WO2021166420A1 - 回転電機及びこれを用いた電動ホイール - Google Patents

回転電機及びこれを用いた電動ホイール Download PDF

Info

Publication number
WO2021166420A1
WO2021166420A1 PCT/JP2020/047828 JP2020047828W WO2021166420A1 WO 2021166420 A1 WO2021166420 A1 WO 2021166420A1 JP 2020047828 W JP2020047828 W JP 2020047828W WO 2021166420 A1 WO2021166420 A1 WO 2021166420A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric machine
permanent magnet
rotor
rotary electric
magnetic
Prior art date
Application number
PCT/JP2020/047828
Other languages
English (en)
French (fr)
Inventor
伊藤 誠
暁史 高橋
啓祐 竹内
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US17/795,845 priority Critical patent/US20230001780A1/en
Priority to EP20919523.9A priority patent/EP4080732A4/en
Priority to CN202080095879.6A priority patent/CN115053433A/zh
Publication of WO2021166420A1 publication Critical patent/WO2021166420A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • H02K1/2733Annular magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2788Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a rotary electric machine, particularly to an electric wheel used for a moving body.
  • One of the conventionally proposed means for increasing torque density is a rotor structure using a permanent magnet. Since the magnetized permanent magnet has a magnetomotive force, the torque density can be improved by interacting the magnetomotive force with the magnetomotive force generated by the current flowing through the coil of the stator. Specifically, by connecting the magnetomotive force of the permanent magnet and the magnetomotive force of the coil current in series on the magnetic circuit, the magnetic flux density of the gap can be increased and the torque density can be improved.
  • Patent Document 1 As a structure suitable for improving torque density, which has been conventionally proposed, for example, a structure as shown in Patent Document 1 has been proposed.
  • Patent Document 1 a plurality of magnets arranged side by side in the circumferential direction are provided, and each magnet is symmetrical about the q-axis, which is the magnetic pole boundary, between the d-axis, which is the magnetic pole center adjacent to the circumferential direction. It is formed in a shape.
  • the easy-magnetizing axis is oriented parallel to the d-axis or close to parallel to the d-axis, and in the portion close to the q-axis, the easy-magnetizing axis is orthogonal to the q-axis or close to orthogonal to the q-axis.
  • a rotor structure oriented so as to form an arcuate magnetic path is proposed.
  • the magnetizing direction of the magnet is pseudo-Halbach magnetism, and the magnetic flux is concentrated toward the polar center, so that the torque can be increased.
  • the material unit price of permanent magnets is higher than the material unit price of cores, which leads to an increase in rotor cost and mass productivity. It is not preferable when considering.
  • the rotor takes into consideration the magnetomotive force consumption of the entire rotor, including the relationship not only with the magnetomotive force of the permanent magnet of the rotor but also with the magnetomotive force created by the current flowing through the stator winding. The design was not well done. Therefore, a rotor structure capable of further improving the torque density of the rotating electric machine has not been proposed so far.
  • the subject of the present invention is obtained by considering the total magnetomotive force consumption of the rotating electric machine, including the relationship between the magnetomotive force of the permanent magnet of the rotor and the magnetomotive force generated by the current flowing through the stator winding. , To improve the torque density.
  • the rotary electric machine includes a rotor that is freely supported by rotation, and a stator that is provided through a predetermined gap between the rotor and the rotor. It has a magnetic pole ring composed of an annular permanent magnet and a core piece embedded in the permanent magnet, and the magnetic pole ring has an inner peripheral surface and an outer peripheral surface formed in an annular shape, and the inner peripheral surface is formed.
  • One of the surface or the outer peripheral surface is a gap facing surface facing the gap, and the other is a non-void facing surface different from the gap facing surface, and the non-void facing surface of the magnetic pole ring.
  • the surface is composed of the permanent magnet, the gap facing surface of the magnetic pole ring is configured to include the permanent magnet and an exposed core piece, and the permanent magnet is magnetized so that the core piece is at the polar center. NS.
  • the torque density of the rotary electric machine can be improved.
  • FIG. 1 is a partial cross-sectional view of the rotor in FIG. A partial cross-sectional view of a rotor according to this embodiment. A partial cross-sectional view of a stator according to this embodiment. A magnetic circuit model showing the operation of the present invention. Calculation result of a magnetic circuit model showing the operation of the present invention. Calculation result of a magnetic circuit model showing the operation of the present invention.
  • FIG. 3 is a partial cross-sectional view of a rotor according to a second embodiment of the present invention.
  • FIG. 3 is a partial cross-sectional view of a stator according to a second embodiment of the present invention.
  • FIG. 5 is a magnetic flux diagram inside the rotor having a magnetic member 120 on the back side after the rotor of the second embodiment of the present invention is post-magnetized.
  • the graph which shows the change of the torque density with respect to the volume of the magnetic member which concerns on 2nd Example of this invention.
  • FIG. 3 is a partial cross-sectional view of a rotor according to a third embodiment of the present invention.
  • FIG. 3 is a partial cross-sectional view of a stator according to a third embodiment of the present invention.
  • FIG. 5 is a partial cross-sectional view showing the magnetizing direction of the permanent magnet according to the fifth embodiment of the present invention.
  • FIG. 6 is a conceptual diagram of a cross section of an electric wheel according to a sixth embodiment of the present invention.
  • the magnetic flux of the magnetized permanent magnet is concentrated on the core piece, and the magnetic flux passes through the inside of the permanent magnet so as to connect the adjacent core pieces. Therefore, almost no leakage flux is generated inside the rotor, and the magnetic flux can be effectively used. Further, in the case of post-magnetization, the path of the magnetic flux connecting the polar centers is shortened by having the core piece.
  • FIG. 1 is a cross-sectional view of a rotary electric machine according to a first embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view of the rotor in FIG.
  • the rotary electric machine 100 includes a stator 101 and a rotor 102 that is rotatably supported outward in the radial direction of the stator 101.
  • the rotor 102 rotates about the rotation axis Z.
  • the terms “inner circumference side” and “outer circumference side” define the side closer to the rotation axis Z as the “inner circumference side” and the far side as the “outer circumference side”, respectively.
  • the “diameter direction R” is defined as a linear direction that intersects the rotation axis Z perpendicularly
  • the “circumferential direction ⁇ ” is defined as a rotation direction around the rotation axis Z.
  • a shaft 103 (not shown) may be fixed to the rotor 102, and the rotary electric machine 100 may include a stator 101 and a frame 104 (not shown) that covers the rotor 102.
  • the rotor 102 is connected to a load (not shown) directly or via a structural member such as a shaft 103 or a frame 104, and the rotation of the rotor 102 transmits rotation and torque to the load.
  • the stator 101 and the rotor 102 have the same central axis (rotation axis Z), and a gap 109 is provided between the stator 101 and the rotor 102 so that they do not come into contact with each other.
  • the rotor 102 may be supported so as to be rotatable inward in the radial direction of the stator 101.
  • the so-called outer rotor structure in which the rotor 102 is arranged radially outside the stator 101 will be mainly described, but the rotor 102 is arranged inside the stator 101 in the radial direction.
  • the same effect can be obtained by using the same structure in the so-called inner rotor structure.
  • the radial direction R is defined below as the direction from the outer peripheral side to the inner peripheral side in the case of the outer rotor, and the direction from the inner peripheral side to the outer peripheral side in the case of the inner rotor.
  • the stator 101 is wound around a stator core 105 formed by laminating a plurality of electromagnetic steel sheets, a plurality of stator slots 106 provided in the circumferential direction of the outer peripheral portion of the stator core 105, and a stator slot 106. It is composed of the stator winding 107 and the stator winding 107.
  • the stator core 105 may be composed of an integrally molded solid member. Further, it may be composed of a powder magnetic material such as a dust core or the like by compression molding, or may be composed of an amorphous metal or a nanocrystal material.
  • the winding method of the stator winding 107 may be any winding method capable of generating a concentrated winding, a distributed winding, or a rotating magnetic field, and in the distributed winding, the effect of the present embodiment may be any of short-knot winding and full-knot winding. Can be obtained.
  • the rotor 102 includes a magnetic pole ring 150 composed of a permanent magnet portion 200, a rotor core piece 110 formed by laminating a plurality of electromagnetic steel sheets, and a magnetic pole ring 150.
  • the material of the permanent magnet 200 is not limited, and any material such as ferrite-based, neodymium-based, samarium-cobalt-based, etc. may be used.
  • the rotor core piece 110 may be formed of an integrally molded solid member, may be formed by compression molding a powder magnetic material such as a dust core, or may be made of an amorphous metal or a nanocrystal material.
  • the magnetic pole ring 150 has an even number of magnetic poles in the circumferential direction ⁇ on the side facing the gap 109, that is, on the side facing the stator 101.
  • the axis penetrating the center of each magnetic pole in the radial direction is referred to as the d-axis
  • the axis penetrating the center between adjacent d-axises in the radial direction is referred to as the q-axis.
  • the permanent magnet portion 200 is an integrally molded annular ring magnet 210 as shown in FIG. 3 (a) or the first pieces 301, 302, ..., And the second piece as shown in FIG. 3 (b). It is a combination of dividing magnets such as 401, 402, ..., Etc. in an annular shape.
  • a recess 500 is provided on the side of the permanent magnet portion 200 facing the gap 109 on the d-axis at the center of the pole.
