WO2021161606A1 - 固体電解質材料およびそれを用いた電池 - Google Patents

固体電解質材料およびそれを用いた電池 Download PDF

Info

Publication number
WO2021161606A1
WO2021161606A1 PCT/JP2020/042338 JP2020042338W WO2021161606A1 WO 2021161606 A1 WO2021161606 A1 WO 2021161606A1 JP 2020042338 W JP2020042338 W JP 2020042338W WO 2021161606 A1 WO2021161606 A1 WO 2021161606A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte material
material according
negative electrode
battery
Prior art date
Application number
PCT/JP2020/042338
Other languages
English (en)
French (fr)
Inventor
真志 境田
章裕 酒井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP20918688.1A priority Critical patent/EP4106043A4/en
Priority to CN202080096499.4A priority patent/CN115136373A/zh
Priority to JP2022500232A priority patent/JPWO2021161606A1/ja
Publication of WO2021161606A1 publication Critical patent/WO2021161606A1/ja
Priority to US17/885,312 priority patent/US20220393233A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a solid electrolyte material and a battery using the same.
  • Patent Document 1 discloses an all-solid-state battery in which a sulfide solid electrolyte is used.
  • An object of the present disclosure is to provide a solid electrolyte material having high lithium ion conductivity.
  • the solid electrolyte material of the present disclosure is Including Li, Zr, and F
  • the ratio of the amount of substance of Li to the amount of substance of Zr is less than 3.5
  • the X-ray diffraction pattern obtained by the X-ray diffraction measurement of the solid electrolyte material using Cu—K ⁇ rays 27
  • the ratio to the full width value is greater than 1.06.
  • the present disclosure provides a solid electrolyte material having high lithium ion conductivity.
  • FIG. 1 shows a cross-sectional view of the battery 1000 according to the second embodiment.
  • FIG. 2 shows a cross-sectional view of the battery 2000 according to the second embodiment.
  • FIG. 3 is a graph showing an X-ray diffraction pattern of the solid electrolyte material according to Examples 1 to 10 and Comparative Example 1.
  • FIG. 4 is a graph showing a conversion pattern of the solid electrolyte material according to Example 1 obtained by converting the horizontal axis of the graph of FIG. 3 from 2 ⁇ to q.
  • FIG. 5 shows a schematic view of a pressure forming die 300 used for evaluating the ionic conductivity of a solid electrolyte material.
  • FIG. 6 is a graph showing a Core-Cole plot obtained by measuring the impedance of the solid electrolyte material according to Example 1.
  • FIG. 7 is a graph showing the initial discharge characteristics of the batteries according to Example 1 and Comparative Example 1.
  • the solid electrolyte material according to the first embodiment contains Li, Zr, and F, wherein the ratio of the amount of substance of Li to the amount of substance of Zr is less than 3.5.
  • the X-ray diffraction pattern obtained by the X-ray diffraction measurement of the solid electrolyte material according to the first embodiment using Cu—K ⁇ rays it is the highest within the range of the diffraction angle 2 ⁇ of 27.5 ° or more and 29.5 ° or less.
  • the ratio of the full width at half maximum value of the peak having intensity to the full width at half maximum value of the peak corresponding to the (111) plane of Si measured under the same conditions is larger than 1.06.
  • the full width at half maximum of the peak having the highest intensity within the range of the diffraction angle 2 ⁇ of 27.5 ° or more and 29.5 ° or less is “. It is called “FWHM”. Further, the full width at half maximum of the peak corresponding to the (111) plane of Si is called “FWHM Si”.
  • a Si standard sample is used for Si measured under the same conditions as the X-ray diffraction measurement of the solid electrolyte material according to the first embodiment.
  • the Si standard sample for example, a standard Si powder manufactured by NIST is used.
  • the lattice constant of the obtained crystal phase becomes non-uniform when the above condition "the ratio of FWHM to FWHM Si is larger than 1.06" is satisfied.
  • the solid electrolyte material according to the first embodiment has high lithium ion conductivity.
  • the high lithium ion conductivity is, for example, 2 ⁇ 10 -11 S / cm or more. That is, the solid electrolyte material according to the first embodiment can have, for example, an ionic conductivity of 2 ⁇ 10 -11 S / cm or more.
  • the solid electrolyte material according to the first embodiment is specified by the ratio of FWHM to FWHM Si, not by the value of FWHM. Therefore, when specifying the solid electrolyte material according to the first embodiment, it is not necessary to consider the measurement error caused by the measuring device.
  • the peak having the highest intensity among the single peaks exists within the range of the diffraction angle 2 ⁇ of 27.5 ° or more and 29.5 ° or less. do.
  • the value of FWHM can be evaluated accurately. Therefore, the ratio of FWHM to FWHM Si can be accurately evaluated.
  • a single peak means a peak that does not overlap with another peak.
  • the solid electrolyte material according to the first embodiment can be used to obtain a battery having excellent charge / discharge characteristics.
  • An example of such a battery is an all-solid-state battery.
  • the all-solid-state battery may be a primary battery or a secondary battery.
  • the solid electrolyte material according to the first embodiment contains substantially no sulfur.
  • the fact that the solid electrolyte material according to the first embodiment is substantially free of sulfur means that the solid electrolyte material does not contain sulfur as a constituent element except for sulfur which is inevitably mixed as an impurity.
  • the amount of sulfur mixed as an impurity in the solid electrolyte material is, for example, 1 mol% or less. From the viewpoint of safety, it is desirable that the solid electrolyte material according to the first embodiment does not contain sulfur.
  • the sulfur-free solid electrolyte material is excellent in safety because hydrogen sulfide is not generated even when exposed to the atmosphere.
  • the sulfide solid electrolyte disclosed in Patent Document 1 can generate hydrogen sulfide when exposed to the atmosphere.
  • the solid electrolyte material according to the first embodiment contains F, it can have high oxidation resistance. This is because F has a high redox potential.
  • the solid electrolyte material according to the first embodiment may substantially consist of Li, Zr, and F.
  • the solid electrolyte material according to the first embodiment is substantially composed of Li, Zr, and F” refers to the total amount of substances of all the elements constituting the solid electrolyte material according to the first embodiment. It means that the total molar ratio (that is, mole fraction) of the amounts of substances of Li, Zr, and F is 90% or more. As an example, the molar ratio (ie, mole fraction) may be 95% or greater.
  • the solid electrolyte material according to the first embodiment may consist only of Li, Zr, and F.
  • the solid electrolyte material according to the first embodiment may contain an element that is inevitably mixed. Examples of such elements are hydrogen, oxygen, or nitrogen. Such elements may be present in the raw material powder of the solid electrolyte material or in the atmosphere for producing or storing the solid electrolyte material.
  • the horizontal axis of the X-ray diffraction pattern of the solid electrolyte material according to the first embodiment is converted from the diffraction angle 2 ⁇ to q, it has the highest intensity in the range of q of 1.94 or more and 2.08 or less.
  • the ratio of the value of the full width at half maximum of the peak to the value of the full width at half maximum of the peak corresponding to the (111) plane of Si measured under the same conditions may be larger than 1.06.
  • the conversion pattern may be obtained by conversion using (representing the wavelength of radiation).
  • the ratio of FWHM to FWHM Si may be smaller than 5.0. This makes it possible to maintain a crystal structure having high ionic conductivity. In order to enhance the ionic conductivity of the solid electrolyte material, the ratio of FWHM to FWHM Si may be 1.25 or more and 2.88 or less.
  • the solid electrolyte material according to the first embodiment may contain a crystal phase represented by the following composition formula (1).
  • Li x ZrF 4 + x ⁇ ⁇ ⁇ Equation (1) In the formula (1), the formula: 0 ⁇ x ⁇ 3.5) is satisfied.
  • the solid electrolyte material containing such a crystal phase has high ionic conductivity.
  • the upper and lower limits of the range of x in equation (1) are arbitrary selected from the numerical values of 1.0, 1.5, 1.8, 2.0, 2.2, 2.5, and 3.0. Can be defined by the combination of.
  • the shape of the solid electrolyte material according to the first embodiment is not limited. Examples of such shapes are needle-shaped, spherical, or elliptical spherical.
  • the solid electrolyte material according to the first embodiment may be particles.
  • the solid electrolyte material according to the first embodiment may be formed to have the shape of a pellet or a plate.
  • the solid electrolyte material may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter means a particle size at which the cumulative volume in the volume-based particle size distribution is 50%.
  • the volume-based particle size distribution is measured, for example, by a laser diffraction measuring device or an image analyzer.
  • the solid electrolyte material according to the first embodiment may have a median diameter of 0.5 ⁇ m or more and 10 ⁇ m or less. This allows the solid electrolyte material to have higher conductivity. Further, when the solid electrolyte material according to the first embodiment is mixed with another material such as an active material, the dispersed state of the solid electrolyte material and the other material according to the first embodiment becomes good.
  • the solid electrolyte material according to the first embodiment is produced, for example, by the following method.
  • Raw material powder is prepared and mixed so as to have the desired composition.
  • the raw material powder may be, for example, a halide.
  • the target composition is Li 3 ZrF 7
  • LiF and ZrF 4 are mixed as raw material powders so as to have a molar ratio of about 3.0: 1.0.
  • the feedstock may be mixed in a pre-adjusted molar ratio to offset any compositional changes that may occur during the synthesis process.
  • the raw material powders react with each other mechanochemically (that is, using the method of mechanochemical milling) in a mixing device such as a planetary ball mill to obtain a reactant.
  • the reaction may be heat treated in vacuum or in an inert atmosphere.
  • the mixture of raw material powders may be heat treated in vacuum or in an inert atmosphere.
  • the heat treatment may be performed, for example, at 100 ° C. or higher and 300 ° C. or lower for 1 hour or longer.
  • the raw material powder or the reactant may be heat-treated in a closed container such as a quartz tube.
  • the value of FWHM of the obtained solid electrolyte material can be reduced.
  • the solid electrolyte material according to the first embodiment can be obtained.
  • the composition of the solid electrolyte material can be determined by, for example, ICP emission spectroscopic analysis method, ion chromatography method, inert gas melting-infrared absorption method, or EPMA (Electron Probe Micro Analyzer) method.
  • ICP emission spectroscopic analysis method ion chromatography method
  • EPMA Electrode Micro Analyzer
  • the composition of Li and Zr can be determined by ICP emission spectroscopy and the composition of F can be determined by ion chromatography.
  • the battery according to the second embodiment includes a positive electrode, a negative electrode, and an electrolyte layer.
  • the electrolyte layer is provided between the positive electrode and the negative electrode.
  • At least one selected from the group consisting of a positive electrode, an electrolyte layer, and a negative electrode contains the solid electrolyte material according to the first embodiment. Since the battery according to the second embodiment contains the solid electrolyte material according to the first embodiment, it has excellent charge / discharge characteristics.
  • the battery may be an all-solid-state battery.
  • FIG. 1 shows a cross-sectional view of the battery 1000 according to the second embodiment.
  • the battery 1000 according to the second embodiment includes a positive electrode 201, an electrolyte layer 202, and a negative electrode 203.
  • the electrolyte layer 202 is provided between the positive electrode 201 and the negative electrode 203.
  • the positive electrode 201 contains the positive electrode active material particles 204 and the solid electrolyte particles 100.
