WO2021159699A1 - 一种天然气水合物开采产气水砂分离计量试验装置及方法 - Google Patents

一种天然气水合物开采产气水砂分离计量试验装置及方法 Download PDF

Info

Publication number
WO2021159699A1
WO2021159699A1 PCT/CN2020/114099 CN2020114099W WO2021159699A1 WO 2021159699 A1 WO2021159699 A1 WO 2021159699A1 CN 2020114099 W CN2020114099 W CN 2020114099W WO 2021159699 A1 WO2021159699 A1 WO 2021159699A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand
water
natural gas
gas
screen
Prior art date
Application number
PCT/CN2020/114099
Other languages
English (en)
French (fr)
Inventor
李小森
陈朝阳
王屹
夏志明
张郁
李刚
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Priority to US17/257,313 priority Critical patent/US11708748B2/en
Publication of WO2021159699A1 publication Critical patent/WO2021159699A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0099Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/35Arrangements for separating materials produced by the well specially adapted for separating solids
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/20Computer models or simulations, e.g. for reservoirs under production, drill bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • E21B43/084Screens comprising woven materials, e.g. mesh or cloth
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure

Definitions

  • the invention relates to a process test of sand production and sand control for natural gas hydrate mining, in particular to a measurement test device and method for the separation of gas, water and sand in natural gas hydrate mining.
  • Natural gas hydrate is a very potential clean energy in the future.
  • sand production during natural gas hydrate mining is one of the urgent problems to be solved.
  • the separation of gas-produced water-sand sand from simulated mining has not been well resolved. Therefore, the separation and measurement of gas-produced water-sand-sand separation in simulated production of natural gas hydrates has become a key step and factor in the study of sand control during simulated production of natural gas hydrates.
  • the sand production metering method and gas-water-sand separation method used in the simulated exploitation of natural gas hydrates cannot be measured and observed in real time, and cannot realize the separation and measurement of gas-liquid-solid three-phase flow and liquid-solid, gas-solid, and gas-liquid two-phase flow. .
  • the present invention provides a gas-produced water-sand-sand separation metering device and method for simulating natural gas hydrate mining, so as to separate the gas-producing water-sand mixture in the measurement simulation mining process, which can more intuitively reflect sand production control
  • the sand effect can realize the separation and measurement of gas-liquid-solid three-phase flow and liquid-solid, gas-solid and gas-liquid two-phase flow at the same time, which is convenient for analysis and calculation of the change law and characteristics of natural gas hydrate simulated production of gas, water and sand.
  • a natural gas hydrate simulation mining gas-produced water-sand separation and metering device includes a natural gas hydrate generation and decomposition system and a filter device,
  • the natural gas hydrate generation and decomposition system includes a compressed air pump, a natural gas hydrate generation and decomposition reaction kettle, and a water bath constant temperature control device.
  • the inner cavity of the natural gas hydrate generation and decomposition reaction kettle is provided with an inner cavity piston and a partition partition along an axis.
  • the enclosed space formed by the inner cavity piston and one end of the inner cavity of the natural gas hydrate formation and decomposition reactor is an axial pressure air cavity, and the compressed air pump is used to inject gas into the axial pressure air cavity to drive the inner cavity
  • the piston moves toward the partition partition plate;
  • the enclosed space formed between the inner cavity piston and the partition partition plate is a hydrate generation and decomposition zone, and the hydrate generation and decomposition zone is connected with methane gas pressure injection Source and injection horizontal flow pump;
  • the enclosed space formed by the partition dividing plate and the other end of the inner cavity of the natural gas hydrate formation and decomposition reactor is the sand control screen area and the wellbore mining area;
  • the material generation decomposition area, sand control screen area, wellbore mining area and filter device are all equipped with electronic devices for collecting physical quantities;
  • the filter device includes a filter device kettle body, the inlet end of the filter device kettle body is connected with the sand control screen area and the outlet end of the filter device kettle body is connected with a water-collecting closed container, and the filter device kettle body is connected from
  • the inlet end to the outlet end are provided with a multi-layer filter layer, the inner diameter of the cross-section of the multi-layer filter layer gradually decreases and the filter particle size of the multi-layer filter layer gradually decreases;
  • the outlet end of the filter layer is connected with a gas recovery device;
  • a window is provided on the wall of the kettle body of the filter device above the inlet end of the filter layer, and a monitoring camera and a fill light are arranged around the window.
