WO2021164504A1 - 控制方法、成像模组、电子装置和存储介质 - Google Patents

控制方法、成像模组、电子装置和存储介质 Download PDF

Info

Publication number
WO2021164504A1
WO2021164504A1 PCT/CN2021/073690 CN2021073690W WO2021164504A1 WO 2021164504 A1 WO2021164504 A1 WO 2021164504A1 CN 2021073690 W CN2021073690 W CN 2021073690W WO 2021164504 A1 WO2021164504 A1 WO 2021164504A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
electronic device
distance
image sensor
state
Prior art date
Application number
PCT/CN2021/073690
Other languages
English (en)
French (fr)
Inventor
熊国访
李明阳
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010103951.7A external-priority patent/CN111277740A/zh
Priority claimed from CN202020187813.7U external-priority patent/CN210867915U/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021164504A1 publication Critical patent/WO2021164504A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets

Definitions

  • This application relates to the field of electronic technology, and in particular to a control method, imaging module, electronic device and storage medium.
  • the related art electronic device usually includes an imaging module to shoot the current scene. As users' requirements for image quality gradually increase, the height of the lens in the imaging module is also getting higher and higher.
  • the application provides a control method, imaging module, electronic device and storage medium.
  • the control method of the embodiment of the present application is used in an electronic device.
  • the imaging module of the electronic device includes an image sensor, a first lens, a second lens, and a driving component.
  • the image sensor is arranged on the optical axis of the first lens, and the driving component is used to drive the second lens.
  • the lens moves; when the electronic device is in the first state, the second lens is in the first position, the optical axis of the second lens and the first lens is staggered, and the upper surface of the second lens is The distance between the upper surfaces of the image sensors is the first distance; when the electronic device is in the second state, the second lens is in the second position, and the second lens is located on the optical axis of the first lens And located on the side of the first lens facing away from the image sensor, the distance between the upper surface of the second lens and the upper surface of the image sensor is a second distance, and the second distance is greater than the The first distance; the control method includes:
  • the first trigger signal Acquiring a first trigger signal, the first trigger signal being triggered by the electronic device when switching from the first state to the second state;
  • the driving assembly is controlled to drive the second lens to move from the first position to the second position.
  • the imaging module of the embodiment of the present application includes an image sensor, a first lens, a second lens, and a driving component.
  • the image sensor is disposed on the optical axis of the first lens, and the driving component is used to drive the second lens.
  • the lens moves between a first position and a second position; when the second lens is located in the first position, the optical axis of the second lens and the first lens is staggered, and the upper part of the second lens
  • the distance between the surface and the upper surface of the image sensor is the first distance; when the second lens is located at the second position, the second lens is located on the optical axis of the first lens and is located at the The side of the first lens facing away from the image sensor, and the distance between the upper surface of the second lens and the upper surface of the image sensor is a second distance; the second distance is greater than the first distance.
  • the electronic device of the embodiment of the present application includes the above-mentioned imaging module.
  • the imaging module of the electronic device of the embodiment of the present application includes an image sensor, a first lens, a second lens, and a driving component.
  • the image sensor is arranged on the optical axis of the first lens, and the driving component is used to drive the
  • the second lens moves between a first position and a second position; when the second lens is located in the first position, the optical axis of the second lens and the first lens are offset, and the second lens
  • the distance between the upper surface of the lens and the upper surface of the image sensor is the first distance; when the second lens is located at the second position, the second lens is located on the optical axis of the first lens And located on the side of the first lens facing away from the image sensor, the distance between the upper surface of the second lens and the upper surface of the image sensor is a second distance, and the second distance is greater than the first distance.
  • a distance when the electronic device is in the first state, the second lens is in the first position; when the electronic device is in the second state, the second lens is in the second position.
  • the electronic device of the embodiment of the present application includes an imaging module and a processor connected to the imaging module.
  • the imaging module includes an image sensor, a first lens, a second lens, and a driving component.
  • the image sensor is arranged on the On the optical axis of the first lens, the driving assembly is used to drive the second lens to move; when the electronic device is in the first state, the second lens is in the first position, and the second lens is in contact with the The optical axis of the first lens is staggered, and the distance between the upper surface of the second lens and the upper surface of the image sensor is the first distance; when the electronic device is in the second state, the second lens In the second position, the second lens is located on the optical axis of the first lens and on the side of the first lens away from the image sensor, and the upper surface of the second lens is connected to the image sensor.
  • the distance between the upper surfaces is a second distance, and the second distance is greater than the first distance; the processor is used to execute the above-mentioned control method.
  • a non-volatile computer-readable storage medium containing computer-executable instructions.
  • the processors execute the above-mentioned control method.
  • FIG. 1 is a schematic plan view of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic plan view of the imaging module of the embodiment of the present application when the second lens is in the first position;
  • FIG. 3 is a schematic cross-sectional view of the imaging module of FIG. 2 along III-III;
  • FIG. 4 is a schematic plan view of the imaging module of the embodiment of the present application when the second lens is in the second position;
  • Fig. 5 is a schematic cross-sectional view of the imaging module of Fig. 4 along V-V;
  • Fig. 6 is a schematic cross-sectional view of an imaging module according to an embodiment of the present application.
  • FIG. 7 is a schematic cross-sectional view of an imaging module according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of the movement of the second lens of the imaging module according to the embodiment of the present application.
  • FIG. 9 is another schematic diagram of the movement of the second lens of the imaging module according to the embodiment of the present application.
  • FIG. 10 is a schematic cross-sectional view of an imaging module according to an embodiment of the present application.
  • FIG. 11 is a schematic cross-sectional view of an imaging module according to another embodiment of the present application.
  • FIG. 12 is a schematic cross-sectional view of an imaging module according to still another embodiment of the present application.
  • FIG. 13 is a schematic diagram of a process of adjusting the coaxiality of the imaging module according to the embodiment of the present application.
  • FIG. 14 is a schematic diagram of another process of adjusting the coaxiality of the imaging module according to the embodiment of the present application.
  • 15 is a schematic diagram of the movement of the housing of the electronic device according to the embodiment of the present application.
  • 16 is a schematic cross-sectional view of a related art electronic device
  • FIG. 17 is a schematic flowchart of a control method according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a scene of a control method of an embodiment of the present application.
  • FIG. 19 is a schematic diagram of another scene of the control method of the embodiment of the present application.
  • FIG. 20 is a schematic diagram of another scene of the control method of the embodiment of the present application.
  • FIG. 21 is a schematic flowchart of a control method according to another embodiment of the present application.
  • FIG. 22 is a schematic diagram of a scene of a control method according to another embodiment of the present application.
  • FIG. 23 is a schematic flowchart of a control method according to another embodiment of the present application.
  • FIG. 24 is a schematic flowchart of a control method according to still another embodiment of the present application.
  • FIG. 25 is a schematic diagram of a scene of a control method according to still another embodiment of the present application.
  • FIG. 26 is a schematic flowchart of a control method according to another embodiment of the present application.
  • FIG. 27 is a schematic flowchart of a control method according to another embodiment of the present application.
  • FIG. 28 is a schematic flowchart of a control method according to still another embodiment of the present application.
  • FIG. 29 is a schematic diagram of modules of an electronic device according to an embodiment of the present application.
  • the height of the lens in the imaging module becomes higher and higher, resulting in a larger thickness of the electronic device at the imaging module, which is not conducive to the appearance of the electronic device and the convenience of carrying.
  • the electronic device 100 includes an imaging module 10 and a housing 20.
  • the electronic device 100 may be any of various types of computer system devices that are mobile or portable and perform wireless communication.
  • the electronic device 100 may be a mobile phone, a portable game device, a laptop computer, a personal digital assistant (PDA), a tablet computer (portable andrid device, PAD), a portable Internet device, a wearable device, a vehicle terminal, and a navigation device. Instrument, music player, data storage device, etc.
  • PDA personal digital assistant
  • PAD portable Internet device
  • the electronic device 100 is a mobile phone as an example for description.
  • the imaging module 10 of the embodiment of the present application includes an image sensor 11, a first lens 12, a second lens 13, a driving assembly 14 and a voice coil motor 15.
  • the image sensor 11 is disposed on the optical axis 121 of the first lens 12. In this way, the image sensor 11 can acquire an image through the first lens 12.
  • the image sensor 11 may adopt a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) photosensitive element or a charge-coupled device (Charge-coupled Device, CCD) photosensitive element.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-coupled Device
  • the first lens 12 includes, but is not limited to, a wide-angle lens, a telephoto lens, a fisheye lens, and a macro lens.
  • the second lens 13 includes, but is not limited to, a wide-angle lens, a telephoto lens, a fisheye lens, and a macro lens.
  • the types of the first lens 12 and the second lens 13 may be the same or different.
  • the number of the first lens 12 is one, and the number of the second lens 13 is one.
  • the number of the first lens 12 may be one, and the number of the second lens 13 may be multiple. For example, 2, 3, 4, or other quantities.
  • the number of the first lens 12 may be multiple, such as 2, 3, 4, or other numbers, and the number of the second lens 13 may be one.
  • the number of the first lens 12 may be multiple, and the number of the second lens 13 may also be multiple.
  • the specific quantity and quantity relationship of the first lens 12 and the second lens 13 are not limited here.
  • the second lens 13 can move between the first position and the second position.
  • the second lens 13 can be located at the first position, the second position, or a position between the first position and the second position.
  • the second lens 13 is located at the first position, the second lens 13 is offset from the optical axis 121 of the first lens 12, and the distance between the upper surface of the second lens 13 and the upper surface of the image sensor 11 Is the first distance A;
  • the second lens 13 is located at the second position, the second lens 13 is located on the optical axis 121 of the first lens 12 and is located on the side of the first lens 12 away from the image sensor 11, and the second lens 13
  • the distance between the upper surface and the upper surface of the image sensor 11 is the second distance B.
  • the second distance B is greater than the first distance A.
  • the second lens 13 when the second lens 13 is at the first position, the distance between the second lens 13 and the image sensor 11 in the thickness direction of the electronic device 100 is small, so that the thickness of the electronic device 100 at the imaging module 10 is low, and the appearance of the electronic device 100 is ensured. Beautiful and convenient to carry.
  • the second lens 13 When the second lens 13 is in the second position, the second lens 13 is located on the optical axis of the first lens 12 and is located on the side of the first lens 12 away from the image sensor 11, so that the first lens 12 and the second lens 13 Collaborative work is conducive to improving the quality of captured images.
  • the second lens 13 is located on the optical axis of the first lens 12 and is located on the side of the first lens 12 away from the image sensor 11, which is equivalent to increasing the number of lenses used for imaging of the imaging module 10, which is beneficial for adjusting the imaging.
  • the optical parameters such as focal length, aberration, and distortion of the module 10 make the details of the acquired image richer.
  • the area of light projected on the image sensor 11 can be made larger, so that more pixels are exposed to light, thereby improving the resolution of the image. In this way, the clarity and quality of the image can be improved.
  • the electronic device 100 may include a basic shooting state and an enhanced shooting state.
  • the image sensor 11 is used to obtain an image through the first lens 12 according to the shooting instruction information.
  • the image can be acquired only through the first lens 12, so that the user does not need to wait for the second lens 13 to move from the first position to the second position, and the second lens 13 can also be photographed when the second lens 13 is not in the second position, so that the user can use More convenient.
  • the electronic device 100 is in a basic shooting state.
  • the second lens 13 is not in the second position.
  • the second lens 13 may be in the first position, or the second lens 13 may be in a position between the first position and the second position. There is no limitation here.
  • the image sensor 11 is used to acquire images through the second lens 13 and the first lens 12 according to the shooting instruction information.
  • the first lens 12 and the second lens 13 work together, which is beneficial to improve the quality of the captured image.
  • the electronic device 100 is in an enhanced shooting state.
  • the image sensor 11 can obtain images according to the shooting instruction information, which can provide a variety of shooting modes for the user to select or for the imaging module 10 to automatically select. Conducive to improving user experience.
  • the shooting instruction information includes but is not limited to touch information, voice information, and key information.
  • the shooting instruction can be triggered by the user clicking the icon for shooting, can also be triggered by the user's voice, and can also be triggered by the user's button.
  • the specific form and specific trigger mode of the shooting instruction information are not limited here.
  • the distance between the upper surface of the first lens 12 and the upper surface of the image sensor 11 is the third distance C, and the first distance A is less than Or equal to the third distance C.
  • this article will use the distance between the upper surface of the second lens 13 and the upper surface of the image sensor 11 as the first distance A when the second lens 13 is in the first position; When in the second position, the distance between the upper surface of the second lens 13 and the upper surface of the image sensor 11 is taken as the second distance B; when the second lens 13 is in the first position, the upper surface of the first lens 12 The distance from the upper surface of the image sensor 11 is taken as the third distance C.
  • the first distance A is equal to the third distance C.
  • the first distance A is smaller than the third distance C.
  • the upper surface of the second lens 13 will not be higher than the upper surface of the first lens 12, which avoids the need for the electronic device 100 to be in the direction of the optical axis of the first lens 12, namely In the thickness direction of the electronic device 100, space is reserved for the portion of the second lens 13 that is higher than the first lens 12, so that the overall thickness of the imaging module 10 is lower and the internal space of the electronic device 100 is fully utilized, which is beneficial to The electronic device 100 is thinner and lighter.
  • the driving assembly 14 is used to drive the second lens 13 to move between the first position and the second position.
  • the driving assembly 14 includes a driving member 142 and a connecting member 144, and the connecting member 144 connects the driving member 142 and the second lens 13.
  • the driving member 142 is used for driving the connecting member 144 to move, so as to drive the second lens 13 to move between the first position and the second position.
  • the second lens 13 is driven to move by the driving assembly 14 without the user needing to manually adjust the position of the second lens 13, which is convenient for operation and is beneficial to improve user experience.
  • the driving member 142 includes a motor.
  • the driving member 142 includes a synchronous motor.
  • the synchronous motor has high operating stability and large overload capacity, which can make the driving of the connecting member 144 and the second lens 13 more stable and accurate, which is beneficial to ensure the driving effect.
  • the driving member 142 may include an asynchronous motor.
  • the price of the asynchronous motor is lower, which is beneficial to reduce the cost of the imaging module 10.
  • the specific form of the driving member 142 is not limited here.
  • the connecting member 144 may include a gear (not shown) and a rack (not shown) engaged with the gear.
  • the gear is connected to the driving member 142, and the rack is connected to the second lens 13, and the driving member 142 is used to drive the gear to rotate.
  • the driving assembly 14 is used to drive the second lens 13 to move from the first position to the third position along the optical axis 131 of the second lens 13, and then from the third position along the and The optical axis 131 of the second lens 13 moves to the second position in the vertical direction.
  • the distance between the upper surface of the second lens 13 and the upper surface of the image sensor 11 is the second distance B.
  • the second lens 13 is raised first, and then moved to the first lens 12, which prevents the second lens 13 from interfering with the first lens 12 or other components during the movement, which is beneficial to ensure the smoothness of the second lens 13 Movement and avoid damage to the imaging module 10 due to the movement of the second lens 13.
  • the driving assembly 14 can also be used to drive the second lens 13 to move from the first position to the aforementioned third position along a direction deviating from the optical axis 131 of the second lens 13, such as Shown in Figure 9. In this way, it is also possible to raise the second lens 13 first, and then move to the first lens 12.
  • the specific manner and specific path for the driving assembly 14 to drive the second lens 13 to move from the first position to the second position are not limited here.
  • the voice coil motor 15 is used to drive the first lens 12 and/or the second lens 13 to move, so that the imaging module 10 can focus.
  • the number of voice coil motors 15 is two, namely voice coil motors 15a and voice coil motors 15b.
  • the first lens 12 is disposed in a voice coil motor 15a, and the voice coil motor 15a is used to drive the first lens 12 to move.
  • the second lens 13 is arranged in the voice coil motor 15b, the driving assembly 14 is connected to the voice coil motor 15b, and the voice coil motor 15b is used to drive the second lens 13 to move.
  • the first lens 12 may only be driven by the voice coil motor 15a to move to focus the imaging module 10; or the second lens 13 may only be driven by the voice coil motor 15b to move to focus the imaging module 10;
  • the voice coil motor 15a drives the first lens 12 to move, and the voice coil motor 15b drives the second lens 13 to move, so that the imaging module 10 is focused.
  • the number of the voice coil motor 15 may be one, the second lens 13 is provided in the voice coil motor 15b, and the driving assembly 14 is connected to the voice coil motor 15b; the voice coil motor 15b is used for driving The second lens 13 moves to make the imaging module 10 focus.
  • the voice coil motor 15b can also be in the first position and the second position. Movement between. In other words, the voice coil motor 15b moves in synchronization with the second lens 13.
  • the voice coil motor 15b is used to drive the second lens 13 to move to achieve phase detection auto focus (PDAF). Specifically, when the second lens 13 is at the current position, calculation can be performed according to the image acquired by the imaging module 10 to determine the target position, and the voice coil motor 15b is controlled to drive the second lens 13 to move to the target position.
  • PDAF phase detection auto focus
  • the voice coil motor 15b is used to drive the second lens 13 to move to a target position, and the target position is determined according to the image acquired by the imaging module 10 when the second lens 13 is at the current position. In this way, only one calculation is required to complete the focusing, and the focusing speed is faster, which can reduce the calculation burden of the processor of the electronic device 100.
  • the voice coil motor 15b is used to drive the second lens 13 to move to achieve contrast focusing.
  • the voice coil motor 15b can be controlled to drive the second lens 13 to move along the optical axis 131, and the sharpness of the image acquired by the imaging module 12 when the second lens 13 is at each position is calculated, and the sharpest image is captured. The corresponding position is used as the target position.
  • the voice coil motor 15b is used to drive the second lens 13 to move to a target position
