WO2021166026A1 - 缶用鋼板およびその製造方法 - Google Patents
缶用鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2021166026A1 WO2021166026A1 PCT/JP2020/006010 JP2020006010W WO2021166026A1 WO 2021166026 A1 WO2021166026 A1 WO 2021166026A1 JP 2020006010 W JP2020006010 W JP 2020006010W WO 2021166026 A1 WO2021166026 A1 WO 2021166026A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- cans
- hot
- carbides
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 84
- 239000010959 steel Substances 0.000 title claims abstract description 84
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 150000001247 metal acetylides Chemical class 0.000 claims abstract description 36
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 238000000137 annealing Methods 0.000 claims description 17
- 238000004804 winding Methods 0.000 claims description 17
- 238000005097 cold rolling Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 16
- 238000007747 plating Methods 0.000 claims description 16
- 238000005098 hot rolling Methods 0.000 claims description 10
- 238000005096 rolling process Methods 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 7
- 229920005989 resin Polymers 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 abstract description 4
- 238000000465 moulding Methods 0.000 description 12
- 239000011572 manganese Substances 0.000 description 10
- 238000009864 tensile test Methods 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910052758 niobium Inorganic materials 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0268—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Definitions
- the present invention relates to a steel sheet for cans and a method for manufacturing the same.
- Patent Document 1 discloses a technique for obtaining a high strength-ductility balance by combining precipitation strengthening with Nb carbide and solid solution strengthening with P in a complex manner.
- Patent Document 2 discloses a technique for obtaining a high r value and good anisotropy by using an ultra-low carbon steel having a C content of 0.0020% or less.
- Patent Document 1 obtains a high strength-ductility balance by combining precipitation strengthening with Nb carbide and solid solution strengthening with P in a complex manner.
- steels such as NbC that utilize precipitation strengthening are inferior in anisotropy.
- DRD cans polyester laminated deep drawn cans
- DI cans suctionless iron cans
- the present inventor has conducted diligent research with the aim of solving the above-mentioned problems of the prior art and realizing a steel sheet for cans having excellent formability and a method for manufacturing the same. As a result, the following findings were obtained.
- the present inventor examined whether it is possible to easily evaluate how much a steel sheet can withstand forming by using a generally performed tensile test, and in a tensile test before deformation and immediately before (immediately after) fracture.
- We focused on the plate thickness and plate width. If the ⁇ plate thickness and ⁇ plate width are large, good formability is obtained, and this is used as a new evaluation index as “extreme deformability”. Assuming that the ultimate deformability is ⁇ , it is represented by ⁇ ln (t / t0) + ln (w / w0).
- t0 and w0 are the plate thickness and the plate width before deformation
- t and w are the plate thickness and the plate width immediately before (immediately after) the fracture.
- the tensile test piece was a dumbbell type test piece specified in JIS No. 6. Specific test conditions were carried out according to the examples described later.
- the present inventor had consumers perform various types of can molding, and collected data on the fracture rate at that time.
- the breaking rate is the ratio of the number of cans broken during can molding.
- the present inventor separately measured the ultimate deformability of the steel sheet for cans provided to the customer, and investigated the correlation between the fracture rate and the ultimate deformability. As a result, as shown in FIG. 1, it was clarified that the fracture rate was less than 50 ppm when the ultimate deformability ⁇ ⁇ 1.6. If the fracture rate is less than about 50 ppm, it is assumed that no complaints will be made by consumers. Therefore, the goal is to manufacture a steel sheet having an ultimate deformability of 1.6 or more.
- the present inventor has set the first stand reduction rate and the second stand of the winding temperature, annealing temperature, and secondary cold rolling, which are the morphology and manufacturing conditions of the carbide. It has been found that it is preferable to control the ratio to the rolling rate, the aging temperature, and the aging time within a specific range.
- the present invention has been made in this context, and an object of the present invention is to solve the above-mentioned problems of the prior art and to realize a steel sheet for cans having excellent formability and a method for manufacturing the same.
- C 0.010% to 0.050%, Si: 0.020% or less, Mn: 0.10 to 0.60%, P: 0.020% or less, S: 0.020% or less, Al: 0.050% or less, N: 0.0100% or less, Nb: 0 to 0.03%, Ti: 0 to 0.03%, B: 0 to 0.0020%
- the number of carbides having a circle equivalent diameter of 2 ⁇ m or more and 5 ⁇ m or less observed in the cross section of the can steel plate is a, and the circle equivalent diameter is 0.