  • the electrolyte layer 202 contains an electrolyte material.
  • the electrolyte material is, for example, a solid electrolyte material.
  • the negative electrode 203 contains negative electrode active material particles 205 and solid electrolyte particles 100.
  • the solid electrolyte particle 100 is a particle containing the solid electrolyte material according to the first embodiment.
  • the solid electrolyte particles 100 may be particles made of the solid electrolyte material according to the first embodiment or particles containing the solid electrolyte material according to the first embodiment as a main component.
  • the particles containing the solid electrolyte material according to the first embodiment as the main component mean the particles in which the component contained most in the molar ratio is the solid electrolyte material according to the first embodiment.
  • the positive electrode 201 contains a material capable of occluding and releasing metal ions (for example, lithium ions).
  • the material is, for example, a positive electrode active material (for example, positive electrode active material particles 204).
  • positive electrode active materials are lithium-containing transition metal oxides, transition metal fluorides, polyanionic materials, fluorinated polyanionic materials, transition metal sulfides, transition metal oxysulfides, or transition metal oxynitrides.
  • the lithium-containing transition metal oxide Li (Ni, Co, Al ) O 2, Li (Ni, Co, Mn) O 2, or LiCoO 2.
  • the notation "(Ni, Co, Al)" in the chemical formula indicates at least one element selected from the element group in parentheses. That is, "(Ni, Co, Al)" is synonymous with "at least one selected from the group consisting of Ni, Co, and Al". The same applies to other elements.
  • the positive electrode active material particles 204 may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less. When the positive electrode active material particles 204 have a median diameter of 0.1 ⁇ m or more, the dispersed state of the positive electrode active material particles 204 and the solid electrolyte particles 100 becomes good in the positive electrode 201. This improves the charge / discharge characteristics of the battery. When the positive electrode active material particles 204 have a median diameter of 100 ⁇ m or less, the lithium diffusion rate in the positive electrode active material particles 204 is improved. This allows the battery to operate at high output.
  • the positive electrode active material particles 204 may have a median diameter larger than that of the solid electrolyte particles 100. As a result, in the positive electrode 201, the dispersed state of the positive electrode active material particles 204 and the solid electrolyte particles 100 becomes good.
  • the ratio of the volume of the positive electrode active material particles 204 to the total volume of the positive electrode active material particles 204 and the volume of the solid electrolyte particles 100 is 0.30 or more and 0.95. It may be as follows.
  • a coating layer may be formed on at least a part of the surface of the positive electrode active material particles 204.
  • the coating layer can be formed on the surface of the positive electrode active material particles 204, for example, before being mixed with the conductive aid and the binder.
  • coating materials contained in the coating layer are sulfide solid electrolytes, oxide solid electrolytes, or halide solid electrolytes.
  • the coating material may contain the solid electrolyte material according to the first embodiment in order to suppress oxidative decomposition of the sulfide solid electrolyte.
  • the coating material may contain an oxide solid electrolyte in order to suppress oxidative decomposition of the solid electrolyte material.
  • oxide solid electrolyte lithium niobate, which is excellent in stability at a high potential, may be used. By suppressing oxidative decomposition, it is possible to suppress an increase in overvoltage of the battery.
  • the positive electrode 201 may have a thickness of 10 ⁇ m or more and 500 ⁇ m or less.
  • the electrolyte layer 202 contains an electrolyte material.
  • the electrolyte material is, for example, a solid electrolyte material.
  • the electrolyte layer 202 may be a solid electrolyte layer.
  • the electrolyte layer 202 may contain the solid electrolyte material according to the first embodiment.
  • the electrolyte layer 202 may be composed only of the solid electrolyte material according to the first embodiment.
  • the electrolyte layer 202 may be composed only of a solid electrolyte material different from the solid electrolyte material according to the first embodiment.
  • Examples of the solid electrolyte material different from the solid electrolyte material according to the first embodiment are Li 2 MgX 4 , Li 2 FeX 4 , Li (Al, Ga, In) X 4 , Li 3 (Al, Ga, In) X 6. , Or LiI.
  • X is at least one selected from the group consisting of F, Cl, Br, and I.
  • the solid electrolyte material according to the first embodiment is referred to as the first solid electrolyte material.
  • a solid electrolyte material different from the solid electrolyte material according to the first embodiment is called a second solid electrolyte material.
  • the electrolyte layer 202 may contain not only the first solid electrolyte material but also the second solid electrolyte material. In the electrolyte layer 202, the first solid electrolyte material and the second solid electrolyte material may be uniformly dispersed. The layer made of the first solid electrolyte material and the layer made of the second solid electrolyte material may be laminated along the stacking direction of the battery 1000.
  • FIG. 2 shows a cross-sectional view of the battery 2000 according to the second embodiment.
  • the battery 2000 may include a positive electrode 201, a first electrolyte layer 212, a second electrolyte layer 222, and a negative electrode 203. That is, the electrolyte layer 202 may include the second electrolyte layer 212 and the second electrolyte layer 222.
  • the first electrolyte layer 212 is arranged between the positive electrode 201 and the negative electrode 203.
  • the second electrolyte layer 222 is arranged between the first electrolyte layer 212 and the negative electrode 203.
  • the first electrolyte layer 212 may contain the solid electrolyte material according to the first embodiment. Since the solid electrolyte material according to the first embodiment has high oxidation resistance, the solid electrolyte material contained in the second electrolyte layer 222 can be used without being oxidized. As a result, the charging / discharging efficiency of the battery can be improved.
  • the solid electrolyte material contained in the second electrolyte layer 222 may have a lower reduction potential than the solid electrolyte material contained in the first electrolyte layer 212.
  • the solid electrolyte material contained in the first electrolyte layer 212 can be used without being reduced.
  • the charging / discharging efficiency of the battery can be improved.
  • the first electrolyte layer 212 contains the solid electrolyte material according to the first embodiment, even if the second electrolyte layer 222 contains the sulfide solid electrolyte in order to suppress the reductive decomposition of the solid electrolyte material. good.
  • the electrolyte layer 202 may have a thickness of 1 ⁇ m or more and 1000 ⁇ m or less.
  • the negative electrode 203 contains a material capable of occluding and releasing metal ions (for example, lithium ions).
  • the material is, for example, a negative electrode active material (for example, negative electrode active material particles 205).
  • Examples of negative electrode active materials are metal materials, carbon materials, oxides, nitrides, tin compounds, or silicon compounds.
  • the metal material may be a simple substance metal or an alloy.
  • Examples of metallic materials are lithium metals or lithium alloys.
  • Examples of carbon materials are natural graphite, coke, developing carbon, carbon fibers, spheroidal carbon, artificial graphite, or amorphous carbon.
  • preferred examples of negative electrode active materials are silicon (ie Si), tin (ie Sn), silicon compounds, or tin compounds.
  • the negative electrode active material may be selected in consideration of the reduction resistance of the solid electrolyte material contained in the negative electrode 203.
  • the negative electrode active material may be a material capable of occluding and releasing lithium ions at 0.27 V or more with respect to lithium.
  • examples of such negative electrode active materials are titanium oxides, indium metals, or lithium alloys.
  • examples of titanium oxides are Li 4 Ti 5 O 12 , Li Ti 2 O 4 , or Ti O 2 .
  • the negative electrode active material particles 205 may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less. When the negative electrode active material particles 205 have a median diameter of 0.1 ⁇ m or more, the dispersed state of the negative electrode active material particles 205 and the solid electrolyte particles 100 becomes good in the negative electrode 203. This improves the charge / discharge characteristics of the battery. When the negative electrode active material particles 205 have a median diameter of 100 ⁇ m or less, the lithium diffusion rate in the negative electrode active material particles 205 is improved. This allows the battery to operate at high output.
  • the negative electrode active material particles 205 may have a median diameter larger than that of the solid electrolyte particles 100. As a result, in the negative electrode 203, the dispersed state of the negative electrode active material particles 205 and the solid electrolyte particles 100 becomes good.
  • the ratio of the volume of the negative electrode active material particles 205 to the total volume of the negative electrode active material particles 205 and the volume of the solid electrolyte particles 100 is 0.30 or more and 0.95 or less. There may be.
  • the negative electrode 203 may have a thickness of 10 ⁇ m or more and 500 ⁇ m or less.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 contains a second solid electrolyte material for the purpose of enhancing ionic conductivity, chemical stability, and electrochemical stability. May be.
  • the second solid electrolyte material are sulfide solid electrolytes, oxide solid electrolytes, halide solid electrolytes, or organic polymer solid electrolytes.
  • sulfide solid electrolyte means a solid electrolyte containing sulfur.
  • Oxide solid electrolyte means a solid electrolyte containing oxygen.
  • the oxide solid electrolyte may contain anions other than oxygen (excluding sulfur anions and halogen anions).
  • Oxide solid electrolyte means a solid electrolyte containing a halogen element and not containing sulfur.
  • the halide solid electrolyte may contain oxygen as well as the halogen element.
  • the second solid electrolyte material may be a sulfide solid electrolyte.
  • Examples of sulfide solid electrolytes are Li 2 SP 2 S 5 , Li 2 S-Si S 2 , Li 2 SB 2 S 3 , Li 2 S-GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , or It is Li 10 GeP 2 S 12 .
  • the negative electrode 203 may contain a sulfide solid electrolyte in order to suppress the reductive decomposition of the solid electrolyte material.
  • a sulfide solid electrolyte By covering the negative electrode active material with an electrochemically stable sulfide solid electrolyte, it is possible to prevent the solid electrolyte material according to the first embodiment from coming into contact with the negative electrode active material. As a result, the internal resistance of the battery can be reduced.
  • the second solid electrolyte material may be an oxide solid electrolyte.
  • An example of a solid oxide electrolyte is (I) NASICON type solid electrolytes such as LiTi 2 (PO 4 ) 3 or elemental substituents thereof, (Ii) Perovskite-type solid electrolytes such as (LaLi) TiO 3, (Iii) LISION type solid electrolytes such as Li 14 ZnGe 4 O 16 , Li 4 SiO 4 , LiGeO 4 or elemental substituents thereof, A garnet-type solid electrolyte such as (iv) Li 7 La 3 Zr 2 O 12 or an elemental substituent thereof, or (v) Li 3 PO 4 or an N-substituted product thereof. Is.
  • the second solid electrolyte material may be a halide solid electrolyte.
  • halide solid electrolytes are Li 2 MgX 4 , Li 2 FeX 4 , Li (Al, Ga, In) X 4 , Li 3 (Al, Ga, In) X 6 , or Li I.
  • X is at least one selected from the group consisting of F, Cl, Br, and I.
  • halide solid electrolyte material is a compound represented by Li a Me b Y c X 6.
  • Me is at least one selected from the group consisting of metal elements other than Li and Y and metalloid elements.
  • m represents the valence of Me.
  • Metalloid elements are B, Si, Ge, As, Sb, and Te.
