WO2017043243A1 - 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置および表示装置 - Google Patents

有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置および表示装置 Download PDF

Info

Publication number
WO2017043243A1
WO2017043243A1 PCT/JP2016/073546 JP2016073546W WO2017043243A1 WO 2017043243 A1 WO2017043243 A1 WO 2017043243A1 JP 2016073546 W JP2016073546 W JP 2016073546W WO 2017043243 A1 WO2017043243 A1 WO 2017043243A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
light
organic
electrode
Prior art date
Application number
PCT/JP2016/073546
Other languages
English (en)
French (fr)
Inventor
内田 秀樹
菊池 克浩
良幸 磯村
将紀 小原
井上 智
英士 小池
優人 塚本
麻絵 伊藤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201680052234.8A priority Critical patent/CN108029178B/zh
Priority to US15/758,792 priority patent/US10826021B2/en
Publication of WO2017043243A1 publication Critical patent/WO2017043243A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • H05B33/24Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers of metallic reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present invention relates to an organic electroluminescence device, a method for manufacturing an organic electroluminescence device, a lighting device, and a display device.
  • This application claims priority on September 10, 2015 based on Japanese Patent Application No. 2015-178568 for which it applied to Japan, and uses the content here.
  • Organic EL displays are being developed as candidates for next-generation display technologies.
  • Electro-Luminescence is abbreviated as “EL”.
  • the organic EL display is a self-luminous element, and has a simpler structure than a liquid crystal display composed of a white backlight, a liquid crystal substrate (TFT substrate), and a color filter substrate. It is thought that a flexible display can be realized.
  • a transparent display in a non-display state (hereinafter referred to as a transparent display) is possible.
  • the organic material used is a thin film and has a high transmittance, and a pair of transparent electrodes is used, a transparent display with a high transmittance can be realized.
  • Patent Document 1 As described above, there is a possibility that a display form of a new category such as a flexible display and a transparent display (for example, Patent Documents 1 and 2) can be realized in addition to the use as a conventional display.
  • the organic EL light emitting device of Patent Document 1 has a transparent electrode on the upper and lower sides, and is a double-sided light emitting device.
  • Patent Document 1 is excellent in transparency, since both sides are irradiated with light, there is a problem that an inverted image is output on one side and the luminance from one side is lowered.
  • Patent Document 2 the light emitting region can be limited to a semitransparent state. However, since the light emitting area is reduced, the burden on the light emitting unit for obtaining necessary luminance is increased, power consumption is increased, and the lifetime of the element is shortened.
  • An object of the present invention is to provide a device manufacturing method, a lighting device, and a display device.
  • An organic electroluminescence device is filled with a base material provided with a recess on an upper surface, a reflective layer provided on at least the surface of the recess, and the inside of the recess via the reflective layer.
  • a light emitting element provided with a light-transmitting second electrode provided on the upper layer side of the organic layer, the display area comprising a plurality of unit areas divided from each other, and the unit having the light emitting element
  • the region has a partitioned light emitting area and a transmissive area.
  • the light emitting area and the transmissive area may be configured such that the light emitting area / (the light emitting area + the transmissive area) ⁇ 50%.
  • a plurality of recesses may be provided in the light emitting area, and the reflective layer may be formed in the plurality of recesses.
  • a part of the reflective layer may be in contact with a part of the first electrode.
  • the lower surface of the first electrode at the position of the recess may be positioned below a plane including the upper surface of the base material.
  • the light emitting area may include a plurality of active elements that can independently control light emission.
  • the active element may be formed using an oxide semiconductor.
  • the active element and the light-emitting element may be electrically connected through the reflective layer.
  • a wiring for operating the active element may be provided, and the reflective layer may be provided over the wiring.
  • a color filter may be provided over the light emitting element.
  • the color filter may have a size substantially equal to an installation region of the reflective layer.
  • the manufacturing method of the organic electroluminescence device includes a step of forming a recess on an upper surface of a base material, a step of forming a reflective layer along at least the surface of the recess, and the reflection inside the recess.
  • Forming a light-transmitting filling layer through the layer forming a light-transmitting first electrode at least on the upper layer side of the filling layer, and at least a light-emitting layer on the upper layer side of the first electrode
  • the unit region having the light emitting element has a divided light emitting area and a transmissive area.
  • the lighting device includes a base material having a recess provided on an upper surface, a reflective layer provided at least on the surface of the recess, and light transmission filled inside the recess via the reflective layer.
  • a display device includes a base material provided with a recess on an upper surface, a reflective layer provided on at least the surface of the recess, and light transmission filled inside the recess via the reflective layer.
  • a filling layer having properties, a first electrode having optical transparency provided at least on the upper layer side of the filling layer, an organic layer including at least a light emitting layer provided on the upper layer of the first electrode, A light-emitting element provided with a light-transmitting second electrode provided on the upper layer side of the organic layer, and the display area is composed of a plurality of unit areas divided from each other, and the unit area having the light-emitting element is The light-emitting area and the transmissive area are partitioned.
  • an organic electroluminescence device an illumination device, and a display device that can provide an element with high luminous efficiency and provide a transmissive display with high transmittance.
  • FIG. 6 is a sectional view taken along line A-A ′ of FIG. 5. Sectional drawing which shows the detail of a recessed part structure. 1st process drawing for demonstrating the manufacturing method of an organic electroluminescent apparatus.
  • FIG. 3 is a first process diagram for explaining a first filling layer forming method of an organic EL device.
  • 2nd process drawing for demonstrating the 1st filling layer formation method of an organic electroluminescent apparatus.
  • the 3rd process drawing for demonstrating the 1st filling layer formation method of an organic electroluminescent apparatus.
  • the 1st process drawing for demonstrating the 2nd filling layer formation method of an organic electroluminescent apparatus.
  • FIG. 6 is a third process diagram for explaining a second filling layer forming method of the organic EL device.
  • FIG. 10 is a fourth process diagram for explaining the second filling layer forming method of the organic EL device.
  • the 1st process drawing for demonstrating the 3rd filling layer formation method of an organic electroluminescent apparatus.
  • 2nd process drawing for demonstrating the 3rd filling layer formation method of an organic electroluminescent apparatus.
  • Sectional drawing which shows the conventional organic EL apparatus.
  • FIG. 16 is a sectional view taken along line B-B ′ of FIG. 15.
  • FIG. 16 is a sectional view taken along line C-C ′ of FIG. 15. Sectional drawing which expands and shows the principal part in a light emitting element part.
  • the top view which shows a part of display area of the organic electroluminescent apparatus of 3rd Embodiment.
  • FIG. 20 is a sectional view taken along line C-C ′ of FIG. 19.
  • FIG. 3 is a diagram illustrating a schematic configuration of a display area of the organic EL device according to the first embodiment.
  • FIG. 6 is a diagram illustrating a schematic configuration of a display area of an organic EL device according to Example 2.
  • FIG. 1 is a diagram illustrating a display area of the organic EL device according to the first embodiment.
  • the scale of the dimension may be changed.
  • an organic EL device (organic electroluminescence device, display device) 100 of this embodiment includes a plurality of unit regions 11 that are divided from each other.
  • the display area 10 includes a plurality of unit areas 11 corresponding to RGB.
  • Each unit region 11 extends in a stripe shape along the y-axis, and is repeatedly arranged in the order of RGB along the x-axis.
  • FIG. 1 shows an example in which the RGB unit areas 11 are arranged in stripes.
  • the present embodiment is not limited to this, and the arrangement of the RGB unit areas 11 may be a mosaic arrangement, a delta arrangement, or the like.
  • a conventionally known RGB pixel array can also be used.
  • Each unit area 11 of RGB can be used as an illumination device that generates white light by simultaneously emitting red light, green light, and blue light.
  • the use of the organic EL device 100 is not limited to the lighting device.
  • each of the unit regions 11 corresponding to red, green, and blue is a red sub-pixel, a green sub-pixel, and a blue sub-pixel, and these three sub-pixels constitute one pixel, The EL device 100 can also be applied.
  • FIG. 2 is a diagram illustrating details of the display area of the organic EL device according to the first embodiment.
  • the display area 10 in the organic EL device 100 is, for example, a square whose planar shape is 2 mm in length and width.
  • One unit region 11 is a square of 100 ⁇ m in length and width.
  • a plurality of first electrodes 4 and a plurality of second electrodes 6 are provided so as to intersect each other, and a unit region is provided around the intersection of the first electrodes 4 and the second electrodes 6. 11 is located.
  • FIG. 3A is an enlarged plan view showing one unit region.
  • the unit region 11 has a light emitting area U and a transmissive area T. With this transmissive area T, it is possible to realize a transmissive display in which the other side of the display area 10 can be seen through.
  • the light emitting area U is an area where external light is not transmitted.
  • Both the first electrode 4 and the second electrode 6 have a width of 30 ⁇ m.
  • an intersection region (30 ⁇ m square) between the first electrode 4 and the second electrode 6 corresponds to the light emitting area U.
  • the width of each electrode is not limited to the above-described dimensions, and can be changed as appropriate.
  • the light emitting area U and the transmissive area T have a relationship of light emitting area U / (light emitting area U + transmissive area T) ⁇ 50%. That is, it is sufficient that the light emitting area U is smaller than the transmissive area T.
  • FIG. 3B is an enlarged plan view showing a light emitting area in one unit region.
  • an organic EL element (light emitting element) 30 is provided in the light emitting area U of the unit region 11.
  • the organic EL element 30 has a plurality of concave portions 9 having a circular planar shape.
  • the diameter ⁇ of the recess 9 is, for example, about 5 ⁇ m.
  • the plurality of recesses 9 are regularly arranged vertically and horizontally and have a lattice shape.
  • the density of the recesses 9 is such that the ratio of the total area of the plurality of recesses 9 to the area of the light emitting area U is 70%.
  • FIG. 4 is a cross-sectional view taken along an arbitrary plane perpendicular to the upper surface of the organic EL device, and shows a light emitting area portion.
  • FIG. 5 is an enlarged plan view showing a part of the light emitting area.
  • 6 is a cross-sectional view taken along line AA ′ of FIG.
  • the organic EL device 100 of this embodiment includes a base material 2, a reflective layer 3, a first electrode 4, an organic layer 5 including a light emitting layer, and a second electrode 6.
  • the organic EL device 100 is a top emission type display, and light emitted from the light emitting layer is emitted from the second electrode 6 side.
  • the base material 2 includes a substrate 7 and a base layer 8. On the upper surface of the substrate 7, the base layer 8, the reflective layer 3, the first electrode 4, the organic layer 5, and the second electrode 6 are laminated in this order from the substrate 7 side.
  • the substrate 7 does not necessarily have optical transparency, and for example, a semiconductor substrate such as a silicon substrate may be used.
  • each recess 9 is open toward the top on the upper surface 2 a of the substrate 2, and the cross-sectional shape thereof is an arc shape. That is, the inner surface of each recess 9 is part of a spherical surface in three dimensions.
  • the underlayer 8 is made of a photosensitive resin, for example, a resin such as acrylic, epoxy, or polyimide.
  • the use of a photosensitive resin as the material for the underlayer 8 is suitable for a method for forming the recess 9 described later. However, in the case of adopting a method other than the forming method described later, the constituent material of the underlayer 8 does not necessarily have photosensitivity.
  • the constituent material of the underlayer 8 may not be a resin, and an inorganic material may be used.
  • the base material 2 including the substrate 7 and the base layer 8 is used.
  • the base layer 8 is not necessarily used, and the concave portion 9 may be formed on the substrate itself.
  • the reflective layer 3 is provided for each unit region 11 and is formed in the light emitting area U in each unit region 11.
  • the reflective layer 3 is formed on the upper surface 8 a of the base layer 8 including the inner surfaces of the plurality of recesses 9. At this time, it may be formed continuously over the plurality of recesses 9, or may be formed discontinuously for each recess 9.
  • a highly reflective metal such as aluminum or silver is preferably used.
  • the reflective layer 3 is made of, for example, an aluminum film having a thickness of 100 nm.
  • the filling layer 12 is filled inside each recess 9 through the reflective layer 3.
  • the upper surface 12 a of the filling layer 12 is at a position lower than the plane Q including the upper surface 3 a of the reflective layer 3.
  • the height from the upper surface 12a of the filling layer 12 to the upper surface 3a of the reflective layer 3 is defined as d2.
  • the height d2 is set to 0.1 mm, for example.
  • the height from the bottom 9B of the recess 9 to the upper surface 3a of the reflective layer 3 is d1. A specific example of the depth d1 will be described later.
  • the upper surface 12a of the filling layer 12 is preferably at a position lower than the plane Q including the upper surface 3a of the reflective layer 3. However, even when the upper surface 12a of the filling layer 12 is at the highest position, it is the same height as the plane Q. Need to be in. In other words, the filling layer 12 is not formed so as to rise above the plane Q.
  • the filling layer 12 is made of a resin having optical transparency. Specifically, an acrylic resin having a transmittance of 95% is used as the material of the filling layer 12.
  • the refractive index of the filling layer 12 of this embodiment is 1.5, for example.
  • the plurality of first electrodes 4 extend in parallel with each other in the display region 10.
  • the unit region 11 is formed across the upper surface 12 a of each filling layer 12 and the upper surface 3 a of the reflective layer 3 provided in the plurality of recesses 9 present in the light emitting area U.
  • a portion of the first electrode 4 located on the upper surface 8 a of the base layer 8 is in contact with a part of the reflective layer 3.
  • the lower surface of the first electrode 4 is in contact with the upper surface 12 a of the filling layer 12. Therefore, the lower surface of the first electrode 4 is at a position lower than the plane Q including the upper surface 3 a of the reflective layer 3.
  • the first electrode 4 is a transparent electrode made of a transparent conductive film such as indium tin oxide (ITO) or indium zinc oxide (IZO), and has light transmittance.
  • the 1st electrode 4 is comprised, for example with ITO with a film thickness of 120 nm.
  • the first electrode 4 functions as an anode for injecting holes into the organic layer 5.
  • the organic layer 5 is formed in the light emitting area U.
  • the organic layer 5 is laminated along the upper surface of the first electrode 4 formed across the plurality of recesses 9.
  • the organic layer 5 is a laminate made of an organic material including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the lower surface of the organic layer 5 is at a position lower than the plane Q including the upper surface 3 a of the reflective layer 3. The detailed configuration and function of each layer constituting the organic layer 5 will be described later.
  • the second electrode 6 is laminated along the upper surface of the organic layer 5.
  • the second electrode 6 is a transparent electrode made of a transparent conductive film such as indium tin oxide (ITO) or indium zinc oxide (IZO), and has light transmittance.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the second electrode 6 is made of, for example, ITO having a film thickness of 120 nm.
  • the second electrode 6 functions as a cathode for injecting electrons into the organic layer 5.
  • a region sandwiched between the first electrode 4 and the second electrode 6 in the light emitting area U constitutes a microcavity structure.
  • the light emitted from the light emitting layer is multiple-reflected between the first electrode 4 and the second electrode 6.
  • a specific wavelength component of the light emitted from the light emitting layer is strengthened.
  • an optical adjustment layer called a cap layer is laminated on the upper surface of the second electrode 6.
  • FIG. 7 is a cross-sectional view showing details of the recess structure.
  • one of the plurality of recess structures constituting the organic EL element 30 is shown enlarged.
  • the concave structure of the organic EL element 30 in the three unit regions 11R, 11G, and 11B is only different in the film thickness of the hole injection layer, and has the same basic configuration.
  • the organic layer 5 is provided in the upper layer of the first electrode 4 in the recess structure.
  • the organic layer 5 is composed of a laminated film in which a hole injection layer 14, a hole transport layer 15, a light emitting layer 16, an electron transport layer 17, and an electron injection layer 18 are laminated from the first electrode 4 side.
  • a hole injection layer 14 a hole transport layer 15, a light emitting layer 16, an electron transport layer 17, and an electron injection layer 18 are laminated from the first electrode 4 side.