  • a rotor core piece 110 is inserted into the recess 500 of the permanent magnet portion 200, and a part of the rotor core piece 110 is exposed from the rotor 102 so as to face the gap 109.
  • the split magnets (301, 302, ..., 401, 402, ...) are fixed to each other by a method such as bonding or welding, and the permanent magnet portion 200 and the rotor core piece 110 are bonded, welded, and press-fitted to each other. , Is fixed using a method such as fitting.
  • FIG. 4 shows a magnetic circuit model showing the operation of this embodiment.
  • the magnetomotive force 610 of the permanent magnet portion 200 of the rotor 102 and the magnetomotive force 620 of the winding current 109 flowing through the stator winding 107 of the stator 101.
  • the following equation holds.
  • H ⁇ is the magnetic field of the void 109
  • HM is the magnetic field ⁇ of the permanent magnet portion 200 is the radial (R) width of the void 109.
  • ⁇ M is the representative width of the permanent magnet portion 200, and is defined here as the average distance of the magnetic flux paths connecting the adjacent rotor core pieces 110.
  • is an ampere-turn per pole due to the winding current 108. Since the magnetic permeability of the stator core 105 and the rotor core piece 110 is sufficiently larger than the magnetic permeability of the void 109 and the permanent magnet portion 200, the magnetic permeability of the stator core 105 and the rotor core piece 110 is treated as infinite. Since there is almost no leakage magnetic flux on the magnetic circuit C, assuming that there is no leakage magnetic flux, the magnetic flux density on the loop C of the magnetic flux is always constant and is expressed by the following equation.
  • B ⁇ is the magnetic flux density on the loop C of the magnetic flux, and particularly represents the magnetic flux density of the void 109.
  • ⁇ M is the magnetic permeability of the permanent magnet portion 200
  • Br is the residual magnetic flux density of the permanent magnet portion.
  • the magnetic field H ⁇ of the void 109 and the magnetic flux density B ⁇ of the void 109 have the following relationship.
  • the magnetomotive force 610 of the permanent magnet portion 200 of the rotor 102 and the stator winding 107 of the stator 101 flow.
  • the magnetic field density B ⁇ generated in the void 109 due to the interaction with the magnetomotive force 620 due to the winding current 108 is as follows.
  • ⁇ 0 is the magnetic permeability of the vacuum.
  • a rotor structure for improving the torque density of a rotating electric machine has been proposed.
  • the magnitude of the no-load induced electromotive force is substantially proportional to the magnitude of the magnetic flux generated by the magnetomotive force of the permanent magnet portion 200 of the rotor 102.
  • an increase in the no-load induced electromotive force means an increase in the amount of magnetic flux of the rotor, and an improvement in the torque density of the rotating electric machine was expected.
  • the rotor structure obtained from such an idea for example, the rotor 102 is filled with the permanent magnet portion 200, the permanent magnet is magnetized along the direction of the magnetic flux flowing in the rotor, and the gap 109 is formed. The structure was such that it did not have the rotor core piece 110 facing it (see Patent Document 1).
  • the magnetomotive force obtained from the magnetic flux entering from the gap 109 surface of one magnetic pole to the exit from the gap 109 surface of the adjacent magnetic pole is maximized, so that there is certainly no load.
  • the induced electromotive force can be increased.
  • the amount of magnetic flux of the rotor can be increased, and the torque density of the rotating electric machine can be improved to some extent.
  • the structure does not necessarily increase the torque density of the rotary electric machine 100 sufficiently.
  • the permanent magnet portion 200 having a small magnetic permeability has a large magnetic resistance with respect to the magnetomotive force component on the stator 101 side, that is, the magnetomotive force component generated by the ampere-turn ⁇ per pole, and the magnetic flux density B of the void 109 and the magnetic flux density B and It also becomes a factor to reduce the torque density of the rotary electric machine 100.
  • the average distance ⁇ M of the magnetic flux path of the permanent magnet unit 200 does not have to be simply maximized, and an appropriate value of ⁇ M exists depending on the magnitude of the ampere-turn ⁇ per pole.
  • the ampere-turn ⁇ per pole satisfies the equation 5
  • the smaller the ⁇ M the larger the magnetic flux density B of the void 109.
  • the residual magnetic flux density Br of a permanent magnet is about several hundreds of mT to 1T, and the radial width of the gap 109 is about 1 mm.
  • FIG. 5A shows the relationship between the magnetic flux density B ⁇ of the void 109 and the representative width ⁇ M of the permanent magnet portion 200 when the residual magnetic flux density Br of the permanent magnet is 1T and the radial width of the void 109 is 1 mm.
  • FIG. 5A shows a tendency that when ⁇ is 1600 AT or more, the magnetic flux density B ⁇ of the gap 109 can be improved by reducing the representative width ⁇ M of the permanent magnet portion 200.
  • FIG. 5B shows the relationship between the magnetic flux density B ⁇ of the gap 109 with respect to the representative width ⁇ M of the permanent magnet portion 200 when the residual magnetic flux density B ⁇ of the permanent magnet is 100 mT and the radial width of the gap 109 is 1 mm. ..
  • FIG. 5B when ⁇ is 160AT or more, there is a tendency that the magnetic flux density B ⁇ of the void 109 can be improved by reducing the representative width ⁇ M of the permanent magnet portion 200.
  • the effect of improving the torque density due to the residual magnetic flux (density B ⁇ ) of the permanent magnet portion 200 is large, and the torque density of the rotating electric machine 100 is improved under various operating conditions. For this purpose, the presence of the permanent magnet unit 200 is still necessary.
  • the core piece 110 is ⁇ M by providing the recess 500 at the pole center of the permanent magnet portion 200 of the rotor 102 and arranging the rotor core piece 110 in the recess 500 of the permanent magnet portion 200. It is possible to improve the magnetic flux density of the gap 109 under the actual driving conditions in which the magnetomotive force of the permanent magnet portion 200 and the magnetomotive force of the ampere turn ⁇ per pole interact with each other. .. This makes it possible to improve the torque density of the rotary electric machine 100 as compared with the conventional case.
  • the magnetic flux is concentrated on the core piece having a small magnetic resistance, and the fundamental wave component of the magnetic flux density of the gap 109 increases. As a result, the torque density of the rotary electric machine 100 is further improved.
  • the permanent magnet portion 200 and the core piece 110 are flush with each other on the exposed surface facing the void 109.
  • the inner diameter side surface of the ring magnet 210 (exposed surface facing the void 109) and the inner diameter side surface of the core piece 110 are flush with each other.
  • the inner diameter side surface of the split magnets (301, 302, 303, ...) And the inner diameter side surface of the core piece 110 are flush with each other.
  • These flush surfaces can form a cylindrical surface defined by a single radius, especially by shaving or integrally molding according to a cylindrical mold.
  • the maximum value of the circumferential width of the region embedded in the permanent magnet portion 200 is defined as L1
  • the circumferential width of the surface exposed from the permanent magnet portion 200 is defined as L2.
  • the rotor 102 satisfying the relationship of L1> L2 can reduce the risk that the width L2 of the permanent magnet portion 200 and the width L1 of the core piece 110 interfere with each other and the core piece 110 is separated from the rotor 102.
  • the amount of magnets on the void 109 side increases, and a sufficient core volume can be secured in the region of the core piece 110 having the width L1, so that magnetic saturation is less likely to occur.
  • the amount of magnets can be increased while relaxing the magnetic resistance inside the core piece 110, so that the magnetic flux density of the void 109 can be increased. Thereby, the torque density of the rotary electric machine 100 can be improved.
  • FIG. 6A is a partial cross-sectional view of the rotor according to the second embodiment of the present invention, and shows a structure when a ring magnet 210 is applied to the permanent magnet portion 200.
  • FIG. 6B is a partial cross-sectional view of the rotor according to the second embodiment of the present invention, in which split magnets (301, 302, ..., 401, 402, ...) Are applied to the permanent magnet portion 200. The structure when this is done is shown. The description of the matters overlapping with the first embodiment will be omitted.
  • the rotor 102 in the second embodiment is on the radial side facing the gap 109, that is, on the outer peripheral side of the rotor 102 and the inner rotor in the case of the outer rotor structure as shown in FIGS. 6 (a) and 6 (b).
  • a non-magnetic region 700 made of a non-magnetic material is provided on the inner peripheral side (hereinafter, referred to as a back side) of the rotor 102.
  • the non-magnetic region 700 may be composed of a non-magnetic ring 710 formed of a non-magnetic member, or may be composed of a non-magnetic space 720 (not shown) filled with a non-magnetic liquid or gas.
  • the non-magnetic region 700 can also serve as the frame 104 of the rotor 102, and the mass increase of the rotating electric machine 100 due to having the non-magnetic region 700 does not occur.
  • the magnetization direction of the permanent magnet portion 200 is in a direction that minimizes the consumption of the magnetomotive force inside the rotor 102. Therefore, the torque density of the rotary electric machine 100 is improved.
  • FIG. 7A shows a magnetic flux diagram inside the rotor 102 after the rotor 102 of the present embodiment is post-magnetized
  • FIG. 7B shows a magnetic member 120 on the back side unlike the present embodiment.
  • the magnetic flux diagram inside the rotor 102 after the rotor 102 having the rotor 102 is post-magnetized is shown.
  • the permanent magnet portion 200 is magnetized so that the magnetic flux connects the rotor core piece 110 at the shortest, and the magnetomotive force consumption inside the rotor 102 is consumed. It is minimized.
  • FIG. 8 is a graph showing the change in torque density with respect to the volume of the magnetic member 120. As is clear from FIG. 8, the torque density decreases as the number of magnetic members 120 on the back side increases. The highest torque density is in the case where there is no magnetic member 120, that is, in the case of the present embodiment in which the back side is the non-magnetic region 700.
  • the non-magnetic ring 710 can be utilized as a strength member by using the non-magnetic ring 710 as the non-magnetic region 700.
