対する全てのパラメータ値が試験されるまで、実施され続ける。例えば、励磁信号周波数をfACCに設定したままで、かつ、各位相シフト値p、p、pをデフォルト値(例えば、0度)に設定したままで、pの全ての値に対して、反射電力(及び場合によっては順方向電力)及び/又は反射損失の測定が行われる。
最後に選択されたパラメータ(例えば、p)に対する全てのパラメータ値が試験されると(例えば、全てのp位相シフトが試験され、pパラメータについて反射電力示度表に値が入力されると)、ブロック322で、全てのパラメータが掃引されたかどうかの判定が再びなされる。全てのパラメータが掃引されていない場合は、反射電力示度表に記憶された値が評価されて、反射電力又は反射損失に対する最小の又は許容可能な(例えば、閾値未満の)値をもたらした位相シフト値が特定され、その値は、以下ではp1ACCと呼ばれる、pに対する「許容可能な」位相シフトとして選択される。
次いで、ループ310の次の反復が実施され、この反復には、既に試験されたパラメータをその「許容可能な」値に設定すること、まだ試験されていない次のパラメータを選択すること、及びそのパラメータの値を掃引することが含まれる。例えば、掃引されるべき次のパラメータがpである場合、pを試験する第1の反復のために、パラメータ値は、f=fACC、p=p1ACC、p=15度、p=0度(デフォルト値)、及びp=0度(デフォルト値)に設定されることがある。次いで、上述のようにpに対する許容可能な値、即ちp2ACCが決定され、次いで、まだ試験されていない次のパラメータ(例えば、p)が試験されることがある。pを試験する第1の反復のために、パラメータ値は、f=fACC、p=p1ACC、p=p2ACC、p=15度、及びp=0度(デフォルト値)に設定されることがある。次いで、上述のようにpに対する許容可能な値、即ちp3ACCが決定され、次いで、まだ試験されていない次のパラメータ(例えば、p)が試験されることがある。pを試験する第1の反復のために、パラメータ値は、f=fACC、p=p1ACC、p=p2ACC、p=p3ACC、及びp=15度に設定されることがある。(ブロック322で決定されるように)pが掃引された最後のパラメータであると仮定すると、次いで、ブロック324の説明に関連して上述したように、ブロック326で、pに対する許容可能な値、即ちp4ACCが決定される。この時点で、励磁パラメータ値の「許容可能な組み合わせ」、CACCが、「許容可能な値」の全てを含む組み合わせ、即ち、f=fACC、p=p1ACC、p=p2ACC、p=p3ACC、及びp=p4ACCとして、特定される。換言すると、CACC={fACC、p1ACC、p2ACC、p3ACC、p4ACC}である。様々な実施形態では、上述のプロセスの実施により、複数の記憶された反射電力示度のうちのいずれの1つが最小の反射電力及び/又は最小の反射損失を示すかということに対応するRF信号パラメータ値の組み合わせとして、許容可能な組み合わせが特定される。他の実施形態では、上述のプロセスの実施により、所定の閾値未満の反射電力及び/又は反射損失を有する、複数の記憶された反射電力示度のうちの1つに対応するRF信号パラメータ値の組み合わせとして、許容可能な組み合わせが特定される。
一実施形態によると、ブロック330で追加の試験が実施されて、許容可能な組み合わせに近い任意の組み合わせ(又は、「近似した組み合わせ」)が、反射損失又は反射電力についてより小さな値をもたらすかどうかを判定することがある。ブロック330が実施されると、ブロック326で特定された許容可能な組み合わせは「初期の許容可能な組み合わせ」とみなされることがあり、ブロック330のプロセスにより特定された組み合わせは、「最終的な許容可能な組み合わせ」とみなされることがある。ブロック330の状況下では、「近似している」とは、励磁信号パラメータの一部又は全部に対するパラメータ値が、上述の方法に従って決定された許容可能な値から1つ又は2つ高い及び/又は低い増分値になるように変更された組み合わせを意味する。換言すると、反射電力示度表において、複数の追加の反射電力示度を生成するために、CACCに直接隣接した、又はCACCから1セル離れた、励磁信号パラメータの複数の組み合わせに対して、ブロック314が実施される。ある近似した組み合わせが、ブロック326で特定された組み合わせよりも小さな反射損失又は反射電力に相当する反射電力示度をもたらした場合、この近似した組み合わせは、以前に決定された組み合わせよりも「より良い」ものとみなされることがあり、許容可能な組み合わせは、このより良い近似した組み合わせに対応するパラメータ値を有するように変更されることがある。代替の実施形態では、ブロック330は除かれることがある。
次いで、ブロック332では、パラメータの許容可能な組み合わせを、前述の励磁表(例えば、上記の表1)の、以前に決定された負荷特性に関連付けられたセルに記憶することがある。例えば、この方法を使用して決定された励磁信号パラメータの組み合わせが、初期負荷特性に対応する励磁表内部のセル(例えば、華氏20度のポンドの鶏肉に対応する、上記の励磁表の「x」で印をつけられたセル)に記憶されることがある。
ブロック334で、全ての所望される負荷特性を有する負荷が試験されたかどうかの判定がなされることがある。例えば、特定の種類の負荷を複数の温度(例えば、特に、上記の励磁表に列挙された温度)で試験すること、及び/又は様々な種類の負荷(例えば、特に、上記の励磁表に列挙された負荷の種類)を試験すること、及び/又は、複数の重量を有する特定の種類の負荷を試験することが望まれることがある。全ての負荷が試験されていない場合、この方法は繰り返されることがある。より具体的には、ブロック302で、以前に試験した負荷を加熱用空洞から取り除き、異なる負荷特性を有する負荷を加熱用空洞に載置することがあり、この方法は、上述したように繰り返されることがある。全ての負荷が試験されると、次いでブロック336で、値を入力された励磁表は、(例えば、後程図6に関連して説明するように)後に続く加熱動作の間に使用するために、システムメモリ(例えば、図2のメモリ288)に記憶されることがある。
図4は、別の例示的な実施形態による、許容可能な励磁信号パラメータを決定するために固体加熱システムを動作させる方法の流れ図である。図4の方法は、図3の方法と実質的に類似しており、同様のプロセスは、図3及び図4において同一の参照番号で示される。図3で示された方法に関して上記で考察された詳細及び実施形態の全ては、以下で特に断りの無い限り、図4にも等しく当てはまる。
図4の方法は、外側ループ410の終了時にパラメータ値がリセットされるという点で、図3の方法とは異なる。図3に関連して上述したように、たった今掃引されたパラメータに対する許容可能な値が一旦決定されると、処理部は、たった今掃引されたパラメータをその許容可能な値に設定し、ループ310の次の反復は、たった今掃引されたパラメータがその決定された許容可能な値に設定された状態で実施される。対照的に、図4の方法によると、ブロック424(これは、図3のブロック324を置き換える)で、たった今掃引されたパラメータに対する許容可能な値が一旦決定されると、システムは励磁パラメータ値の許容可能な組み合わせの一部としてその決定された許容可能な値を記憶し、次いで、システムは、全てのパラメータ値をブロック306で当初に設定されたデフォルト値に再設定する。ブロック312の次の反復において、試験のための次のパラメータが選択され、他のパラメータがデフォルト値に設定されたままである間に、次に選択されたパラメータの値が掃引される。別の言い方をすると、図4の実施形態では、任意の所与のパラメータに対して実施される値掃引動作の間、他の全てのパラメータはデフォルト値に設定される。外側ループ410の全ての反復の終了時に、各パラメータに対して決定された許容可能な値が、ブロック426で、特定された許容可能な励磁パラメータ値の組み合わせに組み立てられる。
