WO2021162348A1 - 배터리 제어 시스템, 배터리 팩, 전기 차량, 및 상기 배터리 제어 시스템을 위한 id 설정 방법 - Google Patents

배터리 제어 시스템, 배터리 팩, 전기 차량, 및 상기 배터리 제어 시스템을 위한 id 설정 방법 Download PDF

Info

Publication number
WO2021162348A1
WO2021162348A1 PCT/KR2021/001504 KR2021001504W WO2021162348A1 WO 2021162348 A1 WO2021162348 A1 WO 2021162348A1 KR 2021001504 W KR2021001504 W KR 2021001504W WO 2021162348 A1 WO2021162348 A1 WO 2021162348A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery controller
battery
signal path
level voltage
controller
Prior art date
Application number
PCT/KR2021/001504
Other languages
English (en)
French (fr)
Inventor
안양수
이규열
이상진
전대곤
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP21754243.0A priority Critical patent/EP3996237A4/en
Priority to CN202180003540.3A priority patent/CN113924227B/zh
Priority to US17/615,510 priority patent/US20220314832A1/en
Priority to JP2021565734A priority patent/JP7207792B2/ja
Publication of WO2021162348A1 publication Critical patent/WO2021162348A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a technique for sequentially assigning IDs to a plurality of battery controllers of a battery control system.
  • a battery pack for a device requiring high-capacity and high voltage, such as an electric vehicle typically includes a plurality of battery modules connected in series with each other.
  • the battery control system includes a plurality of battery controllers provided one-to-one to the plurality of battery modules to monitor and control the states of the plurality of battery modules.
  • the plurality of battery controllers may be integratedly managed by one of them or a separately provided upper controller.
  • an ID as a unique identifier needs to be set in each battery controller.
  • Patent Document 1 discloses a technique in which a master as a higher-order controller sequentially assigns IDs to a plurality of slaves as a battery controller.
  • the ID assignment according to Patent Document 1 requires a master, so that the process is complicated, and there is a limitation in that the potential difference between each electrode (positive or negative electrode) of a plurality of batteries and the ground must be detected.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2011-0013747 (published date: February 10, 2011)
  • the present invention has been devised to solve the above problems, and a battery control system, a battery pack, an electric vehicle, and An object of the present invention is to provide an ID setting method for the battery control system.
  • a battery control system includes: first to third signal paths; and first to nth battery controllers interconnected through the first to third signal paths.
  • n is a natural number greater than or equal to 2.
  • an ID indicating an ID allocation status of the first to nth battery controllers collecting information through the first signal path, setting the ID of the first battery controller based on the ID information, and outputting the high-level voltage to the second battery controller through the second signal path do.
  • the i-th battery controller collects the ID information through the first signal path when the high-level voltage output by the i-1th battery controller is input to the i-th battery controller through the second signal path and setting the ID of the ith battery controller based on the ID information collected by the ith battery controller, and then outputting the high level voltage to the second signal path.
  • i is a natural number from 2 to n.
  • the high level voltage output to the second signal path by the nth battery controller is input to all of the first to nth battery controllers through the third signal path.
  • Each battery controller is configured to output, to the first signal path, a response signal indicating that the ID setting sequence is completed when the high level voltage is input through the third signal path.
  • Each battery controller includes a communication terminal, an input terminal, an output terminal, and a confirmation terminal.
  • the communication terminal of each battery controller is coupled to the first signal path for collection of the ID information.
  • the input terminal of the first battery controller is coupled to an external power source for outputting the high level voltage through the second signal path.
  • the input terminal of the i-th battery controller is coupled to the output terminal of the i-1th battery controller to which the high-level voltage is output through the second signal path.
  • the confirmation terminal of each battery controller is coupled to an output terminal of the nth battery controller through the third signal path.
  • the j-th battery controller is configured to receive the high-level voltage from the communication terminal of the j-th battery controller when the high-level voltage is input to the check terminal of the j-th battery controller before the high-level voltage is output from the output terminal of the j-th battery controller. It may be configured to output an error message.
  • j is a natural number less than or equal to n.
  • the j-th battery controller may be configured to set a value obtained by adding a predetermined increment to the maximum value of the ID information collected by the j-th battery controller as the ID of the j-th battery controller.
  • j is a natural number less than or equal to n.
  • the j-th battery controller When the ID of the j-th battery controller is set, the j-th battery controller transmits the ID set in the j-th battery controller to the communication terminal while the high-level voltage is input to the input terminal of the j-th battery controller. It may be configured to output at least once through.
  • j is a natural number less than or equal to n.
  • the j-th battery controller When the ID of the j-th battery controller is set, the j-th battery controller is configured to generate the high-level voltage from the output terminal of the j-th battery controller while the high-level voltage is input to the input terminal of the j-th battery controller. It can be configured to output.
  • j is a natural number less than or equal to n.
  • the j-th battery controller while outputting the high-level voltage from the output terminal of the j-th battery controller, in response to the high-level voltage being input to the check terminal of the j-th battery controller, ends the ID setting sequence can be configured to j is a natural number less than or equal to n.
  • the battery control system may include: a resistor coupled between the input terminal of the first battery controller and the external power supply; and a sequence termination circuit including a first switch electrically coupled between the resistor and ground.
  • the first switch may be turned on in response to the high level voltage output to the third signal path. When the first switch is turned on, the high level voltage from the external power may be cut off from the input terminal of the first battery controller.
  • the battery control system may further include a second switch coupled between the input terminal of the first battery controller and the external power source.
  • the second switch may be turned off in response to the high level voltage output to the third signal path. When the second switch is turned off, the high level voltage from the external power source may be cut off from the input terminal of the first battery controller.
  • a battery pack according to another aspect of the present invention includes the battery control system.
  • An electric vehicle includes the battery pack.
  • the j-th battery controller when the j-th battery controller receives the high level voltage to the j-th battery controller through the second signal path, the collecting the ID information indicating the ID allocation status of the 1st to nth battery controllers through the first signal path; setting, by the j-th battery controller, an ID of the j-th battery controller based on the ID information; outputting, by the j-th battery controller, the high-level voltage to the second signal path after ID setting of the j-th battery controller is completed; and the j-th battery controller outputs the high-level voltage to the second signal path by the j-th battery controller, and then the high-level voltage is input to the j-th battery controller through the third signal path. , outputting the response signal indicating that the ID setting sequence of the j-th battery controller is completed to the first signal path.
  • the plurality of battery controllers may sequentially allocate IDs corresponding to the mutual connection order without the involvement of the upper controller.
  • At least one of the plurality of battery controllers may detect an error state in progress of the ID setting sequence by itself and automatically share the error state with the remaining battery controllers.
  • FIG. 1 is a view exemplarily showing the configuration of an electric vehicle according to the present invention.
  • FIG. 2 is a diagram schematically showing a signal network for setting IDs of a plurality of battery controllers according to the first embodiment of the present invention.
  • FIG. 3 is a timing chart schematically showing an ID setting sequence using the signal network of FIG. 2 .
  • Fig. 4 is a timing chart referenced for explaining the error condition detection during the ID setting sequence using the signal network of Fig. 2;
  • FIG. 5 is a diagram schematically showing a signal network for setting IDs of a plurality of battery controllers according to a second embodiment of the present invention.
  • FIG. 6 is a diagram schematically illustrating a signal network for setting IDs of a plurality of battery controllers according to a third embodiment of the present invention.
  • FIG. 7 is a flowchart schematically illustrating a control method for setting an ID of a battery controller.
  • FIG. 8 is a flowchart schematically illustrating another control method for setting an ID of a battery controller.
  • control unit> means a unit that processes at least one function or operation, and may be implemented as hardware, software, or a combination of hardware and software.
  • FIG. 1 is a view exemplarily showing the configuration of an electric vehicle according to the present invention.
  • the electric vehicle 1 includes a battery pack BP, a relay 20 , an inverter 30 , an electric motor 40 , and an external power source 50 .
  • the battery pack BP may supply power required to drive the electric motor 40 of the electric vehicle 1 .
  • the battery pack BP includes a plurality of battery modules BM 1 to BM n .
  • the subscript symbol n used as a reference sign is a natural number equal to or greater than 2
  • the symbol j is a natural number less than or equal to n.
  • the plurality of battery modules BM 1 to BM n are connected in series and/or parallel to each other.
  • Each of the plurality of battery modules BM 1 to BM n includes at least one battery cell BC.
  • the battery cell BC may be a lithium ion battery cell BC.
  • the type of the battery cell BC is not particularly limited.
  • the relay 20 is installed on the power line PL connecting the battery pack BP and the inverter 30 .
  • the relay 20 is controlled on/off in response to a switching signal from the battery control system 100 .
  • the inverter 30 is provided to convert the direct current from the battery pack BP into an alternating current in response to a control signal from the battery control system 100 while the relay 20 is turned on.
  • the electric motor 40 is a three-phase AC motor, and is driven by receiving the AC current generated by the inverter 30 .
  • the external power source 50 is installed in the electric vehicle 1 to supply electric energy required for operation of a peripheral device (not shown) installed in the electric vehicle 1 .
  • a peripheral device for example, a lead-acid battery may be used.
  • the peripheral device a heater, an air conditioner, lighting, etc. are mentioned.
  • the battery pack BP further includes a battery control system 100 .
  • the battery control system 100 includes a plurality of battery controllers SC 1 to SC n .
  • the battery control system 100 may further include an upper controller MC.
  • the plurality of battery controllers SC 1 to SC n are provided to the plurality of battery modules BM 1 to BM n on a one-to-one basis.
  • the description of the battery controller SC j is common to each of the plurality of battery controllers SC 1 to SC n .
  • the battery controller SC j is configured to monitor the state (eg, voltage, current, temperature, state of charge, state of health) of the battery module BM j .
  • the battery controller SC j may include a sensing unit 11 , a control unit 12 , and a communication unit 13 .
  • the sensing unit 11 may include at least one of a voltage detection circuit, a current detection circuit, and a temperature detection circuit.
  • the voltage detection circuit measures the voltage across both ends of each battery cell BC included in the battery module BM j , and outputs a signal representing the measured voltage of each battery cell BC to the controller 12 .
  • the current detection circuit may detect a current flowing through the battery module BM j and output a signal representing the detected current to the controller 12 .
  • the temperature detection circuit may detect the temperature of the battery module BM j and output a signal indicating the detected temperature to the controller 12 .
  • the control unit 12 in hardware, ASICs (application specific integrated circuits), DSPs (digital signal processors), DSPDs (digital signal processing devices), PLDs (programmable logic devices), FPGAs (field programmable gate arrays), microprocessors (microprocessors) and may be implemented using at least one of electrical units for performing other functions.
  • the controller 12 may have a built-in memory.
  • the memory may store a program and various data necessary for executing methods to be described later.
  • the memory is, for example, a flash memory type, a hard disk type, a solid state disk type, an SDD type (Silicon Disk Drive type), and a multimedia card micro type.
  • RAM random access memory
  • SRAM static random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • PROM programmable read-only memory
  • the controller 12 may generate battery information indicating the state of the battery module BM j based on the signals from the sensing unit 11 , and record the generated battery information in a memory.
  • the communication unit 13 is operatively coupled to the control unit 12 and transmits battery information from the control unit 12 to the upper controller MC and/or another battery controller SC.
  • the two components When the two components are operatively coupled, it means that the two components are unidirectionally or bidirectionally connected to transmit/receive signals between the two components.
  • Power required for the operation of the battery controller SC j may be supplied from the battery module BM j and/or the external power source 50 .
  • the battery controller SC j may have a temporary identifier set to a predetermined initial value (eg, 0).
  • the external power supply 50 provides a high level voltage (eg, 12V) as a signal for instructing the start of the ID setting sequence for the plurality of battery controllers SC 1 to SC n .
  • the high level voltage refers to a voltage signal of a predetermined voltage (eg, 3V) or higher.
  • the battery pack BP is installed in the electric vehicle 1 , and the battery control system 100 is electrically coupled to the external power source 50 , thereby providing a plurality of battery controllers SC 1 to SC n .
  • the ID setting sequence may be automatically initiated.
  • the upper controller MC is configured to integrally manage the plurality of battery modules BM 1 to BM n by using the plurality of battery controllers SC 1 to SC n .
  • the upper controller MC may communicate with the battery controller SC j through a wired network such as a local area network (LAN), a controller area network (CAN), and/or a wireless network such as Bluetooth, ZigBee, and Wi-Fi.
  • the upper controller (MC) after the ID setting for the plurality of battery controllers (SC 1 ⁇ SC n ) is normally completed, based on the battery information from the plurality of battery controllers (SC 1 ⁇ SC n ), the plurality of battery modules (BM 1 ⁇ BM n ) to control the charge and discharge.
  • the upper controller MC when the battery information from the battery controller SC j indicates an abnormality (eg, overvoltage, overdischarge, overheat) of at least one battery cell BC in the battery module BM j , the upper controller MC is By turning off the relay 20, the battery module BM j may be protected.
  • the hardware configuration of the upper controller MC may be the same as that of the battery controller SC j except that the sensing unit 11 may be omitted.
  • the upper controller (MC) is omitted from the battery control system 100, and instead one of the plurality of battery controllers (SC 1 -SC n ) (eg, SC 1 ) functions (status) of the upper controller (MC). ) can be in charge.
  • the battery controller (eg, SC 1 ) responsible for the function of the upper controller MC may be referred to as a 'master', and each of the remaining battery controllers SC may be referred to as a 'slave'.
  • FIG. 2 is a diagram schematically showing a signal network for setting IDs of a plurality of battery controllers according to the first embodiment of the present invention.
  • the battery control system 100 further includes a first signal path 110 , a second signal path 120 , and a third signal path 130 .
  • Each of the plurality of battery controllers SC 1 to SC n includes a communication terminal (A), an input terminal (B), an output terminal (C), and a confirmation terminal (D).
  • the communication unit 13 of the battery controller (SC j), the battery controller (SC j) of the communication terminal (A), an input terminal (B), an output terminal (C) and can be operatively coupled to the check terminal (D) have.
  • the communication terminal A of the battery controller SC j is coupled to the first signal path 110 .
  • the battery controller SC j outputs a value indicating the ID set in the battery controller SC j to the first signal path 110 .
  • the battery controller SC j may output an initial value indicating an ID not set state to the first signal path 110 when its ID has not yet been set.
  • the battery controller SC j collects data indicating an ID set in another battery controller SC through the first signal path 110 . That is, the first signal path 110 functions as a communication channel for transmitting and receiving ID information between the plurality of battery controllers SC 1 to SC n .
  • the ID information indicates the ID allocation status of the plurality of battery controllers SC 1 to SC n .
  • the ID information may include information indicating to which one of the plurality of battery controllers SC 1 to SC n the ID is set, and information indicating the value of the ID set in each battery controller SC.
  • the maximum value of ID information collected at a specific time point is 3, the battery controller SC 1 ) is 1, the value of the ID set in the battery controller (SC 2 ) is 2, the value of the ID set in the battery controller (SC 3 ) is 3, and the value of the ID set in the battery controller (SC 4 ⁇ SC n ) is ID indicates that it is not yet set.
  • the second signal path 120 may be a serial communication channel connecting the input terminal B and the output terminal C of each of the plurality of battery controllers SC 1 to SC n from the output of the external voltage 50 . .
  • the battery controller (SC a) may be located upstream of the battery controller (SC b)