  • Metallic elements are all elements contained in groups 1 to 12 of the periodic table (excluding hydrogen) and all elements contained in groups 13 to 16 of the periodic table (however, B). , Si, Ge, As, Sb, Te, C, N, P, O, S, and Se).
  • Me is a group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, and Nb. There may be at least one more selected.
  • the halide solid electrolyte may be Li 3 YCl 6 or Li 3 YBr 6 .
  • the second solid electrolyte material may be an organic polymer solid electrolyte.
  • organic polymer solid electrolytes examples include polymer compounds and lithium salt compounds.
  • the polymer compound may have an ethylene oxide structure. Since the polymer compound having an ethylene oxide structure can contain a large amount of lithium salts, the ionic conductivity can be further increased.
  • lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9 ) or LiC (SO 2 CF 3 ) 3 .
  • One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 is a non-aqueous electrolyte solution, a gel electrolyte, or ions for the purpose of facilitating the transfer of lithium ions and improving the output characteristics of the battery. It may contain a liquid.
  • the non-aqueous electrolyte solution contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents examples include cyclic carbonate solvents, chain carbonate solvents, cyclic ether solvents, chain ether solvents, cyclic ester solvents, chain ester solvents, or fluorine solvents.
  • cyclic carbonate solvents are ethylene carbonate, propylene carbonate, or butylene carbonate.
  • chain carbonate solvents are dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate.
  • Examples of cyclic ether solvents are tetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane.
  • the chain ether solvent is 1,2-dimethoxyethane or 1,2-diethoxyethane.
  • An example of a cyclic ester solvent is ⁇ -butyrolactone.
  • An example of a chain ester solvent is methyl acetate.
  • fluorine solvents are fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, or fluorodimethylene carbonate.
  • One non-aqueous solvent selected from these may be used alone. Alternatively, a combination of two or more non-aqueous solvents selected from these may be used.
  • lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9 ) or LiC (SO 2 CF 3 ) 3 .
  • One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
  • the concentration of the lithium salt is, for example, in the range of 0.5 mol / L or more and 2 mol / L or less.
  • a polymer material impregnated with a non-aqueous electrolyte solution can be used.
  • polymer materials are polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethylmethacrylate, or polymers with ethylene oxide bonds.
  • cations contained in ionic liquids are (I) Aliphatic chain quaternary salts such as tetraalkylammonium or tetraalkylphosphonium, (Ii) Aliphatic cyclic ammonium such as pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, or piperidiniums, or (iii) nitrogen-containing heteros such as pyridiniums or imidazoliums. Ring aromatic cation, Is.
  • Aliphatic chain quaternary salts such as tetraalkylammonium or tetraalkylphosphonium
  • Aliphatic cyclic ammonium such as pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, or piperidiniums
  • nitrogen-containing heteros such as pyridiniums or
  • anion contained in the ionic liquid PF 6 -, BF 4 - , SbF 6 -, AsF 6 -, SO 3 CF 3 -, N (SO 2 CF 3) 2 -, N (SO 2 C 2 F 5 ) 2 -, N (SO 2 CF 3) (SO 2 C 4 F 9) -, or C (SO 2 CF 3) 3 - a.
  • the ionic liquid may contain a lithium salt.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 may contain a binder for the purpose of improving the adhesion between the particles.
  • binders are polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylic nitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, Polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene butadiene rubber , Or carboxymethyl cellulose.
  • Copolymers can also be used as binders.
  • binders are tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid.
  • a copolymer of two or more materials selected from the group consisting of hexadiene A mixture of two or more materials selected from these may be used as a binder.
  • At least one of the positive electrode 201 and the negative electrode 203 may contain a conductive auxiliary agent in order to reduce electronic resistance.
  • a conductive aid is (I) Graphites such as natural graphite or artificial graphite, (Ii) Carbon blacks such as acetylene black or ketjen black, (Iii) Conductive fibers such as carbon fibers or metal fibers, (Iv) Carbon fluoride, (V) Metal powders such as aluminum, (Vi) Conductive whiskers, such as zinc oxide or potassium titanate, Conductive metal oxides such as (vii) titanium oxide, or conductive polymer compounds such as (vii) polyaniline, polypyrrole, or polythiophene. Is. In order to reduce the cost, the conductive auxiliary agent (i) or (ii) described above may be used.
  • Examples of the shape of the battery according to the second embodiment are coin type, cylindrical type, square type, sheet type, button type, flat type, or laminated type.
  • a material for forming a positive electrode, a material for forming an electrolyte layer, and a material for forming a negative electrode are prepared, and the positive electrode, the electrolyte layer, and the negative electrode are arranged in this order by a known method. It may be manufactured by producing the laminated body.
  • Example 1 (Preparation of solid electrolyte material)
  • These flours were ground and mixed in a mortar.
  • the obtained mixed powder was milled at 500 rpm for 12 hours using a planetary ball mill. In this way, the powder of the solid electrolyte material according to Example 1 was obtained.
  • the solid electrolyte material according to Example 1 had a composition represented by Li 3 ZrF 7.
  • FIG. 3 is a graph showing an X-ray diffraction pattern of the solid electrolyte material according to Example 1.
  • the X-ray diffraction pattern of the solid electrolyte material according to Example 1 was measured using an X-ray diffractometer (Rigaku, MiniFlex 600) in a dry environment having a dew point of ⁇ 50 ° C. or lower. Measurements were performed by the ⁇ -2 ⁇ method using Cu—K ⁇ rays (wavelengths 1.5405 ⁇ and 1.5444 ⁇ ) as X-ray sources. The measurement angle interval was 0.01 °. The divergence angle of the divergence slit was 0.25 °. The slit width of the length limiting slit was 5 mm.
  • the value of the diffraction angle 2 ⁇ of the peak having the highest intensity within the range of the diffraction angle 2 ⁇ of 27.5 ° or more and 29.5 ° or less was defined as 2 ⁇ top, and the intensity of the peak was defined as I top .
  • the intensity at a diffraction angle of 2 ⁇ at 29.5 ° was defined as I bg . That is, I bg represents the strength of the baseline.
  • Half I htop of I top was the [(I top -I bg) / 2 + I bg].
  • the diffraction angle 2 ⁇ having the intensity closest to I htop within the range of the diffraction angle 2 ⁇ of 27.5 ° or more and 2 ⁇ top or less was defined as 2 ⁇ L.
  • FWHM is the difference between 2 ⁇ H and 2 ⁇ L.
  • the FWHM of the solid electrolyte material according to Example 1 was 0.42 deg.
  • FIG. 4 is a graph showing a conversion pattern of the solid electrolyte material according to Example 1 obtained by converting the horizontal axis of the graph of FIG. 3 from 2 ⁇ to q.
  • FIG. 5 shows a schematic view of the pressure forming die 300 used to evaluate the ionic conductivity of the solid electrolyte material.
  • the pressure forming die 300 included a punch upper part 301, a frame type 302, and a punch lower part 303.
  • the frame 302 was made of insulating polycarbonate.
  • the upper punch 301 and the lower punch 303 were made of electron-conducting stainless steel.
  • the ionic conductivity of the solid electrolyte material according to Example 1 was evaluated by the following method.
  • the powder of the solid electrolyte material according to Example 1 was filled inside the pressure molding die 300 in a dry atmosphere having a dew point of ⁇ 30 ° C. or lower. Inside the pressure forming die 300, a pressure of 400 MPa was applied to the solid electrolyte material according to Example 1 using the punch upper part 301 and the punch lower part 303.
  • the upper punch 301 and the lower punch 303 were connected to a potentiostat (Princeton Applied Research, VersaSTAT4) equipped with a frequency response analyzer.
  • the upper part 301 of the punch was connected to the working electrode and the terminal for measuring the potential.
  • the lower punch 303 was connected to the counter electrode and the reference electrode.
  • the impedance of the solid electrolyte material was measured at room temperature by an electrochemical impedance measurement method.
  • FIG. 6 is a graph showing a Core-Cole plot obtained by measuring the impedance of the solid electrolyte material according to Example 1.
  • the real value of the impedance at the measurement point where the absolute value of the phase of the complex impedance is the smallest was regarded as the resistance value of the solid electrolyte material to ionic conduction. See the arrow R SE shown in FIG. 6 for the real value.
  • the ionic conductivity was calculated based on the following mathematical formula (2).
  • (R SE ⁇ S / t) -1 ...
  • represents ionic conductivity.
  • S represents the contact area of the solid electrolyte material with the punch upper portion 301 (in FIG. 5, equal to the cross-sectional area of the hollow portion of the frame mold 302).
  • R SE represents the resistance value of the solid electrolyte material in impedance measurement.
  • t represents the thickness of the solid electrolyte material (that is, the thickness of the layer formed from the powder 101 of the solid electrolyte material in FIG. 5).
  • the ionic conductivity of the solid electrolyte material according to Example 1 measured at 25 ° C. was 6.19 ⁇ 10 -8 S / cm.
  • LYC halide solid electrolyte
  • LYC 70 mg
  • the solid electrolyte material according to Example 1 33 mg
  • the above-mentioned positive electrode mixture 9.1 mg
  • a pressure of 300 MPa was applied to the obtained laminate to form a second electrolyte layer formed from LYC, a first electrolyte layer formed from the solid electrolyte material according to Example 1, and a positive electrode. That is, the first electrolyte layer formed from the solid electrolyte material according to Example 1 was sandwiched between the second electrolyte layer and the positive electrode.
  • the thicknesses of the second electrolyte layer and the first electrolyte layer were 450 ⁇ m and 150 ⁇ m, respectively.
  • the metal In (thickness: 200 ⁇ m) was laminated on the second electrolyte layer.
  • a current collector made of stainless steel was attached to the positive electrode and the negative electrode, and a current collector lead was attached to the current collector.
  • FIG. 7 is a graph showing the initial discharge characteristics of the battery according to the first embodiment. The initial discharge characteristics were measured by the following method.
  • the battery according to Example 1 was placed in a constant temperature bath at 85 ° C.
  • the battery according to Example 1 was charged until a voltage of 3.6 V was reached at a current density of 27 ⁇ A / cm 2.
  • the current density corresponds to a 0.02 C rate.
  • Example 2 the battery according to Example 1 was discharged until a voltage of 1.9 V was reached at a current density of 27 ⁇ A / cm 2.
  • the battery according to Example 1 had an initial discharge capacity of 639 ⁇ Ah.
  • Examples 2 to 10> (Preparation of solid electrolyte material)
  • the mixed powder of the raw material was milled and then heat-treated for 1 hour. Except for the above items, the solid electrolyte materials according to Examples 8 to 10 were obtained in the same manner as in Example 1.
  • BM represents a milling process using a planetary ball mill.
  • the battery according to Comparative Example 1 was obtained in the same manner as in Example 1. A charge / discharge test was performed on the battery according to Comparative Example 1 in the same manner as in Example 1. As a result, the battery according to Comparative Example 1 had an initial discharge capacity of 0.01 ⁇ Ah or less. That is, the battery according to Comparative Example 1 was neither charged nor discharged.
  • the solid electrolyte materials of Examples 1 to 10 have a high ionic conductivity of 2 ⁇ 10 -11 S / cm or more at room temperature.
  • the batteries according to Examples 1 to 10 were all charged and discharged at 85 ° C. On the other hand, the battery according to Comparative Example 1 was neither charged nor discharged.
  • the solid electrolyte material according to the present disclosure is suitable for providing a battery having high lithium ion conductivity and being able to be charged and discharged well.
  • the solid electrolyte material of the present disclosure is used, for example, in an all-solid-state lithium-ion secondary battery.

