WO2021164599A1 - 有机电致发光显示面板及其制备方法、显示装置 - Google Patents

有机电致发光显示面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2021164599A1
WO2021164599A1 PCT/CN2021/075829 CN2021075829W WO2021164599A1 WO 2021164599 A1 WO2021164599 A1 WO 2021164599A1 CN 2021075829 W CN2021075829 W CN 2021075829W WO 2021164599 A1 WO2021164599 A1 WO 2021164599A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
sub
pixel
absorption
Prior art date
Application number
PCT/CN2021/075829
Other languages
English (en)
French (fr)
Inventor
于天成
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/435,083 priority Critical patent/US20220140017A1/en
Publication of WO2021164599A1 publication Critical patent/WO2021164599A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver

Definitions

  • the present disclosure relates to the field of display technology, in particular, to an organic electroluminescence display panel and a preparation method thereof, and also to a display device.
  • OLED display screens are expanding day by day, and it has become the mainstream display screen of mobile communication terminal equipment.
  • QLED quantum dot display technology
  • the peak width of the emission spectrum of the OLED device is larger, which is far inferior to the QLED technology in terms of wide color gamut.
  • the purpose of the present disclosure is to provide an organic electroluminescence display panel and a manufacturing method thereof, and also provide a display device to solve one or more problems in the prior art.
  • an organic electroluminescence display panel including a base substrate on which a plurality of sub-pixels are formed, and each of the sub-pixels includes a first electrode layer and a second electrode layer disposed opposite to each other.
  • a light-absorbing layer, the light-absorbing layer is arranged on the side of the second electrode layer away from the organic light-emitting function layer; and the projections of the light-absorbing layer and the organic light-emitting function layer on the base substrate overlap;
  • the absorption peak wavelength of the absorption spectrum curve of the light absorption layer is greater than the emission peak wavelength of the emission spectrum curve of the corresponding sub-pixel, and the minimum absorption wavelength of the absorption spectrum curve of the light absorption layer is greater than that of the corresponding sub-pixel.
  • the minimum emission wavelength of the emission spectrum curve, and the wavelength range covered by the absorption spectrum curve of the light absorption layer overlaps with the wavelength range covered by the emission spectrum curve of the corresponding sub-pixel.
  • the plurality of sub-pixels include at least one of a green sub-pixel and a blue sub-pixel, wherein at least one of the green sub-pixels and/or at least one of the blue sub-pixels
  • the sub-pixel includes the light absorption layer.
  • the plurality of sub-pixels include red sub-pixels, green sub-pixels, and blue sub-pixels, wherein each of the green sub-pixels and/or each of the blue sub-pixels is It includes the light-absorbing layer.
  • the absorption peak wavelength of the absorption spectrum curve of the light absorption layer corresponding to the blue sub-pixel is between 480-510 nm.
  • the material of the light absorption layer includes a compound represented by the following structural formula (1):
  • the absorption peak wavelength of the absorption spectrum curve of the light absorption layer corresponding to the green sub-pixel is between 560-610 nm.
  • the material of the light-absorbing layer includes a compound represented by the following structural formula (2):
  • the sub-pixel further includes a pixel defining layer for defining the sub-pixel area, the pixel defining layer has an opening, and the light-absorbing layer corresponding to the sub-pixel includes The portion located in the opening of the pixel defining layer; in the thickness direction of the display panel, the distance from the surface of the light absorbing layer in the opening away from the base substrate to the base substrate is less than or It is equal to the distance from the surface of the pixel defining layer away from the base substrate to the base substrate.
  • the thickness of the light absorption layer does not exceed 1 ⁇ m.
  • each of the sub-pixels further includes an encapsulation layer, the encapsulation layer is formed on a side of the second electrode layer away from the organic light-emitting function layer, and covers the light-absorbing layer.
  • the encapsulation layer is formed on a side of the second electrode layer away from the organic light-emitting function layer, and covers the light-absorbing layer.
  • an organic electroluminescence display panel including a plurality of sub-pixels, including:
  • the second electrode layer is located on the light emitting side;
  • the absorption peak wavelength of the absorption spectrum curve of the light absorption layer is greater than the emission peak wavelength of the emission spectrum curve of the corresponding sub-pixel, and the minimum absorption wavelength of the absorption spectrum curve of the light absorption layer is greater than that of the corresponding sub-pixel.
  • the minimum emission wavelength of the emission spectrum curve, and the wavelength range covered by the absorption spectrum curve of the light absorption layer overlaps with the wavelength range covered by the emission spectrum curve of the corresponding sub-pixel.
  • the light absorption layer is formed by an evaporation method.
  • the preparation method further includes: forming an encapsulation layer covering the second electrode layer and the light absorption layer.
  • a display device including the organic electroluminescence display panel described in any one of the above.
  • Figure 1 shows the electroluminescence spectrum of blue light of an OLED device at a viewing angle of 0° (positive viewing angle);
  • FIG. 2 is a schematic diagram of the structure of a sub-pixel including a light-absorbing layer according to an embodiment of the present disclosure
  • Figure 3 shows the influence of the light-absorbing layer on the blue light spectrum with a viewing angle of 0°
  • Figure 4 shows the influence of the light-absorbing layer on the blue light spectrum with a viewing angle of 15°
  • Figure 5 shows the influence of the light-absorbing layer on the blue light spectrum with a viewing angle of 30°
  • Figure 6 shows the influence of the light-absorbing layer on the blue light spectrum with a viewing angle of 45°
  • Figure 7 shows the influence of the light-absorbing layer on the blue CIE trajectory at a viewing angle of 0-80°
  • Figure 8 shows the influence of the blue sub-pixel light-absorbing layer on the color gamut
  • Figure 9 shows the influence of the light-absorbing layer on the attenuation of blue light under the viewing angle of 0-80°
  • Figure 10 shows the influence of the light-absorbing layer on the deviation of the blue color coordinate under the viewing angle of 0-80°
  • Figure 11 shows the influence of the light-absorbing layer on the green light spectrum at a viewing angle of 0°
  • Figure 12 shows the influence of the light-absorbing layer on the green light spectrum at a viewing angle of 15°
  • Figure 13 shows the influence of the light-absorbing layer on the green light spectrum with a viewing angle of 30°
  • Figure 14 shows the influence of the light-absorbing layer on the green light spectrum with a viewing angle of 45°
  • Figure 15 shows the influence of the light-absorbing layer on the green light CIE trajectory at a viewing angle of 0-80°
  • Figure 16 shows the influence of the green sub-pixel light-absorbing layer on the color gamut
  • Figure 17 shows the influence of the light-absorbing layer on the attenuation of the green light under the viewing angle of 0-80°;
  • Figure 18 shows the influence of the light-absorbing layer on the deviation of the green light color coordinate under the viewing angle of 0-80°;
  • FIG. 19 is a schematic diagram of the structure of an RGB three-color OLED sub-pixel according to an embodiment of the present disclosure.
  • FIG. 20 shows the common influence of the blue sub-pixel light-absorbing layer and the green sub-pixel light-absorbing layer on the color gamut
  • Figure 21 shows the effect of the light-absorbing layer on the white light CIE trajectory at a viewing angle of 0-80°
  • Figure 22 shows the effect of the light-absorbing layer on the white light color shift at a viewing angle of 0-80°
  • FIG. 23 is a schematic flow chart of a manufacturing method of a display panel according to this embodiment.
  • Base substrate 2. First electrode layer; 3. Organic light-emitting function layer; 4. Second electrode layer; 5. Pixel defining layer; 6. Light absorption layer; 7. Encapsulation layer.
  • FIG. 1 it is the electroluminescence spectrum of blue light of the OLED device at a viewing angle of 0° (positive viewing angle).
  • the blue electroluminescence spectrum curve has an obvious tailing peak between 480-510 nm.
  • the green photoluminescence spectrum curve has an obvious tailing peak in the 560-590nm region. This tailing peak widens the peak width of the blue and green light emission spectrum curve, and moves toward the long wavelength direction, which will affect the saturation of the color; at the same time, when the three primary colors are matched, the color gamut presented is small, and in the wide color It is difficult to reach a higher level in terms of domains. At present, it is difficult to avoid this tailing by developing new luminescent materials.
  • the embodiments of the present disclosure provide an organic electroluminescent display panel (hereinafter referred to as OLED display panel), which eliminates the shortcomings of long-wavelength tailing in the emission spectrum and helps improve the display color gamut. .
  • the OLED display panel of the embodiment of the present disclosure includes a base substrate 1 on which a plurality of sub-pixels are formed.
  • each sub-pixel includes a first electrode layer 2 and a first electrode layer 2 and The second electrode layer 4, and the organic light-emitting function layer 3 arranged between the first electrode layer 2 and the second electrode layer 4, the second electrode layer 4 is located on the light-exit side;
  • at least one sub-pixel also includes a light-absorbing layer 6, a light-absorbing layer 6 is arranged on the side of the second electrode layer 4 away from the organic light-emitting function layer 3, and the projections of the light-absorbing layer 6 and the organic light-emitting function layer 3 on the base substrate 1 overlap; among them, the absorption peak of the light absorption spectrum curve of the light absorption layer 6
  • the wavelength is greater than the emission peak wavelength of the emission spectrum curve of the corresponding sub-pixel, the minimum absorption wavelength of the absorption spectrum curve of the light-absorbing layer 6 is greater than the minimum emission wavelength of the emission spectrum curve of the corresponding
  • the absorption spectrum curve refers to a curve drawn by irradiating a light-absorbing material with light of different wavelengths, and measuring the light absorption intensity of the material to light of different wavelengths, respectively.
