WO2021166380A1 - ファイバ構造体、光コンバイナ、レーザ光源及びレーザ装置 - Google Patents

ファイバ構造体、光コンバイナ、レーザ光源及びレーザ装置 Download PDF

Info

Publication number
WO2021166380A1
WO2021166380A1 PCT/JP2020/045358 JP2020045358W WO2021166380A1 WO 2021166380 A1 WO2021166380 A1 WO 2021166380A1 JP 2020045358 W JP2020045358 W JP 2020045358W WO 2021166380 A1 WO2021166380 A1 WO 2021166380A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber structure
optical
fiber
wire
sealing portion
Prior art date
Application number
PCT/JP2020/045358
Other languages
English (en)
French (fr)
Inventor
明理 高橋
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to US17/790,671 priority Critical patent/US20230056098A1/en
Priority to JP2022501646A priority patent/JP7266144B2/ja
Priority to EP20920356.1A priority patent/EP4060389A4/en
Priority to CN202080082545.5A priority patent/CN114761852B/zh
Publication of WO2021166380A1 publication Critical patent/WO2021166380A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium

Definitions

  • the present invention relates to a fiber structure, an optical combiner and a laser device.
  • an optical combiner is generally used in which excitation lights from a plurality of light sources are combined and incident on an optical resonance portion.
  • the optical combiner includes a first optical fiber portion having a plurality of optical fiber strands and a second optical fiber portion having one optical fiber strand, and the first optical fiber portion and the second optical fiber portion.
  • Each part has a covering part and an exposed wire wire adjacent to the covering part, the covering part has an optical fiber wire and its coating, and the exposed wire wire element is an exposed optical fiber element. Has a line. Then, the end face of the wire exposed portion of the first optical fiber portion and the end face of the wire exposed portion of the second optical fiber portion are fused and connected.
  • Patent Document 1 As such an optical combiner, for example, one disclosed in Patent Document 1 below is known.
  • the boundary between the exposed wire and the covering is sealed. It is disclosed to cover by.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fiber structure, an optical combiner, a laser light source, and a laser device capable of improving durability.
  • the present inventor has repeated studies to solve the above problems.
  • the sealing portion is made of, for example, an acrylic resin in the optical combiner
  • the sealing portion becomes hot with the passage of time. I noticed.
  • an acrylic resin is used as the sealing portion
  • the present inventor changed the sealing portion covering the boundary between the exposed wire portion and the covering portion from an acrylic resin to a fluororesin having a specific structure in the optical combiner. , Found that the above problems can be solved.
  • the present invention has a coating portion and a wire exposed portion adjacent to the coating portion, and the coating portion has an optical fiber wire and a coating that covers the optical fiber wire.
  • the wire exposed portion is a fiber structure made of an exposed optical fiber wire, and includes a sealing portion that covers the boundary between the covering portion and the wire exposed portion, and the sealing portion is described below. It is a fiber structure having a fluororesin having a structure represented by the formula (1). (In the above formula (1), R represents a divalent organic fluorine compound group, and n represents an integer of 1 or more).
  • the sealing portion has a structure represented by the above formula (1). Therefore, for example, even if high-power light is incident on the optical fiber wire of the coating portion and high-power light leaked from the optical fiber wire is incident on the sealing portion for a long time, the sealing portion is used. Light absorption is suppressed as compared with the case where an acrylic resin is used as the sealing portion. Therefore, thermal deterioration due to the temperature rise of the sealing portion is suppressed, and deterioration of the sealing performance of the sealing portion is suppressed. Therefore, it is possible to prevent moisture from entering from the boundary between the exposed wire and the coating, and the swelling of the coating due to the moisture compresses the optical fiber and deteriorates the optical characteristics of the optical fiber. Therefore, according to the fiber structure of the present invention, it is possible to improve the durability.
  • the divalent organic fluorine compound group is preferably represented by the following formula (A). -R 5- O- (A) (In the above formula (A), R 5 represents a fluorinated alkylene group having 1 to 5 carbon atoms.)
  • the sealing portion has a Si—O bond having a binding energy larger than that of the CC bond or the CH bond, the heat resistance of the sealing portion is further improved, and the fiber structure Durability can be further improved.
  • the sealing portion has a Si—O bond and a CF bond having a binding energy larger than that of the CC bond and the CH bond, the heat resistance of the sealing portion is further improved.
  • the durability of the fiber structure can be further improved.
  • the optical fiber strand has a core and a clad surrounding the core, and the refractive index of the sealing portion is smaller than the refractive index of the clad.
  • the present invention is an optical combiner including a first fiber structure and a second fiber structure, wherein the first fiber structure and the second fiber structure are made of the above-mentioned fiber structure.
  • the covering portion and the wire exposed portion have a plurality of the optical fiber strands
  • the covering portion and the wire exposed portion have one.
  • Light having the optical fiber wire of the book, and the end face of the wire exposed portion of the first fiber structure and the end face of the wire exposed portion of the second fiber structure are fused and connected. It is a combiner.
  • the sealing portion of the first fiber structure and the second fiber structure has a structure represented by the above formula (1). Therefore, for example, even if high-power light is incident on the optical fiber wire of the coating portion and the light leaked from the optical fiber wire is incident on the sealing portion for a long time, the sealing portion absorbs the light. However, this is suppressed as compared with the case where an acrylic resin is used as the sealing portion. Therefore, since thermal deterioration due to the temperature rise of the sealing portion is suppressed, it is possible to improve the durability of the first fiber structure and the second fiber structure. Therefore, it is possible to improve the durability of the optical combiner of the present invention.
  • the Young's modulus of the sealing portion is preferably 10 MPa or less.
  • the first fiber structure of the optical combiner when light is incident on, for example, the first fiber structure of the optical combiner and emitted from the second fiber structure of the optical combiner, it is emitted as compared with the case where the Young's modulus of the sealing portion exceeds 10 MPa.
  • the beam quality of light can be further improved.
  • the optical combiner includes an accommodating portion for accommodating the first fiber structure and the second fiber structure, a first fixing portion for fixing the first fiber structure to the accommodating portion, and the second fiber structure.
  • the first fixing portion is bonded to the sealing portion in the first fiber structure
  • the second fixing portion is bonded to the sealing portion in the first fiber structure. It is preferable that the two fixing portions are adhered to the sealing portion, and the first fixing portion and the second fixing portion have a larger adhesive strength than the sealing portion with respect to the accommodating portion.
  • the first fiber structure and the second fiber structure are fixed to the accommodating portion by the first fixing portion and the second fixing portion having an adhesive strength higher than that of the sealing portion with respect to the accommodating portion.
  • the fixing of the 1-fiber structure and the 2nd fiber structure to the accommodating portion is reinforced. Therefore, the separation between the first fiber structure and the second fiber structure and the accommodating portion can be suppressed.
  • the sealing portion of the first fiber structure is fixed to the accommodating portion and the sealing portion of the second fiber structure is fixed to the accommodating portion.
  • the adhesive strength between the first fiber structure and the accommodating portion and the adhesive strength between the second fiber structure and the accommodating portion can be further increased.
  • the present invention is an optical resonance unit that emits light having a specific wavelength as laser light based on the light emitted from the optical combiner described above and the optical fiber strand of the second fiber structure of the optical combiner.
  • a laser light source including an excitation light source for incidenting excitation light on each of a plurality of the optical fiber strands of the first fiber structure of the optical combiner.
  • excitation light is incident on each of a plurality of optical fiber strands of the first fiber structure of the optical combiner from the excitation light source, and from the optical fiber strands of the second fiber structure of the optical combiner. Based on the emitted light, light having a specific wavelength is emitted as laser light from the optical resonance portion. At this time, even if the excitation light incident on the optical combiner has a high output, it is possible to improve the durability of the optical combiner. Therefore, it is possible to improve the durability of the laser light source of the present invention.
  • the present invention is a laser apparatus comprising a plurality of laser light sources and an optical combiner that combines and emits laser light incident from the plurality of laser light sources, wherein the optical combiner comprises the above-mentioned optical combiner. be.
  • laser light from a plurality of laser light sources is incident on the first fiber structure of the optical combiner, combined, and emitted as laser light from the second fiber structure.
  • the optical combiner is composed of the above-mentioned optical combiner, and the durability can be improved. Therefore, it is possible to improve the durability of the laser apparatus of the present invention.
  • the laser light source comprises the above-mentioned laser light source.
  • the laser light source comprises the above-mentioned laser light source and has an optical combiner capable of improving durability. Therefore, the laser device of the present invention can further improve the durability.
  • the refractive index refers to the refractive index at the wavelength of light incident on the optical fiber strand.
  • a fiber structure, an optical combiner, a laser light source, and a laser device capable of improving durability are provided.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG. It is sectional drawing along the IV-IV line of FIG. It is an enlarged view which shows the optical fiber wire of FIG. It is a graph which shows the time-dependent change of the light transmittance of the sheet made of a fluororesin and the sheet made of an acrylic resin having a structure represented by the formula (1) at 150 ° C.
  • FIGS. 1 to 5 are plan views showing an embodiment of an optical combiner of the present invention
  • FIG. 2 is an end view of a partially cut surface along line II-II of FIG. 1
  • FIG. 3 is a view of line III-III of FIG. A cross-sectional view taken along the line
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. 1
  • FIG. 5 is an enlarged view showing an optical fiber wire of FIG.
  • the optical combiner 100 includes a first fiber structure 101, a second fiber structure 102, a first fiber structure 101, and a second fiber structure 102.