  • the battery controller (SC b ) can be said to be located downstream of the battery controller (SC a ). That is, in the serial signal channel by the second signal path 120 , the shorter the signal transmission length to the external power source 50 , the higher the upstream position, and the longer the signal transmission length to the external power source 50 . It can be said to be located downstream.
  • the input terminal B and the output terminal C of each of the plurality of battery controllers SC 1 to SC n are coupled in a daisy chain through the second signal path 120 .
  • the input terminal B of the first battery controller SC 1 may be coupled to the external power source 50 by the second signal path 120 .
  • the high-level voltage from the external power source 50 is input of the first battery controller SC 1 located at the most upstream through the second signal path 120 . applied to terminal (B).
  • the output terminal C of the first battery controller SC 1 is coupled to the input terminal B of the second battery controller SC 2 by the second signal path 120 .
  • the output of the i-th battery controller (SC i) of the input terminal (B) is, the first i-1 battery controller by two signal paths (120) (SC i-1 ) coupled to the terminal (C). Accordingly, over the range from the external power source 50 to the output terminal (C) of the nth battery controller (SC n ), the input terminal (B) and the output terminal (B) of each of the plurality of battery controllers (SC 1 ⁇ SC n ) A serial communication channel to which C) is sequentially connected is formed.
  • the confirmation terminal D of the battery controller SC j is coupled to the third signal path 130 .
  • the third signal path 130 may be a parallel communication channel commonly connected to the check terminal D of each of the plurality of battery controllers SC 1 to SC n . That is, as shown, the check terminals D of all of the plurality of battery controllers SC 1 to SC n are connected in parallel by the third signal path 130 .
  • the output terminal C and the confirmation terminal D of the n-th battery controller SC n located at the most downstream are commonly connected to the node N.
  • the check terminal of the n-th output terminal (C) of the second through signal path 120 is coupled to a node (N)
  • the n-battery controller (SC n) of the battery controller (SC n) ( D) is coupled to node N via a third signal path 130 . That is, the third signal path 130 may be coupled to the second signal path 120 through the node N.
  • the n-th battery controller SC n outputs a signal of a specific voltage level (eg, a high-level voltage) from its output terminal C, the corresponding signal is transmitted through the third signal path 130 . It may be input to the check terminal (D) of all of the battery controllers (SC 1 to SC n ) of the substantially simultaneously.
  • the low level voltage is a concept opposite to the high level voltage, and refers to a voltage signal having a voltage level lower than a predetermined voltage.
  • FIG. 3 is a timing chart schematically showing an ID setting sequence using the signal network of FIG. 2 .
  • all of the plurality of battery controllers SC 1 to SC n may be in an ID setting standby state.
  • the ID setting standby state refers to a case in which the input terminal B, the output terminal C, and the confirmation terminal D of the battery controller SC j all have the low state L.
  • the first battery controller SC 1 sets its ID in response to the input terminal B of the first battery controller SC 1 being in the high state H. Before time T 0 , ID is not set in any of the plurality of battery controllers SC 1 to SC n . That is, the maximum value of the ID information collected through the first signal path 110 before the time point T 0 is the same as the initial value. Let's say the initial value is 0. Then, the first battery controller SC sets 1, which is a value obtained by adding a predetermined increment value of 1 to an initial value 0, as its ID, and transmits data representing the set ID to the first signal path at least once after time T 0 Send to 110.
  • the first battery controller the battery controller, which is located downstream of the (SC 1) (SC 2 ⁇ SC n) is based on the ID information collected from the first signal path 110, a first battery controller (SC 1 ) can be confirmed that the ID has been set.
  • the first battery controller SC 1 may output a high level voltage from the output terminal C of the first battery controller SC 1 at time T 1 .
  • the second battery controller SC 2 sets its ID in response to the input terminal B of the second battery controller SC 2 being in the high state H. Since the ID of only the first battery controller SC 1 is set until time T 1 , the maximum value of ID information will be 1.
  • the second battery controller (SC 2 ) sets 2, which is the sum of the increment value 1 to the maximum value 1 of the ID information, as its ID, and transmits data indicating the set ID to the first signal path 110 at least once do.
  • a second battery controller (SC 2) Battery Controller (SC 3 ⁇ SC n) which is located downstream of the on the basis of the ID information collected from the first signal path 110, the second battery controller (SC 2 ) can be confirmed that the ID has been set.
  • the second battery controller SC 2 may output a high level voltage from the output terminal C of the second battery controller SC 2 at time T 2 .
  • the above-described process is repeated until the ID of the n-th battery controller (SC n ) located most downstream is set.
  • Each battery controller when its own ID is set, until the ID setting sequence for all of the plurality of battery controllers (SC 1 to SC n ) is completed, data representing its ID is transmitted to the first signal path 110 . It can output multiple times periodically or non-periodically.
  • the ID of each battery controller SC increases from 1 by an increment.
  • the initial value and the increment value may be values other than 0 and 1, respectively.
  • the n-th battery controller SC n may output a high-level voltage from its output terminal C .
  • the n-th electrically to the output terminal (C) of the battery controller outputs a high level voltage output from the (C) is the liquid through the node (N) n battery controller (SC n) of (SC n) coupled to the third signal path 130 . Accordingly, the check terminals D of all of the plurality of battery controllers SC 1 to SC n are switched from the low state L to the high state H.
  • the battery controller (SC j ) in response to its confirmation terminal (D) being in the high state (H), transmits a response signal indicating that the ID setting of the battery controller (SC j ) is finished to the first signal path 110 . While transmitting, it can switch its output terminal (C) from the high state (H) to the low state (L). As a result, power unnecessarily consumed for maintaining the output terminal C in the high state H can be saved, and the risk of being electrically short-circuited to other electrical components in the battery pack BP can be eliminated.
  • Fig. 4 is a timing chart referenced for explaining the error condition detection during the ID setting sequence using the signal network of Fig. 2;
  • j-th battery controller input terminal (B) is, the j-th battery controller (SC j) by the switched to a high state (H) from the low state (L) of (SC j) An ID setting procedure for .
  • the check terminals D of all of the plurality of battery controllers SC 1 to SC n are It has unintentionally switched from the low state (L) to the high state (H). This indicates that, at time point T X , some defect has occurred.
  • the situation shown in FIG. 3 may occur.
  • the n battery controller output terminal (C) and / or the check terminal (D) is high from a low state (L) of the n battery controller (SC n) in, the time T X due to the malfunction of the (SC n) In the case of switching to the state H, a situation as shown in FIG. 3 may occur.
  • the j-th battery controller (SC j ) even though its output terminal (C) maintains the low state (L), its confirmation terminal (D) is switched from the low state (L) to the high state (H) In this case, it is possible to output an error message from its own communication terminal (A).
  • the j-th battery controller (SC j ) even though its input terminal (B) maintains the low state (L), its output terminal (C) and / or the confirmation terminal (D) from the low state (L) When it is switched to the high state (H), it is possible to output an error message from its own communication terminal (A).
  • each of the plurality of battery controllers SC 1 to SC n may perform an error removing operation in response to the received error message.
  • the error removal operation may be, for example, initializing an ID already set to the user or resetting the communication unit 13 of the user.
  • the upper controller MC may prohibit turn-on of the relay 20 in response to the received error message.
  • Each of the plurality of battery controllers SC 1 to SC n is, after execution of the error cancellation operation, in response to both the output terminal C and the confirm terminal D having a low state L, the first signal path 110 ) to output an error removal message.
  • the error clearing message indicates that the error condition has been resolved by the error clearing operation.
  • the upper controller MC may allow the relay 20 to be turned on.
  • FIG. 5 is a diagram schematically showing a signal network for setting IDs of a plurality of battery controllers according to a second embodiment of the present invention.
  • the second embodiment of FIG. 5 is different from the first embodiment of FIG. 2 in that the battery control system 100 further includes a sequence termination circuit 200 . Accordingly, in the description of the second embodiment, repeated description of the contents common to the first embodiment will be omitted.
  • the sequence termination circuit 200 includes a resistor R and a switch SW 1 .
  • the series circuit of resistor R and switch SW 1 is electrically coupled between the output of the external power supply 50 and ground.
  • the input terminal B of the first battery controller SC 1 is connected to the external power supply 50 through the resistor R. That is, the input terminal B of the first battery controller SC 1 is coupled to the connection point of the resistor R and the switch SW 1 .
  • the sequence termination circuit 200 may further include an RC circuit 210 .
  • RC circuit 210 can be a parallel circuit of a resistor and a capacitor, and the gate of the switch (SW 1) - by suppressing a rapid voltage change of the source voltage, to protect the switch (SW 1).
  • the third signal path 130 has a high level voltage.
  • the switch SW 1 is turned off in response to the third signal path 130 having a low level voltage.
  • the switch SW 1 is turned on in response to the third signal path 130 having a high level voltage.
  • a current path between the resistor R and the ground is formed, so that the input terminal B of the first battery controller SC 1 is switched from the high state (H) to the low state (L). is converted to That is, the high level voltage from the external power source 50 is cut off from the input terminal B of the first battery controller SC 1 . Accordingly, compared to the case where the input terminal (B) of the first battery controller (SC 1 ) is maintained in the high state (H) by the external power source 50 even though the ID setting sequence is normally completed, electrical It can reduce the risk of short circuit.
  • FIG. 6 is a diagram schematically illustrating a signal network for setting IDs of a plurality of battery controllers according to a third embodiment of the present invention.
  • the third embodiment of FIG. 6 is different from the first embodiment of FIG. 2 in that the battery control system 100 further includes a switch SW 2 . Therefore, in the description of the third embodiment, repeated description of the contents common to the first embodiment will be omitted.
  • the switch SW 2 is coupled between the external power source 50 and the input terminal B of the first battery controller SC 1 .
  • a P-channel MOSFET is used as the switch SW 2 .
  • the drain and the source of the P-channel MOSFET are electrically coupled to the input terminal B of the first battery controller SC and the output of the external power source 50 , respectively.
  • the gate of the P-channel MOSFET is electrically coupled to the third signal path 130 .
  • the switch SW 2 is turned on in response to the third signal path 130 having a low level voltage. Therefore, while the output terminal (C) of the n-th battery controller (SC n ) is maintained in the low state (L), the input terminal (B) of the first battery controller (SC 1 ) is high by the external power supply (50) It remains in state (H).
  • the switch SW 2 is turned off in response to the third signal path 130 having a high level voltage.
  • the switch SW 2 is turned off, the input terminal B of the first battery controller SC 1 is switched from the high state H to the low state L. That is, the high level voltage from the external power source 50 is cut off from the input terminal B of the first battery controller SC 1 . Accordingly, compared to the case in which the input terminal B of the first battery controller SC 1 is maintained in the high state H even though the ID setting sequence is normally completed, the risk of an electrical short circuit with other electrical components may be reduced.
  • FIG. 7 is a flowchart schematically illustrating a control method for setting an ID of a battery controller.
  • the method of FIG. 7 may be started when the input terminal B of the j- th battery controller SC j to which ID is not set is switched from a low level to a high level.
  • the method of FIG. 7 relates to the ID setting sequence of the j- th battery controller SC j , and is equally applied to each of the plurality of battery controllers SC 1 to SC n .
  • step S710 the j-th battery controller SC j transmits ID information indicating the ID allocation status of the plurality of battery controllers SC 1 to SC n to the first signal path 110 . collected through
  • step S720 the j th battery controller SC j sets the ID of the j th battery controller SC j based on the ID information.
  • the j-th battery controller SC j may output data indicating an ID set therein to the first signal path 110 .
  • step S730 the j th battery controller SC j outputs a high level voltage to the second signal path 120 . That is, the j-th battery controller (SC j) is switched to the output terminal (C) of the j-th battery controller (SC j) to a high state (H) from the low state (L).
  • step S740 the j-th battery controller SC j determines whether a high-level voltage from the third signal path 130 is input to the check terminal D of the j-th battery controller SC j . That is, the j-th battery controller (SC j) judges whether or not the check terminal (D) of the j-th battery controller (SC j) switch to a high state (H) from the low state (L). If the value of step S740 is YES, the flow proceeds to step S750.
  • the check terminal of the j-th battery controller SC j When (D) does not change from the low state (L) to the high state (H), the j-th battery controller SC j may output an error message.
  • step S750 the j-th battery controller (SC j), and outputs a response signal indicating that the complete ID setting sequence of the j-th battery controller (SC j) in a first signal path (110).
  • the response signal may include the value of the ID set in the j-th battery controller SC j .
  • the response signal output by each battery controller is input to the upper controller (MC) or the battery controller (eg, SC 1 ) responsible for the function (position) of the upper controller (MC) through the first signal path 110 . .
  • the upper controller (MC) or the battery controller (eg, SC 1 ) in charge of the function (position) of the upper controller (MC) determines that the number of times the response signal is received and/or the maximum value of the ID included in the response signal is that of the ID information. When it is the same as the maximum value , it is determined that the IDs are normally set in all of the plurality of battery controllers SC 1 to SC n , otherwise an error message may be output to the first signal path 110 .
  • the number of response signals received may be the total number of response signals sequentially output to the first signal path 110 during a period from when the ID setting sequence is started until a predetermined waiting time elapses.
  • the battery controller eg, SC 1
  • SC 1 the battery controller in charge of the upper controller (MC) or the function (position) of the upper controller (MC) uses each ID to generate a plurality of battery controllers ( SC 1 ⁇ SC n ) can be controlled.
  • FIG. 8 is a flowchart schematically illustrating another control method for setting an ID of a battery controller.
  • the method of FIG. 8 may be started when the input terminal B of the j-th battery controller SC to which ID is not set is switched from a low level to a high level.
  • the method of FIG. 8 relates to the ID setting sequence of the j- th battery controller SC j , and is equally applied to each of the plurality of battery controllers SC 1 to SC n .
  • step S800 the j-th battery controller (SC j) is the j-th battery controller, at least one output terminal (C) and a check terminal (D) of (SC j) the It is determined whether or not it is in the high state (H). If the value of step S800 is NO, the flow proceeds to step S810. If the value of step S800 is "YES", the flow proceeds to step S860.
  • step S810 the j th battery controller SC j collects ID information indicating the ID allocation status of the plurality of battery controllers SC 1 to SC n through the first signal path 110 .
  • step S820 the j th battery controller SC j sets the ID of the j th battery controller SC j based on the ID information.
  • the j-th battery controller SC j may output data indicating an ID set therein to the first signal channel at least once.
  • step S822 it is determined whether the j-th battery controller (SC j) is the j-th controller, the battery check terminal (D) a high level (H) of (SC j). If the value of step S822 is YES, the flow advances to step S860. If the value of step S822 is "NO", the flow proceeds to step S830.
  • the j th battery controller SC j outputs a high level voltage to the second signal path 120 . That is, the j-th battery controller SC j switches the output terminal C of the j-th battery controller S j C from the low state L to the high state H.
  • step S840 the j th battery controller SC j determines whether a high level voltage from the third signal path 130 is input to the check terminal D of the j th battery controller SC j . That is, the j-th battery controller SC determines whether the check terminal D of the j-th battery controller SC is switched from the low state L to the high state H. If the value of step S840 is "Yes", the flow proceeds to step S850.
  • step S860 If a predetermined time elapses from the time when the output terminal C of the j-th battery controller SC j is switched from the low state L to the high state H, the check terminal of the j-th battery controller SC j If (D) does not change from the low state (L) to the high state (H), the process may proceed to step S860.
  • step S850 the j-th battery controller (SC j), and outputs a response signal indicating that the complete ID setting sequence of the j-th battery controller (SC j) in a first signal path (110).
  • step S860 the j-th battery controller SC j outputs an error message to the first signal path 110 .
  • the embodiment of the present invention described above is not implemented only through the apparatus and method, and may be implemented through a program for realizing a function corresponding to the configuration of the embodiment of the present invention or a recording medium in which the program is recorded.
  • the implementation can be easily implemented by those skilled in the art to which the present invention pertains from the description of the above-described embodiments.

