WO2021166412A1 - 信号処理方法、計測装置及び信号処理プログラム - Google Patents

信号処理方法、計測装置及び信号処理プログラム Download PDF

Info

Publication number
WO2021166412A1
WO2021166412A1 PCT/JP2020/047365 JP2020047365W WO2021166412A1 WO 2021166412 A1 WO2021166412 A1 WO 2021166412A1 JP 2020047365 W JP2020047365 W JP 2020047365W WO 2021166412 A1 WO2021166412 A1 WO 2021166412A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
signal processing
vibration
processing method
rotation speed
Prior art date
Application number
PCT/JP2020/047365
Other languages
English (en)
French (fr)
Inventor
内田 浩二
圭輔 笹島
信博 永田
山下 勝也
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2021166412A1 publication Critical patent/WO2021166412A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining imbalance
    • G01M1/16Determining imbalance by oscillating or rotating the body to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a signal processing method, a measuring device, and a signal processing program.
  • the measuring device for measuring the unbalanced amount of the rotating body (tire) described in Patent Document 1 is arranged in, for example, a factory, and the rotating bodies are sequentially added to proceed with the measurement for each rotating body.
  • a plurality of other devices are driven, a vehicle for transportation, and a forklift run. Therefore, the disturbance vibration from these vibration sources may be transmitted from, for example, the ground on which the measuring device is placed, and may affect the load acquired by the measuring device.
  • vibration is transmitted to the measuring device by filling the ground on which the measuring device is placed with a material such as concrete that is difficult to transmit vibration and providing an insulating material to insulate the vibration around it. I was suppressing that.
  • a method of performing a large-scale construction around the measuring device requires an expensive construction cost, and it is difficult to cope with a layout change such as a change in the arrangement position of the measuring device. Further, it is difficult to suppress the transmission of disturbance vibrations having different vibration frequencies to the measuring device.
  • a signal processing method, a measuring device, and a signal processing program for measuring the vibration characteristics of a rotating body which is simple and inexpensive, and can cope with layout changes and a plurality of disturbance vibrations. With the goal.
  • the signal processing method is a signal processing method for rotating a rotating body and acquiring the vibration characteristics of the rotating body.
  • the measuring device includes a device main body that rotates the rotating body at a predetermined rotation speed and rotation of the rotating body that acts on the device main body. Based on the sensor that acquires the natural vibration data of the disturbance vibration other than the vibration caused by the vibration, the load sensor that acquires the load acting on the device main body by the rotation of the rotating body, and the natural vibration data and the load.
  • a control unit for calculating the vibration characteristics of the rotating body is provided, and the control unit is provided with a shift amount with respect to the natural vibration data determined based on the natural vibration data of the disturbance vibration at the predetermined rotation speed.
  • the rotating body is rotated, the load acting on the apparatus main body is measured by the load sensor, and the frequency band of the predetermined rotation speed is extracted by a predetermined filter process from the measured waveform of the load, and the extracted waveform is obtained.
  • the vibration characteristics of the rotating body are specified based on the amplitude.
  • the signal processing program rotates the rotating body to acquire the vibration characteristics of the rotating body.
  • FIG. 1 is a block diagram schematically showing the configuration of each part of the measuring device.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the measuring device.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 4 is a flowchart showing an example of a signal processing method for detecting the vibration characteristics of a tire using a measuring device.
  • FIG. 5 is a flowchart showing an example of the measurement process.
  • FIG. 6 is a graph showing an example of the detection result.
  • FIG. 7 is a flowchart showing another example of signal processing.
  • FIG. 8 is a block diagram schematically showing the configuration of each part of the measuring device of another example.
  • FIG. 9 is a flowchart showing an example of a signal processing method for detecting the vibration characteristics of a tire using the measuring device shown in FIG.
  • FIG. 10 is a graph showing an example of the detection result.
  • FIG. 11 is a flowchart showing another example of signal processing.
  • FIG. 12 is a flowchart showing another example of a signal processing method for detecting the vibration characteristics of a tire using a measuring device.
  • the present invention is not limited to this embodiment.
  • the rotating body for measuring the dynamic balance is a tire
  • the rotating body to be evaluated may be attached to the measuring device and used for various rotating bodies for evaluating the vibration characteristics.
  • the measuring device may use the rotating body as a turbocharger. That is, it can be used when evaluating the vibration characteristics of the turbocharger by using the turbine of the turbocharger or the like as a rotating body and the mechanism for supporting the rotating body as a measuring device.
  • FIG. 1 is a block diagram schematically showing the configuration of each part of the measuring device.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the measuring device.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG.
  • the measuring device 10 measures the balance of the tire which is a rotating body. Specifically, the measuring device 10 rotates the tire around the center of rotation of the tire and measures the imbalance in the rotation direction of the tire, that is, the deviation between the center of rotation and the position of the center of gravity. As shown in FIG. 1, the measuring device 10 includes a device main body 12 and a control unit 14.
  • the apparatus main body 12 includes a frame 20, a motor 22, a rotation shaft 24, a rotation detection sensor 25, a tire support portion 26, a load sensor unit 28, and an accelerometer 30. ,including.
  • FIG. 1 shows a motor 22, a rotation detection sensor 25, a load sensor unit 28, and an accelerometer 30 in the configuration of the apparatus main body 12.
  • the frame 20 is fixed to the installation surface 2.
  • the installation surface 2 is the floor surface and the ground surface of the factory.
  • the frame 20 is a structure that supports each part of the apparatus main body 12 and the tire 4 to be inspected.
  • the frame 20 includes a base 40, a vertical frame 42, a round bar 44, a connecting portion 46, a horizontal frame 47, a leaf spring 48, and a connecting portion 49.
  • the base 40 of the frame 20 is fixed to the installation surface 2.
  • the method of fixing the base 40 to the installation surface 2 is not particularly limited, but there are methods such as bolting, forming a recess corresponding to the base 40 on the installation surface 2, and placing the base 40 in the recess.
  • the vertical frame 42 is a rod-shaped member extending in the vertical direction, and the lower end portion in the vertical direction is fixed to the base 40.
  • the vertical frame 42 surrounds the motor 22 and is arranged in a rectangular shape.
  • the vertical frame 42 does not have to be a plate-shaped member that completely surrounds the motor 22, and a plurality of rod-shaped members may be arranged at predetermined intervals.
  • the frame 20 is provided with ribs at the connection portion between the vertical frame 42 and the base 40 to support the vertical frame 42.
  • the round bar 44 is a bar extending in the horizontal direction, one end of which is inserted into the vertical frame 42 and fixed, and the other end is in contact with the connecting portion 46.
  • the round bar 44 extends in the horizontal direction and is arranged on two opposing sides of the rectangle of the vertical frame 42. Two round bars 44 are arranged side by side in the vertical direction. Further, the round bar 44 is arranged at a position where it overlaps with the extension line across the connecting portion 46.
  • the connecting portion 46 is fixed to the motor 22 and connects the round bar 44 and the motor 22.
  • the connecting portion 46 is a flange extending in the vertical direction, and is sandwiched between round bars 44 arranged at two locations in the vertical direction.
  • the horizontal frame 47 is arranged on each of the four sides of the rectangle of the vertical frame 42, which is different from the side on which the round bar is arranged.
  • the horizontal frame 47 is a rod-shaped member extending in the horizontal direction.
  • One end of the horizontal frame 47 is connected to the vertical frame 42, and the other end is connected to the leaf spring 48.
  • the leaf spring 48 is a member that extends in the vertical direction, the extending direction of the horizontal frame 47 is the short side, and the extending direction of the round bar 44 is the long side.
  • the leaf spring 48 has an upper end in the vertical direction connected to the horizontal frame 47 and a lower end in the vertical direction connected to the connecting portion 49.
  • the connecting portion 49 is fixed to the motor 22 and connects the leaf spring 48 and the motor 22.
  • the frame 20 is connected to the base 40, the vertical frame 42 becomes a rigid body, supports the connecting portions 46 arranged on the two opposite sides by the round bar 44, and the horizontal frame 47 and the leaf spring 48 support the other two opposite sides. Supports the connecting portion 49 arranged in. As a result, the motor 22 to which the connecting portions 46 and 49 are fixed is supported.
  • the motor 22 is supported by the frame 20.
  • the motor 22 has a stator and a rotor that rotates with respect to the stator.
  • the connecting portion 46 and the connecting portion 49 are fixed to the stator and supported by the frame 20.
  • the motor 22 rotates the rotor about the vertical direction with respect to the stator.
  • the rotating shaft 24 is connected to the rotor to rotate the rotating shaft 24.
  • the rotating shaft 24 is a shaft rotated by the motor 22, and the tire support portion 26 is fixed to the upper end portion in the vertical direction.
  • the rotation detection sensor 25 detects the rotation of the rotation shaft 24.
  • an optical sensor that detects one pulse per rotation or a rotary encoder can be used.
  • the rotation detection sensor 25 can also detect the phase at the timing of detecting an object that rotates integrally with the rotation shaft.
  • the tire support portion 26 is a structure that rotates together with the rotation shaft 24 to support the tire 4 to be measured.
  • the tire support portion 26 has a structure similar to that of the rim, and has a structure in which the contact portion with the tire 4 moves and deforms at the time of attachment / detachment so that the tire 4 can be easily attached / detached.
  • the load sensor unit 28 detects fluctuations in the frame 20 of the motor 22 that rotates the tire 4 with respect to the vertical frame 42 by changes in the load.
  • the load sensor unit 28 includes a base 50, arms 52 and 54, an upper load cell 56, and a lower load cell 58.
  • the base 50 is fixed to the vertical frame 42. Specifically, the base portion 50 is fixed at a position facing the connecting portion 46 on the surface of the vertical frame 42 on which the rectangular round bar 44 and the connecting portion 46 are arranged.
  • the arms 52 and 54 are rod-shaped rigid bodies fixed to the base 50, and their tips face the connecting portions 46.
  • the arm portion 54 is arranged below the arm portion 52 in the vertical direction.
  • the upper load cell 56 is fixed to the tip of the arm portion 52 and is in contact with the surface of the connecting portion 46.
  • the lower load cell 58 is fixed to the tip of the arm portion 54 and is in contact with the surface of the connecting portion 46.
  • the load sensor unit 28 detects the displacement generated between the arm portions 52 and 54 and the connecting portion 46 as a change in load between the upper load cell 56 and the lower load cell 58.
  • the load sensor unit 28 is a rotating shaft that supports and rotates the tire 4 by detecting two loads on the upper load cell 56 and the lower load cell 58 arranged at different positions in the axial direction of the rotating shaft 24. 24 displacements are detected.