Abstract

本開示の固体電解質材料は、Li、Zr、およびFを含む。ここで、Zrの物質量に対するLiの物質量の比は、3.5未満であり、かつCu-Kα線を用いた前記固体電解質材料のX線回折測定によって得られるX線回折パターンにおいて、27.5°以上かつ29.5°以下の回折角2θの範囲内で最も高い強度を有するピークの半値全幅の値の、同一の条件で測定されたSiの(111)面に対応するピークの半値全幅の値に対する比は、1.06より大きい。

Description

固体電解質材料およびそれを用いた電池
 本開示は、固体電解質材料およびそれを用いた電池に関する。
 特許文献1は、硫化物固体電解質が用いられた全固体電池を開示している。
特開2011-129312号公報
 本開示の目的は、高いリチウムイオン伝導度を有する固体電解質材料を提供することにある。
 本開示の固体電解質材料は、
 Li、Zr、およびFを含み、
 ここで、Zrの物質量に対するLiの物質量の比は、3.5未満であり、かつ
 Cu-Kα線を用いた前記固体電解質材料のX線回折測定によって得られるX線回折パターンにおいて、27.5°以上かつ29.5°以下の回折角2θの範囲内で最も高い強度を有するピークの半値全幅の値の、同一の条件で測定されたSiの(111)面に対応するピークの半値全幅の値に対する比は、1.06より大きい。
 本開示は、高いリチウムイオン伝導度を有する固体電解質材料を提供する。
図1は、第2実施形態による電池1000の断面図を示す。 図2は、第2実施形態による電池2000の断面図を示す。 図3は、実施例1から10および比較例1による固体電解質材料のX線回折パターンを示すグラフである。 図4は、図3のグラフの横軸を2θからqに変換することによって得られた、実施例1による固体電解質材料の変換パターンを示すグラフである。 図5は、固体電解質材料のイオン伝導度を評価するために用いられる加圧成形ダイス300の模式図を示す。 図6は、実施例1による固体電解質材料のインピーダンス測定により得られたCole-Coleプロットを示すグラフである。 図7は、実施例1および比較例1による電池の初期放電特性を示すグラフである。
 以下、本開示の実施形態が、図面を参照しながら説明される。
 (第1実施形態)
 第1実施形態による固体電解質材料は、Li、Zr、およびFを含み、ここで、Zrの物質量に対するLiの物質量の比は、3.5未満である。Cu-Kα線を用いた第1実施形態による固体電解質材料のX線回折測定によって得られるX線回折パターンにおいて、27.5°以上かつ29.5°以下の回折角2θの範囲内で最も高い強度を有するピークの半値全幅の値の、同一の条件で測定されたSiの(111)面に対応するピークの半値全幅の値に対する比は、1.06より大きい。以下、固体電解質材料のX線回折測定によって得られるX線回折パターンにおいて、27.5°以上かつ29.5°以下の回折角2θの範囲内で最も高い強度を有するピークの半値全幅が、「FWHM」と呼ばれる。さらに、Siの(111)面に対応するピークの半値全幅が、「FWHMSi」と呼ばれる。ここで、第1実施形態による固体電解質材料のX線回折測定と同一の条件で測定されるSiには、Si標準試料が用いられる。Si標準試料として、例えばNIST製の標準Si粉末が用いられる。
 第1実施形態による固体電解質材料では、上記の「FWHMSiに対するFWHMの比が1.06よりも大きい」という条件が充足されることにより、得られる結晶相の格子定数が不均一となる。その結果、第1実施形態による固体電解質材料では、結晶格子が広い領域が生じるため、リチウムイオンが伝導しやすくなる。したがって、第1実施形態による固体電解質材料は、高いリチウムイオン伝導度を有する。ここで、高いリチウムイオン伝導度とは、例えば2×10-11S/cm以上である。すなわち、第1実施形態による固体電解質材料は、例えば2×10-11S/cm以上のイオン伝導度を有し得る。
 第1実施形態による固体電解質材料は、FWHMの値ではなく、FWHMSiに対するFWHMの比によって特定される。したがって、第1実施形態による固体電解質材料を特定する際に、測定装置に起因する測定誤差を考慮しなくてもよい。
 第1実施形態による固体電解質材料のX線回折パターンにおいて、単一のピークの中で最も高い強度を有するピークが、27.5°以上かつ29.5°以下の回折角2θの範囲内に存在する。このようなピークを用いることでFWHMの値を正確に評価できる。したがって、FWHMSiに対するFWHMの比を正確に評価できる。なお、単一のピークとは、別のピークと重複していないピークをいう。
 第1実施形態による固体電解質材料は、充放電特性に優れた電池を得るために用いられ得る。当該電池の例は、全固体電池である。全固体電池は、一次電池でもよく、あるいは二次電池でもよい。
 第1実施形態による固体電解質材料は、硫黄を実質的に含有しないことが望ましい。第1実施形態による固体電解質材料に実質的に硫黄が含まれないとは、当該固体電解質材料が、不純物として不可避に混入した硫黄を除き、構成元素として硫黄を含まないことを意味する。この場合、固体電解質材料に不純物として混入される硫黄は、例えば1モル%以下である。安全性の観点から、第1実施形態による固体電解質材料は、硫黄を含有しないことが望ましい。硫黄を含有しない固体電解質材料は、大気に曝露されても硫化水素が発生しないので、安全性に優れる。特許文献1に開示された硫化物固体電解質は、大気中に曝露されると、硫化水素が発生し得る。
 第1実施形態による固体電解質材料は、Fを含有するため、高い耐酸化性を有し得る。これは、Fが高い酸化還元電位を有するためである。
 第1実施形態による固体電解質材料は、実質的に、Li、Zr、およびFからなっていてもよい。ここで、「第1実施形態による固体電解質材料が、実質的に、Li、Zr、およびFからなる」とは、第1実施形態による固体電解質材料を構成する全元素の物質量の合計に対する、Li、Zr、およびFの物質量の合計のモル比(すなわち、モル分率)が、90%以上であることを意味する。一例として、当該モル比(すなわち、モル分率)は、95%以上であってもよい。第1実施形態による固体電解質材料は、Li、Zr、およびFのみからなっていてもよい。
 第1実施形態による固体電解質材料は、不可避的に混入される元素を含有していてもよい。当該元素の例は、水素、酸素、または窒素である。このような元素は、固体電解質材料の原料粉、または、固体電解質材料を製造あるいは保管するための雰囲気中に存在し得る。
 第1実施形態による固体電解質材料のX線回折パターンの横軸が回折角2θからqに変換された変換パターンにおいて、1.94以上かつ2.08以下のqの範囲内で最も高い強度を有するピークの半値全幅の値の、同一の条件で測定されたSiの(111)面に対応するピークの半値全幅の値に対する比が、1.06より大きくてもよい。ここで、qは、数式:q=4πsinθ/λを充足する。λは、X線回折測定に用いられたX線の波長を表す。
 言い換えると、上記の変換パターンにおいて、1.94以上かつ2.08以下のqの範囲内で最も高い強度を有するピークの半値全幅の値の、同一の条件で測定されたSiの(111)面に対応するピークの半値全幅の値に対する比が1.06よりも大きい値を有し、かつLi、Zr、およびFが含まれる固体電解質材料は、Li、Zr、およびFを含み、かつFWHM/FWHMSi>1.06を充足する固体電解質材料とみなすことができる。したがって、Li、Zr、およびFを含む固体電解質材料について、X線以外の放射線(例えば、電子線)を用いて得られた測定結果が、数式:q=4πsinθ/λ’(λ’は、当該放射線の波長を表す)を用いて変換されて、変換パターンが得られてもよい。このようにして得られた変換パターンにおいて、「1.94以上かつ2.08以下のqの範囲内で最も高い強度を有するピークの半値全幅の値の、同一の条件で測定されたSiの(111)面に対応するピークの半値全幅の値に対する比が1.06よりも大きい」という条件を満たす場合、その固体電解質材料は、第1実施形態による固体電解質材料であるとみなすことが可能である。
 第1実施形態による固体電解質材料において、FWHMSiに対するFWHMの比は、5.0より小さくてもよい。これにより、高いイオン伝導性を有する結晶構造を維持することができる。固体電解質材料のイオン伝導性を高めるために、FWHMSiに対するFWHMの比は、1.25以上かつ2.88以下であってもよい。
 第1実施形態による固体電解質材料は、以下の組成式(1)により表される結晶相を含有していてもよい。
 LixZrF4+x ・・・式(1)
 式(1)において、数式:0<x<3.5、が充足される。このような結晶相を含有する固体電解質材料は、高いイオン伝導度を有する。
 固体電解質材料のイオン伝導性を高めるために、式(1)において、数式:1.0≦x≦3.0、が充足されてもよい。
 式(1)におけるxの範囲の上限値および下限値は、1.0、1.5、1.8、2.0、2.2、2.5、および3.0の数値から選ばれる任意の組み合わせによって規定され得る。
 第1実施形態による固体電解質材料の形状は、限定されない。当該形状の例は、針状、球状、または楕円球状である。第1実施形態による固体電解質材料は、粒子であってもよい。第1実施形態による固体電解質材料は、ペレットまたは板の形状を有するように形成されてもよい。
 第1実施形態による固体電解質材料の形状が、例えば、粒子状(例えば、球状)である場合、当該固体電解質材料は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。メジアン径とは、体積基準の粒度分布における累積体積が50%となる粒径を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置または画像解析装置により測定される。
 第1実施形態による固体電解質材料は、0.5μm以上かつ10μm以下のメジアン径を有していてもよい。これにより、固体電解質材料がより高い伝導性を有する。さらに、第1実施形態による固体電解質材料が、活物質のような他の材料と混合される場合に、第1実施形態による固体電解質材料および他の材料の分散状態が良好になる。
 <固体電解質材料の製造方法>
 第1実施形態による固体電解質材料は、例えば、下記の方法により製造される。