  • the accommodating portion 10 is provided with, a first fixing portion 30 for fixing the first fiber structure 101 to the accommodating portion 10, and a second fixing portion 30 for fixing the second fiber structure 102 to the accommodating portion 10. ..
  • the first fiber structure 101 has a covering portion 101A and a wire exposed portion 101B adjacent to the covering portion 101A.
  • the covering portion 101A has a plurality of optical fiber strands 21 and a coating 22 that covers each of the plurality of optical fiber strands 21 (see FIG. 3), and the strand exposed portion 101B is exposed. It is composed of a plurality of optical fiber strands 21.
  • the plurality of optical fiber strands 21 are optical fiber strands common to the covering portion 101A and the strand exposed portion 101B. That is, the extension portion of the optical fiber wire 21 of the covering portion 101A is configured as the optical fiber wire 21 of the wire exposed portion 101B.
  • the optical fiber wire 21 in the covering portion 101A and the wire exposed portion 101B and the coating 22 in the covering portion 101A will be collectively referred to as an optical fiber 20.
  • the second fiber structure 102 has a covering portion 102A and a wire exposed portion 102B adjacent to the covering portion 102A.
  • the coating portion 102A has one optical fiber wire 21 and a coating 22 that covers one optical fiber wire 21 (see FIG. 4), and the wire exposed portion 102B is exposed. It is composed of an optical fiber wire 21.
  • one optical fiber wire 21 is an optical fiber wire common to the covering portion 102A and the wire exposed portion 102B. That is, the extension portion of the optical fiber wire 21 of the covering portion 102A is configured as the optical fiber wire 21 of the wire exposed portion 102B.
  • the optical fiber wire 21 in the covering portion 102A and the wire exposed portion 102B and the coating 22 in the covering portion 102A will be collectively referred to as an optical fiber 20.
  • the optical fiber wire 21 has a core 21a and a clad 21b surrounding the core 21a, and the light incident on the optical combiner 100 is the first fiber structure. It passes through the core 21a of the optical fiber wire 21 of 101 and passes through the core 21a of the optical fiber wire 21 of the second fiber structure 102. In this way, the first fiber structure 101 and the second fiber structure 102 are accommodated in the accommodating groove 11 of the accommodating portion 10 in a state of being lightly coupled.
  • the first fiber structure 101 includes a sealing portion 40 that covers the boundary B1 between the covering portion 101A and the wire exposed portion 101B.
  • the boundary B1 refers to a boundary when the first fiber structure 101 is viewed in a plan view.
  • the sealing portion 40 of the first fiber structure 101 covers one end of the covering portion 101A and one end of the wire exposed portion 101B. Therefore, the sealing portion 40 covering one end of the wire exposed portion 101B is in contact with the clad 21b of the optical fiber wire 21.
  • the second fiber structure 102 also includes a sealing portion 40 that covers the boundary B2 between the covering portion 102A and the wire exposed portion 102B.
  • the boundary B2 refers to a boundary when the second fiber structure 102 is viewed in a plan view.
  • the sealing portion 40 of the second fiber structure 102 covers one end of the covering portion 102A and one end of the wire exposed portion 102B. Therefore, the sealing portion 40 covering one end of the wire exposed portion 102B is in contact with the clad 21b of the optical fiber wire 21.
  • the sealing portion 40 contains a fluororesin having a structure represented by the following formula (1).
  • R represents a divalent organic fluorine compound group, and n represents an integer of 1 or more.
  • the sealing portion 40 is adhered to the bottom surface 11a of the housing groove 11 of the housing portion 10 and the two side surfaces 11b extending from both edges of the bottom surface 11a (see FIGS. 3 and 4).
  • the sealing portion 40 is adhered to the first fixing portion 30 and the second fixing portion 30, respectively.
  • the first fixing portion 30 and the second fixing portion 30 have a higher adhesive strength than the sealing portion 40 with respect to the accommodating portion 10.
  • the sealing portion 40 in the first fiber structure 101 contains a fluororesin having a structure represented by the above formula (1). Therefore, for example, even if high-power light is incident on the optical fiber wire 21 of the covering portion 101A and high-power light leaking from the optical fiber wire 21 is incident on the sealing portion 40 for a long time, Absorption of high-power light by the sealing portion 40 is suppressed as compared with the case where an acrylic resin is used as the sealing portion 40. Therefore, in the first fiber structure 101, thermal deterioration due to a temperature rise of the sealing portion 40 is suppressed, and deterioration of the sealing performance of the sealing portion 40 is suppressed. Therefore, moisture may enter from the boundary B1 between the exposed wire wire 101B and the covering portion 101A, and the swelling of the coating 22 due to the moisture may compress the optical fiber wire 21 and deteriorate the optical characteristics of the optical fiber wire 21. It is suppressed.
  • the sealing portion 40 in the second fiber structure 102 contains a fluororesin having a structure represented by the above formula (1). Therefore, high-power light is incident on the optical fiber wire 21 of the wire exposed portion 102B from the wire exposed portion 101B of the first fiber structure 101, and leaks from the optical fiber wire 21. Is incident on the sealing portion 40 for a long time, the absorption of high-power light by the sealing portion 40 is suppressed as compared with the case where an acrylic resin is used as the sealing portion 40. Therefore, in the second fiber structure 102, thermal deterioration due to the temperature rise of the sealing portion 40 is suppressed, and deterioration of the sealing performance of the sealing portion 40 is suppressed.
  • moisture may enter from the boundary B2 between the exposed wire wire 102B and the covering portion 102A, and the swelling of the coating 22 due to the moisture may compress the optical fiber wire 21 and deteriorate the optical characteristics of the optical fiber wire 21. It is suppressed.
  • the sealing portion 40 is adhered to the first fixing portion 30 and the second fixing portion 30, respectively, and the first fixing portion 30 and the second fixing portion 30 are bonded to each other.
  • Reference numeral 30 has a higher adhesive strength than the sealing portion 40 with respect to the accommodating portion 10.
  • the first fixed portion 30 and the second fixed portion 30 in which the first fiber structure 101 and the second fiber structure 102 have an adhesive strength greater than that of the sealing portion 40 with respect to the accommodating portion 10 are contained in the accommodating portion 10.
  • the fixing of the first fiber structure 101 and the second fiber structure 102 to the accommodating portion 10 is reinforced. Therefore, the separation between the first fiber structure 101 and the second fiber structure 102 and the accommodating portion 10 can be suppressed.
  • the sealing portion 40 of the first fiber structure 101 is fixed to the bottom surface 11a of the accommodating groove 11 of the accommodating portion 10, and the sealing portion 40 of the second fiber structure 102 is the accommodating groove 11 of the accommodating portion 10. It is fixed to two side surfaces 11b extending from both edges of the bottom surface 11a. Therefore, the adhesive strength between the first fiber structure 101 and the accommodating portion 10 and the adhesive strength between the second fiber structure 102 and the accommodating portion 10 can be further increased.
  • the accommodating portion 10 the optical fiber 20, the first fixing portion 30, the second fixing portion 30, and the sealing portion 40 in the optical combiner 100 will be described in detail.
  • the material constituting the accommodating portion 10 is not particularly limited and may be either a resin or an inorganic material, but it is preferably composed of an inorganic material.
  • the inorganic material is harder than the resin, the first fiber structure 101 and the second fiber structure 102 can be protected from external force, impact, and vibration.
  • the inorganic material has a smaller coefficient of thermal expansion than the resin, thermal expansion or thermal contraction due to a change in the ambient temperature environment is suppressed, and generation of microbends in the optical fiber 20 is suppressed, and the optical fiber 20 is suppressed. It is possible to suppress the deterioration of the optical characteristics in.
  • Examples of such an inorganic material include glass materials such as Neoceram (registered trademark) and quartz.
  • the optical fiber 20 has an optical fiber wire 21 and a coating 22.
  • the coating 22 is preferably made of a material having a refractive index smaller than that of the clad 21b of the optical fiber wire 21. Examples of the material constituting the coating 22 include silicon resin and polyamide resin.
  • the first fixing portion 30 and the second fixing portion 30 may be made of a material capable of fixing the first fiber structure 101 and the second fiber structure 102 to the accommodating portion 10.
  • Examples of the material constituting the first fixing portion 30 and the second fixing portion 30 include a silicon resin and an epoxy resin.
  • the sealing portion 40 contains a fluororesin having a structure represented by the above formula (1).
  • This fluororesin can be obtained by cross-linking a cross-linking compound having a structure represented by the following formula (2) in the main chain by ultraviolet rays or heating.
  • R represents a divalent organic fluorine compound group
  • n represents an integer of 1 or more
  • R 1 to R 4 independently represent an organic group.
  • R in the above formulas (1) and (2) may be a divalent organic fluorine compound group.
  • the divalent organic fluorine compound group a group represented by the following formula (A) is preferable.
  • -R 5- O- (A) (In the above formula (A), R 5 represents a fluorinated alkylene group having 1 to 5 carbon atoms.)
  • the sealing portion 40 since the sealing portion 40 has a Si—O bond having a binding energy larger than that of the CC bond or the CH bond, the heat resistance of the sealing portion 40 is further improved, and the first The durability of the fiber structure 101 and the second fiber structure 102 can be further improved.
  • the fluorinated alkylene group may be one in which at least a part of hydrogen atoms of the alkylene group is substituted with a fluorine atom, but it is preferable that all the hydrogen atoms of the alkylene group are substituted with fluorine atoms. ..
  • Such fluorinated alkylene group, -CF 2 -CF (CF 3) -, - CF 2 -, - CF 2 -CF 2 - or -CF 2 -CF 2 -CF 2 -CF 2 - is more preferable.
  • the sealing portion 40 since the sealing portion 40 has a CF bond and a Si—O bond having a binding energy larger than that of the CC bond and the CH bond, the heat resistance of the sealing portion 40 becomes higher. It can be further improved, and the durability of the first fiber structure 101 and the second fiber structure 102 can be further improved.
  • the plurality of Rs may be the same or different from each other.
  • Examples thereof include a group having a group and a hydrocarbon group such as an alkyl group.
  • the sealing portion 40 contains the above-mentioned fluororesin, the absorption of light is suppressed for a long time in a high temperature environment as compared with the case where the sealing portion 40 is made of an acrylic resin, the following is performed. Experiment was conducted.
  • a crosslinkable compound (product name "SIFEL”, manufactured by Shin-Etsu Chemical Co., Ltd.) having R as -CF 2- CF (CF 3 ) -O- in the formula (2) is crosslinked to a thickness of 0.5 mm.
  • Sheet was prepared.