  • the transport layer and the injection layer may be combined into one layer.
  • an organic layer having a five-layer structure including the hole injection layer 14, the hole transport layer 15, the light emitting layer 16, the electron transport layer 17, and the electron injection layer 18 is illustrated.
  • a layer for preventing the movement of charges to the opposite electrode such as a hole blocking layer and an electron blocking layer, may be added as appropriate.
  • the hole injection layer 14 is a layer having a function of increasing the efficiency of hole injection from the first electrode 4 to the light emitting layer 16.
  • Examples of the material of the hole injection layer 14 include benzine, styrylamine, triphenylamine, porphyrin, triazole, imidazole, oxadiazole, polyarylalkane, phenylenediamine, arylamine, oxazole, anthracene, fluorenone, hydrazone, stilbene.
  • the mixing ratio of the organic material and molybdenum oxide is, for example, about 80% for the organic material and about 20% for the molybdenum oxide.
  • the hole transport layer 15 is a layer having a function of increasing the hole transport efficiency from the first electrode 4 to the light emitting layer 16.
  • the hole transport layer 15 is made of the same organic material as the hole injection layer 14.
  • the hole injection layer 14 and the hole transport layer 15 may be integrated or formed as an independent layer.
  • the light emitting layer 16 has a function of emitting light when deactivating energy by recombining holes injected from the first electrode 4 side and electrons injected from the second electrode 6 side.
  • the material of the light emitting layer 16 is composed of, for example, a host material and a dopant material. Further, an assist material may be included.
  • the host material is included in the highest ratio among the constituent materials in the light emitting layer 16. For example, the mixing ratio of the host material and the dopant material is about 90% for the host material and about 10% for the dopant material.
  • the host material has a function of facilitating film formation of the light emitting layer 16 and maintaining the light emitting layer 16 in a film state.
  • the host material is required to be a stable compound that hardly undergoes crystallization after film formation and hardly undergoes a chemical change. Further, when an electric field is applied between the first electrode 4 and the second electrode 6, carrier recombination occurs in the host molecule, and the function of causing the dopant material to emit light by transferring excitation energy to the dopant material. Have.
  • the thickness of the light emitting layer 16 is about 60 nm, for example.
  • the material of the light-emitting layer 16 include materials including materials with high light emission efficiency such as low-molecular fluorescent dyes, fluorescent polymers, and metal complexes.
  • Examples of the material of the light emitting layer 16 include anthracene, naphthalene, indene, phenanthrene, pyrene, naphthacene, triphenylene, anthracene, perylene, picene, fluoranthene, acephenanthrylene, pentaphen, pentacene, coronene, butadiene, coumarin, acridine, stilbene, Alternatively, derivatives thereof, tris (8-quinolinolato) aluminum complex, bis (benzoquinolinolato) beryllium complex, tri (dibenzoylmethyl) phenanthroline europium complex, ditoluylvinylbiphenyl and the like can be mentioned.
  • the electron transport layer 17 has a function of increasing the efficiency of electron transport from the second electrode 6 to the light emitting layer 16.
  • a material of the electron transport layer 17 for example, quinoline, perylene, phenanthroline, bisstyryl, pyrazine, triazole, oxazole, oxadiazole, fluorenone, or derivatives or metal complexes thereof are used.
  • tris (8-hydroxyquinoline) aluminum, anthracene, naphthalene, phenanthrene, pyrene, anthracene, perylene, butadiene, coumarin, acridine, stilbene, 1,10-phenanthroline, or derivatives or metal complexes thereof are used.
  • the thickness of the electron transport layer 17 is, for example, about 15 nm.
  • the electron injection layer 18 has a function of increasing the efficiency of electron injection from the second electrode 6 to the light emitting layer 16.
  • a compound such as metallic calcium (Ca) or lithium fluoride (LiF) is used.
  • the electron carrying layer 17 and the electron injection layer 18 may be integrated, and may be formed as an independent layer.
  • the thickness of the electron injection layer 18 is, for example, about 0.5 nm.
  • the microcavity structure 20 has an effect of enhancing light of a specific wavelength by utilizing resonance of light generated between the first electrode 4 and the second electrode 6.
  • the wavelengths of light emitted from the red, green, and blue unit regions 11R, 11G, and 11B are different. Therefore, the optical path length between the first electrode 4 and the second electrode 6 corresponds to the emission spectrum peak wavelength of each color.
  • the optical path length is set so that the optical path length of the red unit region 11R is the longest, the optical path length of the blue unit region 11B is the shortest, and the optical path length of the green unit region 11G is an intermediate length. Yes.
  • the thickness of the hole injection layer 14 is changed.
  • the thickness of the hole injection layer 14 in the red unit region 11R is tHIL-R
  • the layer thickness of the hole injection layer 14 in the green unit region 11G is tHIL-G
  • the hole injection layer in the blue unit region 11B is tHIL-B.
  • the light emitted from the organic layer 5 by the microcavity structure 20 is repeatedly reflected between the first electrode 4 and the second electrode 6 within a predetermined optical length, and has a specific wavelength corresponding to the optical path length. While light resonates and is enhanced, light of wavelengths that do not correspond to the optical path length is attenuated. As a result, the spectrum of the light extracted to the outside becomes steep and high intensity, and the luminance and color purity are improved.
  • a light emitting material that emits red light is used for the red unit region 11R
  • a light emitting material that emits green light is used for the green unit region 11G
  • a blue light is used for the blue unit region 11B.
  • a light emitting material that emits light may be used.
  • a bipolar material is used as the host material in any unit region.
  • a phosphorescent material is used for the red unit region 11R and the green unit region 11G
  • a fluorescent material is used for the blue unit region 11B.
  • the thickness of the light emitting layer 16 is, for example, about 60 nm in the red unit region 11R and the green unit region 11G, and is, for example, about 35 nm in the blue unit region 11B.
  • the same light emitting material that emits white light may be used in all of the light emitting areas U of the red unit region 11R, the green unit region 11G, and the blue unit region 11B. Even in this case, the light of different wavelengths is resonated and amplified by the unit regions 11R, 11G, and 11B. As a result, red light is emitted from the red unit region 11R and green light is emitted from the green unit region 11G. Blue light is emitted from the blue unit region 11B.
  • the cap layer 21 is laminated on the upper surface of the second electrode 6.
  • the cap layer 21 functions as a protective layer that protects the second electrode 6 and also functions as an optical adjustment layer.
  • a color filter may be added on the upper layer side of the second electrode 6. The light emitted from the organic layer 5 passes through the color filter, so that the color purity can be increased.
  • a specific configuration example of the organic EL device 100 is, for example, as shown in [Table 1].
  • FIGS. 8A to 11B show one concave structure.
  • a positive photosensitive resin material is applied to the upper surface 7 a of the substrate 7 to form a resin layer 23.
  • the resin layer 23 is exposed through the photomask 24.
  • a photomask 24 having a predetermined light transmission amount distribution specifically, a phototransmission amount near the center of the circular pattern is large, and the light transmission amount decreases toward the peripheral portion.
  • a mask 24 is used. Thereby, in the resin layer 23, the exposure amount in the vicinity of the center of the circular pattern is large, and the exposure amount becomes smaller toward the peripheral portion.
  • the resin layer 23 is developed using a predetermined developer.
  • the amount of film reduction of the resin layer 23 is large near the center of the circular pattern and decreases as it goes to the peripheral portion. In this way, the recess 9 having a circular cross section is formed in the resin layer 23, and the base layer 8 is formed.
  • a metal such as aluminum is deposited on the entire surface of the base layer 8 to form the reflective layer 3.
  • the first filling layer forming method is as follows. First, as shown in FIG. 9A, a resin film 25 such as acrylic, epoxy, or polyimide is formed on the entire surface of the reflective layer 3. As a method for forming the resin film 25, for example, a liquid resin material is applied on the reflective layer 3 by using a technique such as spin coating or bar coating. At this time, the film thickness of the resin film 25 is set so that the resin film 25 fills the recess 9 and also covers the flat portion of the reflective layer 3.
  • a resin film 25 such as acrylic, epoxy, or polyimide
  • the entire surface of the resin film 25 is etched back using a technique such as plasma ashing (dry ashing).
  • the etch back amount is adjusted so that the upper surface 25a of the resin film 25 is positioned lower than the plane Q including the upper surface 3a of the reflective layer 3.
  • the filling layer 12 is formed.
  • the first electrode 4, the organic layer 5, and the second electrode 6 are sequentially formed on the upper surface 3 a of the reflective layer 3 and the upper surface 12 a of the filling layer 12.
  • the first electrode 4, the organic layer 5, and the second electrode 6 are formed by a known process.
  • pattern formation may be performed using a vacuum evaporation method using a shadow mask, and the present invention is not limited to this, and a spray method, an ink jet method, a printing method, a laser transfer method, or the like can also be used.
  • the second filling layer forming method is as follows. As shown in FIG. 10A, a resin film 25 of acrylic, epoxy, polyimide, or the like is formed on the entire surface of the reflective layer 3. This step is the same as the first filling layer forming method shown in FIG. 9A.
  • the entire surface of the resin film 25 is planarized using a squeegee 27.
  • the squeegee 27 is moved along the upper surface 3a of the reflective layer 3 so that the upper surface 25a of the resin film 25 after passing through the squeegee 27 is flush with the plane Q including the upper surface 3a of the reflective layer 3.
  • the base material in which the resin film 25 remains in the recess 9 is baked.
  • the upper surface 25a of the resin film 25 is positioned lower than the plane Q including the upper surface 3a of the reflective layer 3. Thereby, the filling layer 12 is formed.
  • the filling layer 12 can also be formed by exposing the resin film 25 using a photomask, followed by development, washing with water, and drying.
  • the photomask has a pattern that shields the region corresponding to the concave portion 9, and during the exposure, the acrylic resin layer in the concave portion 9 is strongly exposed by the light collection in the concave portion 9, and the filling layer is developed too much. Can be prevented.
  • a halftone mask may be used as the photomask.
  • the first electrode 4, the organic layer 5, and the second electrode 6 are sequentially formed on the upper surface 3 a of the reflective layer 3 and the upper surface 12 a of the filling layer 12. This step is the same as the first filling layer forming method shown in FIG. 9C.
  • the third filling layer forming method is as follows. As shown in FIG. 11A, a resin film 25 such as acrylic, epoxy, polyimide, or the like is laminated on the surface of the reflective layer 3 corresponding to the inside of the recess 9. As a method for forming the resin film 25, for example, a droplet-shaped resin material is applied on the reflective layer 3 using a technique such as inkjet. At this time, the discharge amount of the resin material from the inkjet head 29 is adjusted so that the upper surface 25a of the resin film 25 is lower than the plane Q including the upper surface 3a of the reflective layer 3. Thereby, the filling layer 12 is formed.
  • a resin film 25 such as acrylic, epoxy, polyimide, or the like is laminated on the surface of the reflective layer 3 corresponding to the inside of the recess 9.
  • a method for forming the resin film 25 for example, a droplet-shaped resin material is applied on the reflective layer 3 using a technique such as inkjet. At this time, the discharge amount of the resin material from the
  • the first electrode 4, the organic layer 5, and the second electrode 6 are sequentially formed on the upper surface 3 a of the reflective layer 3 and the upper surface 12 a of the filling layer 12. This step is the same as the first filling layer forming method shown in FIG. 9C.
  • the organic EL device 100 of the present embodiment is completed through the above steps.
  • FIG. 12A is a cross-sectional view showing a conventional organic EL device 101.
  • the organic EL device 101 has a configuration in which a reflective layer 103, a first electrode 104, an organic layer 105, and a second electrode 106 are sequentially stacked on a substrate 102.
  • a reflective layer 103 In the organic EL device 101, light emitted from the light emitting layer in the organic layer 105 is uniformly emitted in all directions, and proceeds inside while being refracted at the interface between the layers having different refractive indexes. The light traveling toward the substrate 102 is reflected by the reflective layer 103.
  • the conventional organic EL device 101 has a problem that the light utilization efficiency is low.
  • the reflection layer 3 is curved along the concave portion 9, so that the light reflected by the reflection layer 3 changes its traveling direction. Then, the inside of the organic EL device 100 is advanced. At this time, even if it originally has a large incident angle with respect to the interface between the second electrode 6 and the external space (air), the interface between the second electrode 6 and the external space is reflected by the reflection layer 3. The light converted to an incident angle smaller than the critical angle at is taken out to the external space.
  • the upper surface 12a of the filling layer 12 is at a position lower than the plane Q including the upper surface 3a of the reflective layer 3, and the lower surface 5b of the organic layer 5 is lower than the plane Q. Is also in a low position. That is, the reflective layer 3 is present on the side of the organic layer 5 inside the recess 9 (in the left-right direction in FIG. 12B). For this reason, for example, the light L1 emitted in a direction almost right from an arbitrary light emitting point M in the organic layer 5 is reflected by the reflective layer 3, and the angle of the traveling direction changes. As a result, unlike the conventional organic EL device 101 shown in FIG.
  • the organic EL device 100 having excellent light utilization efficiency can be provided.
  • the light emitting point M in the organic layer 5 is present. Even light that is emitted almost directly from the light can enter the reflective layer 3.
  • the upper surface 12a of the filling layer 12 is on the same plane as the plane Q, the lower surface 5b of the organic layer 5 is positioned higher than the plane Q.
  • the reflective layer 3 does not exist on the side of the organic layer 5 located inside the concave portion 9, the light that is emitted from the light emitting point M in the organic layer 5 almost directly does not enter the reflective layer 3. Become.
  • the ratio of the light emitted from the light emitting point M in the organic layer 5 within a predetermined angle range close to the side to the reflection layer 3 is sufficiently increased. Therefore, even with such a configuration, it is possible to provide an organic EL device having excellent light utilization efficiency.
  • FIGS. 13A and 13B are diagrams for explaining a parameter indicating the depth of the recess.
  • the central angle of the arc that is the cross-sectional shape of the recess 9 is used as a parameter representing the depth of the recess 9.
  • the diameter ⁇ of the circle when the recess 9 is viewed in plan is made constant, and the cross-sectional shape of the recess 9 is defined as an arc shape.
  • the depth d1 of the recess 9 is indicated by the center angle ⁇ of the arc. That is, when the depth d1 of the concave portion 9 is deep, the central angle ⁇ increases, and when the depth d1 of the concave portion 9 is shallow, the central angle ⁇ decreases.
  • the light emitted by the electric field is UV light or blue light as described above.
  • the light that is excited to excite the phosphor contained in the filling layer 12 and is output to the outside becomes a light emitting component of the phosphor.
  • the light emitted from the phosphor is uniformly emitted in all directions.
  • the light emitting component can be emitted outside without being guided and confined by the concave structure according to one embodiment of the present invention.
  • the organic EL device 100 of the present embodiment can obtain high luminance by providing the above-described recess structure in the light emitting area U even when the light emitting area U in the unit region 11 is reduced.
  • the necessary luminance can be obtained even if the light emitting area U is small, the burden on the light emitting element is small and power consumption can be suppressed. As a result, the lifetime of the element is also increased.
  • the present inventors have compared a device having an organic EL element (with a concave structure) in a unit region as an example and an organic in the unit region as a comparative example.
  • a device having an EL element (without a concave structure) was manufactured, and the luminous efficiency of each was compared.
  • a green light emitting material was used as the light emitting material. The result was as shown in [Table 2]. The results will be described below.
  • the brightness of each device shown below is the brightness obtained in the display area 10 of 2 mm square.
  • the organic EL device in the example had a light transmittance of 68%, a current efficiency of 170 cd / A, and an element lifetime of 2000 h (substantial emission luminance: 50490 nits).
  • the organic EL device in the comparative example had a light transmittance of 71%, a current efficiency of 88 cd / A, and an element lifetime of 1050 h (substantial emission luminance: 10980 nits).
  • the actual light emitting area U in each device is 9.1% of the display area 10. For this reason, the light emission luminance of the light emitting area requires the light emission intensity corresponding to the transmission area.
  • the area of the 100 ⁇ m square unit region 11 is 10,000 ⁇ m 2 .
  • the non-transmissive region is a 30 ⁇ m square light emitting area U on which the reflective layer 3 is formed, and the area is 900 ⁇ m 2 .