- a / b satisfies the range of the following formula (1), the ultimate deformability is 1.6 or more, and the plate thickness is 0.10 to 0.30 mm. It is a steel plate for cans characterized by this. a / b ⁇ 0.12 ... (1)
- it further contains at least one selected from the group consisting of Nb: 0.003 to 0.03%, Ti: 0.003 to 0.03%, and B: 0.0005 to 0.0020% in mass%. It is preferable to do so.
- the surface of the steel sheet for cans is Sn-plated, Cr-plated, or an alloy plating thereof, and further, an organic film or a resin film is preferably applied to the surface of the plating.
- C 0.010% to 0.050%, Si: 0.020% or less, Mn: 0.10 to 0.60%, P: 0.020% or less, S: 0.020. % Or less, Al: 0.050% or less, N: 0.0100% or less, Nb: 0 to 0.03%, Ti: 0 to 0.03%, B: 0 to 0.0020%, and the balance
- the hot-rolled plate obtained by the hot-rolling is wound at a winding temperature of 640 ° C. or lower, and the hot-rolled plate is pickled and cold-rolled. After obtaining a cold-rolled plate, the cold-rolled plate is annealed at 680 ° C.
- the cold-rolled plate is overage-treated, and then secondary cold-rolled.
- the method for manufacturing a steel plate for cans is characterized in that the following formula (2) is satisfied. 300 ⁇ 3T 1 0.7 - (r1 / r2) 1.5 + ⁇ (T 2 -720) 2 ⁇ / 4 + (T 3 logt) / 3 ⁇ 1000 ⁇ (2)
- T 1 is the winding temperature (° C.) of the hot-rolled plate
- r1 is the first stand reduction rate (%) of the secondary cold rolling
- r2 is the second of the secondary cold rolling.
- T 2 is the annealing temperature (° C)
- T 3 is the overaging temperature (° C)
- t is the overaging time (seconds)
- it further contains at least one selected from the group consisting of Nb: 0.003 to 0.03%, Ti: 0.003 to 0.03%, and B: 0.0005 to 0.0020% in mass%. It is preferable to do so.
- T 1 is the winding temperature (° C.) of the hot-rolled plate
- r1 is the first stand reduction rate (%) of the secondary cold rolling
- r2 is the second stand reduction rate (%) of the secondary cold rolling.
- T 2 is the annealing temperature
- T 3 is the overaging temperature (° C.)
- t is the overaging time (seconds).
- the steel sheet for cans of the present invention has C: 0.010% to 0.050%, Si: 0.020% or less, Mn: 0.10 to 0.60%, P: 0.020% or less in mass%.
- the balance has a component composition consisting of Fe and impurities, the ratio of the number of carbides with a small circle-equivalent diameter to the number of carbides with a large circle-equivalent diameter satisfies a specific range, and the ultimate deformability is good.
- It is a steel sheet for cans characterized by having a plate thickness of 0.10 to 0.30 mm.
- a manufacturing method suitable for manufacturing a steel sheet for cans is to wind the hot-rolled sheet at a winding temperature of 640 ° C.
- a steel sheet for cans having excellent moldability can be obtained.
- a steel plate for cans with less fracture during can molding can be obtained.
- the component composition, the steel sheet structure, and the manufacturing method of the steel sheet for cans of the present invention will be described in order.
- the component composition of the steel sheet for cans of the present invention will be described.
- the content of each component is mass% (more precisely, mass% with respect to the total mass of the sample used for the measurement of mass%).
- C 0.010% to 0.050%
- the amount of C exceeds 0.050% as the steel component, the number of carbides increases as described later, and in particular, the number of carbides having a large circular equality diameter increases, which adversely affects the ultimate deformability. Furthermore, the amount of C is set to 0.050% or less in order to significantly reduce both the r value and ductility. On the other hand, if the amount of C is less than 0.010%, it is difficult to secure the required strength, so the amount of C is set to 0.010% or more.
- the Si amount of the steel of the present invention is also set to 0.020% as the upper limit.
- the lower limit of the amount of Si is not particularly specified and may be 0%, but since Si is contained as an impurity in iron ore and manganese ore and it is costly to completely remove it, the lower limit is 0.005. % Is desirable.