  • the target position is the position corresponding to the image with the greatest sharpness among the images acquired by the imaging module 12 when the second lens 13 is at each position.
  • the number of the voice coil motor 15 may be one, the first lens 12 is provided in the voice coil motor 15a, and the voice coil motor 15a is used to drive the first lens 12 to move, so as to make the imaging module 10Focus.
  • the voice coil motor 15 does not need to move from the first position to the second position along with the second lens 13, which can reduce the burden of the driving assembly 14 and improve the stability of the imaging module 10. Moreover, there is no need to provide a moving space for the voice coil motor 15, which can make the arrangement of the components of the imaging module 10 more compact, which is conducive to the miniaturization of the imaging module 10.
  • the imaging module 10 may further include a driving element (not shown), and the driving element is used to drive the image sensor 11 to move to achieve focusing.
  • the driving element is used to drive the image sensor 11 to move to achieve focusing.
  • at least one of the image sensor 11, the first lens 12, and the second lens 13 can be driven to move to achieve focusing. This further enriches the focus mode, which can be selected according to the actual scene and user needs.
  • the imaging module 10 may also include only driving elements. The specific method and specific structure of the imaging module 10 to achieve focusing are not limited here.
  • the imaging module 10 further includes an adjustment mechanism 16.
  • the adjustment mechanism 16 is connected to the first lens 12 and/or the second lens 13, when the second lens 13 is in the second position and the coaxiality of the optical axis 121 of the first lens 12 and the optical axis 131 of the second lens 13 is greater than or equal to At the preset coaxiality threshold, the adjustment mechanism 16 is used to drive the first lens 12 and/or the second lens 13 to move so that the coaxiality is smaller than the coaxiality threshold.
  • the first lens 12 and/or the second lens 13 are driven to move through the adjustment mechanism 16 to adjust the coaxiality, which can avoid the unclear image caused by the excessive coaxiality, which is beneficial to improve the acquisition of the imaging module 10 Image quality.
  • the adjustment of the coaxiality of the lens is relatively fine, and when the second lens 13 is in the second position, the second lens 13 is only roughly on the optical axis 121 of the first lens 12, and the optical axis of the first lens 12 cannot usually be adjusted.
  • the coaxiality between 121 and the optical axis 131 of the second lens 13 is less than a preset coaxiality threshold. Therefore, when the second lens 13 is in the second position, the position of the first lens 12 and/or the second lens 13 needs to be fine-tuned to make the coaxiality less than the coaxiality threshold, so as to avoid the large coaxiality.
  • the resulting poor image quality is conducive to improving the image quality.
  • coaxiality means the degree to which the optical axis 121 of the first lens 12 and the optical axis 131 of the second lens 13 are not coaxial.
  • the adjustment mechanism 16 is connected to the second lens 13, and the adjustment mechanism 16 is used to drive the second lens 13 to move so that the coaxiality is smaller than the coaxiality threshold.
  • the adjustment mechanism 16 is connected to the first lens 12, and the adjustment mechanism 16 is used to drive the first lens 12 to move so that the coaxiality is smaller than the coaxiality threshold.
  • the adjustment mechanism 16 connects the first lens 12 and the second lens 13, and the adjustment mechanism 16 is used to drive the first lens 12 and the second lens 13 to move so that the coaxiality is smaller than the coaxiality threshold.
  • the adjustment mechanism 16 is used to drive the second lens 13 to move in a plane perpendicular to the optical axis 131 of the second lens 13.
  • the coaxiality threshold includes a distance threshold.
  • the optical axis distance D is less than a preset distance threshold.
  • the optical axis distance D is the distance between the optical axis 121 of the first lens 12 and the optical axis 131 of the second lens 13.
  • optical axis distance D here refers to the distance between the intersection 132 of the plane where the optical axis 131 of the second lens 13 and the optical center 122 of the first lens 12 are located and the optical center 122 of the first lens 12.
  • the numerical range of the distance threshold is: 0.05 mm-0.15 mm.
  • it is 0.05mm, 0.09mm, 0.1mm, 0.13mm, 0.15mm.
  • the specific value of the distance threshold is not limited here.
  • the optical axis distance D is 0 mm.
  • the adjustment mechanism 16 may be a voice coil motor 15. In this way, there is no need to add new components, and the voice coil motor 15 can be fully utilized, which is conducive to cost reduction and miniaturization of the imaging module 10.
  • the adjustment mechanism 16 may include a first driving part (not shown) and a transmission part (not shown).
  • the transmission part connects the first driving part and the second lens 13, and the first driving part It is used to drive the transmission component to move to drive the second lens 13 to move in a plane perpendicular to the optical axis 131 of the second lens 13.
  • the first driving part may include a motor
  • the transmission part may include a gear and a rack meshed with the gear
  • the gear is connected to the first driving part
  • the rack is connected to the second lens 13
  • the first driving part is used to drive the gear to rotate.
  • the rack is driven to move, thereby driving the second lens 13 to move on a plane perpendicular to the optical axis 131 of the second lens 13.
  • the second lens 13 is driven to move in a plane perpendicular to the optical axis 131 of the second lens 13 through the motor, gear and rack, and the structure is simple and easy to implement.
  • the specific form of the adjustment mechanism 16 is not limited here.
  • the adjustment mechanism 16 is used to drive the first lens 12 to move in a plane perpendicular to the optical axis 121 of the first lens 12.
  • the adjustment mechanism 16 is used to drive the first lens 12 to move in a plane perpendicular to the optical axis 121 of the first lens 12, and to drive the second lens 13 to move in a plane perpendicular to the optical axis 131 of the second lens 13 Plane movement.
  • the adjustment mechanism 16 is used to drive the first lens 12 to move in a plane perpendicular to the optical axis 121 of the first lens 12; and/or to drive the second lens 13 to move in a plane perpendicular to the optical axis 131 of the second lens 13 The plane moves. In this way, the unclear image caused by the large optical axis distance D can be avoided, thereby improving the image quality.
  • the specific method of adjusting the optical axis distance D is not limited here.
  • the adjustment mechanism 16 is used to drive the second lens 13 to rotate.
  • the coaxiality threshold includes an angle threshold.
  • the optical axis included angle ⁇ is less than the preset angle threshold.
  • the optical axis included angle ⁇ is the difference between the optical axis 121 of the first lens 12 and the optical axis 131 of the second lens 13 Angle.
  • the numerical range of the angle threshold is: 0.05°-0.15°.
  • they are 0.05°, 0.09°, 0.1°, 0.13°, 0.15°.
  • the specific value of the angle threshold is not limited here.
  • the angle ⁇ of the optical axis is 0°.
  • the adjustment mechanism 16 includes a second driving part (not shown) and a connecting part (not shown).
  • the connecting part connects the second driving part and the second lens 13, and the second driving part is used to drive the connecting part to rotate so as to The second lens 13 is driven to rotate so that the included angle ⁇ of the optical axis is smaller than the preset angle threshold.
  • the second driving component may include a motor
  • the connecting component may include a first connecting arm (not shown) and a second connecting arm (not shown) that are both connected to the second lens 13, and the second driving component is used to drive the second lens 13
  • a connecting arm rotates to drive the second lens 13 to rotate around the first axis
  • the second driving component is used to drive the second connecting arm to rotate, so as to drive the second lens 13 to rotate around the second axis.
  • the first axis is perpendicular to the second axis.
  • the second lens 13 can be adjusted in two dimensions, so that the adjustment of the angle ⁇ of the optical axis is more precise, which is beneficial to improve the image quality.
  • the adjustment mechanism 16 is used to drive the first lens 12 to rotate.
  • the adjustment mechanism 16 is used to drive the first lens 12 and the second lens 13 to rotate.
  • the adjustment mechanism 16 is used to drive the first lens 12 and/or the second lens 13 to rotate. In this way, it is possible to avoid the unclear image caused by the large included angle ⁇ of the optical axis, thereby improving the image quality.
  • the corresponding relationship between the preset image definition and the lens coaxiality can be obtained, and the definition of the image acquired by the imaging module 10 when the first lens 12 and the second lens 13 are at the current position can be calculated. , And determine the coaxiality of the first lens 12 and the second lens 13 according to the sharpness and the corresponding relationship. In this way, the coaxiality can be determined by the sharpness of the image without measuring with an instrument, which is simple and convenient, and can also save the internal space of the electronic device 100.
  • the adjustment mechanism 16 is used to drive the first lens 12 and/or the second lens 13 to move, so as to make the imaging module 10
  • the coaxiality corresponding to the acquired image is less than the coaxiality threshold. In this way, the coaxiality can be adjusted so that the coaxiality is smaller than the coaxiality threshold.
  • the image sharpness has a negative correlation with the lens coaxiality.
  • the sharpness of the image acquired by the imaging module 10 when the first lens 12 and the second lens 13 are at the current position can also be calculated.
  • the adjustment mechanism 16 uses To drive the first lens 12 and/or the second lens 13 to move, so that the sharpness of the image acquired by the imaging module 10 is greater than the sharpness threshold. In this way, by adjusting the position of the first lens 12 and/or the second lens 13, the image definition is higher, the determination of the coaxiality is omitted, the execution time of the control method is shorter, and the adjustment speed is improved.
  • the adjustment mechanism 16 can be controlled to drive the movement of the first lens 12, and the definition of the image acquired by the imaging module 10 when the first lens 12 is at each position is calculated, and the image with the highest definition corresponds to As the target position, the adjustment mechanism 16 is controlled to drive the first lens 12 to move to the target position to realize the adjustment of the coaxiality.
  • the control and adjustment mechanism 16 drives the first lens 12 to move to the position corresponding to the image with the greatest sharpness, so that the image captured by the imaging module 10 can be the sharpest, so that the image quality is the highest.
  • the adjustment mechanism 16 can be controlled to drive the second lens 13 to move, calculate the sharpness of the image acquired by the imaging module 10 when the second lens 13 is at each position, and correspond to the image with the greatest sharpness
  • the adjustment mechanism 16 is controlled to drive the second lens 13 to move to the target position to realize the adjustment of the coaxiality.
  • the control and adjustment mechanism 16 drives the second lens 13 to move to the position corresponding to the image with the greatest sharpness, so that the image captured by the imaging module 10 can be the sharpest, so that the image quality is the highest.
  • the housing 20 includes a first part 21 and a second part 22.
  • the first part 23 is formed with a through hole 23, and light from outside the imaging module 10 enters the imaging module 10 through the through hole 23. In this way, the imaging module 10 can obtain external light, thereby obtaining an image.
  • the shape of the through hole 23 may be rectangular, square, circular, oval or other shapes.
  • the specific shape of the through hole 23 is not limited here.
  • the second lens 13 when the second lens 13 is in the second position, the second lens 13 is at least partially disposed in the through hole 23.
  • the through hole 23 can limit the second lens 13 to a certain extent, so as to prevent the second lens 13 from greatly moving. In this way, it can be avoided that in the process of adjusting the coaxiality, the adjustment efficiency is low due to the large movement range of the second lens 13.
  • the first lens 12 may also be at least partially disposed in the through hole 23. In this way, the positioning of the first lens 12 and the housing during installation is facilitated, and the production efficiency can be improved.
  • the housing 20 of the electronic device 100 covers the second lens 13; before the second lens 13 moves from the first position to the second position, the housing 20 can move,
  • the avoidance space 24 for avoiding the movement of the second lens 13 is formed between the first lens 12 and the housing 20, and the driving assembly 14 is used to drive the second lens 13 to move from the first position to the second position via the avoidance space 24.
  • the second part 22 can move between the fourth position and the fifth position.
  • the second part 22 covers the second lens 13, and the second part 22 is in the fifth position.
  • an escape space 24 is formed between the first lens 12 and the housing 20.
  • the second part 22 can be controlled to be in the fourth position; before the second lens 13 is moved from the first position to the second position, the second part 22 can be controlled to be in the second position.
  • the fourth position moves to the fifth position.
  • the housing 20 can cover the second lens 13, making it difficult for the user to observe the second lens 13, which is beneficial to improve the appearance of the electronic device 100 and makes the user's visual experience better.
  • the housing 20 can protect the second lens 13 so as to prevent dust, moisture and other debris from entering the second lens 13 and prevent the second lens 13 from being scratched, which can prevent the second lens 13 from being polluted, corroded and damaged.
  • the housing 20 can move to form the avoidance space 24, which prevents the existence of the housing 20 from hindering the movement of the second lens 13 and can ensure that the second lens 13 can move from the first position to the second position via the avoidance space 24.
  • the second lens 13 can be controlled to start moving from the first position. In this way, the movement time of the second part 22 and the second lens 13 as a whole can be reduced, thereby improving the response speed.
  • the second lens 13 when the second part 22 is at the fifth position, the second lens 13 can be controlled to start moving from the first position. In this way, the avoidance space 24 is pre-formed when the second lens 13 starts to move from the first position, which can ensure that the second lens 13 can move from the first position to the second position via the avoidance space 24.
  • the relationship between the time when the second part 22 starts to move and the time when the second lens 13 starts to move is not limited here.
  • the second part 22 can be controlled to move from the fifth position to the fourth position. In this way, it is beneficial to improve the appearance of the electronic device 100 and make the user's visual experience better. In addition, it is possible to prevent dust, moisture and other debris from entering the imaging module 10 through the avoiding space 24, thereby preventing the imaging module 10 from being polluted, corroded, and damaged.
  • the second part 22 can be controlled to remain in the fifth position, and only when the reply instruction is obtained, the second part 22 can be controlled from the second position.
  • the fifth position moves to the fourth position. In this way, repeated movement of the second part 22 can be avoided, which is conducive to saving power and prolonging the life of the second part 22.
  • the reply instruction can be triggered by the user.
  • the movement of the second part 22 from the fifth position to the fourth position is controlled by the user, so that the movement of the second part 22 is more in line with the needs of the user, which is beneficial to improve the user's experience.
  • the reply instruction may be triggered when the user exits the enhanced shooting state.
  • the user can move the second part 22 from the fifth position to the fourth position when exiting the enhanced shooting state without performing additional operations, which can reduce user operation steps, is convenient and fast, and is beneficial to improve user experience.
  • the embodiment of the present application provides an imaging module 10 and an electronic device 100.
  • the imaging module 10 of the embodiment of the present application includes an image sensor 11, a first lens 12, a second lens 13, and a driving assembly 14.
  • the image sensor 11 is arranged on the optical axis 121 of the first lens 12, and the driving assembly 14 is used to drive the second lens.
  • the second lens 13 moves between the first position and the second position; when the second lens 13 is in the first position, the second lens 13 is offset from the optical axis 121 of the first lens 12, and the upper surface of the second lens 13 is aligned with the image
  • the distance between the upper surfaces of the sensors 11 is the first distance A; when the second lens 13 is in the second position, the second lens 13 is located on the optical axis 121 of the first lens 12 and is located away from the image sensor 11
  • the distance between the upper surface of the second lens 13 and the upper surface of the image sensor 11 is the second distance B; the second distance B is greater than the first distance A.
  • the electronic device 100 of the embodiment of the present application includes the aforementioned imaging module 10.
  • the distance between the second lens 13 and the image sensor 11 in the thickness direction of the electronic device 100 is small when the second lens 13 is located at the first position, so that the electronic device 100 is positioned at the imaging module.
  • the low thickness ensures the beautiful appearance of the electronic device 100 and the convenience of carrying.
  • the second lens 13 is located on the optical axis of the first lens 12 and is located on the side of the first lens 12 away from the image sensor 11, so that the first lens 12 and the second lens 13 Collaborative work is conducive to improving the quality of captured images.
  • FIG. 16 is a schematic cross-sectional view of the imaging module 200 in the related art.
  • the imaging module 200 includes a lens 201, a voice coil motor 202, and an image sensor 203.
  • the lens 201 of the imaging module 200 may be composed of lenses, and the lenses are all installed in a lens barrel. In this way, the thickness of the lens 201 is relatively high, resulting in a relatively high thickness of the electronic device using the imaging module 200 at the imaging module 200, or the imaging module 200 protrudes from the electronic device. Although this makes the image quality acquired by the imaging module 200 better, it is not conducive to the beauty of the electronic device and the convenience of carrying.
  • the imaging module 10 and the electronic device 100 of the embodiment of the present application through the combination and separation of the first lens 12 and the second lens 13, can make the image quality better when the first lens 12 and the second lens 13 are combined. , It can also ensure the beautiful appearance and the convenience of carrying when the first lens 12 and the second lens 13 are separated.
  • control method is used for the above-mentioned electronic device 100, and the control method includes:
  • Step S17 Obtain a first trigger signal, which is triggered by the electronic device 100 when it switches from the first state to the second state;
  • Step S18 According to the first trigger signal, the driving component 14 is controlled to drive the second lens 13 to move from the first position to the second position.
  • the distance between the second lens 13 and the image sensor 11 in the thickness direction of the electronic device 100 is small when the second lens 13 is in the first position, so that the electronic device 100 is in the first state at the imaging module 10
  • the low thickness ensures the beautiful appearance of the electronic device 100 and the convenience of carrying.
  • the driving assembly 14 is controlled to drive the second lens 13 to move from the first position to the second position, so that the second lens 13 is located on the optical axis 121 of the first lens 12 and is located away from the image sensor 11
  • the first lens 12 and the second lens 13 work together to improve the quality of the captured image.
  • the second lens 13 is located on the optical axis of the first lens 12 and is located on the side of the first lens 12 away from the image sensor 11, which is equivalent to increasing the number of lenses used for imaging of the imaging module 10, which is beneficial for adjusting the imaging.
  • the optical parameters such as focal length, aberration, and distortion of the module 10 make the details of the acquired image richer.
  • the area of light projected on the image sensor 11 can be made larger, so that more pixels are exposed to light, thereby improving the resolution of the image. In this way, the clarity and quality of the image can be improved.
  • the first state includes a non-shooting state and a basic shooting state
  • the second state includes an enhanced shooting state
  • the second lens 13 is located at the first position, so that the electronic device 100 has a beautiful appearance and is convenient to carry.
  • two shooting states are provided in this way, and users can choose by themselves according to their needs, which improves the richness of user choices and helps improve user experience.
  • the image can be acquired only through the first lens 12, so that the user does not need to wait for the second lens 13 to move from the first position to the second position, when the second lens 13 is not in the second position. You can also shoot when you are in a location, making it more convenient for users.
  • the second lens 13 is located at the second position, so that the first lens 12 and the second lens 13 work together, which is beneficial to improve the quality of the captured image.
  • the first trigger signal is a control signal for driving the component 14 to work.
  • control method further includes: acquiring shooting instruction information; when the second lens 13 is in the first position, controlling the image sensor 11 to acquire images through the first lens 12 according to the shooting instruction information; when the second lens 13 is in the second position , Controlling the image sensor 11 to acquire images through the second lens 13 and the first lens 12 according to the shooting instruction information.