図5は、更に別の例示的な実施形態による、許容可能な励磁信号パラメータを決定するために固体加熱システムを動作させる方法の流れ図である。図3及び図4で示した方法と同様に、図5の方法は、揮発性のN+1次元の反射電力示度表の概念を利用し、処理部は、励磁信号パラメータの様々な組み合わせに関連付けられた反射電力示度をこの反射電力示度表に記憶する。再び、反射電力示度表はN+1次元の表であることがあり、各次元は、N+1個の励磁信号パラメータのうちの1つに対応する。反射電力示度表内部の各セルは、パラメータ値の所与の組み合わせに対して、反射電力示度(例えば、反射電力又は反射損失の大きさを示す1つ又は複数の値)を記憶するために使用されることがある。図3及び図4の方法では、試験されたパラメータの組み合わせに対応した反射電力示度表内部のセルのみが、最終的に反射電力示度を入力され、パラメータ値の「許容可能な組み合わせ」は、値を入力されたセルのうちの1つに対する組み合わせとして選択される。より具体的には、最初に試験されるパラメータに対する全ての可能な値が試験され(例えば、反射電力示度表の第1の行を埋め)、次いで、二番目に試験されるパラメータについて、最初に試験されるパラメータの許容可能な値から延びるセルのベクトルが試験され、次いで、三番目に試験されるパラメータについて、二番目に試験されるパラメータの許容可能な値から延びるセルのベクトルが試験され、最後に試験されるパラメータを試験するまで、以下同様である。従って、想像がつくように、反射電力示度表に渡るセルの連続的なベクトルのシーケンスに対応する励磁信号パラメータの組み合わせが試験される。これは、システムが、N+1次元の反射電力示度表の多数の領域に渡るセルに値を入力することを控えることを意味する。理論的には、パラメータ値の著しくより良い組み合わせ又は最良の組み合わせが、値が代入されていない領域内にあることがある。図3及び図4の方法とは対照的に、図5の方法は、N+1次元の反射電力示度表全体に渡って散在しているかつ/又はランダムに分布しているパラメータ値の組み合わせを特定し試験することを含む。このようにして、反射電力示度表のより多くの領域内の励磁信号パラメータの組み合わせを評価することができる。
図5の方法は、図3の方法に関連して上述したように、ブロック302及び304において、加熱用空洞に負荷を載置し、負荷特性を決定することによって、開始する。次いでブロック506で、複数のパラメータの組み合わせが特定され、このパラメータの組み合わせは、N+1次元の反射電力示度表全体に渡って散在しているかつ/又はランダムに分布している。再び、説明を助けるために、励磁信号パラメータが1つの励磁信号周波数f及び4つの位相シフト値p、p、p、pを含む例を使用する。換言すると、任意の特定のパラメータの組み合わせは、C={f、p1X、p2X、p3X、p4X}として表わすことができる。更なる例として、励磁信号周波数は、2.40、2.41、2.42、2.43、…、2.48、2.49、及び2.50(GHz単位)を含む値の集合から選択される任意の値(即ち、2.40〜2.50GHzの間の10MHzステップサイズでの任意の値)を有することがある。更に、位相シフト値の各々は、0、15、30、45、…、330、345、及び360(度単位)を含む値の集合から選択される(即ち、0〜360度の間の15度のステップサイズでの任意の値である)ことがある。先に詳細に考察したように、そのような実施形態は、およそ430万個のセルを含む反射電力示度表をもたらし、各セルは1つのパラメータ値の組み合わせに対応する。他の実施態様は、より多くの、より少ない、又は異なるパラメータを有することがあり、各パラメータは異なる範囲の可能な値をカバーすることがあり、パラメータ値間で異なるステップサイズが定義されることがあるので、この例は限定するものではない。
一実施形態では、特定された複数のパラメータの組み合わせは、全ての可能な組み合わせの、あるパーセンテージ(例えば、0.01%〜10%の間の、又は、何らかの他の範囲内の)を含むことがあり、より具体的には、所望の密度でN+1次元の反射電力示度表全体に渡って均等に分散している組み合わせの集合を含むことがある。例えば、全ての可能な組み合わせの0.1%に相当する組み合わせを特定することができ、この特定された組み合わせは、反射電力示度表全体に渡って均等に分布している。この例では、反射電力示度表全体に渡って散在している約4300個のセル又はパラメータの組み合わせが、試験のために特定されることになる。別の実施形態では、特定された複数のパラメータの組み合わせは、ランダム又は疑似ランダムセル(又は組み合わせ)選択プロセスを使用して決定される組み合わせの集合を含むことがある。例えば、ランダム又は疑似ランダム値発生器を使用して、反射電力示度表全体に渡って分散したセルを含むセルの集合、又はパラメータの組み合わせの集合を決定することができる。更に他の実施形態では、より複雑なセル又は組み合わせ選択アルゴリズムを使用することがある。例えば、セル又は組み合わせ選択アルゴリズムは、表の1つ又は複数の領域内のセルを、表の他の領域内に特定されたセルの密度よりも高い密度で特定するように構成されることがある。例えば、そのような実施形態は、特定のパラメータ値の範囲に関連付けられたセル(例えば、パラメータ値の範囲の中心により近いパラメータ値)が試験のために選択される確率を高めることがある。
散在したかつ/又はランダムに分散したセル又はパラメータの組み合わせが一旦特定されると、選択されたセルの集合に関連付けられたパラメータの組み合わせの各々が、ループ510の反復として試験されることがある。より具体的には、ブロック512で、(特定されたセルに関連付けられた)試験されるべき励磁信号パラメータの次の組み合わせが、ブロック506で特定されたパラメータの組み合わせの集合から選択される。次いで、ブロック514でこのパラメータの組み合わせが試験され、ブロック514は、上記で詳細に考察したブロック314と実質的に同様である。上述のように、パラメータの組み合わせを試験することは、処理部(例えば、図2の処理部280)が、RF信号発生器に1つ又は複数の制御信号を送信することによって、RF信号発生器(例えば、図2のRF信号発生器240)を作動させることを含む。この制御信号は、RF信号発生器が、ブロック512で選択された組み合わせにおいて指定された励磁信号周波数と等しい周波数を有する励磁信号を生成すべきであるということを示す。加えて、処理部は、各マイクロ波発電モジュールの可変移相器(例えば、図2の移相器254)に制御信号を(例えば、図2の接続部282〜284を介して)送信し、この制御信号は、各可変移相器が、RF信号発生器から受信した励磁信号に、ブロック512で選択されたパラメータの組み合わせで指定された位相シフトと等しい位相シフトを印加すべきであるということを示す。制御信号に応答して、RF信号発生器は指定された周波数の励磁信号を生成し、移相器はこの励磁信号を指定された位相シフトだけ(位相シフトがゼロ以外の場合)位相シフトさせ、各増幅器(例えば、図2の増幅器255)は励磁信号を増幅して、潜在的に位相シフトされた励磁信号をマイクロ波エネルギー放射器(例えば、図2のマイクロ波エネルギー放射器230〜232)に供給する。換言すると、処理部は、各マイクロ波発電モジュール(例えば、図2のモジュール250〜252)が、複数のマイクロ波エネルギー放射器の各々に選択された組み合わせにおいて指定された周波数及び位相を有するRF信号を供給するようにする。マイクロ波エネルギー放射器は、応答して、加熱用空洞(例えば、図1、図2の空洞110、210)に電磁エネルギーを放射する。
RFエネルギーが負荷(例えば、図2の負荷212)に供給されているとき、システムは、マイクロ波発電モジュールとマイクロ波エネルギー放射器との間の伝送経路(例えば、図2の経路256〜258)に沿って配置される電力検出回路(例えば、図2の回路260〜262)を使用して、少なくとも反射電力を測定する。一実施形態によると、電力検出回路は、伝送経路に沿った順方向電力を測定することもある。とにかく、各電力検出回路は、測定された反射電力の大きさ(及び、測定されている場合には、場合によっては順方向電力の大きさ)を示す1つ又は複数の信号を処理部に送信する。次いで、処理部は、反射電力示度(例えば、測定値又は測定値から導出された値)を生成し、これを、選択されたパラメータの組み合わせに対応する反射電力示度表のセルに記憶する。
ブロック516で、ブロック506で特定されたセルに関連付けられた全ての組み合わせが試験されたかどうかの判定が行われる。全ての組み合わせが試験されていない場合、手続きは図示したように反復し、ループ510の次の反復で、特定されたがまだ試験されていない別のセルに関連付けられた次のパラメータの組み合わせが試験される。ブロック506で特定された組み合わせの全てが試験されると、ブロック530で、揮発性の反射電力示度表に記憶された結果から、許容可能な又は最良の組み合わせが決定される。様々な実施形態によると、「許容可能な組み合わせ」は、最小の反射損失又は反射電力をもたらした励磁パラメータの組み合わせ、所定の閾値未満の反射損失をもたらした組み合わせ、又は、所定の閾値未満の反射電力をもたらした組み合わせ、であることがある。