  • the abscissa is the wavelength of light
  • the ordinate is the light absorption intensity.
  • the absorption peak wavelength refers to the wavelength corresponding to the maximum light absorption intensity of the material, that is, the wavelength corresponding to the highest point in the absorption spectrum curve.
  • the minimum absorption wavelength refers to the minimum wavelength in the wavelength band where the material absorbs light, that is, the wavelength corresponding to when the absorption intensity on the left side of the absorption spectrum curve starts to be greater than 0.
  • the maximum absorption wavelength refers to the maximum wavelength in the band of light absorbed by the light-absorbing material, that is, the wavelength corresponding to when the absorption intensity on the right side of the absorption spectrum curve drops to 0.
  • the luminescence spectrum curve refers to the curve drawn by measuring the luminous intensity of light of different wavelengths emitted by the luminescent material.
  • the abscissa is the wavelength of light
  • the ordinate is the luminous intensity.
  • the luminous peak wavelength refers to the wavelength corresponding to the maximum luminous intensity of the material, that is, the wavelength corresponding to the highest point in the luminescence spectrum curve.
  • the minimum emission wavelength refers to the minimum wavelength within the wavelength band of the light emitted by the material, that is, the wavelength corresponding to when the luminous intensity on the left side of the emission spectrum curve starts to be greater than 0.
  • the maximum luminous wavelength refers to the maximum wavelength in the wavelength band of the light emitted by the material, that is, the wavelength corresponding to when the luminous intensity on the right side of the luminescence spectrum curve drops to 0.
  • the light-absorbing layer is arranged on the light-emitting side.
  • the light-absorbing spectrum curve of the light-absorbing layer is located on the right side of the emission spectrum curve and overlaps with the tail peak, so it can absorb the light in the wavelength band where the tail peak is located. Tailoring the tail peak part of the luminescence spectrum curve makes the peak width of the luminescence spectrum curve narrower, thereby helping to improve the color gamut of the OLED device.
  • the first electrode layer 2 is the anode layer
  • the second electrode layer 4 is the cathode layer
  • the anode layer is provided on the base substrate 1
  • the cathode layer is on the light-emitting side, so the light-absorbing layer 6 is located at the cathode.
  • the layer is away from the side of the organic light-emitting function layer 3 and covers the cathode layer.
  • the organic light-emitting functional layer 3 may include an electron injection layer, an electron transport layer, a light-emitting layer, a hole transport layer, a hole injection layer, and of course, may further include an electron blocking layer, a hole blocking layer and other film layers. The specific structure of the organic light-emitting functional layer will not be repeated here.
  • the blue sub-pixel As shown in FIG. 3 to FIG. 6, it is the influence of the light-absorbing layer of the sub-pixel on the blue light spectrum under different viewing angles (0°, 15°, 30°, 45°).
  • the curve B11 is the original blue light spectrum curve under a viewing angle of 0° (that is, the positive viewing angle)
  • curve B is the light absorption spectrum curve of the light-absorbing layer
  • the curve B12 is the light absorption under the viewing angle of 0° (that is, the positive viewing angle).
  • Blue light spectrum curve after layer trimming is the original blue light spectrum curve under a viewing angle of 0° (that is, the positive viewing angle)
  • curve B is the light absorption spectrum curve of the light-absorbing layer
  • the curve B12 is the light absorption under the viewing angle of 0° (that is, the positive viewing angle).
  • the emission peak wavelength is about 465nm
  • the minimum emission wavelength is about 430nm
  • the maximum emission wavelength is about 520nm.
  • the absorption peak wavelength is about 500nm
  • the minimum absorption wavelength is about 450nm
  • the maximum absorption wavelength is greater than 580nm.
  • the luminescence peak wavelength is about 465 nm
  • the minimum luminescence wavelength is about 430 nm
  • the maximum luminescence wavelength is about 500 nm.
  • curve B21 is the original blue light spectrum curve at a viewing angle of 15°
  • curve B is the light absorption spectrum curve of the light-absorbing layer
  • curve B22 is the blue light spectrum curve cut by the light-absorbing layer at a viewing angle of 15°. Similar to the 0° viewing angle, after being absorbed by the light-absorbing layer, the maximum emission wavelength of the blue light spectrum curve at a viewing angle of 15° is reduced from 520nm to 500nm.
  • curve B31 is the original blue light spectrum curve at a viewing angle of 30°
  • curve B is the light absorption spectrum curve of the light absorbing layer
  • curve B32 is the blue light spectrum curve cut by the light absorbing layer at a viewing angle of 30°.
  • curve B41 is the original blue light spectrum curve at a viewing angle of 45°
  • curve B is the light absorption spectrum curve of the light-absorbing layer
  • curve B42 is the blue light spectrum curve cut by the light-absorbing layer at a viewing angle of 45°.
  • the maximum emission wavelength of the blue light spectrum curve under the 45° viewing angle is reduced from 510nm to 495nm.
  • the luminous intensity of the blue sub-pixel provided with the light-absorbing layer in the tail peak portion is significantly reduced, while the position of the main peak of the spectrum and the luminous intensity remain basically unchanged.
  • the dashed line is the blue CIE trajectory without a light-absorbing layer at a viewing angle of 0-80°
  • the solid line is a blue CIE trajectory with a light-absorbing layer at a viewing angle of 0-80°.
  • the abscissa Bx represents the blue x value
  • the coordinate By represents the blue y value. It can be seen from the figure that within the entire viewing angle range of 0-80°, the blue CIE track moves to the lower right as a whole, and the By value is significantly reduced. Taking the 0° viewing angle as an example, the By value is reduced from 0.065 to 0.049.
  • the tailoring of the blue tail peaks by the light-absorbing layer can enhance the blue color saturation.
  • arranging a light-absorbing layer in the blue sub-pixels is also conducive to widening the color gamut.
  • the triangular area enclosed by the dashed line represents the luminous color gamut without a light-absorbing layer
  • the triangular area enclosed by the solid line represents the luminous color gamut with the light-absorbing layer.
  • the color gamut without a light-absorbing layer is 100.5%, and the color gamut with a light-absorbing layer is increased to 102.1%. It can be seen that the light-absorbing layer achieves an effective widening of the color gamut.
  • the light-absorbing layer As shown in Figure 9, it is the influence of the light-absorbing layer on the attenuation trend of blue light brightness under the viewing angle of 0-80°.
  • the abscissa in the figure represents the number of viewing angles, the ordinate represents the normalized intensity of brightness, and the dotted line represents the blue light brightness without light-absorbing layer.
  • Attenuation trend the solid line indicates the attenuation trend of blue light brightness when there is a light-absorbing layer. It can be seen from the figure that at a small angle (such as ⁇ 50° and >-50°), the attenuation of the blue light with a light-absorbing layer is slightly slower than that without a light-absorbing layer, and at a large angle (such as >50° or ⁇ - 50°), there is no obvious difference between the two. Therefore, the light-absorbing layer can slow down the attenuation of blue light brightness under a small angle of view, and maintain better display brightness.
  • Figure 10 shows the effect of the light-absorbing layer on the blue light color coordinate deviation (JNCD) at a viewing angle of 0-80°.
  • the abscissa in the figure represents the number of viewing angles
  • the ordinate represents the color coordinate deviation value (JNCD value)
  • L5 represents no light-absorbing layer.
  • the JNCD value when L6 represents the JNCD value when there is a light-absorbing layer. It can be seen from the figure that at a small angle (such as ⁇ 50° and >-50°), the attenuation trend tends to be gentle, and the JNCD value with a light-absorbing layer is smaller than that without a light-absorbing layer.
  • the JNCD value with a light-absorbing layer is larger than that without a light-absorbing layer. Therefore, the light-absorbing layer can reduce the color shift of blue light under a small angle of view, and improve the color tone accuracy. Since the viewing angle of the display panel is usually a small angle, the light-absorbing layer has a positive effect on maintaining ideal brightness and improving color accuracy.
  • the green sub-pixel As shown in FIGS. 11-14, it is the influence of the light-absorbing layer of the sub-pixel on the green light spectrum under different viewing angles (0°, 15°, 30°, 45°).
  • the curve G11 is the original green light spectrum curve at a viewing angle of 0° (that is, the positive viewing angle)
  • the curve G is the light absorption spectrum curve of the light absorbing layer
  • the curve G12 is the curve at a viewing angle of 0° (that is, the positive viewing angle).
  • Green light spectrum curve after trimming of the light-absorbing layer is the original green light spectrum curve at a viewing angle of 0° (that is, the positive viewing angle)
  • the curve G is the light absorption spectrum curve of the light absorbing layer
  • the curve G12 is the curve at a viewing angle of 0° (that is, the positive viewing angle).