  • the transmission region (transmission area T) is 9100 ⁇ m 2 excluding the non-transmission region (light emission area U). Since the transmissive area T is a region other than the light emitting area U where the reflective layer 3 is formed, the first electrode 4 and the second electrode 6 made of ITO and a portion where the organic layer is laminated transmit light. The light transmittance in the transmission area T is 78%.
  • a light-emitting element with extremely high light transmittance can be manufactured. That is, in terms of light transmittance alone, an element capable of obtaining high transmittance can be manufactured without providing a concave structure. However, by providing a concave structure, it is possible to realize not only an improvement in luminance due to high transmittance, but also a reduction in power consumption and an improvement in device life.
  • the light emitting area U is reduced in order to realize a transparent display, the luminance required per unit area increases.
  • the present embodiment since the present embodiment has a concave structure, the front luminance is doubled as compared to the conventional configuration without the concave structure, and the required luminance is 549 nits.
  • the power consumption is halved by reducing the required brightness by half.
  • the element lifetime is proportional to the square of the luminance, if the light is continuously emitted at 100 nits, the element lifetime is about four times longer.
  • the area other than the light emitting area U in the unit area 11 remains substantially colorless and transparent. Therefore, in this colorless and transparent region, the object behind the organic EL device 100 can be sufficiently visually recognized. Therefore, the function as a transparent display can be fully exhibited.
  • FIG. 14 is a plan view partially showing a display region in the organic EL element of the second embodiment.
  • FIG. 15 is a plan view showing the configuration of each pixel in the organic EL element of the second embodiment.
  • 16A is a cross-sectional view taken along the line BB ′ of FIG. 15, and
  • FIG. 16B is a cross-sectional view taken along the line CC ′ of FIG.
  • FIG. 17 is an enlarged cross-sectional view showing a main part of the light emitting element part.
  • the organic EL device (display device) 200 of the present embodiment is a display device having a display region 22 in which a plurality of pixels P are arranged in a matrix as shown in FIG.
  • Each pixel P is composed of three RGB sub-pixels (unit areas) 11 arranged in order in the horizontal direction of the display area 22.
  • the red sub-pixel 11R emits red light
  • the green sub-pixel 11G emits green light
  • the blue sub-pixel 11B emits blue light.
  • the red sub-pixel 11R, the green sub-pixel 11G, and the blue sub-pixel 11B are different in the fluorescent material contained in each filling layer, but other configurations are common.
  • the size of one pixel P is 120 ⁇ m square.
  • Each of the red sub-pixel 11R, the green sub-pixel 11G, and the blue sub-pixel 11B can be driven independently (electric field application).
  • a technique for independently applying a voltage to the sub-pixels any technique such as a simple matrix electrode, segment division, or a SW substrate such as a TFT can be used.
  • one pixel is divided into three sub-pixels 11 and each sub-pixel 11 is driven independently of each other. Therefore, any color display is possible depending on how each sub-pixel 11 emits light.
  • the organic EL device 200 includes an active matrix substrate 201 and a plurality of thin film transistors (active elements) provided in a predetermined arrangement corresponding to the plurality of sub-pixels 11 in the display region 22.
  • the display panel includes Tr, various wirings connected to each thin film transistor Tr, and a sealing substrate (not shown) provided so as to cover the plurality of thin film transistors Tr and various wirings.
  • the active matrix substrate 201 has a plurality of gate lines (scanning lines) 28 extending in parallel with each other in the display region 22 as drive circuits for driving the display panel, and parallel to each other in a direction intersecting each gate line 28.
  • a plurality of source lines (data lines) 19 extending in this manner and a plurality of current supply wirings 26 extending along each source line 19 are provided.
  • the gate line 28 and the source line 19 are insulated from each other, and are formed in a lattice shape so as to constitute the entire sub pixel 11.
  • the gate line 28, the source line 19 and the current supply wiring 26 are formed of a Ti / Al / Ti metal layer with a width of 3 ⁇ m. Each wiring portion is a non-transmissive region.
  • a switching thin film transistor (active element) Tr electrically connected to each other is provided at an intersection between the gate line 28 and the source line 19.
  • the thin film transistor Tr a known one can be adopted, but in this embodiment, a configuration of 2Tr1C including two thin film transistors Tr and one capacitor is used. In this embodiment, for example, a bottom gate type transistor is employed.
  • the semiconductor film of the thin film transistor Tr can be formed of an oxide semiconductor.
  • the semiconductor film may contain, for example, at least one metal element of In, Ga, and Zn.
  • the semiconductor film includes, for example, an In—Ga—Zn—O-based semiconductor.
  • Such an oxide semiconductor film can be formed using an oxide semiconductor film containing an In—Ga—Zn—O-based semiconductor.
  • the thin film transistor Tr can be a transmission region.
  • a channel-etch TFT having an active layer containing an In—Ga—Zn—O-based semiconductor may be referred to as a “CE-InGaZnO-TFT”.
  • the In—Ga—Zn—O-based semiconductor may be either amorphous or crystalline.
  • a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
  • the semiconductor film of the thin film transistor Tr is formed of a compound containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O) (In—Ga—Zn—O).
  • the semiconductor layer of the thin film transistor Tr includes a compound containing indium (In), tin (Tin), zinc (Zn), and oxygen (O) (In—Tin—Zn—O), indium (In), aluminum ( Al), zinc (Zn), a compound containing oxygen (O) (In—Al—Zn—O), or the like may be used.
  • the semiconductor film of the thin film transistor Tr may be formed of amorphous silicon, low-temperature polysilicon, or the like.
  • the contact part 205 is formed in the interlayer insulating layer 203 covering the thin film transistor Tr and various wirings.
  • the contact portion 205 is a portion that is electrically connected to the source line 19 and the thin film transistor Tr, and is a non-transmissive region formed in a 20 ⁇ m square in plan view.
  • the light emitting element portion (light emitting element) 206 has a plurality of recesses 9 formed in the resin layer.
  • the light emitting element unit 206 includes the reflective layer 3, the filling layer 12, the first electrode 4, the organic layer 5, and the second electrode 6.
  • an opening 9A is provided on the bottom side of some recesses 9 located on the contact part 205, and the contact part 205 on the lower layer side and the reflective layer 3 are electrically connected via the opening 9A. It is connected to the.
  • the size of the light emitting element portion 206 in plan view is 30 ⁇ m square.
  • the organic layer 5 emits light in the color of the corresponding subpixel 11.
  • the first electrode 4 has substantially the same size as the reflective layer 3 and is formed with a 30 ⁇ m square. As in the previous embodiment, the first electrode 4 is in contact with a part of the reflective layer 3.
  • the thin film transistor Tr and the light emitting element portion 206 are electrically connected via the reflective layer 3 and the contact portion 205. Therefore, the light emitting element portion 206 can emit light through the thin film transistor Tr.
  • the transmittance in the sub-pixel 11 is 85% including the transmittance of the transparent electrode, the thin film transistor, and other members.
  • the total transmittance including the non-transmissive region is 60%.
  • the light transmittance in the sub-pixel 11 was 57%. Even with the configuration including the thin film transistor Tr as an active element, a light emitting element having a transmittance of 56% could be realized. In addition, when compared with an element having no concave structure, the organic EL device 200 of the present embodiment has doubled the luminous efficiency and four times the lifetime.
  • the non-transmissive area can be changed to the light-emitting area U by covering the contact portion 205 which is a non-transmissive area and its peripheral portion with the light-emitting element portion 206. Since the light emitting element portion 206 of the present embodiment can emit light with high brightness due to the above-described recess structure, the light emitting area U in the sub-pixel 11 can be reduced. A non-light emitting area generated by reducing the light emitting area U becomes a transmissive area T, and a transmissive display can be obtained.
  • the light emission efficiency of the light emitting element unit 206 is more than twice that of the conventional structure without the concave structure, the luminance of the display is maintained even if the light emitting area U in the subpixel 11 is reduced. be able to.
  • FIG. 18 is a plan view showing a part of the display area of the organic EL device according to the third embodiment. As shown in FIG. 18, the organic EL device according to the present embodiment overlaps not only on the contact portion 205 with the thin film transistor Tr but also on the gate line 28, the source line 19, and the current supply wiring 26. Part (light emitting element) 306 was formed.
  • the area where these wirings are formed is a non-transparent area. Therefore, the light emitting area U can be changed to the light emitting area U by providing the light emitting element portion 206 so as to cover the non-transmissive area where various wirings are formed.
  • each subpixel 11 is a region including the contact portion 205 and the light emitting element portion 306 that covers various wirings, and the area is larger than that of the subpixel 11 in the organic EL element of the second embodiment. be able to.
  • “Area of non-transmissive area” 1140 ⁇ m in total 2
  • the light-emitting area of the light emitting element 306 in this embodiment is 1140 microns 2, compared with the light emitting area 900 .mu.m 2 of the light emitting element 206 in the second embodiment, it is 1.27 times. Thereby, the luminance in the sub-pixel 11 can be increased. Therefore, the burden placed on the element in order to obtain the necessary luminance is reduced, and the element life is also extended.
  • the current value necessary for obtaining the same luminance as that of the second embodiment in each sub-pixel 11 is 80% compared to the second embodiment.
  • the lifetime of the element at the same luminance was 1.5 times. Therefore, according to the configuration of the present embodiment, it is possible to further improve the current efficiency and the element life compared to the configuration of the second embodiment.
  • an organic EL device according to a fourth embodiment of the present invention will be described.
  • the basic configuration of the organic EL device of the present embodiment described below is substantially the same as that of the second embodiment, but differs in that it includes a white light emitting organic EL element and a color filter substrate. Therefore, in the following description, differences from the previous embodiment will be described in detail, and descriptions of common parts will be omitted.
  • the same reference numerals are given to the same components as those in FIGS.
  • FIG. 19 is a diagram showing a display area in the organic EL device of the fourth embodiment. 20 is a cross-sectional view taken along the line CC ′ of FIG.
  • the organic EL element of the present embodiment includes a thin film transistor Tr having a transparent semiconductor layer provided corresponding to each color sub-pixel 11, and a white light emitting element ( An active matrix substrate 401 having a light emitting element) 406, and a color filter substrate 402 including color filters CF of the respective colors corresponding to the sub-pixels 11.
  • the color filter substrate 402 has RGB color filters CF corresponding to the sub-pixels 11 of each color.
  • Each color filter CF is disposed on the light emitting element portion 406 and has a size covering the light emitting element portion 406.
  • the area of the color filter CF is substantially the same as the installation area of the reflective layer 3.
  • a color filter substrate 402 is manufactured separately from the active matrix substrate 401, and the active matrix substrate 401 and the color filter substrate 402 are bonded together to obtain an organic EL device.
  • a protective layer may be provided on the light-emitting element portion 406, and the color filter CF may be applied and formed on the protective layer, or a mask pattern by vapor deposition may be formed.
  • the color filter CF may be manufactured by forming a film.
  • the light emitting element portion 406 is a white light emitting element that emits white light, and is formed on the plurality of recesses 9.
  • the light emitting element unit 406 in the present embodiment has a white light emitting organic layer 35 for each recess 9.
  • the white light emitting organic layer 35 includes a first light emitting unit (EMU1) 39B that emits blue light and a second light emitting unit (EMU2) 39RG that emits green and red light.
  • EMU1 first light emitting unit
  • EMU2 second light emitting unit
  • FIG. 21A is a diagram showing a configuration of a blue light emitting unit
  • FIG. 21B is a diagram showing a configuration of green and red light emitting units
  • FIG. 21C is a diagram showing a configuration of a light emitting element portion that emits white light.
  • HIL hole injection layer
  • HTL hole transport layer
  • EML emission layer
  • a structure in which an electron transport layer (ETL) 17 having a thickness of 15 nm is stacked is referred to as a light emitting unit (EMU) 19.
  • EMU light emitting unit
  • a first light emitting unit (EMU1) 39B having a blue light emitting layer 16B doped with a blue light emitting material as shown in FIG. 21A, and a green light emitting layer 16G doped with a green light emitting material as shown in FIG. 21B.
  • a second light emitting unit (EMU2) 39RG having a red light emitting layer 16R doped with a red light emitting material.
  • the green light emitting layer 16G and the red light emitting layer 16R are laminated in this order.
  • the light emitting element unit 406 including the white light emitting organic layer 35 in each recess 9 realizes white light emission by simultaneously including the blue light emitting unit and the green and red light emitting units described above. Yes.
  • the light emitting element portion 406 of the present embodiment includes a first light emitting unit 39B, a lithium (Li) layer, a copper phthalocyanine complex (CuPC) layer, a second light emitting unit 39RG, a fluorine on the first electrode 4 in each recess 9.
  • a lithium fluoride (LiF) layer and the second electrode 6 are laminated in this order.
  • the charge generation layer 13 includes a lithium (Li) layer having a thickness of 1 nm and a copper phthalocyanine complex (CuPC) layer having a thickness of 5 nm.
  • Li lithium
  • CuPC copper phthalocyanine complex
  • the first electrode 4 is made of ITO having a thickness of 120 nm.
  • the 0.5 nm-thick lithium fluoride (LiF) layer functions as the electron injection layer 18.
  • FIG. 22 is a graph showing an emission spectrum in the light emitting element portion emitting white light.
  • AL in the second electrode 6 of the light emitting element portion 406 is set to 100 nm.
  • the emission spectrum shown in FIG. 22 is the base characteristic.
  • a color display element was manufactured by installing the color filter CF on the light emitting element portion 406 that emits white light.
  • the definition of the color filter CF can be up to about 600 ppi. Therefore, if the configuration of the present embodiment is used, high definition display can be achieved.
  • the transmittance is significantly reduced.
  • the color filter CF is installed only in the light emitting area U (light emitting element unit 406). A decrease in transmittance can be prevented.
  • the same transmittance as in the second embodiment could be obtained.
  • FIG. 23 is a diagram illustrating a schematic configuration of a display area of the organic EL device according to the first embodiment.
  • a pair of banks 41 is provided on both sides of the first electrode 4 in the width direction.
  • Each bank 41 extends along the first electrode 4 and is formed so as to overlap the first electrode 4 with a width of at least 1 ⁇ m or more.
  • the width of the first electrode 4 and the second electrode 6 is about 30 ⁇ m. Thereby, it is possible to prevent the areas other than the pixels from shining.
  • FIG. 24 is a diagram illustrating a schematic configuration of a display area of the organic EL device according to the second embodiment.
  • a large number of banks 42 are provided at portions where the first electrodes 4 and the second electrodes 6 overlap each other.
  • the plurality of banks 42 present in the display region 10 are banks having a frame shape in a plan view surrounding the organic EL element 30 (light emitting area U) provided in the overlapping region of the first electrode 4 and each second electrode 6. is there.
  • the overlap of the bank 42 with respect to the first electrode 4 is at least 1 ⁇ m in width and the overlap with the second electrode 6 is at least 0.5 ⁇ m in width. Thereby, in particular, it is possible to prevent areas other than the direct pixels from being illuminated.
  • the light emitting element has a plurality of recesses.
  • the light emitting element may have only one recess.
  • the cross-sectional shape of a recessed part does not necessarily need to be circular arc shape.
  • the cross-sectional shape of the recess may include, for example, an ellipse or an arbitrary curve, or may include a part of a straight line.
  • the specific configuration such as the shape, size, number, arrangement, constituent material, formation process, and the like of each part of the organic EL device is not limited to the above embodiment, and can be changed as appropriate.
  • the organic EL device can be applied to a lighting device and the like in addition to a display device.
  • the unit may not include a plurality of unit regions of different emission colors divided from each other.
  • one light emitting layer may be doped with three kinds of dopant dyes of red, green, and blue, a blue hole transporting light emitting layer, a green electron transporting light emitting layer, and a red color.
  • a laminated structure with an electron transporting light emitting layer may be used, or a laminated structure of a blue electron transporting light emitting layer, a green electron transporting light emitting layer, and a red electron transporting light emitting layer may be used.
  • Some aspects of the present invention can be used for any electronic device including a light emitting unit, such as a display device or a lighting device.