  • a circumferential stress called a hoop stress is generated inside the permanent magnet portion 200 due to the centrifugal force generated when the rotor 102 rotates. Since the permanent magnet portion 200 is generally a brittle material, the permanent magnet portion 200 may be destroyed by this hoop stress.
  • the stress generated in the permanent magnet portion 200 which is generally a brittle material, can be reduced, and the strength reliability of the rotor 102 can be improved.
  • the robust rotor 102 can be rotated at a high speed, and the structure of this embodiment can be used as a high-speed rotating electric machine.
  • FIG. 9A is a partial cross-sectional view of the rotor according to the third embodiment of the present invention, and shows a structure when a ring magnet 210 is applied to the permanent magnet portion 200.
  • FIG. 9B is a partial cross-sectional view of the rotor according to the third embodiment of the present invention, in which split magnets (301, 302, ..., 401, 402, ...) Are attached to the permanent magnet portion 200. The structure when applied is shown. The description of the matters overlapping with the first embodiment will be omitted.
  • the rotor 102 in the third embodiment has a back yoke 800 formed by laminating a plurality of electromagnetic steel sheets on the back side.
  • the back yoke 800 may be formed of an integrally molded solid member, may be formed by compression molding a powder magnetic material such as a dust core, or may be made of an amorphous metal or a nanocrystal material.
  • the back yoke 800 as in this structure makes it possible to prevent magnetic flux from leaking to the outside of the rotary electric machine 100.
  • the region 220 on the d-axis of the ring magnet 210 of the permanent magnet portion 200 is magnetized in the radial direction in FIG. 9A, or in FIG. 9B, the split magnet (401) of the permanent magnet portion 200 , 402, ...)
  • the back yoke 800 guides the magnetic flux that is about to leak to the back side of the rotor 102 onto the adjacent d-axis. Therefore, the leakage magnetic flux of the rotor 102 is reduced.
  • the magnetic flux density of the gap 109 is improved, and the torque density of the rotary electric machine 100 is improved.
  • the surface of the core piece 110 embedded in the permanent magnet portion 200 is a curved surface 111 having a finite radius of curvature when viewed from the radial direction.
  • the definition of the radial direction here is the direction from the outer peripheral side to the inner peripheral side in the case of the outer rotor, and the direction from the inner peripheral side to the outer peripheral side in the case of the inner rotor.
  • the surface of the core piece 110 embedded in the ring magnet 210 has a convex shape having a finite radius of curvature, and the convex portion has a shape facing the outer peripheral side.
  • the magnetic flux connecting the magnetic poles through the permanent magnet portion 200 becomes streamlined, and it is possible to prevent local concentration of magnetic flux.
  • the local magnetic saturation of the core piece 110 can be relaxed, and the torque density of the rotary electric machine 100 is improved.
  • the permanent magnet portion 200 is magnetized by post-magnetization, the magnetic flux from the curved surface 111 of one pole to the curved surface 111 of the other pole is distributed on a smooth substantially arc by passing the magnetic flux between the core pieces 110. do.
  • the permanent magnet portion 200 can be magnetized with a magnetic flux distribution that reduces the variation in the magnetic path length of the magnetic flux passing through each position on the curved surface 111. Therefore, the amount of current required for magnetism can be reduced, and the production cost can be reduced. Alternatively, the permanent magnet portion 200 can be magnetized with a small amount of current without locally creating a region where magnetism is insufficient.
  • the effect of this embodiment can be maximized by superimposing the radial vertices of the curved surface 111 on the d-axis which is the polar center of each magnetic pole.
  • the permanent magnet portion 200 is composed of split magnets (301, 302, ..., 401, 402, ).
  • the split magnet is configured by combining the first piece 301, 302, ..., And the second piece 401, 402, ... In an annular shape, but the number of pieces is two or more. If this is the case, the effect of this embodiment can be obtained, and the effect can be obtained in any of the radial direction R, the circumferential direction ⁇ , and the rotation axis Z direction as the division direction.
  • a microscopic gap is formed between the divided magnets of the permanent magnet portion 200, so that contact resistance is generated at the contact portion between the divided magnets. Therefore, it is possible to obtain the effect that the split magnets are electrically separated from each other, and it becomes difficult for the eddy current to flow across the split magnets.
  • the eddy current and the eddy current loss generated in the permanent magnet unit 200 can be reduced, and the efficiency of the rotary electric machine 100 can be improved.
  • the split magnet is coated with an insulating film or the like, the eddy current flowing across the split magnets can be ignored, and the efficiency can be further improved.
  • the eddy current and the eddy current loss of the permanent magnet portion 200 can be effectively reduced.
  • split magnets (301, 302, ..., 401, 402, ...) do not all have to be the same type of permanent magnets, and different types of magnets may be combined to form the permanent magnet portion 200.
  • the first pieces 301, 302, ... Of the split magnet face the gap 109, and the second pieces 401, 402, ...
  • a permanent magnet having a higher coercive force than the second piece can be selected for the first piece. Since the magnetic flux of the rotary electric machine 100 is concentrated around the gap 109, the demagnetization strength of the rotor 102 can be improved by increasing the coercive force of the first pieces 301, 302, ....
  • the coercive force of the permanent magnet and the residual magnetic flux density are in a trade-off relationship, the coercive force of the second piece 401, 402, ..., Is lower than that of the first piece 301, 302, ... , A magnet having a high residual magnetic flux density can also be selected. As a result, the torque density of the rotary electric machine 100 can be improved while improving the demagnetization strength.
  • Nd sintered magnets can be used for the first pieces 301, 302, ...
  • Nd bonded magnets can be used for the second pieces 401, 402, ....
  • the Nd sintered magnet has a higher coercive force
  • the Nd bonded magnet can freely set the magnetizing direction.
  • the Nd-bonded magnet has a degree of freedom in the magnetizing direction because the Nd-bonded magnet is an isotropic magnet, and for example, Halbach magnetizing can be easily performed.
  • FIG. 10 shows an example of magnetism that can be performed when Nd sintered magnets are used for the first pieces 301, 302, ..., And Nd bonded magnets are used for the second pieces 401, 402, .... Is shown.
  • the Nd sintered magnets of the first pieces 301, 302, ... Are magnetized in one direction because they are anisotropic magnets.
  • the Nd bond magnets of the second pieces 401, 402, ... are isotropic, the contact surfaces with the first pieces 301, 302, ... Or vice versa).
  • the Nd sintered magnet and the Nd bond magnet in this way, it is possible to form a permanent magnet portion 200 that is pseudo-Halbach magnetized with a combined structure of split magnets.
  • the magnetic flux can be concentrated on the core piece 110 and the magnetic flux density of the gap 109 can be increased, so that the torque density of the rotary electric machine 100 is improved.
  • the Nd bond magnet since the Nd bond magnet has a higher magnetic permeability than the Nd sintered magnet, the magnetic resistance of the second piece to the magnetomotive force 620 due to the winding current 108 flowing through the stator winding 107 of the stator 101 becomes smaller.
  • the magnetic flux density created by the winding current 108 in the void 109 can be increased, so that the torque density of the rotary electric machine 100 is further improved.
  • the permanent magnet portion 200 may be divided on the d-axis which is the polar center. Since there is no circumferential component of the magnetic flux on the d-axis, even if the permanent magnet portion 200 is divided on the d-axis, the magnetic characteristics are not affected. Therefore, it is possible to prevent the torque density from deteriorating due to the division of the permanent magnet portion 200.
  • the permanent magnet portion 200 may be divided on the q-axis between the polar centers.
  • the core piece 110 for one pole and the permanent magnet portion 200 can be integrally molded at the time of manufacturing.
  • the magnetizing yoke can be arranged on a total of three surfaces, a surface on the gap 109 side and two surfaces in the circumferential direction, so that the current required for magnetization can be reduced. This facilitates manufacturing and improves the productivity of the rotary electric machine 100.
  • FIG. 11 is a conceptual diagram of a cross section of the electric wheel 900 according to the sixth embodiment of the present invention.
  • An outer rotor type rotary electric machine 100 is used for the electric wheel 900.
  • the rotor 102 of the rotary electric machine 100 has a non-magnetic ring 710 on the outer peripheral side, and also serves as a rotor frame 930.
  • the rotor frame is formed of a carbon fiber material, a non-magnetic metal member, or a combination of these materials.
  • the 710 part of the ring is a non-magnetic material.
  • the rotor frame 930 is connected to the wheel 920 by a connecting member 940. Tires 910 are fitted to the wheels 920.
  • the wheel 920 or rotor frame 930 is connected to the shaft 960 by bearings 950 so that the wheels 920 and rotor 102 are rotatably supported with respect to the shaft 960.
  • the stator 101 of the rotary electric machine 100 is fixedly supported on the shaft 960 by a support member (omitted in the figure), and the electric circuit 970 is also mounted on the support member.
  • the electric circuit 970 supplies electric power to the stator 101 to rotate the rotor 102.
  • the rotation of the rotor 102 is transmitted to the wheel 920 via the rotor frame 930 having the non-magnetic ring 710 and the connecting member 940 to rotate the wheel 920.
  • the electric circuit 970 can also be mounted inside the wheel 920, and the electric wheel 900 can be made smaller and lighter.
  • Electromagnetic force, 620 Electromagnetic force, 700 ... non-magnetic region, 710 ... non-magnetic ring, 720 ... non-magnetic space, 800 ... back yoke, 900 ... electric wheel, 910 ... tire, 920 ... wheel, 930 ... rotor frame, 940 ... connecting member, 950 ... bearing, 960 ... shaft, 970 ... electric circuit, 999 ... load, Z ... rotation axis, R ... radial direction, ⁇ ... circumferential direction, C ... magnetic flux loop