  • the image sensor 11 can obtain images according to the shooting instruction information, which can provide a variety of shooting modes for the user to select or for the imaging module 10 to automatically select. Conducive to improving user experience.
  • the shooting instruction information includes but is not limited to touch information, voice information, and key information.
  • the shooting instruction can be triggered by the user clicking the icon for shooting, can also be triggered by the user's voice, and can also be triggered by the user's button.
  • the specific form and specific trigger mode of the shooting instruction information are not limited here.
  • the electronic device 100 when the electronic device 100 is in the non-shooting state, the second lens 13 is located at the first position, and after the user clicks the "enhanced shooting" icon, the electronic device 100 enters the enhanced shooting state and triggers the first position
  • a trigger signal causes the driving assembly 14 to drive the second lens 13 to move from the first position to the second position.
  • the user can click the circular icon to trigger the shooting instruction information, so that the electronic device 100 controls the image sensor 11 to obtain images through the second lens 13 and the first lens 12 according to the shooting instruction information.
  • the second lens 13 is located at the first position, and after the user clicks the "basic shooting" icon, the electronic device 100 enters the basic shooting state without triggering With the first trigger signal, the driving component 14 does not drive the second lens 13 to move from the first position to the second position.
  • the user can click the circular icon to trigger the shooting instruction information, so that the electronic device 100 controls the image sensor 11 to obtain an image through the first lens 12 according to the shooting instruction information.
  • the first state may include the non-photographing state
  • the second state may include the photographing state.
  • the second lens 13 is located at the first position, so that the electronic device 100 has a beautiful appearance and is convenient to carry.
  • the second lens 13 is located in the second position, and works in cooperation with the first lens 12, and the quality of the captured image is high. In this way, the user does not need to manually select the mode, and the operation is simple and convenient, which is conducive to improving the user experience.
  • the electronic device 100 when the electronic device 100 is in the non-shooting state, the second lens 13 is located at the first position.
  • the electronic device 100 After the user clicks the icon of the "camera" application, the electronic device 100 enters the shooting state and triggers the A trigger signal causes the driving assembly 14 to drive the second lens 13 to move from the first position to the second position.
  • the user can click the circular icon to trigger the shooting instruction information, so that the electronic device 100 controls the image sensor 11 to obtain images through the second lens 13 and the first lens 12 according to the shooting instruction information.
  • control method further includes:
  • Step S13 Obtain status command information
  • Step S14 Set the electronic device 100 to be in the first state or the second state according to the state command information.
  • the state of the electronic device 100 can be switched, so that the first trigger signal is triggered when the first state is switched to the second state, so that the driving component 14 is driven.
  • the second lens 13 moves from the first position to the second position.
  • the status command information can be triggered by the user, or the electronic device 100 can be triggered by itself.
  • the switching of the state of the electronic device 100 can be triggered by the user or the electronic device 100 itself.
  • control method may include: when the screen of the electronic device 100 is turned off, generating state command information to set the electronic device 100 in the first state.
  • the electronic device 100 can be automatically placed in the first state when the screen is turned off by generating the status command information, so that the second lens 13 is in the first position, so that the user is convenient to store the electronic device 100 without the need for additional manual operations by the user, which is beneficial Improve user experience.
  • the second lens 13 can be automatically placed in the first position by generating the status command information, thereby facilitating the storage of the user.
  • Electronic device 100
  • control method may include: when the electronic device 100 receives a call, generating status command information to set the electronic device 100 in the first state.
  • the electronic device 100 can be automatically placed in the first state when a call is received by generating the status command information, so that the second lens 13 is in the first position, so that it is convenient for the user to answer the call without the need for additional manual operation by the user, which is beneficial to improve the user experience .
  • the second lens 13 can be automatically placed in the first position by generating the status command information, thereby facilitating the user to answer the call.
  • control method may include: when the electronic device 100 has finished talking and the current application is a shooting application, generating state command information to set the electronic device 100 in the second state.
  • the electronic device 100 can be automatically placed in the second state by generating the status command information, so that the second lens 13 is in the second position, so that it is convenient for the user to continue to use the shooting application without the need for the user to perform additional manual operations. Operation is conducive to improving user experience.
  • the first state includes the non-shooting state and the basic shooting state
  • the second state includes the enhanced shooting state.
  • Step S14 may include setting the electronic device 100 to be in a non-shooting state, a basic shooting state, or an enhanced shooting state according to the state command information.
  • the user inputs the state command information "enter the enhanced shooting state" to the electronic device 100 by clicking the icon of the "enhanced shooting".
  • the electronic device 100 obtains the state command information, and sets the electronic device 100 in the enhanced shooting state according to the state command information, thereby realizing the switch from the non-shooting state to the enhanced shooting state.
  • the user inputs the state command information "enter the basic shooting state" to the electronic device 100 by clicking the icon of the "basic shooting".
  • the electronic device 100 obtains the state command information, and sets the electronic device 100 in the basic shooting state according to the state command information, thereby realizing the switch from the non-shooting state to the basic shooting state.
  • the user when the electronic device 100 is in the enhanced shooting state, the user inputs the state command information "enter the basic shooting state" to the electronic device 100 by clicking on the "switch" icon.
  • the electronic device 100 obtains the state command information, and sets the electronic device 100 in the basic shooting state according to the state command information, thereby realizing the switch from the enhanced shooting state to the basic shooting state.
  • control method may include: when the current application is a shooting application and the current environment brightness is less than a preset brightness threshold, generating state command information to set the electronic device 100 in an enhanced shooting state.
  • the electronic device 100 can be automatically placed in the enhanced shooting state by generating the status command information, so that the second lens 13 is in the second position, thereby improving the quality of the captured image without the need for additional users.
  • Manual operation is conducive to improving user experience.
  • the second lens 13 can be automatically placed in the second position by generating the status command information, thereby improving the quality of the captured image.
  • the first state may include the non-shooting state
  • the enhanced shooting state may include the shooting state.
  • Step S14 may include: setting the electronic device 100 in a non-photographing state or a photographing state according to the state command information.
  • the user inputs the state command information "enter the shooting state" to the electronic device 100 by clicking the icon of the "camera".
  • the electronic device 100 obtains the status command information, and sets the electronic device 100 to be in the shooting state according to the status command information, thereby realizing the switch from the non-shooting state to the shooting state.
  • control method further includes:
  • Step S11 Obtain input information
  • Step S12 Determine the preset conditions for the electronic device 100 to enter the first state and the second state according to the input information.
  • the user can set preset conditions for the electronic device 100 to enter the first state and the second state by inputting information, so that the electronic device 100 automatically enters the first state and the second state when the preset conditions are reached, without requiring the user to enter the first state and the second state every time.
  • Manual operation is performed, and the state of the electronic device 100 can be automatically switched to meet the needs of the user, which is beneficial to improve the user experience.
  • the input information includes, but is not limited to, touch information, voice information, and key information.
  • the shooting instruction can be input by the user through the touch screen, by the user through voice input, or by the user through the keys.
  • the specific form and specific input method of the input information are not limited here.
  • the first state includes the non-shooting state and the basic shooting state
  • the second state includes the enhanced shooting state
  • the user can set the imaging module 10 to default to the basic shooting mode when the shooting application is started.
  • the preset condition for the electronic device 100 to enter the basic shooting state can be set as: entering a shooting application.
  • the user can set the imaging module 10 to default to the enhanced shooting mode when the shooting application is started.
  • the preset condition for the electronic device 100 to enter the enhanced shooting state can be set as: entering a shooting application.
  • the user can set the imaging module 10 to be in a non-shooting state when exiting the shooting application.
  • the preset condition for the electronic device 100 to enter the non-shooting state can be set as: exiting the shooting application.
  • the user can set the enhanced shooting state and the basic shooting state according to the current environment brightness when the current application is a shooting application, and set the specific value of the preset brightness threshold.
  • the preset conditions for the electronic device 100 to enter the enhanced shooting state can be set as: the current application is a shooting application and the current environment brightness is less than the preset brightness threshold; the preset conditions for the electronic device 100 to enter the basic shooting state can be set It is: the current application is a shooting application and the current environment brightness is greater than or equal to the preset brightness threshold.
  • control method further includes:
  • Step S25 Obtain a second trigger signal, which is triggered by the electronic device 100 when it switches from the second state to the first state;
  • Step S26 According to the second trigger signal, the driving assembly 14 is controlled to drive the second lens 13 to move from the second position to the first position.
  • the driving component 14 can drive the second lens 13 to move according to the state switching of the electronic device 100, so that when the electronic device 100 is in the first state, the second lens 13 is in the first position.
  • the second trigger signal is a control signal for driving the component 14 to work.
  • the first state includes a non-shooting state and a basic shooting state
  • the second state includes an enhanced shooting state.
  • the user clicks the "switch" icon to switch the electronic device 100 from the enhanced shooting state to the basic shooting state, and triggers the second trigger signal, so that the driving component 14 drives the second lens 13 Move from the second position to the first position.
  • the first state includes a non-photographing state
  • the second state includes a photographing state.
  • control method further includes:
  • Step S15 when the second lens 13 is in the first position, the housing 20 of the control electronic device 100 covers the second lens 13;
  • Step S16 before the second lens 13 moves from the first position to the second position, the housing 20 is controlled to move, so that an escape space for avoiding the movement of the second lens 13 is formed between the first lens 12 and the housing 20;
  • step S18 includes:
  • Step S182 Control the driving assembly 14 to drive the second lens 13 to move from the first position to the second position via the avoidance space.
  • step S15 includes: when the second lens 13 is in the first position, controlling the second part 22 to be in the fourth position; when the second lens 13 is in the first position Before moving to the second position, the second part 22 is controlled to move from the fourth position to the fifth position.
  • control method includes: while controlling the second part 22 to start moving from the fourth position, controlling the second lens 13 to start moving from the first position. In this way, the movement time of the second part 22 and the second lens 13 as a whole can be reduced, thereby improving the response speed.
  • control method includes: controlling the second lens 13 to start moving from the first position when the second part 22 is controlled to be at the fifth position.
  • the avoidance space 24 is pre-formed when the second lens 13 starts to move from the first position, which can ensure that the second lens 13 can move from the first position to the second position via the avoidance space 24.
  • the imaging module 10 further includes a voice coil motor 15b, the second lens 13 is disposed in the voice coil motor 15, and the driving assembly 14 is connected to the voice coil motor 15b; the control method further includes:
  • Step S21 Control the voice coil motor 15b to drive the second lens 13 to move, so that the imaging module 10 can focus.
  • the imaging module 10 further includes a voice coil motor 15a
  • the first lens 12 is arranged in the voice coil motor 15a
  • the control method further includes: controlling the voice coil motor 15a to drive the first lens 12 to move, so as to make the image The module 10 focuses.
  • the imaging module 10 further includes a voice coil motor 15a and a voice coil motor 15b.
  • the first lens 12 is provided in the voice coil motor 15a
  • the second lens 13 is provided in the voice coil motor 15, and the driving assembly 14 is connected.
  • the control method of the voice coil motor 15b further includes: controlling the voice coil motor 15a to drive the first lens 12 to move, and controlling the voice coil motor 15b to drive the second lens 13 to move, so that the imaging module 10 is focused.
  • the imaging module 10 includes an adjustment mechanism 16, and the control method further includes:
  • Step S19 when the second lens 13 is in the second position, detect the coaxiality between the optical axis 121 of the first lens 12 and the optical axis 131 of the second lens 13;
  • Step S20 When the coaxiality is greater than or equal to the preset coaxiality threshold, the adjustment mechanism 16 is controlled to drive the first lens 12 and/or the second lens 13 to move so that the coaxiality is smaller than the coaxiality threshold.
  • step S20 includes: controlling the adjustment mechanism 16 to drive the first lens 12 to move in a plane perpendicular to the optical axis 121 of the first lens 12; and/or, controlling the adjustment mechanism 16 to drive the second lens 13 to move vertically.
  • the plane of the optical axis 131 of the second lens 13 moves.
  • step S20 includes: controlling the rotation of the first lens 12 and/or the second lens 13.
  • the distance between the upper surface of the second lens 13 and the upper surface of the image sensor 11 is less than or equal to the distance between the upper surface of the first lens 12 and the image sensor 11 The distance from the upper surface.
  • the embodiment of the present application provides an electronic device 100.
  • the imaging module 10 of the electronic device 100 includes an image sensor 11, a first lens 12, a second lens 13, and a driving component 14.
  • the image sensor 11 is arranged on the optical axis 121 of the first lens 12, and the driving component 14 is used to drive the second lens.
  • the lens 13 moves between the first position and the second position; when the second lens 13 is in the first position, the second lens 13 is offset from the optical axis 121 of the first lens 12, and the upper surface of the second lens 13 is connected to the image sensor
  • the distance between the upper surfaces of the first lens 11 is the first distance A; when the second lens 13 is in the second position, the second lens 13 is located on the optical axis 121 of the first lens 12 and is located at the distance of the first lens 12 away from the image sensor 11.
  • the distance between the upper surface of the second lens 13 and the upper surface of the image sensor 11 is a second distance B, and the second distance B is greater than the first distance A; when the electronic device 100 is in the first state, the second lens 13 is in the first position; when the electronic device 100 is in the second state, the second lens 13 is in the second position.
  • the distance between the second lens 13 and the image sensor 11 in the thickness direction of the electronic device 100 is small when the second lens 13 is in the first position, so that the electronic device 100 is at the imaging module 10 when the electronic device 100 is in the first state.
  • the thickness of the electronic device 100 is relatively low, which ensures the beautiful appearance of the electronic device 100 and the convenience of carrying.
  • the driving assembly 14 is controlled to drive the second lens 13 to move from the first position to the second position, so that the second lens 13 is located on the optical axis 121 of the first lens 12 and is located away from the image sensor 11
  • the first lens 12 and the second lens 13 work together to improve the quality of the captured image.
  • an embodiment of the present application provides an electronic device 100.
  • the electronic device 100 further includes a processor 101 connected to the imaging module 10, and the processor 101 is configured to execute the control method of any of the foregoing embodiments.
  • Step S17 Obtain a first trigger signal, which is triggered by the electronic device 100 when switching from the first state to the second state; and Step S18: Control the driving component 14 to drive the second state according to the first trigger signal.
  • the lens 13 moves from the first position to the second position.
  • the distance between the second lens 13 and the image sensor 11 in the thickness direction of the electronic device 100 is small when the second lens 13 is in the first position, so that the electronic device 100 is at the imaging module 10 when the electronic device 100 is in the first state.
  • the thickness of the electronic device 100 is relatively low, which ensures the beautiful appearance of the electronic device 100 and the convenience of carrying.
  • the driving component 14 is controlled to drive the second lens 13 to move from the first position to the second position, so that the second lens 13 is located on the optical axis 121 of the first lens 12 and is located away from the image sensor 11
  • the first lens 12 and the second lens 13 work together to improve the quality of the captured image.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • One or more non-volatile computer-readable storage media containing computer-executable instructions when the computer-executable instructions are executed by one or more processors 101, cause the processor 101 to execute the control method of any one of the foregoing embodiments.
  • Step S17 Obtain a first trigger signal, which is triggered by the electronic device 100 when switching from the first state to the second state; and Step S18: Control the driving component 14 to drive the second state according to the first trigger signal.
  • the lens 13 moves from the first position to the second position.
  • the distance between the second lens 13 and the image sensor 11 in the thickness direction of the electronic device 100 is small when the second lens 13 is in the first position, so that the electronic device 100 is in the first state when the imaging module is The thickness of 10 places is low, which ensures the beautiful appearance of the electronic device 100 and the convenience of carrying.
  • the driving component 14 is controlled to drive the second lens 13 to move from the first position to the second position, so that the second lens 13 is located on the optical axis 121 of the first lens 12 and is located away from the image sensor 11
  • the first lens 12 and the second lens 13 work together to improve the quality of the captured image.
  • FIG. 29 is a schematic diagram of internal modules of the electronic device 100 in an embodiment.
  • the electronic device 100 includes a processor 101, a memory 102 (for example, a non-volatile storage medium), an internal memory 103, a display device 104, and an input device 105 connected through a system bus 110.
  • the memory 102 of the electronic device 100 stores an operating system and computer readable instructions.
  • the computer-readable instruction may be executed by the processor 101 to implement the control method of any one of the foregoing embodiments.
  • the processor 101 can be used to provide computing and control capabilities, and support the operation of the entire electronic device 100.
  • the internal memory 103 of the electronic device 100 provides an environment for the execution of computer readable instructions in the memory 102.
  • the input device 105 may also be a button, a trackball, or a touch pad provided on the housing 20 of the electronic device 100, or may be an external keyboard, a touch pad, or a mouse.
  • the structure shown in the figure is only a schematic diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the electronic device to which the solution of the present application is applied.
  • the specific electronic device may include More or fewer parts than shown in the figure, or some parts are combined, or have a different arrangement of parts.
  • the processes in the methods of the foregoing embodiments can be implemented by computer programs instructing relevant hardware.
  • the programs can be stored in a non-volatile computer-readable storage medium.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Studio Devices (AREA)