  • a sheet having a thickness of 0.5 mm was similarly prepared from acrylic resin. Then, the light transmittance when these sheets were stored at 150 ° C. was measured, and the change with time of the light transmittance at a wavelength of 1070 nm was measured. The results are shown in Table 1, Table 2 and FIG.
  • the fluororesin is maintained at a high light transmittance even after being stored at a high temperature of 150 ° C. for a long time, unlike the acrylic resin. I understand. Further, from the results shown in Tables 1, 2 and 7, it can be seen that the increase in the light absorption rate of the fluororesin is sufficiently smaller than that of the acrylic resin even after about 900 hours have passed. Here, the amount of increase in the light absorption rate indicates the degree of deterioration of the sealing portion 40 due to heat.
  • the sealing portion 40 contains the above-mentioned fluororesin, it can be seen that the absorption of light is suppressed for a long time in a high temperature environment as compared with the case where the sealing portion 40 is an acrylic resin. ..
  • the content of the fluororesin in the sealing portion 40 is not particularly limited, but is usually 50% by mass or more.
  • the content of the fluororesin in the sealing portion 40 is preferably 80% by mass or more, and particularly preferably 100% by mass, from the viewpoint of improving the sealing performance.
  • the refractive index of the sealing portion 40 is not particularly limited, but it is preferably smaller than the refractive index of the clad 21b. In this case, it is possible to confine the light in the optical fiber wire 21.
  • the Young's modulus of the sealing portion 40 is not particularly limited, but is preferably 10 MPa or less.
  • the Young's modulus of the sealing portion 40 exceeds 10 MPa, as compared with the case where the Young's modulus of the sealing portion 40 exceeds 10 MPa. , The beam quality of the emitted light can be further improved.
  • the Young's modulus of the sealing portion 40 is more preferably 10 MPa or less, and particularly preferably 1 MPa or less.
  • the Young's modulus of the sealing portion 40 is preferably 1 kPa or more because the shape of the sealing portion 40 is maintained.
  • the Young's modulus of the sealing portion 40 is more preferably 1 kPa or more, and particularly preferably 5 kPa or more.
  • the Young's modulus refers to a value at room temperature (23 ° C.).
  • a plurality of coated optical fibers in which the optical fiber strands 21 are coated with a coating over the entire length are prepared, and only the coating is removed from the ends of the plurality of coated optical fibers to obtain the optical fiber 20. Then, the exposed portion of the optical fiber wire 21 of the optical fiber 20 is bundled to form the wire exposed portion 101B, and the portion of the optical fiber wire 21 covered with the coating 22 is bundled to form the covering portion 101A. do. In this way, the first optical fiber section is prepared.
  • the optical fiber 20 is obtained in the same manner as the first optical fiber section.
  • the exposed optical fiber wire 21 of the optical fiber 20 becomes the wire exposed portion 102B, and the optical fiber wire 21 covered with the coating 22 becomes the covering portion 102A.
  • the second optical fiber section is prepared.
  • the end surface 20A of the wire exposed portion 101B of the first optical fiber portion and the end surface 20B of the wire exposed portion B of the second optical fiber portion are fused and connected to form a fiber connector.
  • the accommodating portion 10 having the accommodating groove 11 is prepared, and the above-mentioned fiber connector is accommodated in the accommodating groove 11.
  • the above-mentioned first optical fiber portion is fixed to the accommodating portion 10 by the first fixing portion 30, and the above-mentioned second optical fiber portion is fixed to the accommodating portion 10 by the second fixing portion 30.
  • a crosslinkable compound serving as a precursor of the sealing portion 40 is applied so as to cover the boundary B1 between the covering portion 101A of the first optical fiber portion and the exposed wire exposed portion 101B.
  • the precursor of the sealing portion 40 is applied so as to come into contact with the two side surfaces 11b extending from both the bottom surface 11a and the bottom surface 11a of the accommodating groove 11 and the first fixing portion 30.
  • the crosslinkable compound is then crosslinked, for example by heating or ultraviolet light. In this way, the sealing portion 40 is formed, and the first fiber structure 101 is obtained. At this time, the sealing portion 40 is adhered to the bottom surface 11a of the accommodating groove 11, the two side surfaces 11b, and the first fixing portion 30.
  • a crosslinkable compound serving as a precursor of the sealing portion 40 is applied so as to cover the boundary B2 between the covering portion 102A of the second optical fiber portion and the wire exposed portion 102B.
  • the precursor of the sealing portion 40 is applied so as to come into contact with the two side surfaces 11b extending from both edges of the bottom surface 11a and the bottom surface 11a of the accommodating groove 11 and the second fixing portion 30.
  • the crosslinkable compound is then crosslinked, for example by heating or ultraviolet light. In this way, the sealing portion 40 is formed, and the second fiber structure 102 is obtained. At this time, the sealing portion 40 is adhered to the bottom surface 11a of the accommodating groove 11, the two side surfaces 11b, and the second fixing portion 30.
  • the optical combiner 100 can be obtained as described above.
  • the crosslinkable compound is usually a liquid, it can be easily applied even in a narrow space in the accommodating groove 11. Further, since the crosslinkable compound has a smaller curing shrinkage during curing than an acrylic resin or the like, bending deformation applied to the optical fiber 20 during curing can be reduced, and the quality of the beam emitted from the obtained optical combiner 100 deteriorates. Can be suppressed.
  • FIG. 8 is a schematic view showing an embodiment of the laser light source of the present invention.
  • the laser light source 200 uses light of a specific wavelength as laser light based on the light emitted from the optical combiner 100 and the optical fiber strand 21 of the second fiber structure 102 of the optical combiner 100.
  • excitation light is incident on each of the optical fiber strands 21 of the plurality of optical fibers 20 of the first fiber structure 101 of the optical combiner 100 from the excitation light sources D1 to D7, and the optical combiner 100 is used.
  • the optical combiner 100 Based on the light emitted from the optical fiber strand 21 of the optical fiber 20 of the second fiber structure 102, light having a specific wavelength is emitted from the optical resonance portion 201 as laser light, and this laser light is emitted from the output fiber 205. Is output from.
  • the optical combiner 100 can improve the durability. Therefore, it is possible to improve the durability of the laser light source 200.
  • the excitation light sources D1 to D7 may be any one that emits excitation light, and as the excitation light sources D1 to D7, for example, a laser diode or the like can be used.
  • the optical resonance unit 201 includes an amplification optical fiber 202, a first reflection unit 203 provided at one end thereof, and a second reflection unit 204 provided at the other end.
  • the first reflection unit 203 is connected to the optical fiber 20 of the second fiber structure 102 of the optical combiner 100 by the input unit 201A
  • the second reflection unit 204 is connected to the output fiber 205 by the output unit 201B.
  • the optical resonance unit 201 naturally emitted light is generated by the incident excitation light, and among the generated naturally emitted light, light having a specific wavelength selectively reflected by the first reflecting unit 203 and the second reflecting unit 204 is emitted. Stimulated emission of light occurs as a seed, and by repeating this stimulated emission, light of a specific wavelength is output as laser light.
  • the first reflection unit 203 and the second reflection unit 204 are composed of, for example, a fiber bragg grating (FBG) or the like.
  • FBG fiber bragg grating
  • the amplification optical fiber 202 is composed of a rare earth element-added optical fiber.
  • the rare earth element is not particularly limited, but as the rare earth element, for example, ytterbium (Yb) or the like is used.
  • the number of excitation light sources D1 to D7 is 7, but it is not limited to 7. It can be appropriately changed according to the number of optical fibers 20 included in the first fiber structure 101 of the optical combiner 100.
  • FIG. 9 is a schematic view showing an embodiment of the laser apparatus of the present invention.
  • the laser apparatus 300 combines and outputs a plurality of laser light sources L1 to L7, laser light incident from the plurality of laser light sources L1 to L7, and an optical combiner 100, and a first of the optical combiners 100.
  • the optical fiber 20 of the two-fiber structure 102 is provided with an output fiber 301 connected by a connecting portion 302.
  • laser light from a plurality of laser light sources L1 to L7 is incident on the first fiber structure 101 of the optical combiner 100, coupled, and emitted from the optical fiber 20 of the second fiber structure 102.
  • This emitted light is output from the output fiber 301.
  • the optical combiner 100 can improve the durability as described above. Therefore, it is possible to improve the durability of the laser device 300.
  • the laser light sources L1 to L7 may be any laser light source, and the laser light sources L1 to L7 include, for example, a laser diode, a CO 2 laser, a YAG laser, and the above-mentioned laser light source 200. Can be mentioned. Above all, the laser light sources L1 to L7 preferably include the above-mentioned laser light source 200. In this case, the output fiber 205 of the laser light source 200 is connected to the optical fiber 20 of the first fiber structure 101 of the optical combiner 100.
  • the laser light sources L1 to L7 are composed of the above-mentioned laser light sources 200, and have an optical combiner 100 capable of improving durability. Therefore, the laser device 300 can be further improved in durability.
  • the present invention is not limited to the above embodiment.
  • the first fixing portion 30 and the second fixing portion 30 are adhered to the sealing portion 40, but as in the optical combiner 400 shown in FIG. 10, the first fixing portion 30 and the second fixing portion 30 are attached. Each of 30 may be separated from the sealing portion 40.
  • the sealing portion 40 of the first fiber structure 101 and the sealing portion 40 of the second fiber structure 102 are both fixed to the accommodating portion 10, but the first fiber structure 101 Either or both of the sealing portion 40 and the sealing portion 40 of the second fiber structure 102 may not be fixed to the accommodating portion 10.
  • the first fixing portion 30 and the second fixing portion 30 have a higher adhesive strength than the sealing portion 40 with respect to the accommodating portion 10, but the first fixing portion 30 and the second fixing portion 30 have a higher adhesive strength. , It may have an adhesive strength of the sealing portion 40 or less with respect to the accommodating portion 10.
  • first fixing portion 30 and the second fixing portion 30 may be omitted.
  • the optical combiner 100 has the accommodating portion 10, but the accommodating portion 10 may be omitted.
  • the sealing portion 40 is adhered to the bottom surface 11a of the accommodating groove 11 and the two side surfaces 11b, but may not be adhered to the bottom surface 11a of the accommodating groove 11, and the accommodating groove 11 may not be adhered. It may be separated from. Alternatively, the sealing portion 40 may be adhered only to the bottom surface 11a and not to the side surface 11b.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Lasers (AREA)