一実施形態によると、前述のように、ブロック330で追加の試験が実施されて、許容可能な組み合わせに近い任意のパラメータの組み合わせ(又は、「近似した組み合わせ」)が、反射損失又は反射電力についてより小さな値をもたらすかどうかを判定することがある。ある近似した組み合わせが、より小さな反射損失又は反射電力をもたらした場合、この近似した組み合わせは、以前に決定された組み合わせよりも「より良い」ものとみなされることがあり、許容可能な組み合わせは、このより良い近似した組み合わせに対応するパラメータ値を有するように変更されることがある。この方法の残りのステップは、前述のステップと実質的に同様であることがあり、同様の参照番号は同様のプロセスに対応する。
図3〜図5では、大多数の可能な励磁パラメータの組み合わせの部分集合を試験することにより、特定の特性を有する負荷に対する許容可能な励磁パラメータの組み合わせを決定するために、様々な方法が使用される。特定の方法を使用して、探索空間及び試験空間を低減させたが、代替的に、モンテカルロツリー探索、二分又は半間隔探索、比較探索、改変線形探索、等を使用して試験されるべきパラメータの組み合わせを特定することを、これらに限定するものではないが含む、他の方法を使用することもできる。どの実施形態が実施されたとしても、図3〜図5の方法は、最終的に励磁表(例えば、上記の表1の値が入力されたバージョン)をもたらし、この表は、様々な負荷特性を有する負荷に対して適用されるべき励磁信号パラメータを示す。上述のように、値を入力した励磁表は、加熱動作の間に処理部(例えば、処理部280)が後で使用するために、(例えば、図3〜図5のブロック336において)システムメモリ(例えば、図2のメモリ288)に記憶される。
図6は、一実施形態による、所定の励磁信号パラメータを有する励磁信号を使用して固体加熱動作を実施する方法の流れ図である。この方法は、ブロック602で、ユーザが固体加熱システム(例えば、図2のシステム200)の加熱用空洞(例えば、図2の空洞210)に負荷(例えば、図2の負荷212)を載置し、(例えば、ドア又は引き出しを閉じることによって)空洞を密閉すると、開始することがある。一実施形態では、空洞を密閉することにより、1つ又は複数の安全インターロック機構を係合させることがあり、この安全インターロック機構は、係合されると、空洞に供給されるRF電力が、空洞の外部環境に実質的に漏れ出ないことを示す。後程説明するように、安全インターロック機構の係合を解除すると、処理部は、直ちに加熱動作を一時停止又は終了することがある。
ブロック604で、システムは、負荷の1つ又は複数の特性を決定する。例えば、先に考察したように、負荷特性には、負荷を形成する材料、負荷の状態、負荷の重量、等を含むことがある。実施形態によっては、負荷特性を示す情報は、システムのユーザインターフェース(例えば、図1、図2のユーザインターフェース120、220)を使用してユーザによって入力されることがある。例えば、ユーザは、ユーザインターフェースとやり取りして、(例えば、図3〜図5のブロック336で)システムメモリに記憶された励磁表内に具体化された負荷種類のリストから重量(又は数量)及び/又は状態を選択することができる。代替の実施形態では、負荷特性は、負荷のパッケージ上のバーコードをスキャンしそのバーコードに対応する負荷情報を(例えば、メモリ288から、又は外部ネットワークへのリンクから)引き出すことによって、負荷上の又は負荷に埋め込まれたRFIDタグからRFID信号を受信しそのRFIDに対応する負荷情報を(例えば、メモリ288から、又は外部ネットワークへのリンクから)引き出すことによって、(例えば、図2の重量センサ290から)負荷重量の示度を受信することによって、かつ/又は、(例えば、図2の温度及び/又はIRセンサ290を使用して)負荷のおよその温度を測定することによって、などの他の方法で取得されることがある。
負荷特性は、以前に決定された許容可能な励磁信号パラメータの組み合わせが(例えば、図3〜図5の方法の実施形態の実行中に)記憶された(例えば、上記の表1などの励磁信号表中の)セルを示す。ブロック606において、ブロック604で決定された負荷特性が、対応するセルから許容可能なパラメータの組み合わせを引き出すためのキーとして使用される。
ブロック608で、(例えば、図2のユーザインターフェース220の開始ボタンをユーザが押すことにより)ユーザから開始の指示を受け取った後、処理部は、RF信号発生器(例えば、図2のRF信号発生器240)及びマイクロ波生成モジュールの移相器(例えば、図2の移相器254)に制御信号を供給して、これらのシステム構成要素が励磁信号に許容可能なパラメータの組み合わせを適用するようにする。より具体的には、処理部は、RF信号発生器に1つ又は複数の制御信号を送信することにより、RF励磁信号の生成を開始させ、この制御信号は、RF信号発生器が、許容可能なパラメータの組み合わせにおいて示された励磁信号周波数と等しい周波数を有する励磁信号を生成すべきであるということを示す。加えて、処理部は、各マイクロ波発電モジュールの可変移相器に制御信号を送信し、この制御信号は、各可変移相器が、RF信号発生器から受信した励磁信号に、許容可能なパラメータの組み合わせで示された位相シフトと等しい位相シフトを印加すべきであるということを示す。制御信号に応答して、RF信号発生器は指定された周波数の励磁信号を生成し、移相器はこの励磁信号を指定された位相シフトだけ(位相シフトがゼロ以外の場合)位相シフトさせ、各増幅器(例えば、図2の増幅器255)は励磁信号を増幅して、潜在的に位相シフトされた励磁信号をマイクロ波エネルギー放射器(例えば、図2のマイクロ波エネルギー放射器230〜232)に供給する。換言すると、処理部は、各マイクロ波発電モジュール(例えば、図2のモジュール250〜252)が、複数のマイクロ波エネルギー放射器の各々に所与の周波数及び位相を有するRF信号を供給するようにする。マイクロ波エネルギー放射器は、応答して、加熱用空洞(例えば、図1、図2の空洞110、210)に電磁エネルギーを放射する。
ブロック610で、システムは、終了条件(exit condition)が発生したかどうかを評価することがある。実際には、終了条件が発生したかどうかの判定は、加熱プロセス中の任意の時点で起こり得る、割り込み駆動のプロセスであることがある。しかしながら、これを図6の流れ図に含めるために、このプロセスはブロック608の後で発生するように示してある。いずれにしても、幾つかの条件が、加熱動作の停止を保証することがある。例えば、システムは、安全インターロックが破られたときに、終了条件が発生したと判定することがある。或いは、システムは、(例えば、図2のユーザインターフェース220を介して)ユーザによって設定されたタイマーの満了時に、又は、加熱動作がどれ位の時間実施されるべきかについての処理部の推測に基づいて処理部によって確立されたタイマーの満了時に、終了条件が発生したと判定することがある。更に別の代替の実施形態では、システムは、別な方法で加熱動作の完了(例えば、負荷が特定の温度又は状態に達したとき)を検出することがある。
終了条件が発生していない場合、加熱動作は継続することがある。加熱動作の間、負荷に供給される電磁エネルギーは、負荷の熱エネルギーを増加させる(即ち、電磁エネルギーが負荷を暖める)。従って、負荷の特性(例えば、負荷のインピーダンス)は、負荷の熱エネルギーが増加するにつれて変化する。インピーダンスの変化は、RFエネルギーの負荷への吸収率を変化させ、従って、反射電力の大きさを変化させる。ブロック612で、加熱動作中に反射電力の大きさが許容可能なレベルに維持されることを確実にするために、1つ又は複数の電力検出回路(例えば、図2の電力検出回路260〜262)は、マイクロ波生成モジュール(例えば、図2のモジュール250〜252)とマイクロ波エネルギー放射器(例えば、図2の放射器230〜232)との間の1つ又は複数の伝送経路(例えば、図2の経路256〜258)に沿って、反射電力を周期的に測定する。一実施形態では、電力検出回路は、伝送経路に沿った順方向電力を測定することもある。電力検出回路は、それらの測定値を処理部(例えば、図2の処理部280)に提供し、この受信された測定値に基づいて、次いで処理部は、反射電力及び/又は反射損失を決定することがある。処理部が複数の電力検出回路から複数の測定値を受信した場合、処理部は、例えば、同時に受信した測定値の平均(又は何らかの他の数学的関数)を決定して、反射電力及び/又は反射損失を推定することがある。
次いで、ブロック614で、処理部は、測定された又は推定された反射電力及び/又は反射損失が許容可能であるかどうかを判定することがある。例えば、処理部は、反射電力及び/又は反射損失が閾値未満であるかどうか、又は何らかの他の基準に匹敵するかどうかを判定することがある。反射電力及び/又は反射損失が依然として許容可能である(例えば、値が閾値を下回る)と処理部が判定すると、処理部によって適用される励磁信号パラメータは同じままであることがあり、プロセスは、図6に示すように反復することがある。
