WO2021160066A1 - 天线和电子设备 - Google Patents

天线和电子设备 Download PDF

Info

Publication number
WO2021160066A1
WO2021160066A1 PCT/CN2021/075784 CN2021075784W WO2021160066A1 WO 2021160066 A1 WO2021160066 A1 WO 2021160066A1 CN 2021075784 W CN2021075784 W CN 2021075784W WO 2021160066 A1 WO2021160066 A1 WO 2021160066A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating structure
tuning circuit
antenna
circuit
feeding
Prior art date
Application number
PCT/CN2021/075784
Other languages
English (en)
French (fr)
Inventor
王君翊
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021160066A1 publication Critical patent/WO2021160066A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the present invention relates to the field of communication technology, in particular to an antenna and electronic equipment.
  • antennas in electronic devices generally radiate with a metal frame, and the antenna form is generally designed as an inverted F antenna form. Due to the design requirements, will generally ask side frame broken gap as small as possible, and therefore a dual antenna arrangement inverted-F antenna to form the open end of the open end of the fifth generation (5 th Generation, 5G) are more common in electronic devices.
  • 5G fifth generation
  • the isolation between antennas will become very bad, especially for the same frequency and broadband antennas, such as two mid-to-high frequency (1.71GHz-2.7GHz) adjacent inverted F antennas.
  • the open end is adjacent to the open end. At times, the isolation problem can become very difficult to solve.
  • the current decoupling methods cannot solve the problems of low isolation and radiation efficiency.
  • the embodiment of the present invention provides an antenna and an electronic device to solve the problem of low isolation and radiation efficiency of the antenna.
  • the present invention is implemented as follows:
  • an embodiment of the present invention provides an antenna, including:
  • a first radiating structure the first radiating structure is provided with a first feeding end and a first grounding end, and the first feeding end is located between the first grounding end and the open end of the first radiating structure between;
  • a second radiating structure the second radiating structure is provided with a second feeding end and a second grounding end, and the second feeding end is located between the second grounding end and the open end of the second radiating structure Between; the open end of the first radiating structure and the open end of the second radiating structure are disposed opposite to each other, and a gap is formed;
  • the first tuning circuit, the open end of the first radiating structure is electrically connected to the open end of the second radiating structure through the first tuning circuit.
  • an embodiment of the present invention also provides an electronic device, including a metal frame, and further including the antenna as described above;
  • the first radiating structure and the second radiating structure are respectively a part of the metal frame.
  • the open end of the first radiating structure is disposed opposite to the open end of the second radiating structure, and a gap is formed, and the open end of the first radiating structure passes through the first radiating structure.
  • the tuning circuit is electrically connected to the open end of the second radiating structure, which can realize the decoupling of different working frequency bands and inhibit the energy transfer between the antennas, thereby improving the isolation and radiation efficiency.
  • FIG. 1 shows one of the schematic structural diagrams of the antenna according to the embodiment of the present invention
  • FIG. 2 shows the second structural diagram of the antenna according to the embodiment of the present invention
  • FIG. 3 shows the third structural diagram of the antenna according to the embodiment of the present invention.
  • FIG. 4 shows the fourth structural diagram of the antenna according to the embodiment of the present invention.
  • FIG. 5 shows one of the comparison diagrams of the return loss curve and the transmission coefficient curve of the antenna of the embodiment of the present invention and the prior art
  • FIG. 6 shows one of the radiation efficiency comparison diagrams between the first radiation structure of the embodiment of the present invention and the prior art
  • FIG. 7 shows the second comparison diagram of the return loss curve and the transmission coefficient curve of the antenna of the embodiment of the present invention and the prior art
  • FIG. 8 shows the second radiation efficiency comparison diagram of the first radiation structure of the embodiment of the present invention and the prior art
  • FIG. 9 shows the third comparison diagram of the return loss curve and the transmission coefficient curve of the antenna of the embodiment of the present invention and the prior art
  • FIG. 10 shows the third diagram of the radiation efficiency comparison between the first radiation structure of the embodiment of the present invention and the prior art
  • 11 shows the fourth comparison diagram of the return loss curve and the transmission coefficient curve of the antenna of the embodiment of the present invention and the prior art
  • the number of antennas in electronic devices is increasing, and the frequency bands are getting wider and wider.
  • the space for antenna design of electronic devices is less than that of the fourth-generation mobile communication electronic devices.
  • a closer antenna spacing means lower isolation and radiation efficiency, especially for dual antennas with the same frequency or similar frequencies.
  • general decoupling methods can include polarization isolation, loading and filtering of filters composed of capacitors and inductors, decoupling matching networks, neutralization lines, and grounding structure energy flow blocking.
  • polarization isolation is basically not feasible in electronic equipment with a metal frame, because at higher frequencies, the polarization purity of an electronic equipment antenna with a metal frame is low, and it cannot be effectively controlled; a filter composed of a capacitor and an inductance is loaded The filtering method cannot be used in the same frequency dual antenna; the decoupling matching network method generally can only deal with a single frequency band.
  • the decoupling network is huge and the design is complicated, and it cannot be used in electronic equipment.
  • the board space of electronic equipment is very tight, and there is basically not much extra wiring space to design additional decoupling networks;
  • the neutralization line method is not suitable for dual antenna systems that switch with switches to cover multiple frequencies, because when the frequency band changes The antenna impedance characteristics are also changing, and the small space of the metal frame electronic equipment cannot satisfy the neutralization line;
  • the design of the end is effective and easy to implement, but it is more difficult to implement in a metal frame electronic device.
  • the reason is that the width of the gap between the open ends of the two antennas is generally 1.2mm-2mm, and a grounding sheet is inserted between the two antennas. It is difficult to implement the structure. And the structural strength is low.
  • the embodiments of the present invention provide an antenna and an electronic device, which can realize the decoupling of different working frequency bands, suppress the energy transfer between the antennas, and thereby improve the isolation and radiation efficiency.
  • an embodiment of the present invention provides an antenna, including:
  • the first radiating structure 1 is provided with a first feeding terminal 51 and a first ground terminal 71, and the first feeding terminal 51 is located between the first ground terminal 71 and the first ground terminal 71. Between the open ends of the radiating structure 1;
  • the second radiating structure 2 is provided with a second feeding terminal 52 and a second ground terminal 72, and the second feeding terminal 52 is located between the second ground terminal 72 and the second ground terminal 72. Between the open ends of the radiating structure 2; the open end of the first radiating structure 1 and the open end of the second radiating structure 2 are arranged opposite to each other, and a gap 3 is formed;
  • the open end of the first radiating structure 1 is electrically connected to the open end of the second radiating structure 2 through the first tuning circuit 4.
  • the first tuning circuit 4, the first feeding terminal 51, and the second feeding terminal 52 may be arranged on the main board 9 or a printed circuit board (PCB) of the electronic device, and may be provided with elastic pieces, The thimble, lock screw, etc. are connected to the first radiating structure 1 and the second radiating structure 2.
  • the first ground terminal 71 and the second ground terminal 72 are connected to the main board 9 or the ground of the PCB.
  • the antenna is an inverted F antenna.
  • the first radiating structure 1, the first feeding terminal 51 and the first grounding terminal 71 together form a first antenna
  • the second radiating structure 2 together form a first antenna
  • a second antenna is formed, the first antenna and the second antenna are both inverted F antennas, and the first antenna and the second antenna form a double inverted F antenna.