Abstract

ファイバ構造体は、被覆部と、被覆部に隣接する素線露出部とを有する。被覆部は、光ファイバ素線と、光ファイバ素線を被覆する被覆とを有し、素線露出部は、露出された光ファイバ素線からなる。ファイバ構造体は、被覆部と素線露出部との境界を覆う封止部を備えており、封止部は、下記式(1)で表される構造を有するフッ素樹脂を含む。 (式(1)中、Rは、二価の有機フッ素化合物基を表し、nは1以上の整数を表す。)

Description

ファイバ構造体、光コンバイナ、レーザ光源及びレーザ装置
 本発明は、ファイバ構造体、光コンバイナ及びレーザ装置に関する。
 高出力ファイバレーザなどのレーザ光源においては一般に、複数の光源からの励起光を合波させて光共振部へ入射させる光コンバイナが用いられる。
 光コンバイナは、複数本の光ファイバ素線を有する第1光ファイバ部と、1本の光ファイバ素線を有する第2光ファイバ部とを備えており、第1光ファイバ部及び第2光ファイバ部はそれぞれ、被覆部と、被覆部に隣接する素線露出部とを有し、被覆部は、光ファイバ素線とその被覆とを有し、素線露出部は、露出された光ファイバ素線を有する。そして、第1光ファイバ部の素線露出部の端面と、第2光ファイバ部の素線露出部の端面とが融着接続されている。
 このような光コンバイナとして、例えば下記特許文献1に開示されているものが知られている。同文献には、素線露出部と被覆部との境界に湿気が入ることにより光ファイバの光学特性が低下することを抑制するために、素線露出部と被覆部との境界を封止部によって覆うことが開示されている。
特開2017-191298号公報
 しかし、上記特許文献1に記載の光コンバイナは、耐久性の点で改善の余地を有していた。
 本発明は、上記事情に鑑みてなされたものであり、耐久性を向上させることができるファイバ構造体、光コンバイナ、レーザ光源及びレーザ装置を提供することを目的とする。
 本発明者は、上記課題を解決するため検討を重ねた。その過程で、本発明者は、光コンバイナにおいて封止部が例えばアクリル樹脂で構成される場合には、高出力の光を光コンバイナに入射させると、封止部が時間の経過とともに熱くなることに気付いた。このことから、封止部としてアクリル樹脂を使用した場合、光コンバイナに長時間にわたって高出力の光を入射させると、光が時間の経過につれて吸収されやすくなり、その結果、封止部が時間の経過とともに熱くなるのではないかと考えた。そこで、本発明者はさらに鋭意研究を重ねた結果、光コンバイナにおいて、素線露出部と被覆部との境界を覆う封止部を、アクリル樹脂から、特定の構造を有するフッ素樹脂にすることで、上記課題を解決し得ることを見出した。
 すなわち、本発明は、被覆部と、前記被覆部に隣接する素線露出部とを有し、前記被覆部が、光ファイバ素線と、前記光ファイバ素線を被覆する被覆とを有し、前記素線露出部が、露出された光ファイバ素線からなるファイバ構造体であって、前記被覆部と前記素線露出部との境界を覆う封止部を備え、前記封止部が、下記式(1)で表される構造を有するフッ素樹脂を有する、ファイバ構造体である。
Figure JPOXMLDOC01-appb-C000002
(前記式(1)中、Rは、二価の有機フッ素化合物基を表し、nは1以上の整数を表す。)である。
 上記ファイバ構造体によれば、封止部が上記式(1)で表される構造を有する。このため、例えば高出力の光が被覆部の光ファイバ素線に入射されて、光ファイバ素線から漏れ出た高出力の光が長時間にわたって封止部に入射されても、封止部による光の吸収が、封止部としてアクリル樹脂を用いる場合に比べて抑制される。このため、封止部の温度上昇による熱劣化が抑制され、封止部の封止性能の低下が抑制される。従って、湿気が素線露出部と被覆部との境界から入り込み、その湿気による被覆の膨潤によって光ファイバ素線が圧迫されて光ファイバ素線の光学特性が低下することが抑制される。よって、本発明のファイバ構造体によれば、耐久性を向上させることが可能となる。
 上記ファイバ構造体においては、前記二価の有機フッ素化合物基が下記式(A)で表されることが好ましい。
-R-O-          (A)
(前記式(A)中、Rは、炭素数1~5のフッ化アルキレン基を表す。)
 この場合、封止部が、C-C結合やC-H結合よりも大きな結合エネルギーを有するSi-O結合を有することとなるため、封止部の耐熱性がより向上し、ファイバ構造体の耐久性をより向上させることができる。
 上記ファイバ構造体においては、前記フッ化アルキレン基が、-CF-CF(CF)-、-CF-、-CF-CF-又は-CF-CF-CF-であることが好ましい。
 この場合、封止部が、C-C結合やC-H結合よりも大きな結合エネルギーを有するSi-O結合及びC-F結合を有することとなるため、封止部の耐熱性がより一層向上し、ファイバ構造体の耐久性をより一層向上させることができる。
 上記ファイバ構造体においては、前記光ファイバ素線が、コアと、前記コアを包囲するクラッドとを有し、前記封止部の屈折率が、前記クラッドの屈折率よりも小さいことが好ましい。
 この場合、光ファイバ素線内にレーザ光を効果的に閉じ込めることが可能となる。
 また本発明は、第1ファイバ構造体と、第2ファイバ構造体とを備える光コンバイナであって、前記第1ファイバ構造体及び前記第2ファイバ構造体が、上述したファイバ構造体からなり、前記第1ファイバ構造体においては、前記被覆部及び前記素線露出部が複数本の前記光ファイバ素線を有し、前記第2ファイバ構造体においては、前記被覆部及び前記素線露出部が1本の前記光ファイバ素線を有し、前記第1ファイバ構造体の前記素線露出部の端面と、前記第2ファイバ構造体の前記素線露出部の端面とが融着接続されている光コンバイナである。
 この光コンバイナによれば、第1ファイバ構造体及び第2ファイバ構造体の封止部が上記式(1)で表される構造を有する。このため、例えば高出力の光が被覆部の光ファイバ素線に入射されて、光ファイバ素線から漏れ出た光が長時間にわたって封止部に入射されても、封止部による光の吸収が、封止部としてアクリル樹脂を用いる場合に比べて抑制される。このため、封止部の温度上昇による熱劣化が抑制されるため、第1ファイバ構造体及び第2ファイバ構造体の耐久性を向上させることが可能となる。従って、本発明の光コンバイナの耐久性を向上させることが可能となる。
 上記光コンバイナにおいては、前記封止部のヤング率が10MPa以下であることが好ましい。
 この場合、光が例えば光コンバイナの第1ファイバ構造体に入射され、光コンバイナの第2ファイバ構造体から出射されると、封止部のヤング率が10MPaを超える場合に比べて、出射される光のビーム品質をより向上させることができる。
 上記光コンバイナは、前記第1ファイバ構造体及び前記第2ファイバ構造体を収容する収容部と、前記第1ファイバ構造体を前記収容部に固定する第1固定部と、前記第2ファイバ構造体を前記収容部に固定する第2固定部とをさらに備え、前記第1ファイバ構造体においては、前記第1固定部が前記封止部と接着され、前記第2ファイバ構造体においては、前記第2固定部が前記封止部と接着され、前記第1固定部及び前記第2固定部が、前記収容部に対して前記封止部よりも大きい接着強度を有することが好ましい。
 この場合、第1ファイバ構造体及び第2ファイバ構造体が、収容部に対して封止部より大きい接着強度を有する第1固定部及び第2固定部で収容部に固定されることで、第1ファイバ構造体及び第2ファイバ構造体の収容部への固定が補強される。このため、第1ファイバ構造体及び第2ファイバ構造体と収容部との分離を抑制することができる。
 上記光コンバイナにおいては、前記第1ファイバ構造体の前記封止部が前記収容部に固定され、前記第2ファイバ構造体の前記封止部が前記収容部に固定されていることが好ましい。
 この場合、第1ファイバ構造体と収容部との接着強度、及び、第2ファイバ構造体と収容部との接着強度をより高めることができる。
 また、本発明は、上述した光コンバイナと、前記光コンバイナの前記第2ファイバ構造体の前記光ファイバ素線から出射される光に基づいて特定の波長の光をレーザ光として出射させる光共振部と、前記光コンバイナの前記第1ファイバ構造体の複数本の前記光ファイバ素線の各々に励起光を入射させる励起光源とを備えるレーザ光源である。
 このレーザ光源によれば、励起光源から、光コンバイナの第1ファイバ構造体の複数本の光ファイバ素線の各々に励起光が入射され、光コンバイナの第2ファイバ構造体の光ファイバ素線から出射される光に基づいて特定の波長の光が光共振部からレーザ光として出射される。このとき、光コンバイナに入射される励起光が高出力であっても、光コンバイナの耐久性を向上させることが可能となる。従って、本発明のレーザ光源の耐久性を向上させることが可能となる。