Abstract

本発明の一態様による有機エレクトロルミネッセンス装置は、上面に凹部が設けられた基材と、少なくとも凹部の表面に設けられた反射層と、反射層を介して凹部の内側に充填された光透過性を有する充填層と、充填層の上層側に少なくとも設けられていた光透過性を有する第1電極と、第1電極の上層に設けられた、少なくとも発光層を含む有機層と、有機層の上層側に設けられた光透過性を有する第2電極を備えた発光素子と、を備え、表示領域が互いに分割された複数の単位領域からなり、前記発光素子を有する前記単位領域は、区画化された発光エリアと透過エリアとを有している。

Description

有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置および表示装置
 本発明は、有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置および表示装置に関するものである。
 本願は、2015年9月10日に、日本に出願された特願2015-178568号に基づき優先権を主張し、その内容をここに援用する。
 有機ELディスプレイは、次世代ディスプレイ技術の候補として開発が進められている。以下、エレクトロルミネッセンス(Electro-Luminescence)を「EL」と略記する。有機ELディスプレイは、自発光素子であり、白色バックライト、液晶基板(TFT基板)、カラーフィルター基板からなる液晶ディスプレイよりも構造が簡単であるため、将来的には、低コストで薄型及び軽量なフレキシブルディスプレイを実現できると考えられている。
 有機ELディスプレイの場合は、非表示状態で透明なディスプレイ(以下、透明ディスプレイと称する。)が可能である。使用する有機材料が薄膜で透過率が高く、且つ、一対の透明電極を用いることで、透過率の高い透明ディスプレイが可能となる。
 このように、従来のディスプレイとしての利用だけでなく、フレキシブルディスプレイや透明ディスプレイ(例えば、特許文献1,2)など、新しいカテゴリーの表示形態を実現できる可能性を有している。特許文献1の有機EL発光素子は、上下に透明電極を有し、両面発光素子となっている。
特開平10-125469号公報 特開2013-149971号公報
 しかしながら、特許文献1では、透明性に優れているが、両面に光が照射されるので、片側には反転映像が出力されてしまうし、片側からの輝度が低くなってしまうという問題がある。
 一方、特許文献2では、発光領域を限定して半透明状態にすることができる。しかしながら、発光面積が小さくなるため、必要な輝度を出すための発光部の負担が大きくなり、消費電力が増大するとともに、素子の寿命も短くなってしまう。
 本発明の一つの態様は、上記従来技術の問題点に鑑み成されたものであって、発光効率が高い素子を提供し、透過率の高い透過ディスプレイを提供できる有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置および表示装置を提供することを目的とする。
 本発明の一態様における有機エレクトロルミネッセンス装置は、上面に凹部が設けられた基材と、少なくとも前記凹部の表面に設けられた反射層と、前記反射層を介して前記凹部の内側に充填された光透過性を有する充填層と、前記充填層の上層側に少なくとも設けられていた光透過性を有する第1電極と、前記第1電極の上層に設けられた、少なくとも発光層を含む有機層と、前記有機層の上層側に設けられた光透過性を有する第2電極を備えた発光素子と、を備え、表示領域が互いに分割された複数の単位領域からなり、前記発光素子を有する前記単位領域は、区画化された発光エリアと透過エリアとを有している。
 本発明の一態様における有機エレクトロルミネッセンス装置において、前記発光エリアおよび前記透過エリアにおいて、前記発光エリア/(前記発光エリア+前記透過エリア)<50%である構成としてもよい。
 本発明の一態様における有機エレクトロルミネッセンス装置において、前記発光エリアに複数の凹部が設けられ、前記複数の凹部に前記反射層が形成されている構成としてもよい。
 本発明の一態様における有機エレクトロルミネッセンス装置において、前記反射層の一部と前記第1電極の一部とが接している構成としてもよい。
 本発明の一態様における有機エレクトロルミネッセンス装置において、前記凹部の位置における前記第1電極の下面は、前記基材の上面を含む平面よりも下方に位置している構成としてもよい。
 本発明の一態様における有機エレクトロルミネッセンス装置において、前記発光エリアは、独立に発光制御できる複数の能動素子を備えている構成としてもよい。
 本発明の一態様における有機エレクトロルミネッセンス装置において、前記能動素子が、酸化物半導体で形成されている構成としてもよい。
 本発明の一態様における有機エレクトロルミネッセンス装置において、前記能動素子と前記発光素子とが前記反射層を介して電気的に接続されている構成としてもよい。
 本発明の一態様における有機エレクトロルミネッセンス装置において、前記能動素子を動作させるための配線が設けられており、前記配線上に前記反射層が設けられている構成としてもよい。
 本発明の一態様における有機エレクトロルミネッセンス装置において、前記発光素子上にカラーフィルターが設けられている構成としてもよい。
 本発明の一態様における有機エレクトロルミネッセンス装置において、前記カラーフィルターの大きさが前記反射層の設置領域と概略等しい構成としてもよい。
 本発明の一態様における有機エレクトロルミネッセンス装置の製造方法は、基材の上面に凹部を形成する行程と、少なくとも前記凹部の表面に沿って反射層を形成する工程と、前記凹部の内側に前記反射層を介して光透過性を有する充填層を形成する工程と、少なくとも前記充填層の上層側に光透過性を有する第1電極を形成する工程と、前記第1電極の上層側に少なくとも発光層を含む有機層を形成する工程と、前記有機層の上層側に光透過性および光透過性および光反射性を有する第2電極を形成する工程と、を備え、表示領域が互いに分割された複数の単位領域からなり、前記発光素子を有する前記単位領域は、区画化された発光エリアと透過エリアとを有している。
 本発明の一態様における照明装置は、上面に凹部が設けられた基材と、少なくとも前記凹部の表面に設けられた反射層と、前記反射層を介して前記凹部の内側に充填された光透過性を有する充填層と、前記充填層の上層側に少なくとも設けられていた光透過性を有する第1電極と、前記第1電極の上層に設けられた、少なくとも発光層を含む有機層と、前記有機層の上層側に設けられた光透過性を有する第2電極を備えた発光素子と、を備え、表示領域が互いに分割された複数の単位領域からなり、前記発光素子を有する前記単位領域は、区画化された発光エリアと透過エリアとを有している。
 本発明の一態様における表示装置は、上面に凹部が設けられた基材と、少なくとも前記凹部の表面に設けられた反射層と、前記反射層を介して前記凹部の内側に充填された光透過性を有する充填層と、前記充填層の上層側に少なくとも設けられていた光透過性を有する第1電極と、前記第1電極の上層に設けられた、少なくとも発光層を含む有機層と、前記有機層の上層側に設けられた光透過性を有する第2電極を備えた発光素子と、を備え、表示領域が互いに分割された複数の単位領域からなり、前記発光素子を有する前記単位領域は、区画化された発光エリアと透過エリアとを有している。
 本発明のいくつかの態様によれば、発光効率が高い素子を提供し、透過率の高い透過ディスプレイを提供できる有機エレクトロルミネッセンス装置、照明装置および表示装置を提供することができる。
第1実施形態の有機EL装置の表示領域を示す図。 第1実施形態の有機EL装置の表示領域の詳細を示す図。 一つの単位領域を拡大して示す平面図。 一つの単位領域における発光エリアを拡大して示す平面図。 有機EL装置の上面に垂直な任意の平面で切断した断面図。 発光エリアの一部を拡大して示す平面図。 図5のA-A’線に沿う断面図。 凹部構造の詳細を示す断面図。 有機EL装置の製造方法を説明するための第1の工程図。 有機EL装置の製造方法を説明するための第2の工程図。 有機EL装置の製造方法を説明するための第3の工程図。 有機EL装置の製造方法を説明するための第4の工程図。 有機EL装置の第1の充填層形成方法を説明するための第1の工程図。 有機EL装置の第1の充填層形成方法を説明するための第2の工程図。 有機EL装置の第1の充填層形成方法を説明するための第3の工程図。 有機EL装置の第2の充填層形成方法を説明するための第1の工程図。 有機EL装置の第2の充填層形成方法を説明するための第2の工程図。 有機EL装置の第2の充填層形成方法を説明するための第3の工程図。 有機EL装置の第2の充填層形成方法を説明するための第4の工程図。 有機EL装置の第3の充填層形成方法を説明するための第1の工程図。 有機EL装置の第3の充填層形成方法を説明するための第2の工程図。 従来の有機EL装置を示す断面図。 第1実施形態の有機EL装置を示す断面図。 凹部の深さを示すパラメーターを説明するための第1の図。 凹部の深さを示すパラメーターを説明するための第2の図。 第2実施形態の有機EL素子における表示領域を部分的に示す平面図。 第2実施形態の有機EL素子における各画素の構成を示す平面図。 図15のB-B’線に沿う断面図。 図15のC-C’線に沿う断面図。 発光素子部における要部を拡大して示す断面図。 第3実施形態の有機EL装置の表示領域の一部を示す平面図。 第4実施形態の有機EL装置における表示領域を示す図。 図19のC-C’線に沿う断面図。 青色発光ユニットの構成を示す図。 緑色及び赤色発光ユニットの構成を示す図。 白色発光の発光素子部の構成を示す図。 白色発光の発光素子部における発光スペクトルを示すグラフ。 実施例1の有機EL装置の表示領域の概略構成を示す図。 実施例2の有機EL装置の表示領域の概略構成を示す図。
[第1実施形態]
 以下、本発明の第1実施形態の有機EL装置について、図1~図13Bを用いて説明する。
 第1実施形態の有機EL装置は、マイクロキャビティ構造を採用したトップエミッション方式の透明ディスプレイの一つの例である。
 図1は、第1実施形態の有機EL装置の表示領域を示す図である。
 なお、以下の各図面において、各構成要素を見やすくするため、構成要素によっては寸法の縮尺を異ならせて示すことがある。
 図1に示すように、本実施形態の有機EL装置(有機エレクトロルミネッセンス装置、表示装置)100は、互いに分割された複数の単位領域11を備える。ここでは、RGBに対応する複数の単位領域11からなる表示領域10を有している。各単位領域11は、y軸に沿ってストライプ状に延長され、x軸に沿ってRGBの順で繰り返し配置されている。図1においては、RGBの各単位領域11がストライプ配列された例を示しているが、本実施形態ではこれに限定されず、RGBの各単位領域11の配列が、モザイク配列、デルタ配列等、従来公知のRGB画素配列とすることもできる。
 RGBの各単位領域11は、赤色光、緑色光、青色光を同時に射出することで白色光を生成する照明装置として用いることができる。但し、有機EL装置100の用途は照明装置に限定されることはない。例えば、赤色、緑色、青色に対応する各単位領域11のそれぞれを、赤色サブ画素、緑色サブ画素、青色サブ画素とし、これら3個のサブ画素で1個の画素を構成する表示装置に、有機EL装置100を適用することもできる。
 図2は、第1実施形態の有機EL装置の表示領域の詳細を示す図である。
 図2に示すように、有機EL装置100における表示領域10は、一例として、平面形状が縦横2mmの正方形とされている。また、1つの単位領域11は、縦横100μmの正方形である。表示領域10には、複数の第1電極4と複数の第2電極6とが互いに交差するようにして設けられており、これら第1電極4と第2電極6との交差部分周辺に単位領域11が位置している。
 図3Aは、一つの単位領域を拡大して示す平面図である。
 図3Aに示すように、単位領域11は、発光エリアUと透過エリアTとを有する。
この透過エリアTによって、表示領域10の向こう側が透けて見える透過ディスプレイを実現できる。
 発光エリアUは、外光が透過しない領域である。第1電極4及び第2電極6は、いずれも幅30μmである。単位領域11において、第1電極4と第2電極6との交差領域(30μm角)が発光エリアUに相当する。なお、各電極の幅は上記した寸法に限らず、適宜変更が可能である。
 ここで、発光エリアUと透過エリアTとにおいて、発光エリアU/(発光エリアU+透過エリアT)<50%の関係であることが好ましい。すなわち、発光エリアUが透過エリアTよりも小さければ良い。
 図3Bは、一つの単位領域における発光エリアを拡大して示す平面図である。
 図3Bに示すように、単位領域11の発光エリアUには、有機EL素子(発光素子)30が設けられている。有機EL素子30は、平面形状が円形の凹部9を複数有している。凹部9の直径φは、例えば5μ、程度である。複数の凹部9は、縦横に規則的に配置され、格子状をなしている。凹部9の密度は、発光エリアUの面積に占める複数の凹部9の全面積の割合が70%になる程度である。
 図4は、有機EL装置の上面に垂直な任意の平面で切断した断面図であり、発光エリア部分を示す。図5は、発光エリアの一部を拡大して示す平面図である。図6は、図5のA-A’線に沿う断面図である。
 図4に示すように、本実施形態の有機EL装置100は、基材2と、反射層3と、第1電極4と、発光層を含む有機層5と、第2電極6と、を備える。有機EL装置100は、トップエミッション型のディスプレイであり、発光層から発せられた光は第2電極6側から射出される。基材2は、基板7と、下地層8と、を含む。基板7の上面には、下地層8、反射層3、第1電極4、有機層5、第2電極6が、基板7側からこの順に積層されている。
 基板7には、例えばガラス基板が用いられる。なお、有機EL装置100はトップエミッション型の有機EL装置であるから、基板7は必ずしも光透過性を有する必要はなく、例えばシリコン基板等の半導体基板を用いてもよい。
 図5に示すように、有機EL装置100の発光エリアUには、複数の凹部9が形成されている。各凹部9は、図6に示すように、基材2の上面2aにおいて上部に向かって開口しており、その断面形状は円弧状である。すなわち、各凹部9の内面は、立体的には球面の一部をなしている。下地層8は、感光性を有する樹脂、例えばアクリル、エポキシ、ポリイミド等の樹脂で構成されている。下地層8の材料に感光性樹脂を用いると、後述する凹部9の形成方法にとって好適である。ただし、後述する形成方法以外の方法を採る場合には、下地層8の構成材料は、必ずしも感光性を有していなくてもよい。