反射電力及び/又は反射損失がもはや許容可能ではない(例えば、値が閾値を上回る)と処理部が判定すると、ブロック616で、処理部は、許容可能な励磁信号パラメータの新たな集合を決定することがある。例えば、処理部は、励磁信号表内部の近接した組み合わせに対する励磁信号パラメータを適用するように、かつ、結果として得られる反射電力及び/又は反射損失を評価して、許容可能な(例えば、閾値未満の)反射電力及び/又は反射損失をもたらす組み合わせを決定するように、構成されることがある。或いは、処理部は、ブロック606で引き出された組み合わせで開始する、パラメータの組み合わせの所定のシーケンスを適用するように、予めプログラムされることがある。いずれにしても、新しいパラメータの組み合わせが一旦決定されると、この方法は図6に示すように反復される。より具体的には、ブロック608で、処理部は、RF信号発生器及びマイクロ波生成モジュールの移相器がRF励磁信号に新たに決定されたパラメータの組み合わせを適用するようにする。
再びブロック610を参照すると、終了条件が発生した場合、ブロック620で、処理部はRF信号源によるRF信号の供給を停止させる。例えば、処理部は、RF信号発生器(例えば、図2のRF信号発生器240)を作動しないようにすることがあり、かつ/又は電源及びバイアス回路(例えば、図2の回路286)に、供給電流の提供を停止させることがある。加えて、処理部は、ユーザインターフェース(例えば、図1、図2のユーザインターフェース120、220)に信号を送信することがあり、この信号は、ユーザインターフェースに、(例えば、表示装置に「ドアが開きます」又は「完了」を表示することによって、又は可聴音を提供することによって)、ユーザが知覚可能な終了条件のしるしを生成させる。次いで、この方法は終了することがある。
図3〜図6に示されたブロックに関連付けられた動作の順序は例示的な実施形態に対応しており、動作の順序を例示した順序のみに限定するものと解釈されるべきではないことは、言うまでもない。その代わり、幾つかの動作は異なる順序で実施されることがあり、かつ/又は幾つかの動作は並行して実施されることがある。
RF励磁信号パラメータを確立する方法の一実施形態が、負荷を収容するように構成された空洞を含む固体加熱装置内で実施される。この方法は、複数のRF励磁信号パラメータをパラメータ値の組み合わせに設定することを含み、この複数のRF励磁信号パラメータは少なくとも1つの励磁信号周波数及び少なくとも1つの位相シフトを含み、この方法は、加熱装置によって、複数のRF励磁信号を空洞に近接した複数のマイクロ波エネルギー放射器に供給することを含み、この複数のRF励磁信号は、パラメータ値の組み合わせに従って規定される信号特性を有する。複数のRF励磁信号が供給されている間に、この方法は、システムの少なくとも1つの電力検出回路によって、反射RF電力を測定すること、測定された反射RF電力に基づいて反射電力示度を決定すること、及び、反射電力示度を記憶して、パラメータ値の組み合わせに対応した、記憶された反射電力示度を生成することを更に含む。この方法は、パラメータ値の複数の異なる組み合わせについて、設定するプロセス、供給するプロセス、測定するプロセス、決定するプロセス、及び記憶するプロセスを複数回繰り返して、複数の記憶された反射電力示度を生成することを更に含み、この複数の記憶された反射電力示度の各々は、RF信号パラメータ値の異なる組み合わせに対応する。この方法は、複数の記憶された反射電力示度に基づいて、RF信号パラメータ値の許容可能な組み合わせを特定すること、及び、加熱装置のメモリにRF信号パラメータ値の許容可能な組み合わせを記憶すること、を更に含む。
固体加熱システムの一実施形態は、負荷を収容するように構成された空洞、処理部、少なくとも1つのRF信号発生器、複数のマイクロ波生成モジュール、複数のマイクロ波エネルギー放射器、複数の伝送経路、及び1つ又は複数の電力検出回路を含む。処理部は、励磁信号周波数を示す1つ又は複数の第1の制御信号を生成し、かつ、1つ又は複数の位相シフトを示す1つ又は複数の第2の制御信号を生成するように構成され、この励磁信号周波数及び1つ又は複数の位相シフトは、パラメータ値の組み合わせの構成要素となる。少なくとも1つのRF信号発生器の各々は、第1の制御信号のうちの1つを受信するように、かつ、励磁信号周波数によって特徴付けられる第1のRF励磁信号を生成するように、構成される。複数のマイクロ波生成モジュールの各々は、第2の制御信号のうちの1つを受信するように、かつ、第1のRF励磁信号を受信するように、かつ、複数の第2のRF励磁信号のうちの1つを生成するように構成され、第2のRF励磁信号の各々は、第2の制御信号のうちの受信した1つにおいて示される位相シフトが存在する場合にはこの位相シフトによって、かつ、受信した第1のRF励磁信号の励磁信号周波数によって、特徴付けられる。複数のマイクロ波エネルギー放射器の各々は、マイクロ波生成モジュールのうちの1つの出力部に結合され、かつ、第2のRF励磁信号のうちの1つを受信するとともに、これに応答して、第2のRF励磁信号の受信した1つに対応する電磁エネルギーを空洞に放射するように構成される。複数の伝送経路は、複数のマイクロ波生成モジュールを複数のマイクロ波エネルギー放射器に電気的に結合する。1つ又は複数の電力検出回路の各々は、第2のRF励磁信号が複数のマイクロ波エネルギー放射器に供給されている間に、複数の伝送経路のうちの1つの伝送経路に沿って、反射RF電力の測定を行うように構成される。処理部は、更に、反射RF電力測定値に基づいて反射電力示度を決定し、この反射電力示度を記憶して、パラメータ値の組み合わせに対応する記憶された反射電力示度を生成し、パラメータ値の複数の異なる組み合わせに対して第1及び第2の制御信号を供給することを複数回繰り返して、複数の記憶された反射電力示度を生成するように構成され、ここで、複数の記憶された反射電力示度の各々はパラメータ値の異なる組み合わせに対応し、処理部は、複数の記憶された反射電力示度に基づいてパラメータ値の許容可能な組み合わせを特定し、加熱装置のメモリにパラメータ値の許容可能な組み合わせを記憶するように構成される。
本明細書に含まれる様々な図面に示されている接続線は、様々な要素間の例示的な機能上の関係性及び/又は物理的な結合を表すことが意図されている。なお、主題の実施形態では、多数の代替的な又は追加的な機能上の関係性又は物理的な接続が存在することがある。加えて、参照の目的のためにのみ、特定の用語を本明細書で使用することがあるが、これは限定することを意図してはおらず、用語「第1の」「第2の」、及び構造を指す他のそのような数値的用語は、状況により明示されていない限り、シーケンス又は順序を意味してはいない。
本明細書で使用する場合、「ノード」は、所与の信号、論理レベル、電圧、データパターン、電流、又は数量が存在する、任意の内部又は外部の基準点、接続点、接合部、信号線、導体素子、等を意味する。更に、2つ以上のノードが、1つの物理的素子によって実現されることがある(また、2つ以上の信号を、多重化する、変調する、又は、共通のノードで受信された又は出力されたとしても区別することができる)。
前述の説明は、互いに「接続された」又は「結合された」要素、ノード、又は特徴を指す。本明細書で使用する場合、特に断りの無い限り、「接続された」とは、1つの要素が別の要素に、必ずしも機械的にではなく、直接的に接合されている(又は直接的に通信している)ことを意味する。同様に、特に断りの無い限り、「結合された」とは、1つの要素が別の要素に、必ずしも機械的にではなく、直接的に又は間接的に接合されている(又は直接的に若しくは間接的に通信している)ことを意味する。従って、図面に示された概略図は要素の1つの例示的な構成を示すが、追加の介在する要素、装置、特徴、又は部品が、図示された主題の実施形態中に存在することがある。
少なくとも1つの例示的な実施形態を前述の詳細な説明において提示したが、非常に多数の変形例が存在することは言うまでもない。この例示的な実施形態又は本明細書に記載する実施形態は、特許請求対象の範囲、適用可能性、又は構成を限定することを全く意図してはいないことを、理解されたい。むしろ、前述の詳細な説明は、説明した1つ又は複数の実施形態を実施するための便利なロードマップを当業者に提供する。当然ながら、請求項によって規定される特許請求の範囲から逸脱することなく、要素の機能及び構成について様々な変更を加えることができ、特許請求の範囲には、既知の均等物及びこの特許出願の出願時点で予見可能な均等物を含む。