Abstract

本発明の課題は、トルク密度向上を可能にする回転電機、およびそれを用いた電動ホイールを提供することである。 回転自由に支持された回転子と、前記回転子と所定の空隙を介して備えられた固定子と、を備え、前記回転子は、円環状の永久磁石と、前記永久磁石に埋め込まれたコアピースと、からなる磁極リングを有し、前記磁極リングは、円環状に形成された内周面および外周面を有し、前記内周面または前記外周面のいずれか一方は、前記空隙と対向する空隙対向面であって、もう一方は、前記空隙対向面とは異なる非空隙対向面であって、前記磁極リングの前記非空隙対向面は、前記永久磁石で構成され、前記磁極リングの前記空隙対向面は、前記永久磁石と露出したコアピースを含んで構成され、前記永久磁石は、前記コアピースが極中心となるように着磁される回転電機。

Description

回転電機及びこれを用いた電動ホイール
 本発明は、回転電機に関し、特に移動体に用いられる電動ホイールに関する。
 従来より、省スペース化や低コスト化の観点から、回転電機の高出力密度化が求められている。回転電機の出力は、回転電機の回転数とトルクの積で決まるため、回転数かトルクのいずれかを高めることで高出力密度化を図ることができる。
 一般的には、回転電機の高速回転化によって高出力密度化を図ることが多く、この場合、負荷との間にギアを介する必要がある。このため、追加の構成要素となるギアによって、システム効率の低下や信頼性の低下、さらには重量増加によってシステムとしての出力密度が低下するなどのデメリットが発生する可能性がある。
 一方で、回転電機の高トルク密度化は、ギアを不要としたうえで回転電機の高出力密度化を実現できる技術の一つである。この場合、システムの高信頼化や高出力密度化が容易になる。
 従来から提案されている高トルク密度化の手段の一つに、永久磁石を利用した回転子構造がある。着磁された永久磁石は起磁力を有しているため、この起磁力と固定子のコイルを流れる電流の作る起磁力とを相互作用させることで、トルク密度を向上させることができる。具体的には、磁気回路上で永久磁石の起磁力とコイル電流の起磁力とを直列接続することで、ギャップの磁束密度を高め、トルク密度の向上が可能となる。
 従来提案されているトルク密度向上に好適な構造として、例えば特許文献1に示すような構造が提案されている。特許文献1では、周方向に並べて配置されている複数の磁石を備え、各々の磁石は、周方向に隣接する磁極中心であるd軸の間において、磁極境界であるq軸を中心とした対称形状に形成されている。さらに、d軸寄りの部分において磁化容易軸がd軸に平行又はd軸に平行に近い向きとなり、かつq軸寄りの部分において磁化容易軸がq軸に直交又はq軸に直交に近い向きとなる円弧状の磁石磁路が形成されるように配向がなされた回転子構造が提案されている。本提案構造では、磁石の磁化方向が疑似的なハルバッハ着磁となり、極中心に向かって磁束が集中しているためトルクが増大できる。
 ところで、特許文献1を用いて例示したように、従来の回転子構造では、磁石を大量に使用し、かつ極中心に磁束を集中させるためにハルバッハ着磁または疑似的にハルバッハ着磁に近い磁束分布を作るような回転子形状にすることでトルク密度を増大させていた。これは、簡易的に磁気回路を考えた場合、回転子は永久磁石で満たされ、かつ回転子内を流れる磁束の向きに沿って永久磁石が磁化されていることで、ある極のギャップ面から入った磁束が隣接する極のギャップ面から出るまでの間に得られる起磁力が最大化するため、従来発想では妥当な考え方である。このため、特許文献1に例示されるように、従来構造では、回転子の固定子との対向面に永久磁石を敷き詰めたような構造となっていた。
 一方で、トルク密度を最大化するためにNd磁石を使用することを考えると、永久磁石の材料単価はコアの材料単価と比較して高価であるため、回転子のコストアップにつながり、量産性を考えた場合好ましくない。さらに、従来の発想では、回転子の永久磁石の起磁力のみならず、固定子巻線を流れる電流の作る起磁力との関係性を含んで、回転電機全体の起磁力消費を考慮した回転子設計が十分になされていなかった。このため、さらに回転電機のトルク密度を向上できる回転子構造はこれまで提案されていなかった。
特開2019-122242号公報
 本発明に係る課題は、回転子の永久磁石の起磁力と、固定子巻線を流れる電流の作る起磁力との関係性を含んで、回転電機全体の起磁力消費を考慮することで得られる、トルク密度の向上を図ることである。
 上記の課題を解決するために本発明に係る回転電機は、回転自由に支持された回転子と、前記回転子と所定の空隙を介して備えられた固定子と、を備え、前記回転子は、円環状の永久磁石と、前記永久磁石に埋め込まれたコアピースと、からなる磁極リングを有し、前記磁極リングは、円環状に形成された内周面および外周面を有し、前記内周面または前記外周面のいずれか一方は、前記空隙と対向する空隙対向面であって、もう一方は、前記空隙対向面とは異なる非空隙対向面であって、前記磁極リングの前記非空隙対向面は、前記永久磁石で構成され、前記磁極リングの前記空隙対向面は、前記永久磁石と露出したコアピースを含んで構成され、前記永久磁石は、前記コアピースが極中心となるように着磁される。
 本発明により、回転電機のトルク密度の向上を図ることができる。
本発明の第1実施例に係る回転電機の断面図。 図1における回転子の部分断面図。 本実施形態に係る回転子の部分断面図。 本実施形態に係る固定子の部分断面図。 本発明の作用を示す磁気回路モデル。 本発明の作用を示す磁気回路モデルの計算結果。 本発明の作用を示す磁気回路モデルの計算結果。 本発明の第2実施例に係る回転子の部分断面図。 本発明の第2実施例に係る固定子の部分断面図。 本発明の第2実施例の回転子を後着磁した後の回転子内部での磁束線図。 本発明の第2実施例の回転子を後着磁した後であって、バック側に磁性部材120を有する回転子内部での磁束線図。 本発明の第2実施例に係る磁性部材の体積に対するトルク密度の変化を示すグラフ。 本発明の第3実施例に係る回転子の部分断面図。 本発明の第3実施例に係る固定子の部分断面図。 本発明の第5実施例に係る永久磁石の着磁方向を示す部分断面図。 本発明の第6実施例に係る電動ホイールの断面の概念図。
 以下、本発明の実施例を図面に従い詳細に説明する。本発明においては複数の実施例を提案しているが、下記はあくまでも実施例に過ぎず、本発明の実施態様が下記具体的態様に限定されることを意図する趣旨ではない。
 また実施例を説示する前に、本発明の作用を説明する。本発明によれば、着磁済永久磁石の磁束はコアピースに集中し、かつ磁束は隣接するコアピースをつなぐように永久磁石内部を通る。このため、回転子内部での漏れ磁束はほとんど発生せず、磁束の有効活用ができる。さらに後着磁する場合、極中心間を結ぶ磁束の経路がコアピースを有することで短くなる。
 これにより、後着磁工程にてハルバッハ着磁が容易になり、極中心のギャップ磁束密度が向上する。さらに、極中心に高透磁率であるコアピースを有することで、負荷時の回転電機全体の起磁力消費が低減される。とりわけ、固定子巻線を流れる電流の作る起磁力の消費が軽減される。これにより回転電機のトルク密度を向上させることができる。
 図1ないし3を用いて、本発明の第1実施例に係る回転電機を説明する。図1は本発明の第1実施例に係る回転電機の断面図である。図2は図1における回転子の部分断面図である。
 回転電機100は、固定子101と、固定子101の径方向外側に回転可能に支持された回転子102と、を備えている。回転子102は、回転軸心Zを中心に回転する。
 以下では断りのない限り、「内周側」「外周側」という言葉は、それぞれ回転軸心Zに対して距離が近い側を「内周側」、遠い側を「外周側」と定義する。また「径方向R」は回転軸心Zと垂直に交わる直線方向と定義し、「周方向θ」は回転軸心Zまわりの回転方向と定義する。回転子102にはシャフト103(図示せず)が固定されていてもよく、回転電機100は固定子101及び回転子102を覆うフレーム104(図示せず)とを備えていてもよい。回転子102は直接、またはシャフト103やフレーム104等の構造部材を介して負荷(図示せず)と接続され、回転子102が回転することで当該負荷に回転とトルクを伝達する。固定子101及び回転子102は同一の中心軸(回転軸心Z)を有し、固定子101と回転子102との間には空隙109が設けられ、互いに接触しないように配置されている。
 なお回転子102は、固定子101の径方向内側に回転可能となるように支持されていてもよい。以下では、固定子101の径方向外側に回転子102が配置されている、所謂、アウターロータ構造について主に説明をするが、固定子101の径方向内側に回転子102が配置されている、所謂、インナーロータ構造でも同様の構成とすることで同様の効果が得られる。特に断らない限り、以下では径方向Rの向きは、アウターロータの場合は外周側から内周側に向かう向き、インナーロータの場合は内周側から外周側に向かう向きと定義する。