  • first radiating structure 1 and the second radiating structure 2 have the same working frequency band.
  • the working frequency band of the first radiating structure 1 and the working frequency band of the second radiating structure 2 are the same, or the working frequency band of the first radiating structure 1 and the working frequency band part of the second radiating structure 2 Same; in the case where the working frequency bands of the first radiating structure 1 and the second radiating structure 2 are the same, the effect of multiple input multiple output (MIMO) can be achieved.
  • the working frequency band of the first radiating structure 1 may be B1, B3, B38, B39, B40, or B41 frequency bands, that is, 1.71 GHz to 2.655 GHz
  • the working frequency band of the second radiating structure 2 may be B1, B3, B38, B39, B40 or B41 frequency band, namely 1.71GHz ⁇ 2.655GHz.
  • the width of the slit 3 may be between 1 mm and 2 mm, for example: the width of the slit 3 is 1.5 mm.
  • the open end of the first radiating structure 1 and the open end of the second radiating structure 2 are arranged opposite to each other, and a gap 3 is formed, and the energy coupling path is obvious, mainly passing through the two open ends.
  • the gap 3 of the radiator is coupled with a strong electric field, and the gap 3 exhibits a capacitive characteristic; and the open end of the first radiating structure 1 is electrically connected to the open end of the second radiating structure 2 through the first tuning circuit 4,
  • the capacitors present at the slot 3 are connected in parallel with the different inductances of the first tuning circuit, which can present different inductances and capacitors in parallel in different frequency bands.
  • the resonant high impedance state increases the impedance of the energy coupling path at the open end slot 3 node, so that the energy coupling between the first antenna and the second antenna through the slot 3 is suppressed, and the decoupling of different operating frequency bands is realized, thereby improving isolation and Radiation efficiency.
  • the first feeding terminal 51 of the first radiating structure 1 is connected to the first feeding source 81, corresponding to different input impedances Z1(f) at different frequencies, and the first feeding source 81 A radiating structure 1 inputs signals of different frequency bands or receives signals of different frequency bands;
  • the second feeding terminal 52 of the second radiating structure 2 is connected to the second feed source 82, corresponding to different input impedances Z2(f) at different frequencies,
  • the second feed source 82 inputs signals of different frequency bands or receives signals of different frequency bands to the second radiating structure 2.
  • the slot 3 exhibits the characteristics of a small series capacitor in the dual antenna structure, which is represented by the capacitor C in Figure 2; the first tuning circuit 4 connected in parallel at the slot 3 is connected to different inductances in different states, and electricity is used in Figure 2.
  • Sense L said. Therefore, the capacitor C and the inductance L form a parallel LC circuit, which is connected in series on the energy transfer path of the two antennas. In different frequency bands, the inductance value is different, which can make the LC circuit exhibit high resistance characteristics, thereby inhibiting the energy transfer between the two antennas. , To achieve the effect of improving isolation.
  • the antenna may further include:
  • a second tuning circuit 61 one end of the second tuning circuit 61 is connected to the first radiating structure 1, and the other end is grounded; and/or
  • a third tuning circuit 62 one end of the third tuning circuit 62 is connected to the second radiating structure 2 and the other end is grounded.
  • the second tuning circuit 61 and/or the third tuning circuit 62 are arranged on the main board 9 or PCB; the second tuning circuit 61 can be connected to the first radiation by means of shrapnel, thimble, locking screw, etc. Structure 1, the number of the second tuning circuit 61 can be 1 to 4 to realize the switching of the working frequency band of the first radiating structure 1, wherein the second tuning circuit 61 can be connected to the feeder of the first radiating structure 1.
  • the electrical port matches the position to optimize the impedance characteristics, and can also be connected to other positions to achieve caliber tuning.
  • the third tuning circuit 62 can be connected to the second radiating structure 2 by means of shrapnel, thimble, locking screw, etc., and the number of the third tuning circuit 62 can be 1 to 4 to realize the operation of the second radiating structure 2
  • the third tuning circuit 62 can be connected to the matching position of the feeding port of the second radiating structure 2 to optimize impedance characteristics, or can be connected to other positions to achieve aperture tuning.
  • the main board 9 or PCB is also provided with a clearance area 10 (that is, an area without metal), which can improve radiation efficiency; wherein, the width of the clearance area 10 may be 0.5 mm to 1.5 mm .
  • the second tuning circuit 61 may be a series combination circuit of a switch and an inductor; or, the second tuning circuit 61 may also be a combination circuit of a switch, a capacitor, and an inductor, wherein the switch is connected to the The capacitor and the inductor are connected in series, and the inductor and the capacitor may be connected in series or in parallel; or, the second tuning circuit 61 may also be an adjustable capacitor.
  • the third tuning circuit 62 may be a series combination circuit of a switch and an inductor; or, the third tuning circuit 62 may also be a combination circuit of a switch, a capacitor, and an inductor, wherein the switch is connected to the capacitor and the inductor respectively.
  • the inductors are connected in series, and the inductors and capacitors may be connected in series or in parallel; or, the third tuning circuit 62 may also be an adjustable capacitor.
  • the switch includes 4 states, the first state is that the switch is connected in series with the first inductor, the second state is that the switch is connected in series with the second inductor, the third state is that the switch is connected to the first capacitor and the third inductor, and the fourth state is In order to connect the switch to the second capacitor and the fourth inductor, the state of the switch can be adjusted to load different inductance values and/or capacitance values to achieve a frequency switching effect.
  • the position of the first feeding end 51 at the first radiating structure 1 and the position of the second feeding end 52 at the second radiating structure 2 may be symmetrically arranged, and the first connection point
  • the position of the first radiating structure 1 and the position of the second connection on the second radiating structure 2 may also be symmetrically arranged to ensure that the impedance characteristics of the first radiating structure 1 and the second radiating structure 2 are the same.
  • first feeding terminal 51 is located between the first ground terminal 71 and the first connection of the first radiating structure 1;
  • the first connection is the connection between the second tuning circuit 61 and the first radiating structure 1.
  • the first connection point may also be located between the first ground terminal 71 and the first power feeding terminal 51, that is, the position of the first power feeding terminal 51 and the first connection point is parallel to each other. Not limited.
  • the distance between the first power feeding terminal 51 and the first connection is It is greater than the distance between the first feeding terminal 51 and the first ground terminal 71.
  • the first feeding terminal 51 is located between the first ground terminal 71 and the first connection, and the first feeding terminal 51 is close to the first ground terminal 71, so that the first A radiating structure 1 has a good initial impedance.
  • the first feeding terminal 51 may be located at a position close to one third of the first ground terminal 71 on the first radiating structure 1.
  • the first feeding terminal 51 may also be close to the first connection, which is not limited here.
  • the second feeding terminal 52 is located between the second ground terminal 72 and the second connection of the second radiating structure 2;
  • the second connection point is the connection point between the third tuning circuit 62 and the second radiating structure 2.
  • the second connection point may also be between the second ground terminal 72 and the second feed end 52, that is, the position of the second feed end 52 and the second connection point is parallel to each other. Not limited.
  • the distance between the second power feeding terminal 52 and the second connection is It is greater than the distance between the second feeding terminal 52 and the second ground terminal 72.
  • the second feeding end 52 is located between the second grounding end 72 and the second connection, and the second feeding end 52 is close to the second grounding end 72, so that the first The second radiating structure 2 has a good initial impedance.
  • the second feeding terminal 52 may be located at a position close to one third of the second ground terminal 72 on the second radiating structure 2.