Abstract

一种控制方法、成像模组(10)、电子装置(100)和存储介质。成像模组(10)包括图像传感器(11)、第一镜头(12)、第二镜头(13)和驱动组件(14),图像传感器(11)设置在第一镜头(12)的光轴(121)上,驱动组件(14)用于驱动第二镜头(13)在第一位置和第二位置之间运动;在第二镜头(13)位于第一位置时,第二镜头(13)与第一镜头(12)的光轴(121)错开,第二镜头(13)的上表面与图像传感器(11)的上表面之间的距离为第一距离;在第二镜头(13)位于第二位置时,第二镜头(13)位于第一镜头(12)的光轴(121)上且位于第一镜头(12)背离图像传感器(11)的一侧,第二镜头(13)的上表面与图像传感器(11)的上表面之间的距离为第二距离;第二距离大于第一距离。控制方法包括:获取第一触发信号,第一触发信号由电子装置(100)在从第一状态切换至第二状态时触发;以及根据第一触发信号,控制驱动组件(14)驱动第二镜头(13)从第一位置运动至第二位置。

Description

控制方法、成像模组、电子装置和存储介质
优先权信息
本申请请求2020年02月20日向中国国家知识产权局提交的、专利申请号为202020187813.7和202010103951.7的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及电子技术领域,特别涉及一种控制方法、成像模组、电子装置和存储介质。
背景技术
相关技术的电子装置通常包括成像模组,以对当前的场景进行拍摄。随着用户对图像质量的要求逐渐提高,成像模组中镜头的高度也越来越高。
发明内容
本申请提供了一种控制方法、成像模组、电子装置和存储介质。
本申请实施方式的控制方法用于电子装置。所述电子装置的成像模组包括图像传感器、第一镜头、第二镜头和驱动组件,所述图像传感器设置在所述第一镜头的光轴上,所述驱动组件用于驱动所述第二镜头运动;在所述电子装置处于第一状态时,所述第二镜头处于第一位置,所述第二镜头与所述第一镜头的光轴错开,所述第二镜头的上表面与所述图像传感器的上表面之间的距离为第一距离;在所述电子装置处于第二状态时,所述第二镜头处于第二位置,所述第二镜头位于所述第一镜头的光轴上且位于所述第一镜头背离所述图像传感器的一侧,所述第二镜头的上表面与所述图像传感器的上表面之间的距离为第二距离,所述第二距离大于所述第一距离;所述控制方法包括:
获取第一触发信号,所述第一触发信号由所述电子装置在从所述第一状态切换至所述第二状态时触发;以及
根据所述第一触发信号,控制所述驱动组件驱动所述第二镜头从所述第一位置运动至所述第二位置。
本申请实施方式的成像模组包括图像传感器、第一镜头、第二镜头和驱动组件,所述图像传感器设置在所述第一镜头的光轴上,所述驱动组件用于驱动所述第二镜头在第一位置和第二位置之间运动;在所述第二镜头位于所述第一位置时,所述第二镜头与所述第一镜头的光轴错开,所述第二镜头的上表面与所述图像传感器的上表面之间的距离为第一距离;在所述第二镜头位于所述第二位置时,所述第二镜头位于所述第一镜头的光轴上且位于所述第一镜头背离所述图像传感器的一侧,所述第二镜头的上表面与所述图像传感器的上表面之间的距离为第二距离;所述第二距离大于所述第一距离。
本申请实施方式的电子装置包括上述的成像模组。
本申请实施方式的电子装置的成像模组包括图像传感器、第一镜头、第二镜头和驱动组件,所述图像传感器设置在所述第一镜头的光轴上,所述驱动组件用于驱动所述第二镜头在第一位置和第二位置之间运动;在所述第二镜头位于所述第一位置时,所述第二镜头与所述第一镜头的光轴错开,所述第二镜头的上表面与所述图像传感器的上表面之间的距离为第一距离;在所述第二镜头位于所述第二位置时,所述第二镜头位于所述第一镜头的光轴上且位于所述第一镜头背离所述图像传感器的一侧,所述第二镜头的上表面与所述图像传感器的上表面之间的距离为第二距离,所述第二距离大于所述第一距离;在所述电子装置处于第一状态时,所述第二镜头处于所述第一位置;在所述电子装置处于第二状态时,所述第二镜头处于所述第二位置。
本申请实施方式的电子装置包括成像模组和连接所述成像模组的处理器,所述成像模组包括图像传感器、第一镜头、第二镜头和驱动组件,所述图像传感器设置在所述第一镜头的光轴上,所述驱动组件用于驱动所述第二镜头运动;在所述电子装置处于第一状态时,所述第二镜头处于第一位置,所述第二镜头与所述第一镜头的光轴错开,所述第二镜头的上表面与所述图像传感器的上表面之间的距离为第一距离;在所述电子装置处于第二状态时,所述第二镜头处于第二位置,所述第二镜头位于所述第一镜头的光轴上且位于所述第一镜头背离所述图像传感器的一侧,所述第二镜头的 上表面与所述图像传感器的上表面之间的距离为第二距离,所述第二距离大于所述第一距离;所述处理器用于执行上述的控制方法。
一种包含计算机可执行指令的非易失性计算机可读存储介质,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器执行上述的控制方法。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的电子装置的平面示意图;
图2是本申请实施方式的成像模组在第二镜头处于第一位置时的平面示意图;
图3是图2的成像模组沿III-III的剖面示意图;
图4是本申请实施方式的成像模组在第二镜头处于第二位置时的平面示意图;
图5是图4的成像模组沿V-V的剖面示意图;
图6是本申请实施方式的成像模组的剖面示意图;
图7是本申请另一实施方式的成像模组的剖面示意图;
图8是本申请实施方式的成像模组的第二镜头的运动示意图;
图9是本申请实施方式的成像模组的第二镜头的另一运动示意图;
图10是本申请实施方式的成像模组的剖面示意图;
图11是本申请又一实施方式的成像模组的剖面示意图;
图12是本申请再一实施方式的成像模组的剖面示意图;
图13是本申请实施方式的成像模组调节同轴度的过程示意图;
图14是本申请实施方式的成像模组调节同轴度的另一过程示意图;
图15是本申请实施方式的电子装置的外壳的运动示意图;
图16是相关技术的电子装置的剖面示意图;
图17是本申请实施方式的控制方法的流程示意图;
图18是本申请实施方式的控制方法的场景示意图;
图19是本申请实施方式的控制方法的另一场景示意图;
图20是本申请实施方式的控制方法的又一场景示意图;
图21是本申请另一实施方式的控制方法的流程示意图;
图22是本申请另一实施方式的控制方法的场景示意图;
图23是本申请又一实施方式的控制方法的流程示意图;
图24是本申请再一实施方式的控制方法的流程示意图;
图25是本申请再一实施方式的控制方法的场景示意图;
图26是本申请另一实施方式的控制方法的流程示意图;
图27是本申请又一实施方式的控制方法的流程示意图;
图28是本申请再一实施方式的控制方法的流程示意图;
图29是本申请实施方式的电子装置的模块示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
随着用户对图像质量的要求逐渐提高,成像模组中镜头的高度也越来越高,导致电子装置在成像模组处的厚度较大,不利于电子装置外形的美观和携带的便利。
请参阅图1和图2,本申请实施方式的电子装置100包括成像模组10和外壳20。
具体地,电子装置100可以为移动或便携式并执行无线通信的各种类型的计算机系统设备中的任何一种。例如,电子装置100可以为手机、便携式游戏设备、膝上型电脑、掌上电脑(personal digital assistant,PDA)、平板电脑(portable andrid device,PAD)、便携式互联网设备、可穿戴设备、车载终端、导航仪、音乐播放器以及数据存储设备等。在此不对电子装置100的具体形式进行限定。接下来以电子装置100为手机为例进行说明。
请一并参阅图3、图4和图5,本申请实施方式的成像模组10包括图像传感器11、第一镜头12、第二镜头13、驱动组件14和音圈马达15。
图像传感器11设置在第一镜头12的光轴121上。如此,图像传感器11可通过第一镜头12获取图像。
具体地,图像传感器11可以采用互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)感光元件或者电荷耦合元件(Charge-coupled Device,CCD)感光元件。在此不对图像传感器11的具体形式进行限定。
第一镜头12包括但不限于广角镜头、长焦镜头、鱼眼镜头、微距镜头。第二镜头13包括但不限于广角镜头、长焦镜头、鱼眼镜头、微距镜头。第一镜头12和第二镜头13的种类可以相同也可以不同。
在本实施方式中,第一镜头12的数量为1个,第二镜头13的数量为1个。
可以理解,在其他的一些实施方式中,第一镜头12的数量可为1个,第二镜头13的数量可为多个。例如2个、3个、4个或其他数量。
在其他的另一些实施方式中,第一镜头12的数量可为多个,例如2个、3个、4个或其他数量,第二镜头13的数量可为1个。
在其他的又一些实施方式中,第一镜头12的数量可为多个,第二镜头13的数量也可为多个。
在此不对第一镜头12和第二镜头13的具体数量和数量关系进行限定。
在本实施方式中,第二镜头13能够在第一位置和第二位置之间运动。换言之,第二镜头13能够位于第一位置、第二位置、或第一位置和第二位置之间的位置。
在图2和图3中,第二镜头13位于第一位置,第二镜头13与第一镜头12的光轴121错开,第二镜头13的上表面与图像传感器11的上表面之间的距离为第一距离A;
在图4和图5中,第二镜头13位于第二位置,第二镜头13位于第一镜头12的光轴121上且位于第一镜头12背离图像传感器11的一侧,第二镜头13的上表面与图像传感器11的上表面之间的距离为第二距离B。
在本实施方式中,第二距离B大于第一距离A。
如此,第二镜头13在位于第一位置时与图像传感器11在电子装置100厚度方向上的距离较小,使得电子装置100在成像模组10处的厚度较低,保证了电子装置100外形的美观和携带的便利。而第二镜头13在位于第二位置时,第二镜头13位于第一镜头12的光轴上且位于第一镜头12背离图像传感器11的一侧,可使得第一镜头12和第二镜头13协同工作,有利于提高拍摄的图像的质量。
可以理解,第二镜头13位于第一镜头12的光轴上且位于第一镜头12背离图像传感器11的一侧,相当于增加了用于成像模组10成像的镜片的数量,有利于调节成像模组10的焦距、像差、畸变等光学参数,从而使得获取的图像的细节更加丰富。而且,可以使得光线在图像传感器11上投射的面积更大,使得更多的像素感光,从而提高图像的分辨率。这样,就可以提高图像的清晰度和质量。
在本实施方式中,电子装置100可包括基础拍摄状态和增强拍摄状态。
具体地,在第二镜头13处于第一位置时,图像传感器11用于根据拍摄指令信息通过第一镜头12获取图像。如此,可仅通过第一镜头12获取图像,这样用户无需等待第二镜头13从第一位置移动至第二位置,在第二镜头13未处于第二位置时也可以进行拍摄,使得用户的使用更加方便。此时电子装置100处于基础拍摄状态。
可以理解,第二镜头13未处于第二位置,可以是第二镜头13处于第一位置,也可以是第二镜头13处于第一位置和第二位置之间的位置。在此不进行限定。
具体地,在第二镜头13处于第二位置时,图像传感器11用于根据拍摄指令信息通过第二镜头13和第一镜头12获取图像。如此,使得第一镜头12和第二镜头13协同工作,有利于提高拍摄的图像的质量。此时电子装置100处于增强拍摄状态。
这样,无论第二镜头13处于第一位置还是处于第二位置,图像传感器11均可根据拍摄指令信息获取图像,这样可以提供多种拍摄模式以供用户选择或供成像模组10自动选择,有利于提高用户体验。
进一步地,拍摄指令信息包括但不限于触摸信息、语音信息、按键信息。换言之,拍摄指令可由用户点击拍摄的图标触发、也可由用户的语音触发、还可由用户按键触发。在此不对拍摄指令信息的具体形式和具体触发方式进行限定。
另外,请参阅图6和图7,在第二镜头13处于第一位置时,第一镜头12的上表面与图像传感器11的上表面之间的距离为第三距离C,第一距离A小于或等于第三距离C。
请注意,为方便说明,本文将在第二镜头13位于第一位置时,第二镜头13的上表面与图像传感器11的上表面之间的距离作为第一距离A;将在第二镜头13位于第二位置时,第二镜头13的上表面与图像传感器11的上表面之间的距离作为第二距离B;将在第二镜头13在处于第一位置时,第一镜头12的上表面与图像传感器11的上表面之间的距离作为第三距离C。
在图6的示例中,第一距离A等于第三距离C。
在图7的示例中,第一距离A小于第三距离C。
如此,在第二镜头13处于第一位置时,第二镜头13的上表面不会高于第一镜头12的上表面,避免了电子装置100需要在第一镜头12的光轴方向上,即电子装置100的厚度方向上,为第二镜头13高出第一镜头12的部分预留空间,可使得成像模组10的整体厚度较低并使得电子装置100的内部空间得到充分利用,有利于电子装置100的轻薄化。
请再次参阅图2-图5,驱动组件14用于驱动第二镜头13在第一位置和第二位置之间运动。具体地,在本实施方式中,驱动组件14包括驱动件142和连接件144,连接件144连接驱动件142和第二镜头13。驱动件142用于驱动连接件144运动,以带动第二镜头13在第一位置和第二位置之间运动。如此,通过驱动组件14驱动第二镜头13运动,无需用户手动调整第二镜头13的位置,操作方便,有利于提高用户体验。
进一步地,驱动件142包括马达。在本实施方式中,驱动件142包括同步马达。同步马达的运行稳定性高、过载能力大,可以使得对连接件144和第二镜头13的驱动更加稳定和准确,有利于保证驱动效果。
可以理解,在其他的实施方式中,驱动件142可包括异步马达。异步马达的价格较低,有利于降低成像模组10的成本。在此不对驱动件142的具体形式进行限定。
更进一步地,连接件144可包括齿轮(图未示)和与齿轮啮合的齿条(图未示),齿轮连接驱动件142,齿条连接第二镜头13,驱动件142用于驱动齿轮转动,以带动齿条移动,从而带动第二镜头13在第一位置和第二位置之间运动。如此,通过齿轮和齿条的传动,实现第二镜头13在第一位置和第二位置之间的运动,结构简单,成本较低。
请参阅图8,在本实施方式中,驱动组件14用于驱动第二镜头13先沿着第二镜头13的光轴131从第一位置运动至第三位置,再从第三位置沿着与第二镜头13的光轴131垂直的方向运动至第二位置。其中,在第二镜头13位于第三位置时,第二镜头13的上表面与图像传感器11的上表面之间的距离为第二距离B。
如此,先将第二镜头13抬高,再运动至第一镜头12上,避免了第二镜头13在运动的过程中与第一镜头12或其他元件发生干涉,有利于保证第二镜头13顺利运动并避免成像模组10由于第二镜头13的运动而损坏。
可以理解,在其他的一些实施方式中,驱动组件14也可用于驱动第二镜头13先沿着偏离于第二镜头13的光轴131的方向从第一位置运动至上述的第三位置,如图9所示。如此,也能先将第二镜头13抬高,再运动至第一镜头12上。
在此不对驱动组件14驱动第二镜头13从第一位置运动至第二位置的具体方式和具体路径进行限定。
在图3和图5的示例中,音圈马达15用于驱动第一镜头12和/或第二镜头13运动,以使成像模组10对焦。
具体地,音圈马达15的数量为2个,分别为音圈马达15a和音圈马达15b。第一镜头12设置在音圈马达15a中,音圈马达15a用于驱动第一镜头12运动。第二镜头13设置在音圈马达15b中,驱动组件14连接音圈马达15b,音圈马达15b用于驱动第二镜头13运动。
进一步地,可以仅通过音圈马达15a驱动第一镜头12运动,以使成像模组10对焦;也可仅通过音圈马达15b驱动第二镜头13运动,以使成像模组10对焦;还可通过音圈马达15a驱动第一镜头12运动,并通过音圈马达15b驱动第二镜头13运动,以使成像模组10对焦。
如此,在一个音圈马达15损坏的情况下,可以采用另一个音圈马达15进行对焦,可以保证对焦的顺利进行,提高成像模组10的可靠性。而且,这样提供了多种对焦方式,可以根据实际场景和用户需要进行选择。
可以理解,在其他的一些实施方式中,音圈马达15的数量可为1个,第二镜头13设置在音圈马达15b中,驱动组件14连接音圈马达15b;音圈马达15b用于驱动第二镜头13运动,以使成像模组10对焦。
如此,通过能够在第一位置和第二位置之间运动的第二镜头13实现对焦,使得图像传感器11和第一镜头12始终无需运动,可以保证图像传感器11和第一镜头12的可靠性,避免多个部件可动而导致成像模组10容易出现故障。
请注意,由于第二镜头13设置在音圈马达15b中,且第二镜头13能够在第一位置和第二位置之间运动,因此,音圈马达15b也能在第一位置和第二位置之间运动。换言之,音圈马达15b与第二镜头13同步运动。
在一个例子中,音圈马达15b用于驱动第二镜头13运动,以实现相位对焦(Phase Detection Auto Focus,PDAF)。具体地,可在第二镜头13处于当前位置时,根据成像模组10获取的图像进行计算,以确定目标位置,并控制音圈马达15b驱动第二镜头13移动至目标位置。
换言之,音圈马达15b用于驱动第二镜头13移动至目标位置,目标位置根据成像模组10在第二镜头13处于当前位置时获取的图像确定。如此,只需要计算一次即可完成对焦,对焦速度较快,可以降低电子装置100的处理器的计算负担。