 さらに下地層8の構成材料は、樹脂でなくてもよく、無機材料を用いてもよい。本実施形態では、基板7と下地層8とからなる基材2を用いたが、必ずしも下地層8を用いる必要はなく、基板自体に凹部9を形成してもよい。
 反射層3は、単位領域11ごとに設けられ、各単位領域11における発光エリアU内に形成されている。反射層3は、複数の凹部9の内面を含む下地層8の上面8a上に形成される。この際、複数の凹部9に亘って連続して形成されていてもいいし、凹部9ごとに非連続的に形成されていてもよい。反射層3の構成材料としては、例えばアルミニウム、銀等の反射性の高い金属が好適に用いられる。本実施形態の場合、反射層3は、例えば膜厚100nmのアルミニウム膜で構成されている。
 充填層12は、反射層3を介して各凹部9の内側に充填されている。充填層12の上面12aは、反射層3の上面3aを含む平面Qよりも低い位置にある。充填層12の上面12aから反射層3の上面3aまでの高さをd2とする。本実施形態の場合、高さd2は、例えば0.1mmに設定されている。なお、凹部9の最底部9Bから反射層3の上面3aまでの高さをd1とする。深さd1の具体例については、後述する。
 充填層12の上面12aは、反射層3の上面3aを含む平面Qよりも低い位置にあることが好ましいが、充填層12の上面12aが最も高い位置にある場合でも、平面Qと同じ高さにある必要がある。逆に言えば、充填層12は、平面Qよりも上方に盛り上がるように形成されることはない。充填層12は、光透過性を有する樹脂により構成されている。
具体的には、充填層12の材料には、透過率が95%のアクリル系樹脂が用いられる。本実施形態の充填層12の屈折率は、例えば1.5である。
 複数の第1電極4は、表示領域10において互いに並行して延在している。単位領域11においては、発光エリアU内に存在する複数の凹部9内に設けられた各充填層12の上面12aと反射層3の上面3aとに亘って形成されている。第1電極4のうち、下地層8の上面8a上に位置する部分は、反射層3の一部と接している。各凹部9の内側の位置において、第1電極4の下面は、充填層12の上面12aに接している。したがって、第1電極4の下面は、反射層3の上面3aを含む平面Qよりも低い位置にある。
 第1電極4は、例えばインジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)等の透明導電膜により構成された透明電極であり、光透過性を有する。本実施形態の場合、第1電極4は、例えば膜厚120nmのITOで構成されている。第1電極4は、有機層5に正孔を注入するための陽極として機能する。
 有機層5は、発光エリアU内に形成されている。有機層5は、複数の凹部9に亘って形成された、第1電極4の上面に沿って積層されている。有機層5は、正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層を含む有機材料からなる積層体である。有機層5の下面は、反射層3の上面3aを含む平面Qよりも低い位置にある。有機層5を構成する各層の詳細な構成や機能については、後述する。
 第2電極6は、有機層5の上面に沿って積層されている。第2電極6は、例えばインジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)等の透明導電膜により構成された透明電極であり、光透過性を有する。本実施形態の場合、第2電極6は、例えば膜厚120nmのITOで構成されている。第2電極6は、有機層5に電子を注入するための陰極として機能する。
 本実施形態では、発光エリアUにおいて、第1電極4と第2電極6とに挟まれた領域がマイクロキャビティ構造を構成する。発光層から発せられた光は、第1電極4と第2電極6との間で多重反射する。このとき、発光層から発せられた光のうちの特定の波長成分が強められる。また、図6では図示を省略したが、第2電極6の上面には、キャップ層と呼ばれる光学調整層が積層されている。
 図7は、凹部構造の詳細を示す断面図である。ここでは、有機EL素子30を構成する複数の凹部構造のうちの一つを拡大して示している。また、3つの単位領域11R,11G,11Bにおける有機EL素子30の凹部構造は、正孔注入層の膜厚が異なるだけであって、基本構成は共通である。
 図7に示すように、凹部構造において、有機層5は、第1電極4の上層に設けられている。有機層5は、第1電極4側から正孔注入層14、正孔輸送層15、発光層16、電子輸送層17、電子注入層18が積層された積層膜で構成されている。ただし、発光層16以外は、必要に応じて適宜挿入されればよい。また、輸送層と注入層とは1層で兼ねられていてもよい。本実施形態では、上述のように、正孔注入層14、正孔輸送層15、発光層16、電子輸送層17、および電子注入層18の5層構造の有機層を例示する。さらに必要に応じて、正孔ブロック層、電子ブロック層など、反対側の電極への電荷の移動を阻止するための層を適宜追加してもよい。
 正孔注入層14は、第1電極4から発光層16への正孔注入効率を高める機能を有する層である。正孔注入層14の材料としては、例えば、ベンジン、スチリルアミン、トリフェニルアミン、ポルフィリン、トリアゾール、イミダゾール、オキサジアゾール、ポリアリールアルカン、フェニレンジアミン、アリールアミン、オキザゾール、アントラセン、フルオレノン、ヒドラゾン、スチルベン、トリフェニレン、アザトリフェニレン、あるいはこれらの誘導体、または、ポリシラン系化合物、ビニルカルバゾール系化合物、チオフェン系化合物あるいはアニリン系化合物等の複素環式共役系のモノマー、オリゴマーあるいはポリマー等が用いられ、これら有機材料にモリブデン酸化物が混合される。有機材料とモリブデン酸化物との混合比率は、例えば有機材料が80%程度、モリブデン酸化物が20%程度である。
 正孔輸送層15は、第1電極4から発光層16への正孔輸送効率を高める機能を有する層である。正孔輸送層15には、正孔注入層14と同様の有機材料が用いられる。なお、正孔注入層14と正孔輸送層15とは一体化していてもよく、独立した層として形成されていてもよい。
 発光層16は、第1電極4側から注入された正孔と第2電極6側から注入された電子とを再結合させ、エネルギーを失活する際に光を射出する機能を有する。発光層16の材料は、例えばホスト材料とドーパント材料とから構成される。さらに、アシスト材料を含んでもよい。ホスト材料は、発光層16中の構成材料の中で最も高い比率で含まれる。例えばホスト材料とドーパント材料との混合比率は、ホスト材料が90%程度であり、ドーパント材料が10%程度である。ホスト材料は、発光層16の成膜を容易にするとともに、発光層16を膜の状態で維持する機能を有する。したがって、ホスト材料は、成膜後に結晶化が生じにくく、化学変化が生じにくい安定した化合物であることが求められる。また、第1電極4と第2電極6との間に電界を印加した際には、ホスト分子内でキャリアの再結合が生じ、励起エネルギーをドーパント材料に移動させてドーパント材料に発光させる機能を有する。発光層16の厚さは、例えば60nm程度である。
 発光層16の具体的な材料としては、低分子蛍光色素、蛍光性の高分子、金属錯体等の発光効率が高い材料を含む材料が挙げられる。発光層16の材料として、例えば、アントラセン、ナフタレン、インデン、フェナントレン、ピレン、ナフタセン、トリフェニレン、アントラセン、ペリレン、ピセン、フルオランテン、アセフェナントリレン、ペンタフェン、ペンタセン、コロネン、ブタジエン、クマリン、アクリジン、スチルベン、あるいはこれらの誘導体、トリス(8-キノリノラト)アルミニウム錯体、ビス(ベンゾキノリノラト)ベリリウム錯体、トリ(ジベンゾイルメチル)フェナントロリンユーロピウム錯体、ジトルイルビニルビフェニル等が挙げられる。
 電子輸送層17は、第2電極6から発光層16への電子輸送効率を高める機能を有する。電子輸送層17の材料としては、例えば、キノリン、ペリレン、フェナントロリン、ビススチリル、ピラジン、トリアゾール、オキサゾール、オキサジアゾール、フルオレノン、またはこれらの誘導体や金属錯体が用いられる。具体的には、トリス(8-ヒドロキシキノリン)アルミニウム、アントラセン、ナフタレン、フェナントレン、ピレン、アントラセン、ペリレン、ブタジエン、クマリン、アクリジン、スチルベン、1,10-フェナントロリンまたはこれらの誘導体や金属錯体等が用いられる。電子輸送層17の厚さは、例えば15nm程度である。
 電子注入層18は、第2電極6から発光層16への電子注入効率を高める機能を有する。電子注入層18の材料としては、例えば金属カルシウム(Ca)、フッ化リチウム(LiF)等の化合物が用いられる。なお、電子輸送層17と電子注入層18とは一体化していてもよく、独立した層として形成されていてもよい。電子注入層18の厚さは、例えば0.5nm程度である。
 マイクロキャビティ構造20は、第1電極4と第2電極6との間で生じる光の共振を利用し、特定波長の光を増強させる効果を有する。本実施形態の場合、赤色、緑色、青色の各単位領域11R,11G,11Bから射出される光の波長は、それぞれ異なる。そのため、第1電極4と第2電極6との間の光路長は、各色の発光スペクトルピーク波長に対応している。赤色の単位領域11Rの光路長が最も長く、青色の単位領域11Bの光路長が最も短く、緑色の単位領域11Gの光路長がその中間の長さになるように、光路長がそれぞれ設定されている。
 各単位領域11R,11G,11Bのマイクロキャビティ構造20の光路長をそれぞれ異ならせる手法には種々あるが、ここでは、抵抗値への影響を極力抑える観点から、正孔注入層14の厚さを異ならせる手法を採用する。赤色の単位領域11Rの正孔注入層14の厚さをtHIL-Rとし、緑色の単位領域11Gの正孔注入層14の層厚をtHIL-Gとし、青色の単位領域11Bの正孔注入層14の層厚をtHIL-Bとしたとき、tHIL-R>tHIL-G>tHIL-Bとする。
 マイクロキャビティ構造20により、有機層5から射出される光は、第1電極4と第2電極6との間で所定の光学長の範囲内で反射を繰り返し、光路長に対応した特定の波長の光は共振して増強される一方、光路長に対応しない波長の光は弱められる。その結果、外部に取り出される光のスペクトルが急峻でかつ高強度になり、輝度および色純度が向上する。
 発光層16の構成材料については、赤色単位領域11Rに、赤色光を射出する発光材料が用いられ、緑色単位領域11Gに、緑色光を射出する発光材料が用いられ、青色単位領域11Bに、青色光を射出する発光材料が用いられてもよい。本実施形態の場合、いずれの単位領域においても、ホスト材料にバイポーラ性材料が用いられる。
 ドーパント材料には、赤色単位領域11R、緑色単位領域11Gに燐光材料が用いられ、青色単位領域11Bに蛍光材料が用いられる。発光層16の厚さは、赤色単位領域11R、緑色単位領域11Gでは例えば60nm程度であり、青色単位領域11Bでは例えば35nm程度である。
 もしくは、赤色単位領域11R、緑色単位領域11G、青色単位領域11Bの発光エリアUの全てにおいて、白色光を射出する同一の発光材料が用いられてもよい。この場合であっても、各単位領域11R,11G,11Bにより異なる波長の光が共振して増幅される結果、赤色単位領域11Rから赤色光が射出され、緑色単位領域11Gから緑色光が射出され、青色単位領域11Bから青色光が射出される。
 キャップ層21は、第2電極6の上面に積層されている。キャップ層21は、第2電極6を保護する保護層として機能するとともに、光学調整層として機能する。なお、第2電極6よりも上層側に、カラーフィルターが付加されていてもよい。有機層5から射出される光がカラーフィルターを透過することにより、色純度を高めることができる。
 有機EL装置100の具体的な構成例は、例えば[表1]のようになる。
Figure JPOXMLDOC01-appb-T000001
 以下、上記構成の有機EL装置100の製造工程について、図8A~図11Bを用いて説明する。なお、図8A~図11Bは一つの凹部構造について示している。
 最初に、図8Aに示すように、基板7の上面7aにポジ型の感光性樹脂材料を塗布し、樹脂層23を形成する。
 次に、図8Bに示すように、フォトマスク24を介して樹脂層23の露光を行う。
このとき、グレートーンマスクのように、所定の光透過量分布を有するフォトマスク24、具体的には円形パターンの中心付近の光透過量が大きく、周縁部にいくに従って光透過量が小さくなるフォトマスク24を用いる。これにより、樹脂層23においては、円形パターンの中心付近の露光量が大きく、周縁部にいくに従って露光量が小さくなる。
 次に、図8Cに示すように、所定の現像液を用いて樹脂層23の現像を行う。このとき、樹脂層23の露光量の差異に応じて、樹脂層23の膜減り量は円形パターンの中心付近で大きく、周縁部にいくに従って小さくなる。このようにして、樹脂層23に断面形状が円弧状の凹部9が形成され、下地層8が形成される。
 次に、図8Dに示すように、下地層8の全面にアルミニウム等の金属を蒸着し、反射層3を形成する。
 次に、充填層12の形成方法として、3通りの方法を例示することができる。
 以下、これらの充填層12の形成方法を説明する。
 第1の充填層形成方法は、以下の通りである。
 最初に、図9Aに示すように、アクリル、エポキシ、ポリイミド等の樹脂膜25を反射層3の全面に形成する。樹脂膜25の形成方法としては、例えばスピンコート、バーコート等の手法を用いて、液状の樹脂材料を反射層3の上に塗布する。このとき、樹脂膜25が凹部9を埋め込み、さらに反射層3の平坦部分も覆うように、樹脂膜25の膜厚を設定する。
 次に、図9Bに示すように、例えばプラズマアッシング(ドライアッシング)等の手法を用いて、樹脂膜25の全面をエッチバックする。このとき、樹脂膜25の上面25aが反射層3の上面3aを含む平面Qよりも低い位置にくるように、エッチバック量を調整する。これにより、充填層12が形成される。
 次に、図9Cに示すように、反射層3の上面3aおよび充填層12の上面12aに第1電極4、有機層5、および第2電極6を順次形成する。第1電極4、有機層5、および第2電極6は、既知のプロセスにより形成される。例えばシャドウマスクを用いた真空蒸着法を用いてパターン形成を行ってもよいし、これに限らず、スプレー法、インクジェット法、印刷法、レーザ転写法等を用いることもできる。
 第2の充填層形成方法は、以下の通りである。
 図10Aに示すように、アクリル、エポキシ、ポリイミド等の樹脂膜25を反射層3の全面に形成する。この工程は、図9Aに示した第1の充填層形成方法と同様である。
 次に、図10Bに示すように、スキージ27を用いて、樹脂膜25の全面を平坦化する。このとき、スキージ27が通過した後の樹脂膜25の上面25aが反射層3の上面3aを含む平面Qと同一平面となるように、反射層3の上面3aに沿ってスキージ27を移動させる。
 次に、図10Cに示すように、凹部9の中に樹脂膜25が残存した基材を焼成する。