Abstract

본 발명에 따른 배터리 제어 시스템은, 제1 내지 제3 신호 경로; 및 제1 내지 제n 배터리 컨트롤러를 포함한다. 상기 제1 배터리 컨트롤러는, 상기 제2 신호 경로를 통해 하이 레벨 전압이 입력되는 경우, 상기 제1 신호 경로를 통해 수집된 ID 정보를 기초로, 상기 제1 배터리 컨트롤러의 ID를 설정한 다음, 상기 하이 레벨 전압을 상기 제2 신호 경로에 출력한다. i는 2~n의 자연수인 경우, 제i 배터리 컨트롤러는, 제i-1 배터리 컨트롤러에 의해 출력된 상기 하이 레벨 전압이 상기 제2 신호 경로를 통해 입력되는 경우, 상기 제i 배터리 컨트롤러의 ID를 설정한 다음, 상기 하이 레벨 전압을 상기 제2 신호 경로에 출력한다. 상기 제n 배터리 컨트롤러에 의해 상기 하이 레벨 전압이 상기 제3 신호 경로에 출력되는 경우, 각 배터리 컨트롤러는 응답 신호를 상기 제1 신호 경로에 출력한다.

Description

배터리 제어 시스템, 배터리 팩, 전기 차량, 및 상기 배터리 제어 시스템을 위한 ID 설정 방법
본 발명은, 배터리 제어 시스템의 복수의 배터리 컨트롤러에 순차적으로 ID를 할당하는 기술에 관한 것이다.
본 출원은 2020년 02월 13일자로 출원된 한국 특허출원 번호 제10-2020-0017878호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
전기 차량과 같이 대용량이면서 고전압이 요구되는 장치를 위한 배터리 팩은, 통상적으로 서로 직렬로 접속된 복수의 배터리 모듈을 포함한다.
복수의 배터리 모듈을 효율적으로 관리하기 위해서, 멀티 슬레이브 체계를 가지는 배터리 제어 시스템이 개시되어 있다. 배터리 제어 시스템은, 복수의 배터리 모듈의 상태를 모니터링 및 제어하기 위해 복수의 배터리 모듈에 일대일로 제공되는 복수의 배터리 컨트롤러를 포함한다. 복수의 배터리 컨트롤러는, 그 중 하나 또는 별도로 마련된 상위 컨트롤러에 의해 통합적으로 관리될 수 있다. 복수의 배터리 컨트롤러 사이 및/또는 복수의 배터리 컨트롤러와 상위 컨트롤러 사이의 원활한 데이터 송수신을 위해서는, 각 배터리 컨트롤러에 고유의 식별자로서의 ID가 설정될 필요가 있다.
특허문헌 1은, 상위 컨트롤러로서의 마스터가 배터리 컨트롤러로서의 복수의 슬레이브에게 순차적으로 아이디를 할당하는 기술을 개시한다. 그런데, 특허문헌 1에 따른 ID 할당은, 마스터가 필수적으로 요구되어 그 과정이 복잡할 뿐만 아니라, 복수의 배터리 각각의 전극(양극 또는 음극)과 접지 간의 전위차를 검출해야만 하는 제약이 따른다.
(특허문헌 1)대한민국 공개특허공보 제10-2011-0013747호(공개일자: 2011년 02월 10일)
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 상위 컨트롤러의 관여 없이, 복수의 배터리 컨트롤러가 상호 간의 연결 순서에 대응하는 ID를 순차적으로 할당하는 배터리 제어 시스템, 배터리 팩, 전기 차량 및 상기 배터리 제어 시스템을 위한 ID 설정 방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 측면에 따른 배터리 제어 시스템은, 제1 내지 제3 신호 경로; 및 상기 제1 내지 제3 신호 경로를 통해 상호 접속되는 제1 내지 제n 배터리 컨트롤러를 포함한다. n은 2 이상의 자연수이다. 상기 제1 배터리 컨트롤러는, ID 설정 시퀀스의 개시 명령으로서의 하이 레벨 전압이 상기 제2 신호 경로를 통해 상기 제1 배터리 컨트롤러에 입력되는 경우, 상기 제1 내지 제n 배터리 컨트롤러의 ID 할당 현황을 나타내는 ID 정보를 상기 제1 신호 경로를 통해 수집하고, 상기 ID 정보를 기초로 상기 제1 배터리 컨트롤러의 ID를 설정한 다음, 상기 하이 레벨 전압을 상기 제2 신호 경로를 통해 제2 배터리 컨트롤러에 출력하도록 구성된다. 제i 배터리 컨트롤러는, 제i-1 배터리 컨트롤러에 의해 출력된 상기 하이 레벨 전압이 상기 제2 신호 경로를 통해 상기 제i 배터리 컨트롤러에 입력되는 경우, 상기 ID 정보를 상기 제1 신호 경로를 통해 수집하고, 상기 제i 배터리 컨트롤러에 의해 수집된 상기 ID 정보를 기초로 상기 제i 배터리 컨트롤러의 ID를 설정한 다음, 상기 하이 레벨 전압을 상기 제2 신호 경로에 출력하도록 구성된다. i는 2~n의 자연수이다. 상기 제n 배터리 컨트롤러에 의해 상기 제2 신호 경로에 출력되는 상기 하이 레벨 전압은, 상기 제3 신호 경로를 통해 상기 1 내지 제n 배터리 컨트롤러 모두에 입력된다. 각 배터리 컨트롤러는, 상기 제3 신호 경로를 통해 상기 하이 레벨 전압이 입력되는 경우, ID 설정 시퀀스가 완료되었음을 나타내는 응답 신호를 상기 제1 신호 경로에 출력하도록 구성된다.
각 배터리 컨트롤러는, 통신 단자, 입력 단자, 출력 단자 및 확인 단자를 포함한다. 각 배터리 컨트롤러의 상기 통신 단자는, 상기 ID 정보의 수집을 위해 상기 제1 신호 경로에 결합된다. 상기 제1 배터리 컨트롤러의 입력 단자는, 상기 제2 신호 경로를 통해, 상기 하이 레벨 전압을 출력하는 외부 전원에 결합된다. 상기 제i 배터리 컨트롤러의 입력 단자는, 상기 제2 신호 경로를 통해, 상기 하이 레벨 전압이 출력되는 상기 제i-1 배터리 컨트롤러의 출력 단자에 결합된다. 각 배터리 컨트롤러의 상기 확인 단자는, 상기 제3 신호 경로를 통해, 상기 제n 배터리 컨트롤러의 출력 단자에 결합된다.
제j 배터리 컨트롤러는, 상기 제j 배터리 컨트롤러의 출력 단자로부터 상기 하이 레벨 전압이 출력되기 전에 상기 제j 배터리 컨트롤러의 확인 단자에 상기 하이 레벨 전압이 입력되는 경우, 상기 제j 배터리 컨트롤러의 통신 단자로부터 에러 메시지를 출력하도록 구성될 수 있다. j는 n 이하의 자연수이다.
제j 배터리 컨트롤러는, 상기 제j 배터리 컨트롤러에 의해 수집된 상기 ID 정보의 최대값에 소정의 증분값을 합산한 값을 상기 제j 배터리 컨트롤러의 ID로 설정하도록 구성될 수 있다. j는 n 이하의 자연수이다.
제j 배터리 컨트롤러는, 상기 제j 배터리 컨트롤러의 ID가 설정된 경우, 상기 제j 배터리 컨트롤러의 상기 입력 단자에 상기 하이 레벨 전압이 입력되는 동안, 상기 제j 배터리 컨트롤러에 설정된 상기 ID를 상기 통신 단자를 통해 적어도 1회 출력하도록 구성될 수 있다. j는 n 이하의 자연수이다.
제j 배터리 컨트롤러는, 상기 제j 배터리 컨트롤러의 ID가 설정된 경우, 상기 제j 배터리 컨트롤러의 입력 단자에 상기 하이 레벨 전압이 입력되는 동안, 상기 제j 배터리 컨트롤러의 상기 출력 단자로부터 상기 하이 레벨 전압을 출력하도록 구성될 수 있다. j는 n 이하의 자연수이다.
제j 배터리 컨트롤러는, 상기 제j 배터리 컨트롤러의 출력 단자로부터 상기 하이 레벨 전압을 출력하는 중, 상기 제j 배터리 컨트롤러의 확인 단자에 상기 하이 레벨 전압이 입력되는 것에 응답하여, 상기 ID 설정 시퀀스를 종료하도록 구성될 수 있다. j는 n 이하의 자연수이다.
상기 배터리 제어 시스템은, 상기 제1 배터리 컨트롤러의 상기 입력 단자와 상기 외부 전원 간에 결합되는 저항; 및 상기 저항과 접지 간에 전기적으로 결합되는 제1 스위치를 포함하는 시퀀스 종료 회로를 더 포함할 수 있다. 상기 제1 스위치는, 상기 제3 신호 경로에 출력되는 상기 하이 레벨 전압에 응답하여 턴 온될 수 있다. 상기 제1 스위치가 턴 온되는 경우, 상기 외부 전원으로부터의 상기 하이 레벨 전압이 상기 제1 배터리 컨트롤러의 상기 입력 단자로부터 차단될 수 있다.
상기 배터리 제어 시스템은, 상기 제1 배터리 컨트롤러의 상기 입력 단자와 상기 외부 전원 간에 결합되는 제2 스위치를 더 포함할 수 있다. 상기 제2 스위치는, 상기 제3 신호 경로에 출력되는 상기 하이 레벨 전압에 응답하여 턴 오프될 수 있다. 상기 제2 스위치가 턴 오프되는 경우, 상기 외부 전원으로부터의 상기 하이 레벨 전압이 상기 제1 배터리 컨트롤러의 상기 입력 단자로부터 차단될 수 있다.
본 발명의 다른 측면에 따른 배터리 팩은, 상기 배터리 제어 시스템을 포함한다.
본 발명의 또 다른 측면에 따른 전기 차량은, 상기 배터리 팩을 포함한다.
본 발명의 또 다른 측면에 따른 상기 배터리 제어 시스템을 위한 ID 설정 방법은, 상기 제j 배터리 컨트롤러가, 상기 하이 레벨 전압이 상기 제2 신호 경로를 통해 상기 제j 배터리 컨트롤러에 입력되는 경우, 상기 제1 내지 제n 배터리 컨트롤러의 ID 할당 현황을 나타내는 상기 ID 정보를 상기 제1 신호 경로를 통해 수집하는 단계; 상기 제j 배터리 컨트롤러가, 상기 ID 정보를 기초로, 상기 제j 배터리 컨트롤러의 ID를 설정하는 단계; 상기 제j 배터리 컨트롤러가, 상기 제j 배터리 컨트롤러의 ID 설정이 완료된 후, 상기 하이 레벨 전압을 상기 제2 신호 경로에 출력하는 단계; 및 상기 제j 배터리 컨트롤러가, 상기 제j 배터리 컨트롤러에 의해 상기 하이 레벨 전압이 상기 제2 신호 경로에 출력된 후, 상기 제3 신호 경로를 통해 상기 하이 레벨 전압이 상기 제j 배터리 컨트롤러에 입력되는 경우, 상기 제j 배터리 컨트롤러의 ID 설정 시퀀스가 완료되었음을 나타내는 상기 응답 신호를 상기 제1 신호 경로에 출력하는 단계를 포함한다.
본 발명의 실시예들 중 적어도 하나에 의하면, 상위 컨트롤러의 관여 없이, 복수의 배터리 컨트롤러가 상호 간의 연결 순서에 대응하는 ID를 순차적으로 할당할 수 있다.
본 발명의 실시예들 중 적어도 하나에 의하면, 복수의 배터리 컨트롤러 중 적어도 하나가 ID 설정 시퀀스의 진행 중의 오류 상황을 자체적으로 검출하고, 오류 상황을 나머지 배터리 컨트롤러에 자동 공유할 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명에 따른 전기 차량의 구성을 예시적으로 나타낸 도면이다.
도 2는 본 발명의 제1 실시예에 따른 복수의 배터리 컨트롤러의 ID 설정을 위한 신호 네크워크를 개략적으로 보여주는 도면이다.
도 3은 도 2의 신호 네트워크를 이용한 ID 설정 시퀀스를 개략적으로 보여주는 타이밍 챠트이다.
도 4는 도 2의 신호 네트워크를 이용한 ID 설정 시퀀스가 진행되는 중의 에러 상황 검출을 설명하는 데에 참조되는 타이밍 챠트이다.
도 5는 본 발명의 제2 실시예에 따른 복수의 배터리 컨트롤러의 ID 설정을 위한 신호 네크워크를 개략적으로 보여주는 도면이다.
도 6은 본 발명의 제3 실시예에 따른 복수의 배터리 컨트롤러의 ID 설정을 위한 신호 네크워크를 개략적으로 보여주는 도면이다.
도 7은 배터리 컨트롤러의 ID 설정을 위한 일 제어 방법을 개략적으로 보여주는 순서도이다.