在另一个例子中,音圈马达15b用于驱动第二镜头13运动以实现反差对焦。具体地,可控制音圈马达15b驱动第二镜头13沿光轴131运动,计算第二镜头13在每个位置时,成像模组12获取的图像的清晰度,并将清晰度最大的图像所对应的位置作为目标位置。
换言之,音圈马达15b用于驱动第二镜头13移动至目标位置,目标位置为成像模组12在第二镜头13处于每个位置时获取的图像中,清晰度最大的图像所对应的位置。如此,对焦更为精确,在弱光环境下也能准确对焦,对环境适应性强。
在此不对对焦的具体方式进行限定。
在其他的另一些实施方式中,音圈马达15的数量可为1个,第一镜头12设置在音圈马达15a中,音圈马达15a用于驱动第一镜头12运动,以使成像模组10对焦。
如此,音圈马达15无需随着第二镜头13从第一位置移动至第二位置,可以降低驱动组件14的负担并提高成像模组10的稳定性。而且,无需为音圈马达15提供活动的空间,可以使得成像模组10的元件排布更加紧凑,有利于成像模组10的小型化。
请注意,驱动第一镜头12运动以实现对焦的解释和说明、驱动第一镜头12和第二镜头13运动以实现对焦的解释和说明,可参照前文中驱动第二镜头13运动以实现对焦的部分,为避免冗余,在此不再赘述。
另外,成像模组10还可包括驱动元件(图未示),驱动元件用于驱动图像传感器11运动以实现对焦。或者说,可通过驱动图像传感器11、第一镜头12和第二镜头13中的至少一个运动,以实现对焦。这样进一步丰富了对焦方式,可以根据实际场景和用户需要进行选择。当然,成像模组10也可仅包括驱动元件。在此不对成像模组10实现对焦的具体方式和具体结构进行限定。
请参阅图10、图11和图12,成像模组10还包括调整机构16。调整机构16连接第一镜头12和/或第二镜头13,在第二镜头13处于第二位置且第一镜头12的光轴121与第二镜头13的光轴131的同轴度大于或等于预设的同轴度阈值时,调整机构16用于驱动第一镜头12和/或第二镜头13运动,以使同轴度小于同轴度阈值。
如此,通过调整机构16驱动第一镜头12和/或第二镜头13运动,以实现调节同轴度,可以避免由于同轴度过大而引起的图像不清晰,有利于提高成像模组10获取的图像质量。
可以理解,镜头同轴度的调节比较精细,而第二镜头13处于第二位置时,第二镜头13只是大致处 于第一镜头12的光轴121上,通常不能使得第一镜头12的光轴121与第二镜头13的光轴131的同轴度小于预设的同轴度阈值。因此,在第二镜头13处于第二位置时,需要对第一镜头12和/或第二镜头13的位置进行微调,以使同轴度小于同轴度阈值,从而避免由于同轴度较大而引起的图像质量较差,有利于提高图像质量。
请注意,此处的同轴度表示第一镜头12的光轴121与第二镜头13的光轴131不同轴的程度。
在图10的示例中,调整机构16连接第二镜头13,调整机构16用于驱动第二镜头13运动,以使同轴度小于同轴度阈值。
在图11的示例中,调整机构16连接第一镜头12,调整机构16用于驱动第一镜头12运动,以使同轴度小于同轴度阈值。
在图12的示例中,调整机构16连接第一镜头12和第二镜头13,调整机构16用于驱动第一镜头12和第二镜头13运动,以使同轴度小于同轴度阈值。
请参阅图13,调整机构16用于驱动第二镜头13在垂直于第二镜头13的光轴131的平面移动。具体地,同轴度阈值包括距离阈值,调整后,光轴距离D小于预设的距离阈值,光轴距离D为第一镜头12的光轴121与第二镜头13的光轴131的距离。
如此,通过调节光轴距离D,从而调节第一镜头12与第二镜头13的同轴度,可以避免由于光轴距离D较大而引起的图像不清晰,从而提高图像质量。
请注意,此处的光轴距离D是指,第二镜头13的光轴131与第一镜头12的光心122所在平面的交点132,与第一镜头12的光心122的距离。
在本实施方式中,距离阈值的数值范围为:0.05mm-0.15mm。例如为0.05mm、0.09mm、0.1mm、0.13mm、0.15mm。在此不对距离阈值的具体数值进行限定。在图13的示例中,调整后,光轴距离D为0mm。
在本实施方式中,调整机构16可为音圈马达15。如此,无需增加新的部件,并可充分利用音圈马达15,有利于降低成本和成像模组10的小型化。
可以理解,在其他的实施方式中,调整机构16可包括第一驱动部件(图未示)和传动部件(图未示),传动部件连接第一驱动部件和第二镜头13,第一驱动部件用于驱动传动部件运动,以带动第二镜头13在垂直于第二镜头13的光轴131的平面移动。进一步地,第一驱动部件可包括电机,传动部件可包括齿轮和与齿轮啮合的齿条,齿轮连接第一驱动部件,齿条连接第二镜头13,第一驱动部件用于驱动齿轮转动,以带动齿条移动,从而带动第二镜头13在垂直于第二镜头13的光轴131的平面移动。如此,通过电机、齿轮和齿条,驱动第二镜头13在垂直于第二镜头13的光轴131的平面移动,结构简单,容易实现。在此不对调整机构16的具体形式进行限定。
另外,在图11的示例中,调整机构16用于驱动第一镜头12在垂直于第一镜头12的光轴121的平面移动。在图12的示例中,调整机构16用于驱动第一镜头12在垂直于第一镜头12的光轴121的平面移动,并驱动第二镜头13在垂直于第二镜头13的光轴131的平面移动。
也即是说,调整机构16用于驱动第一镜头12在垂直于第一镜头12的光轴121的平面移动;和/或,驱动第二镜头13在垂直于第二镜头13的光轴131的平面移动。如此,均可以避免由于光轴距离D较大而引起的图像不清晰,从而提高图像质量。
在此不对调节光轴距离D的具体方式进行限定。
关于图11和图12的解释和说明,可参照前文中调整机构16驱动第二镜头13的部分,为避免冗余,在此不再赘述。
请参阅图14,调整机构16用于驱动第二镜头13转动。具体地,同轴度阈值包括角度阈值,调整后,光轴夹角α小于预设的角度阈值,光轴夹角α为第一镜头12的光轴121与第二镜头13的光轴131的夹角。
如此,通过调节光轴夹角α,从而调节第一镜头12与第二镜头13的同轴度,可以避免由于光轴夹角α较大而引起的图像不清晰,从而提高图像质量。
在本实施方式中,角度阈值的数值范围为:0.05°-0.15°。例如为0.05°、0.09°、0.1°、0.13°、0.15°。在此不对角度阈值的具体数值进行限定。在图14的示例中,调整后,光轴夹角α的角度为0°。
具体地,调整机构16包括第二驱动部件(图未示)和连接部件(图未示),连接部件连接第二驱动部件和第二镜头13,第二驱动部件用于驱动连接部件转动,以带动第二镜头13转动,以使光轴夹角α小 于预设的角度阈值。进一步地,第二驱动部件可包括电机,连接部件可包括均连接第二镜头13的第一连接臂(图未示)和第二连接臂(图未示),第二驱动部件用于驱动第一连接臂转动,以带动第二镜头13绕第一轴线转动,第二驱动部件用于驱动第二连接臂转动,以带动第二镜头13绕第二轴线转动。第一轴线与第二轴线垂直。
如此,通过驱动第二镜头13绕第一轴线和第二轴线转动,能够在两个维度上调整第二镜头13,使得对光轴夹角α的调整更加精细,有利于提高图像质量。
另外,在图11示例中,调整机构16用于驱动第一镜头12转动。在图12的示例中,调整机构16用于驱动第一镜头12和第二镜头13转动。
也即是说,调整机构16用于驱动第一镜头12和/或第二镜头13转动。如此,均可以避免由于光轴夹角α较大而引起的图像不清晰,从而提高图像质量。
关于图11和图12的解释和说明,可参照前文中调整机构16驱动第二镜头13的部分,为避免冗余,在此不再赘述。
此外,在一个实施例中,可获取预设的图像清晰度与镜头同轴度的对应关系,计算第一镜头12和第二镜头13在当前位置时,成像模组10获取的图像的清晰度,并根据清晰度和对应关系确定第一镜头12和第二镜头13的同轴度。如此,可以通过图像的清晰度来确定同轴度,无需通过仪器测量,简单方便,也可以节约电子装置100的内部空间。
在第一镜头12和第二镜头13的同轴度大于或等于预设的同轴度阈值时,调整机构16用于驱动第一镜头12和/或第二镜头13运动,以使成像模组10获取的图像对应的同轴度小于同轴度阈值。如此,可以实现对同轴度的调节,使得同轴度小于同轴度阈值。
进一步地,图像清晰度与镜头同轴度呈负相关关系。换言之,第二镜头13的光轴131和第一镜头12的光轴121越重合,同轴度越小,图像越清晰,图像的清晰度越大。
在另一个实施例中,也可以计算第一镜头12和第二镜头13在当前位置时,成像模组10获取的图像的清晰度,在清晰度小于预设清晰度阈值时,调整机构16用于驱动第一镜头12和/或第二镜头13运动,以使成像模组10获取的图像的清晰度大于清晰度阈值。如此,通过调节第一镜头12和/或第二镜头13的位置,使得图像清晰度较高,省去了同轴度的确定,控制方法的执行时间更短,有利于提高调节速度。
在又一个实施例中,可控制调整机构16驱动第一镜头12运动,计算第一镜头12在每个位置时,成像模组10获取的图像的清晰度,并将清晰度最大的图像所对应的位置作为目标位置,控制调整机构16驱动第一镜头12运动至目标位置,以实现同轴度的调整。如此,控制调整机构16驱动第一镜头12运动至清晰度最大的图像对应的位置,可以使得成像模组10拍摄的图像最为清晰,从而使得图像质量最高。
在再一个实施例中,可控制调整机构16驱动第二镜头13运动,计算第二镜头13在每个位置时,成像模组10获取的图像的清晰度,并将清晰度最大的图像所对应的位置作为目标位置,控制调整机构16驱动第二镜头13运动至目标位置,以实现同轴度的调整。如此,控制调整机构16驱动第二镜头13运动至清晰度最大的图像对应的位置,可以使得成像模组10拍摄的图像最为清晰,从而使得图像质量最高。
请再次参阅图1和图15,外壳20包括第一部21和第二部22。
第一部23形成有通孔23,成像模组10外的光线通过通孔23进入成像模组10。如此,使得成像模组10能够获取外部光线,从而获取图像。
具体地,通孔23的形状可为矩形、方形、圆形、椭圆形或其他形状。在此不对通孔23的具体形状进行限定。
在图15的示例中,在第二镜头13处于第二位置时,第二镜头13至少部分地设置在通孔23中。如此,在第二镜头13处于第二位置时,通孔23能够对第二镜头13起到一定的限位作用,避免第二镜头13发生大幅度的运动。这样可以避免在调节同轴度的过程中,由于第二镜头13能够运动的幅度较大而导致调节效率较低。
可以理解,在其他的示例中,第一镜头12也可至少部分地设置在通孔23中。如此,便于第一镜头12和外壳在安装的定位,可以提高生产效率。
在本实施方式中,在第二镜头13处于第一位置时,电子装置100的外壳20覆盖第二镜头13;在第二镜头13从第一位置运动至第二位置前,外壳20能够运动,以使第一镜头12和外壳20之间形成用于避让第二镜头13运动的避让空间24,驱动组件14用于驱动第二镜头13从第一位置经由避让空间24运 动至第二位置。
具体地,第二部22能够在第四位置和第五位置之间运动,在第二部22处于第四位置时,第二部22覆盖第二镜头13,在第二部22处于第五位置时,第一镜头12和外壳20之间形成避让空间24。
进一步地,在第二镜头13处于第一位置时,可控制第二部22处于第四位置;在第二镜头13从第一位置运动至第二位置前,可控制第二部22处于从第四位置移动至第五位置。
如此,在第二镜头13处于第一位置时,外壳20能够覆盖第二镜头13,使得用户难以观察到第二镜头13,有利于提高电子装置100外观效果,并使得用户的视觉体验更好。并且,外壳20能够保护第二镜头13,从而防止灰尘、水汽等杂物进入第二镜头13并防止第二镜头13被刮花,可以避免第二镜头13受到污染、侵蚀和损坏。
而外壳20能够运动以形成避让空间24,避免了外壳20的存在妨碍第二镜头13的运动,可以保证第二镜头13能够从第一位置经由避让空间24运动至第二位置。
在一个例子中,可在控制第二部22从第四位置开始运动的同时,控制第二镜头13从第一位置开始运动。如此,可以从整体上减少第二部22和第二镜头13运动的时间,从而提高响应速度。
在另一个例子中,可在第二部22处于第五位置时,控制第二镜头13从第一位置开始运动。如此,避让空间24在第二镜头13从第一位置开始运动时已经预先形成,可以保证第二镜头13可从第一位置经由避让空间24运动至第二位置。
在此不对第二部22开始运动的时间与第二镜头13开始运动的时间之间的关系进行限定。
在图15的示例中,在第二镜头13运动至第二位置后,可控制第二部22从第五位置运动至第四位置。如此,有利于提高电子装置100外观效果,并使得用户的视觉体验更好。并且,可以防止灰尘、水汽等杂物通过避让空间24进入成像模组10内,从而避免成像模组10受到污染、侵蚀和损坏。
可以理解,在其他的示例中,在第二镜头13运动至第二位置后,可控制第二部22保持处于第五位置的状态,在获取到回复指令时,才控制第二部22从第五位置运动至第四位置。如此,可以避免第二部22反复运动,有利于节约电量并延长第二部22的寿命。
具体地,回复指令可由用户触发。如此,使得第二部22从第五位置运动至第四位置受到用户的控制,使得第二部22的运动更加符合用户的需求,有利于提高用户的体验。
进一步地,回复指令可在用户退出增强拍摄状态时触发。如此,用户无需进行额外的操作,即可在退出增强拍摄状态时,使得第二部22从第五位置运动至第四位置,可以减少用户操作的步骤,方便快捷,有利于提高用户体验。
综合以上,本申请实施方式提供一种成像模组10和电子装置100。
本申请实施方式的成像模组10包括图像传感器11、第一镜头12、第二镜头13和驱动组件14,图像传感器11设置在第一镜头12的光轴121上,驱动组件14用于驱动第二镜头13在第一位置和第二位置之间运动;在第二镜头13位于第一位置时,第二镜头13与第一镜头12的光轴121错开,第二镜头13的上表面与图像传感器11的上表面之间的距离为第一距离A;在第二镜头13位于第二位置时,第二镜头13位于第一镜头12的光轴121上且位于第一镜头12背离图像传感器11的一侧,第二镜头13的上表面与图像传感器11的上表面之间的距离为第二距离B;第二距离B大于第一距离A。
本申请实施方式的电子装置100包括上述的成像模组10。
本申请实施方式的成像模组10和电子装置100,第二镜头13在位于第一位置时与图像传感器11在电子装置100厚度方向上的距离较小,使得电子装置100在成像模组处的厚度较低,保证了电子装置100外形的美观和携带的便利。而第二镜头13在位于第二位置时,第二镜头13位于第一镜头12的光轴上且位于第一镜头12背离图像传感器11的一侧,可使得第一镜头12和第二镜头13协同工作,有利于提高拍摄的图像的质量。
请参阅图16,图16是相关技术中成像模组200的剖面示意图。成像模组200包括镜头201、音圈马达202和图像传感器203。成像模组200的镜头201可由镜片构成,镜片全部装在一个镜筒内。这样镜头201的厚度较高,导致采用该成像模组200的电子装置在成像模组200处的厚度较高,或者,成像模组200自电子装置凸出。这样虽然使得成像模组200获取的图像质量较好,但是不利于电子装置的美观和携带的便利。
而本申请实施方式的成像模组10和电子装置100,通过第一镜头12和第二镜头13的组合和拆分, 既可以在第一镜头12和第二镜头13组合时使得图像质量较好,又可以在第一镜头12和第二镜头13拆分时保证外形的美观和携带的便利。
请参阅图17和图18,本申请实施方式提供一种控制方法。控制方法用于上述的电子装置100,控制方法包括:
步骤S17:获取第一触发信号,第一触发信号由电子装置100在从第一状态切换至第二状态时触发;以及
步骤S18:根据第一触发信号,控制驱动组件14驱动第二镜头13从第一位置运动至第二位置。
本申请实施方式的控制方法,第二镜头13在处于第一位置时与图像传感器11在电子装置100厚度方向上的距离较小,使得电子装置100处于第一状态时在成像模组10处的厚度较低,保证了电子装置100外形的美观和携带的便利。而根据第一触发信号控制驱动组件14驱动第二镜头13从第一位置运动至第二位置,使得第二镜头13位于第一镜头12的光轴121上且位于第一镜头12背离图像传感器11的一侧,从而使第一镜头12和第二镜头13协同工作,有利于提高拍摄的图像的质量。
可以理解,第二镜头13位于第一镜头12的光轴上且位于第一镜头12背离图像传感器11的一侧,相当于增加了用于成像模组10成像的镜片的数量,有利于调节成像模组10的焦距、像差、畸变等光学参数,从而使得获取的图像的细节更加丰富。而且,可以使得光线在图像传感器11上投射的面积更大,使得更多的像素感光,从而提高图像的分辨率。这样,就可以提高图像的清晰度和质量。
在本实施方式中,第一状态包括非拍摄状态和基础拍摄状态,第二状态包括增强拍摄状态。
如此,在电子装置100处于非拍摄状态时,第二镜头13位于第一位置,使得电子装置100外形美观且携带便利。而且,这样提供了两种拍摄状态,用户可以根据需要自行选择,提高了用户选择的丰富性,有利于提高用户体验。
具体地,在电子装置100处于基础拍摄状态时,可仅通过第一镜头12获取图像,这样用户无需等待第二镜头13从第一位置移动至第二位置,在第二镜头13未处于第二位置时也可以进行拍摄,使得用户的使用更加方便。
在电子装置100处于增强拍摄状态时,第二镜头13位于第二位置,使得第一镜头12和第二镜头13协同工作,有利于提高拍摄的图像的质量。
请注意,第一触发信号是驱动组件14工作的控制信号。
进一步地,控制方法还包括:获取拍摄指令信息;在第二镜头13处于第一位置时,根据拍摄指令信息控制图像传感器11通过第一镜头12获取图像;在第二镜头13处于第二位置时,根据拍摄指令信息控制图像传感器11通过第二镜头13和第一镜头12获取图像。