  • the emission peak wavelength is about 530nm
  • the minimum emission wavelength is about 490nm
  • the maximum emission wavelength is about 610nm.
  • the absorption peak wavelength is about 570nm
  • the minimum absorption wavelength is about 530nm
  • the maximum absorption wavelength is about 690nm.
  • the emission peak wavelength is about 625 nm
  • the minimum emission wavelength is about 490 nm
  • the maximum emission wavelength is about 570 nm
  • the half-peak width is about 20 nm.
  • curve G21 is the original green light spectrum curve at a viewing angle of 15°
  • curve G is the light absorption spectrum curve of the light-absorbing layer
  • curve G22 is the green light spectrum curve cut by the light-absorbing layer at a viewing angle of 15°. Similar to the 0° viewing angle, after being absorbed by the light-absorbing layer, the maximum emission wavelength of the green light spectrum curve at a viewing angle of 15° is reduced from 610 nm to 570 nm.
  • curve G31 is the original green light spectrum curve at a viewing angle of 30°
  • curve G is the light absorption spectrum curve of the light-absorbing layer
  • curve G32 is the green light spectrum curve cut by the light-absorbing layer at a viewing angle of 30°.
  • curve G41 is the original green light spectrum curve at a viewing angle of 45°
  • curve G is the light absorption spectrum curve of the light absorbing layer
  • curve G42 is the green light spectrum curve cut by the light absorbing layer at a viewing angle of 45°. Similar to the 0° viewing angle, after being absorbed by the light-absorbing layer, the maximum emission wavelength of the green light spectrum curve at a 45° viewing angle is reduced from 600nm to 590nm.
  • the luminous intensity of the green sub-pixel provided with the light-absorbing layer in the tail peak portion is significantly reduced, while the position of the main peak of the spectrum and the luminous intensity remain basically unchanged.
  • the CIE1931 color coordinates corresponding to the emission spectra of the green light with and without the light-absorbing layer at different viewing angles are further calculated respectively.
  • the dashed line is the green light CIE trajectory at a viewing angle of 0-80° without a light-absorbing layer
  • the solid line is a green light CIE trajectory at a viewing angle of 0-80° with a light-absorbing layer
  • the abscissa Gx represents the green light x Value
  • the ordinate Gy represents the green light y value. It can be seen from the figure that within the entire viewing angle range of 0-80°, the green CIE track moves to the upper left as a whole, and the Gx value is significantly reduced. Taking a 0° viewing angle as an example, the Gx value is reduced from 0.261 to 0.213. The tailoring of the green light trailing peak by the light-absorbing layer enhances the green color saturation.
  • arranging a light-absorbing layer in the green sub-pixels is also conducive to widening the color gamut.
  • the triangular area enclosed by the dashed line represents the light-emitting color gamut without a light-absorbing layer
  • the triangular area enclosed by the solid line represents the light-emitting color gamut with the light-absorbing layer.
  • the color gamut without a light-absorbing layer is 100.5%, and the color gamut with a light-absorbing layer is increased to 111.3%. It can be seen that the light-absorbing layer achieves an effective widening of the color gamut.
  • the light-absorbing layer can slow down the attenuation of the green light brightness under a small angle of view and maintain better display brightness. Since the viewing angle of the display panel is usually a small angle, the light-absorbing layer has a positive effect on maintaining ideal brightness.
  • Figure 18 shows the effect of the light-absorbing layer on the green color coordinate deviation (JNCD) under a viewing angle of 0-80°.
  • the abscissa in the figure represents the number of viewing angles, the ordinate represents the color coordinate deviation (JNCD value), and G5 represents no light absorption.
  • the JNCD value with a light-absorbing layer is smaller than that without a light-absorbing layer, and at a large angle (such as >50° or ⁇ -50°) ), the JNCD value with a light-absorbing layer is smaller than that without a light-absorbing layer. Therefore, compared with no light-absorbing layer, the light-absorbing layer can reduce the color shift of green light under most viewing angles and improve the color tone accuracy.
  • arranging the light-absorbing layer 6 in the blue and green sub-pixels at the same time can further increase the display color gamut.
  • Figure 20 which is the CIE1931 chromaticity diagram shown by the two.
  • the triangular area enclosed by the dashed line represents the luminous color gamut without a light-absorbing layer
  • the triangular area enclosed by the solid line represents the luminous color gamut with a light-absorbing layer.
  • the color gamut without a light-absorbing layer is 100.5%, and the color gamut with a light-absorbing layer is increased to 113%. It can be seen that the effect of arranging the light-absorbing layer in the blue and green sub-pixels at the same time is more significant than providing the light-absorbing layer in only one color.
  • the brightness attenuation of blue and green light at large viewing angles is small.
  • it can significantly improve the trajectory trend of the color coordinates of white light at large viewing angles. This is because as the viewing angle increases, the blue and green light spectrum gradually shifts to the shortwave direction.
  • the degree of overlap between the luminescence spectrum and the absorption spectrum under large viewing angles gradually decreases, that is, the absorption layer absorbs the luminescence spectrum of the small viewing angle more and less absorbs the luminescence spectrum of the large viewing angle, which will cause the brightness decay to become slower under the large viewing angle. .
  • the control function of the optical characteristics of white light with large viewing angles can be realized.
  • the dashed line is the white light CIE trajectory at a viewing angle of 0-80° without a light-absorbing layer
  • the solid line is a white light CIE trajectory with a light-absorbing layer at a viewing angle of 0-80°.
  • the abscissa CIEx represents the white light x value
  • the vertical The coordinate CIEy represents the white light y value.
  • the white light CIE trajectory moves to the left as a whole.
  • the CIE color coordinates of the three primary colors R (0.681, 0.319), G (0.261,0.704) and B (0.133, 0.065) without the light-absorbing layer become R (0.681, 0.319) after the spectrum of the light-absorbing layer is cut. ), G (0.213, 0.744) and B (0.137, 0.049).
  • the white light after the blue and green light after the light-absorbing layer is matched with the red light is significantly shifted to the cyan direction at a large viewing angle compared to the white light before the spectral trimming.
  • the trajectory successfully moved to the cyan area where the human eye is not sensitive, reducing the human eye's sensitivity to color shift.
  • the light-absorbing layer 6 has obvious effects on increasing the color saturation of blue and green light, widening the color gamut, delaying brightness attenuation, and improving color cast. Therefore, it can be used in an OLED display panel to improve the display effect.
  • the red photoluminescence spectrum curve also has a tailing peak, its tailing peak has not been found to have adverse effects on the color saturation and color gamut.
  • the tailing peak of blue light is concentrated between 480-510nm, so the material of the light-absorbing layer corresponding to the blue sub-pixel is preferably the material with the absorption peak wavelength of the light-absorption spectrum curve between 480-510nm, so as to compare 480-510nm.
  • the light in the -510nm band has a good absorption effect, which can effectively realize the tailoring of the blue tail peak.
  • the material of the light-absorbing layer corresponding to the absorption peak wavelength can be selected.
  • the material with the absorption peak wavelength between 480-510 nm may be a compound represented by the following structural formula (1):
  • the compound represented by structural formula (1) is a derivative material based on the core structure of boron fluoride dipyrrole (BODIPY).
  • BODIPY boron fluoride dipyrrole
  • the film formed by this material has a strong absorption band in the region of 480-510nm, and the molar absorption coefficient is as high as 74130M -1 cm -1 .
  • the structure is a donor and acceptor structure formed by triphenylamine and BODIPY, and the charge transfer state in the molecule effectively reduces its photoluminescence efficiency. After the film absorbs the blue tail peak, its photoluminescence phenomenon can be basically ignored, and it has no effect on the luminescence of the OLED device itself.
  • the tailing peak of green light is concentrated between 560nm-610nm, so the material of the light-absorbing layer corresponding to the green sub-pixel is preferably a material with the absorption peak wavelength of the light-absorption spectrum curve between 560-610nm.
  • the light in the -610nm band has good absorption, which can effectively cut the tail peak of green light.
  • the light-absorbing layer material corresponding to the absorption peak wavelength can be selected.
  • the material with the absorption peak wavelength between 560-610 nm may specifically be a compound represented by the following structural formula (2):
  • the compound represented by the structural formula (2) is a copper phthalocyanine material, which has a strong absorption band in the region of 560nm-610nm, and its molar absorption coefficient is also high. It is a classic organic photovoltaic donor material. The photoluminescence quantum efficiency is also very low. After absorbing the tail peak of green light, it will not affect the spectrum of the OLED device itself.
  • the OLED display panel is a monochrome display panel, that is, all sub-pixels are sub-pixels of the same color, for example, all sub-pixels are blue sub-pixels or all sub-pixels are green sub-pixels to form Blue display or green display.
  • Arranging a light-absorbing layer in the monochromatic display panel can improve the monochromatic display effect.
  • the light-absorbing layer can be arranged on at least one of the sub-pixels or all sub-pixels. Obviously, when all the sub-pixels are provided with the light-absorbing layer, the light-emitting effect of each sub-pixel can be guaranteed to be consistent, and the effect of improving monochromatic light is the best.
  • Monochrome displays are usually used in display devices such as vehicle-mounted displays.
  • the OLED display panel is, for example, the RGB three primary color full-color OLED display panel shown in FIG. 19, that is, all sub-pixels are divided into red sub-pixels, green sub-pixels, and blue sub-pixels.
  • the blue sub-pixel or only the green sub-pixel is provided with a light-absorbing layer 6, or both the blue and green sub-pixels can be provided with a light-absorbing layer, both of which can improve the display effect.
  • arranging the light-absorbing layer on the blue and green sub-pixels at the same time has the best effect on improving the color gamut.
  • Full-color display panels are generally used in various display devices such as televisions and computers.
  • the sub-pixels in the above two embodiments all refer to normal sub-pixels in the display area, so that the light-emitting effect can be controlled.
  • the display panel usually also has a dummy pixel area (Dummy area) located in the non-display area
  • the light absorbing layer 6 of the present disclosure can also be arranged in the sub-pixels of the dummy pixel area at the same time.
  • the light-absorbing layer 6 may not be provided.
  • the sub-pixels when the display panel is an RGB three-primary color OLED display panel, the sub-pixels further include a pixel defining layer 5 as shown in FIG.
  • the light-absorbing layer 6 corresponding to the sub-pixel includes the opening in the pixel defining layer 5.
  • the edge portion of the light-absorbing layer 6 and the organic electroluminescent layer 3 will cover the pixel defining layer 5 (as shown in the figure). 2 shown).
  • the absorption intensity and transmittance of the blue and green light trailing peaks of the light-absorbing layer 6 can be precisely controlled. Overrate.
  • the distance from the surface of the light absorbing layer 6 away from the base substrate 1 to the base substrate 1 is less than or equal to that of the pixel defining layer 5 away from the base substrate 1
  • the distance from the surface of the substrate to the base substrate 1, that is, as shown in FIG. 2, the height of the upper surface of the light-absorbing layer 6 does not exceed the height of the upper surface of the pixel defining layer 5 in the opening, thereby facilitating subsequent planarization or Encapsulate.
  • the thickness of the light-absorbing layer does not exceed 1 ⁇ m. If the thickness of the film layer is greater than 1 ⁇ m, the transmittance of the film material itself may decrease, thereby affecting the display effect. Controlling the thickness within 1 ⁇ m can balance absorption strength and transmittance.
  • each sub-pixel further includes an encapsulation layer 7.
  • the encapsulation layer 7 is formed on the side of the cathode layer away from the organic light-emitting function layer 3, and covers the light-absorbing layer 6 to isolate water and oxygen. , Protect the role of the internal film.
  • the light-absorbing layer 6 is located between the encapsulation layer 7 and the cathode layer, and the light-absorbing layer 6 is protected by the encapsulation layer 7, which will not affect the microcavity structure of the OLED device, and can also avoid environmental humidity And the influence of water and oxygen erosion.
  • the encapsulation layer may be an encapsulation film or encapsulation glass, which is not specifically limited in the present disclosure.
  • the embodiments of the present disclosure also provide a manufacturing method of the above-mentioned organic electroluminescent display panel.
  • the manufacturing method includes:
  • Step S100 providing a base substrate 1, on which a first electrode layer 2, an organic light-emitting function layer 3, and a second electrode layer 4 corresponding to each sub-pixel are sequentially formed on the base substrate 1, and the second electrode layer 4 is located on the light emitting side;
  • Step S200 forming a light-absorbing layer 6 on the side of the second electrode layer 4 of at least one sub-pixel away from the organic light-emitting functional layer 3, and the projections of the light-absorbing layer 6 and the organic light-emitting functional layer 3 on the base substrate 1 overlap;
  • the absorption peak wavelength of the absorption spectrum curve of the light absorption layer is greater than the emission peak wavelength of the emission spectrum curve of the corresponding sub-pixel
  • the minimum absorption wavelength of the absorption spectrum curve of the light absorption layer is greater than the minimum emission wavelength of the emission spectrum curve of the corresponding sub-pixel.
  • the wavelength range covered by the light absorption spectrum curve of the light absorption layer overlaps with the wavelength range covered by the light emission spectrum curve of the corresponding sub-pixel.
  • the first electrode layer 2, that is, the anode layer is formed on the base substrate 1.