  • the second feed end 52 may also be close to the second connection point, which is not limited here.
  • the first tuning circuit 4 includes any one of the following:
  • the first tuning circuit 4 may be a series combination circuit of a switch and an inductor; or, the first tuning circuit 4 may also be a combination circuit of a switch, a capacitor, and an inductor, wherein the switch is connected to the The capacitor and the inductor are connected in series, and the inductor and the capacitor may be connected in series or in parallel.
  • the principle of the first tuning circuit 4 is similar to the principle of the second tuning circuit 61, and will not be detailed here.
  • the switch has a corresponding state in each antenna frequency band to realize the decoupling of different frequency bands.
  • the inductor may be a lumped inductance element (for example, a ceramic element) or a distributed inductance element (for example, a microstrip line).
  • the switch in the first tuning circuit 4 may be a high voltage switch.
  • the first radiating structure 1 and the second radiating structure 2 are designed symmetrically, and the first radiating structure 1 and the second radiating structure
  • the return loss curve of structure 2 is the same, and the dual antenna system is a two-port reciprocal network, so the mutual transmission coefficient between the two antennas is the same (the isolation is the opposite of the transmission coefficient, such as the transmission coefficient between the two antennas at a certain frequency- 10dB, the isolation is 10dB), so only the return loss curve of the first radiating structure 1 and the transmission coefficient curve from the second radiating structure 2 to the first radiating structure 1 are briefly listed in the graph to illustrate the response of the entire dual-antenna system :
  • the thick solid line corresponds to the return loss curve of the first radiating structure 1 with the first tuning circuit 4, and the thin solid line corresponds to the first radiating structure without the first tuning circuit 4 in the prior art.
  • the return loss curve of the radiating structure; the thick dashed line corresponds to the transmission coefficient curve between the first radiating structure 1 and the second radiating structure 2 with the first tuning circuit 4, and the thin dashed line corresponds to the prior art without the first tuning circuit 4
  • the transmission coefficient curve between the two antennas therefore, the average isolation of the two antennas with the first tuning circuit 4 in B1 is about 10dB, and the average isolation of the two antennas in the prior art without the first tuning circuit 4 in B1 is 3dB
  • the first tuning circuit 4 improves the isolation of the dual antennas at B1 by about 7dB.
  • the thick solid line corresponds to the radiation efficiency curve of the first radiation structure 1 with the first tuning circuit 4, and the thin solid line corresponds to the first radiation of the prior art without the first tuning circuit 4
  • the radiation efficiency curve of the structure; the thick dashed line corresponds to the total efficiency of the first radiating structure 1 with the first tuning circuit 4, and the thin dashed line corresponds to the total efficiency of the first radiating structure without the first tuning circuit 4 in the prior art; through the first tuning After the circuit 4 is decoupled, the radiation efficiency and the total efficiency of the first radiation structure 1 in the B1 frequency band are increased by about 3.5 dB.
  • the thick solid line corresponds to the return loss curve of the first radiating structure 1 with the first tuning circuit 4, and the thin solid line corresponds to the first radiating structure without the first tuning circuit 4 in the prior art.
  • the return loss curve of the radiating structure; the thick dashed line corresponds to the transmission coefficient curve between the first radiating structure 1 and the second radiating structure 2 with the first tuning circuit 4, and the thin dashed line corresponds to the prior art without the first tuning circuit 4
  • the transmission coefficient curve between the dual antennas therefore, the average isolation of the dual antennas with the first tuning circuit 4 in B3 is about 11.5dB, and the average isolation of the dual antennas in the prior art without the first tuning circuit 4 in B3 is About 2.5dB, the first tuning circuit 4 improves the isolation of the dual antennas at B3 by about 9dB.
  • the thick solid line corresponds to the radiation efficiency curve of the first radiation structure 1 with the first tuning circuit 4, and the thin solid line corresponds to the first radiation of the prior art without the first tuning circuit 4
  • the radiation efficiency curve of the structure; the thick dashed line corresponds to the total efficiency of the first radiating structure 1 with the first tuning circuit 4, and the thin dashed line corresponds to the total efficiency of the first radiating structure without the first tuning circuit 4 in the prior art; through the first tuning After the circuit 4 is decoupled, the radiation efficiency and the total efficiency of the first radiation structure 1 in the B3 frequency band are increased by about 3.5 dB.
  • the thick solid line corresponds to the return loss curve of the first radiating structure 1 with the first tuning circuit 4, and the thin solid line corresponds to the first radiating structure without the first tuning circuit 4 in the prior art.
  • the return loss curve of the radiating structure; the thick dashed line corresponds to the transmission coefficient curve between the first radiating structure 1 and the second radiating structure 2 with the first tuning circuit 4, and the thin dashed line corresponds to the prior art without the first tuning circuit 4
  • the thick solid line corresponds to the radiation efficiency curve of the first radiation structure 1 with the first tuning circuit 4, and the thin solid line corresponds to the first radiation of the prior art without the first tuning circuit 4
  • the radiation efficiency curve of the structure; the thick dashed line corresponds to the total efficiency of the first radiating structure 1 with the first tuning circuit 4, and the thin dashed line corresponds to the total efficiency of the first radiating structure without the first tuning circuit 4 in the prior art; through the first tuning After the circuit 4 is decoupled, the radiation efficiency and the total efficiency of the first radiation structure 1 in the B40 frequency band are increased by about 3dB.
  • the thick solid line corresponds to the return loss curve of the first radiating structure 1 with the first tuning circuit 4, and the thin solid line corresponds to the first radiating structure without the first tuning circuit 4 in the prior art.
  • the return loss curve of the radiating structure; the thick dashed line corresponds to the transmission coefficient curve between the first radiating structure 1 and the second radiating structure 2 with the first tuning circuit 4, and the thin dashed line corresponds to the prior art without the first tuning circuit 4
  • the thick solid line corresponds to the radiation efficiency curve of the first radiation structure 1 with the first tuning circuit 4, and the thin solid line corresponds to the first radiation of the prior art without the first tuning circuit 4
  • the radiation efficiency curve of the structure; the thick dashed line corresponds to the total efficiency of the first radiating structure 1 with the first tuning circuit 4, and the thin dashed line corresponds to the total efficiency of the first radiating structure without the first tuning circuit 4 in the prior art; through the first tuning After the circuit 4 is decoupled, the radiation efficiency and the total efficiency of the first radiation structure 1 in the B41 frequency band are increased by about 2.5 dB.
  • the decoupling design occupies a small space, and can achieve targeted and efficient decoupling and improve isolation. Degree and radiation efficiency.
  • the isolation processing can be done at the feed port of the other antenna to filter the combination of capacitance and inductance; for the decoupling of the same frequency switching of other frequency bands, it can be scaled by proportional scaling.
  • the size of the first radiating structure 1 and the second radiating structure 2 can be realized by modifying the inductance value connected in the first tuning circuit 4; for carrier aggregation and simultaneous decoupling of multiple frequencies, the open end of the same inverted F antenna is opposite to the open end
  • distributed inductors can be connected in parallel at the gap to achieve different inductance values in different frequency bands and present broadband decoupling characteristics, which will not be repeated here.
  • An embodiment of the present invention also provides an electronic device, including a metal frame, and further including the antenna as described above;
  • the first radiating structure 1 and the second radiating structure 2 are respectively a part of the metal frame.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明提供了一种天线和电子设备。该天线包括:第一辐射结构,所述第一辐射结构上设置有第一馈电端和第一接地端,所述第一馈电端位于所述第一接地端与所述第一辐射结构的开路端之间;第二辐射结构,所述第二辐射结构上设置有第二馈电端和第二接地端,所述第二馈电端位于所述第二接地端与所述第二辐射结构的开路端之间;所述第一辐射结构的开路端与所述第二辐射结构的开路端相对设置,且形成有缝隙;第一调谐电路,所述第一辐射结构的开路端通过所述第一调谐电路与所述第二辐射结构的开路端电连接。