100…固体加熱システム、110…加熱用空洞、111…上部の空洞壁、112…底部の空洞壁、113…側部の空洞壁、114…側部の空洞壁、115…背面部の空洞壁、116…ドア、120…制御パネル、131…マイクロ波エネルギー放射器、132…マイクロ波エネルギー放射器、133…マイクロ波エネルギー放射器、134…マイクロ波エネルギー放射器、135…マイクロ波エネルギー放射器、136…マイクロ波エネルギー放射器、180…外部コンピュータ、200…固体加熱システム、210…加熱用空洞、212…負荷、220…ユーザインターフェース、222…データポート、230…マイクロ波エネルギー放射器、231…マイクロ波エネルギー放射器、232…マイクロ波エネルギー放射器、240…RF信号発生器、250…マイクロ波生成モジュール、251…マイクロ波生成モジュール、252…マイクロ波生成モジュール、254…可変移相器、255…電力増幅器、256…接続部、伝送線、伝送経路、257…接続部、258…接続部、260…電力検出回路、261…電力検出回路、262…電力検出回路、263…接続部、264…接続部、265…接続部、280…処理部、286…電源及びバイアス回路、288…メモリ、290…温度/赤外線(IR)/重量センサ

Claims (20)

  1. 負荷を収容するように構成された空洞を含む固体加熱装置において無線周波数(RF)励磁信号パラメータを確立する方法であって、
    複数のRF励磁信号パラメータをパラメータ値の組み合わせに設定すること、ここで、前記複数のRF励磁信号パラメータは、少なくとも1つの励磁信号周波数及び少なくとも1つの位相シフトを含み、
    加熱装置によって、前記空洞に近接した複数のマイクロ波エネルギー放射器に複数のRF励磁信号を供給すること、ここで、前記複数のRF励磁信号は、パラメータ値の前記組み合わせに従って規定される信号特性を有し、
    前記複数のRF励磁信号が供給されている間に、システムの少なくとも1つの電力検出回路によって、反射RF電力を測定すること、
    測定された反射RF電力に基づいて、反射電力示度を決定すること、
    パラメータ値の前記組み合わせに対応する記憶された反射電力示度を生成するために、前記反射電力示度を記憶すること、
    複数の記憶された反射電力示度を生成するために、パラメータ値の複数の異なる組み合わせについて、設定するプロセス、供給するプロセス、測定するプロセス、決定するプロセス、及び記憶するプロセスを複数回繰り返すこと、ここで、前記複数の記憶された反射電力示度の各々は、RF信号パラメータ値の異なる組み合わせに対応し、
    前記複数の記憶された反射電力示度に基づいて、RF信号パラメータ値の許容可能な組み合わせを特定すること、
    前記加熱装置のメモリに、RF信号パラメータ値の前記許容可能な組み合わせを記憶すること、を含む方法。
  2. 前記システムは、N個のRF励磁信号のうちの1つを生成するようにそれぞれ構成されたN個のマイクロ波生成モジュールと、N本の伝送線のうちの1つを介して前記N個のマイクロ波生成モジュールのうちの1つの出力部にそれぞれ結合されたN個のマイクロ波エネルギー放射器と、複数の電力検出回路とを含み、Nは1より大きな整数であり、
    前記反射RF電力を測定することは、前記複数の電力検出回路の各々が前記N本の伝送線のうちの1つに沿って反射電力を測定することを含み、その結果複数の反射電力測定値が得られ、
    前記反射電力示度を決定することは、前記複数の反射電力測定値に数学的関数を適用することにより、前記反射電力示度を決定することを含む、請求項1に記載の方法。
  3. 前記反射電力示度を決定することは、反射電力測定値、複数の反射電力測定値の平均値、反射損失測定値、及び複数の反射損失測定値の平均値から選択される値を決定することを含む、請求項1に記載の方法。
  4. 前記設定するプロセスの第1の反復について、前記複数のRF励磁信号パラメータを設定することは、前記複数のRF励磁信号パラメータの全てをデフォルト値に設定することを含み、
    繰り返すプロセスは、
    複数のパラメータ値が試験されるべき前記複数のRF励磁信号パラメータのうちの1つを選択すること、
    前記複数のRF励磁信号パラメータのうちの選択されていないパラメータが前記デフォルト値に設定されている間に、前記複数のRF励磁信号パラメータのうちの選択された1つを異なる値に繰り返し設定し、前記供給するプロセス、前記測定するプロセス、前記決定するプロセス、及び前記記憶するプロセスを実施すること、
    許容可能なRF反射電力に対応する、前記複数のRF励磁信号パラメータのうちの選択された1つに対する許容可能な値を決定すること、
    前記複数のRF励磁信号パラメータのうちの選択された1つを前記許容可能な値に再設定すること、
    前記RF励磁信号パラメータの全てが選択され試験されるまで、前記選択するプロセス、前記繰り返し設定するプロセス、及び再設定するプロセスを繰り返すこと、
    を含む、請求項1に記載の方法。
  5. 前記設定するプロセスの第1の反復について、前記複数のRF励磁信号パラメータを設定することは、前記複数のRF励磁信号パラメータの全てをデフォルト値に設定することを含み、
    繰り返すプロセスは、
    複数のパラメータ値が試験されるべき前記複数のRF励磁信号パラメータのうちの1つを選択すること、
    前記複数のRF励磁信号パラメータのうちの選択されていないパラメータが前記デフォルト値に設定されている間に、前記複数のRF励磁信号パラメータのうちの選択された1つを異なる値に繰り返し設定し、前記供給するプロセス、前記測定するプロセス、前記決定するプロセス、及び前記記憶するプロセスを実施すること、
    前記複数のRF励磁信号パラメータのうちの選択された1つをデフォルト値に再設定すること、
    前記RF励磁信号パラメータの全てが選択され試験されるまで、前記選択するプロセス、繰り返し設定するプロセス、及び再設定するプロセスを繰り返すこと、
    を含む、請求項1に記載の方法。
  6. 前記設定するプロセスの第1の反復の前に、パラメータ値の可能な組み合わせからパラメータ値の複数の組み合わせを特定すること、
    パラメータ値の前記複数の組み合わせのうちの1つを選択すること、
    を更に含み、
    前記設定するプロセスの第1の反復について、前記複数のRF励磁信号パラメータを設定することは、前記複数のRF励磁信号パラメータを、パラメータ値の前記複数の組み合わせのうちの選択された1つで規定される値に設定することを含み、
    繰り返すプロセスは、
    前記複数のRF励磁信号パラメータがパラメータ値の前記複数の組み合わせの前記異なる1つで規定される前記値に設定されている間に、前記複数のRF励磁信号パラメータをパラメータ値の前記複数の組み合わせのうちの異なる1つで規定される値に繰り返し設定し、前記供給するプロセス、前記測定するプロセス、前記決定するプロセス、及び前記記憶するプロセスを実施することを含む、請求項1に記載の方法。
  7. 前記複数の組み合わせを特定することは、パラメータ値の可能な組み合わせを何割合か含むように、前記複数の組み合わせを特定することを含む、請求項6に記載の方法。
  8. 前記複数の組み合わせを特定することは、パラメータ値の可能な組み合わせから、ランダムに又は疑似ランダムに選択される多数の組み合わせを含むように、前記複数の組み合わせを特定することを含む、請求項6に記載の方法。
  9. 伝送経路に沿って複数の順方向電力の測定値も取得することを更に含み、
    前記反射電力示度を決定することは、前記反射RF電力の測定値及び前記順方向電力の測定値に基づいて前記反射電力示度を決定することを含む、請求項1に記載の方法。
  10. 前記許容可能な組み合わせを特定することは、
    最小の反射電力若しくは反射損失を示すか、又は所定の閾値未満である反射電力若しくは反射損失を示す、前記複数の記憶された反射電力示度のうちのいずれか1つに対応するRF信号パラメータ値の組み合わせとして、前記許容可能な組み合わせを特定することを含む、請求項1に記載の方法。
  11. 前記許容可能な組み合わせを特定することは、
    複数の追加の反射電力示度を生成するために、パラメータ値の複数の近似した組み合わせに対して、前記設定するプロセス、前記供給するプロセス、前記測定するプロセス、及び前記決定するプロセスを繰り返すこと、
    前記許容可能な組み合わせを、より低い追加の反射電力示度に対応する、前記近似した組み合わせのうちの選択された1つに変更すること、