这样,无论第二镜头13处于第一位置还是处于第二位置,图像传感器11均可根据拍摄指令信息获取图像,这样可以提供多种拍摄模式以供用户选择或供成像模组10自动选择,有利于提高用户体验。
进一步地,拍摄指令信息包括但不限于触摸信息、语音信息、按键信息。换言之,拍摄指令可由用户点击拍摄的图标触发、也可由用户的语音触发、还可由用户按键触发。在此不对拍摄指令信息的具体形式和具体触发方式进行限定。
请参阅图18,在一个例子中,在电子装置100处于非拍摄状态时,第二镜头13位于第一位置,用户点击“增强拍摄”的图标后,电子装置100进入增强拍摄状态,并触发第一触发信号,使得驱动组件14驱动第二镜头13从第一位置运动至第二位置。用户可点击圆形图标触发拍摄指令信息,以使电子装置100根据拍摄指令信息控制图像传感器11通过第二镜头13和第一镜头12获取图像。
请参阅图19,在另一个例子中,在电子装置100处于非拍摄状态时,第二镜头13位于第一位置,用户点击“基础拍摄”的图标后,电子装置100进入基础拍摄状态,不触发第一触发信号,驱动组件14不驱动第二镜头13从第一位置运动至第二位置。用户可点击圆形图标触发拍摄指令信息,以使电子装置100根据拍摄指令信息控制图像传感器11通过第一镜头12获取图像。
可以理解,在其他的实施方式中,可以是第一状态包括非拍摄状态,第二状态包括拍摄状态。如此,在电子装置100处于非拍摄状态时,第二镜头13位于第一位置,使得电子装置100外形美观且携带便利。在电子装置100处于拍摄状态时,第二镜头13位于第二位置,与第一镜头12协同工作,拍摄的图像质量较高。这样无需用户手动选择模式,操作简单方便,有利于提高用户体验。
请参阅图20,在又一个例子中,在电子装置100处于非拍摄状态时,第二镜头13位于第一位置,用 户点击“相机”应用的图标后,电子装置100进入拍摄状态,并触发第一触发信号,使得驱动组件14驱动第二镜头13从第一位置运动至第二位置。用户可点击圆形图标触发拍摄指令信息,以使电子装置100根据拍摄指令信息控制图像传感器11通过第二镜头13和第一镜头12获取图像。
请参阅图21和图22,在某些实施方式中,控制方法还包括:
步骤S13:获取状态命令信息;以及
步骤S14:根据状态命令信息设置电子装置100处于第一状态或第二状态。
如此,通过状态命令信息,设置电子装置100所处的状态,可以实现对电子装置100的状态的切换,从而在第一状态切换至第二状态时触发第一触发信号,以使驱动组件14驱动第二镜头13从第一位置运动至第二位置。
具体地,在步骤S13中,状态命令信息可由用户触发,也可由电子装置100自行触发。换言之,电子装置100的状态的切换,可由用户触发,也可由电子装置100自行触发。
进一步地,控制方法可包括:在电子装置100熄屏的情况下,生成状态命令信息,以设置电子装置100处于第一状态。
如此,可通过生成状态命令信息自动使得电子装置100在熄屏时处于第一状态,以使第二镜头13处于第一位置,从而方便用户收纳电子装置100,无需用户额外进行手动操作,有利于提高用户体验。
可以理解,在电子装置100熄屏的情况下,用户通常已经拍摄完毕,不需要继续使用电子装置100,因此,可通过生成状态命令信息自动使第二镜头13处于第一位置,从而方便用户收纳电子装置100。
进一步地,控制方法可包括:在电子装置100来电的情况下,生成状态命令信息,以设置电子装置100处于第一状态。
如此,可通过生成状态命令信息自动使得电子装置100在来电时处于第一状态,以使第二镜头13处于第一位置,从而方便用户接听电话,无需用户额外进行手动操作,有利于提高用户体验。
可以理解,在电子装置100来电的情况下,用户通常需要握持电子装置100,如果第二镜头13处于第二位置,容易使得电子装置100的握持感较差,例如不方便握持,或者长时间握持容易疲劳。因此,可通过生成状态命令信息自动使第二镜头13处于第一位置,从而方便用户接听电话。
更进一步地,控制方法可包括:在电子装置100通话完毕且当前应用为拍摄类应用的情况下,生成状态命令信息,以设置电子装置100处于第二状态。
如此,在用户接听完电话后,可通过生成状态命令信息自动使得电子装置100处于第二状态,以使第二镜头13处于第二位置,从而方便用户继续使用拍摄类应用,无需用户额外进行手动操作,有利于提高用户体验。
另外,如前所述,在本实施方式中,第一状态包括非拍摄状态和基础拍摄状态,第二状态包括增强拍摄状态。步骤S14可包括:根据状态命令信息设置电子装置100处于非拍摄状态、基础拍摄状态或增强拍摄状态。
在图18的示例中,用户通过点击“增强拍摄”的图标,向电子装置100输入状态命令信息“进入增强拍摄状态”。电子装置100获取该状态命令信息,并根据该状态命令信息设置电子装置100处于增强拍摄状态,从而实现从非拍摄状态至增强拍摄状态的切换。
在图19的示例中,用户通过点击“基础拍摄”的图标,向电子装置100输入状态命令信息“进入基础拍摄状态”。电子装置100获取该状态命令信息,并根据该状态命令信息设置电子装置100处于基础拍摄状态,从而实现从非拍摄状态至基础拍摄状态的切换。
在图22的示例中,在电子装置100处于增强拍摄状态时,用户通过点击“切换”的图标,向电子装置100输入状态命令信息“进入基础拍摄状态”。电子装置100获取该状态命令信息,并根据该状态命令信息设置电子装置100处于基础拍摄状态,从而实现从增强拍摄状态至基础拍摄状态的切换。
进一步地,控制方法可包括:在当前应用为拍摄类应用且当前环境亮度小于预设的亮度阈值时,生成状态命令信息,以设置电子装置100处于增强拍摄状态。
如此,在当前环境亮度较差的情况下,可通过生成状态命令信息自动使得电子装置100处于增强拍摄状态,以使第二镜头13处于第二位置,从而提高拍摄的图像的质量,无需用户额外进行手动操作,有利于提高用户体验。
可以理解,在当前环境亮度较弱时,通常图像质量较差,因此,可通过生成状态命令信息自动使第 二镜头13处于第二位置,从而提高拍摄的图像的质量。
此外,如前所述,在其他的实施方式中,可以是第一状态包括非拍摄状态,增强拍摄状态包括拍摄状态。步骤S14可包括:根据状态命令信息设置电子装置100处于非拍摄状态或拍摄状态。
在图20的示例中,用户通过点击“相机”的图标,向电子装置100输入状态命令信息“进入拍摄状态”。电子装置100获取该状态命令信息,并根据该状态命令信息设置电子装置100处于拍摄状态,从而实现从非拍摄状态至拍摄状态的切换。
关于该部分的解释和说明,可参照前文中根据状态命令信息设置电子装置100处于非拍摄状态、基础拍摄状态或增强拍摄状态的解释和说明,为避免冗余,在此不再赘述。
请参阅图23,在某些实施方式中,控制方法还包括:
步骤S11:获取输入信息;以及
步骤S12:根据输入信息确定电子装置100进入第一状态和第二状态的预设条件。
如此,用户可以通过输入信息,设置电子装置100进入第一状态和第二状态的预设条件,从而使得电子装置100在达到预设条件时自动进入第一状态和第二状态,无需用户每次都进行手动操作,并可使得电子装置100的状态自动切换符合用户的需求,有利于提高用户体验。
具体地,输入信息包括但不限于触摸信息、语音信息、按键信息。换言之,拍摄指令可由用户通过触屏输入、也可由用户通过语音输入、还可由用户通过按键输入。在此不对输入信息的具体形式和具体输入方式进行限定。
如前所述,在本实施方式中,第一状态包括非拍摄状态和基础拍摄状态,第二状态包括增强拍摄状态。
在一个例子中,用户可设置拍摄类应用启动时,成像模组10默认为基础拍摄模式。这样,就可以将电子装置100进入基础拍摄状态的预设条件设置为:进入拍摄类应用。
在另一个例子中,用户可设置拍摄类应用启动时,成像模组10默认为增强拍摄模式。这样,就可以将电子装置100进入增强拍摄状态的预设条件设置为:进入拍摄类应用。
在又一个例子中,用户可设置退出拍摄类应用时,成像模组10处于非拍摄状态。这样,就可以将电子装置100进入非拍摄状态的预设条件设置为:退出拍摄类应用。
在再一个例子中,用户可设置在当前应用为拍摄类应用时根据当前环境亮度进入增强拍摄状态和基础拍摄状态,并设置预设亮度阈值的具体数值。这样,就可将电子装置100进入增强拍摄状态的预设条件设置为:当前应用为拍摄类应用且当前环境亮度小于预设的亮度阈值;可将电子装置100进入基础拍摄状态的预设条件设置为:当前应用为拍摄类应用且当前环境亮度大于或等于预设的亮度阈值。
以上仅为示例,在此不对预设条件的具体内容进行限定。
请参阅图24、图22和图25,在某些实施方式中,控制方法还包括:
步骤S25:获取第二触发信号,第二触发信号由电子装置100在从第二状态切换至第一状态时触发;以及
步骤S26:根据第二触发信号,控制驱动组件14驱动第二镜头13从第二位置运动至第一位置。
如此,通过第二触发信号,可以使得驱动组件14根据电子装置100的状态切换情况驱动第二镜头13运动,从而使电子装置100在处于第一状态时,第二镜头13处于第一位置。换言之,第二触发信号是驱动组件14工作的控制信号。
在图22的示例中,第一状态包括非拍摄状态和基础拍摄状态,第二状态包括增强拍摄状态。在电子装置100处于增强拍摄状态时,用户通过点击“切换”的图标,使得电子装置100从增强拍摄状态切换至基础拍摄状态,并触发第二触发信号,从而使得驱动组件14驱动第二镜头13从第二位置运动至第一位置。
在图25的示例中,第一状态包括非拍摄状态,第二状态包括拍摄状态。在电子装置100处于拍摄状态时,用户通过点击“退出”的图标,使得电子装置100从拍摄状态切换至非拍摄状态,并触发第二触发信号,从而使得驱动组件14驱动第二镜头13从第二位置运动至第一位置。
请注意,下文中关于控制方法的解释和说明,可参照前文对于电子装置100的解释和说明,为避免冗余,在此不再赘述。
请参阅图15和图26,在某些实施方式中,控制方法还包括:
步骤S15:在第二镜头13处于第一位置时,控制电子装置100的外壳20覆盖第二镜头13;
步骤S16:在第二镜头13从第一位置运动至第二位置前,控制外壳20运动,以使第一镜头12和外壳20之间形成用于避让第二镜头13运动的避让空间;
其中,步骤S18包括:
步骤S182:控制驱动组件14驱动第二镜头13从第一位置经由避让空间运动至第二位置。
具体地,第二部22能够在第四位置和第五位置之间运动,在第二部22处于第四位置时,第二部22覆盖第二镜头13,在第二部22处于第五位置时,第一镜头12和外壳20之间形成避让空间24,步骤S15包括:在第二镜头13处于第一位置时,控制第二部22处于第四位置;在第二镜头13从第一位置运动至第二位置前,控制第二部22处于从第四位置移动至第五位置。
进一步地,控制方法包括:在控制第二部22从第四位置开始运动的同时,控制第二镜头13从第一位置开始运动。如此,可以从整体上减少第二部22和第二镜头13运动的时间,从而提高响应速度。
进一步地,控制方法包括:在控制第二部22处于第五位置时,控制第二镜头13从第一位置开始运动。如此,避让空间24在第二镜头13从第一位置开始运动时已经预先形成,可以保证第二镜头13可从第一位置经由避让空间24运动至第二位置。
请参阅图27,在某些实施方式中,成像模组10还包括音圈马达15b,第二镜头13设置在音圈马达15中,驱动组件14连接音圈马达15b;控制方法还包括:
步骤S21:控制音圈马达15b驱动第二镜头13运动,以使成像模组10对焦。
在某些实施方式中,成像模组10还包括音圈马达15a,第一镜头12设置在音圈马达15a中,控制方法还包括:控制音圈马达15a驱动第一镜头12运动,以使成像模组10对焦。
在某些实施方式中,成像模组10还包括音圈马达15a和音圈马达15b,第一镜头12设置在音圈马达15a中,第二镜头13设置在音圈马达15中,驱动组件14连接音圈马达15b,控制方法还包括:控制音圈马达15a驱动第一镜头12运动,并控制音圈马达15b驱动第二镜头13运动,以使成像模组10对焦。
请参阅图13、图14和图28,在某些实施方式中,成像模组10包括调整机构16,控制方法还包括:
步骤S19:在第二镜头13处于第二位置时,检测第一镜头12的光轴121与第二镜头13的光轴131的同轴度;
步骤S20:在同轴度大于或等于预设的同轴度阈值时,控制调整机构16驱动第一镜头12和/或第二镜头13运动,以使同轴度小于同轴度阈值。
在某些实施方式中,步骤S20包括:控制调整机构16驱动第一镜头12在垂直于第一镜头12的光轴121的平面移动;和/或,控制调整机构16驱动第二镜头13在垂直于第二镜头13的光轴131的平面移动。
在某些实施方式中,步骤S20包括:控制第一镜头12和/或第二镜头13转动。
在某些实施方式中,在第二镜头13处于第一位置时,第二镜头13的上表面与图像传感器11的上表面的距离,小于或等于第一镜头12的上表面与图像传感器11的上表面的距离。
本申请实施方式提供一种电子装置100。电子装置100的成像模组10包括图像传感器11、第一镜头12、第二镜头13和驱动组件14,图像传感器11设置在第一镜头12的光轴121上,驱动组件14用于驱动第二镜头13在第一位置和第二位置之间运动;在第二镜头13位于第一位置时,第二镜头13与第一镜头12的光轴121错开,第二镜头13的上表面与图像传感器11的上表面之间的距离为第一距离A;在第二镜头13位于第二位置时,第二镜头13位于第一镜头12的光轴121上且位于第一镜头12背离图像传感器11的一侧,第二镜头13的上表面与图像传感器11的上表面之间的距离为第二距离B,第二距离B大于第一距离A;在电子装置100处于第一状态时,第二镜头13处于第一位置;在电子装置100处于第二状态时,第二镜头13处于第二位置。
本申请实施方式的电子装置100,第二镜头13在处于第一位置时与图像传感器11在电子装置100厚度方向上的距离较小,使得电子装置100处于第一状态时在成像模组10处的厚度较低,保证了电子装置100外形的美观和携带的便利。而根据第一触发信号控制驱动组件14驱动第二镜头13从第一位置运动至第二位置,使得第二镜头13位于第一镜头12的光轴121上且位于第一镜头12背离图像传感器11的一侧,从而使第一镜头12和第二镜头13协同工作,有利于提高拍摄的图像的质量。
请参阅图29,本申请实施方式提供一种电子装置100。电子装置100还包括连接成像模组10的处理器101,处理器101用于执行上述任一实施方式的控制方法。
例如执行:步骤S17:获取第一触发信号,第一触发信号由电子装置100在从第一状态切换至第二状态时触发;以及步骤S18:根据第一触发信号,控制驱动组件14驱动第二镜头13从第一位置运动至第二位置。
本申请实施方式的电子装置100,第二镜头13在处于第一位置时与图像传感器11在电子装置100厚度方向上的距离较小,使得电子装置100处于第一状态时在成像模组10处的厚度较低,保证了电子装置100外形的美观和携带的便利。而根据第一触发信号控制驱动组件14驱动第二镜头13从第一位置运动至第二位置,使得第二镜头13位于第一镜头12的光轴121上且位于第一镜头12背离图像传感器11的一侧,从而使第一镜头12和第二镜头13协同工作,有利于提高拍摄的图像的质量。
本申请实施方式还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当计算机可执行指令被一个或多个处理器101执行时,使得处理器101执行上述任一实施方式的控制方法。
例如执行:步骤S17:获取第一触发信号,第一触发信号由电子装置100在从第一状态切换至第二状态时触发;以及步骤S18:根据第一触发信号,控制驱动组件14驱动第二镜头13从第一位置运动至第二位置。
本申请实施方式的计算机可读存储介质,第二镜头13在处于第一位置时与图像传感器11在电子装置100厚度方向上的距离较小,使得电子装置100处于第一状态时在成像模组10处的厚度较低,保证了电子装置100外形的美观和携带的便利。而根据第一触发信号控制驱动组件14驱动第二镜头13从第一位置运动至第二位置,使得第二镜头13位于第一镜头12的光轴121上且位于第一镜头12背离图像传感器11的一侧,从而使第一镜头12和第二镜头13协同工作,有利于提高拍摄的图像的质量。
图29为一个实施例中的电子装置100的内部模块示意图。电子装置100包括通过系统总线110连接的处理器101、存储器102(例如为非易失性存储介质)、内存储器103、显示装置104和输入装置105。其中,电子装置100的存储器102存储有操作系统和计算机可读指令。该计算机可读指令可被处理器101执行,以实现上述任意一项实施方式的控制方法。
处理器101可用于提供计算和控制能力,支撑整个电子装置100的运行。电子装置100的内存储器103为存储器102中的计算机可读指令运行提供环境。输入装置105也可以是电子装置100外壳20上设置的按键、轨迹球或触控板,也可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图中示出的结构,仅仅是与本申请方案相关的部分结构的示意图,并不构成对本申请方案所应用于其上的电子装置的限定,具体的电子装置可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,的程序可存储于一非易失性计算机可读存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (24)