  • the anode layer material can be transparent ITO, etc., which are formed by evaporation, inkjet printing, etc. .
  • an organic light-emitting functional layer 3 is formed on the anode layer.
  • the organic light-emitting functional layer 3 may include an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, a hole injection layer, and of course, may further include electrons.
  • Film layers such as barrier layer and hole barrier layer. These film layers can also be formed by methods such as vapor deposition, inkjet printing, and deposition.
  • a second electrode layer 4 that is, a cathode layer, is formed on the organic light-emitting functional layer 3.
  • the material of the cathode layer can be metal, and it can be formed by magnetron sputtering or the like.
  • the light-absorbing layer 6 can be formed by an evaporation method.
  • the light-absorbing layer is made of organic macromolecular materials, it can also be formed by inkjet printing.
  • the manufacturing method of the display panel of this embodiment further includes:
  • step S300 an encapsulation layer 7 covering the cathode layer and the light absorption layer is formed.
  • the encapsulation layer 7 covers the cathode layer.
  • the encapsulation layer covers the light absorption layer 6, that is, the light absorption layer 6 is located between the encapsulation layer 7 and the cathode layer, so that the encapsulation layer protects the underlying film layers.
  • the above OLED display panels and preparation methods are all described using the bottom emission type as an example.
  • the anode layer is located on the light emitting side, so the light absorption layer 6 can be arranged on the side of the anode layer away from the organic light emitting function layer 3, or To realize the control of light emission, the specific principle and structure will not be repeated here.
  • the OLED display panel of the present disclosure may be either an AMOLED display panel or a PMOLED display panel.
  • Embodiments of the present disclosure also provide a display device including the above-mentioned OLED display panel.
  • the resulting display device has a wider color gamut and greatly improved display effect, can be applied to places with higher display requirements, and greatly expands the application field.
  • the present disclosure does not specifically limit the application of the display device.
  • the display device can be any product or component with a display function, such as a TV, a notebook computer, a tablet computer, a mobile phone, a vehicle display, a navigation, an e-book, a digital photo frame, an advertising light box, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种有机电致发光显示面板及其制备方法、显示装置。显示面板内各子像素包括相对设置的第一电极层(2)、第二电极层(4)和有机发光功能层(3),至少一个子像素还包括设置在第二电极层远离有机发光功能层一侧的吸光层(6);吸光层对发光光谱曲线的拖尾峰所在波段具有吸收,使得发光光谱曲线峰宽变窄,从而有利于提高OLED器件的色彩饱和度和色域,还能够改善亮度衰减和色偏。

Description

有机电致发光显示面板及其制备方法、显示装置
交叉引用
本公开要求于2020年2月20日提交的申请号为202010105135.X名称均为“有机电致发光显示面板及其制备方法、显示装置”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及显示技术领域,具体而言,涉及一种有机电致发光显示面板及其制备方法,还涉及一种显示装置。
背景技术
OLED显示屏的应用范围日益扩大,成为移动通信终端设备主流的显示屏幕。然而,与新一代量子点显示技术(QLED)相比,OLED器件的发光光谱的峰宽较大,在广色域方面远不及QLED技术。
分析OLED器件电致发光光谱发现,红绿蓝光谱在长波长方向都有一个较为明显的拖尾,这种拖尾峰严重地影响了红绿蓝三原色的色彩饱和度和色域。
需要说明的是,在上述背景技术部分发明的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种有机电致发光显示面板及其制备方法,还提供一种显示装置,解决现有技术的一种或多种问题。
根据本公开的一个方面,提供一种有机电致发光显示面板,包括衬底基板,所述衬底基板上形成有多个子像素,各所述子像素包括相对设置的第一电极层和第二电极层,以及设于所述第一电极层和所述第二电极层之间的有机发光功能层,所述第二电极层位于出光侧;其中,至少一个所述子像素还包括:
吸光层,所述吸光层设置在所述第二电极层远离所述有机发光功能 层的一侧;且所述吸光层和有机发光功能层在所述衬底基板上的投影重叠;
其中,所述吸光层的吸光光谱曲线的吸光峰值波长大于对应的所述子像素的发光光谱曲线的发光峰值波长,所述吸光层的吸光光谱曲线的最小吸光波长大于对应的所述子像素的发光光谱曲线的最小发光波长,且所述吸光层的吸光光谱曲线覆盖的波长范围与对应的所述子像素的发光光谱曲线覆盖的波长范围具有重叠。
在本公开的一种示例性实施例中,所述多个子像素包括绿色子像素和蓝色子像素中的至少一种,其中,至少一个所述绿色子像素和/或至少一个所述蓝色子像素包括所述吸光层。
在本公开的一种示例性实施例中,所述多个子像素包括红色子像素、绿色子像素和蓝色子像素,其中,各所述绿色子像素和/或各所述蓝色子像素均包括所述吸光层。
在本公开的一种示例性实施例中,所述蓝色子像素对应的所述吸光层吸光光谱曲线的吸光峰值波长位于480-510nm之间。
在本公开的一种示例性实施例中,所述吸光层的材料包括如下结构式(1)所示的化合物:
Figure PCTCN2021075829-appb-000001
在本公开的一种示例性实施例中,所述绿色子像素对应的所述吸光层吸光光谱曲线的吸光峰值波长位于560-610nm之间。
在本公开的一种示例性实施例中,所述吸光层的材料包括如下结构式(2)所示的化合物:
Figure PCTCN2021075829-appb-000002
在本公开的一种示例性实施例中,所述子像素还包括用于定义所述子像素区域的像素界定层,所述像素界定层具有开口,所述子像素对应的所述吸光层包含位于所述像素界定层的开口内的部分;在所述显示面板的厚度方向上,位于所述开口内的所述吸光层远离所述衬底基板的表面到所述衬底基板的距离小于或等于所述像素界定层远离所述衬底基板的表面到所述衬底基板的距离。
在本公开的一种示例性实施例中,所述吸光层的厚度不超过1μm。
在本公开的一种示例性实施例中,各所述子像素还包括封装层,所述封装层形成于所述第二电极层远离所述有机发光功能层的一侧,且覆盖所述吸光层。
根据本公开的一个方面,提供一种有机电致发光显示面板的制备方法,所述有机电致发光显示面板包括多个子像素,包括:
提供一衬底基板,在所述衬底基板上依次形成各所述子像素的第一电极层、有机发光功能层和第二电极层,所述第二电极层位于出光侧;
在至少一个所述子像素的所述第二电极层远离所述有机发光功能层的一侧形成吸光层,所述吸光层和所述有机发光功能层在所述衬底基板上的投影重叠;
其中,所述吸光层的吸光光谱曲线的吸光峰值波长大于对应的所述子像素的发光光谱曲线的发光峰值波长,所述吸光层的吸光光谱曲线的最小吸光波长大于对应的所述子像素的发光光谱曲线的最小发光波长,且所述吸光层的吸光光谱曲线覆盖的波长范围与对应的所述子像素的发光光谱曲线覆盖的波长范围具有重叠。
在本公开的一种示例性实施例中,所述吸光层采用蒸镀的方法形成。
在本公开的一种示例性实施例中,所述制备方法还包括:形成覆盖所述第二电极层和所述吸光层的封装层。
根据本公开的一个方面,提供一种显示装置,包括上述任意一项所述的有机电致发光显示面板。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为OLED器件在0°度视角(正视角)下蓝光的电致发光光谱;
图2为本公开实施方式包含吸光层的子像素结构示意图;
图3为吸光层对0°视角的蓝光光谱的影响;
图4为吸光层对15°视角的蓝光光谱的影响;
图5为吸光层对30°视角的蓝光光谱的影响;
图6为吸光层对45°视角的蓝光光谱的影响;