 目的とする組成となるように、原料粉が用意され、混合される。原料粉は、例えば、ハロゲン化物であってもよい。
 一例として、目的の組成がLi3ZrF7である場合、原料粉としてLiFおよびZrF4が、3.0:1.0程度のモル比となるように混合される。合成プロセスにおいて生じ得る組成変化を相殺するように、あらかじめ調整されたモル比で原料粉が混合されてもよい。
 原料粉を、遊星型ボールミルのような混合装置内でメカノケミカル的に(すなわち、メカノケミカルミリングの方法を用いて)互いに反応させ、反応物を得る。反応物は、真空中または不活性雰囲気中で熱処理されてもよい。あるいは、原料粉の混合物を真空中または不活性雰囲気中で熱処理してもよい。熱処理は、例えば、100℃以上かつ300℃以下で、1時間以上行ってもよい。熱処理における組成変化を抑制するために、原料粉または反応物は石英管のような密閉容器内で熱処理されてもよい。
 熱処理の温度を上げる、または、時間を延ばすと、得られる固体電解質材料のFWHMの値が小さくなり得る。
 これらの方法により、第1実施形態による固体電解質材料が得られる。
 固体電解質材料の組成は、例えば、ICP発光分光分析法、イオンクロマトグラフィー法、不活性ガス溶融-赤外線吸収法、またはEPMA(Electron Probe Micro Analyzer)法により決定することができる。例えば、LiおよびZrの組成はICP発光分光分析法により決定され、Fの組成はイオンクロマトグラフィー法により決定され得る。
 (第2実施形態)
 以下、第2実施形態が説明される。第1実施形態において説明された事項は、省略され得る。
 第2実施形態による電池は、正極、負極、および電解質層を備える。電解質層は、正極および負極の間に設けられている。正極、電解質層、および負極からなる群より選択される少なくとも1つは、第1実施形態による固体電解質材料を含有する。第2実施形態による電池は、第1実施形態による固体電解質材料を含有するため、優れた充放電特性を有する。当該電池は、全固体電池であってもよい。
 図1は、第2実施形態による電池1000の断面図を示す。
 第2実施形態による電池1000は、正極201、電解質層202、および負極203を備える。電解質層202は、正極201および負極203の間に設けられている。
 正極201は、正極活物質粒子204および固体電解質粒子100を含有する。
 電解質層202は、電解質材料を含有する。電解質材料は、例えば、固体電解質材料である。
 負極203は、負極活物質粒子205および固体電解質粒子100を含有する。
 固体電解質粒子100は、第1実施形態による固体電解質材料を含む粒子である。固体電解質粒子100は、第1実施形態による固体電解質材料からなる粒子、または、第1実施形態による固体電解質材料を主たる成分として含有する粒子であってもよい。ここで、第1実施形態による固体電解質材料を主たる成分として含有する粒子とは、モル比で最も多く含まれる成分が第1実施形態による固体電解質材料である粒子を意味する。
 正極201は、金属イオン(例えば、リチウムイオン)を吸蔵および放出可能な材料を含有する。当該材料は、例えば、正極活物質(例えば、正極活物質粒子204)である。
 正極活物質の例は、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシ硫化物、または遷移金属オキシ窒化物である。リチウム含有遷移金属酸化物の例は、Li(Ni,Co,Al)O2、Li(Ni,Co,Mn)O2、またはLiCoO2である。本開示において、化学式中の表記「(Ni,Co,Al)」は、括弧内の元素群より選択される少なくとも1種の元素を示す。すなわち、「(Ni,Co,Al)」は、「Ni、Co、およびAlからなる群より選択される少なくとも1種」と同義である。他の元素の場合でも同様である。
 正極活物質粒子204は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。正極活物質粒子204が0.1μm以上のメジアン径を有する場合、正極201において、正極活物質粒子204および固体電解質粒子100の分散状態が良好になる。これにより、電池の充放電特性が向上する。正極活物質粒子204が100μm以下のメジアン径を有する場合、正極活物質粒子204内のリチウム拡散速度が向上する。これにより、電池が高出力で動作し得る。
 正極活物質粒子204は、固体電解質粒子100よりも大きいメジアン径を有していてもよい。これにより、正極201において、正極活物質粒子204および固体電解質粒子100の分散状態が良好になる。
 電池のエネルギー密度および出力の観点から、正極201において、正極活物質粒子204の体積および固体電解質粒子100の体積の合計に対する正極活物質粒子204の体積の比は、0.30以上かつ0.95以下であってもよい。
 正極活物質粒子204の表面の少なくとも一部には、被覆層が形成されていてもよい。被覆層は、例えば、導電助剤および結着剤と混合する前に、正極活物質粒子204の表面に形成され得る。被覆層に含まれる被覆材料の例は、硫化物固体電解質、酸化物固体電解質、またはハロゲン化物固体電解質である。固体電解質粒子100が硫化物固体電解質を含有する場合、当該硫化物固体電解質の酸化分解を抑制するために、被覆材料は第1実施形態による固体電解質材料を含有していてもよい。固体電解質粒子100が第1実施形態による固体電解質材料を含有する場合、当該固体電解質材料の酸化分解を抑制するために、被覆材料は酸化物固体電解質を含有していてもよい。当該酸化物固体電解質として、高電位での安定性に優れるニオブ酸リチウムが使用されてもよい。酸化分解を抑制することにより、電池の過電圧上昇を抑制できる。
 電池のエネルギー密度および出力の観点から、正極201は、10μm以上かつ500μm以下の厚みを有していてもよい。
 電解質層202は、電解質材料を含有する。当該電解質材料は、例えば、固体電解質材料である。電解質層202は、固体電解質層であってもよい。
 電解質層202は、第1実施形態による固体電解質材料を含有してもよい。電解質層202は、第1実施形態による固体電解質材料のみから構成されていてもよい。電解質層202は、第1実施形態による固体電解質材料とは異なる固体電解質材料のみから構成されていてもよい。第1実施形態による固体電解質材料とは異なる固体電解質材料の例は、Li2MgX4、Li2FeX4、Li(Al,Ga,In)X4、Li3(Al,Ga,In)X6、またはLiIである。ここで、Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
 以下、第1実施形態による固体電解質材料は、第1固体電解質材料と呼ばれる。第1実施形態による固体電解質材料とは異なる固体電解質材料は、第2固体電解質材料と呼ばれる。
 電解質層202は、第1固体電解質材料だけでなく、第2固体電解質材料を含有していてもよい。電解質層202において、第1固体電解質材料および第2固体電解質材料が均一に分散していてもよい。第1固体電解質材料からなる層および第2固体電解質材料からなる層が、電池1000の積層方向に沿って積層されていてもよい。
 図2は、第2実施形態による電池2000の断面図を示す。
 図2に示されるように、電池2000は、正極201、第1電解質層212、第2電解質層222、および負極203を備えていてもよい。すなわち、電解質層202は、第電解質層212および第2電解質層222を含んでいてもよい。第1電解質層212は、正極201および負極203の間に配置されている。第2電解質層222は、第1電解質層212および負極203の間に配置されている。
 電池2000において、第1電解質層212は、第1実施形態による固体電解質材料を含有していてもよい。第1実施形態による固体電解質材料は、高い耐酸化性を有するため、第2電解質層222に含まれる固体電解質材料を酸化させずに用いることができる。その結果、電池の充放電効率を向上させることができる。
 電池2000において、第2電解質層222に含まれる固体電解質材料は、第1電解質層212に含まれる固体電解質材料よりも低い還元電位を有していてもよい。これにより、第1電解質層212に含まれる固体電解質材料を還元させずに用いることができる。その結果、電池の充放電効率を向上させることができる。例えば、第1電解質層212が第1実施形態による固体電解質材料を含有する場合、当該固体電解質材料の還元分解を抑制するために、第2電解質層222は硫化物固体電解質を含有していてもよい。
 電池のエネルギー密度および出力の観点から、電解質層202は、1μm以上かつ1000μm以下の厚みを有していてもよい。
 負極203は、金属イオン(例えば、リチウムイオン)を吸蔵および放出可能な材料を含有する。当該材料は、例えば、負極活物質(例えば、負極活物質粒子205)である。
 負極活物質の例は、金属材料、炭素材料、酸化物、窒化物、錫化合物、または珪素化合物である。金属材料は、単体の金属であってもよく、あるいは合金であってもよい。金属材料の例は、リチウム金属またはリチウム合金である。炭素材料の例は、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、または非晶質炭素である。容量密度の観点から、負極活物質の好適な例は、珪素(すなわち、Si)、錫(すなわち、Sn)、珪素化合物、または錫化合物である。
 負極活物質は、負極203に含まれる固体電解質材料の還元耐性を考慮して選択されてもよい。例えば、負極203が第1実施形態による固体電解質材料を含有する場合、負極活物質は、リチウムに対して0.27V以上でリチウムイオンを吸蔵および放出可能な材料であってもよい。このような負極活物質の例は、チタン酸化物、インジウム金属、またはリチウム合金である。チタン酸化物の例は、Li4Ti512、LiTi24、またはTiO2である。上記の負極活物質を使用することにより、負極203に含まれる第1実施形態による固体電解質材料が還元分解するのを抑制できる。その結果、電池の充放電効率を向上させることができる。
 負極活物質粒子205は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。負極活物質粒子205が0.1μm以上のメジアン径を有する場合、負極203において、負極活物質粒子205および固体電解質粒子100の分散状態が良好になる。これにより、電池の充放電特性が向上する。負極活物質粒子205が100μm以下のメジアン径を有する場合、負極活物質粒子205内のリチウム拡散速度が向上する。これにより、電池が高出力で動作し得る。