  1. 一种控制方法,用于电子装置,其特征在于,所述电子装置的成像模组包括图像传感器、第一镜头、第二镜头和驱动组件,所述图像传感器设置在所述第一镜头的光轴上,所述驱动组件用于驱动所述第二镜头运动;
    在所述电子装置处于第一状态时,所述第二镜头处于第一位置,所述第二镜头与所述第一镜头的光轴错开,所述第二镜头的上表面与所述图像传感器的上表面之间的距离为第一距离;
    在所述电子装置处于第二状态时,所述第二镜头处于第二位置,所述第二镜头位于所述第一镜头的光轴上且位于所述第一镜头背离所述图像传感器的一侧,所述第二镜头的上表面与所述图像传感器的上表面之间的距离为第二距离,所述第二距离大于所述第一距离;
    所述控制方法包括:
    获取第一触发信号,所述第一触发信号由所述电子装置在从所述第一状态切换至所述第二状态时触发;以及
    根据所述第一触发信号,控制所述驱动组件驱动所述第二镜头从所述第一位置运动至所述第二位置。
  2. 根据权利要求1所述的控制方法,其特征在于,还包括:
    获取第二触发信号,所述第二触发信号由所述电子装置在从所述第二状态切换至所述第一状态时触发;以及
    根据所述第二触发信号,控制所述驱动组件驱动所述第二镜头从所述第二位置运动至所述第一位置。
  3. 根据权利要求1所述的控制方法,其特征在于,还包括:
    在所述第二镜头处于所述第一位置时,控制所述电子装置的外壳覆盖所述第二镜头;
    在所述第二镜头从所述第一位置运动至所述第二位置前,控制所述外壳运动,以使所述第一镜头和所述外壳之间形成用于避让所述第二镜头运动的避让空间;
    其中,所述控制所述驱动组件驱动所述第二镜头从所述第一位置运动至第二位置的步骤,包括:
    控制所述驱动组件驱动所述第二镜头从所述第一位置经由所述避让空间运动至所述第二位置。
  4. 根据权利要求1所述的控制方法,其特征在于,所述成像模组还包括音圈马达,所述第二镜头设置在所述音圈马达中,所述驱动组件连接所述音圈马达;所述控制方法还包括:
    控制所述音圈马达驱动所述第二镜头运动,以使所述成像模组对焦。
  5. 根据权利要求1所述的控制方法,其特征在于,所述成像模组包括调整机构,所述控制方法还包括:
    在所述第二镜头处于所述第二位置时,检测所述第一镜头的光轴与所述第二镜头的光轴的同轴度;
    在所述同轴度大于或等于预设的同轴度阈值时,控制所述调整机构驱动所述第一镜头和/或所述第二镜头运动,以使所述同轴度小于所述同轴度阈值。
  6. 根据权利要求5所述的控制方法,其特征在于,所述控制所述第一镜头和/或所述第二镜头运动的步骤包括:
    控制所述调整机构驱动所述第一镜头在垂直于所述第一镜头的光轴的平面移动;和/或,
    控制所述调整机构驱动所述第二镜头在垂直于所述第二镜头的光轴的平面移动。
  7. 根据权利要求5所述的控制方法,其特征在于,所述控制所述第一镜头和/或所述第二镜头运动的步骤包括:
    控制所述第一镜头和/或所述第二镜头转动。
  8. 根据权利要求1所述的控制方法,其特征在于,还包括:
    获取状态命令信息;以及
    根据所述状态命令信息设置所述电子装置处于所述第一状态或所述第二状态。
  9. 根据权利要求1所述的控制方法,其特征在于,还包括:
    获取输入信息;以及
    根据所述输入信息确定所述电子装置进入所述第一状态和所述第二状态的预设条件。
  10. 根据权利要求1所述的控制方法,其特征在于,还包括:
    获取拍摄指令信息;
    在所述第二镜头处于所述第一位置时,根据所述拍摄指令信息控制所述图像传感器通过所述第一镜头获取图像;
    在所述第二镜头处于所述第二位置时,根据所述拍摄指令信息控制所述图像传感器通过所述第二镜头和所述第一镜头获取图像。
  11. 根据权利要求1所述的控制方法,其特征在于,所述第一状态包括非拍摄状态,所述第二状态包括拍摄状态;
    或,所述第一状态包括非拍摄状态和基础拍摄状态,所述第二状态包括增强拍摄状态。
  12. 根据权利要求1所述的控制方法,其特征在于,在所述第二镜头处于所述第一位置时,所述第一镜头的上表面与所述图像传感器的上表面之间的距离为第三距离,所述第一距离小于或等于所述第三距离。
  13. 一种成像模组,其特征在于,所述成像模组包括图像传感器、第一镜头、第二镜头和驱动组件,所述图像传感器设置在所述第一镜头的光轴上,所述驱动组件用于驱动所述第二镜头在第一位置和第二位置之间运动;
    在所述第二镜头位于所述第一位置时,所述第二镜头与所述第一镜头的光轴错开,所述第二镜头的上表面与所述图像传感器的上表面之间的距离为第一距离;
    在所述第二镜头位于所述第二位置时,所述第二镜头位于所述第一镜头的光轴上且位于所述第一镜头背离所述图像传感器的一侧,所述第二镜头的上表面与所述图像传感器的上表面之间的距离为第二距离;
    所述第二距离大于所述第一距离。
  14. 根据权利要求13所述的成像模组,其特征在于,所述成像模组包括音圈马达,所述第二镜头设置在所述音圈马达中,所述驱动组件连接所述音圈马达;所述音圈马达用于驱动所述第二镜头运动,以使所述成像模组对焦。
  15. 根据权利要求13所述的成像模组,其特征在于,所述成像模组包括连接所述第一镜头和/或所述第二镜头的调整机构,在所述第二镜头处于所述第二位置且所述第一镜头的光轴与所述第二镜头的光轴的同轴度大于或等于预设的同轴度阈值时,所述调整机构用于驱动所述第一镜头和/或所述第二镜头运动,以使所述同轴度小于所述同轴度阈值。
  16. 根据权利要求15所述的成像模组,其特征在于,所述调整机构用于驱动所述第一镜头在垂直于所述第一镜头的光轴的平面移动;和/或,驱动所述第二镜头在垂直于所述第二镜头的光轴的平面移动。
  17. 根据权利要求15所述的成像模组,其特征在于,所述调整机构用于驱动所述第一镜头和/或所述第二镜头转动。
  18. 根据权利要求13所述的成像模组,其特征在于,在所述第二镜头处于所述第一位置时,所述图像传感器用于根据拍摄指令信息通过所述第一镜头获取图像;
    在所述第二镜头处于所述第二位置时,所述图像传感器用于根据拍摄指令信息通过所述第二镜头和所述第一镜头获取图像。
  19. 根据权利要求13所述的成像模组,其特征在于,在所述第二镜头处于所述第一位置时,所述第一镜头的上表面与所述图像传感器的上表面之间的距离为第三距离,所述第一距离小于或等于所述第三距离。
  20. 一种电子装置,其特征在于,包括权利要求13-19中任一项所述的成像模组。
  21. 根据权利要求20所述的电子装置,其特征在于,在所述第二镜头处于所述第一位置时,所述电子装置的外壳覆盖所述第二镜头;在所述第二镜头从所述第一位置运动至所述第二位置前,所述外壳能够运动,以使所述第一镜头和所述外壳之间形成用于避让所述第二镜头运动的避让空间,所述驱动组件用于驱动所述第二镜头从所述第一位置经由所述避让空间运动至所述第二位置。
  22. 一种电子装置,其特征在于,所述电子装置的成像模组包括图像传感器、第一镜头、第二镜头和驱动组件,所述图像传感器设置在所述第一镜头的光轴上,所述驱动组件用于驱动所述第二镜头在第一位置和第二位置之间运动;
    在所述第二镜头位于所述第一位置时,所述第二镜头与所述第一镜头的光轴错开,所述第二镜头的上表面与所述图像传感器的上表面之间的距离为第一距离;
    在所述第二镜头位于所述第二位置时,所述第二镜头位于所述第一镜头的光轴上且位于所述第一镜头背离所述图像传感器的一侧,所述第二镜头的上表面与所述图像传感器的上表面之间的距离为第二距离,所述第二距离大于所述第一距离;
    在所述电子装置处于第一状态时,所述第二镜头处于所述第一位置;在所述电子装置处于第二状态时,所述第二镜头处于所述第二位置。
  23. 一种电子装置,其特征在于,所述电子装置包括成像模组和连接所述成像模组的处理器,所述成像模组包括图像传感器、第一镜头、第二镜头和驱动组件,所述图像传感器设置在所述第一镜头的光轴上,所述驱动组件用于驱动所述第二镜头运动;
    在所述电子装置处于第一状态时,所述第二镜头处于第一位置,所述第二镜头与所述第一镜头的光轴错开,所述第二镜头的上表面与所述图像传感器的上表面之间的距离为第一距离;
    在所述电子装置处于第二状态时,所述第二镜头处于第二位置,所述第二镜头位于所述第一镜头的光轴上且位于所述第一镜头背离所述图像传感器的一侧,所述第二镜头的上表面与所述图像传感器的上表面之间的距离为第二距离,所述第二距离大于所述第一距离;
    所述处理器用于执行权利要求1-12中任一项所述的控制方法。
  24. 一种包含计算机可执行指令的非易失性计算机可读存储介质,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器执行权利要求1-12中任一项所述的控制方法。
PCT/CN2021/073690 2020-02-20 2021-01-26 控制方法、成像模组、电子装置和存储介质 WO2021164504A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020187813.7 2020-02-20
CN202010103951.7A CN111277740A (zh) 2020-02-20 2020-02-20 控制方法、成像模组、电子装置和存储介质
CN202020187813.7U CN210867915U (zh) 2020-02-20 2020-02-20 成像模组和电子装置
CN202010103951.7 2020-02-20