- Mn 0.10 to 0.60%
- Mn is an element effective in preventing hot cracking due to S, and the amount of Mn needs to be 0.10% or more. Further, if the amount of Mn is less than 0.10%, the strength becomes insufficient. Further, since the upper limit of the Mn amount is 0.60% in the ASTM standard, the Mn amount of the steel of the present invention is also set to 0.60% as the upper limit.
- P 0.020% or less P is a harmful element that hardens steel and deteriorates workability, and causes fracture during molding. Therefore, the upper limit of the amount of P is set to 0.020%.
- the lower limit of the amount of P is not particularly specified and may be 0%, but it is desirable to set the lower limit to 0.001% because dephosphorization cost and time are required.
- S 0.020% or less S is an element that exists as an inclusion in steel, reduces ductility, causes surface cracking, and causes poor appearance and deterioration of corrosion resistance. Therefore, the upper limit of the amount of S is 0.020%. And.
- the lower limit of the amount of S is not particularly specified and may be 0%, but it is desirable that the lower limit is 0.001% for the convenience of desulfurization cost and desulfurization time.
- Al 0.050% or less
- AlN is coarsened and adversely affects moldability, so the upper limit is set to 0.050%. Further, considering the castability due to deoxidation, addition of 0.005% or more is preferable.
- N 0.0100% or less
- N is a solid solution strengthening element and is an element necessary for ensuring the strength of the steel sheet, but when the addition amount exceeds 0.0100%, the workability is significantly deteriorated. Further, since slab cracking occurs during continuous casting, the upper limit is set to 0.0100%.
- the lower limit of the amount of N is not particularly specified and may be 0%, but in consideration of the above-mentioned effects, addition of 0.0020% or more is preferable.
- Nb 0.003 to 0.03%
- Ti 0.003 to 0.03% or less
- B 0.0005 to 0.0020% or less
- Ti is contained in an amount of 0.003% or more in order to obtain the effect of improving workability. If B is contained in excess of 0.0020%, it segregates at the recrystallized grain boundaries during continuous annealing and delays recrystallization. It is desirable that B is contained in an amount of 0.0005% or more in order to obtain the effect of improving workability.
- the rest of the steel consists of Fe and impurities.
- Impurities refer to those that are mixed in from ore, scrap, or the manufacturing environment as raw materials when steel is manufactured industrially. Impurities are, for example, unavoidable impurities. Examples of unavoidable impurities include Sn, As, and the like.
- the chemical composition of the steel sheet described above may be measured by a general analysis method.
- the steel component may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
- C and S may be measured by using the combustion-infrared absorption method
- N may be measured by using the inert gas melting-thermal conductivity method.
- FIG. 2 is a graph obtained by observing the cross sections of a plurality of types of steel sheets having different ultimate deformability by a method described later and measuring a / b. a / b ⁇ 0.12 ...
- Figure 3 By controlling the amount of C in the steel components, it is possible to obtain an appropriate diameter equivalent to a circle of carbide. As shown in FIG. 3, basically, when the amount of C is 0.050% or less, the equivalent circle diameter becomes small and the equation (1) can be easily satisfied. However, if the amount of C is too small and less than 0.010%, the required steel sheet strength cannot be obtained. Therefore, there is an optimum C amount range, and 0.010% to 0.050% is preferable.
- a hot-rolled plate is produced by hot-rolling steel pieces having different amounts of C under the same conditions as in the examples described later, and the cross section of the hot-rolled plate is observed by the method described later.
- a / b is a graph obtained by measuring. Therefore, the equation (1) is satisfied by setting the amount of C to 0.010% to 0.050% and satisfying the equation (2) which is the equation of the winding temperature after hot rolling and other operating conditions described later. It becomes possible to satisfy.
- the number of carbides can be specified, for example, by observing the cross section of the steel sheet with an optical microscope at a magnification of 1000. More specifically, among the cross sections perpendicular to the rolling direction of the steel sheet, a photograph of 10 fields of view having a size of 140 ⁇ m ⁇ 100 ⁇ m at the center in the thickness direction and the center in the width direction is captured in a personal computer. Then, it is preferable to count the number of carbides in each field of view for each size using the analysis software built in the KEYENCE microscope VHX500, and take the average of 10 fields of view. If the circle-equivalent diameter of the carbide is smaller than 0.1 ⁇ m, measurement cannot be performed. Therefore, the circle-equivalent diameter of the carbide less than 0.1 ⁇ m is excluded from the count.