도 8은 배터리 컨트롤러의 ID 설정을 위한 다른 제어 방법을 개략적으로 보여주는 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. 또한, 명세서에 기재된 <제어부>와 같은 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 하드웨어, 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
도 1은 본 발명에 따른 전기 차량의 구성을 예시적으로 나타낸 도면이다.
도 1을 참조하면, 전기 차량(1)은, 배터리 팩(BP), 릴레이(20), 인버터(30), 전기 모터(40) 및 외부 전원(50)을 포함한다.
배터리 팩(BP)은, 전기 차량(1)의 전기 모터(40)의 구동에 요구되는 전력을 공급할 수 있다. 배터리 팩(BP)은, 복수의 배터리 모듈(BM 1~BM n)을 포함한다. 본 명세서에 있어서, 참조부호로서 사용된 아래첨자 기호 n은 2 이상의 자연수고, 기호 j는 n 이하의 자연수다. 복수의 배터리 모듈(BM 1~BM n)은, 서로 직렬 및/또는 병렬 연결된다. 복수의 배터리 모듈(BM 1~BM n) 각각은, 적어도 하나의 배터리 셀(BC)을 포함한다. 배터리 셀(BC)은, 리튬 이온 배터리 셀(BC)일 수 있다. 물론, 반복적인 충방전이 가능한 것이라면, 배터리 셀(BC)의 종류는 특별히 한정되지 않는다.
릴레이(20)는, 배터리 팩(BP)과 인버터(30)를 연결하는 전력선(PL)에 설치된다. 릴레이(20)는, 배터리 제어 시스템(100)으로부터의 스위칭 신호에 응답하여, 온오프 제어된다.
인버터(30)는, 릴레이(20)가 턴 온 상태인 동안, 배터리 제어 시스템(100)으로부터의 제어 신호에 응답하여, 배터리 팩(BP)으로부터의 직류 전류를 교류 전류로 변환하도록 제공된다. 전기 모터(40)는, 3상 교류 모터로서, 인버터(30)에 의해 생성되는 교류 전류를 공급받아 구동한다.
외부 전원(50)은, 전기 차량(1)에 설치되는 주변 기기(미도시)의 동작에 요구되는 전기 에너지를 공급하도록 전기 차량(1)에 설치된다. 외부 전원(50)으로는 예컨대 납축 전지를 이용할 수 있다. 주변 기기는, 히터, 에어컨, 조명 등을 들 수 있다.
배터리 팩(BP)은, 배터리 제어 시스템(100)을 더 포함한다.
배터리 제어 시스템(100)은, 복수의 배터리 컨트롤러(SC 1~SC n)를 포함한다. 배터리 제어 시스템(100)은, 상위 컨트롤러(MC)를 더 포함할 수 있다.
복수의 배터리 컨트롤러(SC 1~SC n)는, 복수의 배터리 모듈(BM 1~BM n)에 일대일로 제공된다. 이하에서, 배터리 컨트롤러(SC j)에 관한 설명은, 복수의 배터리 컨트롤러(SC 1~SC n) 각각에 공통된다.
배터리 컨트롤러(SC j)는, 배터리 모듈(BM j)의 상태(예, 전압, 전류, 온도, 충전 상태, 건강 상태)를 모니터링하도록 구성된다. 배터리 컨트롤러(SC j)는, 센싱부(11), 제어부(12) 및 통신부(13)를 포함할 수 있다.
센싱부(11)는, 전압 검출 회로, 전류 검출 회로 및 온도 검출 회로 중 적어도 하나를 포함할 수 있다. 전압 검출 회로는, 배터리 모듈(BM j)에 포함된 각 배터리 셀(BC)의 양단에 걸친 전압을 측정하고, 측정된 각 배터리 셀(BC)의 전압을 나타내는 신호를 제어부(12)에게 출력할 수 있다. 전류 검출 회로는, 배터리 모듈(BM j)을 통해 흐르는 전류를 검출하고, 검출된 전류를 나타내는 신호를 제어부(12)에게 출력할 수 있다. 온도 검출 회로는, 배터리 모듈(BM j)의 온도를 검출하고, 검출된 온도를 나타내는 신호를 제어부(12)에게 출력할 수 있다.
제어부(12)는, 하드웨어적으로, ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다. 제어부(12)에는 메모리가 내장될 수 있다. 메모리에는, 후술할 방법들을 실행하는 데에 필요한 프로그램 및 각종 데이터가 저장될 수 있다. 메모리는, 예컨대 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), SSD 타입(Solid State Disk type), SDD 타입(Silicon Disk Drive type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 램(random access memory; RAM), SRAM(static random access memory), 롬(read-only memory; ROM), EEPROM(electrically erasable programmable read-only memory), PROM(programmable read-only memory) 중 적어도 하나의 타입의 저장매체를 포함할 수 있다. 제어부(12)는, 센싱부(11)로부터의 신호들을 기초로, 배터리 모듈(BM j)의 상태를 나타내는 배터리 정보를 생성하고, 생성된 배터리 정보를 메모리에 기록할 수 있다.
통신부(13)는, 제어부(12)에 동작 가능하게 결합되어, 제어부(12)로부터의 배터리 정보를 상위 컨트롤러(MC) 및/또는 다른 배터리 컨트롤러(SC)에게 전송한다. 두 구성이 동작 가능하게 결합된다는 것은, 두 구성 간에 단방향 또는 양방향으로 신호를 송수신 가능하게 연결되어 있음을 의미한다.
배터리 컨트롤러(SC j)의 동작에 요구되는 전력은 배터리 모듈(BM j) 및/또는 외부 전원(50)으로부터 공급될 수 있다. 후술될 ID 설정 시퀀스의 실행 전, 배터리 컨트롤러(SC j)는 소정의 초기값(예, 0)으로 설정된 임시적 식별자를 가질 수 있다.
외부 전원(50)은, 복수의 배터리 컨트롤러(SC 1~SC n)에 대한 ID 설정 시퀀스의 개시를 명령하는 신호로서의 하이 레벨 전압(예, 12V)을 제공한다. 본 명세서에서, 하이 레벨 전압은, 소정의 전압(예, 3V) 이상의 전압 신호를 의미한다. 이에 따라, 배터리 팩(BP)이 전기 차량(1)에 설치되어, 배터리 제어 시스템(100)이 외부 전원(50)에 전기적으로 결합됨에 의해, 복수의 배터리 컨트롤러(SC 1~SC n)에 대한 ID 설정 시퀀스가 자동 개시될 수 있다.
상위 컨트롤러(MC)는, 복수의 배터리 컨트롤러(SC 1~SC n)를 이용하여, 복수의 배터리 모듈(BM 1~BM n)을 통합적으로 관리하도록 구성된다. 상위 컨트롤러(MC)는, LAN(local area network), CAN(controller area network)과 같은 유선 네트워크 및/또는 블루투스, 지그비, 와이파이 등의 무선 네트워크를 통해 배터리 컨트롤러(SC j)와 통신할 수 있다. 상위 컨트롤러(MC)는, 복수의 배터리 컨트롤러(SC 1~SC n)에 대한 ID 설정이 정상적으로 완료된 후, 복수의 배터리 컨트롤러(SC 1~SC n)로부터의 배터리 정보를 기초로, 복수의 배터리 모듈(BM 1~BM n)의 충방전을 제어한다. 예컨대, 배터리 컨트롤러(SC j)로부터의 배터리 정보가 배터리 모듈(BM j) 내 적어도 하나의 배터리 셀(BC)의 비정상(예, 과전압, 과방전, 과열)을 나타내는 경우, 상위 컨트롤러(MC)는 릴레이(20)를 오프하여, 배터리 모듈(BM j)을 보호할 수 있다. 상위 컨트롤러(MC)의 하드웨어적 구성은, 센싱부(11)가 생략될 수 있다는 점 외에는 배터리 컨트롤러(SC j)와 동일할 수 있다.
대안적으로, 상위 컨트롤러(MC)가 배터리 제어 시스템(100)으로부터 생략되고, 대신 복수의 배터리 컨트롤러(SC 1~SC n) 중 하나(예, SC 1)가 상위 컨트롤러(MC)의 기능(지위)을 담당할 수 있다. 이 경우, 상위 컨트롤러(MC)의 기능을 담당하게 된 배터리 컨트롤러(예, SC 1)를 '마스터'라고 칭하고, 나머지 배터리 컨트롤러(SC) 각각을 '슬레이브'라고 칭할 수 있다.
도 2는 본 발명의 제1 실시예에 따른 복수의 배터리 컨트롤러의 ID 설정을 위한 신호 네크워크를 개략적으로 보여주는 도면이다.
도 1 및 도 2를 참조하면, 배터리 제어 시스템(100)은, 제1 신호 경로(110), 제2 신호 경로(120) 및 제3 신호 경로(130)를 더 포함한다. 복수의 배터리 컨트롤러(SC 1~SC n) 각각은, 통신 단자(A), 입력 단자(B), 출력 단자(C) 및 확인 단자(D)를 포함한다. 배터리 컨트롤러(SC j)의 통신부(13)는, 배터리 컨트롤러(SC j)의 통신 단자(A), 입력 단자(B), 출력 단자(C) 및 확인 단자(D)에 동작 가능하게 결합될 수 있다.
배터리 컨트롤러(SC j)의 통신 단자(A)는, 제1 신호 경로(110)에 결합된다. 배터리 컨트롤러(SC j)는, 배터리 컨트롤러(SC j)에 설정된 ID를 나타내는 값을 제1 신호 경로(110)에 출력한다. 배터리 컨트롤러(SC j)는, 자신의 ID가 아직 설정되지 않은 경우, ID 미설정 상태를 나타내는 초기값을 제1 신호 경로(110)에 출력할 수 있다. 배터리 컨트롤러(SC j)는, 제1 신호 경로(110)를 통해, 다른 배터리 컨트롤러(SC)에 설정된 ID를 나타내는 데이터를 수집한다. 즉, 제1 신호 경로(110)는, 복수의 배터리 컨트롤러(SC 1~SC n)의 상호 간에 ID 정보를 송수신을 위한 통신 채널로서 기능한다. ID 정보는, 복수의 배터리 컨트롤러(SC 1~SC n)의 ID 할당 현황을 나타내는 것이다. ID 정보는, 복수의 배터리 컨트롤러(SC 1~SC n) 중 어느 것까지 ID가 설정되었는지를 나타내는 정보와, 각 배터리 컨트롤러(SC)에 설정된 ID의 값을 나타내는 정보를 포함할 수 있다. 예컨대, ID의 값이 1부터 n까지 오름차순으로 복수의 배터리 컨트롤러(SC 1~SC n)에게 순차 설정되도록 구성된 경우, 특정 시점에서 수집된 ID 정보의 최대값이 3인 것은, 배터리 컨트롤러(SC 1)에 설정된 ID의 값이 1이고, 배터리 컨트롤러(SC 2)에 설정된 ID의 값이 2이고, 배터리 컨트롤러(SC 3)에 설정된 ID의 값이 3이고, 배터리 컨트롤러(SC 4~SC n)의 ID는 아직 미설정 상태임을 나타낸다.
제2 신호 경로(120)는, 외부 전압(50)의 출력으로부터 복수의 배터리 컨트롤러(SC 1~SC n) 각각의 입력 단자(B) 및 출력 단자(C)를 연결하는 직렬 통신 채널일 수 있다. 본 명세서에 있어서, n ≥ b > a > 0 (a와 b는 자연수)이라고 할 때, 배터리 컨트롤러(SC a)는 배터리 컨트롤러(SC b)의 상류에 위치한다고 할 수 있고, 배터리 컨트롤러(SC b)는 배터리 컨트롤러(SC a)의 하류에 위치한다고 할 수 있다. 즉, 제2 신호 경로(120)에 의한 직렬 신호 채널에 있어서, 외부 전원(50)까지의 신호 전달 길이가 짧을수록 상류에 위치한다고 할 수 있고, 외부 전원(50)까지의 신호 전달 길이가 길수록 하류에 위치한다고 할 수 있다.