 負極活物質粒子205は、固体電解質粒子100よりも大きいメジアン径を有していてもよい。これにより、負極203において、負極活物質粒子205および固体電解質粒子100の分散状態が良好になる。
 電池のエネルギー密度および出力の観点負極203において、負極活物質粒子205の体積および固体電解質粒子100の体積の合計に対する負極活物質粒子205の体積の比は、0.30以上かつ0.95以下であってもよい。
 電池のエネルギー密度および出力の観点から、負極203は、10μm以上かつ500μm以下の厚みを有していてもよい。
 正極201、電解質層202、および負極203からなる群より選択される少なくとも1つは、イオン伝導性、化学的安定性、および電気化学的安定性を高める目的で、第2固体電解質材料を含有していてもよい。第2固体電解質材料の例は、硫化物固体電解質、酸化物固体電解質、ハロゲン化物固体電解質、または有機ポリマー固体電解質である。
 本開示において、「硫化物固体電解質」は、硫黄を含有する固体電解質を意味する。「酸化物固体電解質」は、酸素を含有する固体電解質を意味する。酸化物固体電解質は、酸素以外のアニオン(ただし、硫黄アニオンおよびハロゲンアニオンは除く)を含有していてもよい。「ハロゲン化物固体電解質」は、ハロゲン元素を含有し、かつ、硫黄を含有しない固体電解質を意味する。ハロゲン化物固体電解質は、ハロゲン元素だけでなく、酸素を含有していてもよい。
 第2固体電解質材料は、硫化物固体電解質であってもよい。
 硫化物固体電解質の例は、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、またはLi10GeP212である。
 電解質層202が第1実施形態による固体電解質材料を含有する場合、当該固体電解質材料の還元分解を抑制するために、負極203は硫化物固体電解質を含有していてもよい。電気化学的に安定な硫化物固体電解質が負極活物質を覆うことにより、第1実施形態による固体電解質材料が負極活物質と接触するのを抑制できる。その結果、電池の内部抵抗を低減することができる。
 第2固体電解質材料は、酸化物固体電解質であってもよい。
 酸化物固体電解質の例は、
 (i)LiTi2(PO43またはその元素置換体のようなNASICON型固体電解質、
 (ii)(LaLi)TiO3のようなペロブスカイト型固体電解質、
 (iii)Li14ZnGe416、Li4SiO4、LiGeO4またはその元素置換体のようなLISICON型固体電解質、
 (iv)Li7La3Zr212またはその元素置換体のようなガーネット型固体電解質、または
 (v)Li3PO4またはそのN置換体、
である。
 上述のように、第2固体電解質材料は、ハロゲン化物固体電解質であってもよい。
 ハロゲン化物固体電解質の例は、Li2MgX4、Li2FeX4、Li(Al,Ga,In)X4、Li3(Al,Ga,In)X6、またはLiIである。ここで、Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
 ハロゲン化物固体電解質材料の他の例は、LiaMebc6により表される化合物である。ここで、a+mb+3c=6、およびc>0が充足される。Meは、LiおよびY以外の金属元素と半金属元素とからなる群より選択される少なくとも1つである。mは、Meの価数を表す。「半金属元素」とは、B、Si、Ge、As、Sb、およびTeである。「金属元素」とは、周期表第1族から第12族中に含まれるすべての元素(ただし、水素を除く)、および、周期表13族から16族に含まれるすべての元素(ただし、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く)である。
 ハロゲン化物固体電解質材料のイオン伝導性を高めるために、Meは、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、Ta、およびNbからなる群より選択されるすくなくとも1つであってもよい。ハロゲン化物固体電解質は、Li3YCl6またはLi3YBr6であってもよい。
 第2固体電解質材料は、有機ポリマー固体電解質であってもよい。
 有機ポリマー固体電解質の例は、高分子化合物およびリチウム塩の化合物である。
 高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有できるため、イオン導電率をより高めることができる。
 リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、またはLiC(SO2CF33である。これらから選択される1種のリチウム塩が、単独で使用されてもよい。もしくは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。
 正極201、電解質層202、および負極203からなる群より選択される少なくとも1つは、リチウムイオンの授受を容易にし、電池の出力特性を向上する目的で、非水電解質液、ゲル電解質、またはイオン液体を含有していてもよい。
 非水電解液は、非水溶媒および当該非水溶媒に溶けたリチウム塩を含む。
 非水溶媒の例は、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、またはフッ素溶媒である。環状炭酸エステル溶媒の例は、エチレンカーボネート、プロピレンカーボネート、またはブチレンカーボネートである。鎖状炭酸エステル溶媒の例は、ジメチルカーボネート、エチルメチルカーボネート、またはジエチルカーボネートである。環状エーテル溶媒の例は、テトラヒドロフラン、1,4-ジオキサン、または1,3-ジオキソランである。鎖状エーテル溶媒は、1,2-ジメトキシエタンまたは1,2-ジエトキシエタンである。環状エステル溶媒の例は、γ-ブチロラクトンである。鎖状エステル溶媒の例は、酢酸メチルである。フッ素溶媒の例は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、またはフルオロジメチレンカーボネートである。これらから選択される1種の非水溶媒が、単独で使用されてもよい。もしくは、これらから選択される2種以上の非水溶媒の組み合わせが使用されてもよい。
 リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、またはLiC(SO2CF33である。これらから選択される1種のリチウム塩が、単独で使用されてもよい。もしくは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。リチウム塩の濃度は、例えば、0.5mol/L以上かつ2mol/L以下の範囲にある。
 ゲル電解質として、非水電解液を含浸させたポリマー材料が使用され得る。ポリマー材料の例は、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、ポリメチルメタクリレート、またはエチレンオキシド結合を有するポリマーである。
 イオン液体に含まれるカチオンの例は、
 (i)テトラアルキルアンモニウムまたはテトラアルキルホスホニウムのような脂肪族鎖状4級塩類、
 (ii)ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、またはピペリジニウム類のような脂肪族環状アンモニウム、または
 (iii)ピリジニウム類またはイミダゾリウム類のような含窒ヘテロ環芳香族カチオン、
である。
 イオン液体に含まれるアニオンの例は、PF6 -、BF4 -、SbF6 -、AsF6 -、SO3CF3 -、N(SO2CF32 -、N(SO2252 -、N(SO2CF3)(SO249-、またはC(SO2CF33 -である。
 イオン液体はリチウム塩を含有していてもよい。
 正極201、電解質層202、および負極203からなる群より選択される少なくとも1つは、粒子同士の密着性を向上する目的で、結着剤を含有していてもよい。
 結着剤の例は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、またはカルボキシメチルセルロースである。共重合体もまた、結着剤として使用され得る。このような結着剤の例は、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択される2種以上の材料の共重合体である。これらのうちから選択される2種以上の材料の混合物が、結着剤として使用されてもよい。
 正極201および負極203のうちの少なくとも一方は、電子抵抗を低減するために、導電助剤を含有していてもよい。
 導電助剤の例は、
 (i)天然黒鉛または人造黒鉛のようなグラファイト類、
 (ii)アセチレンブラックまたはケッチェンブラックのようなカーボンブラック類、
 (iii)炭素繊維または金属繊維のような導電性繊維類、
 (iv)フッ化カーボン、
 (v)アルミニウムのような金属粉末類、
 (vi)酸化亜鉛またはチタン酸カリウムのような導電性ウィスカー類、
 (vii)酸化チタンのような導電性金属酸化物、または
 (viii)ポリアニリン、ポリピロール、またはポリチオフェンのような導電性高分子化合物、
である。低コスト化のために、上記(i)または(ii)の導電助剤が使用されてもよい。
 第2実施形態による電池の形状の例は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、または積層型である。
 第2実施形態による電池は、例えば、正極形成用の材料、電解質層形成用の材料、および負極形成用の材料を準備し、公知の方法で、正極、電解質層、および負極がこの順で配置された積層体を作製することによって製造してもよい。
 以下、実施例および比較例を参照しながら、本開示がより詳細に説明される。
 <実施例1>
 (固体電解質材料の作製)