焼成により樹脂膜25の体積が収縮する結果、樹脂膜25の上面25aが反射層3の上面3aを含む平面Qよりも低い位置になる。これにより、充填層12が形成される。
 なお、上述した形成方法以外に、フォトマスクを用いて樹脂膜25の露光を行い、その後、現像、水洗、乾燥を行うことによっても充填層12を形成することが可能である。フォトマスクは凹部9に対応する領域を遮光するパターンとされており、露光時に、凹部9における光の集光によって凹部9内のアクリル系樹脂層が強く露光され、充填層が現像されすぎることを防ぐことができる。フォトマスクとして、例えばハーフトーンマスクを用いてもよい。
 次に、図10Dに示すように、反射層3の上面3aおよび充填層12の上面12aに第1電極4、有機層5、および第2電極6を順次形成する。この工程は、図9Cに示した第1の充填層形成方法と同様である。
 第3の充填層形成方法は、以下の通りである。
 図11Aに示すように、アクリル、エポキシ、ポリイミド等の樹脂膜25を凹部9の内側にあたる反射層3の表面に積層する。樹脂膜25の形成方法としては、例えばインクジェット等の手法を用いて、液滴状の樹脂材料を反射層3の上に塗布する。このとき、樹脂膜25の上面25aが反射層3の上面3aを含む平面Qよりも低い位置になるように、インクジェットヘッド29からの樹脂材料の吐出量を調整する。これにより、充填層12が形成される。
 次に、図11Bに示すように、反射層3の上面3aおよび充填層12の上面12aに第1電極4、有機層5、および第2電極6を順次形成する。この工程は、図9Cに示した第1の充填層形成方法と同様である。
 以上の工程により、本実施形態の有機EL装置100が完成する。
 図12Aは、従来の有機EL装置101を示す断面図である。
 有機EL装置101は、基板102上に反射層103、第1電極104、有機層105、第2電極106が順次積層された構成を有する。有機EL装置101において、有機層105中の発光層から発せられた光は全ての方向に向けて均一に射出され、屈折率が異なる各層の界面で屈折しながら内部を進む。基板102側に進んだ光は、反射層103で反射する。
 第2電極106と外部空間(空気)との界面には屈折率差があるため、この界面に対して小さい入射角で入射した光は外部空間に射出され、大きい入射角で入射した光は界面で反射し、再度内部を進む。例えば有機層105内の任意の発光点Mから真横に近い方向に射出された光L1は、層間の界面で屈折して角度が多少変わったとしても、外部空間に射出されにくい。
 光が有機EL装置101の内部を進行する際の経路において、第2電極106と外部空間(空気)との界面では、光の反射による損失は発生しない。これに対し、第1電極104と反射層103との界面では、一般に反射層103を構成する金属の反射率が100%でないため、光の反射による損失が発生する。さらに、光の一部は、有機EL装置101の内部を進行する間に各膜によって吸収される。したがって、光は、有機EL装置101の内部を進行しつつ減衰する。通常、有機層105の屈折率は1.8程度であり、この場合、発光層から発せられた光のうち、外部空間に取り出される光の割合は約20%である。このように、従来の有機EL装置101は、光利用効率が低いという問題を有している。
 これに対して、本実施形態の有機EL装置100においては、図12Bに示すように、反射層3が凹部9に沿って湾曲しているため、反射層3で反射する光は進行方向が変わり、有機EL装置100の内部を進む。このとき、元来は第2電極6と外部空間(空気)との界面に対して大きい入射角を持っていたとしても、反射層3で反射したことで第2電極6と外部空間との界面における臨界角よりも小さい入射角に変換された光は、外部空間に取り出される。
 特に本実施形態の場合、上述したように、充填層12の上面12aは、反射層3の上面3aを含む平面Qよりも低い位置にあり、かつ、有機層5の下面5bは、平面Qよりも低い位置にある。すなわち、凹部9の内側における有機層5の側方(図12Bの左右方向)には、反射層3が存在する。そのため、例えば有機層5内の任意の発光点Mから真横に近い方向に射出された光L1は、反射層3で反射し、進行方向の角度が変わる。その結果、図12Aに示す従来の有機EL装置101と異なり、発光点Mから真横に近い方向に射出された光L1であっても、反射層3で反射した後、第2電極6と外部空間との界面に臨界角よりも小さい入射角で入射した時点で外部空間に取り出すことができる。このようにして、光利用効率に優れた有機EL装置100を提供することができる。
 なお、本実施形態では、充填層12の上面12aが平面Qよりも低い位置にあり、かつ、有機層5の下面5bが平面Qよりも低い位置にあるため、有機層5内の発光点Mから略真横に射出された光であっても、反射層3に入射することができる。しかしながら、仮に充填層12の上面12aが平面Qと同一平面上にあったとすると、有機層5の下面5bは平面Qよりも高い位置にあることになる。この場合、凹部9の内側に位置する有機層5の側方に反射層3が存在しないため、有機層5内の発光点Mから略真横に射出された光は反射層3に入射しないことになる。ところが、従来の有機EL装置101と比べれば、有機層5内の発光点Mから真横に近い所定の角度範囲内に射出された光が反射層3に入射する割合は、充分に増加する。したがって、このような構成であっても、光利用効率に優れた有機EL装置を提供することができる。
 図13A、図13Bは、凹部の深さを示すパラメーターを説明するための図である。
 本実施例では、凹部9の深さを表すパラメーターとして、凹部9の断面形状である円弧の中心角を用いた。
 図13A、図13Bに示すように、凹部9を平面視したときの円の直径φを一定にするとともに、凹部9の断面形状を円弧状と規定している。したがって、凹部9の深さd1を円弧の中心角θで示すことにする。すなわち、凹部9の深さd1が深いと中心角θは大きくなり、凹部9の深さd1が浅いと中心角θは小さくなる。
 本実施形態では、電界によって発光するのは、上述したようにUV光あるいは青色光である。しかしながら、ほとんどの光は充填層12を経由して外部に放出されるので、充填層12に含まれる蛍光体を励起して外部に出力される光は、蛍光体の発光成分になる。蛍光体の発光は、一般に全方位に均一に出射されるが、本発明の一態様にかかる凹部構造によって発光成分は導光して閉じ込められることなく、外部に射出することができる。
 本実施形態の有機EL装置100は、単位領域11内における発光エリアUを小さくした場合でも、発光エリアU内に上述した凹部構造を設けることによって高い輝度を得ることができる。また、発光エリアUが小さくても必要な輝度を出すことができるため、発光素子の負担が少なく、消費電力を押さえることができる。その結果、素子の寿命も長くなる。
 本実施形態の有機EL装置100の効果を検証するため、本発明者らは、実施例としての単位領域内に有機EL素子(凹部構造あり)を有する装置と、比較例として単位領域内に有機EL素子(凹部構造なし)を有する装置を作製し、それぞれの発光効率を比較した。なお、発光材料には緑色発光材料を用いた。
 結果は、[表2]のようになった。以下、その結果について説明する。
Figure JPOXMLDOC01-appb-T000002
 以下に示す各装置の輝度は、2mm角の表示領域10で得られる輝度である。
 実施例における有機EL装置は、光透過率が68%、電流効率が170cd/A、素子寿命が2000h(実質発光輝度:50490nit)であった。
 比較例における有機EL装置は、光透過率が71%、電流効率が88cd/A、素子寿命が1050h(実質発光輝度:10980nit)であった。
 各装置における実際の発光エリアUは、表示領域10のうちの9.1%である。そのため、発光エリアの発光輝度は、透過エリア分の発光強度が必要となる。
 実施例における有機EL装置において、100μm角の単位領域11における面積は10000μmである。このうち、非透過領域は、反射層3が形成された30μm角の発光エリアUであり、その面積は900μmである。一方、透過領域(透過エリアT)は、非透過領域(発光エリアU)を除いた9100μmとなる。透過エリアTは、反射層3が形成された発光エリアU以外の領域であるため、ITOからなる第1電極4及び第2電極6、有機層が積層された部分は光が透過する。透過エリアTにおける光の透過率は78%である。
 このことから考えると、単位領域11における光透過率は、9100×0.78/10000=71(%)となる。単位領域11での発光は、基板の上方のみに射出されることになる。
 本実施例では、非常に光の透過率が高い発光素子を作製することができる。つまり、光の透過率だけで言えば、凹構造を設けなくても、高い透過率が得られる素子を作製することができる。しかしながら凹構造を設けることによって、高透過率による輝度の向上だけでなく、消費電力の低下と素子寿命の向上を実現することができる。
 透明ディスプレイを実現するために、発光エリアUを小さくすると、単位領域当たりに求められる輝度が高くなる。本実施例の構成で、正面輝度100nitを出したい場合、単位領域11における実際の発光エリアUは30μm角であるから、100μm角の単位領域全体を発光させる場合に比べて、発光エリアUは9.1%のため、100nit/9.1%=1098nit発光させなければならない。
 上述したように、本実施例の場合は凹構造を有しているため、凹構造のない従来の構成に比べて正面輝度が2倍となり、必要輝度は549nitとなる。必要輝度が半分になることで消費電力も半分になる。また、素子寿命は輝度の2乗に比例するので、100nitで発光し続けた場合、素子寿命は約4倍となる。
 このように、本実施例の構成によれば、電流効率や素子寿命が大幅に改善されることが分かった。
 また、単位領域11における発光エリアU以外の領域は、略無色透明のままである。そのため、この無色透明の領域では、有機EL装置100の背後の物体を十分に視認することができる。よって、透明ディスプレイとしての機能を充分に発揮することができる。
[第2実施形態]
 次に、本発明の第2実施形態の有機EL装置について説明する。
 以下に示す本実施形態の有機EL装置の基本構成は、上記第1実施形態と略同様であるが、能動素子と各種配線とのコンタクト部分を発光エリアとした点において異なる。よって、以下の説明では、先の実施形態と異なる点について詳しく説明し、共通な箇所の説明は省略する。また、説明に用いる各図面において、図1~図13Bと共通の構成要素には同一の符号を付すものとする。
 図14は、第2実施形態の有機EL素子における表示領域を部分的に示す平面図である。
 図15は、第2実施形態の有機EL素子における各画素の構成を示す平面図である。
 図16Aは、図15のB-B’線に沿う断面図であり、図16Bは、図15のC-C’線に沿う断面図である。図17は、発光素子部における要部を拡大して示す断面図である。
 本実施形態の有機EL装置(表示装置)200は、図14に示すように、複数の画素Pがマトリクス状に配列された表示領域22を有する表示装置である。各画素Pは、表示領域22の左右方向に順に配置されたRGBの3つのサブ画素(単位領域)11により構成されている。赤色サブ画素11Rは赤色光を発し、緑色サブ画素11Gは緑色光を発し、青色サブ画素11Bは青色光を発する。これら赤色サブ画素11Rと緑色サブ画素11Gと青色サブ画素11Bとは、各々の充填層に含まれる蛍光材料が異なっているが、それ以外の構成は共通である。1画素Pの大きさは120μm角である。
 赤色サブ画素11Rと緑色サブ画素11Gと青色サブ画素11Bのそれぞれは、独立に駆動(電界印加)できるようになっている。サブ画素を独立に電圧印加を行う手法としては、単純マトリックス電極やセグメント分割、TFTなどのSW基板など、任意の手法で実施することができる。
 本実施形態では、1画素を3つのサブ画素11に分割し、各サブ画素11は互いに独立駆動されるため、各サブ画素11の発光のさせ方によって、任意の色表示が可能となる。
 本実施形態の有機EL装置200は、図15に示すように、アクティブマトリクス基板201と、表示領域22における複数のサブ画素11に対応して所定配列されて設けられた複数の薄膜トランジスタ(能動素子)Trと、各薄膜トランジスタTrに接続される各種配線と、複数の薄膜トランジスタTr及び各種配線を覆うようにして設けられた封止基板(不図示)と、を有する表示パネルを備えている。
 アクティブマトリクス基板201には、表示パネルを駆動するための駆動回路として、表示領域22において、互いに並行して延びる複数のゲート線(走査線)28と、各ゲート線28に交差する方向に互いに並行して延びる複数のソース線(データ線)19と、各ソース線19に沿って延びる複数の電流供給配線26と、が設けられている。ここで、ゲート線28とソース線19とは、互いに絶縁されており、全体そして、各サブ画素11を構成するように格子状に形成されている。
 ゲート線28、ソース線19および電流供給配線26は、Ti/Al/Tiの金属層により幅3μmで形成されている。各配線部分は、非透過領域である。
 ゲート線28とソース線19との交差部分には、それぞれに電気的に接続されたスイッチング用の薄膜トランジスタ(能動素子)Trが設けられている。薄膜トランジスタTrとしては公知のものを採用できるが、本実施形態では、薄膜トランジスタTrを2個、コンデンサ1個を備えた2Tr1Cの構成とした。本実施形態では、例えばボトムゲート型のトランジスタを採用した。
 さらに本実施形態では、薄膜トランジスタTrの半導体膜を、酸化物半導体で形成することができる。半導体膜は、例えば、In、Ga及びZnのうち少なくとも1種の金属元素を含んでもよい。本実施形態では、半導体膜は、例えば、In-Ga-Zn-O系の半導体を含む。ここで、In-Ga-Zn-O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、Ga及びZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。このような酸化物半導体膜は、In-Ga-Zn-O系の半導体を含む酸化物半導体膜から形成され得る。透明な酸化物半導体を採用することによって、薄膜トランジスタTrの部分を透過領域にすることができる。
 なお、In-Ga-Zn-O系の半導体を含む活性層を有するチャネルエッチ型のTFTを、「CE-InGaZnO-TFT」と呼ぶことがある。In-Ga-Zn-O系の半導体は、アモルファスでもよいし、結晶質でもよい。結晶質In-Ga-Zn-O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系の半導体が好ましい。