복수의 배터리 컨트롤러(SC 1~SC n) 각각의 입력 단자(B)와 출력 단자(C)는, 제2 신호 경로(120)를 통해 데이지 체인으로 결합된다. 구체적으로, 제1 배터리 컨트롤러(SC 1)의 입력 단자(B)는, 제2 신호 경로(120)에 의해 외부 전원(50)에 결합될 수 있다. 배터리 팩(BP)이 전기 차량(1)에 설치되는 경우, 외부 전원(50)으로부터의 하이 레벨 전압이 제2 신호 경로(120)를 통해 최상류에 위치하는 제1 배터리 컨트롤러(SC 1)의 입력 단자(B)에 인가된다. 제1 배터리 컨트롤러(SC 1)의 출력 단자(C)는, 제2 신호 경로(120)에 의해 제2 배터리 컨트롤러(SC 2)의 입력 단자(B)에 결합된다. i는 2~n의 자연수라고 할 때, 제i 배터리 컨트롤러(SC i)의 입력 단자(B)는, 제2 신호 경로(120)에 의해 제i-1 배터리 컨트롤러(SC i-1)의 출력 단자(C)에 결합된다. 이에 따라, 외부 전원(50)으로부터 제n 배터리 컨트롤러(SC n)의 출력 단자(C)까지 범위에 걸쳐, 복수의 배터리 컨트롤러(SC 1~SC n) 각각의 입력 단자(B)와 출력 단자(C)가 순차적으로 접속된 직렬 통신 채널이 형성된다.
배터리 컨트롤러(SC j)의 확인 단자(D)는, 제3 신호 경로(130)에 결합된다. 제3 신호 경로(130)는, 복수의 배터리 컨트롤러(SC 1~SC n) 각각의 확인 단자(D)에 공통적으로 연결되어 있는 병렬 통신 채널일 수 있다. 즉, 도시된 바와 같이, 제3 신호 경로(130)에 의해, 복수의 배터리 컨트롤러(SC 1~SC n) 모두의 확인 단자(D)가 병렬 접속되어 있다.
최하류에 위치된 제n 배터리 컨트롤러(SC n)의 출력 단자(C)와 확인 단자(D)는 노드(N)에 공통 접속되어 있다. 도 2를 참조하면, 제n 배터리 컨트롤러(SC n)의 출력 단자(C)는 제2 신호 경로(120)를 통해 노드(N)에 결합되고, 제n 배터리 컨트롤러(SC n)의 확인 단자(D)는 제3 신호 경로(130)를 통해 노드(N)에 결합되어 있다. 즉, 제3 신호 경로(130)는, 노드(N)를 통해 제2 신호 경로(120)에 결합될 수 있다. 이에 따라, 제n 배터리 컨트롤러(SC n)가 그것의 출력 단자(C)로부터 특정 전압 레벨(예, 하이 레벨 전압)의 신호를 출력할 경우, 해당 신호는 제3 신호 경로(130)를 통해 복수의 배터리 컨트롤러(SC 1~SC n) 모두의 확인 단자(D)에 실질적으로 동시에 입력될 수 있다.
본 명세서에서, 어떤 단자가 '하이 상태(H)'라는 것은, 하이 레벨 전압이 입력 또는 출력되는 중임을 나타낸다. 또한, 본 명세서에서, 어떤 단자가 '로우 상태(L)'라는 것은, 로우 레벨 전압이 입력 또는 출력되는 중임을 나타낸다. 본 명세서에서, 로우 레벨 전압은, 하이 레벨 전압에 반대되는 개념으로서, 소정의 전압보다 낮은 전압 레벨을 가지는 전압 신호를 의미한다.
도 3은 도 2의 신호 네트워크를 이용한 ID 설정 시퀀스를 개략적으로 보여주는 타이밍 챠트이다. 배터리 제어 시스템(100)이 외부 전원(50)에 결합되기 전에는, 복수의 배터리 컨트롤러(SC 1~SC n) 모두는 ID 설정 대기 상태에 있을 수 있다. ID 설정 대기 상태는, 배터리 컨트롤러(SC j)의 입력 단자(B), 출력 단자(C) 및 확인 단자(D)가 모두 로우 상태(L)를 가지는 경우를 칭한다.
도 1 내지 도 3을 참조하면, 시점 T 0에서, 외부 전원(50)으로부터의 하이 레벨 전압에 의해 제1 배터리 컨트롤러(SC 1)의 입력 단자(B)는 로우 상태(L)로부터 하이 상태(H)로 전환된다.
제1 배터리 컨트롤러(SC 1)는, 제1 배터리 컨트롤러(SC 1)의 입력 단자(B)가 하이 상태(H)인 것에 응답하여, 자신의 ID를 설정한다. 시점 T 0 전에는 복수의 배터리 컨트롤러(SC 1~SC n) 중 어느 것에도 ID가 설정되어 있지 않다. 즉, 시점 T 0 전에 제1 신호 경로(110)를 통해 수집된 ID 정보의 최대값은 초기값과 동일하다. 초기값이 0이라고 해보자. 그러면, 제1 배터리 컨트롤러(SC)는, 초기값 0에 소정의 증분값 1이 합산된 값인 1을 자신의 ID로 설정하고, 설정된 ID를 나타내는 데이터를 시점 T 0 후에 적어도 1회 제1 신호 경로(110)에 전송한다. 이에 따라, 제1 배터리 컨트롤러(SC 1)의 하류에 위치하는 배터리 컨트롤러(SC 2~SC n)가 제1 신호 경로(110)를 통해 수집된 ID 정보를 기초로, 제1 배터리 컨트롤러(SC 1)의 ID가 설정되었음을 확인할 수 있다. 그 다음, 제1 배터리 컨트롤러(SC 1)는, 시점 T 1에서, 제1 배터리 컨트롤러(SC 1)의 출력 단자(C)로부터 하이 레벨 전압을 출력할 수 있다.
시점 T 1에서, 제1 배터리 컨트롤러(SC 1)의 출력 단자(C)로부터의 하이 레벨 전압에 의해, 제2 배터리 컨트롤러(SC 2)의 입력 단자(B)는 로우 상태(L)로부터 하이 상태(H)로 전환된다. 제2 배터리 컨트롤러(SC 2)는, 제2 배터리 컨트롤러(SC 2)의 입력 단자(B)가 하이 상태(H)인 것에 응답하여, 자신의 ID를 설정한다. 시점 T 1까지는 제1 배터리 컨트롤러(SC 1)만의 ID가 설정되었으므로, ID 정보의 최대값은 1일 것이다. 제2 배터리 컨트롤러(SC 2)는, ID 정보의 최대값 1에 증분값 1을 합산한 2를 자신의 ID로 설정하고, 설정된 ID를 나타내는 데이터를 적어도 1회 제1 신호 경로(110)에 전송한다. 이에 따라, 제2 배터리 컨트롤러(SC 2)의 하류에 위치하는 배터리 컨트롤러(SC 3~SC n)가 제1 신호 경로(110)를 통해 수집된 ID 정보를 기초로, 제2 배터리 컨트롤러(SC 2)의 ID가 설정되었음을 확인할 수 있다. 그 다음, 제2 배터리 컨트롤러(SC 2)는, 시점 T 2에서, 제2 배터리 컨트롤러(SC 2)의 출력 단자(C)로부터 하이 레벨 전압을 출력할 수 있다.
전술된 과정이, 가장 하류에 위치하는 제n 배터리 컨트롤러(SC n)의 ID가 설정될 때까지 반복된다. 각 배터리 컨트롤러는, 자신이 ID가 설정되면, 복수의 배터리 컨트롤러(SC 1~SC n) 모두에 대한 ID 설정 시퀀스가 완료될 때까지, 자신의 ID를 나타내는 데이터를 제1 신호 경로(110)에 주기적 또는 비주기적으로 다수회 출력할 수 있다.
도 2에 따른 ID 설정 시퀀스에 있어서, 제1 배터리 컨트롤러(SC 1)로부터 제n 배터리 컨트롤러(SC n)까지의 ID 설정에 있어서, 각 배터리 컨트롤러(SC)의 ID가 1로부터 증분값만큼씩 오름차순으로 설정되는 것으로 설명하였다. 다만, 이는 예시적인 것에 불과하며, 본 발명의 범위가 해당 방식에 한정되는 것은 아니다. 아울러, 초기값과 증분값을 각각 0과 1 외의 다른 값으로 하여도 무방하다.
제n 배터리 컨트롤러(SC n)의 ID가 설정된 후인 시점 T n에서, 제n 배터리 컨트롤러(SC n)는, 자신의 출력 단자(C)로부터 하이 레벨 전압을 출력할 수 있다.
시점 T n에서, 제n 배터리 컨트롤러(SC n)의 출력 단자(C)로부터 출력된 하이 레벨 전압은, 노드(N)를 통해 제n 배터리 컨트롤러(SC n)의 출력 단자(C)에 전기적으로 결합된 제3 신호 경로(130)에 인가된다. 이에 의해, 복수의 배터리 컨트롤러(SC 1~SC n) 모두의 확인 단자(D)는 로우 상태(L)로부터 하이 상태(H)로 전환된다.
배터리 컨트롤러(SC j)는, 자신의 확인 단자(D)가 하이 상태(H)인 것에 응답하여, 배터리 컨트롤러(SC j)의 ID 설정이 왼료되었음을 나타내는 응답 신호를 제1 신호 경로(110)에 송신하는 한편, 자신의 출력 단자(C)를 하이 상태(H)로부터 로우 상태(L)로 전환할 수 있다. 이로써, 출력 단자(C)를 하이 상태(H)로 유지하는 데에 불필요하게 소모되는 전력을 절약하고, 그 밖에 배터리 팩(BP) 내의 다른 전기 부품에 전기적으로 단락되는 위험을 제거할 수 있다.
도 4는 도 2의 신호 네트워크를 이용한 ID 설정 시퀀스가 진행되는 중의 에러 상황 검출을 설명하는 데에 참조되는 타이밍 챠트이다.
도 4에 있어서, 시점 T 10에서 시점 T 12까지의 과정은, 도 3에 도시된 시점 T 0에서 시점 T 2까지의 과정과 동일한바, 반복 설명은 생략한다.
도 4를 참조하면, 시점 T 1j에서, 제j 배터리 컨트롤러(SC j)의 입력 단자(B)가 로우 상태(L)로부터 하이 상태(H)로 전환됨에 의해, 제j 배터리 컨트롤러(SC j)에 대한 ID 설정 절차가 개시된다. 그런데, 제j 배터리 컨트롤러(SC j)의 출력 단자(C)가 로우 상태(L)로 유지되는 중의 시점 T X에서, 복수의 배터리 컨트롤러(SC 1~SC n) 모두의 확인 단자(D)가 의도치 않게 로우 상태(L)로부터 하이 상태(H)로 전환되어 버렸다. 이는, 시점 T X에서, 어떤 결함이 발생하였음을 나타낸다. 일 예로, 제3 신호 경로(130)가 시점 T X에서 외부 전원(50)에 직접 전기적으로 단락된 경우, 도 3과 같은 상황이 발생할 수 있다. 다른 예로, 제n 배터리 컨트롤러(SC n)의 오동작으로 인해, 시점 T X에서 제n 배터리 컨트롤러(SC n)의 출력 단자(C) 및/또는 확인 단자(D)가 로우 상태(L)로부터 하이 상태(H)로 전환되는 경우, 도 3과 같은 상황이 발생할 수 있다.
제j 배터리 컨트롤러(SC j)는, 자신의 출력 단자(C)가 로우 상태(L)를 유지하고 있음에도, 자신의 확인 단자(D)가 로우 상태(L)로부터 하이 상태(H)로 전환되는 경우, 자신의 통신 단자(A)로부터 에러 메시지를 출력할 수 있다.
제j 배터리 컨트롤러(SC j)는, 자신의 입력 단자(B)가 로우 상태(L)를 유지하고 있음에도, 자신의 출력 단자(C) 및/또는 확인 단자(D)가 로우 상태(L)로부터 하이 상태(H)로 전환되는 경우, 자신의 통신 단자(A)로부터 에러 메시지를 출력할 수 있다.
복수의 배터리 컨트롤러(SC 1~SC n) 각각은, 제1 신호 경로(110)를 통해 에러 메시지가 수신되는 경우, 수신된 에러 메시지에 응답하여, 에러 제거 동작을 실행할 수 있다. 에러 제거 동작은, 예컨대 자신에게 이미 설정된 ID를 초기화하거나, 자신의 통신부(13)를 리셋하는 것일 수 있다. 상위 컨트롤러(MC)는, 제1 신호 경로(110)를 통해 에러 메시지가 수신되는 경우, 수신된 에러 메시지에 응답하여, 릴레이(20)의 턴 온을 금지할 수 있다.
복수의 배터리 컨트롤러(SC 1~SC n) 각각은, 에러 제거 동작의 실행 후, 출력 단자(C) 및 확인 단자(D) 둘다 로우 상태(L)를 가지는 것에 응답하여, 제1 신호 경로(110)를 통해 에러 제거 메시지를 출력할 수 있다. 에러 제거 메시지는, 에러 제거 동작에 의해 에러 상황이 해결되었음을 나타낸다. 상위 컨트롤러(MC)는, 제1 신호 경로(110)를 통해 에러 제거 메시지가 수신되는 경우, 릴레이(20)의 턴 온을 허용할 수 있다.
도 5는 본 발명의 제2 실시예에 따른 복수의 배터리 컨트롤러의 ID 설정을 위한 신호 네크워크를 개략적으로 보여주는 도면이다.