Description

天线和电子设备
相关申请的交叉引用
本申请主张在2020年2月14日在中国提交的中国专利申请号No.202010093080.5的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,特别涉及一种天线和电子设备。
背景技术
目前,电子设备中的天线一般用金属边框辐射,天线形式一般设计成倒F天线形式。由于外观设计的需求,一般会要求侧边框断缝尽可能的少,因此双天线布局成倒F天线的开路端对开路端的形式在第五代(5 th Generation,5G)电子设备中较常见。这种形式下,天线间的隔离度会变得非常恶劣,特别是同频、宽频天线,如两支中高频(1.71GHz-2.7GHz)相邻倒F天线的开路端对开路端相邻设计时,隔离问题会变得非常难解。
对于金属边框的电子设备的同频宽频倒F天线的开路端对开路端的强耦合天线布局,目前的解耦方法都不能解决隔离度和辐射效率较低的问题。
发明内容
本发明实施例提供一种天线和电子设备,以解决天线的隔离度和辐射效率较低的问题。
为了解决上述技术问题,本发明是这样实现的:
第一方面,本发明实施例提供了一种天线,包括:
第一辐射结构,所述第一辐射结构上设置有第一馈电端和第一接地端,所述第一馈电端位于所述第一接地端与所述第一辐射结构的开路端之间;
第二辐射结构,所述第二辐射结构上设置有第二馈电端和第二接地端,所述第二馈电端位于所述第二接地端与所述第二辐射结构的开路端之间;所述第一辐射结构的开路端与所述第二辐射结构的开路端相对设置,且形成有 缝隙;
第一调谐电路,所述第一辐射结构的开路端通过所述第一调谐电路与所述第二辐射结构的开路端电连接。
第二方面,本发明实施例还提供了一种电子设备,包括金属边框,还包括如上所述的天线;
所述第一辐射结构和所述第二辐射结构分别为所述金属边框的其中一部分。
这样,本发明实施例中,通过所述第一辐射结构的开路端与所述第二辐射结构的开路端相对设置,且形成有缝隙,所述第一辐射结构的开路端通过所述第一调谐电路与所述第二辐射结构的开路端电连接,可以实现不同工作频段的解耦,抑制天线间的能量传递,从而提高隔离度和辐射效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本发明实施例的天线的结构示意图之一;
图2表示本发明实施例的天线的结构示意图之二;
图3表示本发明实施例的天线的结构示意图之三;
图4表示本发明实施例的天线的结构示意图之四;
图5表示本发明实施例的天线与现有技术的回波损耗曲线和传输系数曲线对比图之一;
图6表示本发明实施例的第一辐射结构与现有技术的辐射效率对比图之一;
图7表示本发明实施例的天线与现有技术的回波损耗曲线和传输系数曲线对比图之二;
图8表示本发明实施例的第一辐射结构与现有技术的辐射效率对比图之二;
图9表示本发明实施例的天线与现有技术的回波损耗曲线和传输系数曲线对比图之三;
图10表示本发明实施例的第一辐射结构与现有技术的辐射效率对比图之三;
图11表示本发明实施例的天线与现有技术的回波损耗曲线和传输系数曲线对比图之四;
图12表示本发明实施例的第一辐射结构与现有技术的辐射效率对比图之四;
附图标记说明:
1-第一辐射结构,2-第二辐射结构,3-缝隙,4-第一调谐电路,51-第一馈电端,52-第二馈电端,61-第二调谐电路,62-第三调谐电路,71-第一接地端,72-第二接地端,81-第一馈源,82-第二馈源,9-主板,10-净空区。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前,随着第五代移动通信的发展,电子设备中的天线数量越来越多,频带越来越宽,而电子设备天线设计的空间相比于第四代移动通信的电子设备来说却基本不变,易造成6GHz以下频段的各天线间距急剧缩减,一般来说,更近的天线间距意味着更低的隔离度和辐射效率,尤其是同频或频率相近频段的双天线近距离相邻放置时,隔离问题往往会变得很严重且难以处理。
目前,一般的解耦方法可以包括极化隔离、电容和电感组合成的滤波器加载滤波、解耦匹配网络、中和线、接地结构能流阻断等。其中,极化隔离在金属边框的电子设备中基本不可行,因为在频率较高时,金属边框的电子设备天线的极化纯度较低,而且不能有效控制;电容和电感组合成的滤波器加载滤波的方法不能用于同频双天线中;解耦匹配网络的方法一般只能处理单频段,对于多频或宽频的解耦网络庞大,且设计较复杂,不能使用在电子设 备中,而且现在电子设备的板上空间很紧张,基本没有太多额外走线空间来设计额外的解耦网络;中和线的方法对于与开关切换来覆盖多频的双天线系统不适用,因为频段变化的时候天线阻抗特性也在变,且金属边框电子设备的空间较小不能满足中和线走线;通过接地结构进行双天线间能流阻断的方法,在塑胶机双倒F天线的开路端对开路端的设计中很有效且易于实现,但在金属边框电子设备中实现则较困难,原因在于两天线开路端间断缝宽度一般在1.2mm-2mm,之间再塞入一接地薄片,结构实现困难,且结构强度较低。
因此,本发明实施例提供了一种天线和电子设备,可以实现不同工作频段的解耦,抑制天线间的能量传递,从而提高隔离度和辐射效率。
具体的,如图1至4所示,本发明实施例提供了一种天线,包括:
第一辐射结构1,所述第一辐射结构1上设置有第一馈电端51和第一接地端71,所述第一馈电端51位于所述第一接地端71与所述第一辐射结构1的开路端之间;
第二辐射结构2,所述第二辐射结构2上设置有第二馈电端52和第二接地端72,所述第二馈电端52位于所述第二接地端72与所述第二辐射结构2的开路端之间;所述第一辐射结构1的开路端与所述第二辐射结构2的开路端相对设置,且形成有缝隙3;
第一调谐电路4,所述第一辐射结构1的开路端通过所述第一调谐电路4与所述第二辐射结构2的开路端电连接。
具体的,所述第一调谐电路4、第一馈电端51和第二馈电端52可以设置在电子设备的主板9或者印刷电路板(Printed Circuit Board,PCB)上,并可以通过弹片、顶针、锁螺钉等方式连接到第一辐射结构1和第二辐射结构2上。所述第一接地端71和所述第二接地端72连接到主板9或者PCB的地上。
进一步的,所述天线为倒F天线。
具体的,所述第一辐射结构1、第一馈电端51和第一接地端71共同构成第一天线,所述第二辐射结构2、第二馈电端52和第二接地端72共同构成第二天线,所述第一天线和所述第二天线均为倒F天线,所述第一天线和所述第二天线形成双倒F天线。