图7为0-80°视角下吸光层对蓝光CIE轨迹的影响;
图8为蓝色子像素吸光层对色域的影响;
图9为0-80°视角下吸光层对蓝光亮度衰减的影响;
图10为0-80°视角下吸光层对蓝光色坐标偏差的影响;
图11为吸光层对0°视角的绿光光谱的影响;
图12为吸光层对15°视角的绿光光谱的影响;
图13为吸光层对30°视角的绿光光谱的影响;
图14为吸光层对45°视角的绿光光谱的影响;
图15为0-80°视角下吸光层对绿光CIE轨迹的影响;
图16为绿色子像素吸光层对色域的影响;
图17为0-80°视角下吸光层对绿光亮度衰减的影响;
图18为0-80°视角下吸光层对绿光色坐标偏差的影响;
图19为本公开实施方式RGB三色OLED子像素的结构示意图;
图20为蓝色子像素吸光层和绿色子像素吸光层对色域的共同影响;
图21为0-80°视角下吸光层对白光CIE轨迹的影响;
图22为0-80°视角下吸光层对白光色偏的影响;
图23为本实施方式显示面板的制备方法流程示意图。
图中:1、衬底基板;2、第一电极层;3、有机发光功能层;4、第二电极层;5、像素界定层;6、吸光层;7、封装层。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
相关技术中,参考图1,为OLED器件在0°度视角(正视角)下蓝光的电致发光光谱,蓝光电致发光光谱曲线在480-510nm之间有一个明显的拖尾峰。类似的,绿光电致发光光谱曲线在560-590nm区域存在一个明显的拖尾峰。这种拖尾峰使蓝光和绿光发光光谱曲线的峰宽变宽,且朝向长波长方向移动,会影响色彩的饱和度;同时,在三原色配色时,呈现的色域较小,在广色域方面难以达到更高的水平。目前,难以通过开发新型发光材料来避免这种拖尾。
基于上述问题,本公开实施方式中提供了一种有机电致发光显示面板(以下简称OLED显示面板),该显示面板消除了在发光光谱长波长拖尾现象的不足,有助于提高显示色域。
本公开实施方式的OLED显示面板包括衬底基板1,衬底基板1上形成有多个子像素,如图2所示,各子像素包括相对设置在衬底基板1上的第一电极层2和第二电极层4,以及设于第一电极层2和第二电极层4之间的有机发光功能层3,第二电极层4位于出光侧;至少一个子像素还包括吸光层6,吸光层6设置在第二电极层4远离有机发光功能 层3的一侧,且吸光层6和有机发光功能层3在衬底基板1上的投影重叠;其中,吸光层6的吸光光谱曲线的吸光峰值波长大于对应的子像素的发光光谱曲线的发光峰值波长,吸光层6的吸光光谱曲线的最小吸光波长大于对应的子像素的发光光谱曲线的最小发光波长,且吸光层6的吸光光谱曲线覆盖的波长范围与对应的子像素的发光光谱曲线覆盖的波长范围具有重叠。
其中,吸光光谱曲线是指以不同波长的光照射吸光材料,分别测定该材料对不同波长光的吸光强度,并以此绘制的曲线。参考图3-图6,图10-图13,横坐标为光的波长,纵坐标为吸光强度。吸光峰值波长是指该材料吸光强度最大处所对应的波长,也就是吸光光谱曲线中最高点处对应的波长。最小吸光波长是指该材料对光有吸收的波段内的最小波长,也就是吸光光谱曲线中左侧吸光强度开始大于0时对应的波长。最大吸光波长是指吸光材料吸收的光所在波段内的最大波长,也就是吸光光谱曲线中右侧吸光强度降为0时对应的波长。
发光光谱曲线是指分别测定发光材料发出的不同波长光的发光强度,并以此绘制的曲线。参考图3-图6,图11-图14,横坐标为光的波长,纵坐标为发光强度。发光峰值波长是指该材料发光强度最大处所对应的波长,也就是发光光谱曲线中最高点处对应的波长。最小发光波长是指该材料发出的光所在波段内的最小波长,也就是发光光谱曲线中左侧发光强度开始大于0时对应的波长。最大发光波长是指该材料发出的光所在波段内的最大波长,也就是发光光谱曲线中右侧发光强度降为0时对应的波长。
在出光侧设置吸光层,对于同一子像素而言,由于吸光层的吸光光谱曲线整体位于发光光谱曲线的右侧,且与拖尾峰具有重叠,因此能吸收拖尾峰所在波段的光,从而对发光光谱曲线的拖尾峰部分进行剪裁,使得发光光谱曲线峰宽变窄,从而有利于提高OLED器件的色域。
下面对本公开实施方式的OLED显示面板的结构和原理进行详细说明:
以底发射型器件为例,第一电极层2为阳极层,第二电极层4为阴极层,阳极层设于衬底基板1上,阴极层所在处为出光侧,因此吸光层 6位于阴极层远离有机发光功能层3的一侧,且覆盖阴极层。有机发光功能层3可以包括电子注入层、电子传输层、发光层、空穴传输层、空穴注入层,当然还可以进一步包括电子阻挡层、空穴阻挡层等膜层。有机发光功能层的具体结构此处不再赘述。
以蓝色子像素为例,如图3-图6所示,为该子像素的吸光层对不同视角下(0°、15°、30°、45°)蓝光光谱的影响。具体而言,图3中,曲线B11为0°视角(即正视角)下的原始蓝光光谱曲线,曲线B为吸光层的吸光光谱曲线,曲线B12为0°视角(即正视角)下经吸光层剪裁后的蓝光光谱曲线。由图可看出,原始蓝光光谱曲线B11中,发光峰值波长约为465nm,最小发光波长约为430nm,最大发光波长约为520nm,在480-510nm处存在一个强度较大的拖尾峰。吸光层吸光光谱曲线B中,吸光峰值波长约为500nm,最小吸光波长约为450nm,最大吸光波长大于580nm,在480-510nm区域存在较强的吸收。经过吸光层吸收后,蓝光光谱曲线B12中,发光峰值波长约为465nm,最小发光波长约为430nm,最大发光波长约为500nm。
图4中,曲线B21为15°视角下的原始蓝光光谱曲线,曲线B为吸光层的吸光光谱曲线,曲线B22为15°视角下经吸光层剪裁后的蓝光光谱曲线。与0°视角相类似,经过吸光层吸收后,15°视角下蓝光光谱曲线的最大发光波长由520nm降为500nm。图5中,曲线B31为30°视角下的原始蓝光光谱曲线,曲线B为吸光层的吸光光谱曲线,曲线B32为30°视角下经吸光层剪裁后的蓝光光谱曲线。与0°视角相类似,经过吸光层吸收后,30°视角下蓝光光谱曲线的最大发光波长由515nm降为495nm。图6中,曲线B41为45°视角下的原始蓝光光谱曲线,曲线B为吸光层的吸光光谱曲线,曲线B42为45°视角下经吸光层剪裁后的蓝光光谱曲线。与0°视角相类似,经过吸光层吸收后,45°视角下蓝光光谱曲线的最大发光波长由510nm降为495nm。
由此可见,设置了吸光层的蓝色子像素在拖尾峰部分的发光强度显著降低,而光谱主峰位置和发光强度基本保持不变。
分别计算有吸光层和无吸光层的蓝光在不同视角下发光光谱对应的CIE1931色坐标。如图7所示,虚线为无吸光层在0-80°视角下的蓝光 CIE轨迹,实线为有吸光层在0-80°视角下的蓝光CIE轨迹,横坐标Bx表示蓝光x值,纵坐标By表示蓝光y值。由图可看出,在0-80°整个视角范围内,蓝光CIE轨迹整体向右下方移动,其中,By值显著地减小。以0°视角为例,By值从0.065减小到0.049。吸光层对蓝光拖尾峰的剪裁能够提升蓝色的色彩饱和度。
对于RGB三原色OLED显示而言,在其中的蓝色子像素内设置吸光层还有利于色域的拓宽。举例而言,如图8所示,为By=0.049的蓝光与Rx(红光x值)=0.681、Gx(绿光x值)=0.261的红光和绿光配色时显示出的CIE1931色度图,虚线所围成的三角形区域表示无吸光层时的发光色域,实线所围成的三角形区域表示有吸光层时的发光色域。与NTSC标准色域相比,无吸光层的色域为100.5%,有吸光层的色域增加到102.1%。由此可见,吸光层实现了色域的有效拓宽。
如图9所示,为0-80°视角下吸光层对蓝光亮度衰减趋势的影响,图中横坐标表示视角度数,纵坐标表示亮度的归一化强度,虚线表示无吸光层时的蓝光亮度衰减趋势,实线表示有吸光层时的蓝光亮度衰减趋势。由图中可看出,在小角度下(如<50°且>-50°),有吸光层的蓝光亮度衰减比无吸光层时略慢,在大角度下(如>50°或<-50°),二者无明显区别。因此,吸光层可以减缓小角度视角下蓝光亮度的衰减,维持较好的显示亮度。
图10所示,为0-80°视角下吸光层对蓝光色坐标偏差(JNCD)的影响,图中横坐标表示视角度数,纵坐标表示色坐标偏差值(JNCD值),L5表示无吸光层时的JNCD值,L6表示有吸光层时的JNCD值。由图中可看出,在小角度下(如<50°且>-50°),衰减趋势趋于平缓,有吸光层的JNCD值比无吸光层时小,在大角度下(如>50°或<-50°),有吸光层的JNCD值比无吸光层时大。因此,吸光层可以降低小角度视角下蓝光的色偏,提升色调准确度。由于通常观看显示面板的角度均为小角度,因此,吸光层对于维持理想的亮度和提升颜色准确度都具有积极地作用。
以绿色子像素为例,如图11-图14所示,为该子像素的吸光层对不同视角下(0°、15°、30°、45°)绿光光谱的影响。具体而言,图11中, 曲线G11为0°视角(即正视角)下的原始绿光光谱曲线,曲线G为吸光层的吸光光谱曲线,曲线G12为0°视角(即正视角)下经吸光层剪裁后的绿光光谱曲线。由图可看出,原始绿光光谱曲线G11中,发光峰值波长约为530nm,最小发光波长约为490nm,最大发光波长约为610nm,在560-610nm处存在一个强度较大的拖尾峰。吸光层吸光光谱曲线G中,吸光峰值波长约为570nm,最小吸光波长约为530nm,最大吸光波长约为690nm,在560-590nm区域存在较强的吸收。经过吸光层吸收后,绿光光谱曲线G12中,发光峰值波长约为625nm,最小发光波长约为490nm,最大发光波长约为570nm,半峰宽约为20nm。
图12中,曲线G21为15°视角下的原始绿光光谱曲线,曲线G为吸光层的吸光光谱曲线,曲线G22为15°视角下经吸光层剪裁后的绿光光谱曲线。与0°视角相类似,经过吸光层吸收后,15°视角下绿光光谱曲线的最大发光波长由610nm降为570nm。图13中,曲线G31为30°视角下的原始绿光光谱曲线,曲线G为吸光层的吸光光谱曲线,曲线G32为30°视角下经吸光层剪裁后的绿光光谱曲线。与0°视角相类似,经过吸光层吸收后,30°视角下绿光光谱曲线的最大发光波长由600nm降为590nm。图14中,曲线G41为45°视角下的原始绿光光谱曲线,曲线G为吸光层的吸光光谱曲线,曲线G42为45°视角下经吸光层剪裁后的绿光光谱曲线。与0°视角相类似,经过吸光层吸收后,45°视角下绿光光谱曲线的最大发光波长由600nm降为590nm。
由此可见,设置了吸光层的绿色子像素在拖尾峰部分的发光强度显著降低,而光谱主峰位置和发光强度基本保持不变。
进一步分别计算有吸光层和无吸光层的绿光在不同视角下发光光谱对应的CIE1931色坐标。如图15所示,虚线为无吸光层在0-80°视角下的绿光CIE轨迹,实线为有吸光层在0-80°视角下的绿光CIE轨迹,横坐标Gx表示绿光x值,纵坐标Gy表示绿光y值。由图可看出,在0-80°整个视角范围内,绿光CIE轨迹整体向左上方移动,其中,Gx值显著地减小。以0°视角为例,Gx值从0.261减小到0.213。吸光层对绿光拖尾峰的剪裁提升了绿色的色彩饱和度。
对于RGB三原色OLED显示而言,在其中的绿色子像素内设置吸 光层还有利于色域的拓宽。举例而言,如图16所示,为Gx=0.261的绿光与Rx(红光x值)=0.681、Gy(蓝光y值)=0.065的红光和蓝光配色时显示出的CIE1931色度图,虚线所围成的三角形区域表示无吸光层时的发光色域,实线所围成的三角形区域表示有吸光层时的发光色域。与NTSC标准色域相比,无吸光层的色域为100.5%,有吸光层的色域增加到111.3%。由此可见,吸光层实现了色域的有效拓宽。