- the winding temperature of the steel sheet after hot rolling also affects the number of carbides. As shown in FIG. 4, when the winding temperature is low, the amount of coarse carbide in the hot-rolled plate is reduced. That is, the value of a / b in the equation (1) becomes smaller. If the amount of coarse carbide during hot spreading is small, it can be expected that the amount of carbide is small even in the product plate.
- FIG. 4 a cross section of a hot-rolled plate having a common component in steel and a different winding temperature (hot rolling was performed in the same manner as in Examples described later) was observed by the above method, and a / b was observed. It is a graph obtained by measurement.
- the winding temperature is preferably 640 ° C or lower.
- the thickness of the steel plate for cans is preferably 0.10 to 0.30 mm.
- Figure 5 In the manufacturing method, after satisfying the above-mentioned amount of C and the upper limit of the winding temperature after hot rolling, the winding temperature in hot rolling, the heating temperature at annealing, the subsequent temper rolling conditions, and the overaging treatment are performed.
- the final number of carbides is controlled by placing them under a predetermined balance.
- the number of carbides satisfies a predetermined range, and a / b of the formula (1). It was found that the ultimate deformability was 1.6 or more by satisfying ⁇ 0.12.
- FIG. 5 As a result of investigating the influences of each of the inventors, when the following formula (2) is satisfied, as shown in FIG. 5, the number of carbides satisfies a predetermined range, and a / b of the formula (1). It was found that the ultimate deformability was 1.6 or more by satisfying ⁇ 0.12.
- T 2 is the annealing temperature (° C.)
- T 3 is the overaging temperature (° C.)
- t is the overaging time (seconds).
- T 3 is the average value of the overaging start temperature and the overaging end temperature.
- the annealing temperature is high, the carbides existing before annealing can be reduced, so the annealing temperature is preferably 680 ° C or higher. However, if the annealing temperature is too high, the possibility of fracture in the furnace increases, so 850 ° C. or lower is preferable.
- T 3 is preferably 400 ° C. or lower.
- the temperature is preferably 250 ° C. or higher.
- carbides can be reduced by shortening the overaging time in the overaging treatment.
- the aging time is preferably less than 400 seconds. However, if the time is excessively short, it means that the plate passing speed becomes too high, and in this case, there is a risk of breakage, so 50 seconds or more is preferable.
- the reduction rate is 20% or less for both the first stand and the second stand. If it exceeds 20%, the strength becomes too high and the elongation is remarkably lowered, so that the molding becomes severe. Further, 1% or more is desirable for shape correction.
- the steel sheet for cans of the present invention can be obtained.
- various steps can be further performed after the secondary cold rolling.
- the surface of the steel sheet for cans of the present invention may be subjected to Sn plating, Cr plating, or alloy plating thereof, and if necessary, an organic film or a resin film may be further applied to the surface of the plating.
- the molten steel having the composition shown in Table 1 was produced in a vacuum melting furnace, and after cooling and solidifying the molten steel, the steel pieces were reheated to 1200 ° C. and the steel pieces were finished and rolled at 880 ° C. After cooling the hot-rolled plate, the hot-rolled plate was held at the temperature shown in Table 2 for 1 hour to reproduce the winding heat treatment of the hot-rolled plate.
- the scale was removed from the obtained hot-rolled sheet by grinding, and cold rolling was performed with a reduction ratio of 90% or more. After that, the cold-rolled sheet was annealed at the temperature shown in Table 2 using a continuous annealing simulator, the cold-rolled sheet was cooled, and then held at the overaging temperature and overaging time shown in Table 2, and then further. After cooling to room temperature, secondary cold rolling was performed at the first stand reduction rate and the second stand reduction rate shown in Table 2 to obtain a steel sheet having a plate thickness of 0.12 to 0.25 mm.