 上記実施形態では、薄膜トランジスタTrの半導体膜は、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、及び、酸素(O)を含む化合物(In-Ga-Zn-O)で形成されていると説明したが、本発明はこれに限定されない。薄膜トランジスタTrの半導体層が、インジウム(In)、スズ(Tin)、亜鉛(Zn)、及び、酸素(O)を含む化合物(In-Tin-Zn-O)、又は、インジウム(In)、アルミニウム(Al)、亜鉛(Zn)、及び、酸素(O)を含む化合物(In-Al-Zn-O)等で形成されていてもよい。また、薄膜トランジスタTrの半導体膜は、アモルファスシリコン、低温ポリシリコン等で形成されていてもよい。
 コンタクト部205は、薄膜トランジスタTr及び各種配線等を覆う層間絶縁層203に形成される。コンタクト部205は、ソース線19と薄膜トランジスタTrと電気的に接続する部分であり、平面視20μm角に形成された非透過領域である。
 発光素子部(発光素子)206は、樹脂層に形成された複数の凹部9を有している。発光素子部206は、反射層3、充填層12、第1電極4、有機層5、第2電極6を有して構成されている。本実施形態では、コンタクト部205上に位置する幾つかの凹部9の底部側に開口9Aが設けられており、この開口9Aを介して、下層側のコンタクト部205と反射層3とが電気的に接続されている。
 発光素子部206の平面視における大きさは30μm角である。有機層5は、対応するサブ画素11の色で発光する。
 第1電極4は、反射層3と略同じ大きさであり、30μm角で形成されている。先の実施形態と同様、第1電極4は反射層3の一部と接している。
 本実施形態の構成によれば、薄膜トランジスタTrと発光素子部206とが反射層3及びコンタクト部205を介して電気的に接続されている。よって、薄膜トランジスタTrを介して発光素子部206を発光させることができる。
 次に、本実施形態におけるサブ画素単位の光透過率について述べる。
 「サブ画素の面積」:縦120μm×横40μm=4800μm
 「非透過領域の面積」:合計1500マイクロm
  ソース線19、電流供給配線26:幅3μm×2本×40μm=240μm
  ゲート線28:幅3μm×1本×120μm=240μm
  コンタクト部205:縦30μm×横30μm=900μm
 サブ画素11における透過率は、透明電極、薄膜トランジスタ、その他の部材の透過率を含めて85%である。非透過領域を含めた全体の透過率は60%である。
 本実施形態の有機EL装置200において、サブ画素11における光の透過率は57%であった。能動素子として薄膜トランジスタTrを備えた構成であっても、56%の透過率を有する発光素子を実現することができた。また、凹部構造を有していない素子と比較したところ、本実施形態の有機EL装置200は、発光効率が2倍となり、寿命も4倍となった。
 本実施形態では、非透過エリアであるコンタクト部205及びその周辺部分を発光素子部206で覆うことにより、非透過エリアを発光エリアUに変えることができる。本実施形態の発光素子部206は、上述した凹部構造により高輝度発光が可能なため、サブ画素11内における発光エリアUを小さくすることができる。発光エリアUを小さくすることによって生じる非発光エリアが透過エリアTとなり、透過性のディスプレイとすることができる。本実施形態では、発光素子部206の発光効率が、凹部構造のない従来の構造に比べて2倍以上になるため、サブ画素11内における発光エリアUを小さくしてもディスプレイの輝度を維持することができる。
[第3実施形態]
 次に、本発明の第3実施形態の有機EL装置について図18を用いて説明する。
 以下に示す本実施形態の装置の基本構成は、上記第2実施形態と略同様であるが、各種配線に重なるようにしてサブ画素を構成した点において異なる。よって、以下の説明では、第2実施形態と異なる点について詳しく説明し、共通な箇所の説明は省略する。また、説明に用いる各図面において、図14~図17と共通の構成要素には同一の符号を付すものとする。
 図18は、第3実施形態の有機EL装置の表示領域の一部を示す平面図である。
 図18に示すように、本実施形態の有機EL装置は、薄膜トランジスタTrとのコンタクト部205上だけでなく、ゲート線28、ソース線19、電流供給配線26上にも重なるようにして、発光素子部(発光素子)306を形成した。
 上述した各種配線は金属配線からなるため、これら配線が形成された領域は非透過エリアとなる。そこで、各種配線が形成された非透過エリアを覆うようにして発光素子部206を設けることにより、発光エリアUに変えることができる。
 本実施形態では、各サブ画素11が、コンタクト部205及び各種配線上を覆う発光素子部306と、を含む領域となり、第2実施形態の有機EL素子におけるサブ画素11よりも、面積を大きくすることができる。
 本実施形態におけるサブ画素単位の光透過率について述べる。
 「サブ画素の面積」:縦120μm×横40μm=4800μm
 「非透過エリアの面積」:合計1140μm
 ソース線19及び電流供給配線26:幅4μm×2本×長さ35μm=280μm
 ゲート線28:幅4μm×長さ115μm=460μm
 コンタクト部:縦20μm×横20μm=400μm
 先に述べたように、本実施形態の構成によれば、非透過エリア上に発光素子部306を形成したことにより、非透過エリア≒発光エリアとなっている。
 そのため、発光エリアUの面積は、4800μm-1140μm=3660μmであり、透過率が85%である。よって、全体の透過率は、3660μm×0.85/4800μmであるので、65%である。
 また、本実施形態における発光素子部306の発光面積は1140μmであり、第2実施形態における発光素子部206の発光面積900μmと比べて、1.27倍となっている。これにより、サブ画素11における輝度を高めることができる。よって、必要な輝度を出すため素子にかかっていた負担も小さくなり、素子寿命も長くなる。
 本実施形態における構成によれば、各サブ画素11において、第2実施形態と同じ輝度を出すために必要な電流値は、第2実施形態に比べて80%になった。また、同一輝度での素子寿命は1.5倍となった。
 よって、本実施形態の構成によれば、電流効率や素子寿命を第2実施形態の構成よりもさらに改善することが可能である。
[第4実施形態]
 次に、本発明の第4実施形態の有機EL装置について説明する。
 以下に示す本実施形態の有機EL装置の基本構成は、上記第2実施形態と略同様であるが、白色発光の有機EL素子を備えた点と、カラーフィルター基板を備えた点において異なる。よって、以下の説明では、先の実施形態と異なる点について詳しく説明し、共通な箇所の説明は省略する。また、説明に用いる各図面において、図14~図17と共通の構成要素には同一の符号を付すものとする。
 図19は、第4実施形態の有機EL装置における表示領域を示す図である。図20は、図19のC-C’線に沿う断面図である。
 本実施形態の有機EL素子は、図19及び図20に示すように、各色のサブ画素11に対応して設けられた、透明な半導体層を有した薄膜トランジスタTrと、白色発光の発光素子部(発光素子)406と、を有するアクティブマトリクス基板401と、サブ画素11に対応する各色のカラーフィルターCFを備えたカラーフィルター基板402と、を備えている。
 カラーフィルター基板402は、各色のサブ画素11に対応するRGBのカラーフィルターCFを有している。各色のカラーフィルターCFは、発光素子部406上に配置され、発光素子部406を覆う大きさを有している。カラーフィルターCFの面積は、反射層3の設置領域と略同じである。
 本実施形態では、アクティブマトリクス基板401とは別にカラーフィルター基板402を作製し、アクティブマトリクス基板401とカラーフィルター基板402とを貼り合わせることによって、有機EL装置を得た。
 上記作製方法に限られず、この他にも例えば、発光素子部406上に保護層を設け、保護層上にカラーフィルターCFを塗布成膜することによって作製してもよいし、蒸着によるマスクパターンを成膜することによってカラーフィルターCFを作製してもよい。
 発光素子部406は、白色光を発光する白色発光素子であり、複数の凹部9上に形成されている。
 次に、白色発光の発光素子部406の構成について詳しく説明する。
 本実施形態における発光素子部406は、凹部9ごとに白色発光の有機層35を有している。白色発光の有機層35は、青色発光の第1の発光ユニット(EMU1)39Bと、緑色及び赤色を発光する第2の発光ユニット(EMU2)39RGと、を有して構成されている。
 青色発光の第1の発光ユニット(EMU1)39Bと、緑色及び赤色を発光する第2の発光ユニット(EMU2)39RGと、を有して構成されている。
 図21Aは、青色発光ユニットの構成を示す図、図21Bは、緑色及び赤色発光ユニットの構成を示す図である。また、図21Cは、白色発光の発光素子部の構成を示す図である。
 図21A,図21Bに示すように本実施形態では、膜厚40nmの正孔注入層(HIL)14,膜厚30nmの正孔輸送層(HTL)15,膜厚60nmの発光層(EML)16,膜厚15nmの電子輸送層(ETL)17が積層された構造を発光ユニット(EMU)19とする。
 本実施形態では、図21Aに示すように青色発光材料をドープした青色発光層16Bを有する第1の発光ユニット(EMU1)39Bと、図21Bに示すように緑色発光材料をドープした緑色発光層16G及び赤色発光材料をドープした赤色発光層16Rを有する第2の発光ユニット(EMU2)39RGと、を有する。
 ここで、第2の発光ユニット39RGは、緑色発光層16G、赤色発光層16Rをこの順で積層してある。
 図21Cに示すように、各凹部9内に白色発光の有機層35を備えた発光素子部406は、上述した青色発光ユニットと緑色及び赤色発光ユニットとを同時に備えることで白色発光を実現している。
 本実施形態の発光素子部406は、各凹部9における第1電極4上に、第1の発光ユニット39B、リチウム(Li)層、銅フタロシアニン錯体(CuPC)層、第2の発光ユニット39RG、フッ化リチウム(LiF)層及び第2電極6がこの順で積層されて構成されている。ここでは、電荷発生層13として、膜厚1nmのリチウム(Li)層及び膜厚5nmの銅フタロシアニン錯体(CuPC)層を備えている。この電荷発生層13を中間層として、第1の発光ユニット39Bと第2の発光ユニット39RGとが2層積層されている。
 第1電極4は、膜厚120nmのITOからなる。膜厚0.5nmのフッ化リチウム(LiF)層は、電子注入層18として機能する。
 図22は、白色発光の発光素子部における発光スペクトルを示すグラフである。ここでは、発光素子部406の第2電極6におけるALを100nmとした。
 本実施形態では、凹部構造によりマイクロキャビティ効果は得られないため、図22に示す発光スペクトルがベースの特性となる。
 本実施形態では、白色発光の発光素子部406上にカラーフィルターCFを設置することによって、カラー表示素子を作製した。400ppiを超える高精細ディスプレイでは、サブ画素ごとにRGBの有機EL素子の塗り分けを行うことは困難である。一方、カラーフィルターCFの精細度は600ppi程度まで可能である。よって、本実施形態の構成を用いれば、ディスプレイの高精細化が可能である。
 また、一般的に、カラーフィルターCFを設置すると透過率が著しく低下してしまうが、本実施形態の構成によれば、発光エリアU(発光素子部406)のみにカラーフィルターCFを設置するため、透過率の低下を防ぐことができる。
 本実施形態における有機EL装置では、第2実施形態と同様の透過率を得ることができた。
 以下に実施例を挙げて本発明のいくつかの態様を更に詳述するが、本発明の範囲はこれらの実施例に限定されるものではない。
 (実施例1)
 図23は、実施例1の有機EL装置の表示領域の概略構成を示す図である。
 本実施例においては、第1電極4の幅方向両側に一対のバンク41,41を備えている。各バンク41は第1電極4に沿って延在しており、それぞれが、第1電極4に対して少なくとも1μm以上の幅でオーバーラップするように形成されている。第1電極4及び第2電極6の幅は約30μmである。
 これにより、画素以外の領域が光らないようにすることができる。
 (実施例2)
 図24は、実施例2の有機EL装置の表示領域の概略構成を示す図である。
 本実施例においては、各第1電極4と各第2電極6とがそれぞれ重なり合う部分にバンク42が多数設けられている。表示領域10内に存在する複数のバンク42は、第1電極4と各第2電極6との重畳領域に設けられた有機EL素子30(発光エリアU)を囲む、平面視枠形状のバンクである。バンク42の、第1電極4に対するオーバーラップは少なくとも幅1μm以上あり、第2電極6に対するオーバーラップは少なくとも幅0.5μm以上ある。
 これにより、特に、直行画素以外の領域が光らないようにすることができる。
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 上記各実施形態では、発光素子が複数の凹部を有する構成となっていたが、一つの凹部だけを有する構成であってもよい。
 また、上記実施形態では、凹部の断面形状が円弧状の場合を例にとって説明したが、凹部の断面形状は必ずしも円弧状でなくてもよい。凹部の断面形状は、例えば楕円や任意の曲線を含むものであってもよいし、直線を一部含むものであってもよい。
 その他、有機EL装置の各部の形状、寸法、数、配置、構成材料、形成プロセス等の具体的な構成については、上記実施形態に限らず、適宜変更が可能である。
 また、本発明の一態様による有機EL装置は、表示装置の他、照明装置等に適用することも可能である。例えば白色光を生成する照明装置に本発明の一態様を適用する場合、上記実施形態に例示したように、互いに分割された異なる発光色の複数の単位領域を備えたものでなくてもよい。
具体的には、例えば一つの発光層中に赤色、緑色、青色の3種類のドーパント色素をドーピングしたものであってもよいし、青色正孔輸送性発光層と緑色電子輸送性発光層と赤色電子輸送性発光層との積層構造であってもよいし、青色電子輸送性発光層と緑色電子輸送性発光層と赤色電子輸送性発光層との積層構造であってもよい。
 本発明のいくつかの態様は、表示装置もしくは照明装置等、発光部を備えた任意の電子機器に利用が可能である。
 2…基材、3…反射層、4…第1電極、5…有機層、5b…下面、6…第2電極、9…凹部、Q…平面、T…透過エリア、U…発光エリア、11(11B,11G,11R)…単位領域,サブ画素、12…充填層、16…発光層、30…有機EL素子(発光素子)、CF…カラーフィルター、L1…光、Tr…薄膜トランジスタ(能動素子)、206,306,406…発光素子部(発光素子)、100,200…有機EL装置(有機エレクトロルミネッセンス装置、照明装置、表示装置)