  • the load sensor unit 28 of the present embodiment detects the displacement of the rotating shaft by using the load cell, the displacement of the rotating shaft 24 may be detected by using a sensor other than the load cell.
  • the apparatus main body 12 may detect the displacement of the rotating shaft 24 by using a displacement meter, a speedometer, or an accelerometer instead of the load sensor unit 28.
  • the accelerometer 30 is installed on the installation surface 2 near the frame 20.
  • the accelerometer 30 detects the vibration 90 that is input to the installation surface 2 and transmitted to the frame 20.
  • the accelerometer 30 sends the detected acceleration information of the installation surface 2 to the control unit 14.
  • the control unit 14 includes a storage unit 70 and an arithmetic processing unit 72.
  • the storage unit 70 stores a program for executing processing and data for setting various conditions.
  • the storage unit 70 includes the vector filter 80 and the influence coefficient data 82.
  • the vector filter 80 extracts a region corresponding to the rotation speed at which the tire 4 is rotated from the measurement result of the load sensor unit 28. It is preferable that the vector filter 80 includes a plurality of filters having different extraction regions according to the setting of the rotation speed for rotating the tire 4. In this case, the filter to be used is switched according to the test conditions.
  • the influence coefficient data 82 is data used in the process of extracting the unbalanced amount of the tire 4 from the signal component extracted by the vector filter 80.
  • the influence coefficient data 82 is data calculated in advance based on the configuration of the measuring device 10 and the rotation speed of the tire 4 at the time of the test.
  • the influence coefficient data 82 is preferably set in accordance with the setting of the rotation speed for rotating the tire 4. In this case, the influence coefficient data 82 to be used is switched according to the test conditions.
  • the arithmetic processing unit 72 executes various processes using the programs and data stored in the storage unit 70.
  • FIG. 4 is a flowchart showing an example of a signal processing method for detecting the vibration characteristics of a tire using a measuring device.
  • the signal processing method is a process executed to measure the vibration characteristics of the tire. Specifically, it is a method of detecting the characteristics of the place where the measuring device is installed with respect to vibration, adjusting the measurement conditions, and then measuring the characteristics of the tire.
  • the measuring device 10 is installed at a predetermined location (step S10). Specifically, the device main body 12 of the measuring device 10 is installed on the installation surface 2.
  • the accelerometer 30 acquires natural vibration data for a predetermined time (step S20). Specifically, the measurement with the accelerometer 30 is executed with the motor 22 of the apparatus main body 12 stopped. As a result, the accelerometer 30 detects the vibration 90 input to the apparatus main body 12 from the installation surface 2. Examples of the predetermined time include a one-day operating period of a facility in which the measuring device 10 is installed and one week. Further, a situation in which vibration is input to the installation surface 2 of the measuring device 10, for example, a situation in which a transport vehicle travels around the measuring device 10 may be reproduced, and a predetermined time may be set between them.
  • the control unit 14 analyzes the result measured by the accelerometer 30, and acquires the natural vibration data input to the apparatus main body 12.
  • the natural vibration input to the device main body 12 becomes the vibration input to the tire via the device main body 12. That is, it becomes the vibration of the disturbance input to each part of the apparatus main body 12 and the tire at the time of measurement.
  • the signal processing method determines the shift amount of the rotation speed (step S30).
  • the rotation speed for rotating the tire 4 is determined using the natural vibration data acquired in step S20.
  • a reference rotation speed is set, and an amount to be increased or decreased from the rotation speed is determined as a shift amount.
  • the shift amount is, for example, the amount of movement with respect to the currently set rotation speed and frequency based on the calculation based on the natural vibration data when converted by the tire rotation speed and frequency at the time of measurement by the measuring device 10. be.
  • the rotation speed at which the imbalance of the tire 4 can be measured is calculated in a wavelength range that does not overlap with the vibration of the motor 22 generated by the vibration 90 detected in a predetermined time.
  • the vibrations extracted from the natural vibration data and subject to the judgment of the shift amount of the rotation speed do not have to be all the generated vibrations, and the vibrations that have an influence exceeding the standard or the dominant vibrations that occur in a predetermined time. Should be targeted.
  • the rotation speed is adjusted within a range of the rotation speed at which centrifugal force acts on the tire 4 and the usable rotation speed of the motor 22 of the measuring device 10.
  • the shift amount may be any amount, but for example, when converted into the tire rotation speed and frequency at the time of measurement by the measuring device 10, 20% from the frequency extracted as the peak of the disturbance detected in the natural vibration data. Is exemplified.
  • the signal processing method determines a predetermined rotation speed based on the shift amount (step S40). Specifically, the rotation speed for rotating the tire is determined based on the reference rotation speed and the shift amount.
  • step S50 As a signal processing method, a tire is attached and a measurement process of vibration characteristics is executed (step S50). That is, the test of the tire 4 is executed based on the rotation speed determined up to step S40, and the dynamic balance of the tire 4, that is, whether or not the tire is unbalanced is measured. An example of the process of step S50 will be described with reference to FIG. FIG. 5 is a flowchart showing an example of the measurement process.
  • the signal processing method measures the load while rotating the tire at a predetermined rotation speed (step S51).
  • the tire 4 is mounted on the tire support portion 26, and the tire 4 is rotated at a set predetermined rotation speed. Further, the load sensor unit 28 detects the load while rotating at a predetermined rotation speed.
  • the signal processing method extracts a waveform in a predetermined frequency band by filter processing (step S53).
  • the signal detected by the load center unit 28 is filtered by the vector filter 80, and a waveform having a set predetermined frequency is extracted. That is, the signal of the frequency band corresponding to the predetermined rotation speed is extracted.
  • the signal processing method specifies the vibration characteristics based on the amplitude and phase of the extracted waveform (step S55).
  • processing is executed using the waveform extracted in step S53 and the influence coefficient data, and the vibration characteristic of the tire 4 is specified based on the amplitude of the extracted waveform.
  • the signal processing method can detect non-uniformity and imbalance in the rotation direction of the tire 4 by specifying the vibration characteristics of the tire 4 at a predetermined rotation.
  • FIG. 6 is a graph showing an example of the detection result.
  • the horizontal axis is the frequency and the vertical axis is the acceleration (magnitude of vibration).
  • FIG. 6 shows the measurement result of the vibration measured by the accelerometer while the apparatus main body 12 is stopped. For example, as shown in FIG. 6, when vibration is detected at the frequency Q1 and the rotation speed corresponding to the frequency Q1 is the basic rotation speed of the measuring device 10, the rotation speed corresponding to the frequency Q2 is set to the tire.
  • the rotation speed is shifted so as to be the rotation speed at the time of the test of 4.
  • the measuring device 10 uses a structure that suppresses the influence of external vibration on the installation surface 2 on which the device main body 12 is installed by controlling the tire rotation speed, that is, the test conditions based on the natural vibration data. There is no need for it, and the device configuration can be simplified. As a result, the installation position of the measuring device 10 can be moved more easily. Specifically, vibration insulation treatment that prevents vibration 90 from being input to the device body 12 on the installation surface 2, for example, a foundation is created with concrete or the like at the installation position of the device body 12, and the periphery of the foundation. The influence of vibration 90 can be reduced without using a structure in which a rubber (cushioning material) that insulates vibration is installed around the concrete.
  • the signal processing method measures the natural vibration and determines the rotation speed based on the measurement result, thereby reducing the influence of the vibration 90 without performing analysis based on the cause of the vibration or conditions. can do.
  • a process using a vector filter as the filter process, it is possible to suitably extract the characteristics at the rotation speed to be tested while removing the component corresponding to the vibration 90.
  • a tracking filter may be used as the filter.
  • the tracking filter it is possible to measure the vibration characteristics while the rotation speed is fluctuating. In this case, the time zone during rotation in the region corresponding to the frequency determined to cause disturbance such as vibration 90 is excluded from the extraction target.
  • the data of the rotation speed region to be excluded specified from the natural vibration data may be removed.
  • the vibration 90 input to the installation surface 4 is measured by the accelerometer 30 after the measuring device 10 is installed, but the present invention is not limited to this.
  • the accelerometer 30 may be installed at a position that is a candidate for installing the measuring device 10, and the unique Shindo data may be acquired. That is, the order of the process of step S20 and the process of step S10 may be reversed, and the process of step S20 may be performed at a plurality of places. Further, by executing the processes of steps S10 to S40 at the time of installation, the processes of step S50 can be repeated.
  • FIGS. 2 and 3 show a state in which the accelerometer 30 is arranged in the vicinity of the device main body 12, but the accelerometer 30 is installed before the device main body 12 is installed to acquire natural vibration data. Then, the accelerometer 30 may be removed after the data is acquired. As a result, the accelerometer 30 can be shared by the plurality of measuring devices 10.
  • FIG. 7 is a flowchart showing another example of signal processing.
  • the signal processing method measures the load while rotating the tire at a predetermined rotation speed (step S51).
  • the tire 4 is mounted on the tire support portion 26, and the tire 4 is rotated at a set predetermined rotation speed. Further, the load sensor unit 28 detects the load while rotating at a predetermined rotation speed.
  • the signal processing method selects the corresponding vector filter and influence coefficient data based on the predetermined rotation speed (step S52). That is, it is selected as the vector filter and the influence coefficient data that use the vector filter and the influence coefficient data set for the predetermined rotation speed at which the tire is rotated.
  • the signal processing method extracts a waveform in a predetermined frequency band by filter processing (step S53).
  • the signal detected by the load center unit 28 is filtered by the vector filter 80, and a waveform having a set predetermined frequency is extracted. That is, the signal of the frequency band corresponding to the predetermined rotation speed is extracted.
  • the signal processing method specifies the vibration characteristics based on the amplitude and phase of the extracted waveform (step S55).
  • processing is executed using the waveform extracted in step S53 and the influence coefficient data, and the vibration characteristic of the tire 4 is specified based on the amplitude of the extracted waveform.
  • the signal processing method can detect non-uniformity and imbalance in the rotation direction of the tire 4 by specifying the vibration characteristics of the tire 4 at a predetermined rotation.