Publications (1)

Publication Number Publication Date
WO2021164504A1 true WO2021164504A1 (zh) 2021-08-26

Family

ID=77392069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073690 WO2021164504A1 (zh) 2020-02-20 2021-01-26 控制方法、成像模组、电子装置和存储介质

Country Status (1)

Country Link
WO (1) WO2021164504A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060176373A1 (en) * 2005-02-07 2006-08-10 Fuji Photo Film Co., Ltd. Camera and lens device
CN104267559A (zh) * 2013-09-12 2015-01-07 香港应用科技研究院有限公司 具有自动对焦调整的多镜头成像装置及方法
CN107942600A (zh) * 2016-10-12 2018-04-20 三星电机株式会社 相机模块
CN208739252U (zh) * 2018-10-24 2019-04-12 北京小米移动软件有限公司 镜头组件及电子设备
CN109644225A (zh) * 2016-08-16 2019-04-16 微软技术许可有限责任公司 成像装置
CN111277740A (zh) * 2020-02-20 2020-06-12 Oppo广东移动通信有限公司 控制方法、成像模组、电子装置和存储介质
CN210867915U (zh) * 2020-02-20 2020-06-26 Oppo广东移动通信有限公司 成像模组和电子装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060176373A1 (en) * 2005-02-07 2006-08-10 Fuji Photo Film Co., Ltd. Camera and lens device
CN104267559A (zh) * 2013-09-12 2015-01-07 香港应用科技研究院有限公司 具有自动对焦调整的多镜头成像装置及方法
CN109644225A (zh) * 2016-08-16 2019-04-16 微软技术许可有限责任公司 成像装置
CN107942600A (zh) * 2016-10-12 2018-04-20 三星电机株式会社 相机模块
CN208739252U (zh) * 2018-10-24 2019-04-12 北京小米移动软件有限公司 镜头组件及电子设备
CN111277740A (zh) * 2020-02-20 2020-06-12 Oppo广东移动通信有限公司 控制方法、成像模组、电子装置和存储介质
CN210867915U (zh) * 2020-02-20 2020-06-26 Oppo广东移动通信有限公司 成像模组和电子装置

Similar Documents

Publication Publication Date Title
US11099711B2 (en) Display apparatus and method
JP4938894B2 (ja) セルフポートレートパノラマ写真を作成するためのミラー配列を備えたカメラシステム
JP4875206B2 (ja) 自動焦点アセンブリ
CN111277740A (zh) 控制方法、成像模组、电子装置和存储介质
JP5967544B2 (ja) レンズ鏡筒、撮像装置およびカメラ
US7649695B2 (en) Lens barrel and imaging apparatus
US7952814B2 (en) Lens barrel and imaging apparatus
JP2007028512A (ja) 表示装置及び撮像装置
CN210867915U (zh) 成像模组和电子装置
US20140036128A1 (en) Method and apparatus for manual focusing in portable terminal
JP5995637B2 (ja) 撮像装置、撮像装置の制御方法、プログラム、記憶媒体
JP2009086175A (ja) レンズ装置及び撮像装置
JP2013009189A (ja) 撮影装置および撮像方法
US7085073B1 (en) Automatic focusing method for digital image processing apparatus
US9857665B2 (en) Photographing apparatus, method of operating the photographing apparatus, and wireless communication terminal including the photographing apparatus
CN111163279A (zh) 电子装置、控制方法和存储介质
JP2006081089A (ja) 撮像装置
WO2021164504A1 (zh) 控制方法、成像模组、电子装置和存储介质
JP5566163B2 (ja) レンズ鏡筒及び撮像装置
JP2006270626A (ja) タッチパネル付き表示装置
JP2017174028A (ja) 可動式画像表示装置
CN112040095A (zh) 电子装置、电子装置的控制方法及存储介质
JP4381842B2 (ja) 撮像装置
US20220360716A1 (en) Imaging apparatus
US20050285964A1 (en) Image pickup apparatus having a display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756199

Country of ref document: EP

Kind code of ref document: A1