- the JIS No. 6 tensile test piece was taken from the rolling direction of the steel sheet, and the ultimate deformability was measured. After processing the test piece, the plate thickness and plate width of the three parallel parts of the JIS No. 6 piece were measured, and the average value was calculated. These were designated as t0 and w0. In the plate width measurement after the tensile test, the fractured portions were butted to reproduce the shape immediately before the fracture, and the plate width (w) of the most constricted portion was measured. In the plate thickness measurement after the tensile test, the fractured portions were butted to reproduce the shape immediately before the fracture, and the central portion in the width direction was cut along the tensile direction.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
リエステル・ラミネート深絞り缶)やDI缶(絞りしごき缶)で良好な成形性は得られない。
a/b<0.12 ・・・ (1)
300<3T1 0.7-(r1/r2)1.5+{(T2-720)2}/4+(T3logt)/3<1000 ・・・ (2)
(式(2)において、T1は熱延板の巻取温度(℃)であり、r1は2次冷延の第1スタンド圧下率(%)であり、r2は2次冷延の第2スタンド圧下率(%)であり、T2は焼鈍温度(℃)であり、T3は過時効温度(℃)であり、tは過時効時間(秒)である)
鋼成分として、C量が0.050%を超えると、後述のように炭化物の個数が多くなり、特に円相等径が大きな炭化物が多くなるため極限変形能に悪影響を及ぼす。更にr値、延性とも著しく低減するためC量は0.050%以下とする。一方、C量が0.010%未満では必要強度を確保することが困難となるため、C量は0.010%以上とする。
Si量の上限はASTM規格で0.020%であるので、本発明鋼のSi量も0.020%を上限とする。また、Si量の下限は特に規定せず、0%であってもよいが、Siは鉄鉱石やマンガン鉱に不純物として含有され、完全に除去することはコストがかかるため、下限は0.005%であることが望ましい。
Mnは、Sによる熱間割れを防止する上で有効な元素であり、Mn量は0.10%以上であることが必要である。更にMn量が0.10%未満では強度不足となる。またMn量の上限はASTM規格で0.60%であるので、本発明鋼のMn量も0.60%を上限とする。
Pは、鋼を硬化させ加工性を悪化させる有害な元素であり、成型時に破胴を引き起こすため、P量の上限を0.020%とする。P量の下限は特に規定せず、0%であってもよいが脱りんコストおよび時間が必要となることから下限を0.001%とすることが望ましい。
Sは、鋼中に介在物として存在し、延性を減少、表面割れを引き起こし、外観不良、耐食性の劣化をもたらす元素であるので、S量の上限を0.020%とする。S量の下限は特に規定せず、0%であってもよいが、脱硫コストおよび脱硫時間の都合から下限を0.001%とすることが望ましい。
Alを0.050%超で添加した場合、AlNが粗大化され、成形性に悪影響を与えるため、上限を0.050%とする。また、脱酸による鋳造性を考慮すると0.005%以上の添加が好ましい。
Nは、固溶強化元素であり、鋼板強度の確保に必要である元素であるが、添加量が0.0100%を超えると著しく加工性を劣化させる。また連続鋳造時のスラブ割れの発生を引き起こすので、上限を0.0100%とする。N量の下限は特に規定せず、0%であってもよいが、上述した効果を考慮すると0.0020%以上の添加が好ましい。
いずれも炭化物、窒化物を形成し、加工性改善に有効な元素であり、必要に応じ選択して含有できる。Nbは0.03%を超えて含有するとNb系析出物による結晶粒界のピン止め効果により再結晶温度が上昇し、連続焼鈍炉の通板作業性が低下する。加工性改善効果を得るにはNbを0.003%以上含有するのが望ましい。Tiは0.03%を超えて含有すると硬質な析出物が生成し、耐食性が低下する。加工性改善効果を得るにはTiを0.003%以上含有するのが望ましい。Bは0.0020%を超えて含有すると、連続焼鈍時再結晶粒界に偏析し再結晶を遅延させる。加工性改善効果を得るにはBを0.0005%以上含有するのが望ましい。
a/b<0.12 ・・・(1)
a/bの値は、炭化物の分布状態を表しており、図2によれば、炭化物の個数が同じであっても、円相当径が小さな炭化物が多くて大きな炭化物が少ない状態である方が、極限変形能が良いことを表している。