 固定子101は、電磁鋼板を複数枚積層して構成された固定子鉄心105と、固定子鉄心105の外周部の周方向に複数設けられた固定子スロット106と、固定子スロット106に巻装された固定子巻線107と、から構成されている。
 固定子鉄心105は、一体成形されたソリッド部材で構成しても良い。また、圧粉磁心などの粉末磁性体を圧縮成型した構成でもよいし、アモルファス金属やナノ結晶材で構成してもよい。固定子巻線107の巻装方式は、集中巻、分布巻または回転磁界を発生できる何れの巻装方式でも良く、分布巻においては短節巻または全節巻の何れにおいても本実施例の効果を得ることができる。
 回転子102は、永久磁石部200と、電磁鋼板を複数枚積層して構成された回転子コアピース110と、からなる磁極リング150を備えている。永久磁石200の材質には制約はなく、フェライト系、ネオジム系、サマリウムコバルト系などを例とする、いずれの材料を使用しても良い。
 回転子コアピース110は、一体成形されたソリッド部材で構成しても良く、圧粉磁心などの粉末磁性体を圧縮成型した構成でもよいし、アモルファス金属やナノ結晶材で構成してもよい。
 磁極リング150は、空隙109に面した側、すなわち固定子101との対向面側に周方向θに偶数個の磁極を有している。ここでは、各磁極中心を径方向に貫く軸をd軸と呼称し、隣接するd軸間の中心を径方向に貫く軸をq軸と呼称する。
 永久磁石部200は、図3(a)に示すような一体成形された円環状のリング磁石210または図3(b)に示すような第1ピース301、302、・・・、と第2ピース401、402、・・・、などの分割磁石を円環状に組み合わせたものである。
 永久磁石部200の極中心のd軸上の空隙109に面した側には凹部500が設けられている。永久磁石部200の凹部500には回転子コアピース110が挿入されており、回転子コアピース110の一部が空隙109に面するように回転子102から露出している。
 分割磁石(301、302、・・・、401、402、・・・)どうしは互いに接着または溶接等の方法を用いて固定され、永久磁石部200と回転子コアピース110は互いに接着、溶接、圧入、嵌め込み等の方法を用いて固定される。
 次に本実施例の作用について説明する。図4に本実施例の作用を示す磁気回路モデルを示す。ここでは、回転子102の永久磁石部200の永久磁石による起磁力610と、固定子101の固定子巻線107を流れる巻線電流109による起磁力620との相互作用を簡易的に説明するために、図4に図示されるような1つの磁束のループCを考える。この磁束ループCに対して、アンペールの法則を適用すると、次のような式が成立する。
Figure JPOXMLDOC01-appb-M000001
 ここで、Hδは空隙109の磁場、HMは永久磁石部200の磁場δは空隙109の径方向(R)幅である。ΔMは永久磁石部200の代表幅で、ここでは隣接する回転子コアピース110間を結ぶ磁束経路の平均距離と定義する。Θは巻線電流108による1極あたりのアンペアターンである。固定子鉄心105と回転子コアピース110の透磁率は空隙109や永久磁石部200の透磁率に比べて十分大きいため、固定子鉄心105と回転子コアピース110の透磁率は無限大として扱った。この磁気回路C上で漏洩磁束がほとんどないため、漏洩磁束はないと仮定すると、磁束のループC上での磁束密度は常に一定で、次式で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、Bδは磁束のループC上での磁束密度で特に空隙109の磁束密度を表す。μMは永久磁石部200の透磁率、Brは永久磁石部の残留磁束密度である。また、空隙109の磁場Hδと空隙109の磁束密度Bδには次のような関係がある。
Figure JPOXMLDOC01-appb-M000003
 上記の数2と数3を数1に代入して磁場HδとHMを消去すると、回転子102の永久磁石部200の永久磁石による起磁力610と、固定子101の固定子巻線107を流れる巻線電流108による起磁力620との相互作用により空隙109に発生する磁束密度Bδは次のようになる。
Figure JPOXMLDOC01-appb-M000004
 ここでμ0は真空の透磁率である。従来は、無負荷誘導起電力を増加させるという発想で、回転電機のトルク密度を向上させ、そのための回転子構造が提案されていた。具体的には、無負荷誘導起電力の大きさは、回転子102の永久磁石部200の起磁力により発生させられる磁束の大きさに略比例する。
 このため、無負荷誘導起電力の増加は、回転子の磁束量の増加を意味しており、回転電機のトルク密度向上が期待されていた。このような発想から得られる回転子構造は、例えば、回転子102が永久磁石部200で満たされ、かつ回転子内を流れる磁束の向きに沿って永久磁石が磁化されて、かつ、空隙109に面した回転子コアピース110を有しないような構造であった(特許文献1参照)。
 このような従来回転子構造は、一方の磁極の空隙109面から入った磁束が隣接する他方の磁極の空隙109面から出るまでの間に得られる起磁力が最大化するため、確かに無負荷誘導起電力を増加させることができる。
 これにより、回転子の磁束量を増大でき、回転電機のトルク密度をある程度向上させることが可能であった。これは数3において1極あたりのアンペアターンΘを考慮しない場合に相当する。この場合、空隙109の磁束密度Bを最大化するには、永久磁石部200の磁束経路の平均距離ΔMを最大化すればよく、回転子コアピース110は不要という結論になる。
 しかしながら、この従来設計思想では、1極あたりのアンペアターンΘとの相互作用を無視しているため、必ずしも回転電機100のトルク密度を十分に高める構造にはなっていなかった。特に、固定子101側の起磁力成分、すなわち1極あたりのアンペアターンΘの生み出す起磁力成分に対しては透磁率の小さい永久磁石部200は大きな磁気抵抗となり、空隙109の磁束密度B、および回転電機100のトルク密度を低減する要因ともなる。
 このため、永久磁石部200の磁束経路の平均距離ΔMは単に最大化すればよいわけではなく、1極あたりのアンペアターンΘの大きさに応じて、適切なΔMの値が存在する。
実際、数4でBδ=BrとなるアンペアターンΘの値よりも大きなアンペアターンΘでは、ΔMは小さいほど空隙109の磁束密度Bδは大きくなる。具体的には、1極あたりのアンペアターンΘが数5を満たす場合は、ΔMが小さいほど空隙109の磁束密度Bは大きくなる。
Figure JPOXMLDOC01-appb-M000005
 一般的に永久磁石の残留磁束密度Brは数100mTから1T程度であり、空隙109の径方向幅は1mm程度である。図5(a)に永久磁石の残留磁束密度Brが1T、空隙109の径方向幅が1mmの場合の、永久磁石部200の代表幅ΔMに対する空隙109の磁束密度Bδの関係を示す。
 図5(a)ではΘが1600AT以上であれば、永久磁石部200の代表幅ΔMを小さくすることで、空隙109の磁束密度Bδを向上できる傾向が示されている。同様に、図5(b)に永久磁石の残留磁束密度Bγが100mT、空隙109の径方向幅が1mmの場合の、永久磁石部200の代表幅ΔMに対する空隙109の磁束密度Bδの関係を示す。図5(b)でがΘが160AT以上であれば、永久磁石部200の代表幅ΔMを小さくすることで、空隙109の磁束密度Bδを向上できる傾向が示されている。
 以上のように、残留磁束密度Bγに応じて数5に従いΘを大きくとれば、永久磁石部200での起磁力消費の影響が大きく永久磁石部200の磁束経路の平均距離ΔMは小さいほうが回転電機100はトルク密度が向上する。200ATから1600AT程度のアンペアターンは、一般的な回転電機100、特に大容量の回転電機100でよく使用される領域である。回転子102の径と極数で極間の機械的な方向幅は決まるため、本発明構造のように、d軸上にコアピース110を配置することでΔMを小さくすることが可能になる。
 ここで、この議論を突き詰めると究極的にはΔMが0であれば磁束密度Bが最大化することになるが、これは数1~3の議論において、固定子鉄心105や回転子コアピース110の磁気飽和を無視している点、さらには仮に回転子102がすべてコアピース110で満たされた場合は回転子が極性を失い、空隙109の磁束密度Bとトルクの相関がなくなる点で不適当である。したがって、実際上は永久磁石部200の適切な量が存在する。
 また、巻線電流108が小さい回転電機100の運転条件では、永久磁石部200の残留磁束(密度Bγ)によるトルク密度の向上効果が大きく、多様な運転条件において回転電機100のトルク密度を向上させるためには永久磁石部200の存在は依然必要である。