    を更に含む、請求項10に記載の方法。
  12. 前記負荷の特性を決定することを更に含み、
    RF信号パラメータ値の前記組み合わせを記憶することは、前記組み合わせを前記負荷の前記特性と相互に関連付ける表に前記組み合わせを記憶することを含む、請求項1に記載の方法。
  13. 複数の異なる特性を有する複数の負荷に対して、前記設定するプロセス、前記供給するプロセス、前記測定するプロセス、前記決定するプロセス、前記記憶するプロセス、前記繰り返すプロセス、前記特定するプロセス、及び前記記憶するプロセスを繰り返すことを更に含む、請求項12に記載の方法。
  14. 負荷を収容するように構成された空洞を含む固体加熱システムであって、
    励磁信号周波数を示す1つ又は複数の第1の制御信号を生成し、かつ、1つ又は複数の位相シフトを示す1つ又は複数の第2の制御信号を生成するように構成される処理部であって、前記励磁信号周波数及び前記1つ又は複数の位相シフトは、パラメータ値の組み合わせの構成要素となる、前記処理部と、
    前記第1の制御信号のうちの1つを受信し、かつ、前記励磁信号周波数によって特徴付けられる第1のRF励磁信号を生成するように、それぞれ構成される少なくとも1つの無線周波数(RF)信号発生器と、
    前記第2の制御信号のうちの1つを受信し、かつ、前記第1のRF励磁信号を受信し、かつ、複数の第2のRF励磁信号のうちの1つを生成するようにそれぞれ構成される、複数のマイクロ波生成モジュールであって、前記第2のRF励磁信号の各々は、前記第2の制御信号のうちの受信した1つにおいて示される位相シフトが存在する場合にはこの位相シフトと、受信した第1のRF励磁信号の前記励磁信号周波数とによって特徴付けられる、前記複数のマイクロ波生成モジュールと、
    複数のマイクロ波エネルギー放射器であって、各マイクロ波エネルギー放射器は、前記マイクロ波生成モジュールのうちの1つの出力部にそれぞれ結合され、かつ前記第2のRF励磁信号のうちの1つを受信するとともに、これに応答して、前記第2のRF励磁信号の受信した1つに対応する電磁エネルギーを前記空洞に放射するよう構成される、前記複数のマイクロ波エネルギー放射器と、
    前記複数のマイクロ波生成モジュールを前記複数のマイクロ波エネルギー放射器に電気的に結合する複数の伝送経路と、
    前記第2のRF励磁信号が前記複数のマイクロ波エネルギー放射器に供給されている間に、前記複数の伝送経路のうちの1つの伝送経路に沿って、反射RF電力測定値を取得するようにそれぞれ構成される1つ又は複数の電力検出回路と
    を備え、
    前記処理部は、
    前記反射RF電力測定値に基づいて、反射電力示度を決定し、
    パラメータ値の前記組み合わせに対応する記憶された反射電力示度を生成するために、前記反射電力示度を記憶し、
    複数の記憶された反射電力示度を生成するために、パラメータ値の複数の異なる組み合わせに対して、前記第1及び前記第2の制御信号を供給することを複数回繰り返し、ここで、前記複数の記憶された反射電力示度の各々は、前記パラメータ値の異なる組み合わせに対応し、
    前記複数の記憶された反射電力示度に基づいて、パラメータ値の許容可能な組み合わせを特定し、
    加熱装置のメモリに、パラメータ値の前記許容可能な組み合わせを記憶するように、更に構成される、固体加熱システム。
  15. 前記固体加熱システムは、N個の第1のRF励磁信号のうちの1つを受信し、かつN個の第2のRF励磁信号のうちの1つを生成するようにそれぞれ構成されたN個のマイクロ波生成モジュールと、前記N個のマイクロ波生成モジュールのうちの1つの出力部にそれぞれ結合されたN個のマイクロ波エネルギー放射器と、を含み、
    RF励磁信号パラメータの前記組み合わせは、少なくとも1つの位相シフトを含み、
    前記複数のマイクロ波生成モジュールは、前記N個の第2のRF励磁信号を前記N個のマイクロ波エネルギー放射器に供給する前に、前記第2の制御信号中に示される前記位相シフトが存在する場合にはその位相シフトを前記N個の第1のRF励磁信号に印加することにより、前記複数の第2のRF励磁信号を生成する、請求項14に記載の固体加熱システム。
  16. 前記固体加熱システムは、1個のRF信号発生器と、前記RF信号発生器のN個の出力部のうちの1つに結合された入力部をそれぞれ有し、かつN個の第2のRF励磁信号のうちの1つを生成するようにそれぞれ構成されたN個のマイクロ波生成モジュールと、前記N個のマイクロ波生成モジュールのうちの1つの出力部にそれぞれ結合されたN個のマイクロ波エネルギー放射器とを含み、
    RF励磁信号パラメータの前記組み合わせは、1つの励磁信号周波数及び少なくとも1つの位相シフトを含み、
    前記複数のマイクロ波生成モジュールは、前記N個の第2のRF励磁信号を前記N個のマイクロ波エネルギー放射器に供給する前に、前記第2の制御信号中に示される前記位相シフトが存在する場合にはその位相シフトを前記N個の第1のRF励磁信号に印加することにより、前記複数の第2のRF励磁信号を生成する、請求項14に記載の固体加熱システム。
  17. 前記固体加熱システムは、N個の第2のRF励磁信号のうちの1つを生成するようにそれぞれ構成されたN個のマイクロ波生成モジュールと、N本の伝送線のうちの1つを介して前記N個のマイクロ波生成モジュールのうちの1つの出力部にそれぞれ結合されたN個のマイクロ波エネルギー放射器と、複数の電力検出回路と、を含み、Nは1より大きな整数であり、
    前記複数の電力検出回路の各々は、反射電力測定値を生成するように構成され、
    前記処理部は、前記複数の電力検出回路の各々から受信された前記複数の反射電力測定値に数学的関数を適用することにより、前記反射電力示度を決定するように構成される、請求項14に記載の固体加熱システム。
  18. 前記1つ又は複数の電力検出回路は、前記伝送経路に沿って複数の順方向電力測定値を取得するようにも構成され、
    前記処理部は、前記反射RF電力測定値及び前記順方向電力測定値に基づいて前記反射電力示度を決定するように構成される、請求項14に記載の固体加熱システム。
  19. 前記処理部は、
    前記負荷の特性を決定し、
    前記組み合わせを前記負荷の前記特性と相互に関連付ける前記メモリ内の表に前記組み合わせを記憶することにより、RF信号パラメータ値の前記組み合わせを記憶するように更に構成される、請求項14に記載の固体加熱システム。
  20. 前記処理部は、
    複数の異なる特性を有する複数の負荷に対して、前記決定するプロセス、前記記憶するプロセス、前記繰り返すプロセス、前記特定するプロセス、及び前記記憶するプロセスを繰り返すように更に構成される、請求項19に記載の固体加熱システム。
JP2017208126A 2016-11-18 2017-10-27 固体加熱装置におけるrf励磁信号パラメータの確立 Active JP7033431B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/356,211 US10602573B2 (en) 2016-11-18 2016-11-18 Establishing RF excitation signal parameters in a solid-state heating apparatus
US15/356,211 2016-11-18

Publications (2)

Publication Number Publication Date
JP2018081908A true JP2018081908A (ja) 2018-05-24
JP7033431B2 JP7033431B2 (ja) 2022-03-10

Family

ID=60382107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017208126A Active JP7033431B2 (ja) 2016-11-18 2017-10-27 固体加熱装置におけるrf励磁信号パラメータの確立

Country Status (4)

Country Link
US (2) US10602573B2 (ja)
EP (1) EP3324705A1 (ja)
JP (1) JP7033431B2 (ja)
CN (1) CN108076552B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166563A1 (ja) * 2020-02-21 2021-08-26 パナソニックIpマネジメント株式会社 マイクロ波処理装置