鋼中成分のうちC量を制御することで適度な炭化物の円相当径を得る事が可能である。図3のように、基本的にC量が0.050%以下であれば円相当径は小さくなり式(1)を満たしやすくなる。ただし、C量が少なくなり過ぎ、0.010%未満となると、必要な鋼板強度が得られない。このため最適なC量の範囲があり、0.010%~0.050%が良い。ここで、図3は、C量が異なる鋼片を後述の実施例と同様の条件で熱間圧延を行うことで熱延板を作製し、この熱延板の断面を後述の方法で観察し、a/bを測定することで得られたグラフである。したがって、C量を0.010%~0.050%とした上で、後述の熱延後の巻取り温度やその他の操業条件の式である式(2)を満足することで式(1)を満たすことが可能となる。
さらに鋼板の熱延後の巻取り温度も炭化物個数に影響する。図4に示すように、巻取温度が低ければ、熱延板での粗大な炭化物は少なくなる。つまり式(1)のa/bの値が小さくなる。熱延時での粗大な炭化物が少なければ、成品板でも炭化物が少ない事が期待できる。ここで、図4は、鋼中成分が共通で巻取温度が異なる熱延板(熱間圧延は後述の実施例と同様に行った)の断面を上記の方法で観察し、a/bを測定することで得られたグラフである。巻取り温度は640℃以下が望ましい。ただし200度以下では熱延板強度が高すぎて冷延負荷が大きすぎるため避けるべきである。但し、この場合、後述する式(2)を満足する前提である。なお、缶用鋼板の板厚は0.10~0.30mmであることが好ましい。
また製法では、前記のC量、熱延後の巻取り温度上限を満足した上で、熱延での巻取温度、焼鈍時の加熱温度、その後の調質圧延条件、さらには過時効処理を所定のバランス下に置くことで最終的な炭化物の個数を制御する。発明者らが、それぞれの影響を調査した結果、下記式(2)を満足する場合に、図5に示すように、炭化物の個数が所定の範囲を満足し、式(1)のa/b<0.12を満足することで、極限変形能が1.6以上となることが判明した。ここで、図5は、鋼中成分が共通で3T1 0.7-(r1/r2)1.5+{(T2-720)2}/4+(T3logt)/3の値が異なる冷延板(他の条件は後述の実施例と同様に行った)の断面を上記の方法で観察し、a/bを測定することで得られたグラフである。T1は巻取温度(℃)、T2は焼鈍温度(℃)、r1は2次冷延の第1スタンド圧下率(%)、r2は2次冷延の第2スタンド圧下率(%)、T2は焼鈍温度(℃)あり、T3は過時効温度(℃)、tは過時効時間(秒)である。ここでT3は過時効開始温度と過時効終了温度の平均値である。
300<3T1 0.7-(r1/r2)1.5+{(T2-720)2}/4+(T3logt)/3<1000 ・・・ (2)
なお、図5における「3T1^(0.7)-(r1/r2)^(1.5)+{(T2-720)^2}/4+(T3logt)/3」は、「3T1 0.7-(r1/r2)1.5+{(T2-720)2}/4+(T3logt)/3」を意味している。
Claims (8)
- 質量%で、
C:0.010%~0.050%、
Si:0.020%以下、
Mn:0.10~0.60%、
P:0.020%以下、
S:0.020%以下、
Al:0.050%以下、
N:0.0100%以下、
Nb:0~0.03%、
Ti:0~0.03%、
B:0~0.0020%
を含有し、残部がFe及び不純物からなる缶用鋼板であって、
前記缶用鋼板の断面で観察される円相当径が2μm以上5μm以下である炭化物の個数をa、円相当径が0.1μm以上2μm未満である炭化物の個数をbとするとき、a/bが下記式(1)の範囲を満たし、極限変形能が1.6以上であり、板厚0.10~0.30mmであることを特徴とする、缶用鋼板。
a/b<0.12 ・・・ (1) - 質量%で、
Nb:0.003~0.03%、
Ti:0.003~0.03%、
B:0.0005~0.0020%
からなる群から選択された少なくとも一種を含有することを特徴とする請求項1に記載の缶用鋼板。 - 前記缶用鋼板の表面にはSnめっき、Crめっき、あるいはそれらの合金めっきが施されていることを特徴とする、請求項1または2に記載の缶用鋼板。
- めっきの表面に有機皮膜または樹脂皮膜が施されていることを特徴とする、請求項3に記載の缶用鋼板。
- 質量%で、
C:0.010%~0.050%、
Si:0.020%以下、
Mn:0.10~0.60%、
P:0.020%以下、
S:0.020%以下、
Al:0.050%以下、
N:0.0100%以下、
Nb:0~0.03%、
Ti:0~0.03%、
B:0~0.0020%
を含有し、残部がFe及び不純物からなる鋼片を熱間圧延した後、前記熱間圧延により得られた熱延板を巻取温度640℃以下で巻き取り、前記熱延板に酸洗、冷間圧延を施して冷延板を得た後、680℃以上で前記冷延板の焼鈍を行い、焼鈍後の前記冷延板を過時効処理し、その後2次冷延を行ってなる缶用鋼板の製造方法であって、下記式(2)を満たすことを特徴とする缶用鋼板の製造方法。
300<3T1 0.7-(r1/r2)1.5+{(T2-720)2}/4+(T3logt)/3<1000 ・・・ (2)
式(2)において、T1は熱延板の巻取温度(℃)であり、r1は2次冷延の第1スタンド圧下率(%)であり、r2は2次冷延の第2スタンド圧下率(%)であり、T2は焼鈍温度(℃)であり、T3は過時効温度(℃)であり、tは過時効時間(秒)である。 - 質量%で、
Nb:0.003~0.03%、
Ti:0.003~0.03%、
B:0.0005~0.0020%
からなる群から選択された少なくとも一種を含有することを特徴とする請求項5に記載の缶用鋼板の製造方法。 - 前記缶用鋼板の表面にSnめっき、Crめっき、あるいはそれらの合金めっきを施すことを特徴とする請求項5または6に記載の缶用鋼板の製造方法。
- めっきの表面に有機皮膜または樹脂皮膜を施すことを特徴とする請求項7に記載の缶用鋼板の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020533170A JP6897878B1 (ja) | 2020-02-17 | 2020-02-17 | 缶用鋼板およびその製造方法 |