  • the signal processing method includes processing conditions, a plurality of vector filters and business condition coefficient data in the present embodiment, corresponding to the number of rotations for rotating the tire, and is used based on the measured conditions.
  • the characteristics of the tire 4 can be detected with high accuracy while further reducing the influence of disturbance, that is, vibration 90.
  • FIG. 8 is a block diagram schematically showing the configuration of each part of the measuring device of another example.
  • the measuring device 10 shown in FIG. 1 uses an accelerometer 30, but is not limited thereto.
  • the measuring device 10a shown in FIG. 8 has the same configuration as the measuring device 10 except that the accelerometer 30 is not provided.
  • the measuring device 10a includes a device main body 12 and a control unit 14.
  • the apparatus main body 12 includes a motor 22 and a load sensor unit 28.
  • the apparatus main body 12 also includes a frame 20, a rotating shaft 24, and a tire support portion 26.
  • the control unit 14 includes a storage unit 70 including a vector filter 80, an influence coefficient data 82, and an arithmetic processing unit 72.
  • the measuring device 10a detects the vibration 90 input due to the disturbance by using the measurement result of the load sensor unit 28.
  • FIG. 9 is a flowchart showing an example of a signal processing method for detecting the vibration characteristics of the tire using the measuring device shown in FIG.
  • the measuring device 10 is installed at a predetermined position (step S10). Specifically, the device main body 12 of the measuring device 10 is installed on the installation surface 2.
  • the load sensor unit 28 acquires natural vibration data for a predetermined time (step S20). Specifically, the measurement is executed in the upper load cell 56 and the lower load cell 58 of the load sensor unit 28 with the motor 22 of the apparatus main body 12 stopped. As a result, the load sensor unit 28 detects the vibration 90 input to the device main body 12 from the installation surface 2.
  • FIG. 10 is a graph showing an example of the detection result. In FIG. 10, the horizontal axis is time and the vertical axis is the load detected in each load cell.
  • Graph 102 is a measurement result of the upper load cell 56.
  • Graph 104 is a measurement result of the lower load cell 58.
  • the control unit 14 analyzes the result measured by the load sensor unit 28, and acquires the natural vibration data input to the device main body 12.
  • step S30 determines the shift amount of the rotation speed.
  • the rotation speed for rotating the tire 4 is determined using the natural vibration data acquired in step S20.
  • the process of step S30 is the same as the process of FIG.
  • the signal processing method determines a predetermined rotation speed based on the shift amount (step S40). Specifically, the rotation speed for rotating the tire is determined based on the reference rotation speed and the shift amount.
  • step S50 As a signal processing method, a tire is attached and a measurement process of vibration characteristics is executed (step S50). That is, the test of the tire 4 is executed based on the rotation speed determined up to step S40, and the imbalance of the tire 4 is measured. An example of the process of step S50 will be described with reference to FIG. FIG. 11 is a flowchart showing an example of the measurement process.
  • the signal processing method measures the load while rotating the tire at a predetermined rotation speed (step S51).
  • the tire 4 is mounted on the tire support portion 26, and the tire 4 is rotated at a set predetermined rotation speed. Further, the load sensor unit 28 detects the load while rotating at a predetermined rotation speed.
  • the signal processing method extracts the load waveform by FFT (step S52).
  • a waveform in a predetermined frequency band is extracted by filter processing (step S53).
  • the signal detected by the load center unit 28 is filtered by the vector filter 80, and a waveform having a set predetermined frequency is extracted. That is, the signal of the frequency band corresponding to the predetermined rotation speed is extracted.
  • the signal processing method specifies the vibration characteristics based on the amplitude of the extracted waveform (step S55).
  • processing is executed using the waveform extracted in step S53 and the influence coefficient data, and the vibration characteristic of the tire 4 is specified based on the amplitude of the extracted waveform.
  • the signal processing method can detect non-uniformity and imbalance in the rotation direction of the tire 4 by specifying the vibration characteristics of the tire 4 at a predetermined rotation.
  • FIG. 12 is a flowchart showing another example of a signal processing method for tire vibration characteristics using a measuring device.
  • the process of FIG. 12 is the process of the load sensor unit 28, the accelerometer 30 may be used.
  • the load sensor unit 28 acquires the natural vibration data before the next tire is applied (step S20). Specifically, the measurement is executed by the load sensor unit 28 in a state where the motor 22 of the apparatus main body 12 in the state where the tire is not attached is stopped. Further, it is a time during which the tire attachment / detachment operation is not executed until the next tire is applied. As a result, the load sensor unit 28 detects the vibration 90 input to the device main body 12 from the installation surface 2. In the signal processing method, the control unit 14 analyzes the result measured by the load sensor unit 28, and acquires the natural vibration data input to the device main body 12.
  • the signal processing method determines the shift amount of the rotation speed (step S30).
  • the rotation speed for rotating the tire 4 is determined using the natural vibration data acquired in step S20.
  • a reference rotation speed is set, and an amount to be increased or decreased from the rotation speed is determined as a shift amount.
  • the rotation speed at which the imbalance of the tire 4 can be measured is calculated in a wavelength range that does not overlap with the vibration of the motor 22 generated by the vibration 90 detected in a predetermined time.
  • the vibrations extracted from the natural vibration data and subject to the judgment of the shift amount of the rotation speed do not have to be all the generated vibrations, and the vibrations that have an influence exceeding the standard or the dominant vibrations that occur in a predetermined time. Should be targeted.
  • the signal processing method determines a predetermined rotation speed based on the shift amount (step S40). Specifically, the rotation speed for rotating the tire is determined based on the reference rotation speed and the shift amount.
  • step S50 a tire is attached and a measurement process of vibration characteristics is executed (step S50). That is, in the signal processing method, the test of the tire 4 is executed based on the rotation speed determined up to step S40, and the imbalance of the tire 4 is measured. Further, in the signal processing method, signal processing conditions are set based on the rotation speed determined in step S40.
  • the signal processing method can remove the component corresponding to the vibration generated before the tire measurement by acquiring the natural vibration data and adjusting the rotation speed during the measurement of the tire vibration characteristics.
  • the signal processing method of the present disclosure is a signal processing method for rotating a rotating body to acquire vibration characteristics of the rotating body, and obtains natural vibration data of disturbance vibration other than vibration caused by the rotation of the rotating body by a sensor.
  • the step S10 to be acquired and the step S30 to determine the shift amount of the rotation speed of the rotating body with respect to the natural vibration data based on the natural vibration data of the disturbance vibration are provided.
  • the rotating body is rotated by the determined shift amount, it is possible to avoid the characteristic frequency of the natural vibration data of the disturbance vibration.
  • the influence of disturbance vibration can be suppressed when acquiring the vibration characteristics of the rotating body. Therefore, according to the present invention, it is possible to measure the vibration characteristics of a rotating body that can easily and inexpensively cope with layout changes and a plurality of disturbance vibrations.
  • the signal processing method of the present disclosure includes step S40 of determining a predetermined rotation speed for rotating the rotating body based on the shift amount, rotating the rotating body at a predetermined rotation speed, and measuring the load acting on the measuring device by a load sensor.
  • a step S51 and a step S55 of extracting a frequency band of a predetermined rotation speed from the measured load waveform by a predetermined filter process and specifying the vibration characteristics of the rotating body based on the amplitude of the extracted waveform are further provided. ..
  • the frequency band of the predetermined rotation speed is extracted by filtering the load acting on the measuring device when the rotating body is rotated at the predetermined rotation speed determined based on the shift amount, which is unnecessary.
  • the vibration waveform of the frequency band can be excluded, and the vibration characteristics of the rotating body can be specified with high accuracy.
  • the shift amount is determined so that the step S30 of determining the shift amount avoids the frequency that becomes the peak value of the amplitude of the natural vibration data by the rotation speed of the rotating body.
  • steps S20, S22, and S24 of acquiring the natural vibration data of the disturbance vibration a database in which the natural vibration data is acquired and accumulated by the sensor in a state where the measuring device is placed in a predetermined place without attaching a rotating body is stored.
  • the step of creating and determining the shift amount determines the shift amount based on the database of natural vibration data. With this configuration, the shift amount can be appropriately determined by using the database of the natural vibration data acquired in advance.
  • the database of natural vibration data is acquired in advance over a predetermined time.
  • the accuracy of the database can be improved by adjusting the predetermined time.
  • the predetermined time is the time from when the measurement for one rotating body is completed by the measuring device to when the next rotating body is given to the measuring device.
  • the database of natural vibration data is constantly updated, and the step of determining the shift amount determines the shift amount to the corresponding value based on the database of the constantly updated natural vibration data.
  • the step of determining the shift amount determines the shift amount based on the database in which the natural vibration data is accumulated and the specifications of the rotating body.
  • the measuring device consists of a device body that rotates the rotating body at a predetermined rotation speed, a sensor that acquires natural vibration data of disturbance vibration other than vibration caused by the rotation of the rotating body acting on the device body, and a device that uses the rotation of the rotating body. It is equipped with a load sensor that acquires the load acting on the main body and a control unit that calculates the vibration characteristics of the rotating body based on the natural vibration data and the load, and the control unit is based on the natural vibration data of disturbance vibration.
  • the rotating body is rotated at a predetermined rotation speed to which a shift amount is given to the determined natural vibration data, the load acting on the device main body is measured by the load sensor, and the frequency band of the predetermined rotation speed is determined from the measured load waveform.
  • the vibration characteristics of the rotating body are specified based on the amplitude of the extracted waveform.
  • control unit 16 stores a plurality of filters used for a predetermined filter process corresponding to a plurality of predetermined rotation speeds.
  • the sensor is an acceleration sensor provided in the measuring device. With this configuration, the natural vibration data of disturbance vibration can be acquired with high accuracy.
  • the sensor is a load sensor. With this configuration, it is possible to acquire natural vibration data of disturbance vibration using an existing load sensor without separately providing a sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Balance (AREA)