 -60℃以下の露点を有するアルゴン雰囲気(以下、「乾燥アルゴン雰囲気」という)中で、原料粉としてLiFおよびZrF4が、LiF:ZrF4=3.0:1.0のモル比となるように用意された。これらの原料粉は、乳鉢中で粉砕され、混合された。得られた混合粉は、遊星型ボールミルを用い、12時間、500rpmでミリング処理された。このようにして、実施例1による固体電解質材料の粉末が得られた。実施例1による固体電解質材料は、Li3ZrF7により表される組成を有していた。
 (半値全幅の評価)
 図3は、実施例1による固体電解質材料のX線回折パターンを示すグラフである。
 -50℃以下の露点を有するドライ環境で、X線回折装置(Rigaku社、MiniFlex600)を用いて、実施例1による固体電解質材料のX線回折パターンが測定された。X線源として、Cu-Kα線(波長1.5405Å、および、1.5444Å)を用いて、θ-2θ法により測定が行われた。測定角度間隔は0.01°であった。発散スリットの発散角は0.25°であった。長手制限スリットのスリット幅は5mmであった。
 27.5°以上かつ29.5°以下の回折角2θの範囲内で最も高い強度を有するピークの回折角2θの値を2θtopとし、当該ピークの強度をItopとした。29.5°の回折角2θにおける強度をIbgとした。すなわち、Ibgはベースラインの強度を表す。Itopの半値Ihtopは、[(Itop-Ibg)/2+Ibg]とした。
 27.5°以上かつ2θtop以下の回折角2θの範囲内でIhtopに最も近い強度となる回折角2θを2θLとした。2θtop以上かつ29.5°以下の範囲内でIhtopに最も近い強度となる回折角2θを2θHとした。FWHMは、2θHと2θLとの差である。実施例1による固体電解質材料のFWHMは、0.42degであった。
 次に、実施例1による固体電解質材料と同様の条件で、Si結晶粉末に対してX線回折測定を行った。28.0°以上かつ28.6°以下の回折角2θの範囲内で最も高い強度を有するピークの回折角2θの値を2θtopとし、当該ピークの強度をItopとした。28.0°の回折角2θにおける強度をIbgとした。その結果、Si結晶粉末のFWHMSiは、0.16degであった。なお、使用したSi結晶粉末は、Si標準試料「SRM 640d (NIST)」であった。
 (X線回折パターンの横軸の変更)
 図3に示された実施例1による固体電解質材料のX線回折パターンの横軸が、回折角2θからqに変換された。ここで、式:q=4πsinθ/λが充足される。λは、X線回折測定に用いられたX線の波長である。これにより、実施例1による固体電解質材料の変換パターンが得られた。図4は、図3のグラフの横軸を2θからqに変換することによって得られた、実施例1による固体電解質材料の変換パターンを示すグラフである。
 (イオン伝導度の評価)
 図5は、固体電解質材料のイオン伝導度を評価するために用いられた加圧成形ダイス300の模式図を示す。
 加圧成形ダイス300は、パンチ上部301、枠型302、およびパンチ下部303を具備していた。枠型302は、絶縁性のポリカーボネートから形成されていた。パンチ上部301およびパンチ下部303は、電子伝導性のステンレスから形成されていた。
 図5に示される加圧成形ダイス300を用いて、下記の方法により、実施例1による固体電解質材料のイオン伝導度が評価された。
 -30℃以下の露点を有するドライ雰囲気中で、実施例1による固体電解質材料の粉末が加圧成形ダイス300の内部に充填された。加圧成形ダイス300の内部で、実施例1による固体電解質材料に、パンチ上部301およびパンチ下部303を用いて、400MPaの圧力が印加された。
 圧力が印加されたまま、パンチ上部301およびパンチ下部303が、周波数応答アナライザを搭載したポテンショスタット(Princeton Applied Research社、VersaSTAT4)に接続された。パンチ上部301は、作用極および電位測定用端子に接続された。パンチ下部303は、対極および参照極に接続された。固体電解質材料のインピーダンスは、室温において、電気化学的インピーダンス測定法により測定された。
 図6は、実施例1による固体電解質材料のインピーダンス測定によって得られたCole-Coleプロットを示すグラフである。
 図6において、複素インピーダンスの位相の絶対値が最も小さい測定点でのインピーダンスの実数値が、固体電解質材料のイオン伝導に対する抵抗値とみなされた。当該実数値については、図6において示される矢印RSEを参照せよ。当該抵抗値を用いて、以下の数式(2)に基づいて、イオン伝導度が算出された。
 σ=(RSE×S/t)-1 ・・・(2)
 ここで、σは、イオン伝導度を表す。Sは、固体電解質材料のパンチ上部301との接触面積(図5において、枠型302の中空部の断面積に等しい)を表す。RSEは、インピーダンス測定における固体電解質材料の抵抗値を表す。tは、固体電解質材料の厚み(すなわち、図5において、固体電解質材料の粉末101から形成される層の厚み)を表す。
 25℃で測定された、実施例1による固体電解質材料のイオン伝導度は、6.19×10-8S/cmであった。
 (電池の作製)
 乾燥アルゴン雰囲気中で、実施例1による固体電解質材料および活物質であるLiCoO2が、30:70の体積比率となるように用意された。これらの材料がメノウ乳鉢中で混合された。このようにして、正極混合物が得られた。
 次に、LiClおよびYCl3が、LiCl:YCl3=3:1のモル比となるように用意された。これらの材料が乳鉢中で粉砕され、混合された。得られた混合物は、遊星ボールミルを用い、12時間、500rpmでミリング処理された。このようにしてLi3YCl6により表される組成を有するハロゲン化物固体電解質(以下、「LYC」という)が得られた。
 9.5mmの内径を有する絶縁性の筒の中で、LYC(70mg)、実施例1による固体電解質材料(33mg)、上述の正極混合物(9.1mg)が、この順に積層された。得られた積層体に300MPaの圧力が印加され、LYCから形成された第2電解質層、実施例1による固体電解質材料から形成された第1電解質層、および正極が形成された。すなわち、実施例1による固体電解質材料から形成された第1電解質層は、第2電解質層および正極に挟まれていた。第2電解質層および第1電解質層の厚みは、それぞれ、450μmおよび150μmであった。
 次に、第2電解質層に、金属In(厚さ:200μm)が積層された。得られた積層体に80MPaの圧力が印加され、負極が形成された。
 次に、ステンレス鋼から形成された集電体が正極および負極に取り付けられ、当該集電体に集電リードが取り付けられた。
 最後に、絶縁性フェルールを用いて、絶縁性の筒の内部が外気雰囲気から遮断され、当該筒の内部が密閉された。このようにして、実施例1による電池が得られた。
 (充放電試験)
 図7は、実施例1による電池の初期放電特性を示すグラフである。初期放電特性は、下記の方法により測定された。
 実施例1による電池は、85℃の恒温槽に配置された。
 27μA/cm2の電流密度で、3.6Vの電圧に達するまで、実施例1による電池が充電された。当該電流密度は、0.02Cレートに相当する。
 次に、27μA/cm2の電流密度で、1.9Vの電圧に達するまで、実施例1による電池が放電された。
 充放電試験の結果、実施例1による電池は、639μAhの初期放電容量を有していた。
 <実施例2から10>
 (固体電解質材料の作製)
 実施例2から7においては、原料粉としてLiFおよびZrF4が、LiF:ZrF4=x:1のモル比となるように用意された。上記の事項以外は、実施例1と同様にして、実施例2から7による固体電解質材料が得られた。xの値は、表1に示される。
 実施例8から10においては、原料粉としてLiFおよびZrF4が、LiF:ZrF4=x:1のモル比となるように用意された。原料の混合粉がミリング処理された後、1時間熱処理された。上記の事項以外は、実施例1と同様にして、実施例8から10による固体電解質材料が得られた。
 実施例2から10のそれぞれにおけるxの値、および、実施例8から10におけるそれぞれの熱処理温度は、表1に示される。表1において、「BM」は遊星型ボールミルを用いたミリング処理を表す。
 (半値全幅の評価)
 実施例2から10による固体電解質材料のFWHMは、実施例1と同様に算出された。FWHMおよびFWHM/FWHMSiの値は表1に示される。
 (イオン伝導度の評価)
 実施例2から10による固体電解質材料のイオン伝導度は、実施例1と同様にして測定された。測定結果は表1に示される。
 (電池の作製)
 実施例2から10による固体電解質材料を用いて、実施例1と同様にして、実施例2から10による電池が得られた。
 (充放電試験)
 実施例2から10による電池に対し、実施例1と同様にして、充放電試験が行われた。実施例2から10による電池は、実施例1と同様に、良好に充電および放電された。
 <比較例1>
 乾燥アルゴン雰囲気中で、原料粉としてLiFおよびZrF4が、LiF:ZrF4=2:1となるように用意された。原料紛は、乳鉢中で混合された後、ペレット状に形成された。得られたペレット状の混合粉は、450℃、5時間で熱処理された。このようにして、比較例1による固体電解質材料の粉末が得られた。
 比較例1による固体電解質材料のFWHMは、実施例1と同様に算出された。結果は、表1に示される。
 比較例1による固体電解質材料のイオン伝導度は、実施例1と同様に測定された。結果は、表1に示される。
 比較例1による固体電解質材料を用いて、実施例1と同様にして、比較例1による電池が得られた。比較例1による電池に対し、実施例1と同様にして、充放電試験が行われた。その結果、比較例1による電池は、0.01μAh以下の初期放電容量を有していた。すなわち、比較例1による電池は、充電も放電もされなかった。
Figure JPOXMLDOC01-appb-T000001
 <考察>
 実施例1から10の固体電解質材料は、室温において、2×10-11S/cm以上の高いイオン伝導性を有する。
 実施例1から10による電池は、いずれも85℃において、充電および放電された。一方、比較例1による電池は、充電も放電もされなかった。
 実施例1から10による固体電解質材料は、硫黄を含有しないため、硫化水素が発生しない。
 以上のように、本開示による固体電解質材料は、高いリチウムイオン伝導度を有し、かつ良好に充電および放電可能な電池を提供するために適切である。
 本開示の固体電解質材料は、例えば、全固体リチウムイオン二次電池において利用される。