EP20919879.5A EP4108796A4 (en) | 2020-02-17 | 2020-02-17 | STEEL SHEET FOR CAN AND METHOD OF PRODUCTION THEREOF |
US17/788,131 US11965224B2 (en) | 2020-02-17 | 2020-02-17 | Steel sheet for can and manufacturing method thereof |
PCT/JP2020/006010 WO2021166026A1 (ja) | 2020-02-17 | 2020-02-17 | 缶用鋼板およびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/006010 WO2021166026A1 (ja) | 2020-02-17 | 2020-02-17 | 缶用鋼板およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021166026A1 true WO2021166026A1 (ja) | 2021-08-26 |
Family
ID=76650106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/006010 WO2021166026A1 (ja) | 2020-02-17 | 2020-02-17 | 缶用鋼板およびその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11965224B2 (ja) |
EP (1) | EP4108796A4 (ja) |
JP (1) | JP6897878B1 (ja) |
WO (1) | WO2021166026A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005320633A (ja) | 2005-06-20 | 2005-11-17 | Jfe Steel Kk | 2ピース変形缶用鋼板およびその製造方法 |
JP2005336610A (ja) | 2004-04-27 | 2005-12-08 | Jfe Steel Kk | 高強度高延性な缶用鋼板およびその製造方法 |
JP2010043349A (ja) * | 2008-04-11 | 2010-02-25 | Jfe Steel Corp | 高強度容器用鋼板およびその製造方法 |
JP2017155267A (ja) * | 2016-02-29 | 2017-09-07 | Jfeスチール株式会社 | 缶用鋼板およびその製造方法 |
JP2017155266A (ja) * | 2016-02-29 | 2017-09-07 | Jfeスチール株式会社 | 缶用鋼板の製造方法 |
WO2018180403A1 (ja) * | 2017-03-27 | 2018-10-04 | Jfeスチール株式会社 | 2ピース缶用鋼板及びその製造方法 |
WO2018180404A1 (ja) * | 2017-03-27 | 2018-10-04 | Jfeスチール株式会社 | 2ピース缶用鋼板及びその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005103316A1 (ja) | 2004-04-27 | 2005-11-03 | Jfe Steel Corporation | 缶用鋼板およびその製造方法 |
EP2905348B1 (de) * | 2014-02-07 | 2019-09-04 | ThyssenKrupp Steel Europe AG | Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts |
WO2015166653A1 (ja) * | 2014-04-30 | 2015-11-05 | Jfeスチール株式会社 | 高強度容器用鋼板及びその製造方法 |
JP5958630B2 (ja) * | 2014-10-10 | 2016-08-02 | Jfeスチール株式会社 | 王冠用鋼板およびその製造方法 |
CN110573641A (zh) * | 2017-04-19 | 2019-12-13 | 日本制铁株式会社 | 拉深罐用冷轧钢板及其制造方法 |
-
2020
- 2020-02-17 JP JP2020533170A patent/JP6897878B1/ja active Active
- 2020-02-17 WO PCT/JP2020/006010 patent/WO2021166026A1/ja active Application Filing
- 2020-02-17 EP EP20919879.5A patent/EP4108796A4/en active Pending
- 2020-02-17 US US17/788,131 patent/US11965224B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005336610A (ja) | 2004-04-27 | 2005-12-08 | Jfe Steel Kk | 高強度高延性な缶用鋼板およびその製造方法 |
JP2005320633A (ja) | 2005-06-20 | 2005-11-17 | Jfe Steel Kk | 2ピース変形缶用鋼板およびその製造方法 |