 さらに、本発明は、複数のレーザ光源と、前記複数のレーザ光源から入射されるレーザ光を結合して出射させる光コンバイナとを備え、前記光コンバイナが、上述した光コンバイナからなる、レーザ装置である。
 このレーザ装置によれば、複数のレーザ光源からレーザ光が光コンバイナの第1ファイバ構造体に入射され、結合されて第2ファイバ構造体からレーザ光として出射される。このとき、光コンバイナが、上述した光コンバイナからなり、耐久性を向上させることが可能となる。従って、本発明のレーザ装置の耐久性を向上させることが可能となる。
 上記レーザ装置においては、前記レーザ光源が、上述したレーザ光源からなることが好ましい。
 この場合、レーザ光源が、上述したレーザ光源からなり、耐久性を向上させることが可能な光コンバイナを有する。このため、本発明のレーザ装置は、耐久性をより向上させることが可能となる。
 なお、本発明において、屈折率は、光ファイバ素線に入射される光の波長における屈折率をいう。
 本発明によれば、耐久性を向上させることが可能なファイバ構造体、光コンバイナ、レーザ光源及びレーザ装置が提供される。
本発明の光コンバイナの一実施形態を示す平面図である。 図1のII-II線に沿った部分切断面端面図である。 図1のIII-III線に沿った断面図である。 図1のIV-IV線に沿った断面図である。 図3の光ファイバ素線を示す拡大図である。 式(1)で表される構造を有するフッ素樹脂からなるシート及びアクリル樹脂からなるシートの150℃における光透過率の経時変化を示すグラフである。 式(1)で表される構造を有するフッ素樹脂からなるシート及びアクリル樹脂からなるシートの150℃における光吸収率の増加量の経時変化を示すグラフである。 本発明のレーザ光源の一実施形態を示す概略図である。 本発明のレーザ装置の一実施形態を示す概略図である。 本発明の光コンバイナの他の実施形態を示す部分切断面端面図である。
 <光コンバイナ>
 以下、本発明の光コンバイナの実施形態について図1~5を参照しながら詳細に説明する。図1は、本発明の光コンバイナの一実施形態を示す平面図、図2は、図1のII-II線に沿った部分切断面端面図、図3は、図1のIII-III線に沿った断面図、図4は、図1のIV-IV線に沿った断面図、図5は、図3の光ファイバ素線を示す拡大図である。
 図1及び図2に示すように、光コンバイナ100は、第1ファイバ構造体101と、第2ファイバ構造体102と、第1ファイバ構造体101及び第2ファイバ構造体102を収容する収容溝11を有する収容部10と、第1ファイバ構造体101を収容部10に固定する第1固定部30と、第2ファイバ構造体102を収容部10に固定する第2固定部30とを備えている。
 第1ファイバ構造体101は、被覆部101Aと、被覆部101Aに隣接する素線露出部101Bとを有している。被覆部101Aは、複数本の光ファイバ素線21と、複数本の光ファイバ素線21の各々を被覆する被覆22とを有しており(図3参照)、素線露出部101Bは、露出された複数本の光ファイバ素線21からなる。ここで、複数本の光ファイバ素線21は被覆部101A及び素線露出部101Bに共通の光ファイバ素線である。すなわち、被覆部101Aの光ファイバ素線21の延長部が素線露出部101Bの光ファイバ素線21として構成されている。なお、以下、被覆部101A及び素線露出部101Bにおける光ファイバ素線21と被覆部101Aにおける被覆22とからなるものをまとめて光ファイバ20と呼ぶこととする。
 一方、第2ファイバ構造体102は、被覆部102Aと、被覆部102Aに隣接する素線露出部102Bとを有している。被覆部102Aは、1本の光ファイバ素線21と、1本の光ファイバ素線21を被覆する被覆22とを有しており(図4参照)、素線露出部102Bは、露出された光ファイバ素線21からなる。ここで、1本の光ファイバ素線21は被覆部102A及び素線露出部102Bに共通の光ファイバ素線である。すなわち、被覆部102Aの光ファイバ素線21の延長部が素線露出部102Bの光ファイバ素線21として構成されている。なお、以下、被覆部102A及び素線露出部102Bにおける光ファイバ素線21と被覆部102Aにおける被覆22とからなるものもまとめて光ファイバ20と呼ぶこととする。
 そして、第1ファイバ構造体101の素線露出部101Bの端面と、第2ファイバ構造体102の素線露出部102Bの端面とが融着接続されている。ここで、図5に示すように、光ファイバ素線21は、コア21aと、コア21aを包囲するクラッド21bとを有しており、光コンバイナ100に入射された光は、第1ファイバ構造体101の光ファイバ素線21のコア21aを通り、第2ファイバ構造体102の光ファイバ素線21のコア21aを通ることとなる。こうして第1ファイバ構造体101と第2ファイバ構造体102とは光結合された状態で収容部10の収容溝11に収容されている。
 また、第1ファイバ構造体101は、被覆部101Aと素線露出部101Bとの境界B1を覆う封止部40を備えている。ここで、境界B1は、第1ファイバ構造体101を平面視した場合の境界をいう。図2においては、第1ファイバ構造体101の封止部40は、被覆部101Aの一端を覆うとともに、素線露出部101Bの一端を覆っている。従って、素線露出部101Bの一端を覆っている封止部40は、光ファイバ素線21のクラッド21bと接触している。
 一方、第2ファイバ構造体102も、被覆部102Aと素線露出部102Bとの境界B2を覆う封止部40を備えている。ここで、境界B2は、第2ファイバ構造体102を平面視した場合の境界をいう。図2においては、第2ファイバ構造体102の封止部40は、被覆部102Aの一端を覆うとともに、素線露出部102Bの一端を覆っている。従って、素線露出部102Bの一端を覆っている封止部40は、光ファイバ素線21のクラッド21bと接触している。
 そして、封止部40は、下記式(1)で表される構造を有するフッ素樹脂を含む。
Figure JPOXMLDOC01-appb-C000003
(上記式(1)中、Rは、二価の有機フッ素化合物基を表し、nは1以上の整数を表す。)
 封止部40は、収容部10の収容溝11の底面11a、及び底面11aの両縁部から延びる2つの側面11bに接着されている(図3及び図4参照)。
 また、第1ファイバ構造体101及び第2ファイバ構造体102においては、封止部40は、第1固定部30及び第2固定部30にそれぞれ接着されている。ここで、第1固定部30及び第2固定部30は、収容部10に対して封止部40よりも大きい接着強度を有する。
 光コンバイナ100によれば、第1ファイバ構造体101における封止部40が、上記式(1)で表される構造を有するフッ素樹脂を含む。このため、例えば高出力の光が被覆部101Aの光ファイバ素線21に入射されて、光ファイバ素線21から漏れ出た高出力の光が長時間にわたって封止部40に入射されても、封止部40による高出力の光の吸収が、封止部40としてアクリル樹脂を用いる場合に比べて抑制される。このため、第1ファイバ構造体101において、封止部40の温度上昇による熱劣化が抑制され、封止部40の封止性能の低下が抑制される。従って、湿気が素線露出部101Bと被覆部101Aとの境界B1から入り込み、その湿気による被覆22の膨潤によって光ファイバ素線21が圧迫されて光ファイバ素線21の光学特性が低下することが抑制される。
 また、光コンバイナ100においては、第2ファイバ構造体102における封止部40が、上記式(1)で表される構造を有するフッ素樹脂を含む。このため、高出力の光が第1ファイバ構造体101の素線露出部101Bから素線露出部102Bの光ファイバ素線21に入射されて、光ファイバ素線21から漏れ出た高出力の光が長時間にわたって封止部40に入射されても、封止部40による高出力の光の吸収が、封止部40としてアクリル樹脂を用いる場合に比べて抑制される。このため、第2ファイバ構造体102において、封止部40の温度上昇による熱劣化が抑制され、封止部40の封止性能の低下が抑制される。従って、湿気が素線露出部102Bと被覆部102Aとの境界B2から入り込み、その湿気による被覆22の膨潤によって光ファイバ素線21が圧迫されて光ファイバ素線21の光学特性が低下することが抑制される。