JP2022541442A (ja) * 2019-07-19 2022-09-26 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 誘電加熱を使用するエアロゾル発生システムおよび方法
JPWO2023162634A1 (ja) * 2022-02-24 2023-08-31
JP2024527895A (ja) * 2021-07-28 2024-07-26 青島海尓電冰箱有限公司 加熱方法及び冷蔵冷凍装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3032818A1 (en) 2016-08-09 2018-02-15 John Bean Technologies Corporation Radio frequency processing apparatus and method
US10750581B2 (en) * 2016-11-30 2020-08-18 Illinois Tool Works, Inc. Apparatus and system for fault protection of power amplifier in solid state RF oven electronics
WO2019055476A2 (en) * 2017-09-14 2019-03-21 Cellencor, Inc. HIGH POWER SEMICONDUCTOR MICROWAVE GENERATOR FOR RADIO FREQUENCY ENERGY APPLICATIONS
US10917948B2 (en) 2017-11-07 2021-02-09 Nxp Usa, Inc. Apparatus and methods for defrosting operations in an RF heating system
US10771036B2 (en) 2017-11-17 2020-09-08 Nxp Usa, Inc. RF heating system with phase detection for impedance network tuning
US10785834B2 (en) 2017-12-15 2020-09-22 Nxp Usa, Inc. Radio frequency heating and defrosting apparatus with in-cavity shunt capacitor
EP3503679B1 (en) 2017-12-20 2022-07-20 NXP USA, Inc. Defrosting apparatus and methods of operation thereof
EP3547801B1 (en) 2018-03-29 2022-06-08 NXP USA, Inc. Defrosting apparatus and methods of operation thereof
CN112567888B (zh) * 2018-08-15 2023-03-28 伊莱克斯家用电器股份公司 用于操作微波装置的方法
US10952289B2 (en) 2018-09-10 2021-03-16 Nxp Usa, Inc. Defrosting apparatus with mass estimation and methods of operation thereof
US11800608B2 (en) 2018-09-14 2023-10-24 Nxp Usa, Inc. Defrosting apparatus with arc detection and methods of operation thereof
NL2022064B1 (en) * 2018-11-23 2020-06-05 Ampleon Netherlands Bv Solid state cooking apparatus
CN109451620B (zh) * 2018-11-27 2025-06-24 京信网络系统股份有限公司 微波功率源、控制方法、控制装置及控制器
IT201800020068A1 (it) * 2018-12-18 2020-06-18 Italgi S R L Metodo di pastorizzazione di prodotti alimentari in particolare di pasta fresca o prodotti alimentari in genere, sfusi o già confezionati, e gruppo pastorizzatore per l’attuazione del detto metodo
US11166352B2 (en) 2018-12-19 2021-11-02 Nxp Usa, Inc. Method for performing a defrosting operation using a defrosting apparatus
US11039511B2 (en) 2018-12-21 2021-06-15 Nxp Usa, Inc. Defrosting apparatus with two-factor mass estimation and methods of operation thereof
US11324082B2 (en) 2019-05-02 2022-05-03 Nxp Usa, Inc. RF thermal increase systems with multi-level electrodes
CN110493909B (zh) * 2019-08-27 2022-09-30 上海点为智能科技有限责任公司 分布式射频或微波解冻设备
EP3793327B1 (en) * 2019-09-10 2022-11-30 Electrolux Appliances Aktiebolag Method for operating a microwave device
CN110996422B (zh) * 2019-12-30 2022-02-01 广东美的厨房电器制造有限公司 微波加热组件、微波加热设备和控制方法
KR20210125289A (ko) * 2020-04-08 2021-10-18 엘지전자 주식회사 복수 개의 안테나를 포함하는 오븐 및 그 제어 방법
CN111683426B (zh) * 2020-06-24 2022-04-12 中国电子科技集团公司第四十一研究所 一种射频激励信号功率调制电路、方法及装置
TWI834016B (zh) * 2020-12-16 2024-03-01 財團法人工業技術研究院 頻率可重組相位陣列系統及其執行的材料處理方法
US12446122B2 (en) * 2021-05-10 2025-10-14 Samsung Electronics Co., Ltd. Systems and methods for temperature profile control of microwave oven devices
US12390046B2 (en) 2022-03-29 2025-08-19 Samsung Electronics Company, Ltd. Systems and methods for achieving a user-specified temperature profile in a cooking appliance through heating control algorithms

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027529A1 (ja) * 2009-09-03 2011-03-10 パナソニック株式会社 マイクロ波加熱装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268828A (en) 1979-09-19 1981-05-19 Ford Aerospace & Communications Corporation Swept frequency radar system employing phaseless averaging
US6657173B2 (en) 1998-04-21 2003-12-02 State Board Of Higher Education On Behalf Of Oregon State University Variable frequency automated capacitive radio frequency (RF) dielectric heating system