进一步的,所述第一辐射结构1和所述第二辐射结构2具有相同的工作频段。
具体的,所述第一辐射结构1的工作频段和所述第二辐射结构2的工作频段相同,或者,所述第一辐射结构1的工作频段和所述第二辐射结构2的工作频段部分相同;在所述第一辐射结构1和所述第二辐射结构2的工作频段相同的情况下,可以实现多输入多输出(Multiple Input Multiple Output,MIMO)的效果。其中,所述第一辐射结构1的工作频段可以为B1、B3、B38、B39、B40或者B41频段,即1.71GHz~2.655GHz,所述第二辐射结构2的工作频段可以为B1、B3、B38、B39、B40或者B41频段,即1.71GHz~2.655GHz。
具体的,所述缝隙3的宽度可以在1mm~2mm之间,例如:所述缝隙3的宽度为1.5mm。
本发明上述实施例中,通过所述第一辐射结构1的开路端与所述第二辐射结构2的开路端相对设置,且形成有缝隙3,能量耦合路径明显,主要通过两个开路端处的缝隙3进行强电场耦合,缝隙3处呈现一电容特性;并且,所述第一辐射结构1的开路端通过所述第一调谐电路4与所述第二辐射结构2的开路端电连接,通过调节第一调谐电路4的不同状态切换不同的电感值,以对应于不同频段谐振频率,使得缝隙3处呈现的电容并联第一调谐电路的不同电感,可以在不同频段呈现不同电感和电容并联谐振高阻态,提高了开路端缝隙3节点处能量耦合路径的阻抗,从而使得第一天线和第二天线通过缝隙3的能量耦合被抑制,实现不同工作频段的解耦,从而提高隔离度和辐射效率。
具体的,如图2所示,第一辐射结构1的第一馈电端51与第一馈源81连接,在不同频率处对应不同的输入阻抗Z1(f),第一馈源81向第一辐射结构1输入不同频段的信号或接受不同频段的信号;第二辐射结构2的第二馈电端52与第二馈源82连接,在不同频率处对应不同的输入阻抗Z2(f),第二馈源82向第二辐射结构2输入不同频段的信号或接受不同频段的信号。所述缝隙3在双天线结构中呈现出一个串联小电容的特性,在图2中用电容C表示;缝隙3处并联的第一调谐电路4不同状态连接不同的电感,在图2中用电感L表示。因此,电容C和电感L构成一并联LC电路,串联在两天线 能量传递的路径上,不同频段上,电感值不同,可以使得此LC电路呈现高阻特性,从而抑制了双天线间能量的传递,达到提高隔离度的效果。
进一步的,所述天线还可以包括:
第二调谐电路61,所述第二调谐电路61的一端与所述第一辐射结构1连接,另一端接地;和/或
第三调谐电路62,所述第三调谐电路62的一端与所述第二辐射结构2连接,另一端接地。
具体的,所述第二调谐电路61和/或所述第三调谐电路62设置在主板9或者PCB上;所述第二调谐电路61可以通过弹片、顶针、锁螺钉等方式连接到第一辐射结构1,所述第二调谐电路61的数量可以为1至4个,以实现第一辐射结构1工作频段的切换,其中,所述第二调谐电路61可以连接在第一辐射结构1的馈电端口匹配位置以优化阻抗特性,也可以连接在其他位置以实现口径调谐。所述第三调谐电路62可以通过弹片、顶针、锁螺钉等方式连接到第二辐射结构2上,所述第三调谐电路62的数量可以为1至4个,以实现第二辐射结构2工作频段的切换,其中,所述第三调谐电路62可以连接在第二辐射结构2的馈电端口匹配位置以优化阻抗特性,也可以连接在其他位置以实现口径调谐。其中,如图3所示,所述主板9或者PCB上还设置有净空区10(即没有金属的区域),可以提高辐射效率;其中,所述净空区10的宽度可以为0.5mm~1.5mm。
具体的,所述第二调谐电路61可以为开关和电感的串联组合电路;或者,所述第二调谐电路61也可以为开关、电容和电感的组合电路,其中,所述开关分别与所述电容和所述电感串联连接,所述电感和电容可以串联也可以并联;或者,所述第二调谐电路61也可以为可调节电容。所述第三调谐电路62可以为开关和电感的串联组合电路;或者,所述第三调谐电路62也可以为开关、电容和电感的组合电路,其中,所述开关分别与所述电容和所述电感串联连接,所述电感和电容可以串联也可以并联;或者,所述第三调谐电路62也可以为可调节电容。
例如:所述开关包括4个状态,第一状态为开关与第一电感串联,第二状态为开关与第二电感串联,第三状态为开关与第一电容、第三电感连接, 第四状态为开关与第二电容、第四电感连接,可以通过调节开关的状态,从而加载不同的电感值和/或电容值,起到频段切换的作用。
具体的,所述第一馈电端51在所述第一辐射结构1的位置和所述第二馈电端52在所述第二辐射结构2的位置可以对称设置,所述第一连接处在所述第一辐射结构1的位置和所述第二连接处在所述第二辐射结构2的位置也可以对称设置,以保证第一辐射结构1和第二辐射结构2的阻抗特性相同。
进一步的,所述第一馈电端51处于所述第一接地端71和所述第一辐射结构1的第一连接处之间;
其中,所述第一连接处为所述第二调谐电路61与所述第一辐射结构1的连接处。
具体的,所述第一连接处也可以处于所述第一接地端71和所述第一馈电端51之间,即所述第一馈电端51与所述第一连接处的位置并不限定。
进一步的,在所述第一馈电端51处于所述第一接地端71和所述第一连接处之间时,所述第一馈电端51与所述第一连接处之间的距离大于所述第一馈电端51与所述第一接地端71之间的距离。
具体的,所述第一馈电端51处于所述第一接地端71与所述第一连接处之间,且所述第一馈电端51靠近所述第一接地端71,以使得第一辐射结构1具有较好的初始阻抗。例如:所述第一馈电端51可以处于第一辐射结构1上靠近第一接地端71的三分之一处的位置。其中,所述第一馈电端51也可以靠近所述第一连接处,在此不进行限定。
进一步的,所述第二馈电端52处于所述第二接地端72和所述第二辐射结构2的第二连接处之间;
其中,所述第二连接处为所述第三调谐电路62与所述第二辐射结构2的连接处。
具体的,所述第二连接处也可以处于所述第二接地端72和所述第二馈电端52之间,即所述第二馈电端52与所述第二连接处的位置并不限定。
进一步的,在所述第二馈电端52处于所述第二接地端72和所述第二连接处之间时,所述第二馈电端52与所述第二连接处之间的距离大于所述第二馈电端52与所述第二接地端72之间的距离。
具体的,所述第二馈电端52处于所述第二接地端72与所述第二连接处之间,且所述第二馈电端52靠近所述第二接地端72,以使得第二辐射结构2具有较好的初始阻抗。例如:所述第二馈电端52可以处于第二辐射结构2上靠近所述第二接地端72的三分之一处的位置。其中,所述第二馈电端52也可以靠近所述第二连接处,在此不进行限定。