如图17所示,为0-80°视角下吸光层对绿光亮度衰减趋势的影响,图中横坐标表示视角度数,纵坐标表示亮度的归一化强度,虚线表示无吸光层时的绿光亮度衰减趋势,实线表示有吸光层时的绿光亮度衰减趋势。由图中可看出,在小角度下(如<45°且>-45°),衰减趋势趋于平缓,且有吸光层的绿光亮度衰减比无吸光层时略慢,在大角度下(如>45°或<-45°),二者无明显区别。因此,相比没有吸光层,吸光层可以减缓小角度视角下绿光亮度的衰减,维持较好的显示亮度。由于通常观看显示面板的角度均为小角度,因此,吸光层对于维持理想的亮度具有积极地作用。
图18所示,为0-80°视角下吸光层对绿光色坐标偏差(JNCD)的影响,图中横坐标表示视角度数,纵坐标表示色坐标偏差值(JNCD值),G5表示无吸光层时的JNCD值,G6表示有吸光层时的JNCD值。由图中可看出,在小角度下(如<35°且>-35°),有吸光层的JNCD值比无吸光层时小,在大角度下(如>50°或<-50°),有吸光层的JNCD值比无吸光层时小。因此,相比没有吸光层,吸光层可以降低大部分视角下绿光的色偏,提升色调准确度。
对于RGB三色OLED显示而言,如图19所示,同时在蓝色和绿色子像素内设置吸光层6可以进一步提高显示色域。参考图20,为二者显示出的CIE1931色度图,虚线所围成的三角形区域表示无吸光层时的发光色域,实线所围成的三角形区域表示有吸光层时的发光色域。与NTSC标准色域相比,无吸光层的色域为100.5%,有吸光层的色域增加到113%。由此可见,同时在蓝色和绿色子像素内设置吸光层相比仅在一种颜色中设置吸光层,对色域的拓宽效果更显著。
此外,经过蓝光吸光层和绿光吸光层剪裁光谱之后,蓝光和绿光大 视角下亮度衰减较小,当与红光配成白光后,可以显著地改善白光大视角下色坐标的轨迹走势。这是因为,随着视角的增加,蓝光和绿光光谱逐渐向短波方向移动。大视角下发光光谱和吸光光谱的波段重叠程度逐渐减小,也即吸收层对小视角发光光谱吸收程度更大,对大视角发光光谱吸收程度更小,会导致大视角下亮度衰减变得缓慢。借助吸光层对蓝光和绿光大视角亮度衰减的调控能力,通过红绿蓝的搭配,可以实现对白光大视角光学特性的调控功能。分别计算有吸光层和无吸光层的白光在不同视角下发光光谱对应的CIE1931色坐标。如图21所示,虚线为无吸光层在0-80°视角下的白光CIE轨迹,实线为有吸光层在0-80°视角下的白光CIE轨迹,横坐标CIEx表示白光x值,纵坐标CIEy表示白光y值。由图可看出,在0-80°整个视角范围内,白光CIE轨迹整体向左边移动。以0°视角为例,无吸光层的三原色CIE色坐标R(0.681,0.319)、G(0.261,0.704)和B(0.133,0.065),经吸光层的光谱剪裁后变成R(0.681,0.319)、G(0.213,0.744)和B(0.137,0.049)。如图22所示,经吸光层剪裁后的蓝光绿光与红光匹配之后的白光,相比光谱剪裁之前的白光,在大视角下显著地朝青色方向偏移,将白光大视角下的光谱轨迹成功地移向人眼不敏感的青色区域,降低了人眼对色偏的敏感度。
由上述分析可知,吸光层6对提高蓝光和绿光的色彩饱和度、拓宽色域、延缓亮度衰减、以及改善色偏都有明显的作用。因此,其可以用于OLED显示面板中,用于提高显示效果。而红光电致发光光谱曲线虽然也具有拖尾峰,但其拖尾峰对色彩饱和度和色域尚未发现不良影响。
在一种实施例中,蓝光的拖尾峰集中在480-510nm之间,因此蓝色子像素对应的吸光层材料优选吸光光谱曲线的吸光峰值波长位于480-510nm之间的材料,以对480-510nm波段内的光具有较好的吸收作用,可以有效的实现对蓝光拖尾峰的剪裁。在其他实施例中,当蓝光的拖尾峰集中在其他波段时,可以选择吸收峰值波长与之相对应的吸光层材料。
具体而言,吸光峰值波长位于480-510nm之间的材料具体可以为如下结构式(1)所示的化合物:
Figure PCTCN2021075829-appb-000003
结构式(1)所示的化合物是基于核心结构氟化硼二吡咯(BODIPY)的衍生物材料,该材料形成的薄膜在480-510nm区域有很强的吸收带,且摩尔吸光系数高达74130M -1cm -1。此外,该结构为三苯胺与BODIPY形成的给受体结构,分子内的电荷转移态有效地降低了其光致发光效率。该薄膜吸收蓝光拖尾峰之后,其光致发光现象基本可以忽略,对OLED器件本身的发光没有影响。
在一种实施例中,绿光的拖尾峰集中在560nm-610nm之间,因此绿色子像素对应的吸光层材料优选吸光光谱曲线的吸光峰值波长位于560-610nm之间的材料,以对560-610nm波段内的光具有较好的吸收作用,可以有效的实现对绿光拖尾峰的剪裁。在其他实施例中,当绿光的拖尾峰集中在其他波段时,可以选择吸收峰值波长与之相对应的吸光层材料。
具体而言,吸光峰值波长位于560-610nm之间的材料具体可以为如下结构式(2)所示的化合物:
Figure PCTCN2021075829-appb-000004
结构式(2)所示的化合物为酞菁铜材料,其在560nm-610nm区域存在一个较强的吸收带,且其摩尔吸光系数同样很高,是经典的有机光伏给体材料。其光致发光量子效率同样很低,吸收完绿光拖尾峰之后, 同样不会影响OLED器件本身的光谱。
本领域技术人员可以理解是,除了上述材料可以用于吸光层,其他在拖尾峰波段具有较强吸收的材料同样能用于吸光层。此处不再一一列举。
在一种实施例中,OLED显示面板为单色显示面板,即所有子像素均为相同颜色的子像素,例如所有子像素均为蓝色子像素或所有子像素均为绿色子像素,以形成蓝色显示或绿色显示。在该单色显示面板中设置吸光层,可以提高单色显示效果。吸光层可以至少设置于其中一个子像素,也可以设置于所有子像素,显然,所有子像素均设置吸光层时,可保证各子像素出光效果一致,对单色光的改善效果最好。单色显示通常可用于车载显示等显示装置中。
在一种实施例中,OLED显示面板为例如图19所示的RGB三原色全彩OLED显示面板,即所有子像素分为红色子像素、绿色子像素和蓝色子像素,此时,可以仅在蓝色子像素或仅在绿色子像素中设置吸光层6,也可以同时在蓝色和绿色子像素都设置吸光层,均可以提高显示效果。根据上述分析,同时在蓝色和绿色子像素设置吸光层对色域的提高效果最好。全彩显示面板通常可用于电视、电脑等多种显示装置中。
需要注意的是,以上两种实施例中的子像素均指的是显示区的正常子像素,由此才能起到对出光效果的调控。而显示面板通常还会设置位于非显示区的虚拟像素区(Dummy区),本公开的吸光层6也可以同时设置在虚拟像素区的子像素内。当然,由于虚拟像素区的子像素不进行显示,因此也可以不设置吸光层6。
在一种实施例中,当显示面板为RGB三原色OLED显示面板时,子像素还包括如图19所示的像素界定层5,像素界定层5用于定义不同颜色的子像素区域,其具有开口,子像素对应的吸光层6包含位于像素界定层5的开口内。在制备时,由于难以保证吸光层6和有机电致发光层3恰好完全位于开口内,因此实际上吸光层6和有机电致发光层3的边缘部分会覆盖在像素界定层5上(如图2所示)。像素界定层5的开口内通常具有足够的深度空间,提供给吸光层6调整厚度,通过控制吸光层6的厚度,可以精确地控制吸光层6对蓝光和绿光拖尾峰的吸收强度 和透过率。位于像素界定层5开口内的膜层中,在垂直于显示面板的方向上,吸光层6远离衬底基板1的表面到衬底基板1的距离小于或等于像素界定层5远离衬底基板1的表面到衬底基板1的距离,也就是说,如图2所示,在开口内,吸光层6上表面的高度不超过像素界定层5上表面的高度,由此便于后续进行平坦化或进行封装。
在一种实施例中,吸光层的厚度不超过1μm,若该膜层厚度大于1μm,则该膜层材料本身的透过率可能会降低,从而影响显示效果。将厚度控制在1μm以内,可以兼顾吸收强度和透过率。
在一种实施例中,如图19所示,各子像素还包括封装层7,封装层7形成于阴极层远离有机发光功能层3的一侧,且覆盖吸光层6,起到隔绝水氧,保护内部膜层的作用。对于设有吸光层6的子像素,吸光层6位于封装层7和阴极层层之间,吸光层6被封装层7保护,既不会影响OLED器件的微腔结构,也可以避免受到环境湿度和水氧侵蚀的影响。封装层可以为封装薄膜,也可以为封装玻璃,本公开不对此进行特殊限定。
本公开实施方式还提供上述有机电致发光显示面板的制备方法,参考图23,该制备方法包括:
步骤S100,提供一衬底基板1,在衬底基板1上依次形成各子像素对应的第一电极层2、有机发光功能层3和第二电极层4,第二电极层4位于出光侧;
步骤S200,在至少一个子像素的第二电极层4远离有机发光功能层3的一侧形成吸光层6,吸光层6和有机发光功能层3在衬底基板1上的投影重叠;
其中,吸光层的吸光光谱曲线的吸光峰值波长大于对应的子像素的发光光谱曲线的发光峰值波长,吸光层的吸光光谱曲线的最小吸光波长大于对应的子像素的发光光谱曲线的最小发光波长,且吸光层的吸光光谱曲线覆盖的波长范围与对应的子像素的发光光谱曲线覆盖的波长范围具有重叠。
继续以底发射型器件为例,步骤S100中,首先在衬底基板1上形成第一电极层2,即阳极层,阳极层材料可以为透明ITO等,通过蒸镀、 喷墨打印等方式形成。然后在阳极层层上形成有机发光功能层3,有机发光功能层3可以包括层叠设置的电子注入层、电子传输层、发光层、空穴传输层、空穴注入层,当然还可以进一步包括电子阻挡层、空穴阻挡层等膜层。这些膜层的形成方法也可以采用蒸镀、喷墨打印、沉积等方法形成。然后在有机发光功能层3上形成第二电极层4,即阴极层,阴极层材料可以为金属,可以采用磁控溅射等方式形成。
步骤S200中,无论吸光层材料是前述的有机小分子材料还是其他有机大分子材料,均可采用蒸镀的方法形成吸光层6。当吸光层材料采用有机大分子材料时,也可以采用喷墨打印等方式形成。
进一步地,本实施方式显示面板的制备方法还包括:
步骤S300,形成覆盖阴极层和吸光层的封装层7。对于没有设置吸光层6的子像素,封装层7覆盖在阴极层上。对于设置有吸光层6的子像素,封装层覆盖在吸光层6上,即吸光层6位于封装层7和阴极层之间,由此使得封装层对下方各膜层形成保护。
以上OLED显示面板及制备方法均是以底发射型为例进行说明,对于顶发射型,阳极层位于出光侧,因此吸光层6可以设置于阳极层远离有机发光功能层3的一侧,也可以实现对出光的调控,具体原理和结构此处不再赘述。本公开的OLED显示面板既可以是AMOLED显示面板,也可以是PMOLED显示面板。
本公开实施方式还提供一种显示装置,包含上述OLED显示面板。由此形成的显示装置色域更广,显示效果大大提高,可以适用于对显示要求更高的场所,大大拓展了应用领域。
本公开对于显示装置的适用不做具体限制。该显示装置可以是电视机、笔记本电脑、平板电脑、手机、车载显示、导航、电子书、数码相框、广告灯箱等任何具有显示功能的产品或部件。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上, 或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (14)

  1. 一种有机电致发光显示面板,包括衬底基板,所述衬底基板上形成有多个子像素,各所述子像素包括相对设置的第一电极层和第二电极层,以及设于所述第一电极层和所述第二电极层之间的有机发光功能层,所述第二电极层位于出光侧;其中,至少一个所述子像素还包括:
    吸光层,所述吸光层设置在所述第二电极层远离所述有机发光功能层的一侧,且所述吸光层和有机发光功能层在所述衬底基板上的投影重叠;
    其中,所述吸光层的吸光光谱曲线的吸光峰值波长大于对应的所述子像素的发光光谱曲线的发光峰值波长,所述吸光层的吸光光谱曲线的最小吸光波长大于对应的所述子像素的发光光谱曲线的最小发光波长,且所述吸光层的吸光光谱曲线覆盖的波长范围与对应的所述子像素的发光光谱曲线覆盖的波长范围具有重叠。
  2. 根据权利要求1所述的有机电致发光显示面板,其中,所述多个子像素包括绿色子像素和蓝色子像素中的至少一种,其中,至少一个所述绿色子像素和/或至少一个所述蓝色子像素包括所述吸光层。