Claims (14)

  1.  上面に凹部が設けられた基材と、
     少なくとも前記凹部の表面に設けられた反射層と、前記反射層を介して前記凹部の内側に充填された光透過性を有する充填層と、前記充填層の上層側に少なくとも設けられていた光透過性を有する第1電極と、前記第1電極の上層に設けられた、少なくとも発光層を含む有機層と、前記有機層の上層側に設けられた光透過性を有する第2電極と、を備えた発光素子と、を備え、
     表示領域が互いに分割された複数の単位領域からなり、
     前記発光素子を有する前記単位領域は、区画化された発光エリアと透過エリアとを有している有機エレクトロルミネッセンス装置。
  2.  前記発光エリアおよび前記透過エリアにおいて、
     前記発光エリア/(前記発光エリア+前記透過エリア)<50%である
     請求項1に記載の有機エレクトロルミネッセンス装置。
  3.  前記発光エリアに複数の凹部が設けられ、
     前記複数の凹部に前記反射層が形成されている
     請求項1または2に記載の有機エレクトロルミネッセンス装置。
  4.  前記反射層の一部と前記第1電極の一部とが接している
     請求項1から3のいずれか一項に記載の有機エレクトロルミネッセンス装置。
  5.  前記凹部の位置における前記第1電極の下面は、前記基材の上面を含む平面よりも下方に位置している
     請求項1から4のいずれか一項に記載の有機エレクトロルミネッセンス装置。
  6.  前記発光エリアは、独立に発光制御できる複数の能動素子を備えている
     請求項1から5のいずれか一項に記載の有機エレクトロルミネッセンス装置。
  7.  前記能動素子が、酸化物半導体で形成されている
     請求項6に記載の有機エレクトロルミネッセンス装置。
  8.  前記能動素子と前記発光素子とが前記反射層を介して電気的に接続されている
     請求項6から7のいずれか一項に記載の有機エレクトロルミネッセンス装置。
  9.  前記能動素子を動作させるための配線が設けられており、
     前記配線上に前記反射層が設けられている
     請求項6から8のいずれか一項に記載の有機エレクトロルミネッセンス装置。
  10.  前記発光素子上にカラーフィルターが設けられている
     請求項1から9のいずれか一項に記載の有機エレクトロルミネッセンス装置。
  11.  前記カラーフィルターの大きさが前記反射層の設置領域と概略等しい、
     請求項10に記載の有機エレクトロルミネッセンス装置。
  12.  基材の上面に凹部を形成する行程と、
     少なくとも前記凹部の表面に沿って反射層を形成する工程と、
     前記凹部の内側に前記反射層を介して光透過性を有する充填層を形成する工程と、
     少なくとも前記充填層の上層側に光透過性を有する第1電極を形成する工程と、
     前記第1電極の上層側に少なくとも発光層を含む有機層を形成する工程と、
     前記有機層の上層側に光透過性および光透過性および光反射性を有する第2電極を形成する工程と、を備え、
     表示領域が互いに分割された複数の単位領域からなり、
     前記発光素子を有する前記単位領域は、区画化された発光エリアと透過エリアとを有している有機エレクトロルミネッセンス装置の製造方法。
  13.  上面に凹部が設けられた基材と、
     少なくとも前記凹部の表面に設けられた反射層と、前記反射層を介して前記凹部の内側に充填された光透過性を有する充填層と、前記充填層の上層側に少なくとも設けられていた光透過性を有する第1電極と、前記第1電極の上層に設けられた、少なくとも発光層を含む有機層と、前記有機層の上層側に設けられた光透過性を有する第2電極を備えた発光素子と、を備え、
     表示領域が互いに分割された複数の単位領域からなり、
     前記発光素子を有する前記単位領域は、区画化された発光エリアと透過エリアとを有している照明装置。
  14.  上面に凹部が設けられた基材と、
     少なくとも前記凹部の表面に設けられた反射層と、前記反射層を介して前記凹部の内側に充填された光透過性を有する充填層と、前記充填層の上層側に少なくとも設けられていた光透過性を有する第1電極と、前記第1電極の上層に設けられた、少なくとも発光層を含む有機層と、前記有機層の上層側に設けられた光透過性を有する第2電極を備えた発光素子と、を備え、
     表示領域が互いに分割された複数の単位領域からなり、
     前記発光素子を有する前記単位領域は、区画化された発光エリアと透過エリアとを有している表示装置。
PCT/JP2016/073546 2015-09-10 2016-08-10 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置および表示装置 WO2017043243A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680052234.8A CN108029178B (zh) 2015-09-10 2016-08-10 有机电致发光装置、有机电致发光装置的制造方法、照明装置和显示装置
US15/758,792 US10826021B2 (en) 2015-09-10 2016-08-10 Organic electroluminescence device including a plurality of unit regions each including a light emitting area and a transmissive area

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015178568 2015-09-10
JP2015-178568 2015-09-10

Publications (1)

Publication Number Publication Date
WO2017043243A1 true WO2017043243A1 (ja) 2017-03-16

Family

ID=58239629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073546 WO2017043243A1 (ja) 2015-09-10 2016-08-10 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置および表示装置

Country Status (3)

Country Link
US (1) US10826021B2 (ja)
CN (1) CN108029178B (ja)
WO (1) WO2017043243A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043175A1 (ja) * 2014-09-18 2016-03-24 シャープ株式会社 有機エレクトロルミネッセンス装置および有機エレクトロルミネッセンス装置の製造方法
US10411223B2 (en) * 2015-09-08 2019-09-10 Sharp Kabushiki Kaisha Organic electroluminescence device and illumination device
WO2017043242A1 (ja) * 2015-09-10 2017-03-16 シャープ株式会社 有機エレクトロルミネッセンス装置、照明装置および表示装置
WO2017043245A1 (ja) * 2015-09-10 2017-03-16 シャープ株式会社 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置、および表示装置
KR102551354B1 (ko) * 2018-04-20 2023-07-04 삼성전자 주식회사 반도체 발광 소자 및 그 제조 방법
CN110098234B (zh) * 2019-05-07 2021-08-27 京东方科技集团股份有限公司 电致发光器件、其制备方法、检测方法及显示装置
CN110148685B (zh) * 2019-05-07 2021-01-15 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法
KR20210074494A (ko) * 2019-12-12 2021-06-22 엘지디스플레이 주식회사 폴리이미드 기판 및 디스플레이 장치
CN113437238B (zh) * 2021-06-24 2023-04-11 京东方科技集团股份有限公司 一种显示基板、显示装置及制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229283A (ja) * 2002-02-04 2003-08-15 Toshiba Corp 平面表示装置およびその製造方法
JP2006221902A (ja) * 2005-02-09 2006-08-24 Seiko Epson Corp 発光装置、その製造方法、画像印刷装置および画像読取装置
JP2010080952A (ja) * 2008-09-01 2010-04-08 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
JP2011129510A (ja) * 2009-12-21 2011-06-30 Samsung Mobile Display Co Ltd 有機発光表示装置
JP2011129392A (ja) * 2009-12-18 2011-06-30 Seiko Epson Corp 表示装置
JP2011228229A (ja) * 2010-04-23 2011-11-10 Seiko Epson Corp 有機エレクトロルミネッセンス装置
JP2013117719A (ja) * 2011-11-04 2013-06-13 Semiconductor Energy Lab Co Ltd 表示装置、及びその駆動方法
JP2014154404A (ja) * 2013-02-08 2014-08-25 Toshiba Corp 有機電界発光素子、照明装置及び照明システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125469A (ja) 1996-10-24 1998-05-15 Tdk Corp 有機el発光素子
US7511419B2 (en) * 2002-05-14 2009-03-31 Casio Computer Co., Ltd. Luminescent panel having a reflecting film to reflect light outwardly which is shaped to condense the reflected light
TWI227570B (en) * 2003-12-11 2005-02-01 South Epitaxy Corp Light-emitting diode packaging structure
KR100721569B1 (ko) * 2004-12-10 2007-05-23 삼성에스디아이 주식회사 칼라필터층을 갖는 유기전계발광소자
JP2010257957A (ja) * 2009-04-01 2010-11-11 Seiko Epson Corp 有機エレクトロルミネッセンス装置
US20110237409A1 (en) * 2010-03-26 2011-09-29 Brian Stanley Bull Exercise device for muscles and tendons of the elbow joint
JP5633477B2 (ja) * 2010-08-27 2014-12-03 豊田合成株式会社 発光素子
KR101275810B1 (ko) 2012-01-20 2013-06-18 삼성디스플레이 주식회사 유기 발광 표시 장치
JP6214077B2 (ja) * 2012-07-31 2017-10-18 株式会社Joled 表示装置、表示装置の製造方法、電子機器および表示装置の駆動方法
US9178123B2 (en) * 2012-12-10 2015-11-03 LuxVue Technology Corporation Light emitting device reflective bank structure
CN103022079B (zh) * 2012-12-12 2015-05-20 京东方科技集团股份有限公司 阵列基板及其制备方法、有机发光二极管显示装置
US8921839B2 (en) * 2013-03-12 2014-12-30 Sharp Laboratories Of America, Inc. Light emitting device with spherical back mirror
JP6151136B2 (ja) * 2013-09-05 2017-06-21 株式会社ジャパンディスプレイ 有機エレクトロルミネセンス表示装置
CN103500752A (zh) * 2013-09-27 2014-01-08 京东方科技集团股份有限公司 一种oled像素结构和oled显示装置
JP2015072751A (ja) * 2013-10-01 2015-04-16 株式会社ジャパンディスプレイ 有機el表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229283A (ja) * 2002-02-04 2003-08-15 Toshiba Corp 平面表示装置およびその製造方法
JP2006221902A (ja) * 2005-02-09 2006-08-24 Seiko Epson Corp 発光装置、その製造方法、画像印刷装置および画像読取装置
JP2010080952A (ja) * 2008-09-01 2010-04-08 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
JP2011129392A (ja) * 2009-12-18 2011-06-30 Seiko Epson Corp 表示装置
JP2011129510A (ja) * 2009-12-21 2011-06-30 Samsung Mobile Display Co Ltd 有機発光表示装置
JP2011228229A (ja) * 2010-04-23 2011-11-10 Seiko Epson Corp 有機エレクトロルミネッセンス装置
JP2013117719A (ja) * 2011-11-04 2013-06-13 Semiconductor Energy Lab Co Ltd 表示装置、及びその駆動方法
JP2014154404A (ja) * 2013-02-08 2014-08-25 Toshiba Corp 有機電界発光素子、照明装置及び照明システム

Also Published As

Publication number Publication date
US20180287099A1 (en) 2018-10-04
US10826021B2 (en) 2020-11-03
CN108029178B (zh) 2020-03-24
CN108029178A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2017043243A1 (ja) 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置および表示装置
TWI500144B (zh) 有機發光顯示裝置及其製造方法
WO2017043242A1 (ja) 有機エレクトロルミネッセンス装置、照明装置および表示装置
WO2017043529A1 (ja) 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置および表示装置
JP4393249B2 (ja) 有機発光素子,画像表示装置、及びその製造方法
WO2016031679A1 (ja) 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置、および表示装置
WO2013038971A1 (ja) 発光デバイス、表示装置、及び照明装置
WO2016167354A1 (ja) 有機エレクトロルミネッセンス装置
US9343510B2 (en) Organic light emitting display device
CN108353473B (zh) 有机电致发光装置、有机电致发光装置的制造方法、照明装置和显示装置
CN108029163B (zh) 有机电致发光装置、有机电致发光装置的制造方法、照明装置和显示装置
KR102383928B1 (ko) 전계발광 표시장치
JP2012160472A (ja) 有機elディスプレイ
JP2007005173A (ja) 表示装置
WO2017094760A1 (ja) 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置、および表示装置
JP2007115419A (ja) 有機発光素子
WO2016084759A1 (ja) 有機エレクトロルミネッセンス装置、照明装置および表示装置
WO2016043113A1 (ja) 有機エレクトロルミネッセンス装置および有機エレクトロルミネッセンス装置の製造方法
KR20130093187A (ko) 유기 발광 표시 장치 및 그 제조 방법
JP6718955B2 (ja) 有機el表示装置
CN105742320A (zh) 具有量子点的有机发光二极管显示器
WO2016031757A1 (ja) 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置、および表示装置
KR20170064164A (ko) 유기발광다이오드 표시장치
WO2016043175A1 (ja) 有機エレクトロルミネッセンス装置および有機エレクトロルミネッセンス装置の製造方法
WO2016076221A1 (ja) 有機エレクトロルミネッセンス装置、照明装置および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844107

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15758792

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP