WO2021164157A1 - 一种从黑水中高效回收氮磷资源的方法 - Google Patents

一种从黑水中高效回收氮磷资源的方法 Download PDF

Info

Publication number
WO2021164157A1
WO2021164157A1 PCT/CN2020/096333 CN2020096333W WO2021164157A1 WO 2021164157 A1 WO2021164157 A1 WO 2021164157A1 CN 2020096333 W CN2020096333 W CN 2020096333W WO 2021164157 A1 WO2021164157 A1 WO 2021164157A1
Authority
WO
WIPO (PCT)
Prior art keywords
black water
phosphorus
ammonium phosphate
nitrogen
magnesium ammonium
Prior art date
Application number
PCT/CN2020/096333
Other languages
English (en)
French (fr)
Inventor
王利群
邢汉君
李晶
聂芳
胡逸萱
林晓敏
谭蓉
Original Assignee
湖南恒凯环保科技投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南恒凯环保科技投资有限公司 filed Critical 湖南恒凯环保科技投资有限公司
Publication of WO2021164157A1 publication Critical patent/WO2021164157A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • C01B25/451Phosphates containing plural metal, or metal and ammonium containing metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/586Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing ammoniacal nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B7/00Fertilisers based essentially on alkali or ammonium orthophosphates
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Definitions

  • the invention belongs to the technical field of domestic sewage treatment, and particularly relates to a method for efficiently recovering nitrogen and phosphorus resources from black water.
  • the fermentation method takes a long time and is easy to cause nitrogen loss.
  • the odor produced will have a certain impact on the surrounding atmospheric environment, and the wastewater after anaerobic fermentation still contains Pollutants such as high concentrations of nitrogen and phosphorus have great limitations.
  • the chemical method is mainly divided into: (1) The method of separately recovering nitrogen or phosphorus, such as the method of ammonia stripping and absorption liquid absorption to recover the ammonia nitrogen in wastewater, adding calcium salt or iron salt, and recovering through the crystal precipitation of calcium phosphate, iron phosphate, etc.
  • Wastewater phosphorus (2) The method of simultaneously recovering nitrogen and phosphorus, such as adding magnesium salt to promote the formation of magnesium ammonium phosphate crystal precipitation from wastewater ammonium, phosphate and magnesium ions.
  • nitrogen and phosphorus such as adding magnesium salt to promote the formation of magnesium ammonium phosphate crystal precipitation from wastewater ammonium, phosphate and magnesium ions.
  • the magnesium ammonium phosphate crystal precipitation method can simultaneously recover nitrogen and phosphorus elements, which has more advantages.
  • magnesium ammonium phosphate crystals precipitate which can be used as a slow-release fertilizer and has a high utilization value.
  • the purpose of the present invention is to provide a method for efficiently and synchronously recovering nitrogen and phosphorus resources for urban residents’ black water.
  • the high concentration of phosphorus resources contained in the remaining sludge is used to make up for the large gap in the concentration of nitrogen and phosphorus in the black water of the residents, and the high cost of adding a large amount of phosphorus sources.
  • the present invention adopts the method of combining magnesium ammonium phosphate crystallization with mineral materials to maximize the recovery of nitrogen and phosphorus resources in black water while overcoming the high cost of medicament, low recovery rate, small particle size, and solid-liquid crystallization of magnesium ammonium phosphate. Difficulties in separation and other issues improve the subsequent availability of magnesium ammonium phosphate crystals as fertilizers.
  • the present invention provides a method for efficiently recovering nitrogen and phosphorus resources from black water.
  • the main technical solutions are as follows:
  • a method for efficiently recovering nitrogen and phosphorus resources from black water is characterized in that it comprises: using brucite powder as a seed crystal to perform a crystallization reaction of magnesium ammonium phosphate.
  • the method for efficiently recovering nitrogen and phosphorus resources from black water further includes: before performing the magnesium ammonium phosphate crystallization reaction, mixing the black water with the remaining sludge for pretreatment.
  • the method for efficiently recovering nitrogen and phosphorus resources from black water further includes: adding the solid-liquid mixed state obtained by the crystallization reaction of magnesium ammonium phosphate to the residual nitrogen and phosphorus in the calcium-based bentonite adsorption solution while further removing the crystals of magnesium ammonium phosphate. Bonded into a group.
  • the method for efficiently recovering nitrogen and phosphorus resources from black water further includes: obtaining nitrogen and phosphorus recovery products from the solid-liquid mixture obtained by adsorption and bonding through solid-liquid separation.
  • the crystallization reaction of magnesium ammonium phosphate includes: adding magnesium salt and phosphorus source in proportion to the ammonia nitrogen, magnesium ion, and phosphate concentration in the supernatant containing nitrogen and phosphorus resources obtained after the anaerobic digestion pretreatment, and Add brucite powder as seed crystal, magnesium source and pH regulator;
  • the dosage of Mg:N:P is in a molar ratio of 0.8:1.2:1 to 1:1.5:1; preferably 1:1.3:1;
  • the particle size of the brucite powder is 100-150 mesh, and the dosage is 0.8-1.5 g/L; preferably 1 g/L.
  • a stirrer is used for stirring, the speed of the stirrer is set to 100-200r/min, and the reaction time is 10-30min;
  • the pH is monitored online during the crystallization reaction of magnesium ammonium phosphate, and the replenishment amount of brucite powder during the reaction is controlled by measuring the pH value to maintain the pH of the solution at 8.5-9.
  • the anaerobic digestion pretreatment of mixing the black water with the remaining sludge includes mixing the black water with the remaining sludge and reacting under anaerobic conditions, and then settling to separate the solid and liquid;
  • the added volume of the surplus sludge is 50%-100% of the total volume of the black water; preferably, the surplus sludge is the surplus sludge that has been concentrated;
  • the mixing refers to stirring the black water and the remaining sludge in a stirring device to make them fully mixed; preferably, the stirring rate is 200-300 r/min;
  • the reaction time under the anaerobic condition is 2 days; the quiet time is 4 hours.
  • the calcium bentonite has a particle size of 80-100 mesh, and the dosage is 5-15g/L, preferably 10g/L;
  • the solid-liquid mixed state obtained by the crystallization reaction of magnesium ammonium phosphate is added to calcium-based bentonite and then stirred, and the stirring rate is 100 r/min;
  • the time for the adsorption and bonding is 30 minutes.
  • the solid-liquid mixture obtained by the adsorption and bonding enters the sedimentation tank for solid-liquid separation, and the hydraulic residence time is 1 h.
  • black water has the conventional meaning commonly understood by those skilled in the art, namely, black water, fecal sewage, one of which refers to domestic sewage containing fecal matter, and the other is defined as toilet sewage, including flushing water. Toilet sewage and feces.
  • night soil refers to black water that does not contain or contains a small amount of flushing water (water in building water supply and drainage can be visually divided into white water, gray water and black water according to water quality. Tap water is called white water, and gray water refers to The water that has been showered and washed, and the wastewater containing feces, etc. is called black water).
  • This method mainly includes processes such as mixed anaerobic digestion pretreatment with remaining sludge, crystallization reaction of magnesium ammonium phosphate, bentonite adsorption and bonding, and solid-liquid separation.
  • This method directly uses the collected feces and urine mixed with black water.
  • the microorganisms in the feces can be used for anaerobic digestion to release the nitrogen and phosphorus in the feces and increase the nitrogen and phosphorus recovery rate of the black water;
  • the anaerobic digestion process described in this method is coupled with the remaining sludge of the municipal sewage treatment plant, wherein the addition amount of the remaining sludge accounts for 50%-100% of the total amount of black water.
  • the advantage of this ratio range is: the use of the remaining sludge
  • the high-concentration phosphate content in the black water balances the difference in the concentration of nitrogen and phosphorus in the black water, reduces the dosage of the external phosphorus source, and reduces the cost.
  • a certain sludge concentration is ensured to ensure the full and rapid progress of the anaerobic digestion reaction, so that more nitrogen and phosphorus in the black water and the remaining sludge are released into the supernatant to ensure the rapid start of the anaerobic digestion process, plus the remaining sludge.
  • the sludge can accelerate the conversion of urea in the black water into ammonia nitrogen.
  • the remaining sludge is rich in phosphorus. Anaerobic digestion can dissolve the phosphorus and magnesium rich in the remaining sludge into the supernatant.
  • the present invention preferably adopts thickened surplus sludge.
  • the concentrated surplus sludge is the surplus sludge after the thickening treatment.
  • the sludge concentration is relatively higher, the water content is lower, and the phosphorus concentration in the high-concentration surplus sludge is higher. Phosphorus resource recovery has a certain positive effect.
  • the concentration treatment is a conventional concentration treatment process in the field, for example, Hu Wei, Zhou Yuwen, and Ruediger Kuehner are equivalent to the concentration treatment method described in the article "Comparative Analysis of Mechanical Concentration Processes for Residual Sludge in Sewage Treatment Plants" published in 2007.
  • MgCl 2 is used as the dosing magnesium salt
  • Na 2 HPO 4 is used as the dosing phosphorus source
  • the dosing amount of Mg:N:P is based on a molar ratio of 0.8:1.2 :1:1:1.5:1 calculation, preferably 1:1.3:1, the advantage of using this molar ratio: a slight excess of ammonia nitrogen and magnesium ions can promote more nitrogen and phosphorus to form magnesium ammonium phosphate crystals, and at the same time the appropriate concentration can be Effectively control the cost of external magnesium and phosphorus sources, and reduce the concentration of residual nitrogen, phosphorus and magnesium in the solution.
  • the above N refers to the concentration of N in the supernatant.
  • the brucite powder is used as a seed crystal.
  • the particle size of the brucite powder is 100-150 mesh, and the dosage is 1 g/L.
  • L refers to the volume unit of the supernatant: liter.
  • the magnesium source, phosphorus source and brucite powder are mixed with the supernatant after anaerobic digestion in proportion, and then, the characteristics of the brucite powder in the ammonium salt solution to slowly release alkaline hydroxide ions are used to control magnesium ammonium phosphate
  • the pH of the solution was stable at 8.5-9.
  • the crystallization reaction process is continuously stirred by a stirrer, the speed is set to 200r/min, and the reaction residence time is 10min.
  • superfine brucite powder is added before the crystallization reaction of magnesium ammonium phosphate.
  • the main component of brucite powder is magnesium hydroxide.
  • Magnesium ions can be dissolved in a solution containing ammonium salt to further ensure that the magnesium ammonium phosphate crystallization reaction process contains sufficient Magnesium source improves the purity of magnesium ammonium phosphate crystals.
  • the ultra-fine brucite powder in crystal form can be used as a seed crystal in the crystallization process of magnesium ammonium phosphate. In the presence of crystal nuclei, it can accelerate the induction of the crystallization reaction of magnesium ammonium phosphate and promote the formation of large-particle magnesium ammonium phosphate crystals.
  • the superfine brucite powder added is not only used as a seed crystal, but also as a part of magnesium source and pH regulator.
  • the particle size of brucite powder is selected from 100-150 mesh. The advantage of selecting this particle size range is that it is easier to act as a nucleus to induce rapid crystallization of magnesium ammonium phosphate crystals around the brucite powder.
  • the dosage of brucite powder is 0.8- 1.5g/L, preferably 1g/L, this dosage can maintain the pH of the solution during the magnesium ammonium phosphate reaction between 8.5-9, ensure the optimal pH value for the crystallization reaction of magnesium ammonium phosphate, and improve the purity of magnesium ammonium phosphate crystals. In addition, this dosage ensures the growth space of magnesium ammonium phosphate crystals while ensuring the demand for crystal nuclei, which is beneficial to the formation of large-grain crystals.
  • the effect of adding calcium-based bentonite in the adsorption and binding process has three aspects: on the one hand, the binding properties of bentonite after absorbing water are used to promote the adhesion of magnesium ammonium phosphate crystals to grow into large particles under the action of low-speed stirring, which is beneficial to the follow-up Solid-liquid separation; on the one hand, use the adsorbability of bentonite to absorb the residual nitrogen and phosphorus elements in the solution after the crystallization reaction of magnesium ammonium phosphate, fully recycle nitrogen and phosphorus resources, and reduce the impact of nitrogen and phosphorus emissions on the water environment; on the other hand, use bentonite
  • the characteristics of water retention and fertilizer retention, combining magnesium ammonium phosphate crystals with bentonite can control the release of nutrients in magnesium ammonium phosphate crystals and increase its utilization as a slow-release fertilizer.
  • bentonite can loosen the soil structure and further improve soil physical properties.
  • the particle size of the invention increases, and its key role is the brucite powder seed crystal.
  • the brucite powder acts as the seed crystal to promote the growth of crystals into larger particles, and the bentonite is bound to form agglomerates through collisions between particles, which is conducive to rapid settlement .
  • the calcium-based bentonite has a particle size of 80-100 mesh.
  • the advantage of selecting this particle size is that this particle size has a better adsorption effect on residual nitrogen and phosphorus in the solution.
  • This particle size is slightly larger than that of magnesium ammonium phosphate crystals. In the process of sedimentation, colliding magnesium ammonium phosphate crystals can be captured, and the cohesiveness can be used to promote the accumulation and settlement of magnesium ammonium phosphate crystals.
  • the dosage of calcium-based bentonite is 5-15g/L, preferably 10g/L.
  • This dosage is It is calculated according to the residual nitrogen and phosphorus concentration in the solution and the adsorption amount of bentonite to ensure that the nitrogen and phosphorus in the solution after the reaction can be adsorbed by the bentonite to improve the nitrogen and phosphorus resource recovery rate of the black water.
  • the hydraulic residence time (that is, the static settling time of the solid-liquid mixture in the sedimentation tank) is 1h, so that the magnesium ammonium phosphate crystal has a certain age. Over time, large granular crystals are further formed, and then solid-liquid separation is carried out by the gravity of the crystals.
  • the present invention provides a method for efficiently recovering nitrogen and phosphorus resources from black water. According to the form of water resources and the development trend of water treatment technology, this method proposes that after the residents’ black water is collected separately, a chemical method is used to form an environmentally friendly, non-polluting and reproducible A recycling method of nitrogen and phosphorus for resource utilization.
  • the method mainly includes the steps of "mixing anaerobic digestion pretreatment with excess sludge + crystallization reaction of magnesium ammonium phosphate + bentonite adsorption and bonding + solid-liquid separation" and the like.
  • this method strengthens the rapid and full hydrolysis of black water by adding excess sludge to the black water mixed with feces and urine, promotes the release of nitrogen and phosphorus resources in the feces, improves the subsequent nitrogen and phosphorus recovery efficiency, and makes up for the inadequacy of the existing technology. Utilize the lack of nitrogen and phosphorus resources in manure.
  • the surplus sludge is rich in magnesium and phosphate.
  • the mixed anaerobic digestion of black water and surplus sludge can also further release the magnesium and phosphorus in the surplus sludge into the supernatant in an inorganic state, improving the efficiency of the surplus sludge.
  • the utilization rate of resources is reduced while the dosage of external magnesium source and phosphorus source is reduced, saving the cost of medicament.
  • this method Based on the traditional magnesium ammonium phosphate crystallization method, this method combines natural mineral materials such as brucite powder and bentonite to increase the nitrogen and phosphorus recovery rate while enhancing the product's availability as a slow-release ecological fertilizer and soil conditioner.
  • brucite powder with a small particle size can be used as a solution alkali regulator, magnesium ion donor and seed crystal for the crystallization process of magnesium ammonium phosphate, providing optimal reaction conditions for the crystallization reaction of magnesium ammonium phosphate, and promoting magnesium ammonium phosphate crystals. To grow to large particles, accelerate the crystallization reaction rate, and improve the crystal purity.
  • the bentonite natural mineral material used in this method has good adsorption performance for the residual ammonia nitrogen and phosphate in the solution after the crystallization reaction of magnesium ammonium phosphate. After the treatment of this method, the residual nitrogen and phosphorus in the black water are greatly reduced, and the black water is realized. Simultaneous and efficient recovery of nitrogen and phosphorus reduces the impact of nitrogen and phosphorus discharge in sewage on the water environment.
  • Figure 1 is a process flow diagram of the present invention.
  • Fig. 2 is a graph showing the change of the phosphate removal rate with the reaction time during the crystallization reaction in the embodiment of the present invention.
  • Fig. 3 is a scanning electron microscope image of the crystalline product of the embodiment of the present invention enlarged by different magnifications.
  • Figure 4 is an XRD analysis diagram of magnesium ammonium phosphate crystals in an embodiment of the present invention.
  • This example was carried out under laboratory conditions.
  • the black water was taken from the black water discharged from the vacuum toilet, 500 mL of black water was taken to a laboratory-sealed jar, and 250 mL of the remaining sludge of the sewage treatment plant was added to the black water through magnetic force.
  • the agitator mixes the fecal mixed black water with the remaining sludge uniformly, and then keeps the stirring speed at 200r/min for anaerobic digestion reaction, and the reaction time is 2d.
  • the bottom layer sediment is discarded, and the supernatant is taken into the subsequent reaction stage. At the same time, the supernatant is taken for water quality index measurement.
  • the water quality index measurement results of the supernatant are as follows:
  • the residual ammonia nitrogen concentration in the solution is 6.52 mg/L, and the phosphate concentration is 1.5 mg/L.
  • the nitrogen recovery rate is It reaches 98.44%, and the phosphorus recovery rate is 99.25%, achieving simultaneous and efficient recovery of nitrogen and phosphorus resources in black water and remaining sludge.
  • the high magnification microscope image in Figure 3b shows that the magnesium ammonium phosphate crystals obtained in this experiment are in a regular rhombic column shape, and the crystal shape is relatively regular.
  • a single crystal can be measured The average size is about 50-60 ⁇ m in length and about 20 ⁇ m in width. Compared with the size of crystals prepared by precipitation of magnesium ammonium phosphate generally disclosed at present, the average length of a single crystal is about 10-20 ⁇ m. The size of a single crystal of magnesium ammonium phosphate prepared by this method is significantly increased.

Abstract

一种从黑水中高效回收氮磷资源的方法,属于生活污水处理技术领域。包括:以水镁石粉做晶种进行磷酸铵镁结晶反应。本方法结回收得到的晶反应沉淀物中呈斜方形晶体的主要成分是六水合磷酸铵镁,其晶体粒径>50μm,且纯度高于95%。

Description

一种从黑水中高效回收氮磷资源的方法 技术领域
本发明属于生活污水处理技术领域,尤其是涉及一种从黑水中高效回收氮磷资源的方法。
背景技术
氮磷是农作物生长过程中最重要的营养元素,但在当前世界各国尤其是我国,磷资源紧张,与此同时,水体富营养化也是水污染中的棘手问题。含氮磷污水的排放以及城市化进程的加快,使得我国水污染防治的压力越来越大。
研究资料表明,居民生活污水主要由粪便水、洗涤水组成,其中粪便水被称为黑水,由于生活污水中97%的氮、90%的磷来源于黑水(屎尿),而黑水的体积仅占生活污水总量的1-2%,因此,相对于生活污水混合处理,对于体积小且氮磷浓度高的黑水单独收集处理,更容易实现资源化利用。
对于黑水的处理方法有发酵法和化学法两种,其中发酵法时间较长,容易使氮素损失,产生的气味会对周围大气环境产生一定的影响,且厌氧发酵后的废水仍含有高浓度氮、磷等污染物,具有很大局限性。化学法按照功能主要分为:(1)单独回收氮或磷的方法,如氨吹脱与吸收液吸收的方法回收废水氨氮,投加钙盐或铁盐通过磷酸钙、磷酸铁等结晶沉淀回收废水磷;(2)同时回收氮磷的方法,如投加镁盐,促进废水铵根、磷酸根和镁离子形成磷酸铵镁结晶沉淀的方法。就污染物去除及氮磷资源回收的功能而言,磷酸铵镁结晶沉淀法可同时回收氮磷元素,更具有优势。另外,磷酸铵镁结晶沉淀,可以作缓释肥料使用,利用价值较高。
目前已有利用磷酸铵镁结晶法回收畜禽粪便污水中氮磷的相关研究,但针对居民黑水进行单独回收氮磷资源的研究相对较少,部分研究利用磷酸铵镁结晶法回收尿液中的氮磷资源,无法充分利用粪便中的氮和磷,同时,传统单一的磷酸铵镁结晶法存在镁盐、磷酸盐投加量较大,药剂成本高,回收率低,晶体生长缓慢,形成的沉淀粒径较小,固液分离困难等问题。因此,提供一种经济可行、操作性强,可从居民黑水中高效回收氮磷元素的方法,是目前本领域技术人员亟需解决的技术问题。
发明内容
为了克服上述现有技术的缺点,本发明的目的是针对城市居民黑水,提供一种高效同步回收氮磷资源的方法,本方法将居民黑水与城市污水处理厂剩余污泥混合处理,充分利用剩余污泥中含有的高浓度的磷资源,弥补居民黑水中氮磷浓度差距大,需要外加大量磷源的高 成本问题。另外,本发明采用磷酸铵镁结晶法与矿物材料相结合的方法,最大限度回收黑水中氮磷资源的同时克服磷酸铵镁结晶法药剂成本高、回收率偏低、粒径较小、固液分离困难等问题,提升磷酸铵镁晶体后续作为肥料的可利用性。
本发明提供一种从黑水中高效回收氮磷资源的方法,主要技术方案如下:
一种从黑水中高效回收氮磷资源的方法,其特征在于,包括:以水镁石粉做晶种进行磷酸铵镁结晶反应。
所述的一种从黑水中高效回收氮磷资源的方法还包括:在进行所述磷酸铵镁结晶反应之前,将黑水与剩余污泥混合进行预处理。
所述的一种从黑水中高效回收氮磷资源的方法还包括:将所述磷酸铵镁结晶反应得到的固液混合态加入钙基膨润土吸附溶液中残余氮磷的同时将磷酸铵镁晶体进一步粘结成团。
所述的一种从黑水中高效回收氮磷资源的方法还包括:所述吸附粘结得到的固液混合物通过固液分离得到氮磷回收产物。
所述磷酸铵镁结晶反应包括:根据从所述厌氧消化预处理后得到的含有氮磷资源的上清液中的氨氮、镁离子及磷酸盐浓度按比例投加镁盐和磷源,并投加水镁石粉做晶种、镁源、pH调节剂;
优选地,Mg:N:P的投加量按照摩尔比0.8∶1.2∶1-1∶1.5∶1;优选1:1.3:1;
更优选地,水镁石粉的粒径选择100-150目,投加量为0.8-1.5g/L;优选1g/L。
所述磷酸铵镁结晶反应过程中需要持续搅拌;
优选地,采用搅拌器进行搅拌且搅拌器转速设置为100-200r/min,反应时间为10-30min;
更优选地,所述磷酸铵镁结晶反应过程中进行pH在线监测,通过测定pH值控制反应过程中水镁石粉的补充量,维持溶液的pH稳定在8.5-9。
所述将黑水与剩余污泥混合厌氧消化预处理包括,将黑水与剩余污泥混匀后在厌氧条件下反应,再静沉使固液分离;
优选地,所述剩余污泥的添加体积为黑水总体积的50%-100%;优选地,所述剩余污泥为经浓缩处理的剩余污泥;
优选地,所述混匀指将黑水与剩余污泥在搅拌装置中搅拌使其充分混合;优选地,所述搅拌速率为200-300r/min;
优选地,所述厌氧条件下反应时间为2天;所述静沉时间为4h。
所述钙基膨润土粒径为80-100目,投加量为5-15g/L,优选10g/L;
优选地,将所述磷酸铵镁结晶反应得到的固液混合态加入钙基膨润土后进行搅拌,所述搅拌速率为100r/min;
更优选地,所述吸附粘结的时间为30min。
所述吸附粘结得到的固液混合物进入沉淀池进行固液分离,水力停留时间为1h。
本发明的“黑水”具有本领域技术人员通常理解的常规含义,即,黑水(black water),粪便污水,其一是指含有粪便物质的生活污水,其二定义是厕所污水,包括冲厕污水和粪便。另外,粪便(night soil)指不含或含少量冲厕水的黑水(建筑给排水中的水按照水质可以形象地划分为白水、灰水和黑水,自来水称为白水,灰水是指淋浴过和洗涤过的水,而含有粪便等的废水称为黑水)。
本方法主要包括与剩余污泥混合厌氧消化预处理、磷酸铵镁结晶反应、膨润土吸附粘结、固液分离等工艺,
1、与剩余污泥混合厌氧消化预处理
将收集的新鲜黑水转移至预处理池中,并投加城市污水处理厂浓缩的剩余污泥,启动搅拌系统进行搅拌,搅拌速率设置为200r/min,使黑水与剩余污泥充分混合,在厌氧条件下,持续反应2d,之后进行自然静沉4h,使固液分离,并测定上清液中氨氮、镁离子及磷酸盐浓度。
本方法直接采用收集到的粪尿混合黑水,此过程可以利用粪便中的微生物进行厌氧消化反应,将粪便中的氮磷释放出来,提升黑水的氮磷回收率;
另外,本方法所述厌氧消化过程外加城市污水处理厂剩余污泥,其中剩余污泥的添加量占黑水总量的50%-100%,这一比例范围的好处是:利用剩余污泥中的高浓度磷酸盐含量平衡黑水中氮磷浓度差,减少外加磷源的投加量,降低成本。同时保证一定的污泥浓度,保证厌氧消化反应的充分快速进行,让黑水及剩余污泥中更多的氮磷释放至上清液中,以保证厌氧消化过程的快速启动,外加剩余污泥可加速将黑水中的尿素转化成氨氮形式,同时剩余污泥富含磷,厌氧消化可将剩余污泥中富含的磷及镁溶出至上清液中,在此过程中,黑水及剩余污泥中的氮、磷、镁大部分以无机态释放至上清液中,可进一步提升后续磷酸铵镁结晶的产生量,提升黑水中氮磷资源的回收率并减少药剂的投加,节省药剂投加成本。
本发明优选采用浓缩剩余污泥,浓缩剩余污泥是经浓缩处理后的剩余污泥,污泥浓度相对稍高,含水率较低,高浓度的剩余污泥中磷浓度较高,对本发明氮磷资源回收有一定的积极作用。所述浓缩处理为本领域常规的浓缩处理工艺,例如,胡伟,周玉文,Ruediger Kuehner等于2007年发表的“污水处理厂剩余污泥机械浓缩工艺比较分析”一文记载的浓缩处理方法。
2、磷酸铵镁结晶反应
根据测定上清液中的氨氮、镁离子及磷酸盐浓度,以MgCl 2作为投加镁盐,Na 2HPO 4作为投加磷源,Mg:N:P的投加量按照摩尔比0.8∶1.2∶1-1∶1.5∶1计算,优选1:1.3:1,采用这一摩尔比的好处:稍过量的氨氮及镁离子可以促进更多的氮磷形成磷酸铵镁结晶,同时合适的浓度可以有效控制外加镁源、磷源的成本,降低溶液中残余氮磷镁浓度。上述N指上清液中的N浓度,以水镁石粉作为晶种,水镁石粉的粒径选择100-150目,投加量为1g/L,L指上清液的体积单位:升。将镁源、磷源及水镁石粉按比例与厌氧消化后的上清液充分混合,之后,通过水镁石粉在铵盐溶液中缓释碱性氢氧根离子的特性,控制磷酸铵镁结晶反应过程中溶液的pH稳定在8.5-9。结晶反应过程通过搅拌器进行持续搅拌,转速设置为200r/min,反应停留时间为10min。
在污水中氮磷与镁盐反应生成磷酸铵镁的同时会产生大量氢离子,造成溶液pH呈现连续下降的趋势,若不及时补充碱液调节pH会造成磷酸铵镁结晶率较差,为保证磷酸铵镁结晶的纯度及产量,本方法通过添加水镁石粉,在溶液pH较低时水镁石粉可缓释氢氧根,维持溶液的碱性环境,适量的水镁石粉可保持磷酸铵镁结晶在pH8.5-9的稳定碱性环境下反应,提升磷酸铵镁结晶纯度及氮磷回收率。
本方法在磷酸铵镁结晶反应之前投加超细水镁石粉,水镁石粉主要成分为氢氧化镁,在含有铵盐的溶液中可溶出镁离子,进一步确保磷酸铵镁结晶反应过程含有充足的镁源,提升磷酸铵镁结晶的纯度。另外,超细水镁石粉成晶体形态,可作为磷酸铵镁结晶过程的晶种,在有晶核存在的情况下可加速诱发磷酸铵镁结晶反应,促进大颗粒磷酸铵镁晶体的形成。投加的超细水镁石粉不仅做为晶种,还可做为部分镁源、pH调节剂。水镁石粉的粒径选择100-150目,选用这种粒径范围的好处是:更容易作为晶核诱导磷酸铵镁晶体在水镁石粉周边快速结晶,水镁石粉的投加量为0.8-1.5g/L,优选1g/L,这个投加量可以维持磷酸铵镁反应过程中溶液pH在8.5-9之间,保证磷酸铵镁结晶反应的最佳pH值,提升磷酸铵镁晶体纯度,另外,此投加量在保证晶核需求的同时保证磷酸铵镁晶体的生长空间,有利于形成大颗粒晶体。
3、吸附粘结
向磷酸铵镁结晶反应后形成的固液混合态中加入80-100目的钙基膨润土,投加量为10g/L,并进行搅拌,搅拌速率为100r/min,在低速搅拌的作用下,磷酸铵镁晶体与膨润土相互碰撞粘结,吸附粘结过程的停留时间为30min,以保证吸附粘结过程的充分进行,提升磷酸铵镁晶体的粒径。
所述吸附粘结作用过程添加钙基膨润土的作用有三方面:一方面利用膨润土吸水后的粘结性,在低速搅拌的作用下,促进磷酸铵镁晶体相互粘结生长为大颗粒状,利于后续的固液 分离;一方面利用膨润土的吸附性,吸附磷酸铵镁结晶反应后溶液中残余的氮磷元素,充分回收利用氮磷资源,减少氮磷排放对水环境的影响;另一方面利用膨润土保水保肥的特性,将磷酸铵镁晶体与膨润土结合,可以控制磷酸铵镁晶体中养分的释放,提高其作为缓释肥料的利用率,另外,膨润土可以使土壤结构疏松,进一步改善土壤物理性状。本发明的粒径增大,其关键作用的是水镁石粉晶种,水镁石粉是作为晶种促进晶体生长成较大颗粒,而膨润土是通过颗粒间相互碰撞粘结成团,利于快速沉降。
所述钙基膨润土粒径为80-100目,选用这种粒径大小的好处是:此粒径对溶液中残余氮磷的吸附效果较好,此粒径较磷酸铵镁晶体稍大,在下沉过程中可捕集碰撞磷酸铵镁晶体,利用粘结性,促进磷酸铵镁晶体的堆积沉降,钙基膨润土的投加量为5-15g/L,优选10g/L,此投加量是根据溶液中残余的氮磷浓度及膨润土的吸附量进行推算得到,确保反应后溶液中的氮磷可被膨润土吸附进而提高黑水的氮磷资源回收率。
4、固液分离
磷酸铵镁结晶反应后形成的固液混合态经进一步吸附粘结后进入沉淀池,水力停留时间(即固液混合物在沉淀池内的静沉时间)为1h,使磷酸铵镁结晶具有一定的陈化时间,进一步形成大颗粒状晶体,而后通过晶体的自身重力作用进行固液分离。
本发明的原理与优势是:
本发明提供了一种从黑水中高效回收氮磷资源的方法,根据水资源形式及水处理技术发展趋势,本方法提出将居民黑水单独收集后,通过化学方法形成一种环保无污染且可资源化利用的氮磷回收方法。本方法主要包括“与剩余污泥混合厌氧消化预处理+磷酸铵镁结晶反应+膨润土吸附粘结+固液分离”等步骤。在预处理阶段,本方法通过在粪尿混合黑水中添加剩余污泥强化黑水快速充分的水解,促进粪便中的氮磷资源的释放,提升后续氮磷回收效率,弥补现有技术未能充分利用粪便中氮磷资源的不足。另外,剩余污泥中富含镁及磷酸盐,黑水与剩余污泥混合厌氧消化也可进一步将剩余污泥中的镁及磷元素以无机态释放至上清液中,提升剩余污泥的资源化利用率的同时减少外加镁源及磷源的投加量,节省药剂成本。
本方法在传统磷酸铵镁结晶法的基础上,结合水镁石粉及膨润土等天然矿物材料,提升氮磷回收率的同时强化产物作为缓释生态肥及土壤调理剂的可利用性。在结晶反应阶段小粒径的水镁石粉可作为溶液碱性调节剂、镁离子提供体及磷酸铵镁结晶过程的晶种,为磷酸铵镁结晶反应提供最优反应条件,促进磷酸铵镁晶体向大颗粒状生长,加快结晶反应速率,提升结晶纯度。另外,结合膨润土的吸附及粘结性,进一步促进磷酸铵镁结晶的相互粘结生长成较大粒径,解决现有磷酸铵镁结晶粒径较小,难以固液分离的问题。本方法所采用的膨润土天然矿物材料对磷酸铵镁结晶反应后溶液中残余的氨氮及磷酸盐均具有很好的吸附性能, 经本方法处理后,大大减少黑水中残余的氮磷,实现黑水中氮磷同步高效回收,降低污水中氮磷排放对水环境的影响。
附图说明
图1为本发明的工艺流程图。
图2为本发明实施例结晶反应过程中磷酸盐去除率随反应时间的变化曲线图。
图3为本发明实施例的结晶产物扩大不同倍数的电镜扫描图。
图4为本发明实施例的磷酸铵镁结晶的XRD分析图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清晰,以下结合实施例,对本发明进行进一步详细说明。此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明的保护范围。
本实施例在实验室条件下开展,黑水取自真空抽水马桶排放的黑水,取黑水500mL至实验室可密闭广口瓶,另外取污水处理厂剩余污泥250mL添加到黑水中,通过磁力搅拌器将粪便混合黑水与剩余污泥混合均匀,之后保持搅拌速度为200r/min进行厌氧消化反应,反应时间为2d。
厌氧消化反应之后自然静沉4h,弃去底层沉渣,取上清液进入后续反应阶段,同时取上清液进行水质指标测定,上清液的水质指标测定结果如下表:
表1-1厌氧消化后上清液的理化性质
Figure PCTCN2020096333-appb-000001
根据水质指标测定情况,在厌氧消化反应后的上清液中按照1g/L的投加量添加0.75g粒径为100-150目的水镁石粉,开启磁力搅拌器,搅拌速度为200r/min,以MgCl 2作为投加镁盐,Na 2HPO 4作为投加磷源,Mg:N:P的投加量按照摩尔比1:1.3:1计算(因投加量较小,本实施例预先将MgCl 2、Na 2HPO 4配置成母液),将镁源及磷源按照比例加入到黑水厌氧消化后上清液中混合均匀,保持搅拌状态,结晶反应10min之后,将搅拌速度降至100r/min,立即添加7.5g粒径为80-100目的钙基膨润土,充分吸附粘结反应30min之后进行晶体陈化静沉, 静沉时间为1h,之后对上清液进行氮磷浓度测定。在反应过程中分别对磷酸铵镁结晶反应及吸附粘结两个过程的结晶沉淀产物进行取样,并分别将结晶沉淀产物在40-50℃烘箱中进行烘干,对结晶沉淀进行电镜扫描及XRD衍射成分分析。
在结晶反应过程中,每2分钟取1ml样品进行磷酸根浓度测定,通过测定不同结晶反应时间的磷酸根去除率,如图2可知,在添加水镁石粉晶种的条件下,磷酸铵镁晶体以水镁石粉为晶核,结晶反应可快速启动,2分钟即可实现35%左右的磷酸根去除率,10min中之内磷酸根的去除率可达95%,并可观察到大量白色晶体产生,大大缩短结晶反应时间。
黑水经上述氮磷回收方法进行处理后,经测定,溶液中残余氨氮浓度为6.52mg/L,磷酸盐浓度为1.5mg/L,与厌氧消化后上清液水质相比,氮回收率达98.44%,磷回收率99.25%,实现了同步高效回收黑水及剩余污泥中氮磷资源。
本实施例结晶产物表征结果分析如下:
(1)晶体尺寸分析
根据图3的电子扫描显微镜图,图3b的高倍数显微镜图显示本实验得到的磷酸铵镁晶体呈规则的斜方柱形,晶型比较规整,根据SEM图上的比例尺,可测出单个晶体尺寸平均长约50-60μm,宽约20μm,对比目前普遍公开的磷酸铵镁沉淀制备得到的晶体尺寸,单个晶体平均长约10-20μm,本方法制备的磷酸铵镁单个晶体尺寸明显增大。根据图3a较低倍数的显微镜图可以看出在添加天然矿物之后的结晶反应产物呈较好的堆积富集趋势,在晶体旁边也有很多小晶体富集,增大晶体的整体粒径,整个晶体粒径>50μm,利于后续固液分离。
(2)X射线衍射成分分析
根据图4中磷酸铵镁结晶反应过程取得的结晶产物样品中斜方晶体的XRD衍射分析图,将图中沉淀产物的特征图谱与磷酸铵镁标准图谱对照分析可以看出,谱图中的出峰数及强度与磷酸铵镁标准图谱吻合度达95%以上,因此,可以得出本方法结晶反应沉淀物中呈斜方形晶体的主要成分是六水合磷酸铵镁,且纯度高于95%。

Claims (9)

  1. 一种从黑水中高效回收氮磷资源的方法,其特征在于,包括:以水镁石粉做晶种进行磷酸铵镁结晶反应。
  2. 根据权利要求1所述的一种从黑水中高效回收氮磷资源的方法,其特征在于,还包括:在进行所述磷酸铵镁结晶反应之前,将黑水与剩余污泥混合进行预处理。
  3. 根据权利要求1或2所述的一种从黑水中高效回收氮磷资源的方法,其特征在于,还包括:将所述磷酸铵镁结晶反应得到的固液混合态加入钙基膨润土吸附溶液中残余氮磷的同时将磷酸铵镁晶体进一步粘结成团。
  4. 根据权利要求3所述的一种从黑水中高效回收氮磷资源的方法,其特征在于,还包括:所述吸附粘结得到的固液混合物通过固液分离得到氮磷回收产物。
  5. 根据权利要求1所述的一种从黑水中高效回收氮磷资源的方法,其特征在于,所述磷酸铵镁结晶反应包括:根据从所述厌氧消化预处理后得到的含有氮磷资源的上清液中的氨氮、镁离子及磷酸盐浓度按比例投加镁盐和磷源,并投加水镁石粉做晶种、镁源、pH调节剂;
    优选地,Mg:N:P的投加量按照摩尔比0.8∶1.2∶1-1∶1.5∶1;优选1:1.3:1;
    更优选地,水镁石粉的粒径选择100-150目,投加量为0.8-1.5g/L;优选1g/L。
  6. 根据权利要求1-3,5任一所述的一种从黑水中高效回收氮磷资源的方法,其特征在于,所述磷酸铵镁结晶反应过程中需要持续搅拌;
    优选地,采用搅拌器进行搅拌且搅拌器转速设置为100-200r/min,反应时间为10-30min;
    更优选地,所述磷酸铵镁结晶反应过程中进行pH在线监测,通过测定pH值控制反应过程中水镁石粉的补充量,维持溶液的pH稳定在8.5-9。
  7. 根据权利要求2所述的一种从黑水中高效回收氮磷资源的方法,其特征在于,所述将黑水与剩余污泥混合厌氧消化预处理包括,将黑水与剩余污泥混匀后在厌氧条件下反应,再静沉使固液分离;
    优选地,所述剩余污泥的添加体积为黑水总体积的50%-100%;优选地,所述剩余污泥为经浓缩处理的剩余污泥;
    优选地,所述混匀指将黑水与剩余污泥在搅拌装置中搅拌使其充分混合;优选地,所述搅拌速率为200-300r/min;
    优选地,所述厌氧条件下反应时间为2天;所述静沉时间为4h。
  8. 根据权利要求3所述的一种从黑水中高效回收氮磷资源的方法,其特征在于,所述钙基膨润土粒径为80-100目,投加量为5-15g/L,优选10g/L;
    优选地,将所述磷酸铵镁结晶反应得到的固液混合态加入钙基膨润土后进行搅拌,所述搅拌速率为100r/min;
    更优选地,所述吸附粘结的时间为30min。
  9. 根据权利要求4所述的一种从黑水中高效回收氮磷资源的方法,其特征在于,所述吸附粘结得到的固液混合物进入沉淀池进行固液分离,水力停留时间为1h。
PCT/CN2020/096333 2020-02-18 2020-06-16 一种从黑水中高效回收氮磷资源的方法 WO2021164157A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010098786.0A CN111362245B (zh) 2020-02-18 2020-02-18 一种从黑水中高效回收氮磷资源的方法
CN202010098786.0 2020-02-18

Publications (1)

Publication Number Publication Date
WO2021164157A1 true WO2021164157A1 (zh) 2021-08-26

Family

ID=71204266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096333 WO2021164157A1 (zh) 2020-02-18 2020-06-16 一种从黑水中高效回收氮磷资源的方法

Country Status (2)

Country Link
CN (1) CN111362245B (zh)
WO (1) WO2021164157A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113322078B (zh) * 2021-06-03 2022-03-22 江西源春环保科技有限公司 一种综合处理土壤中重金属的颗粒及其制备方法
CN114933354A (zh) * 2022-05-31 2022-08-23 同济大学 分散式居住点黑水末端固液分离收集与处理系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1850740A (zh) * 2006-05-17 2006-10-25 包头稀土研究院 一种含稀土的氮磷镁长效缓释复合肥的生产方法
WO2012134255A1 (fr) * 2011-03-25 2012-10-04 Universite Hassan 1Er Settat Procede et appareil pour l'elimination du phosphore des rejets liquides des unites de production d'engrais par recuperation de cristaux phosphates
CN103482824A (zh) * 2013-09-18 2014-01-01 西安建筑科技大学 一种尿液中氮磷营养物质快速回收的方法及装置
CN104529122A (zh) * 2014-12-10 2015-04-22 天津壹鸣环境工程有限公司 一种水体沉积物的减量资源化综合利用方法
CN105000766A (zh) * 2015-08-12 2015-10-28 广东石油化工学院 一种提高剩余活性污泥氮磷回收率的清洁生产方法
CN106554060A (zh) * 2015-09-28 2017-04-05 中国环境科学研究院 一种氮磷污水处理与资源回收的方法和药剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1850740A (zh) * 2006-05-17 2006-10-25 包头稀土研究院 一种含稀土的氮磷镁长效缓释复合肥的生产方法
WO2012134255A1 (fr) * 2011-03-25 2012-10-04 Universite Hassan 1Er Settat Procede et appareil pour l'elimination du phosphore des rejets liquides des unites de production d'engrais par recuperation de cristaux phosphates
CN103482824A (zh) * 2013-09-18 2014-01-01 西安建筑科技大学 一种尿液中氮磷营养物质快速回收的方法及装置
CN104529122A (zh) * 2014-12-10 2015-04-22 天津壹鸣环境工程有限公司 一种水体沉积物的减量资源化综合利用方法
CN105000766A (zh) * 2015-08-12 2015-10-28 广东石油化工学院 一种提高剩余活性污泥氮磷回收率的清洁生产方法
CN106554060A (zh) * 2015-09-28 2017-04-05 中国环境科学研究院 一种氮磷污水处理与资源回收的方法和药剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, CHEN ET AL.: "Effects of Seed Crystals on Phosphorus Removal by Magnesium Ammonium Phosphate Crystallization", APPLIED CHEMICAL INDUSTRY, vol. 47, no. 7, 31 July 2018 (2018-07-31), XP009529908 *

Also Published As

Publication number Publication date
CN111362245B (zh) 2021-05-11
CN111362245A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
Huang et al. Recovery and removal of ammonia–nitrogen and phosphate from swine wastewater by internal recycling of struvite chlorination product
US20210363039A1 (en) Preparation Method and Application of External Carbon Source by Denitrification from Lake Algae
CN104761114B (zh) 一种污水强化除磷方法
WO2021164157A1 (zh) 一种从黑水中高效回收氮磷资源的方法
CN102092871A (zh) 一种以盐卤为镁源回收含氮磷废水中氮磷的方法
Zhang et al. Phosphorus recovery by struvite crystallization from livestock wastewater and reuse as fertilizer: a review
CN102775019A (zh) 一种耦合式污水脱磷净化再生处理工艺
CN101439897A (zh) 一种污水磷回收复合絮凝剂的制备和磷回收工艺
CN107759036B (zh) 一种污泥制复合肥料的处理方法与装置
CN102139975A (zh) 一种半导体生产废水中结晶回收磷的方法
CN103599745A (zh) 一种改性硅酸钙及其在污水除磷中的应用
CN105621522A (zh) 从有机固体废弃物中回收氮磷的方法
CN104529122A (zh) 一种水体沉积物的减量资源化综合利用方法
CN112125483A (zh) 一种高含固厌氧消化污泥中氮磷同步回收处理方法
WO2020037872A1 (zh) 鸟粪石及其提取方法
CN101585522B (zh) 一种从城市污泥厌氧消化液中回收磷的方法
Luo et al. Recovery of phosphate from piggery biogas slurry by ultrasonication, aeration and addition of MgO desulfurization waste residue
Zhang et al. Obtaining high-purity struvite from anaerobically digested wastewater: effects of pH, Mg/P, and Ca2+ interactions
Wadchasit et al. Improvement of biogas production and quality by addition of struvite precipitates derived from liquid anaerobic digestion effluents of palm oil wastes
Huang et al. Removal of ammonium as struvite from wet scrubber wastewater
CN206157073U (zh) 一种提取污泥中的磷生产含磷复合肥的装置
CN105217910A (zh) 一种污泥资源化处理方法
CN101560001A (zh) 一种低能耗一体化氮磷回收装置
CN104098077A (zh) 畜禽养殖废水磷回收时一种提高鸟粪石纯度的方法
CN101628835A (zh) 一种利用味精废液制备绿化用营养基质添加剂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919534

Country of ref document: EP

Kind code of ref document: A1