进一步的,所述第一调谐电路4包括以下任意一项:
开关和电感的串联组合电路;
开关、电容和电感的组合电路,其中,所述开关分别与所述电容和所述电感串联连接。
具体的,所述第一调谐电路4可以为开关和电感的串联组合电路;或者,所述第一调谐电路4也可以为开关、电容和电感的组合电路,其中,所述开关分别与所述电容和所述电感串联连接,所述电感和电容可以串联也可以并联。所述第一调谐电路4的原理与所述第二调谐电路61的原理相似,在此不做具体赘述。
具体的,开关在每个天线频段都有对应的一个状态,以实现不同频段的解耦。所述电感可以为集总电感元件(如:陶瓷元件)或者分布式电感元件(如:微带线)。其中,所述第一调谐电路4中的开关可以为耐高压开关。
下面通过具体曲线图(横坐标为频率,纵坐标为幅度)对上述实施例进行说明,实施例中将第一辐射结构1和第二辐射结构2对称设计,第一辐射结构1和第二辐射结构2的回波损耗曲线相同,且双天线系统是个二端口互易网络,故双天线间的相互传输系数相同(隔离度为传输系数的相反数,比如双天线间在某一个频率传输系数-10dB,隔离度就是10dB),因此曲线图中只简明列举第一辐射结构1的回波损耗曲线以及第二辐射结构2到第一辐射结构1的传输系数曲线即可说明整个双天线系统的响应:
如图5所示,工作在B1频段时,粗实线对应有第一调谐电路4的第一辐射结构1的回波损耗曲线,细实线对应现有技术无第一调谐电路4的第一辐射结构的回波损耗曲线;粗虚线对应有第一调谐电路4的第一辐射结构1和第二辐射结构2的双天线间的传输系数曲线,细虚线对应现有技术无第一调谐电路4的双天线间的传输系数曲线;因此,有第一调谐电路4的双天线在 B1的平均隔离度为10dB左右,现有技术无第一调谐电路4的双天线在B1的平均隔离度为3dB左右,第一调谐电路4提升了双天线在B1大约7dB的隔离度。
如图6所示,工作在B1频段时,粗实线对应有第一调谐电路4的第一辐射结构1的辐射效率曲线,细实线对应现有技术无第一调谐电路4的第一辐射结构的辐射效率曲线;粗虚线对应有第一调谐电路4的第一辐射结构1的总效率,细虚线对应现有技术无第一调谐电路4的第一辐射结构的总效率;通过第一调谐电路4解耦之后,在B1频段第一辐射结构1的辐射效率和总效率提高3.5dB左右。
如图7所示,工作在B3频段时,粗实线对应有第一调谐电路4的第一辐射结构1的回波损耗曲线,细实线对应现有技术无第一调谐电路4的第一辐射结构的回波损耗曲线;粗虚线对应有第一调谐电路4的第一辐射结构1和第二辐射结构2的双天线间的传输系数曲线,细虚线对应现有技术无第一调谐电路4的双天线间的传输系数曲线;因此,有第一调谐电路4的双天线在B3的平均隔离度为11.5dB左右,现有技术无第一调谐电路4的双天线在B3的平均隔离度为2.5dB左右,第一调谐电路4提升了双天线在B3大约9dB的隔离度。
如图8所示,工作在B3频段时,粗实线对应有第一调谐电路4的第一辐射结构1的辐射效率曲线,细实线对应现有技术无第一调谐电路4的第一辐射结构的辐射效率曲线;粗虚线对应有第一调谐电路4的第一辐射结构1的总效率,细虚线对应现有技术无第一调谐电路4的第一辐射结构的总效率;通过第一调谐电路4解耦之后,在B3频段第一辐射结构1的辐射效率和总效率提高3.5dB左右。
如图9所示,工作在B40频段时,粗实线对应有第一调谐电路4的第一辐射结构1的回波损耗曲线,细实线对应现有技术无第一调谐电路4的第一辐射结构的回波损耗曲线;粗虚线对应有第一调谐电路4的第一辐射结构1和第二辐射结构2的双天线间的传输系数曲线,细虚线对应现有技术无第一调谐电路4的双天线间的传输系数曲线;因此,有第一调谐电路4的双天线在B40的平均隔离度为8.7dB左右,现有技术无第一调谐电路4的双天线在 B40的平均隔离度为3.2dB左右,第一调谐电路4提升了双天线在B40大约5.5dB的隔离度。
如图10所示,工作在B40频段时,粗实线对应有第一调谐电路4的第一辐射结构1的辐射效率曲线,细实线对应现有技术无第一调谐电路4的第一辐射结构的辐射效率曲线;粗虚线对应有第一调谐电路4的第一辐射结构1的总效率,细虚线对应现有技术无第一调谐电路4的第一辐射结构的总效率;通过第一调谐电路4解耦之后,在B40频段第一辐射结构1的辐射效率和总效率提高3dB左右。
如图11所示,工作在B41频段时,粗实线对应有第一调谐电路4的第一辐射结构1的回波损耗曲线,细实线对应现有技术无第一调谐电路4的第一辐射结构的回波损耗曲线;粗虚线对应有第一调谐电路4的第一辐射结构1和第二辐射结构2的双天线间的传输系数曲线,细虚线对应现有技术无第一调谐电路4的双天线间的传输系数曲线;因此,有第一调谐电路4的双天线在B41的平均隔离度为7.9dB左右,现有技术无第一调谐电路4的双天线在B41的平均隔离度为3.9dB左右,第一调谐电路4提升了双天线在B41大约4dB的隔离度。
如图12所示,工作在B41频段时,粗实线对应有第一调谐电路4的第一辐射结构1的辐射效率曲线,细实线对应现有技术无第一调谐电路4的第一辐射结构的辐射效率曲线;粗虚线对应有第一调谐电路4的第一辐射结构1的总效率,细虚线对应现有技术无第一调谐电路4的第一辐射结构的总效率;通过第一调谐电路4解耦之后,在B41频段第一辐射结构1的辐射效率和总效率提高2.5dB左右。
综上,本发明上述实施例中,对于同频宽频切换的双倒F天线的开路端对开路端的情况,解耦设计占用的空间小,且能实现有针对性、高效的解耦,提高隔离度和辐射效率。对于两个天线之间没有重合的频段的情况,隔离度的处理可以在对方天线的馈电端口处做电容和电感组合的滤波处理;对于其他频段同频切换的解耦,可以通过等比缩放第一辐射结构1和第二辐射结构2的尺寸、修改第一调谐电路4中连接的电感值来实现;对于载波聚合以及多频同时的解耦,在相同倒F天线的开路端对开路端的情况,缝隙处可并联 分布式电感,以实现不同频段不同电感值,呈现宽频解耦特性,这里不再赘述。
本发明实施例还提供了一种电子设备,包括金属边框,还包括如上所述的天线;
所述第一辐射结构1和所述第二辐射结构2分别为所述金属边框的其中一部分。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上所述的是本发明的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本发明所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。