JP2010043349A (ja) * | 2008-04-11 | 2010-02-25 | Jfe Steel Corp | 高強度容器用鋼板およびその製造方法 |
JP2017155267A (ja) * | 2016-02-29 | 2017-09-07 | Jfeスチール株式会社 | 缶用鋼板およびその製造方法 |
JP2017155266A (ja) * | 2016-02-29 | 2017-09-07 | Jfeスチール株式会社 | 缶用鋼板の製造方法 |
WO2018180403A1 (ja) * | 2017-03-27 | 2018-10-04 | Jfeスチール株式会社 | 2ピース缶用鋼板及びその製造方法 |
WO2018180404A1 (ja) * | 2017-03-27 | 2018-10-04 | Jfeスチール株式会社 | 2ピース缶用鋼板及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4108796A4 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021166026A1 (ja) | 2021-08-26 |
EP4108796A1 (en) | 2022-12-28 |
EP4108796A4 (en) | 2023-02-15 |
US11965224B2 (en) | 2024-04-23 |
US20230039571A1 (en) | 2023-02-09 |
JP6897878B1 (ja) | 2021-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5135868B2 (ja) | 缶用鋼板およびその製造方法 | |
JP5549307B2 (ja) | 時効性および焼付け硬化性に優れた冷延鋼板およびその製造方法 | |
EP2762602B1 (en) | Alloyed hot-dip galvanized steel sheet | |
JP6943335B2 (ja) | Ni拡散めっき鋼板及びNi拡散めっき鋼板の製造方法 | |
EP3904552A1 (en) | High-strength hot-dip galvanized steel sheet and method for manufacturing same | |
KR20130123460A (ko) | 냉연 강판 및 그 제조 방법 | |
WO2017043660A1 (ja) | 鋼板およびほうろう製品 | |
KR20040075981A (ko) | 가공성이 우수한 Cr 함유 내열 강판 및 그 제조 방법 | |
KR20230148847A (ko) | 강판, 강판의 제조 방법, 및 중간 강판의 제조 방법 | |
EP2123780B1 (en) | Processes for production of steel sheets for cans | |
JP2023527389A (ja) | 超高張力二相鋼およびその製造方法 | |
EP2412838A1 (en) | Steel sheet for cans which exhibits excellent surface properties after drawing and ironing, and process for production thereof | |
WO2016035235A1 (ja) | ステンレス冷延鋼板用素材 | |
JPWO2020166231A1 (ja) | 鋼板及びその製造方法 | |
WO2021141006A1 (ja) | 鋼板およびその製造方法 | |
JP5930144B1 (ja) | 絞り缶用鋼板及びその製造方法 | |
JP2012082523A (ja) | 焼付硬化性に優れた高強度冷間圧延鋼板、溶融メッキ鋼板及び冷間圧延鋼板の製造方法 | |
KR100879084B1 (ko) | 고강도 등방성 강, 강판 제조 방법 및 이에 의한 강판 | |
JP6897878B1 (ja) | 缶用鋼板およびその製造方法 | |
JP2007239035A (ja) | 耐ひずみ時効性および耐肌荒れ性に優れ、面内異方性の小さい冷延鋼板およびその製造方法 | |
JP2007211337A (ja) | 耐ひずみ時効性に優れ、面内異方性の小さい冷延鋼板およびその製造方法 | |
JP7502712B1 (ja) | 鋼板 | |
WO2019203251A1 (ja) | 熱延鋼板 | |
JP7469706B2 (ja) | 高強度鋼板 | |
US12084734B2 (en) | Plated steel sheets for hot press forming having excellent hydrogen brittleness resistance and impact resistance, hot press formed parts, and manufacturing methods thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020533170 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20919879 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020919879 Country of ref document: EP Effective date: 20220919 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 522433352 Country of ref document: SA |