Abstract

簡易かつ安価で、レイアウト変更や複数の外乱振動に対応することが可能な回転体の振動特性を計測する。計測装置により回転体を回転させて回転体の振動特性を取得するための信号処理方法である。信号処理方法は、計測装置に作用する回転体の回転に起因した振動以外の外乱振動の固有振動データをセンサにより取得するステップと、外乱振動の固有振動データに基づいて、回転体の回転数の固有振動データに対するシフト量を決定するステップと、を備える。

Description

信号処理方法、計測装置及び信号処理プログラム
 本発明は、信号処理方法、計測装置及び信号処理プログラムに関する。
 タイヤ等の回転体について、振動特性を取得することで、回転体の重量のアンバランス量を計測する技術がある。例えば、特許文献1には、モータにより回転する回転軸にタイヤを取り付けて回転させ、回転軸に作用する荷重を荷重センサ(ロードセンサ)により取得し、取得した波形を解析することでタイヤのアンバランス量を計測している。この計測装置では、荷重センサから出力される荷重信号に含まれる二次以上の高調波信号成分を、高調波除去フィルタによって濾波処理された荷重信号に基づいて、回転体(タイヤ)のアンバランス量を計測している。
特開2014-55923号公報
 特許文献1に記載された回転体(タイヤ)のアンバランス量を計測する計測装置は、例えば工場内に配置され、順次、回転体を付与して各回転体について計測を進めていく。しかしながら、例えば工場内には、複数の他の装置が駆動されていたり、搬送用の車両、フォークリフトが走行したりする。そのため、これらの振動原からの外乱振動が、例えば計測装置が載置された地盤から伝達され、計測装置において取得される荷重に影響を与えてしまう可能性がある。
 従来は、計測装置が載置される地盤をコンクリートのような振動を伝達しづらい材料で埋め、かつ、周囲に振動を絶縁するための絶縁材を設けることで、計測装置に振動が伝達されることを抑制していた。しかしながら、このように計測装置の周囲に大掛かりな工事を施す手法では、高価な工事費がかかり、また、計測装置の配置位置の変更といったレイアウト変更に対応することが難しい。さらに、異なる振動周波数の外乱振動が計測装置に伝達されることを抑制することも困難である。
 また、特許文献1に記載の計測装置では、二次以上の高調波信号成分を除去することはできるものの、他の周波数成分の影響を排除しきれない。
 上記に鑑みてなされたものであって、簡易かつ安価で、レイアウト変更や複数の外乱振動に対応することが可能な回転体の振動特性を計測する信号処理方法、計測装置及び信号処理プログラムの提供を目的とする。
 上述した課題を解決し、目的を達成するために、本開示の一実施形態にかかる信号処理方法は、回転体を回転させて前記回転体の振動特性を取得するための信号処理方法であって、前記回転体の回転に起因した振動以外の外乱振動の固有振動データをセンサにより取得するステップと、前記外乱振動の前記固有振動データに基づいて、前記回転体の回転数の前記固有振動データに対するシフト量を決定するステップと、を備える。
 この構成により、センサにより取得した外乱振動の固有振動データに対して、計測装置での回転体の回転数をシフトさせるシフト量を決定することができる。それにより、決定したシフト量で回転体を回転させれば、外乱振動の固有振動データの特徴的な周波数を避けることが可能となる。その結果、回転体の振動特性の取得に際して、外乱振動の影響を抑制することができる。したがって、本発明によれば、簡易かつ安価で、レイアウト変更や複数の外乱振動に対応することが可能な回転体の振動特性を計測することができる。
 上述した課題を解決し、目的を達成するために、本開示の一実施形態にかかる計測装置は、回転体を所定回転数で回転させる装置本体と、前記装置本体に作用する前記回転体の回転に起因した振動以外の外乱振動の固有振動データを取得するセンサと、前記回転体の回転によって前記装置本体に作用する荷重を取得する荷重センサと、前記固有振動データと前記荷重とに基づいて、前記回転体の振動特性を算出する制御部と、を備え、前記制御部は、前記外乱振動の前記固有振動データに基づいて決定される前記固有振動データに対するシフト量を付与した前記所定回転数で前記回転体を回転させ、前記荷重センサにより前記装置本体に作用する荷重を計測し、計測した前記荷重の波形から、前記所定回転数の周波数帯を所定のフィルタ処理により抽出し、抽出した波形の振幅に基づいて、前記回転体の振動特性を特定する。
 この構成により、センサにより取得した外乱振動の固有振動データに対して、計測装置での回転体の回転数をシフトさせるシフト量を決定することができる。それにより、決定したシフト量で回転体を回転させれば、外乱振動の固有振動データの特徴的な周波数を避けることが可能となる。その結果、回転体の振動特性の取得に際して、外乱振動の影響を抑制することができる。そして、上記シフト量に基づいて決定される所定回転数で回転体を回転させたときの計測装置に作用する荷重について、所定回転数の周波数帯をフィルタ処理で抽出するため、不必要な周波数帯の振動波形を排除して、回転体の振動特性を精度良く特定することができる。したがって、本発明によれば、簡易かつ安価で、レイアウト変更や複数の外乱振動に対応することが可能な回転体の振動特性を計測することができる。
 上述した課題を解決し、目的を達成するために、本開示の一実施形態にかかる信号処理プログラムは、回転体を回転させて前記回転体の振動特性を取得するために、前記回転体の回転に起因した振動以外の外乱振動の固有振動データをセンサにより取得するステップと、前記外乱振動の前記固有振動データに基づいて、前記回転体の回転数の前記固有振動データに対するシフト量を決定するステップと、を実行させる。
 この構成により、センサにより取得した外乱振動の固有振動データに対して、計測装置での回転体の回転数をシフトさせるシフト量を決定することができる。それにより、決定したシフト量で回転体を回転させれば、外乱振動の固有振動データの特徴的な周波数を避けることが可能となる。その結果、回転体の振動特性の取得に際して、外乱振動の影響を抑制することができる。したがって、本発明によれば、簡易かつ安価で、レイアウト変更や複数の外乱振動に対応することが可能な回転体の振動特性を計測することができる。
 簡易かつ安価で、レイアウト変更や複数の外乱振動に対応することが可能な回転体の振動特性を計測することができるという効果を奏する。
図1は、計測装置の各部の構成を模式的に示すブロック図である。 図2は、計測装置の概略構成を示す模式図である。 図3は、図2のA-A線断面図である。 図4は、計測装置を用いてタイヤの振動特性を検出する信号処理方法の一例を示すフローチャートである。 図5は、計測処理の一例を示すフローチャートである。 図6は、検出結果の一例を示すグラフである。 図7は、信号処理の他の例を示すフローチャートである。 図8は、他の例の計測装置の各部の構成を模式的に示すブロック図である。 図9は、図8に示す計測装置を用いてタイヤの振動特性を検出する信号処理方法の一例を示すフローチャートである。 図10は、検出結果の一例を示すグラフである。 図11は、信号処理の他の例を示すフローチャートである。 図12は、計測装置を用いてタイヤの振動特性を検出する信号処理方法の他の例を示すフローチャートである。
 以下に、本開示の信号処理方法および計測装置の実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。以下、本実施形態では、ダイナミックバランスを計測する回転体をタイヤとした場合で説明するが、評価対象の回転体を計測装置に装着して、振動特性を評価する種々の回転体に用いることができる。例えば、計測装置は、回転体をターボチャージャとしてもよい。つまり、ターボチャージャのタービン等を回転体とし、回転体を支持する機構を計測装置として、ターボチャージャの振動特性を評価する場合に用いることもできる。
 図1は、計測装置の各部の構成を模式的に示すブロック図である。図2は、計測装置の概略構成を示す模式図である。図3は、図2のA-A線断面図である。計測装置10は、回転体であるタイヤのバランスを計測する。具体的には、計測装置10は、タイヤの回転軸中心にタイヤを回転させ、タイヤの回転方向のアンバランス、つまり、回転中心と重心位置のずれを計測する。計測装置10は、図1に示すように、装置本体12と、制御部14と、を含む。
 以下、図1に加え、図2及び図3を用いて、計測装置10の構成について説明する。装置本体12は、図2及び図3に示すように、フレーム20と、モータ22と、回転軸24と、回転検出センサ25と、タイヤ支持部26と、荷重センサユニット28と、加速度計30と、を含む。なお、図1は、装置本体12の構成のうち、モータ22と、回転検出センサ25と、荷重センサユニット28と、加速度計30と、を示している。
 フレーム20は、設置面2に固定される。設置面2は、工場の床面、地面である。フレーム20は、装置本体12の各部と、検査対象のタイヤ4を支持する構造体である。フレーム20は、土台40と、縦フレーム42と、丸棒44と、連結部46と、横フレーム47と、板バネ48と、連結部49と、を含む。フレーム20は、土台40が、設置面2に固定される。土台40の設置面2への固定方法は特に限定されないが、ボルト止め、設置面2に土台40に対応した凹部を形成し、凹部に土台40を置く方法等がある。縦フレーム42は、鉛直方向に延在する棒状の部材であり、鉛直方向下側の端部が土台40に固定される。縦フレーム42は、モータ22の周囲を囲み、矩形に配置される。縦フレーム42は、モータ22の周囲を全て囲む板状部材である必要はなく、複数の棒状の部材を所定の間隔で配置してもよい。フレーム20は、縦フレーム42と土台40との接続部にリブが設けられ、縦フレーム42を支持する。