 以上から、本実施形態に係る構造は、回転子102の永久磁石部200の極中心に凹部500を設け、永久磁石部200の凹部500に回転子コアピース110を配置することで、コアピース110がΔMを小さくする役割を果たし、永久磁石部200の起磁力と1極あたりのアンペアターンΘによる起磁力が相互作用している実際の駆動条件での空隙109の磁束密度を向上させることを可能にする。これにより、回転電機100のトルク密度を従来よりも向上させることを可能にする。
 また、極中心であるd軸上の空隙109に面した側にコアピース110が配置されることで、磁気抵抗の小さいコアピースに磁束が集中し、空隙109の磁束密度の基本波成分が増加する。これにより回転電機100のトルク密度はさらに向上する。
 以上が本実施例の基本的な構造と作用である。以下では、コアピース110の構造の詳細と、その副次的な効果について詳述する。
 まず、図1から図3に図示されている構造では、永久磁石部200とコアピース110は空隙109に面するおのおのの露出面において面一となっている。例えば、図3(a)では、リング磁石210の内径側の面(空隙109に面する露出面)とコアピース110の内径側の面とは面一である。また、図3(b)では、分割磁石(301、302、303、…)の内径側の面とコアピース110の内径側の面とは面一である。これらの面一の面は、特に削り仕上げや、円柱状の型に合わせて一体成型することで、一つの半径で規定される円筒面を形成することができる。
 面一にすることで、回転子102が回転する際に、空隙109に面する露出面における凹凸が小さくなることで、摩擦抵抗を低減できる。特に、面一の面を一つの半径で規定される円筒面とすることで、空隙109に面する露出面における凹凸が無くなり、摩擦抵抗を最小化できる。これにより摩擦抵抗分の損失を低減できる。また、これにより回転電機の効率を向上させることができる。
 また、図2に図示する構造では、コアピース110は、永久磁石部200に埋め込まれた領域の周方向幅最大値をL1と定義し、永久磁石部200から露出した面の周方向幅をL2と定義すると、L1>L2の関係にある。図2では永久磁石部200がリング磁石210の場合を示しているが、永久磁石部200が分割磁石(301、302、・・・、401、402、・・・)である場合も同様である。
 アウターロータの場合は磁気吸引力、インナーロータの場合は磁気吸引力と遠心力により、コアピース110が回転子102から分離するリスクがある。これに対して、L1>L2の関係を満たした回転子102は、永久磁石部200の幅L2とコアピース110の幅L1とが干渉して回転子102からコアピース110が分離するリスクを軽減できる。さらに、L1>L2の関係を満たすことで、空隙109側の磁石量は増加し、かつ、幅L1のコアピース110の領域では十分なコア体積が確保できるため磁気飽和しにくくなる。これにより、コアピース110内部での磁気抵抗を緩和しつつ磁石量を増加させることができるため、空隙109の磁束密度を増加させることができる。これにより、回転電機100のトルク密度を向上させることができる。
 次に第2の実施形態について、図6ないし9を用いて説明する。図6(a)は本発明の第2実施例に係る回転子の部分断面図であり、永久磁石部200にリング磁石210を適用した場合の構造を示す。図6(b)は本発明の第2実施例に係る回転子の部分断面図であり、永久磁石部200に分割磁石(301、302、・・・、401、402、・・・)を適用した場合の構造を示す。なお、第1実施例と重複する事項については説明を省略する。
 第2実施例における回転子102は、空隙109と相対する径方向側、すなわち、図6(a)、図6(b)のようなアウターロータ構造の場合は回転子102の外周側、インナーロータ構造の場合は回転子102の内周側(以下では、バック側と呼称する)に、非磁性材料で構成された非磁性領域700を有している。
 非磁性領域700は、非磁性部材で成形された非磁性リング710で構成しても良く、非磁性の液体または気体で満たされた非磁性空間720(図示せず)で構成してもよい。なお、非磁性領域700は回転子102のフレーム104と兼ねることが可能であり、非磁性領域700を有することによる回転電機100の質量増加は発生しない。
 本構造のように非磁性領域700を有することで永久磁石部200を後工程で着磁する際に、永久磁石部200の磁化方向が回転子102内部での起磁力消費を最小化する向きになるため、回転電機100のトルク密度が向上する。
 このことを図7及びず8を用いて説明する。図7(a)は、本実施形態の回転子102を後着磁した後の回転子102内部での磁束線図を、図7(b)は本実施形態と異なりバック側に磁性部材120を有する回転子102を後着磁した後の回転子102内部での磁束線図をそれぞれ示す。
 磁束線分布をみると、図7(a)の本実施形態の場合、回転子コアピース110を磁束が最短で結ぶように永久磁石部200が磁化されており、回転子102内部における起磁力消費が最小化されている。
 一方で、図(b)のようにバック側が非磁性領域ではない場合、着磁工程で磁束の一部がバック側に誘導され、着磁後の磁束の一部がバック側に漏洩したままになっている。バック側の磁性部材120は単なる磁気抵抗となっているため、ここでの起磁力消費が増加する上に、磁性部材120の質量分だけ回転電機100の質量も増加するため、トルク密度は低減する。
 図8は、磁性部材120の体積に対するトルク密度の変化をグラフ化したものである。図8から明らかなように、バック側の磁性部材120が増加するに従いトルク密度が低下している。最もトルク密度が高いのは磁性部材120がない場合、すなわちバック側が非磁性領域700である本実施形態の場合である。
 さらに特に、回転子102がアウターロータの場合は、非磁性領域700として非磁性リング710を用いることで、非磁性リング710を強度部材として活用することができる。非磁性リング710がない場合は、回転子102が回転した時に発生する遠心力により、永久磁石部200内部にはフープ応力と呼ばれる周方向応力が発生する。永久磁石部200は一般に脆い材料であるため、このフープ応力により永久磁石部200が破壊される恐れがある。
これに対して、非磁性リング710がある場合は、回転子102が回転した時の遠心力荷重を非磁性リング710支えることが可能となる。これにより、一般に脆い材料である永久磁石部200に発生する応力を低減することができ、回転子102の強度信頼性を向上させることができる。さらに堅牢な回転子102は高速回転で回転させることが可能となり、本実施例構造を高速回転電機として利用することも可能となる。
 次に第3の実施形態について、図9を用いて説明する。図9(a)は本発明の第3実施例に係る回転子の部分断面図であり、永久磁石部200にリング磁石210を適用した場合の構造を示す。図9(b)は、本発明の第3実施例に係る回転子の部分断面図であり、永久磁石部200に分割磁石(301、302、・・・、401、402、・・・)を適用した場合の構造を示す。なお、第1実施例と重複する事項については説明を省略する。
 第3実施例における回転子102はバック側に、電磁鋼板を複数枚積層して構成されたバックヨーク800を有している。バックヨーク800は、一体成形されたソリッド部材で構成しても良く、圧粉磁心などの粉末磁性体を圧縮成型した構成でもよいし、アモルファス金属やナノ結晶材で構成してもよい。
 本構造のようにバックヨーク800を有することで回転電機100の外部に磁束が漏洩することを防ぐことが可能となる。特に、図9(a)において永久磁石部200のリング磁石210のd軸上の領域220が径方向に着磁されている場合、もしくは図9(b)において永久磁石部200の分割磁石(401、402、・・・)が径方向に着磁されている場合は、バックヨーク800が回転子102のバック側に漏洩しようとする磁束を隣接するd軸上へと誘導する。このため、回転子102の漏洩磁束は低減する。これにより、空隙109の磁束密度が向上し、回転電機100のトルク密度が向上する。
 次に第4の実施形態について、既出の図を用いて説明する。図2や図3(a)等に図示されている構造では、コアピース110の永久磁石部200に埋め込まれた面は、径方向から見ると、有限の曲率半径を有する曲面111となっている。ここでの径方向の方向の定義は前述の通り、アウターロータの場合は外周側から内周側に向かう向き、インナーロータの場合は内周側から外周側に向かう向きである。
 例えば、図3(a)では、コアピース110のリング磁石210に埋め込まれた面は、有限の曲率半径を有した凸形状を成し、凸部が外周側を向いた形状を有している。