Claims (10)

  1. 一种天线,包括:
    第一辐射结构(1),所述第一辐射结构(1)上设置有第一馈电端(51)和第一接地端(71),所述第一馈电端(51)位于所述第一接地端(71)与所述第一辐射结构(1)的开路端之间;
    第二辐射结构(2),所述第二辐射结构(2)上设置有第二馈电端(52)和第二接地端(72),所述第二馈电端(52)位于所述第二接地端(72)与所述第二辐射结构(2)的开路端之间;所述第一辐射结构(1)的开路端与所述第二辐射结构(2)的开路端相对设置,且形成有缝隙(3);
    第一调谐电路(4),所述第一辐射结构(1)的开路端通过所述第一调谐电路(4)与所述第二辐射结构(2)的开路端电连接。
  2. 根据权利要求1所述的天线,还包括:
    第二调谐电路(61),所述第二调谐电路(61)的一端与所述第一辐射结构(1)连接,另一端接地;和/或
    第三调谐电路(62),所述第三调谐电路(62)的一端与所述第二辐射结构(2)连接,另一端接地。
  3. 根据权利要求2所述的天线,其中,所述第一馈电端(51)处于所述第一接地端(71)和所述第一辐射结构(1)的第一连接处之间;
    其中,所述第一连接处为所述第二调谐电路(61)与所述第一辐射结构(1)的连接处。
  4. 根据权利要求3所述的天线,其中,所述第一馈电端(51)与所述第一连接处之间的距离大于所述第一馈电端(51)与所述第一接地端(71)之间的距离。
  5. 根据权利要求2所述的天线,其中,所述第二馈电端(52)处于所述第二接地端(72)和所述第二辐射结构(2)的第二连接处之间;
    其中,所述第二连接处为所述第三调谐电路(62)与所述第二辐射结构(2)的连接处。
  6. 根据权利要求5所述的天线,其中,所述第二馈电端(52)与所述第 二连接处之间的距离大于所述第二馈电端(52)与所述第二接地端(72)之间的距离。
  7. 根据权利要求1所述的天线,其中,所述第一调谐电路(4)包括以下任意一项:
    开关和电感的串联组合电路;
    开关、电容和电感的组合电路,其中,所述开关分别与所述电容和所述电感串联连接。
  8. 根据权利要求1所述的天线,其中,所述第一辐射结构(1)和所述第二辐射结构(2)具有相同的工作频段。
  9. 根据权利要求1至8中任一项所述的天线,其中,所述天线为倒F天线。
  10. 一种电子设备,包括金属边框,还包括如权利要求1至9中任一项所述的天线;
    所述第一辐射结构(1)和所述第二辐射结构(2)分别为所述金属边框的其中一部分。
PCT/CN2021/075784 2020-02-14 2021-02-07 天线和电子设备 WO2021160066A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010093080.5A CN111276806B (zh) 2020-02-14 2020-02-14 一种天线和电子设备
CN202010093080.5 2020-02-14

Publications (1)

Publication Number Publication Date
WO2021160066A1 true WO2021160066A1 (zh) 2021-08-19

Family

ID=71000262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075784 WO2021160066A1 (zh) 2020-02-14 2021-02-07 天线和电子设备

Country Status (2)