 丸棒44は、水平方向に延びた棒であり、一方の端部が縦フレーム42に挿入して固定され、他方の端部が連結部46と接する。丸棒44は、水平方向に延在しており、縦フレーム42の矩形の対向する2辺に配置される。丸棒44は、鉛直方向に並んで2本配置される。また、丸棒44は、連結部46を挟んで延長線で重なる位置に配置される。
 連結部46は、モータ22に固定されており、丸棒44とモータ22とを連結する。連結部46は、鉛直方向に延在するフランジであり、鉛直方向の2か所に配置された丸棒44に挟まれる。
 横フレーム47は、縦フレーム42の矩形の4辺のうち、丸棒が配置されている辺とは異なる2辺にそれぞれ配置される。横フレーム47は、水平方向に延在する棒状の部材である。横フレーム47は、一方の端部が縦フレーム42に連結し、他方の端部が板バネ48に連結する。板バネ48は、鉛直方向に延在し、横フレーム47の延在方向が短辺となり、丸棒44の延在方向が長辺となる部材である。板バネ48は、鉛直方向上側の端部が横フレーム47と連結し、鉛直方向下側の端部が連結部49と連結する。連結部49は、モータ22に固定されており、板バネ48とモータ22とを連結する。
 フレーム20は、土台40に連結され縦フレーム42が剛体となり、丸棒44で対向する2辺に配置された連結部46を支持し、横フレーム47及び板バネ48で、対向する別の2辺に配置された連結部49を支持する。これにより、連結部46、49が固定されたモータ22を支持する。
 モータ22は、フレーム20に支持されている。モータ22は、固定子と、固定子に対して回転する回転子を有する。モータ22は、固定子に連結部46と連結部49が固定され、フレーム20に支持される。モータ22は、固定子に対して鉛直方向を軸として回転子を回転させる。モータ22は、回転子に回転軸24が連結され、回転軸24を回転させる。回転軸24は、モータ22によって回転される軸であり、鉛直方向上側の端部にタイヤ支持部26が固定される。回転検出センサ25は、回転軸24の回転を検出する。回転検出センサ25としては、1回転で1回のパルスを検出する光学センサや、ロータリーエンコーダを用いることができる。回転検出センサ25は、回転数(回転速度)に加え、回転軸と一体で回転する対象を検出するタイミングに位相も検出することができる。タイヤ支持部26は、回転軸24と共に回転し、計測対象のタイヤ4を支持する構造物である。タイヤ支持部26は、リムと同様の構造であり、タイヤ4の着脱が容易になるように、着脱時にタイヤ4との接触部が移動、変形する構造となる。
 荷重センサユニット28は、タイヤ4を回転させるモータ22のフレーム20の縦フレーム42に対する変動を荷重の変化で検出する。荷重センサユニット28は、基部50と、腕部52、54と、上側ロードセル56と、下側ロードセル58と、を含む。基部50は、縦フレーム42に固定される。具体的には、基部50は、縦フレーム42の矩形形状の丸棒44と連結部46が配置されている面の、連結部46と対面する位置に固定される。腕部52、54は、基部50に固定された棒状の剛体であり、先端が連結部46と対面している。腕部54は、腕部52よりも鉛直方向下側に配置されている。上側ロードセル56は、腕部52の先端に固定され、連結部46の表面と接している。下側ロードセル58は、腕部54の先端に固定され、連結部46の表面と接している。
 荷重センサユニット28は、腕部52、54と連結部46との間で生じる変位を上側ロードセル56と、下側ロードセル58と、で荷重の変化として検出する。荷重センサユニット28は、回転軸24の軸方向の異なる位置に配置された上側ロードセル56と、下側ロードセル58で、2点の荷重を検出することで、タイヤ4を支持して回転する回転軸24の変位を検出する。なお、本実施形態の荷重センサユニット28は、ロードセルを用いて、回転軸の変位を検出したが、ロードセル以外のセンサを用いて、回転軸24の変位を検出してもよい。装置本体12は、荷重センサユニット28に代えて、変位計、速度計、加速度計を用いて、回転軸24の変位を検出してもよい。
 加速度計30は、フレーム20の近傍の設置面2に設置される。加速度計30は、設置面2に入力され、フレーム20に伝達される振動90を検出する。加速度計30は、検出した設置面2の加速度情報を制御部14に送る。
 図1に戻り、計測装置10の制御部14について説明する。制御部14は、記憶部70と、演算処理部72と、を含む。記憶部70は、処理を実行するプログラムや、各種条件を設定するデータを記憶する。記憶部70は、ベクトルフィルタ80と、影響係数データ82と、を含む。ベクトルフィルタ80は、タイヤ4の特性を検出する際に、荷重センサユニット28の計測結果から、タイヤ4を回転させる回転数に対応する領域を抽出する。ベクトルフィルタ80は、タイヤ4を回転させる回転数の設定に対応して、抽出領域が異なる複数のフィルタを備えることが好ましい。この場合、試験の条件に応じて、使用するフィルタを切り換える。影響係数データ82は、ベクトルフィルタ80で抽出した信号成分から、タイヤ4のアンバランス量を抽出する処理に用いるデータである。影響係数データ82は、計測装置10の構成とタイヤ4の試験時の回転数とに基づいて予め算出したデータである。影響係数データ82は、タイヤ4を回転させる回転数の設定に対応して、それぞれ設定することが好ましい。この場合、試験の条件に応じて、使用する影響係数データ82を切り換える。演算処理部72は、記憶部70に記憶されているプログラムとデータを用いて各種処理を実行する。
 次に、図4から図6を用いて、計測装置を用いたタイヤの振動特性の信号処理方法の一例を説明する。図4は、計測装置を用いてタイヤの振動特性を検出する信号処理方法の一例を示すフローチャートである。信号処理方法は、タイヤの振動特性を計測するために実行する処理である。具体的には、計測装置が設置されている場所の振動に対する特性を検出し、計測条件を調整した後、タイヤの特性を計測する方法である。
 信号処理方法は、計測装置10を所定の箇所に設置する(ステップS10)。具体的には、計測装置10の装置本体12を設置面2に設置する。
 次に、信号処理方法は、加速度計30で、所定時間にわたって、固有振動データを取得する(ステップS20)。具体的には、装置本体12のモータ22を停止させた状態で加速度計30での計測を実行する。これにより、加速度計30は、設置面2から装置本体12に入力される振動90を検出する。所定時間としては、計測装置10が設置されている施設の1日の稼動期間や、1週間が例示される。また、計測装置10の設置面2に振動が入力される状況、例えば、計測装置10の周囲を運搬車両が走行する状況を再現して、その間を所定時間としてもよい。信号処理方法は、加速度計30で計測した結果を制御部14で解析して、装置本体12に入力される固有振動データを取得する。ここで、装置本体12に入力される固有振動は、装置本体12を介してタイヤに入力される振動になる。つまり、計測時に装置本体12の各部及びタイヤに入力される外乱の振動となる。
 次に、信号処理方法は、回転数のシフト量を決定する(ステップS30)。信号処理方法は、ステップS20で取得した固有振動データを用いて、タイヤ4を回転させる回転数を決定する。本実施形態では、基準の回転数が設定されており、その回転数から増減させる量をシフト量として決定する。シフト量は、例えば、計測装置10の計測時のタイヤの回転数、周波数で換算した場合、固有振動データに基づいて算出されるに基づいて、現在設定されている回転数、周波数に対する移動量である。具体的には、所定時間で検出した振動90により生じるモータ22の振動とは重ならない波長域で、タイヤ4のアンバランスを計測できる回転数を算出する。固有振動データから抽出し、回転数のシフト量の判断の対象となる振動は、生じている全ての振動とする必要はなく、基準以上の影響が生じる振動や、所定時間で生じる支配的な振動を対象とすればよい。ここで、回転数は、タイヤ4に対して遠心力が作用する回転数以上、計測装置10のモータ22の使用可能な回転数以下の範囲で調整する。また、シフト量は、任意の量でよいが、例えば、計測装置10の計測時のタイヤの回転数、周波数で換算した場合、固有振動データで検出される外乱のピークとして抽出した周波数から20%が例示される。
 次に、信号処理方法は、シフト量に基づいて所定回転数を決定する(ステップS40)。具体的には、基準の回転数と、シフト量に基づいて、タイヤを回転させる回転数を決定する。
 次に、信号処理方法は、タイヤを付与し、振動特性の計測処理を実行する(ステップS50)。つまり、ステップS40まで決定した回転数に基づいてタイヤ4の試験を実行し、タイヤ4のダイナミックバランス、つまり、アンバランスが生じているか、どの程度のアンバランスかを計測する。図5を用いて、ステップS50の処理の一例を説明する。図5は、計測処理の一例を示すフローチャートである。
 図5に示すように、信号処理方法は、所定回転数でタイヤを回転させながら、荷重を計測する(ステップS51)。信号処理方法は、タイヤ支持部26にタイヤ4を装着し、設定した所定回転数でタイヤ4を回転させる。また、荷重センサユニット28で、所定回転数で回転している間の荷重を検出する。