 このため、第1ファイバ構造体101及び第2ファイバ構造体102の耐久性を向上させることが可能となる。従って、光コンバイナ100の耐久性を向上させることが可能となる。
 また、第1ファイバ構造体101及び第2ファイバ構造体102においては、封止部40が、第1固定部30及び第2固定部30にそれぞれ接着され、第1固定部30及び第2固定部30は、収容部10に対して封止部40よりも大きい接着強度を有する。
 このように、第1ファイバ構造体101及び第2ファイバ構造体102が、収容部10に対して封止部40より大きい接着強度を有する第1固定部30及び第2固定部30で収容部10に固定されることで、第1ファイバ構造体101及び第2ファイバ構造体102の収容部10への固定が補強される。このため、第1ファイバ構造体101及び第2ファイバ構造体102と収容部10との分離を抑制することができる。
 また、第1ファイバ構造体101の封止部40は、収容部10の収容溝11の底面11aに固定され、第2ファイバ構造体102の封止部40は、収容部10の収容溝11の底面11aの両縁部から延びる2つの側面11bに固定されている。このため、第1ファイバ構造体101と収容部10の接着強度、及び、第2ファイバ構造体102と収容部10の接着強度をより高めることができる。
 次に、光コンバイナ100における収容部10、光ファイバ20、第1固定部30、第2固定部30及び封止部40について詳細に説明する。
 (収容部)
 収容部10を構成する材料は、特に制限されるものではなく、樹脂又は無機材料のいずれであってもよいが、無機材料で構成されることが好ましい。この場合、無機材料は、樹脂に比べて硬質であるため、第1ファイバ構造体101及び第2ファイバ構造体102を外力や衝撃、振動から保護できる。また、無機材料は樹脂に比べて熱膨張係数が小さいため、周囲の温度環境の変化に伴う熱膨張又は熱収縮が抑制され、光ファイバ20にマイクロベンドを発生させることが抑制され、光ファイバ20における光学特性の低下を抑制することができる。このような無機材料としては、例えばネオセラム(登録商標)や石英などのガラス材料が挙げられる。
 (光ファイバ)
 光ファイバ20は、光ファイバ素線21と被覆22とを有する。ここで、被覆22は、光ファイバ素線21のクラッド21bの屈折率よりも小さい屈折率を有する材料で構成されることが好ましい。被覆22を構成する材料としては、例えばシリコン樹脂及びポリアミド樹脂などが挙げられる。
 (第1固定部及び第2固定部)
 第1固定部30及び第2固定部30は、収容部10に第1ファイバ構造体101及び第2ファイバ構造体102を固定させることができる材料で構成されればよい。第1固定部30及び第2固定部30を構成する材料としては、例えばシリコン樹脂及びエポキシ樹脂などが挙げられる。
 (封止部)
 封止部40は、上記式(1)で表される構造を有するフッ素樹脂を含む。このフッ素樹脂は、下記式(2)で表される構造を主鎖に含む架橋性化合物を紫外線又は加熱によって架橋させることによって得ることができる。
Figure JPOXMLDOC01-appb-C000004
(上記式(2)中、Rは、二価の有機フッ素化合物基を表し、nは1以上の整数を表す。R~Rは各々独立に、有機基を表す。)
 上記式(1)及び(2)におけるRは二価の有機フッ素化合物基であればよい。二価の有機フッ素化合物基としては、下記式(A)で表される基が好ましい。
-R-O-          (A)
(前記式(A)中、Rは、炭素数1~5のフッ化アルキレン基を表す。)
 この場合、封止部40が、C-C結合やC-H結合よりも大きな結合エネルギーを有するSi-O結合を有することとなるため、封止部40の耐熱性がより向上し、第1ファイバ構造体101及び第2ファイバ構造体102の耐久性をより向上させることができる。
 上記フッ化アルキレン基は、アルキレン基の少なくとも一部の水素原子がフッ素原子に置換されたものであればよいが、アルキレン基の全部の水素原子がフッ素原子に置換されたものであることが好ましい。このようなフッ化アルキレン基としては、-CF-CF(CF)-、-CF-、-CF-CF-又は-CF-CF-CF-がより好ましい。
 この場合、封止部40が、C-C結合やC-H結合よりも大きな結合エネルギーを有するC-F結合及びSi-O結合を有することとなるため、封止部40の耐熱性がより一層向上し、第1ファイバ構造体101及び第2ファイバ構造体102の耐久性をより一層向上させることができる。なお、上記フッ素樹脂中に複数のRが含まれる場合、複数のRは互いに同一であっても異なってもよい。
 上記式(2)におけるR~Rで表される有機基としては、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基等の、末端にCH=CH-構造を有する基、及び、アルキル基などの炭化水素基が挙げられる。
 なお、封止部40が上記フッ素樹脂を含む場合、封止部40がアクリル樹脂である場合に比べて、高温環境下において、長時間にわたって光の吸収が抑制されることを確認するために以下の実験を行った。
 すなわち、式(2)においてRを-CF-CF(CF)-O-とした架橋性化合物(製品名「SIFEL」、信越化学工業株式会社製)を架橋させて、厚さ0.5mmのシートを作製した。一方、比較のため、アクリル樹脂で同様に厚さ0.5mmのシートを作製した。そして、これらのシートを150℃で保管したときの光透過率をそれぞれ測定し、波長1070nmにおける光透過率の経時変化をそれぞれ測定した。結果を表1、表2及び図6に示す。このとき、測定には、紫外可視近赤外分光光度計(製品名「V-600」、日本分光株式会社製)を用いた。また、0時間における光吸収率(=100-光透過率)を基準としたときの光吸収率の増加量も測定した。結果を表1、表2及び図7に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1、表2及び図6に示す結果より、フッ素樹脂では、150℃という高温で保管して長時間が経過しても、アクリル樹脂とは異なり、光透過率が高いまま保持されていることが分かる。また、表1、表2及び図7に示す結果より、フッ素樹脂では、アクリル樹脂に比べて、光吸収率の増加量が、約900時間もの時間が経過しても十分に小さいことが分かる。ここで、光吸収率の増加量は、封止部40の熱による劣化度合いを示すものである。
 従って、上述した通り、封止部40が上記フッ素樹脂を含む場合、封止部40がアクリル樹脂である場合に比べて、高温環境下において、長時間にわたって光の吸収が抑制されることが分かる。
 封止部40中のフッ素樹脂の含有率は特に制限されるものではないが、通常は50質量%以上である。封止部40中のフッ素樹脂の含有率は、封止性能を向上させる観点からは、80質量%以上であることが好ましく、100質量%であることが特に好ましい。
 封止部40の屈折率は特に制限されないが、クラッド21bの屈折率よりも小さいことが好ましい。この場合、光ファイバ素線21内に光を閉じ込めることが可能となる。
 封止部40のヤング率は特に制限されるものではないが、10MPa以下であることが好ましい。
 この場合、光コンバイナ100の第1ファイバ構造体101に光が入射され、光コンバイナ100の第2ファイバ構造体102から出射されると、封止部40のヤング率が10MPaを超える場合に比べて、出射される光のビーム品質をより向上させることができる。
 封止部40のヤング率は、10MPa以下であることがより好ましく、1MPa以下であることが特に好ましい。
 但し、封止部40の形状を維持するという理由から、封止部40のヤング率は、1kPa以上であることが好ましい。封止部40のヤング率は、1kPa以上であることがより好ましく、5kPa以上であることが特に好ましい。なお、ヤング率は、室温(23℃)における値をいうものとする。
 次に、光コンバイナ100の製造方法について説明する。
 まず、光ファイバ素線21が全長にわたって被覆で被覆された被覆光ファイバを複数本用意し、複数本の被覆光ファイバの端部からそれぞれ被覆のみを除去して光ファイバ20を得る。そして、光ファイバ20の露出された光ファイバ素線21の部分を束ねて素線露出部101Bを形成するとともに、被覆22で被覆された光ファイバ素線21の部分を束ねて被覆部101Aを形成する。こうして第1光ファイバ部を用意する。
 一方、第1光ファイバ部と同様にして光ファイバ20を得る。このとき、光ファイバ20の露出された光ファイバ素線21が素線露出部102Bとなり、被覆22で被覆された光ファイバ素線21が被覆部102Aとなる。こうして第2光ファイバ部を用意する。