  3. 根据权利要求2所述的有机电致发光显示面板,其中,所述多个子像素包括红色子像素、绿色子像素和蓝色子像素,其中,各所述绿色子像素和/或各所述蓝色子像素均包括所述吸光层。
  4. 根据权利要求1-3中任一项所述的有机电致发光显示面板,其中,所述蓝色子像素对应的所述吸光层吸光光谱曲线的吸光峰值波长位于480-510nm之间。
  5. 根据权利要求4所述的有机电致发光显示面板,其中,所述吸光层的材料包括如下结构式(1)所示的化合物:
    Figure PCTCN2021075829-appb-100001
  6. 根据权利要求1-3中任一项所述的有机电致发光显示面板,其中,所述绿色子像素对应的所述吸光层吸光光谱曲线的吸光峰值波长位于560-610nm之间。
  7. 根据权利要求6所述的有机电致发光显示面板,其中,所述吸光层的材料包括如下结构式(2)所示的化合物:
    Figure PCTCN2021075829-appb-100002
  8. 根据权利要求3所述的有机电致发光显示面板,其中,所述子像素还包括用于定义所述子像素区域的像素界定层,所述像素界定层具有开口,所述子像素对应的所述吸光层包含位于所述像素界定层的开口内的部分;在所述开口内且垂直于所述显示面板的方向上,所述吸光层远离所述衬底基板的表面到所述衬底基板的距离小于或等于所述像素界定层远离所述衬底基板的表面到所述衬底基板的距离。
  9. 根据权利要求1-3中任一项所述的有机电致发光显示面板,其中,所述吸光层的厚度不超过1μm。
  10. 根据权利要求1所述的有机电致发光显示面板,其中,各所述子像素还包括封装层,所述封装层形成于所述第二电极层远离所述有机发光功能层的一侧,且覆盖所述吸光层。
  11. 一种有机电致发光显示面板的制备方法,所述有机电致发光显示面板包括多个子像素,其中,包括:
    提供一衬底基板,在所述衬底基板上依次形成各所述子像素的第一电极层、有机发光功能层和第二电极层,所述第二电极层位于出光侧;
    在至少一个所述子像素的所述第二电极层远离所述有机发光功能层的一侧形成吸光层,所述吸光层和所述有机发光功能层在所述衬底基板上的投影重叠;
    其中,所述吸光层的吸光光谱曲线的吸光峰值波长大于对应的所述子像素的发光光谱曲线的发光峰值波长,所述吸光层的吸光光谱曲线的 最小吸光波长大于对应的所述子像素的发光光谱曲线的最小发光波长,且所述吸光层的吸光光谱曲线覆盖的波长范围与对应的所述子像素的发光光谱曲线覆盖的波长范围具有重叠。
  12. 根据权利要求11所述的有机电致发光显示面板的制备方法,其中,所述吸光层采用蒸镀的方法形成。
  13. 根据权利要求11所述的有机电致发光显示面板的制备方法,其中,所述制备方法还包括:
    形成覆盖所述第二电极层和所述吸光层的封装层。
  14. 一种显示装置,其中,包括权利要求1-10中任一项所述的有机电致发光显示面板。
PCT/CN2021/075829 2020-02-20 2021-02-07 有机电致发光显示面板及其制备方法、显示装置 WO2021164599A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/435,083 US20220140017A1 (en) 2020-02-20 2021-02-07 Organic electroluminescent display panel and manufacturing method therefor, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010105135.XA CN111293149A (zh) 2020-02-20 2020-02-20 有机电致发光显示面板及其制备方法、显示装置
CN202010105135.X 2020-02-20

Publications (1)

Publication Number Publication Date
WO2021164599A1 true WO2021164599A1 (zh) 2021-08-26

Family

ID=71021495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075829 WO2021164599A1 (zh) 2020-02-20 2021-02-07 有机电致发光显示面板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20220140017A1 (zh)
CN (1) CN111293149A (zh)
WO (1) WO2021164599A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823757A (zh) * 2021-09-18 2021-12-21 成都京东方光电科技有限公司 显示面板及显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111293149A (zh) * 2020-02-20 2020-06-16 京东方科技集团股份有限公司 有机电致发光显示面板及其制备方法、显示装置
CN111755490B (zh) * 2020-06-22 2022-07-29 武汉华星光电半导体显示技术有限公司 一种显示面板
CN112420955A (zh) * 2020-11-18 2021-02-26 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100078629A1 (en) * 2008-09-26 2010-04-01 Toshiba Mobile Display Co., Ltd. Organic el display device
CN110048024A (zh) * 2019-04-23 2019-07-23 北京京东方技术开发有限公司 显示基板及其制造方法、显示装置
CN111293149A (zh) * 2020-02-20 2020-06-16 京东方科技集团股份有限公司 有机电致发光显示面板及其制备方法、显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102324966B1 (ko) * 2018-01-15 2021-11-10 주식회사 엘지화학 디스플레이 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100078629A1 (en) * 2008-09-26 2010-04-01 Toshiba Mobile Display Co., Ltd. Organic el display device
CN110048024A (zh) * 2019-04-23 2019-07-23 北京京东方技术开发有限公司 显示基板及其制造方法、显示装置
CN111293149A (zh) * 2020-02-20 2020-06-16 京东方科技集团股份有限公司 有机电致发光显示面板及其制备方法、显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823757A (zh) * 2021-09-18 2021-12-21 成都京东方光电科技有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN111293149A (zh) 2020-06-16
US20220140017A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
WO2021164599A1 (zh) 有机电致发光显示面板及其制备方法、显示装置
US11107862B2 (en) Pixel unit, display panel and display device
KR102126350B1 (ko) 유기발광다이오드 표시장치
US8823019B2 (en) White organic light emitting device and display device using the same
US20070252520A1 (en) Multicolor display apparatus
WO2014041743A1 (en) Display unit, method of manufacturing the same, and electronic apparatus
US10446798B2 (en) Top-emitting WOLED display device
WO2017043242A1 (ja) 有機エレクトロルミネッセンス装置、照明装置および表示装置
US11296152B2 (en) Array substrate with color conversion luminescence layers, manufacturing method thereof, display panel, and display apparatus
US20100283385A1 (en) Organic el device
JP5676949B2 (ja) 有機el表示装置
US10367036B2 (en) Organic light-emitting structure and display device
WO2017043243A1 (ja) 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置および表示装置
US10847740B2 (en) Organic light-emitting display panel and organic light-emitting display device with electron transport layers
JPWO2010150535A1 (ja) 多色発光有機el表示装置およびその製造方法
US11778880B2 (en) Display substrate and manufacturing method thereof, display panel and display device
US20070126012A1 (en) Light-emitting element and display device
WO2020215868A1 (zh) 显示基板及其制造方法、显示装置
CN113272990A (zh) 具有多个蓝光发射层的多模微腔oled
CN115064647A (zh) 一种显示面板及显示装置
WO2018152933A1 (zh) 一种oled显示器件、其制备方法及oled显示器
WO2023050304A1 (zh) 显示基板、显示装置及显示基板的制备方法
WO2021233130A1 (zh) 显示基板及其制造方法和显示面板
CN113707697A (zh) 一种显示面板和显示装置
CN107768526B (zh) 量子点电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756945

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21756945

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21756945

Country of ref document: EP

Kind code of ref document: A1