도 5의 제2 실시예는, 배터리 제어 시스템(100)이 시퀀스 종료 회로(200)를 더 포함한다는 점에서 도 2의 제1 실시예와 상이하다. 따라서, 제2 실시예를 설명함에 있어서, 제1 실시예와 공통된 내용에 대한 반복 설명은 생략한다.
도 5를 참조하면, 시퀀스 종료 회로(200)는, 저항(R) 및 스위치(SW 1)를 포함한다. 저항(R) 및 스위치(SW 1)의 직렬 회로는, 외부 전원(50)의 출력과 접지 간에 전기적으로 결합된다. 제1 배터리 컨트롤러(SC 1)의 입력 단자(B)는, 저항(R)을 통해 외부 전원(50)에 접속된다. 즉, 제1 배터리 컨트롤러(SC 1)의 입력 단자(B)는, 저항(R)과 스위치(SW 1)의 접속점에 결합된다.
도 5에서는, N채널 모스펫이 스위치(SW 1)로 이용되는 것이 예시되어 있다. N채널 모스펫의 드레인과 소스는 저항(R)과 접지에 각각 전기적으로 결합된다. N채널 모스펫의 게이트는, 제3 신호 경로(130)에 전기적으로 결합된다. 시퀀스 종료 회로(200)는, RC 회로(210)를 더 포함할 수 있다. RC 회로(210)는, 저항과 커패시터의 병렬 회로일 수 있으며, 스위치(SW 1)의 게이트-소스 전압의 급격한 전압 변화를 억제함으로써, 스위치(SW 1)를 보호한다.
제1 배터리 컨트롤러(SC 1)부터 제n 배터리 컨트롤러(SC n)까지 정상적으로 ID 설정이 완료된 경우, 제3 신호 경로(130)가 하이 레벨 전압을 가짐은 전술된 바와 같다.
스위치(SW 1)는, 제3 신호 경로(130)가 로우 레벨 전압을 가지는 것에 응답하여, 턴 오프된다. 스위치(SW 1)는, 제3 신호 경로(130)가 하이 레벨 전압을 가지는 것에 응답하여, 턴 온된다. 스위치(SW 1)가 턴 온되는 경우, 저항(R)과 접지 간의 전류 경로가 형성됨으로써, 제1 배터리 컨트롤러(SC 1)의 입력 단자(B)가 하이 상태(H)로부터 로우 상태(L)로 전환된다. 즉, 외부 전원(50)으로부터의 하이 레벨 전압이 제1 배터리 컨트롤러(SC 1)의 입력 단자(B)로부터 차단된다. 이에 따라, ID 설정 시퀀스가 정상 완료되었음에도 제1 배터리 컨트롤러(SC 1)의 입력 단자(B)가 외부 전원(50)에 의해 하이 상태(H)로 유지되는 경우에 비하여, 다른 전기 부품과의 전기적 단락 위험을 낮출 수 있다.
도 6은 본 발명의 제3 실시예에 따른 복수의 배터리 컨트롤러의 ID 설정을 위한 신호 네크워크를 개략적으로 보여주는 도면이다.
도 6의 제3 실시예는, 배터리 제어 시스템(100)이 스위치(SW 2)를 더 포함한다는 점에서 도 2의 제1 실시예와 상이하다. 따라서, 제3 실시예를 설명함에 있어서, 제1 실시예와 공통된 내용에 대한 반복 설명은 생략한다.
스위치(SW 2)는, 외부 전원(50)과 제1 배터리 컨트롤러(SC 1)의 입력 단자(B) 간에 결합된다. 도 6에서는, P채널 모스펫이 스위치(SW 2)로 이용되는 것이 예시되어 있다. P채널 모스펫의 드레인과 소스는 제1 배터리 컨트롤러(SC)의 입력 단자(B)와 외부 전원(50)의 출력에 각각 전기적으로 결합된다. P채널 모스펫의 게이트는, 제3 신호 경로(130)에 전기적으로 결합된다.
스위치(SW 2)는, 제3 신호 경로(130)가 로우 레벨 전압을 가지는 것에 응답하여, 턴 온된다. 따라서, 제n 배터리 컨트롤러(SC n)의 출력 단자(C)가 로우 상태(L)로 유지되는 동안에는, 제1 배터리 컨트롤러(SC 1)의 입력 단자(B)는 외부 전원(50)에 의해 하이 상태(H)로 유지된다.
스위치(SW 2)는, 제3 신호 경로(130)가 하이 레벨 전압을 가지는 것에 응답하여, 턴 오프된다. 스위치(SW 2)가 턴 오프되는 경우, 제1 배터리 컨트롤러(SC 1)의 입력 단자(B)는 하이 상태(H)로부터 로우 상태(L)로 전환된다. 즉, 외부 전원(50)으로부터의 하이 레벨 전압이 제1 배터리 컨트롤러(SC 1)의 입력 단자(B)로부터 차단된다. 이에 따라, ID 설정 시퀀스가 정상 완료되었음에도 제1 배터리 컨트롤러(SC 1)의 입력 단자(B)가 하이 상태(H)로 유지되는 경우에 비하여, 다른 전기 부품과의 전기적 단락 위험을 낮출 수 있다.
도 7은 배터리 컨트롤러의 ID 설정을 위한 일 제어 방법을 개략적으로 보여주는 순서도이다. 도 7의 방법은, ID가 설정되지 않은 제j 배터리 컨트롤러(SC j)의 입력 단자(B)가 로우 레벨로부터 하이 레벨로 전환되는 경우에 시작될 수 있다. 도 7의 방법은, 제j 배터리 컨트롤러(SC j)의 ID 설정 시퀀스에 관한 것으로서, 복수의 배터리 컨트롤러(SC 1~SC n) 각각에 동일하게 적용된다.
도 1 내지 도 7을 참조하면, 단계 S710에서, 제j 배터리 컨트롤러(SC j)는, 복수의 배터리 컨트롤러(SC 1~SC n)의 ID 할당 현황을 나타내는 ID 정보를 제1 신호 경로(110)를 통해 수집한다.
단계 S720에서, 제j 배터리 컨트롤러(SC j)는, ID 정보를 기초로, 제j 배터리 컨트롤러(SC j)의 ID를 설정한다. 제j 배터리 컨트롤러(SC j)는, 자신에 설정된 ID를 나타내는 데이터를 제1 신호 경로(110)에 출력할 수 있다.
단계 S730에서, 제j 배터리 컨트롤러(SC j)는, 하이 레벨 전압을 제2 신호 경로(120)에 출력한다. 즉, 제j 배터리 컨트롤러(SC j)는, 제j 배터리 컨트롤러(SC j)의 출력 단자(C)를 로우 상태(L)로부터 하이 상태(H)로 전환한다.
단계 S740에서, 제j 배터리 컨트롤러(SC j)는, 제3 신호 경로(130)로부터의 하이 레벨 전압이 제j 배터리 컨트롤러(SC j)의 확인 단자(D)에 입력되었는지 여부를 판정한다. 즉, 제j 배터리 컨트롤러(SC j)는, 제j 배터리 컨트롤러(SC j)의 확인 단자(D)가 로우 상태(L)로부터 하이 상태(H)로 전환되었는지 여부를 판정한다. 단계 S740의 값이 "예"인 경우, 단계 S750으로 진행된다. 만약, 제j 배터리 컨트롤러(SC j)의 출력 단자(C)가 로우 상태(L)로부터 하이 상태(H)로 전환된 시점으로부터 소정 시간이 경과하여도 제j 배터리 컨트롤러(SC j)의 확인 단자(D)가 로우 상태(L)로부터 하이 상태(H)로 전환되지 않을 경우, 제j 배터리 컨트롤러(SC j)는 에러 메시지를 출력할 수 있다.
단계 S750에서, 제j 배터리 컨트롤러(SC j)는, 제j 배터리 컨트롤러(SC j)의 ID 설정 시퀀스가 완료되었음을 나타내는 응답 신호를 제1 신호 경로(110)에 출력한다. 응답 신호는, 제j 배터리 컨트롤러(SC j)에 설정된 ID의 값을 포함할 수 있다.
각 배터리 컨트롤러에 의해 출력되는 응답 신호는, 제1 신호 경로(110)를 통해 상위 컨트롤러(MC) 또는 상위 컨트롤러(MC)의 기능(지위)를 담당하는 배터리 컨트롤러(예, SC 1)에 입력된다.
상위 컨트롤러(MC) 또는 상위 컨트롤러(MC)의 기능(지위)를 담당하는 배터리 컨트롤러(예, SC 1)는, 응답 신호의 수신 횟수 및/또는 응답 신호에 포함된 ID의 최대값이 ID 정보의 최대값과 동일한 경우, 복수의 배터리 컨트롤러(SC 1~SC n) 모두에 ID가 정상적으로 설정 완료된 것으로 판단하고, 그 외에는 에러 메시지를 제1 신호 경로(110)에 출력할 수 있다. 응답 신호의 수신 횟수는, ID 설정 시퀀스가 시작된 때로부터 소정의 대기 시간이 경과할 때까지의 기간 동안, 제1 신호 경로(110)에 순차 출력된 응답 신호의 총 개수일 수 있다.
상위 컨트롤러(MC) 또는 상위 컨트롤러(MC)의 기능(지위)를 담당하는 배터리 컨트롤러(예, SC 1)는, ID 설정이 정상적으로 완료된 것으로 판정되는 경우, 각 ID를 이용하여, 복수의 배터리 컨트롤러(SC 1~SC n)를 제어할 수 있다.
도 8은 배터리 컨트롤러의 ID 설정을 위한 다른 제어 방법을 개략적으로 보여주는 순서도이다. 도 8의 방법은, ID가 설정되지 않은 제j 배터리 컨트롤러(SC)의 입력 단자(B)가 로우 레벨로부터 하이 레벨로 전환되는 경우에 시작될 수 있다. 도 8의 방법은, 제j 배터리 컨트롤러(SC j)의 ID 설정 시퀀스에 관한 것으로서, 복수의 배터리 컨트롤러(SC 1~SC n) 각각에 동일하게 적용된다.
도 1 내지 도 6 및 도 8을 참조하면, 단계 S800에서, 제j 배터리 컨트롤러(SC j)는, 제j 배터리 컨트롤러(SC j)의 출력 단자(C) 및 확인 단자(D) 중 적어도 하나가 하이 상태(H)인지 여부를 판정한다. 단계 S800의 값이 "아니오"인 경우, 단계 S810으로 진행된다. 단계 S800의 값이 "예"인 경우, 단계 S860으로 진행된다.
단계 S810에서, 제j 배터리 컨트롤러(SC j)는, 복수의 배터리 컨트롤러(SC 1~SC n)의 ID 할당 현황을 나타내는 ID 정보를 제1 신호 경로(110)를 통해 수집한다.
단계 S820에서, 제j 배터리 컨트롤러(SC j)는, ID 정보를 기초로, 제j 배터리 컨트롤러(SC j)의 ID를 설정한다. 제j 배터리 컨트롤러(SC j)는, 자신에 설정된 ID를 나타내는 데이터를 제1 신호 채널에 적어도 1회 출력할 수 있다.
단계 S822에서, 제j 배터리 컨트롤러(SC j)는, 제j 배터리 컨트롤러(SC j)의 확인 단자(D)가 하이 상태(H)인지 여부를 판정한다. 단계 S822의 값이 "예"인 경우, 단계 S860으로 진행된다. 단계 S822의 값이 "아니오"인 경우, 단계 S830으로 진행된다.
단계 S830에서, 제j 배터리 컨트롤러(SC j)는, 하이 레벨 전압을 제2 신호 경로(120)에 출력한다. 즉, 제j 배터리 컨트롤러(SC j)는, 제j 배터리 컨트롤러(S jC)의 출력 단자(C)를 로우 상태(L)로부터 하이 상태(H)로 전환한다.
단계 S840에서, 제j 배터리 컨트롤러(SC j)는, 제3 신호 경로(130)로부터의 하이 레벨 전압이 제j 배터리 컨트롤러(SC j)의 확인 단자(D)에 입력되었는지 여부를 판정한다. 즉, 제j 배터리 컨트롤러(SC)는, 제j 배터리 컨트롤러(SC)의 확인 단자(D)가 로우 상태(L)로부터 하이 상태(H)로 전환되었는지 여부를 판정한다. 단계 S840의 값이 "예"인 경우, 단계 S850으로 진행된다. 만약, 제j 배터리 컨트롤러(SC j)의 출력 단자(C)가 로우 상태(L)로부터 하이 상태(H)로 전환된 시점으로부터 소정 시간이 경과하여도 제j 배터리 컨트롤러(SC j)의 확인 단자(D)가 로우 상태(L)로부터 하이 상태(H)로 전환되지 않을 경우, 단계 S860으로 진행될 수 있다.
단계 S850에서, 제j 배터리 컨트롤러(SC j)는, 제j 배터리 컨트롤러(SC j)의 ID 설정 시퀀스가 완료되었음을 나타내는 응답 신호를 제1 신호 경로(110)에 출력한다.
단계 S860에서, 제j 배터리 컨트롤러(SC j)는, 에러 메시지를 제1 신호 경로(110)에 출력한다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.