 そして、第1光ファイバ部の素線露出部101Bの端面20Aと、第2光ファイバ部の素線露出部Bの端面20Bとを融着接続してファイバ接続体を形成する。
 次に、収容溝11を有する収容部10を用意し、収容溝11内に、上述したファイバ接続体を収容する。
 次に、上述した第1光ファイバ部を、第1固定部30で収容部10に固定するとともに、上述した第2光ファイバ部を、第2固定部30で収容部10に固定する。
 次に、第1光ファイバ部の被覆部101Aと素線露出部101Bとの境界B1を覆うように封止部40の前駆体となる架橋性化合物を塗布する。このとき、封止部40の前駆体は、収容溝11の底面11a及び底面11aの両縁部から延びる2つの側面11b並びに第1固定部30に接触するように塗布する。その後、架橋性化合物を例えば加熱又は紫外線により架橋させる。こうして封止部40が形成され、第1ファイバ構造体101が得られる。このとき、封止部40は、収容溝11の底面11a及び2つの側面11b並びに第1固定部30に接着される。
 次に、第2光ファイバ部の被覆部102Aと素線露出部102Bとの境界B2を覆うように封止部40の前駆体となる架橋性化合物を塗布する。このとき、封止部40の前駆体は、収容溝11の底面11a及び底面11aの両縁部から延びる2つの側面11b並びに第2固定部30に接触するように塗布する。その後、架橋性化合物を例えば加熱又は紫外線により架橋させる。こうして封止部40が形成され、第2ファイバ構造体102が得られる。このとき、封止部40は、収容溝11の底面11a及び2つの側面11b並びに第2固定部30に接着される。
 以上のようにして光コンバイナ100が得られる。
 なお、第1ファイバ構造体101及び第2ファイバ構造体102を得る際、上記架橋性化合物は通常、液体であるため、収容溝11内の狭い空間でも容易に塗布することができる。また、上記架橋性化合物は、アクリル樹脂などに比べて、硬化時における硬化収縮が小さいため、硬化時に光ファイバ20に加わる曲げ変形を低減でき、得られる光コンバイナ100から出射されるビームの品質悪化を抑制できる。
 <レーザ光源>
 次に、本発明のレーザ光源の実施形態について図8を参照しながら説明する。図8は、本発明のレーザ光源の一実施形態を示す概略図である。
 図8に示すように、レーザ光源200は、光コンバイナ100と、光コンバイナ100の第2ファイバ構造体102の光ファイバ素線21から出射される光に基づいて特定の波長の光をレーザ光として出射させる光共振部201と、光コンバイナ100の第1ファイバ構造体101の複数本の光ファイバ20の光ファイバ素線21の各々に励起光を入射させる励起光源D1~D7と、光共振部201からレーザ光として出射される光を出力する出力用ファイバ205とを備える。
 このレーザ光源200によれば、励起光源D1~D7から、光コンバイナ100の第1ファイバ構造体101の複数本の光ファイバ20の光ファイバ素線21の各々に励起光が入射され、光コンバイナ100の第2ファイバ構造体102の光ファイバ20の光ファイバ素線21から出射される光に基づいて特定の波長の光が光共振部201からレーザ光として出射され、このレーザ光が出力用ファイバ205から出力される。このとき、既に述べたように、光コンバイナ100は、耐久性を向上させることが可能となる。従って、レーザ光源200の耐久性を向上させることも可能となる。
 励起光源D1~D7は、励起光を出射するものであればよく、励起光源D1~D7としては、例えばレーザダイオード等を用いることができる。
 光共振部201は、増幅用光ファイバ202と、その一端に設けられる第1反射部203と、その他端に設けられる第2反射部204とを備えている。第1反射部203は、入力部201Aにて光コンバイナ100の第2ファイバ構造体102の光ファイバ20に接続され、第2反射部204は、出力部201Bにて出力用ファイバ205に接続されている。光共振部201では、入射された励起光により自然放出光が発生し、発生した自然放出光のうち第1反射部203及び第2反射部204によって選択的に反射された特定の波長の光を種として光の誘導放出が起こり、この誘導放出が繰り返されることで特定の波長の光がレーザ光として出力される。
 第1反射部203及び第2反射部204は、例えばファイバーブラッググレーティング(FBG)等で構成されている。
 増幅用光ファイバ202は、希土類元素添加光ファイバで構成される。希土類元素は、特に制限されるものではないが、希土類元素としては、例えばイッテルビウム(Yb)などが用いられる。
 なお、励起光源D1~D7の数は、7個となっているが、7個に限定されるものではない。光コンバイナ100の第1ファイバ構造体101に含まれる光ファイバ20の本数に応じて適宜変更が可能である。
 <レーザ装置>
 次に、本発明のレーザ装置の実施形態について図9を参照しながら説明する。図9は、本発明のレーザ装置の一実施形態を示す概略図である。
 図9に示すように、レーザ装置300は、複数のレーザ光源L1~L7と、複数のレーザ光源L1~L7から入射されるレーザ光を結合して出力する光コンバイナ100と、光コンバイナ100の第2ファイバ構造体102の光ファイバ20に接続部302にて接続される出力用ファイバ301とを備えている。
 このレーザ装置300によれば、複数のレーザ光源L1~L7からレーザ光が光コンバイナ100の第1ファイバ構造体101に入射され、結合されて第2ファイバ構造体102の光ファイバ20から出射され、この出射光が出力用ファイバ301から出力される。このとき、光コンバイナ100は、既に述べたように、耐久性を向上させることが可能となる。従って、レーザ装置300の耐久性を向上させることも可能となる。
 上記レーザ装置300においては、レーザ光源L1~L7は、レーザ光源であればいかなるものでもよく、レーザ光源L1~L7としては、例えばレーザダイオード、COレーザ、YAGレーザ、上述したレーザ光源200などが挙げられる。中でも、レーザ光源L1~L7は、上述したレーザ光源200からなることが好ましい。この場合、レーザ光源200の出力用ファイバ205が光コンバイナ100の第1ファイバ構造体101の光ファイバ20と接続される。
 この場合、レーザ光源L1~L7が上述したレーザ光源200からなり、耐久性を向上させることが可能な光コンバイナ100を有する。このため、レーザ装置300は、より耐久性を向上させることが可能となる。
 本発明は、上記実施形態に限定されない。例えば上記実施形態では、第1固定部30及び第2固定部30が封止部40に接着されているが、図10に示す光コンバイナ400のように、第1固定部30及び第2固定部30はそれぞれ封止部40から離間していてもよい。
 また、上記実施形態では、第1ファイバ構造体101の封止部40及び第2ファイバ構造体102の封止部40がいずれも収容部10に固定されているが、第1ファイバ構造体101の封止部40及び第2ファイバ構造体102の封止部40のいずれか一方、又は両方が収容部10に固定されていなくてもよい。
 さらに、上記実施形態では、第1固定部30及び第2固定部30が収容部10に対して封止部40よりも大きい接着強度を有するが、第1固定部30及び第2固定部30は、収容部10に対して封止部40以下の接着強度を有していてもよい。
 また、上記実施形態では、第1固定部30及び第2固定部30は省略されてもよい。
 さらに、上記実施形態では、光コンバイナ100が収容部10を有しているが、収容部10は省略されてもよい。
 また、上記実施形態では、封止部40が、収容溝11の底面11a及び2つの側面11bに接着されているが、収容溝11の底面11aには接着されていなくてもよく、収容溝11から離間していてもよい。あるいは、封止部40は、底面11aにのみ接着され、側面11bには接着されていなくてもよい。
 10…収容部
 20A…第1ファイバ構造体の素線露出部の端面
 20B…第2ファイバ構造体の素線露出部の端面
 21…光ファイバ素線
 21a…コア
 21b…クラッド
 22…被覆
 30…第1固定部、第2固定部
 40…封止部
 100,400…光コンバイナ
 101…第1ファイバ構造体
 102…第2ファイバ構造体
 200…レーザ光源
 201…光共振部
 300…レーザ装置
 301…出力用ファイバ
 101A,102A…被覆部
 101B,102B…素線露出部
 B1,B2…被覆部と素線露出部との境界
 D1~D7…励起光源
 L1~L7…レーザ光源