Country Link
CN (1) CN111276806B (zh)
WO (1) WO2021160066A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871853A (zh) * 2021-09-06 2021-12-31 京信通信技术(广州)有限公司 天线及辐射单元
CN114899599A (zh) * 2022-04-13 2022-08-12 Oppo广东移动通信有限公司 一种天线组件和电子设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276806B (zh) * 2020-02-14 2023-01-24 维沃移动通信有限公司 一种天线和电子设备
CN213520332U (zh) * 2020-12-04 2021-06-22 瑞声科技(新加坡)有限公司 天线模组及移动终端
US20210111486A1 (en) * 2020-12-21 2021-04-15 Intel Corporation Antenna assembly with isolation network
CN112909541B (zh) * 2021-01-12 2023-07-28 Oppo广东移动通信有限公司 天线装置及电子设备
CN115621730A (zh) * 2021-07-16 2023-01-17 华为技术有限公司 天线结构及电子设备
CN117673743A (zh) * 2022-08-29 2024-03-08 华为技术有限公司 一种电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108879116A (zh) * 2018-06-25 2018-11-23 维沃移动通信有限公司 一种天线系统及终端
US20190028125A1 (en) * 2016-11-30 2019-01-24 Htc Corporation Wireless communication device
CN109638455A (zh) * 2018-12-12 2019-04-16 维沃移动通信有限公司 天线结构及通信终端
CN109888461A (zh) * 2019-03-04 2019-06-14 维沃移动通信有限公司 一种天线结构及通信终端
KR20190086160A (ko) * 2018-01-12 2019-07-22 엘에스엠트론 주식회사 메탈 프레임을 이용한 안테나 장치 및 이를 포함하는 전자장치
CN110165382A (zh) * 2019-06-19 2019-08-23 Oppo(重庆)智能科技有限公司 一种天线组件及其电子设备
CN111276806A (zh) * 2020-02-14 2020-06-12 维沃移动通信有限公司 一种天线和电子设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942676A1 (fr) * 2009-02-27 2010-09-03 Thomson Licensing Systeme d'antennes compact a diversite d'ordre 2.
CN102570028A (zh) * 2010-12-08 2012-07-11 上海安费诺永亿通讯电子有限公司 临近频段间实现天线高隔离的系统及方法
EP2521216A1 (en) * 2011-04-27 2012-11-07 Research In Motion Limited Antenna assembly utilizing metal-dielectric structures
JP2014112824A (ja) * 2012-10-31 2014-06-19 Murata Mfg Co Ltd アンテナ装置
TW201511407A (zh) * 2013-09-05 2015-03-16 Quanta Comp Inc 天線模組
CN106972254B (zh) * 2016-09-22 2020-05-15 瑞声科技(新加坡)有限公司 移动终端
US10164330B2 (en) * 2016-10-17 2018-12-25 The Chinese University Of Hong Kong Antenna assembly and self-curing decoupling method for reducing mutual coupling of coupled antennas
WO2018148973A1 (zh) * 2017-02-20 2018-08-23 华为技术有限公司 一种支持多进多出技术的通信设备
US10312594B2 (en) * 2017-03-30 2019-06-04 Intel Corporation Wide banded antenna tuning
CN107437661B (zh) * 2017-04-21 2021-07-09 瑞声科技(新加坡)有限公司 天线及移动终端
US10944156B2 (en) * 2017-09-29 2021-03-09 Apple Inc. Wireless earphone antennas
CN108767499A (zh) * 2018-04-28 2018-11-06 华勤通讯技术有限公司 金属边框天线及终端设备
CN109088152B (zh) * 2018-08-03 2020-11-20 瑞声科技(南京)有限公司 天线系统及移动终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190028125A1 (en) * 2016-11-30 2019-01-24 Htc Corporation Wireless communication device
KR20190086160A (ko) * 2018-01-12 2019-07-22 엘에스엠트론 주식회사 메탈 프레임을 이용한 안테나 장치 및 이를 포함하는 전자장치
CN108879116A (zh) * 2018-06-25 2018-11-23 维沃移动通信有限公司 一种天线系统及终端
CN109638455A (zh) * 2018-12-12 2019-04-16 维沃移动通信有限公司 天线结构及通信终端
CN109888461A (zh) * 2019-03-04 2019-06-14 维沃移动通信有限公司 一种天线结构及通信终端
CN110165382A (zh) * 2019-06-19 2019-08-23 Oppo(重庆)智能科技有限公司 一种天线组件及其电子设备
CN111276806A (zh) * 2020-02-14 2020-06-12 维沃移动通信有限公司 一种天线和电子设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871853A (zh) * 2021-09-06 2021-12-31 京信通信技术(广州)有限公司 天线及辐射单元
CN113871853B (zh) * 2021-09-06 2023-05-02 京信通信技术(广州)有限公司 天线及辐射单元
CN114899599A (zh) * 2022-04-13 2022-08-12 Oppo广东移动通信有限公司 一种天线组件和电子设备

Also Published As

Publication number Publication date
CN111276806A (zh) 2020-06-12
CN111276806B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2021160066A1 (zh) 天线和电子设备
US10680323B2 (en) Broadband dual-band base station antenna array with high out-of-band isolation
US20210305722A1 (en) Broadband Dual-Polarization Filtering Base Station Antenna Unit, Base Station Antenna Array and Communication Device
CN111293413B (zh) 基于交叉耦合结构的紧凑型宽带滤波天线及其mimo天线
CN108039590B (zh) 双频双馈入天线结构
CN111180872B (zh) 一种天线装置和电子设备
CN111384594B (zh) 高频辐射体、多频阵列天线和基站
CN112002994B (zh) 天线结构及电子设备
EP3780272B1 (en) Antenna apparatus and terminal device
CN109873612A (zh) 一种基于多阶梯枝节匹配网络的双频带高效率功率放大器
CN112751184B (zh) 一种具有高辐射效率和低散射特性的相控阵天线
CN110808438A (zh) 一种小型化、低成本的0°/90°开关线型移相器
CN110197948A (zh) 一种可调谐天线及移动通信电子设备
CN113451788A (zh) 天线、天线模组及无线网络设备
CN114069237A (zh) 天线模组及电子设备
CN111864320A (zh) 滤波器、信号处理电路和天线
CN112864589A (zh) 天线结构及通信装置
Moulder Novel implementations of ultrawideband tightly coupled antenna arrays
CN212380534U (zh) 滤波器、信号处理电路和天线
CN111446540B (zh) 电子设备
CN111816985B (zh) 适用于金属中框形式的移动终端的天线系统及移动终端
CN110336125B (zh) 一种基于srr的双极化微带滤波天线
CN114447605A (zh) 多频段融合天线组件
CN216624568U (zh) 一种陷波天线
CN110635254A (zh) 一种低剖面宽带滤波阵列

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21754244

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21754244

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 27.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21754244

Country of ref document: EP

Kind code of ref document: A1