JP2006128075A (ja) 2004-10-01 2006-05-18 Seiko Epson Corp 高周波加熱装置、半導体製造装置および光源装置
EP2528414B1 (en) 2006-02-21 2016-05-11 Goji Limited Electromagnetic heating
EP1956301B1 (de) * 2007-02-08 2009-11-04 Rational AG Verfahren zum Führen eines Garprozesses
EP2031306B1 (de) * 2007-08-27 2010-07-14 Rational AG Verfahren und Gargerät zum Garen
JP5520959B2 (ja) 2008-11-10 2014-06-11 ゴジ リミテッド Rfエネルギを使用して加熱する装置および方法
US9398646B2 (en) * 2009-07-10 2016-07-19 Panasonic Intellectual Property Management Co., Ltd. Microwave heating device and microwave heating control method
JP5713411B2 (ja) 2009-11-10 2015-05-07 ゴジ リミテッド Rfエネルギーを使用して加熱するためのデバイスおよび方法
EP2326141B1 (en) 2009-11-18 2012-12-26 Whirlpool Corporation Microwave oven and related method including a magnetron for heating and a SSMG for heated objects sensing
US9265097B2 (en) * 2010-07-01 2016-02-16 Goji Limited Processing objects by radio frequency (RF) energy
CN102934518B (zh) 2011-04-19 2015-07-22 松下电器产业株式会社 高频加热装置
EP3503680B1 (en) * 2011-08-31 2022-01-19 Goji Limited Object processing state sensing using rf radiation
US9161390B2 (en) * 2012-02-06 2015-10-13 Goji Limited Methods and devices for applying RF energy according to energy application schedules
CN105230119B (zh) * 2013-05-21 2019-06-04 高知有限公司 Rf处理系统的校准
WO2015037004A1 (en) 2013-09-12 2015-03-19 Goji Limited Temperature measurement arrangement
EP2953425B1 (en) 2014-06-03 2019-08-21 Ampleon Netherlands B.V. Radio frequency heating apparatus
US10904961B2 (en) 2015-03-06 2021-01-26 Whirlpool Corporation Method of calibrating a high power amplifier for a radio frequency power measurement system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027529A1 (ja) * 2009-09-03 2011-03-10 パナソニック株式会社 マイクロ波加熱装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022541442A (ja) * 2019-07-19 2022-09-26 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 誘電加熱を使用するエアロゾル発生システムおよび方法
US12082615B2 (en) 2019-07-19 2024-09-10 Philip Morris Products S.A. Aerosol-generating system and method using dielectric heating
JP7741791B2 (ja) 2019-07-19 2025-09-18 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 誘電加熱を使用するエアロゾル発生システムおよび方法
WO2021166563A1 (ja) * 2020-02-21 2021-08-26 パナソニックIpマネジメント株式会社 マイクロ波処理装置
JPWO2021166563A1 (ja) * 2020-02-21 2021-08-26
JP7607203B2 (ja) 2020-02-21 2024-12-27 パナソニックIpマネジメント株式会社 マイクロ波処理装置
JP2024527895A (ja) * 2021-07-28 2024-07-26 青島海尓電冰箱有限公司 加熱方法及び冷蔵冷凍装置
JPWO2023162634A1 (ja) * 2022-02-24 2023-08-31
JP7766232B2 (ja) 2022-02-24 2025-11-10 パナソニックIpマネジメント株式会社 電波放射装置

Also Published As

Publication number Publication date
US11224102B2 (en) 2022-01-11
US20190254127A1 (en) 2019-08-15
EP3324705A1 (en) 2018-05-23
JP7033431B2 (ja) 2022-03-10
US20180146518A1 (en) 2018-05-24
US10602573B2 (en) 2020-03-24
CN108076552A (zh) 2018-05-25
CN108076552B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
JP7033431B2 (ja) 固体加熱装置におけるrf励磁信号パラメータの確立
US11009468B2 (en) Object processing state sensing using RF radiation
US10455650B2 (en) Time estimation for energy application in an RF energy transfer device
JP6741304B2 (ja) インピーダンス回路網調整のための位相検出を備えたrf加熱システム
CN107688118B (zh) 用于检测解冻操作完成的设备和方法
CN109792810B (zh) 电磁烹饪装置及控制烹饪的方法
EP3563635B1 (en) Electromagnetic cooking device with automatic liquid heating and method of controlling cooking in the electromagnetic cooking device
JP2019087528A (ja) Rf加熱システムにおける解凍運転のための装置および方法
EP3563632B1 (en) Electromagnetic cooking device with automatic popcorn popping feature and method of controlling cooking in the electromagnetic device
CN111720865B (zh) 具有再辐射器的rf加热设备
JP6830151B2 (ja) 自動沸騰検出を備えた電磁調理装置および電磁調理装置の調理を制御する方法
JP2020102439A (ja) 二因子質量推定付き解凍装置及びその動作方法
CN109076655B (zh) 微波加热装置和用于操作微波加热装置的方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7033431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250