Claims (11)

  1.  被覆部と、
     前記被覆部に隣接する素線露出部とを有し、
     前記被覆部が、光ファイバ素線と、前記光ファイバ素線を被覆する被覆とを有し、
     前記素線露出部が、露出された光ファイバ素線からなるファイバ構造体であって、
     前記被覆部と前記素線露出部との境界を覆う封止部を備え、
     前記封止部が、下記式(1)で表される構造を有するフッ素樹脂を含む、ファイバ構造体。
    Figure JPOXMLDOC01-appb-C000001
    (前記式(1)中、Rは、二価の有機フッ素化合物基を表し、nは1以上の整数を表す。)
  2.  前記二価の有機フッ素化合物基が、下記式(A)で表される、請求項1に記載のファイバ構造体。
    -R-O-          (A)
    (前記式(A)中、Rは、炭素数1~5のフッ化アルキレン基を表す。)
  3.  前記フッ化アルキレン基が、-CF-CF(CF)-、-CF-、-CF-CF-又は-CF-CF-CF-である、請求項2に記載のファイバ構造体。
  4.  前記光ファイバ素線が、コアと、前記コアを包囲するクラッドとを有し、
     前記封止部の屈折率が、前記クラッドの屈折率よりも小さい、請求項1~3のいずれか一項に記載のファイバ構造体。
  5.  第1ファイバ構造体と、第2ファイバ構造体とを備える光コンバイナであって、
     前記第1ファイバ構造体及び前記第2ファイバ構造体が請求項1~4のいずれか一項に記載のファイバ構造体からなり、
     前記第1ファイバ構造体においては、前記被覆部及び前記素線露出部が複数本の前記光ファイバ素線を有し、
     前記第2ファイバ構造体においては、前記被覆部及び前記素線露出部が1本の前記光ファイバ素線を有し、
     前記第1ファイバ構造体の前記素線露出部の端面と、前記第2ファイバ構造体の前記素線露出部の端面とが融着接続されている、光コンバイナ。
  6.  前記封止部のヤング率が10MPa以下である、請求項5に記載の光コンバイナ。
  7.  前記第1ファイバ構造体及び前記第2ファイバ構造体を収容する収容部と、
     前記第1ファイバ構造体を前記収容部に固定する第1固定部と、
     前記第2ファイバ構造体を前記収容部に固定する第2固定部とをさらに備え、
     前記第1ファイバ構造体においては、前記第1固定部が前記封止部と接着され、
     前記第2ファイバ構造体においては、前記第2固定部が前記封止部と接着され、
     前記第1固定部及び前記第2固定部が、前記収容部に対して前記封止部よりも大きい接着強度を有する、請求項5又は6に記載の光コンバイナ。
  8.  前記第1ファイバ構造体の前記封止部が前記収容部に固定され、前記第2ファイバ構造体の前記封止部が前記収容部に固定されている、請求項5~7のいずれか一項に記載の光コンバイナ。
  9.  請求項5~8のいずれか一項に記載の光コンバイナと、
     前記光コンバイナの前記第2ファイバ構造体の前記光ファイバ素線から出射される光に基づいて特定の波長の光をレーザ光として出射させる光共振部と、
     前記光コンバイナの前記第1ファイバ構造体の複数本の前記光ファイバ素線の各々に励起光を入射させる励起光源と、
    を備える、レーザ光源。
  10.  複数のレーザ光源と、
     前記複数のレーザ光源から入射されるレーザ光を結合して出射させる光コンバイナとを備え、
     前記光コンバイナが、請求項5~8のいずれか一項に記載の光コンバイナからなる、レーザ装置。
  11.  前記レーザ光源が請求項9に記載のレーザ光源からなる、請求項10に記載のレーザ装置。
PCT/JP2020/045358 2020-02-17 2020-12-06 ファイバ構造体、光コンバイナ、レーザ光源及びレーザ装置 WO2021166380A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/790,671 US20230056098A1 (en) 2020-02-17 2020-12-06 Fiber structure, optical combiner, laser light source, and laser device
JP2022501646A JP7266144B2 (ja) 2020-02-17 2020-12-06 ファイバ構造体、光コンバイナ、レーザ光源及びレーザ装置
EP20920356.1A EP4060389A4 (en) 2020-02-17 2020-12-06 FIBER STRUCTURE, OPTICAL COMBINATOR, LASER BEAM SOURCE AND LASER DEVICE
CN202080082545.5A CN114761852B (zh) 2020-02-17 2020-12-06 纤维结构体、光合路器、激光光源及激光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-024543 2020-02-17
JP2020024543 2020-02-17

Publications (1)

Publication Number Publication Date
WO2021166380A1 true WO2021166380A1 (ja) 2021-08-26

Family

ID=77390640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045358 WO2021166380A1 (ja) 2020-02-17 2020-12-06 ファイバ構造体、光コンバイナ、レーザ光源及びレーザ装置

Country Status (5)

Country Link
US (1) US20230056098A1 (ja)
EP (1) EP4060389A4 (ja)
JP (1) JP7266144B2 (ja)
CN (1) CN114761852B (ja)
WO (1) WO2021166380A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7521458B2 (ja) * 2021-03-04 2024-07-24 住友電気工業株式会社 光コネクタケーブル

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158656A (ja) * 2007-12-26 2009-07-16 Panasonic Corp 発光装置
CN106405737A (zh) * 2016-10-09 2017-02-15 武汉锐科光纤激光技术股份有限公司 一种去除高阶模式激光的包层功率剥离器及制作方法
WO2017169536A1 (ja) * 2016-03-31 2017-10-05 Lumiotec株式会社 有機elパネル及びその製造方法
JP2017187554A (ja) * 2016-04-01 2017-10-12 株式会社フジクラ 光ファイバ接続体
JP2017191298A (ja) 2016-04-15 2017-10-19 株式会社フジクラ 光ファイバ保護構造及び光学要素の製造方法
JP2017224678A (ja) * 2016-06-14 2017-12-21 浜松ホトニクス株式会社 レーザ発振器、及び、励起光検出構造の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1312659A1 (en) * 2000-08-17 2003-05-21 Nippon Sheet Glass Co., Ltd. Adhesive composition and optical device using the same
US6985666B2 (en) * 2001-02-28 2006-01-10 Asahi Glass Company, Limited Method for coupling plastic optical fibers
JP2006039273A (ja) * 2004-07-28 2006-02-09 Kyocera Corp 光ファイバ取付部の気密封止構造
JP2016085138A (ja) * 2014-10-27 2016-05-19 株式会社フジクラ 被覆異常部検出方法および装置
JP6293813B2 (ja) * 2016-04-15 2018-03-14 株式会社フジクラ 光ファイバ保護構造及びこれを用いた光コンバイナ構造
JP6356856B1 (ja) * 2017-03-28 2018-07-11 株式会社フジクラ クラッドモード光除去構造及びレーザ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158656A (ja) * 2007-12-26 2009-07-16 Panasonic Corp 発光装置
WO2017169536A1 (ja) * 2016-03-31 2017-10-05 Lumiotec株式会社 有機elパネル及びその製造方法
JP2017187554A (ja) * 2016-04-01 2017-10-12 株式会社フジクラ 光ファイバ接続体
JP2017191298A (ja) 2016-04-15 2017-10-19 株式会社フジクラ 光ファイバ保護構造及び光学要素の製造方法
JP2017224678A (ja) * 2016-06-14 2017-12-21 浜松ホトニクス株式会社 レーザ発振器、及び、励起光検出構造の製造方法
CN106405737A (zh) * 2016-10-09 2017-02-15 武汉锐科光纤激光技术股份有限公司 一种去除高阶模式激光的包层功率剥离器及制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4060389A4

Also Published As

Publication number Publication date
JPWO2021166380A1 (ja) 2021-08-26
EP4060389A1 (en) 2022-09-21
EP4060389A4 (en) 2023-11-08
CN114761852B (zh) 2024-03-19
JP7266144B2 (ja) 2023-04-27
US20230056098A1 (en) 2023-02-23
CN114761852A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
JP5124225B2 (ja) 光ファイバ融着接続構造
US7510337B2 (en) Optical transmission component and production method thereof
US7373070B2 (en) Optical fiber component package for high power dissipation
US9116296B2 (en) Optical fiber device having mode stripper thermally protecting structural adhesive
US6798792B2 (en) Laser device and light signal amplifying device using the same
JP2008293004A (ja) 光ファイバグレーティングデバイスおよび光ファイバレーザ
WO2021166380A1 (ja) ファイバ構造体、光コンバイナ、レーザ光源及びレーザ装置
JPH11344636A (ja) 光ファイバ接続部および該光ファイバ接続部を用いた光増幅器
JP2004199072A (ja) 引張り部材を含むリボン光ファイバ
US7583877B2 (en) Optical fiber, optical fiber connection structure and optical connector
JP4063302B2 (ja) 光ファイバ及び光ファイバのコネクタ加工方法
KR102143426B1 (ko) 클래드 모드 스트리퍼 및 이를 이용한 광섬유 레이저
JP7391710B2 (ja) ファイバ構造体、光コンバイナ、レーザ光源及びレーザ装置
JP6858137B2 (ja) 光学モジュール及び光出力装置
JP6718283B2 (ja) 光ファイバ接続体
JP4233747B2 (ja) 光合分波器及びその製造方法
IL204544A (en) METHOD AND SYSTEM FOR PACKING OF HIGH-POWER FIBER OPTIC CLUCH
US11703647B2 (en) Optical fiber securing structure and laser device
JP2006078642A (ja) ファイバグレーティング型光学素子
JP2008242418A (ja) 光ファイバコリメータ、光デバイスおよびこれを用いた光送受信器
JP2013167758A (ja) 光ファイバの移動規制構造
JP2005215603A (ja) 光導波路モジュール及び光ファイバ
JP2001272556A (ja) 光デバイス
JP2008089736A (ja) 光デバイス
JP2002196175A (ja) 光合分波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501646

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020920356

Country of ref document: EP

Effective date: 20220615

NENP Non-entry into the national phase

Ref country code: DE