 次に、信号処理方法は、フィルタ処理により、所定周波数帯の波形を抽出する(ステップS53)。荷重センタユニット28で検出した信号をベクトルフィルタ80でフィルタ処理し、設定した所定周波数の波形を抽出する。つまり、所定回転数に対応する周波数帯の信号を抽出する。
 次に、信号処理方法は、抽出した波形の振幅と位相に基づいて、振動特性を特定する(ステップS55)。信号処理方法は、ステップS53で抽出した波形と影響係数データとを用いて処理を実行し、抽出した波形の振幅に基づいて、タイヤ4の振動特性を特定する。信号処理方法は、所定回転時のタイヤ4の振動特性を特定することで、タイヤ4の回転方向での不均一性、アンバランスを検出することができる。
 信号処理方法は、加速度計30で振動90の成分を抽出し、その抽出結果に基づいて、タイヤ4の試験時の回転数を決定することで、振動90の成分の影響を抑制しつつ、タイヤの振動特性を検出することができる。図6は、検出結果の一例を示すグラフである。図6は、横軸が周波数、縦軸が加速度(振動の大きさ)である。図6は、装置本体12は停止している状態で加速度計が計測した振動の計測結果である。例えば、図6に示すように、周波数Q1で、振動が検出されて、かつ、周波数Q1に対応する回転数が計測装置10の基本の回転数である場合、周波数Q2に対応する回転数をタイヤ4の試験時の回転数とするように、回転数をシフトさせる。これにより、タイヤの振動特性の検出時に、設置面2に入力される振動の影響で実際のタイヤの振動特性とは異なる特性を検出することを抑制でき、タイヤの特性をより高い精度で計測することができる。
 また、計測装置10は、固有振動データに基づいて、タイヤの回転数、つまり試験条件を制御することで、装置本体12を設置する設置面2に外部からの振動の影響を抑制する構造を用いる必要がなくなり、装置構成を簡単にすることができる。これにより、計測装置10の設置位置の移動をより簡単に行うことができる。具体的には、設置面2に振動90が装置本体12に入力されることを抑制する振動の絶縁処理、例えば、装置本体12の設置位置にコンクリート等で基礎を作成し、かつ、基礎の周囲の周囲に振動を絶縁するゴム(緩衝材)を設置する構造を用いずに、振動90の影響を低減することができる。
 また、信号処理方法は、固有振動を計測し、その計測結果に基づいて、回転数を決定することで、振動の原因や、条件に基づいた解析等を行わずに、振動90の影響を低減することができる。
 また、本実施形態では、フィルタ処理として、ベクトルフィルタを用いた処理を行うことで、振動90に対応する成分を除去しつつ、試験を行う回転数での特性を好適に抽出することができるがこれに限定されない。例えばフィルタとして、トラッキングフィルタを用いてもよい。トラッキングフィルタを用いることで、回転数が変動している状態で、振動特性を計測することができる。なお、この場合、振動90等の外乱が生じていると判定した周波数に対応する領域で回転している時間帯は、抽出対象から除外する。信号処理方法は、固有振動データから特定した除外する回転数領域のデータを除去すればよい。
 なお、図4から図6に示す実施形態では、計測装置10を設置してから加速度計30で設置面4に入力される振動90の計測を行ったが、本発明はこれに限定されない。信号処理方法は、計測装置10を設置する候補となる位置に加速度計30のみを設置し、固有信堂データを取得してもよい。つまり、ステップS20の処理と、ステップS10の処理の順番を逆にしてもよく、ステップS20の処理を複数個所で行ってもよい。また、ステップS10からステップS40の処理は、設置時に実行することで、ステップS50の処理を繰り返し行うことができる。
 ここで、図2及び図3では、加速度計30を、装置本体12の近傍に配置した状態を示しているが、装置本体12の設置前に加速度センサ30を設置して、固有振動データを取得し、データの取得後に加速度センサ30を取り外してもよい。これにより、加速度計30を複数の計測装置10で共有することができる。
 ここで、信号処理方法は、タイヤを回転させる回転数に基づいて、使用するベクトルフィルタ、影響係数データを切り換えることが好ましい。図7は、信号処理の他の例を示すフローチャートである。
 図7に示すように、信号処理方法は、所定回転数でタイヤを回転させながら、荷重を計測する(ステップS51)。信号処理方法は、タイヤ支持部26にタイヤ4を装着し、設定した所定回転数でタイヤ4を回転させる。また、荷重センサユニット28で、所定回転数で回転している間の荷重を検出する。
 次に、信号処理方法は、所定回転数に基づいて、対応するベクトルフィルタ及び影響係数データを選択する(ステップS52)。つまり、タイヤを回転させた所定回転数に対して設定されているベクトルフィルタ及び影響係数データを使用するベクトルフィルタ及び影響係数データとして選択する。
 次に、信号処理方法は、フィルタ処理により、所定周波数帯の波形を抽出する(ステップS53)。荷重センタユニット28で検出した信号をベクトルフィルタ80でフィルタ処理し、設定した所定周波数の波形を抽出する。つまり、所定回転数に対応する周波数帯の信号を抽出する。
 次に、信号処理方法は、抽出した波形の振幅と位相に基づいて、振動特性を特定する(ステップS55)。信号処理方法は、ステップS53で抽出した波形と影響係数データとを用いて処理を実行し、抽出した波形の振幅に基づいて、タイヤ4の振動特性を特定する。信号処理方法は、所定回転時のタイヤ4の振動特性を特定することで、タイヤ4の回転方向での不均一性、アンバランスを検出することができる。
 信号処理方法は、図7に示すように、タイヤを回転させる回転数に対応して、処理条件、本実施形態ではベクトルフィルタと景況係数データを複数備え、計測した条件に基づいて、使用する処理条件を切り換えることで、より外乱、つまり振動90の影響を低減しつつ、高い精度でタイヤ4の特性を検出できる。
 ここで、上記実施形態では、加速度計30を用いて、振動90を検出したがこれに限定されず、振動90を含む外乱の検出方法としては種々の方法を用いることができる。図8は、他の例の計測装置の各部の構成を模式的に示すブロック図である。図1に示す計測装置10は、加速度計30を用いたがこれに限定されない。図8に示す計測装置10aは、加速度計30を備えていない以外は、計測装置10と同様の構成である。計測装置10aは、装置本体12と、制御部14と、を含む。装置本体12は、モータ22と、荷重センサユニット28と、を含む。装置本体12は、フレーム20と、回転軸24と、タイヤ支持部26も備える。制御部14は、ベクトルフィルタ80と影響係数データ82を含む記憶部70と、演算処理部72と、を備える。計測装置10aは、荷重センサユニット28の計測結果を用いて、外乱で入力される振動90を検出する。
 次に、図9から図11を用いて、計測装置10aを用いたタイヤの振動特性を検出する信号処理方法の一例を説明する。図9は、図8に示す計測装置を用いたタイヤの振動特性を検出する信号処理方法の一例を示すフローチャートである。信号処理方法は、計測装置10を所定の箇所に設置する(ステップS10)。具体的には、計測装置10の装置本体12を設置面2に設置する。
 次に、信号処理方法は、荷重センサユニット28で、所定時間にわたって、固有振動データを取得する(ステップS20)。具体的には、装置本体12のモータ22を停止させた状態で荷重センサユニット28の上側ロードセル56及び下側ロードセル58での計測を実行する。これにより、荷重センサユニット28は、設置面2から装置本体12に入力される振動90を検出する。図10は、検出結果の一例を示すグラフである。図10は、横軸が時間であり、縦軸がそれぞれのロードセルで検出した荷重である。グラフ102は、上側ロードセル56の計測結果である。グラフ104は、下側ロードセル58の計測結果である。また、所定時間としては、計測装置10が設置されている施設の1日の稼動期間や、1週間が例示される。また、計測装置10の設置面2に振動が入力される状況、例えば、計測装置10の周囲を運搬車両が走行する状況を再現して、その間を所定時間としてもよい。信号処理方法は、荷重センサユニット28で計測した結果を制御部14で解析して、装置本体12に入力される固有振動データを取得する。
 次に、信号処理方法は、回転数のシフト量を決定する(ステップS30)。信号処理方法は、ステップS20で取得した固有振動データを用いて、タイヤ4を回転させる回転数を決定する。ステップS30の処理は、図4の処理と同様である。
 次に、信号処理方法は、シフト量に基づいて所定回転数を決定する(ステップS40)。具体的には、基準の回転数と、シフト量に基づいて、タイヤを回転させる回転数を決定する。
 次に、信号処理方法は、タイヤを付与し、振動特性の計測処理を実行する(ステップS50)。つまり、ステップS40まで決定した回転数に基づいてタイヤ4の試験を実行し、タイヤ4のアンバランスを計測する。図11を用いて、ステップS50の処理の一例を説明する。図11は、計測処理の一例を示すフローチャートである。
 図11に示すように、信号処理方法は、所定回転数でタイヤを回転させながら、荷重を計測する(ステップS51)。信号処理方法は、タイヤ支持部26にタイヤ4を装着し、設定した所定回転数でタイヤ4を回転させる。また、荷重センサユニット28で、所定回転数で回転している間の荷重を検出する。