Claims (12)

  1. 제1 내지 제3 신호 경로; 및
    상기 제1 내지 제3 신호 경로를 통해 상호 접속되는 제1 내지 제n 배터리 컨트롤러를 포함하되, n은 2 이상의 자연수고,
    상기 제1 배터리 컨트롤러는,
    ID 설정 시퀀스의 개시 명령으로서의 하이 레벨 전압이 상기 제2 신호 경로를 통해 상기 제1 배터리 컨트롤러에 입력되는 경우, 상기 제1 내지 제n 배터리 컨트롤러의 ID 할당 현황을 나타내는 ID 정보를 상기 제1 신호 경로를 통해 수집하고, 상기 ID 정보를 기초로 상기 제1 배터리 컨트롤러의 ID를 설정한 다음, 상기 하이 레벨 전압을 상기 제2 신호 경로를 통해 제2 배터리 컨트롤러에 출력하도록 구성되고,
    제i 배터리 컨트롤러는,
    제i-1 배터리 컨트롤러에 의해 출력된 상기 하이 레벨 전압이 상기 제2 신호 경로를 통해 상기 제i 배터리 컨트롤러에 입력되는 경우, 상기 ID 정보를 상기 제1 신호 경로를 통해 수집하고, 상기 제i 배터리 컨트롤러에 의해 수집된 상기 ID 정보를 기초로 상기 제i 배터리 컨트롤러의 ID를 설정한 다음, 상기 하이 레벨 전압을 상기 제2 신호 경로에 출력하도록 구성되되, i는 2~n의 자연수고,
    상기 제n 배터리 컨트롤러에 의해 상기 제2 신호 경로에 출력되는 상기 하이 레벨 전압은, 상기 제3 신호 경로를 통해 상기 1 내지 제n 배터리 컨트롤러 모두에 입력되고,
    각 배터리 컨트롤러는, 상기 제3 신호 경로를 통해 상기 하이 레벨 전압이 입력되는 경우, ID 설정 시퀀스가 완료되었음을 나타내는 응답 신호를 상기 제1 신호 경로에 출력하도록 구성되는 배터리 제어 시스템.
  2. 제1항에 있어서,
    각 배터리 컨트롤러는, 통신 단자, 입력 단자, 출력 단자 및 확인 단자를 포함하고,
    각 배터리 컨트롤러의 상기 통신 단자는, 상기 ID 정보의 수집을 위해 상기 제1 신호 경로에 결합되고,
    상기 제1 배터리 컨트롤러의 입력 단자는, 상기 제2 신호 경로를 통해, 상기 하이 레벨 전압을 출력하는 외부 전원에 결합되고,
    상기 제i 배터리 컨트롤러의 입력 단자는, 상기 제2 신호 경로를 통해, 상기 하이 레벨 전압이 출력되는 상기 제i-1 배터리 컨트롤러의 출력 단자에 결합되고,
    각 배터리 컨트롤러의 상기 확인 단자는, 상기 제3 신호 경로를 통해, 상기 제n 배터리 컨트롤러의 출력 단자에 결합된 배터리 제어 시스템.
  3. 제2항에 있어서,
    제j 배터리 컨트롤러는,
    상기 제j 배터리 컨트롤러의 출력 단자로부터 상기 하이 레벨 전압이 출력되기 전에 상기 제j 배터리 컨트롤러의 확인 단자에 상기 하이 레벨 전압이 입력되는 경우, 상기 제j 배터리 컨트롤러의 통신 단자로부터 에러 메시지를 출력하도록 구성되되,
    j는 n 이하의 자연수인 배터리 제어 시스템.
  4. 제2항에 있어서,
    제j 배터리 컨트롤러는,
    상기 제j 배터리 컨트롤러에 의해 수집된 상기 ID 정보의 최대값에 소정의 증분값을 합산한 값을 상기 제j 배터리 컨트롤러의 ID로 설정하도록 구성되되,
    j는 n 이하의 자연수인 배터리 제어 시스템.
  5. 제2항에 있어서,
    제j 배터리 컨트롤러는,
    상기 제j 배터리 컨트롤러의 ID가 설정된 경우, 상기 제j 배터리 컨트롤러의 상기 입력 단자에 상기 하이 레벨 전압이 입력되는 동안, 상기 제j 배터리 컨트롤러에 설정된 상기 ID를 상기 통신 단자를 통해 적어도 1회 출력하도록 구성되되,
    j는 n 이하의 자연수인 배터리 제어 시스템.
  6. 제2항에 있어서,
    제j 배터리 컨트롤러는,
    상기 제j 배터리 컨트롤러의 ID가 설정된 경우, 상기 제j 배터리 컨트롤러의 입력 단자에 상기 하이 레벨 전압이 입력되는 동안, 상기 제j 배터리 컨트롤러의 상기 출력 단자로부터 상기 하이 레벨 전압을 출력하도록 구성되되,
    j는 n 이하의 자연수인 배터리 제어 시스템.
  7. 제2항에 있어서,
    제j 배터리 컨트롤러는,
    상기 제j 배터리 컨트롤러의 출력 단자로부터 상기 하이 레벨 전압을 출력하는 중, 상기 제j 배터리 컨트롤러의 확인 단자에 상기 하이 레벨 전압이 입력되는 것에 응답하여, 상기 ID 설정 시퀀스를 종료하도록 구성되되,
    j는 n 이하의 자연수인 배터리 제어 시스템.
  8. 제2항에 있어서,
    상기 제1 배터리 컨트롤러의 상기 입력 단자와 상기 외부 전원 간에 결합되는 저항; 및 상기 저항과 접지 간에 전기적으로 결합되는 제1 스위치를 포함하는 시퀀스 종료 회로를 더 포함하되,
    상기 제1 스위치는, 상기 제3 신호 경로에 출력되는 상기 하이 레벨 전압에 응답하여 턴 온되고,
    상기 제1 스위치가 턴 온되는 경우, 상기 외부 전원으로부터의 상기 하이 레벨 전압이 상기 제1 배터리 컨트롤러의 상기 입력 단자로부터 차단되는 배터리 제어 시스템.
  9. 제2항에 있어서,
    상기 제1 배터리 컨트롤러의 상기 입력 단자와 상기 외부 전원 간에 결합되는 제2 스위치를 더 포함하되,
    상기 제2 스위치는, 상기 제3 신호 경로에 출력되는 상기 하이 레벨 전압에 응답하여 턴 오프되고,
    상기 제2 스위치가 턴 오프되는 경우, 상기 외부 전원으로부터의 상기 하이 레벨 전압이 상기 제1 배터리 컨트롤러의 상기 입력 단자로부터 차단되는 배터리 제어 시스템.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 상기 배터리 제어 시스템을 포함하는 배터리 팩.
  11. 제10항에 따른 상기 배터리 팩을 포함하는 전기 차량.
  12. 제2항 내지 제9항 중 어느 한 항에 따른 상기 배터리 제어 시스템을 위한 ID 설정 방법에 있어서,
    상기 제j 배터리 컨트롤러가, 상기 하이 레벨 전압이 상기 제2 신호 경로를 통해 상기 제j 배터리 컨트롤러에 입력되는 경우, 상기 제1 내지 제n 배터리 컨트롤러의 ID 할당 현황을 나타내는 상기 ID 정보를 상기 제1 신호 경로를 통해 수집하는 단계;
    상기 제j 배터리 컨트롤러가, 상기 ID 정보를 기초로, 상기 제j 배터리 컨트롤러의 ID를 설정하는 단계;
    상기 제j 배터리 컨트롤러가, 상기 제j 배터리 컨트롤러의 ID 설정이 완료된 후, 상기 하이 레벨 전압을 상기 제2 신호 경로에 출력하는 단계; 및
    상기 제j 배터리 컨트롤러가, 상기 제j 배터리 컨트롤러에 의해 상기 하이 레벨 전압이 상기 제2 신호 경로에 출력된 후, 상기 제3 신호 경로를 통해 상기 하이 레벨 전압이 상기 제j 배터리 컨트롤러에 입력되는 경우, 상기 제j 배터리 컨트롤러의 ID 설정 시퀀스가 완료되었음을 나타내는 상기 응답 신호를 상기 제1 신호 경로에 출력하는 단계를 포함하는 ID 설정 방법.
PCT/KR2021/001504 2020-02-13 2021-02-04 배터리 제어 시스템, 배터리 팩, 전기 차량, 및 상기 배터리 제어 시스템을 위한 id 설정 방법 WO2021162348A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21754243.0A EP3996237A4 (en) 2020-02-13 2021-02-04 BATTERY CONTROL SYSTEM, BATTERY PACK, ELECTRIC VEHICLE AND ID SETTING METHOD FOR BATTERY CONTROL SYSTEM
CN202180003540.3A CN113924227B (zh) 2020-02-13 2021-02-04 电池控制系统、电池组、电动车辆和用于电池控制系统的id设置方法
US17/615,510 US20220314832A1 (en) 2020-02-13 2021-02-04 Battery control system, battery pack, electric vehicle, and id setting method for the battery control system
JP2021565734A JP7207792B2 (ja) 2020-02-13 2021-02-04 バッテリー制御システム、バッテリーパック、電気車両、及びバッテリー制御システムのためのid設定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0017878 2020-02-13
KR1020200017878A KR20210103299A (ko) 2020-02-13 2020-02-13 배터리 제어 시스템, 배터리 팩, 전기 차량 및 상기 배터리 제어 시스템을 위한 제어 방법