Claims (6)

  1.  固体電解質材料であって、
     Li、Zr、およびFを含み、
     ここで、Zrの物質量に対するLiの物質量の比は、3.5未満であり、かつ
     Cu-Kα線を用いた前記固体電解質材料のX線回折測定によって得られるX線回折パターンにおいて、27.5°以上かつ29.5°以下の回折角2θの範囲内で最も高い強度を有するピークの半値全幅の値の、同一の条件で測定されたSiの(111)面に対応するピークの半値全幅の値に対する比は、1.06より大きい、
    固体電解質材料。
  2.  前記X線回折パターンの横軸を回折角2θからqに変換した変換パターンにおいて、1.94以上かつ2.08以下のqの範囲内で最も高い強度を有するピークの半値全幅の値の、同一の条件で測定されたSiの(111)面に対応するピークの半値全幅の値に対する比は、1.06より大きく、
     ここで、q=4πsinθ/λであり、
     λは、前記X線回折測定に用いられたX線の波長を表す、
    請求項1に記載の固体電解質材料。
  3.  下記の組成式(1)により表される結晶相を含有する、
     LixZrF4+x ・・・式(1)
     ここで、数式:0<x<3.5、が充足される、
    請求項1または2に記載の固体電解質材料。
  4.  数式:1.0≦x≦3.0、が充足される、
    請求項3に記載の固体電解質材料。
  5.  正極、
     負極、および
     前記正極および前記負極の間に設けられている電解質層、
    を備え、
     前記正極、前記負極、および前記電解質層からなる群より選択される少なくとも1つは、請求項1から4のいずれか一項に記載の固体電解質材料を含有する、
    電池。
  6.  前記電解質層は、第1電解質層および第2電解質層を含み、
     前記第1電解質層は、前記正極および前記負極の間に配置され、
     前記第2電解質層は、前記第1電解質層および前記負極の間に配置され、
     前記第1電解質層は、前記固体電解質材料を含有する、
    請求項5に記載の電池。
PCT/JP2020/042338 2020-02-14 2020-11-12 固体電解質材料およびそれを用いた電池 WO2021161606A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20918688.1A EP4106043A4 (en) 2020-02-14 2020-11-12 SOLID ELECTROLYTE MATERIAL AND CORRESPONDING BATTERY
CN202080096499.4A CN115136373A (zh) 2020-02-14 2020-11-12 固体电解质材料及使用了该固体电解质材料的电池
JP2022500232A JPWO2021161606A1 (ja) 2020-02-14 2020-11-12
US17/885,312 US20220393233A1 (en) 2020-02-14 2022-08-10 Solid electrolyte material and battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-023807 2020-02-14
JP2020023807 2020-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/885,312 Continuation US20220393233A1 (en) 2020-02-14 2022-08-10 Solid electrolyte material and battery using same

Publications (1)

Publication Number Publication Date
WO2021161606A1 true WO2021161606A1 (ja) 2021-08-19

Family

ID=77291731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042338 WO2021161606A1 (ja) 2020-02-14 2020-11-12 固体電解質材料およびそれを用いた電池

Country Status (5)

Country Link
US (1) US20220393233A1 (ja)
EP (1) EP4106043A4 (ja)
JP (1) JPWO2021161606A1 (ja)
CN (1) CN115136373A (ja)
WO (1) WO2021161606A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258030A (ja) * 2007-04-05 2008-10-23 Denso Corp 非水電解質二次電池用負極活物質及びその製造方法並びに非水電解質二次電池の製造方法
JP2011129312A (ja) 2009-12-16 2011-06-30 Toyota Motor Corp 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池
JP2018092863A (ja) * 2016-12-07 2018-06-14 トヨタ自動車株式会社 フッ化物イオン全固体電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10128495B2 (en) * 2013-02-28 2018-11-13 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery that uses the positive electrode
CN114207895B (zh) * 2019-08-07 2024-03-01 Tdk株式会社 固体电解质、固体电解质层以及固体电解质电池
JPWO2021024783A1 (ja) * 2019-08-07 2021-02-11

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258030A (ja) * 2007-04-05 2008-10-23 Denso Corp 非水電解質二次電池用負極活物質及びその製造方法並びに非水電解質二次電池の製造方法
JP2011129312A (ja) 2009-12-16 2011-06-30 Toyota Motor Corp 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池
JP2018092863A (ja) * 2016-12-07 2018-06-14 トヨタ自動車株式会社 フッ化物イオン全固体電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4106043A4

Also Published As

Publication number Publication date
US20220393233A1 (en) 2022-12-08
CN115136373A (zh) 2022-09-30
JPWO2021161606A1 (ja) 2021-08-19
EP4106043A1 (en) 2022-12-21
EP4106043A4 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
JP7432897B2 (ja) 固体電解質材料およびそれを用いた電池
WO2021070595A1 (ja) 固体電解質材料およびそれを用いた電池
WO2021161604A1 (ja) 固体電解質材料およびそれを用いた電池
WO2020137392A1 (ja) 固体電解質材料およびそれを用いた電池
US20210249683A1 (en) Solid electrolyte material and battery including the same
WO2021186809A1 (ja) 固体電解質材料およびそれを用いた電池
WO2021075243A1 (ja) 固体電解質材料およびそれを用いた電池
WO2021002053A1 (ja) 固体電解質材料およびこれを用いた電池
WO2021186833A1 (ja) 固体電解質材料およびそれを用いた電池
WO2022018952A1 (ja) 固体電解質材料およびそれを用いた電池
WO2020188914A1 (ja) 固体電解質材料およびこれを用いた電池
WO2020137043A1 (ja) リチウムイオン伝導性固体電解質材料、およびこれを用いた電池
WO2021199641A1 (ja) 固体電解質材料およびこれを用いた電池
WO2021220577A1 (ja) 固体電解質材料およびそれを用いた電池
WO2021199549A1 (ja) 固体電解質材料およびこれを用いた電池
WO2021199550A1 (ja) 固体電解質材料およびこれを用いた電池
US20220384844A1 (en) Solid electrolyte material and battery using same
WO2022091567A1 (ja) 固体電解質材料およびそれを用いた電池
WO2021250985A1 (ja) 固体電解質材料およびそれを用いた電池
WO2021186845A1 (ja) 固体電解質材料およびそれを用いた電池
WO2021199619A1 (ja) 固体電解質材料およびこれを用いた電池
WO2021199640A1 (ja) 固体電解質材料およびこれを用いた電池
WO2021002052A1 (ja) 固体電解質材料およびこれを用いた電池
WO2020137042A1 (ja) 固体電解質材料、およびこれを用いた電池
WO2021161606A1 (ja) 固体電解質材料およびそれを用いた電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500232

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020918688

Country of ref document: EP

Effective date: 20220914