 次に、信号処理方法は、FFTにより、荷重の波形を抽出する(ステップS52)。次に、信号処理方法は、フィルタ処理により、所定周波数帯の波形を抽出する(ステップS53)。荷重センタユニット28で検出した信号をベクトルフィルタ80でフィルタ処理し、設定した所定周波数の波形を抽出する。つまり、所定回転数に対応する周波数帯の信号を抽出する。
 次に、信号処理方法は、抽出した波形の振幅に基づいて、振動特性を特定する(ステップS55)。信号処理方法は、ステップS53で抽出した波形と影響係数データとを用いて処理を実行し、抽出した波形の振幅に基づいて、タイヤ4の振動特性を特定する。信号処理方法は、所定回転時のタイヤ4の振動特性を特定することで、タイヤ4の回転方向での不均一性、アンバランスを検出することができる。
 また、上記実施形態では、計測装置の設置時に回転数を調整する処理を実行したが、これに限定されない。信号処理方法は、タイヤの振動特性を計測している間に処理を実行してもよい。図12は、計測装置を用いたタイヤの振動特性の信号処理方法の他の例を示すフローチャートである。なお、図12の処理は、荷重センサユニット28での処理とするが、加速度計30を用いてもよい。
 信号処理方法は、次のタイヤを付与するまでの間に荷重センサユニット28で固有振動データを取得する(ステップS20)。具体的には、タイヤが付与されていない状態の装置本体12のモータ22を停止させた状態で荷重センサユニット28での計測を実行する。また、次のタイヤを付与するまでの間は、タイヤの着脱動作も実行されていない時間である。これにより、荷重センサユニット28は、設置面2から装置本体12に入力される振動90を検出する。信号処理方法は、荷重センサユニット28で計測した結果を制御部14で解析して、装置本体12に入力される固有振動データを取得する。
 次に、信号処理方法は、回転数のシフト量を決定する(ステップS30)。信号処理方法は、ステップS20で取得した固有振動データを用いて、タイヤ4を回転させる回転数を決定する。本実施形態では、基準の回転数が設定されており、その回転数から増減させる量をシフト量として決定する。具体的には、所定時間で検出した振動90により生じるモータ22の振動とは重ならない波長域で、タイヤ4のアンバランスを計測できる回転数を算出する。固有振動データから抽出し、回転数のシフト量の判断の対象となる振動は、生じている全ての振動とする必要はなく、基準以上の影響が生じる振動や、所定時間で生じる支配的な振動を対象とすればよい。
 次に、信号処理方法は、シフト量に基づいて所定回転数を決定する(ステップS40)。具体的には、基準の回転数と、シフト量に基づいて、タイヤを回転させる回転数を決定する。
 次に、信号処理方法は、タイヤを付与し、振動特性の計測処理を実行する(ステップS50)。つまり、信号処理方法は、ステップS40まで決定した回転数に基づいてタイヤ4の試験を実行し、タイヤ4のアンバランスを計測する。また、信号処理方法は、ステップS40で決定した回転数に基づいて、信号の処理条件を設定する。
 信号処理方法は、タイヤの振動特性の計測の間に、固有振動データを取得し、回転数を調整することで、タイヤの計測前に生じている振動に対応する成分を除去することができる。
 本開示の信号処理方法は、回転体を回転させて回転体の振動特性を取得するための信号処理方法であって、回転体の回転に起因した振動以外の外乱振動の固有振動データをセンサにより取得するステップS10と、外乱振動の固有振動データに基づいて、回転体の回転数の固有振動データに対するシフト量を決定するステップS30と、を備える。この構成により、センサにより取得した外乱振動の固有振動データに対して、計測装置での回転体の回転数をシフトさせるシフト量を決定することができる。それにより、決定したシフト量で回転体を回転させれば、外乱振動の固有振動データの特徴的な周波数を避けることが可能となる。その結果、回転体の振動特性の取得に際して、外乱振動の影響を抑制することができる。したがって、本発明によれば、簡易かつ安価で、レイアウト変更や複数の外乱振動に対応することが可能な回転体の振動特性を計測することができる。
 本開示の信号処理方法は、シフト量に基づいて回転体を回転させる所定回転数を決定するステップS40と、回転体を所定回転数で回転させ、計測装置に作用する荷重を荷重センサにより計測するステップS51と、計測した荷重の波形から、所定回転数の周波数帯を所定のフィルタ処理により抽出し、抽出した波形の振幅に基づいて、回転体の振動特性を特定するステップS55と、をさらに備える。この構成により、上記シフト量に基づいて決定される所定回転数で回転体を回転させたときの計測装置に作用する荷重について、所定回転数の周波数帯をフィルタ処理で抽出するため、不必要な周波数帯の振動波形を排除して、回転体の振動特性を精度良く特定することができる。
 本開示の信号処理方法は、シフト量を決定するステップS30が、固有振動データの振幅のピーク値となる周波数を回転体の回転数が回避するように、シフト量を決定する。この構成により、固有振動データに対するシフト量を適切に決定し、回転体の回転数を固有振動データから適切に回避させることができる。
 また、外乱振動の固有振動データを取得するステップS20、S22、S24は、計測装置に回転体を付与することなく所定箇所に載置した状態でセンサにより固有振動データを取得して蓄積したデータベースを作成し、シフト量を決定するステップは、固有振動データのデータベースに基づいてシフト量を決定する。この構成により、予め取得した固有振動データのデータベースを用いて、シフト量を適切に決定することができる。
 また、固有振動データのデータベースは、所定時間にわたって予め取得される。この構成により、所定時間を調整することで、データベースの精度を向上させることができる。
 また、所定時間は、計測装置で一つの回転体についての計測が終了した後、次の回転体を計測装置に付与するまでの時間である。この構成により、回転体の計測と固有振動データの取得とをほぼ同時に行うことができ、かつ、固有振動データを適宜、更新することで、より精度良く計測を行うことが可能となる。
 また、固有振動データのデータベースは、常時更新され、シフト量を決定するステップは、常時更新される固有振動データのデータベースに基づいてシフト量を対応した値に決定する。この構成により、固有振動データを常時更新することで、より精度良く計測を行うことが可能となる。
 また、シフト量を決定するステップは、固有振動データが蓄積されたデータベースと、回転体の緒元とに基づいてシフト量を決定する。この構成により、固有振動データのデータベースを十分に蓄積すれば、回転体の緒元にあわせて自動的にシフト量を決定することができ、リアルタイムの計算負荷を低減させることが可能となる。
 計測装置は、回転体を所定回転数で回転させる装置本体と、装置本体に作用する回転体の回転に起因した振動以外の外乱振動の固有振動データを取得するセンサと、回転体の回転によって装置本体に作用する荷重を取得する荷重センサと、固有振動データと荷重とに基づいて、回転体の振動特性を算出する制御部と、を備え、制御部は、外乱振動の固有振動データに基づいて決定される固有振動データに対するシフト量を付与した所定回転数で回転体を回転させ、荷重センサにより装置本体に作用する荷重を計測し、計測した荷重の波形から、所定回転数の周波数帯を所定のフィルタ処理により抽出し、抽出した波形の振幅に基づいて、回転体の振動特性を特定する。
 この構成により、センサにより取得した外乱振動の固有振動データに対して、計測装置での回転体の回転数をシフトさせるシフト量を決定することができる。それにより、決定したシフト量で回転体を回転させれば、外乱振動の固有振動データの特徴的な周波数を避けることが可能となる。その結果、回転体の振動特性の取得に際して、外乱振動の影響を抑制することができる。そして、上記シフト量に基づいて決定される所定回転数で回転体を回転させたときの計測装置に作用する荷重について、所定回転数の周波数帯をフィルタ処理で抽出するため、不必要な周波数帯の振動波形を排除して、回転体の振動特性を精度良く特定することができる。したがって、本発明によれば、簡易かつ安価で、レイアウト変更や複数の外乱振動に対応することが可能な回転体の振動特性を計測することができる。
 また、制御部16は、複数の所定回転数に対応して、所定のフィルタ処理に用いるフィルタを複数記憶している。この構成により、時間帯によって異なる複数の外乱振動が発生していたとしても、その時点の外乱振動に応じて決定される所定回転数に対して、適切なフィルタを選択した上で、回転体の振動特性を計測することができる。
 また、センサは、計測装置に設けられた加速度センサである。この構成により、外乱振動の固有振動データを精度良く取得することができる。また、センサは、荷重センサである。この構成により、センサを別途設けることなく、既存の荷重センサを利用して外乱振動の固有振動データを取得することができる。
  2 設置面
  4 タイヤ(回転体)
 10、10a 計測装置
 12 装置本体
 14 制御部
 20 フレーム
 22 モータ
 24 回転軸
 25 回転検出センサ
 26 タイヤ支持部
 28 荷重センサユニット
 30 加速度計(センサ)
 40 土台
 42 縦フレーム
 44 丸棒
 46、49 連結部、
 47 横フレーム
 48 板バネ
 50 基部
 52、54 腕部
 56 上側ロードセル
 58 下側ロードセル
 70 記憶部
 72 演算処理部
 80 ベクトルフィルタ
 82 影響係数