 本実施例の構造とすることで、永久磁石部200を通り磁極間を結ぶ磁束が流線形状になり、局所的な磁束の集中を防ぐことが可能になる。これによりコアピース110の局所的な磁気飽和を緩和でき、回転電機100のトルク密度が向上する。特に後着磁により永久磁石部200を着磁する場合は、コアピース110間に磁束を通すことで、一方の極の曲面111から他方の極の曲面111に至る磁束は滑らかな略円弧上に分布する。
 すなわち、曲面111上の各位置を通る磁束の磁路長のばらつきが少なくなるような磁束分布で永久磁石部200を着磁することができる。このため着磁に必要な電流量を低減し、生産コストを削減することができる。もしくは、局所的に着磁が不十分な領域を作ることなく、少ない電流量で永久磁石部200を着磁することができる。
 また、曲面111の径方向の頂点を各磁極の極中心であるd軸上に重ねることで、本実施例の効果を最大化することができる。
 次に第5の実施形態について、既出の図3(b)を用いて説明する。図3(b)に示されている構造では、永久磁石部200は分割磁石(301、302、・・・、401、402、・・・)により構成されている。図3(b)では分割磁石は第1ピース301、302、・・・、と第2ピース401、402、・・・、を円環状に組み合わせて構成されているが、ピース数は2個以上であれば本実施例の効果を得ることができ、また分割方向も径方向R、周方向θ、回転軸心Z方向のいずれの方向でも効果を得ることができる。
 本実施例の構造とすることで、永久磁石部200の各分割磁石間には微視的な空隙が形成されるため、分割磁石どうしの接触部において接触抵抗が発生する。このため、分割磁石どうしが電気的に分離したような効果を得ることができ、分割磁石間を跨いで渦電流が流れにくくなる。
 これにより、永久磁石部200で発生する渦電流、および渦電流損失を低減することができ、回転電機100の効率を向上させることができる。特に分割磁石が絶縁被膜等でコーティングされている場合は、分割磁石間を跨いで流れる渦電流は無視することができ、より効率を向上させることができる。特に回転軸心Z方向に永久磁石部200を分割することで、効果的に永久磁石部200の渦電流および渦電流損失を低減できる。
 また、分割磁石(301、302、・・・、401、402、・・・)はすべて同じ種類の永久磁石とする必要はなく、異種磁石を組み合わせて永久磁石部200を構成してもよい。
 特に、図3(b)に示すように、分割磁石の第1ピース301、302、・・・、が空隙109に面しており、第2ピース401、402、・・・、は空隙109に面していない構造において、第1ピースには第2ピースよりも保磁力が高い永久磁石を選択することができる。回転電機100の磁束は空隙109の周囲に集中するため、第1ピース301、302、・・・、の保磁力を大きくすることで、回転子102の減磁耐力を向上させることができる。また一般に、永久磁石の保磁力と残留磁束密度はトレードオフの関係にあるため、第2ピース401、402、・・・、として保磁力は第1ピース301、302、・・・、より低いが、残留磁束密度の高い磁石を選択することもできる。これにより、減磁耐力を向上しつつ、回転電機100のトルク密度を向上させることができる。
 同様に、第1ピース301、302、・・・、にNd焼結磁石を使用し、第2ピース401、402、・・・、にNdボンド磁石を使用することができる。Nd焼結磁石とNdボンド磁石を比較すると、一般に、Nd焼結磁石の方が保磁力が高く、Ndボンド磁石の方が着磁方向を自由に設定できる。Ndボンド磁石に着磁方向の自由度があるのは、Ndボンド磁石が等方性磁石だからであり、例えばハルバッハ着磁などが容易にできる。
 図10に第1ピース301、302、・・・、にNd焼結磁石を使用し、第2ピース401、402、・・・、にNdボンド磁石を使用した場合に実施可能な着磁の例を示す。第1ピース301、302、・・・、のNd焼結磁石は異方性磁石のため一方向に着磁されている。一方で、第2ピース401、402、・・・、のNdボンド磁石は等方性のため、第1ピース301、302、・・・、との接触面からコアピース110との接触面に向かう(またはその逆)向きに着磁されている。
 このようにNd焼結磁石とNdボンド磁石を組み合わせることで、分割磁石の組み合わせ構造で、疑似的にハルバッハ着磁となった永久磁石部200を構成することができる。これにより、コアピース110に磁束を集中させ、空隙109の磁束密度を高めることができるため、回転電機100のトルク密度が向上する。さらに一般にNdボンド磁石はNd焼結磁石よりも透磁率が高いため、固定子101の固定子巻線107を流れる巻線電流108による起磁力620に対する第2ピースの磁気抵抗が小さくなる。
 これにより、巻線電流108が空隙109に作る磁束密度を高めることができるため、回転電機100のトルク密度はさらに向上する。
 別な磁石分割パターンとして、永久磁石部200を極中心であるd軸上で分割してもよい。d軸上では磁束の周方向成分がないため、永久磁石部200をd軸上で分割しても、磁気特性には影響がない。このため、永久磁石部200の分割によってトルク密度が悪化することを防ぐことができる。
 さらに別な磁石分割パターンとして、永久磁石部200を極中心間のq軸上で分割してもよい。これにより、製造時に一極分のコアピース110と永久磁石部200を一体成型できる。例えば、一極ごとに組立や着磁が可能となる。特に後着磁する場合は、着磁ヨークを空隙109側の面と周方向側面2面の合計3面に配置することができるため、着磁に必要な電流を低減できる。これにより、製造が容易になり、回転電機100の生産性が向上する。
 第6の実施形態について、図11を用いて説明する。図11は、本発明の第6実施例に係る電動ホイール900の断面の概念図である。電動ホイール900には、アウターロータタイプの回転電機100が使用される。
 回転電機100の回転子102は、外周側に非磁性リング710を有しており、回転子フレーム930を兼ねている。回転子フレームは炭素繊維材料または非磁性金属部材もしくは、それらの材料を接合して形成されている。
 ただし、リング710部は非磁性材料である。回転子フレーム930は、接続部材940によって、ホイール920と接続されている。ホイール920にはタイヤ910が嵌め合わされている。ホイール920および回転子102がシャフト960に対して回転自在に支持されるようにするために、ホイール920もしくは回転子フレーム930はシャフト960に軸受950で接続されている。
 一方、回転電機100の固定子101は、支持部材(図では省略)でシャフト960に固定支持されており、支持部材には電気回路970も搭載されている。電気回路970は電力を固定子101に供給し、回転子102を回転させる。回転子102の回転は非磁性リング710を有する回転子フレーム930、および接続部材940を介してホイール920に伝達され、ホイール920を回転させる。
 本実施例の構造を採用すると、回転電機100のトルク密度が高いため、回転電機100はホイール920の内周側に収容できるだけでなく、ギアレス化、すなわちホイール920のダイレクトドライブが可能となる。
 従来の電動ホイールはギアを利用しており、ギアの摩耗、騒音や、ギアを支持する必要があるため軸受の使用数が増加するなど課題が発生していた。これに対して、本発明のトルク密度が高い回転電機100を使用した電動ホイール900はギアを必要としないため、ギアの摩耗を配慮したメンテナンスが不要になる上に、ギアから発生する騒音が無くなる。また、軸受の使用量は最低限となり、軸受の摩耗リスクが低減する上に、軸受のグリス交換等でのメンテ作業量は削減できる。
 また回転電機100の体積が小さいため、電気回路970もホイール920の内部に搭載することができ、電動ホイール900を小型軽量にすることが可能となる。
100…回転電機、101…固定子、102…回転子、103…シャフト、104…フレーム、105…固定子鉄心、106…固定子スロット、107…固定子巻線、108…巻線電流、109…空隙、110…回転子コアピース、111…コアピース曲面、120…磁性部材、150…磁極リング、200…永久磁石部、210…リング磁石、220…リング磁石のd軸上の領域、301…分割磁石(第1ピース)、302…分割磁石(第1ピース)、401…分割磁石(第2ピース)、402…分割磁石(第2ピース)、500…凹部、610…起磁力、620…起磁力、700…非磁性領域、710…非磁性リング、720…非磁性空間、800…バックヨーク、900…電動ホイール、910…タイヤ、920…ホイール、930…回転子フレーム、940…接続部材、950…軸受、960…シャフト、970…電気回路、999…負荷、Z…回転軸心、R…径方向、θ…周方向、C…磁束ループ 