Publications (1)

Publication Number Publication Date
WO2021162348A1 true WO2021162348A1 (ko) 2021-08-19

Family

ID=77292499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001504 WO2021162348A1 (ko) 2020-02-13 2021-02-04 배터리 제어 시스템, 배터리 팩, 전기 차량, 및 상기 배터리 제어 시스템을 위한 id 설정 방법

Country Status (6)

Country Link
US (1) US20220314832A1 (ko)
EP (1) EP3996237A4 (ko)
JP (1) JP7207792B2 (ko)
KR (1) KR20210103299A (ko)
CN (1) CN113924227B (ko)
WO (1) WO2021162348A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220314832A1 (en) * 2020-02-13 2022-10-06 Lg Energy Solution, Ltd. Battery control system, battery pack, electric vehicle, and id setting method for the battery control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230152388A1 (en) * 2020-11-27 2023-05-18 Lg Energy Solution, Ltd. Battery Diagnosis Apparatus, Battery Diagnosis Method, Battery Pack, and Vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110013747A (ko) 2009-08-03 2011-02-10 삼성에스디아이 주식회사 배터리 id 설정 시스템 및 그 구동 방법
KR20130033197A (ko) * 2011-09-26 2013-04-03 주식회사 엘지화학 고유 식별자를 할당하는 방법 및 이를 이용하는 배터리 관리 시스템
KR20140078323A (ko) * 2012-12-17 2014-06-25 넥스콘 테크놀러지 주식회사 에너지 저장 시스템용 슬레이브 배터리 관리 시스템에 대한 자동 식별자 설정 방법
KR20140143076A (ko) * 2013-06-05 2014-12-15 삼성에스디아이 주식회사 배터리 시스템, 및 배터리 시스템의 관리 방법
US20180145519A1 (en) * 2007-12-11 2018-05-24 Antonio Trigiani Battery management of multi-cell batteries
KR20200017878A (ko) 2018-08-09 2020-02-19 엘지전자 주식회사 의류처리장치

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953563A (ja) * 1982-09-20 1984-03-28 Dainippon Toryo Co Ltd ジエツトインク組成物
WO2010144524A2 (en) 2009-06-10 2010-12-16 A123 Systems, Inc. System and method for communicating notice to limit degradation within a battery pack
US8258747B2 (en) * 2010-05-13 2012-09-04 GM Global Technology Operations LLC Method for automatic battery controller identification and cell indexing via a multi-purpose signal line
JP5640474B2 (ja) * 2010-06-07 2014-12-17 ソニー株式会社 電池システム
KR101245279B1 (ko) * 2010-10-11 2013-03-19 주식회사 엘지화학 배터리팩의 멀티 슬레이브에 대한 순차적 아이디 설정방법 및 시스템
JP5259752B2 (ja) * 2011-02-04 2013-08-07 株式会社日立製作所 車両走行用モータの制御装置及びそれを搭載した車両
JP5902149B2 (ja) 2011-03-10 2016-04-13 三洋電機株式会社 電源システム及び電源システムの識別情報設定方法
JP5735098B2 (ja) * 2011-03-28 2015-06-17 三洋電機株式会社 バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置
JP5561239B2 (ja) 2011-05-20 2014-07-30 三菱自動車工業株式会社 自動付番装置
KR101386080B1 (ko) * 2011-09-05 2014-04-17 주식회사 엘지화학 배터리 팩의 멀티 슬레이브에 대한 식별자 할당 방법 및 시스템
US8645580B2 (en) 2011-09-06 2014-02-04 Semiconductor Components Industries, Llc Circuit and electronic module for automatic addressing
JP2013077520A (ja) 2011-09-30 2013-04-25 Toshiba Corp 蓄電池装置、蓄電池装置の制御方法及び制御プログラム
US20130108898A1 (en) * 2011-10-26 2013-05-02 Eetrex, Inc. Modular battery control system architecture
KR101561885B1 (ko) * 2011-11-25 2015-10-21 주식회사 엘지화학 멀티 bms에 대한 식별자 할당 시스템 및 방법
KR101539689B1 (ko) * 2012-02-20 2015-07-27 주식회사 엘지화학 멀티 bms에 대한 식별자 할당 시스템 및 방법
US9590432B2 (en) * 2012-05-24 2017-03-07 Hitachi Automotive Systems, Inc. Battery control device comprising a plurality of cell controllers and being capable of determining whether a cell controller is operating abnormally
JP5905588B2 (ja) 2012-09-10 2016-04-20 ルネサスエレクトロニクス株式会社 半導体装置及び電池電圧監視装置
KR101632350B1 (ko) * 2013-09-09 2016-06-21 주식회사 엘지화학 멀티 bms에 대한 통신 식별자 할당 시스템 및 방법
JP6262475B2 (ja) * 2013-09-10 2018-01-17 ローム株式会社 電圧検出装置
KR101754948B1 (ko) * 2014-10-07 2017-07-06 주식회사 엘지화학 배터리 관리 모듈의 통신 id 할당 방법 및 시스템
EP3287802B1 (en) * 2015-12-17 2019-02-13 LG Chem, Ltd. Battery module and cell configuration recognition system for id assignment
KR102005394B1 (ko) * 2017-03-16 2019-10-01 주식회사 엘지화학 에너지저장장치(ess)의 통신 종단 저항 자동 설정방법
KR102101910B1 (ko) * 2017-03-28 2020-04-17 주식회사 엘지화학 배터리 모듈의 id 중복 할당 방지방법
KR102173778B1 (ko) * 2017-07-25 2020-11-03 주식회사 엘지화학 배터리 관리 유닛 및 이를 포함하는 배터리팩
JP7035738B2 (ja) * 2018-04-06 2022-03-15 トヨタ自動車株式会社 車両および車両の充電方法
WO2019214824A1 (en) * 2018-05-09 2019-11-14 Byton Limited Flexibly configurable traction battery
KR20200031931A (ko) * 2018-09-17 2020-03-25 주식회사 엘지화학 Bms 인식 시스템 및 방법
KR102258814B1 (ko) * 2018-10-04 2021-07-14 주식회사 엘지에너지솔루션 Bms 간 통신 시스템 및 방법
KR102510886B1 (ko) * 2018-11-23 2023-03-16 삼성에스디아이 주식회사 슬레이브 모듈 및 이를 포함하는 번호 할당 시스템
JP7021646B2 (ja) * 2019-02-05 2022-02-17 株式会社デンソー 電池監視装置
KR20210058206A (ko) * 2019-11-13 2021-05-24 삼성에스디아이 주식회사 배터리 시스템 및 can id 할당 방법
KR20210103299A (ko) * 2020-02-13 2021-08-23 주식회사 엘지에너지솔루션 배터리 제어 시스템, 배터리 팩, 전기 차량 및 상기 배터리 제어 시스템을 위한 제어 방법
JP7211567B2 (ja) * 2020-08-21 2023-01-24 株式会社村田製作所 蓄電システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180145519A1 (en) * 2007-12-11 2018-05-24 Antonio Trigiani Battery management of multi-cell batteries
KR20110013747A (ko) 2009-08-03 2011-02-10 삼성에스디아이 주식회사 배터리 id 설정 시스템 및 그 구동 방법
KR20130033197A (ko) * 2011-09-26 2013-04-03 주식회사 엘지화학 고유 식별자를 할당하는 방법 및 이를 이용하는 배터리 관리 시스템
KR20140078323A (ko) * 2012-12-17 2014-06-25 넥스콘 테크놀러지 주식회사 에너지 저장 시스템용 슬레이브 배터리 관리 시스템에 대한 자동 식별자 설정 방법
KR20140143076A (ko) * 2013-06-05 2014-12-15 삼성에스디아이 주식회사 배터리 시스템, 및 배터리 시스템의 관리 방법
KR20200017878A (ko) 2018-08-09 2020-02-19 엘지전자 주식회사 의류처리장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3996237A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220314832A1 (en) * 2020-02-13 2022-10-06 Lg Energy Solution, Ltd. Battery control system, battery pack, electric vehicle, and id setting method for the battery control system

Also Published As

Publication number Publication date
EP3996237A4 (en) 2022-11-23
KR20210103299A (ko) 2021-08-23
CN113924227A (zh) 2022-01-11
CN113924227B (zh) 2023-05-30
EP3996237A1 (en) 2022-05-11
JP2022531864A (ja) 2022-07-12
US20220314832A1 (en) 2022-10-06
JP7207792B2 (ja) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2019022378A1 (ko) 배터리 관리 유닛 및 이를 포함하는 배터리팩
WO2019022377A1 (ko) 마스터 배터리 관리 유닛 및 이를 포함하는 배터리팩
WO2012144674A1 (ko) 착탈 가능한 배터리 모듈, 이를 이용한 배터리 스트링을 위한 전하 균일 방법 및 장치
WO2018021664A1 (ko) 배터리 밸런싱 장치 및 방법
WO2019074217A1 (ko) 무선 배터리 관리 장치 및 이를 포함하는 배터리팩
WO2013147494A1 (ko) 배터리의 절연 저항 측정 장치 및 방법
WO2020105903A1 (ko) 무선 제어 시스템, 무선 제어 방법 및 배터리 팩
WO2013125850A1 (ko) 멀티 bms에 대한 식별자 할당 시스템 및 방법
WO2021162348A1 (ko) 배터리 제어 시스템, 배터리 팩, 전기 차량, 및 상기 배터리 제어 시스템을 위한 id 설정 방법
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
WO2014129757A1 (ko) 셀 밸런싱 회로의 고장 진단 장치 및 방법
WO2019221368A1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치, 배터리 시스템 및 방법
WO2015126035A1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2021096250A1 (ko) 무선 배터리 관리 시스템, 무선 배터리 관리 방법 및 전기 차량
WO2013119070A1 (ko) 양방향 디씨-디씨 컨버터를 이용한 배터리 관리 시스템의 셀 밸런싱 회로 장치
WO2020159300A1 (ko) 배터리 시스템 및 슬레이브 배터리 관리 시스템
WO2020145550A1 (ko) 배터리 관리 장치 및 이를 포함하는 배터리 팩
WO2021060761A1 (ko) 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차
WO2018074809A1 (ko) 셀 밸런싱 시스템 및 제어방법
WO2020166827A1 (ko) 슬레이브 bms 점검 시스템 및 방법
WO2019124806A1 (ko) 통신 이상을 진단하기 위한 장치 및 방법
WO2020080881A1 (ko) 배터리 관리 장치
WO2020105869A1 (ko) 무선 제어 시스템, 무선 연결 방법 및 배터리 팩
WO2019117512A1 (ko) 워치독 타이머를 진단하기 위한 장치 및 방법
WO2020055162A1 (ko) 스위치 진단 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565734

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021754243

Country of ref document: EP

Effective date: 20220204

NENP Non-entry into the national phase

Ref country code: DE