Claims (13)

  1.  回転体を回転させて前記回転体の振動特性を取得する信号処理方法であって、
     前記回転体の回転に起因した振動以外の外乱振動の固有振動データをセンサにより取得するステップと、
     前記外乱振動の前記固有振動データに基づいて、前記回転体の回転数の前記固有振動データに対するシフト量を決定するステップと、
     を備える信号処理方法。
  2.  前記シフト量に基づいて前記回転体を回転させる所定回転数を決定するステップと、
     前記回転体を前記所定回転数で回転させ、前記回転体を支持する計測装置に作用する荷重を荷重センサにより計測するステップと、
     計測した前記荷重の波形から、前記所定回転数の周波数帯を所定のフィルタ処理により抽出し、抽出した波形の振幅に基づいて、前記回転体の振動特性を特定するステップと、
     をさらに備える請求項1に記載の信号処理方法。
  3.  前記シフト量を決定するステップは、前記固有振動データの振幅のピーク値となる周波数を前記回転体の回転数が回避するように、前記シフト量を決定する請求項1または請求項2に記載の信号処理方法。
  4.  前記外乱振動の前記固有振動データを取得するステップは、前記回転体を支持する計測装置に前記回転体を付与することなく所定箇所に載置した状態で前記センサにより前記固有振動データを取得して蓄積したデータベースを作成し、
     前記シフト量を決定するステップは、前記固有振動データのデータベースに基づいて前記シフト量を決定する、
     請求項1から請求項3のいずれか一項に記載の信号処理方法。
  5.  前記固有振動データの前記データベースは、所定時間にわたって予め取得される請求項4に記載の信号処理方法。
  6.  前記所定時間は、前記計測装置で一つの前記回転体についての計測が終了した後、次の回転体を前記計測装置に付与するまでの時間である請求項5に記載の信号処理方法。
  7.  前記固有振動データの前記データベースは、常時更新され、
     前記シフト量を決定するステップは、常時更新される前記固有振動データの前記データベースに基づいて前記シフト量を対応した値に決定する請求項4に記載の信号処理方法。
  8.  前記シフト量を決定するステップは、前記固有振動データが蓄積された前記データベースと、前記回転体の緒元とに基づいて前記シフト量を決定する請求項4に記載の信号処理方法。
  9.  回転体を所定回転数で回転させる装置本体と、
     前記装置本体に作用する前記回転体の回転に起因した振動以外の外乱振動の固有振動データを取得するセンサと、
     前記回転体の回転によって前記装置本体に作用する荷重を取得する荷重センサと、
     前記固有振動データと前記荷重とに基づいて、前記回転体の振動特性を算出する制御部と、
     を備え、
     前記制御部は、
     前記外乱振動の前記固有振動データに基づいて決定される前記固有振動データに対するシフト量を付与した前記所定回転数で前記回転体を回転させ、
     前記荷重センサにより前記装置本体に作用する荷重を計測し、
     計測した前記荷重の波形から、前記所定回転数の周波数帯を所定のフィルタ処理により抽出し、抽出した波形の振幅に基づいて、前記回転体の振動特性を特定する計測装置。
  10.  前記制御部は、複数の所定回転数に対応して、前記所定のフィルタ処理に用いるフィルタを複数記憶している請求項9に記載の計測装置。
  11.  前記センサは、前記計測装置に設けられた加速度センサである請求項9または請求項10に記載の計測装置。
  12.  前記センサは、前記荷重センサである請求項9または請求項10に記載の計測装置。
  13.  回転体を回転させて前記回転体の振動特性を取得するために、
     前記回転体の回転に起因した振動以外の外乱振動の固有振動データをセンサにより取得するステップと、
     前記外乱振動の前記固有振動データに基づいて、前記回転体の回転数の前記固有振動データに対するシフト量を決定するステップと、
     を実行させる信号処理プログラム。
PCT/JP2020/047365 2020-02-21 2020-12-18 信号処理方法、計測装置及び信号処理プログラム WO2021166412A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020028254A JP2021131367A (ja) 2020-02-21 2020-02-21 信号処理方法、計測装置及び信号処理プログラム
JP2020-028254 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021166412A1 true WO2021166412A1 (ja) 2021-08-26

Family

ID=77391919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047365 WO2021166412A1 (ja) 2020-02-21 2020-12-18 信号処理方法、計測装置及び信号処理プログラム

Country Status (2)

Country Link
JP (1) JP2021131367A (ja)
WO (1) WO2021166412A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11480491B1 (en) * 2022-02-14 2022-10-25 Balanced Engineering Solution, Llc Method for determining vibrational anomalies of a vehicle
US11656156B1 (en) 2022-09-26 2023-05-23 Balanced Engineering Solution, Llc Axle-mounted sensor cuff apparatus for determining anomalies associated with a railcar wheelset, or a railcar bogie assembly that the railcar wheelset is part of, or a track
US11731673B1 (en) 2022-09-26 2023-08-22 Balanced Engineering Solution, Llc Wheel-mounted sensor ring apparatus for determining anomalies associated with a railcar wheelset, or a railcar bogie assembly that the railcar wheelset is part of, or a track
US11982586B2 (en) 2019-08-30 2024-05-14 Nvh Technology Llc Method for measuring imbalance forces of a tire/hub assembly of vehicle during motion of the vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310892A (en) * 1978-06-23 1982-01-12 Gebrueder Hofmann Gmbh & Co. K.G. Maschinenfabrik Method for determining imbalance in a mechanical system
JP2001194257A (ja) * 2000-01-14 2001-07-19 Denso Corp 回転体のバランス計測機及びその計測方法
JP2010091365A (ja) * 2008-10-07 2010-04-22 Kobe Steel Ltd タイヤ試験機及びタイヤ試験方法
JP2015225038A (ja) * 2014-05-29 2015-12-14 株式会社鷺宮製作所 試験装置および試験方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310892A (en) * 1978-06-23 1982-01-12 Gebrueder Hofmann Gmbh & Co. K.G. Maschinenfabrik Method for determining imbalance in a mechanical system
JP2001194257A (ja) * 2000-01-14 2001-07-19 Denso Corp 回転体のバランス計測機及びその計測方法
JP2010091365A (ja) * 2008-10-07 2010-04-22 Kobe Steel Ltd タイヤ試験機及びタイヤ試験方法
JP2015225038A (ja) * 2014-05-29 2015-12-14 株式会社鷺宮製作所 試験装置および試験方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11982586B2 (en) 2019-08-30 2024-05-14 Nvh Technology Llc Method for measuring imbalance forces of a tire/hub assembly of vehicle during motion of the vehicle
US11480491B1 (en) * 2022-02-14 2022-10-25 Balanced Engineering Solution, Llc Method for determining vibrational anomalies of a vehicle
WO2023154363A1 (en) * 2022-02-14 2023-08-17 Balanced Engineering Solution, Llc Method for determining vibrational anomalies of a vehicle
US11656156B1 (en) 2022-09-26 2023-05-23 Balanced Engineering Solution, Llc Axle-mounted sensor cuff apparatus for determining anomalies associated with a railcar wheelset, or a railcar bogie assembly that the railcar wheelset is part of, or a track
US11731673B1 (en) 2022-09-26 2023-08-22 Balanced Engineering Solution, Llc Wheel-mounted sensor ring apparatus for determining anomalies associated with a railcar wheelset, or a railcar bogie assembly that the railcar wheelset is part of, or a track

Also Published As

Publication number Publication date
JP2021131367A (ja) 2021-09-09

Similar Documents

Publication Publication Date Title
WO2021166412A1 (ja) 信号処理方法、計測装置及び信号処理プログラム
US8136405B2 (en) Method and device for monitoring the dynamic behavior of a rotating shaft, in particular of a gas or steam turbine
JP4235107B2 (ja) ラジアルフォースバリエーションの予測方法
JP5541689B2 (ja) バランス試験における監視方法及び動バランス計測装置
CZ69297A3 (cs) Způsob analýzy stavu zařízení
CN106017758B (zh) 一种电机动静态转矩同步在线测试装置与测试方法
EP1898197A2 (en) Upgraded balancing machine for vehicle wheels
KR102224333B1 (ko) Cnc공작기계 스핀들주축의 런아웃 검사장치 및 검사방법
JP2018077216A (ja) ダイナミックバランサ
KR20220038702A (ko) 불균형 및/또는 오정렬을 감지하기 위한 방법 및 드라이브트레인 테스트 벤치
CN110044625B (zh) 一种飞轮轴承动刚度的测量方法
JP5631264B2 (ja) タイヤバランス試験方法及びタイヤバランス試験機
US8171789B2 (en) Dynamic balancing apparatus and method using simple harmonic angular motion
JP2014095660A (ja) タイヤのユニフォミティ波形の補正方法
CZ303892B6 (cs) Zpusob urcení aktuální excentricity rotujícího rotoru a diagnostika excentricity rotujícího rotoru
CN111912631A (zh) 轮胎均匀性数据的校正方法及轮胎均匀性试验机
CN211121975U (zh) 轮边电机轴承动态冲击载荷的测量装置
JP2001124666A (ja) タイヤの高速ユニフォミティ測定方法
JP4767808B2 (ja) タイヤ試験機の精度検査方法
RU2427801C2 (ru) Способ прогнозирования переменной составляющей выходного сигнала электромеханического датчика угловой скорости (дус) на этапе изготовления его гиромотора по характеристикам угловых вибраций, возбуждаемых гиромотором, и установка для реализации способа
Pedotti et al. Instrument based on MEMS accelerometer for vibration and unbalance analysis in rotating machines
KR102032491B1 (ko) 능동 진동 제어 기술을 이용한 모형 선박의 저항 계측 방법
KR20090102057A (ko) 선형 시변 각속도 모델을 이용한 동적 발란싱 장치 및 방법
JP2006516726A (ja) 軸−軸受系における不平衡を検出しかつ量的に評価する方法
CN100496886C (zh) 一种快速判定机床安装与运行性能的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920118

Country of ref document: EP

Kind code of ref document: A1