Claims (14)

  1.  回転自由に支持された回転子と、
     前記回転子と所定の空隙を介して備えられた固定子と、を備え、
     前記回転子は、円環状の永久磁石と、前記永久磁石に埋め込まれたコアピースと、からなる磁極リングを有し、
     前記磁極リングは、円環状に形成された内周面および外周面を有し、
     前記内周面または前記外周面のいずれか一方は、前記空隙と対向する空隙対向面であって、もう一方は、前記空隙対向面とは異なる非空隙対向面であって、
     前記磁極リングの前記非空隙対向面は、前記永久磁石で構成され、
     前記磁極リングの前記空隙対向面は、前記永久磁石と露出したコアピースを含んで構成され、
     前記永久磁石は、前記コアピースが極中心となるように着磁される回転電機。
  2.  請求項1に記載の回転電機であって、
     前記磁極リングは、前記非空隙対向面において、非磁性材または非磁性の流体と接する回転電機。
  3.  請求項1に記載の回転電機であって、
     前記磁極リングは、前記非空隙対向面において、磁性材の円環部材と接する回転電機。
  4.  請求項1ないし3に記載のいずれかの回転電機であって、
     前記永久磁石と、前記コアピースの露出面が面一となる回転電機。
  5.  請求項1ないし4に記載のいずれかの回転電機であって、
     前記コアピースの前記永久磁石に埋め込まれた面は、前記非空隙対向面から径方向に見た場合、所定の曲率半径を有する曲面である回転電機。
  6.  請求項5に記載の回転電機であって、
     前記曲面の径方向の頂点は、前記極中心と重なる回転電機。
  7.  請求項1ないし6に記載のいずれかの回転電機であって、
     前記コアピースは、前記永久磁石に埋め込まれた領域の周方向幅最大値をL1と定義し、前記永久磁石から露出した面の周方向幅をL2と定義すると、L1>L2である回転電機。
  8.  請求項1ないし7に記載のいずれかの回転電機であって、
     前記コアピースは、前記永久磁石の内径側の面から露出する位置に配置され、
     前記回転子は、前記非空隙対向面において、非磁性支持部材と接する回転電機。
  9.  請求項1ないし8に記載のいずれかの回転電機であって、
     前記円環状の永久磁石は、周方向に沿って配置された少なくとも2個以上のピースにより構成される回転電機。
  10.  請求項9に記載の回転電機であって、
     前記円環状の永久磁石は、前記空隙に面する第1ピースの保磁力が、それ以外の第2ピースの保持力よりも高い回転電機。
  11.  請求項10に記載の回転電機の回転子であって、
     前記第1ピースは、Nd焼結磁石であり、
     前記第2ピースは、Ndボンド磁石である回転電機。
  12.  請求項9ないし11に記載のいずれかの回転電機の回転子であって、
     前記円環状の永久磁石は、周方向の極中心と重なる位置で分割される回転電機。
  13.  請求項9ないし11に記載のいずれかの回転電機の回転子であって、前記円環状の永久磁石は、周方向の隣合う極中心の間の領域において分割される回転電機。
  14.  請求項8に記載の回転電機を用いた電動ホイールであって、
     前記非磁性支持部材は、ホイール部材と接続され、かつ炭素繊維材料または非磁性金属部材である電動ホイール。
PCT/JP2020/047828 2020-02-19 2020-12-22 回転電機及びこれを用いた電動ホイール WO2021166420A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/795,845 US20230001780A1 (en) 2020-02-19 2020-12-22 Rotating electric machine and electrical wheel using this
EP20919523.9A EP4080732A4 (en) 2020-02-19 2020-12-22 ROTATING ELECTRIC MACHINE AND ELECTRIC WHEEL USING SAME
CN202080095879.6A CN115053433A (zh) 2020-02-19 2020-12-22 旋转电机及使用该旋转电机的电动轮

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-025835 2020-02-19
JP2020025835A JP7358267B2 (ja) 2020-02-19 2020-02-19 回転電機及びこれを用いた電動ホイール

Publications (1)

Publication Number Publication Date
WO2021166420A1 true WO2021166420A1 (ja) 2021-08-26

Family

ID=77391921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047828 WO2021166420A1 (ja) 2020-02-19 2020-12-22 回転電機及びこれを用いた電動ホイール

Country Status (5)

Country Link
US (1) US20230001780A1 (ja)
EP (1) EP4080732A4 (ja)
JP (1) JP7358267B2 (ja)
CN (1) CN115053433A (ja)
WO (1) WO2021166420A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261167A (ja) * 2008-04-18 2009-11-05 Denso Corp 永久磁石型ロータ
JP2010130818A (ja) * 2008-11-28 2010-06-10 Daikin Ind Ltd 界磁子の製造方法
US20130334922A1 (en) * 2012-05-09 2013-12-19 Lg Innotek Co., Ltd. Motor
JP2015133839A (ja) * 2014-01-14 2015-07-23 株式会社ジェイテクト 磁石埋込型ロータ
JP2016001972A (ja) * 2014-06-12 2016-01-07 株式会社デンソー 回転制御システム
JP2017005857A (ja) * 2015-06-10 2017-01-05 株式会社デンソー ロータ
JP2019122242A (ja) 2017-12-28 2019-07-22 株式会社デンソー 回転電機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB480100A (en) * 1935-06-20 1938-02-17 Bendix Aviat Corp Improvements in or relating to magneto generators
US3810056A (en) * 1972-08-28 1974-05-07 Outboard Marine Corp Non-magnetized ceramic magnetic assembly
KR20110074561A (ko) * 2008-09-23 2011-06-30 에어로바이론먼트, 인크. 무철심형 모터용 자속 유도기
JP5515478B2 (ja) * 2009-07-17 2014-06-11 株式会社安川電機 周期磁界発生装置およびそれを用いたリニアモータ、回転型モータ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261167A (ja) * 2008-04-18 2009-11-05 Denso Corp 永久磁石型ロータ
JP2010130818A (ja) * 2008-11-28 2010-06-10 Daikin Ind Ltd 界磁子の製造方法
US20130334922A1 (en) * 2012-05-09 2013-12-19 Lg Innotek Co., Ltd. Motor
JP2015133839A (ja) * 2014-01-14 2015-07-23 株式会社ジェイテクト 磁石埋込型ロータ
JP2016001972A (ja) * 2014-06-12 2016-01-07 株式会社デンソー 回転制御システム
JP2017005857A (ja) * 2015-06-10 2017-01-05 株式会社デンソー ロータ
JP2019122242A (ja) 2017-12-28 2019-07-22 株式会社デンソー 回転電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4080732A4

Also Published As

Publication number Publication date
JP7358267B2 (ja) 2023-10-10
EP4080732A1 (en) 2022-10-26
CN115053433A (zh) 2022-09-13
JP2021132448A (ja) 2021-09-09
EP4080732A4 (en) 2024-01-10
US20230001780A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US5811904A (en) Permanent magnet dynamo electric machine
US7598645B2 (en) Stress distributing permanent magnet rotor geometry for electric machines
CN102111028B (zh) 轴向间隙型旋转电机以及其中所使用的转子
US8018111B2 (en) Hybrid-type synchronous machine
US6323572B1 (en) Magnet type electric motor and generator
US20120200186A1 (en) Rotor for electric rotating machine
JP2004328992A (ja) モータ用ロータ本体、およびモータ
EP2493055B1 (en) Permanent-magnet type electric rotating machine
CN104011972A (zh) 混合动力励磁式旋转电机
JP2020120444A (ja) 回転電機のロータおよび回転電機
JP5856039B2 (ja) フライホイール式電力貯蔵装置
WO2021261421A1 (ja) 電磁ブレーキ付きモータ
JP3592948B2 (ja) 電動車両及びそれに用いられる永久磁石回転電機
JP4655646B2 (ja) 永久磁石埋込型電動機
JP5365049B2 (ja) 回転機、ラジアル型回転機、及び回転機におけるバックヨークの厚みの決定方法
US8179008B2 (en) Axial gap rotary electric machine
WO2021166420A1 (ja) 回転電機及びこれを用いた電動ホイール
JP2007202363A (ja) 回転電機
WO2017073275A1 (ja) 磁石式回転子、磁石式回転子を備える回転電機及び回転電機を備える電気自動車
JP3740482B2 (ja) 電動車両用の永久磁石回転電機
JP5578979B2 (ja) アキシャルギャップモータ
JP7415050B2 (ja) 回転機
JPH09261901A (ja) 永久磁石回転電機及びそれを用いた電動車両
JP2015073343A (ja) 回転電機及びエレベータ用巻上機
JP2022098964A (ja) ロータ、回転電機、車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020919523

Country of ref document: EP

Effective date: 20220722

NENP Non-entry into the national phase

Ref country code: DE