  • the monitoring camera monitors the air, water, and sand in the kettle body of the filter device through the window.
  • the lower end of the filter device kettle body has a bracket for fixing and supporting the filter device kettle body.
  • the bracket is equipped with a vibrator, which is used to generate vibration so that the sand in the filter device kettle body is better separated and promoted. Fluid flow.
  • the filter layer is a coarse sieve layer, a medium sieve layer and a fine sieve layer with a gradually reduced filter particle size, and the coarse sieve layer, Both the middle sieve layer and the fine sieve layer include a ring frame and a screen connected to the ring frame.
  • the ring frame is provided with a number of pressure points for thin-film pressure sensors, and each pressure point is provided around the pressure points of the thin-film pressure sensors.
  • the pressure point limit ring of the membrane pressure sensor, the pressure point of the membrane pressure sensor is limited within the area of the pressure point limit ring of the membrane pressure sensor, and the filter device body is provided with the membrane pressure sensor
  • a number of post-screen membrane pressure sensors corresponding to the pressure points, the post-screen membrane pressure sensors are used to measure the total weight of the screen, the ring frame and the filter sand.
  • the above-mentioned gas hydrate simulation mining gas-produced water-sand separation metering device further, above the coarse screen layer is provided with a pre-screening pressure sensor and a pre-screening temperature sensor, and below the fine screen layer is provided
  • the water baffle is arranged in the kettle body of the filtering device at an angle, and a pressure sensor after screening is provided under the high end of the water baffle, which combines the pressure sensor before screening and the membrane pressure after the screen
  • the sensor can display the degree of clogging of the screen and the degree of airflow stability.
  • the low end of the water baffle has a semi-circular opening and a very fine screen.
  • the filtration particle size of the very fine screen is smaller than that of the fine screen layer.
  • a temperature sensor after sieving is arranged between the screen and the fine sieve layer. The temperature sensor before sieving and the temperature sensor after sieving are used to detect the temperature change of air, water and sand after passing through the filter layer.
  • the upper end of the filter device kettle body is connected with a detachable upper cover, and the lower end of the inner cavity of the filter device kettle body is provided with a detachable cover.
  • the detachable cover has a slope inclined to the water outlet, the water outlet is connected to the water-collecting closed container through a pipeline, and the connecting pipeline
  • a water outlet valve is provided on the upper part, the water collection airtight container is arranged on the balance, and the water collection airtight container is provided with an exhaust valve;
  • the gas recovery device is connected to the lower end of the water baffle through a pipe,
  • the connecting pipe is provided with an outlet valve and a gas flow meter.
  • the axial pressure air cavity is provided with an axial pressure pressure sensor
  • the hydrate generation and decomposition zone is provided with a piston limit
  • the methane gas pressurized injection source and the horizontal flow pump are correspondingly provided with a gas injection valve and a water injection valve
  • the hydrate generation and decomposition zone is provided with an axial direction
  • a number of temperature sensors and a gas hydrate reactor pressure sensor is arranged inside the wall of the hydrate formation and decomposition zone, and the hydrate formation and decomposition zone is also provided with a reserved injection port for the natural gas hydrate formation and decomposition zone;
  • the sand control screen area is sequentially installed with a screen wall mesh, a screen filler, and a screen wall mesh, and the sand control screen area 74 is provided with a screen area temperature sensor, and the sand control screen area is also provided with a screen injection reserve. mouth;
  • the partition partition plate is controlled by the controllable partition plate mechanism to open and close.
  • the wellbore mining area is provided with a wellbore temperature sensor, a wellbore pressure sensor, and the wellbore mining area is connected with a sand production particle size analyzer, and the wellbore
  • the reserved injection port is used to inject simulated wellbore fluid, and the end face of the natural gas hydrate formation decomposition reaction kettle on the side of the wellbore mining area adopts a detachable kettle cover.
  • the wellbore mining area is provided with a wellbore outlet, and the wellbore outlet and the opening of the detachable cover are mutually connected to produce sand
  • the analysis pipe section is connected with the inlet and outlet curved pipes, and the connection between the mining sand analysis pipe section and the inlet and outlet curved pipes is also provided with an inlet ball valve.
  • the above-mentioned natural gas hydrate simulation mining gas-produced water-sand separation metering device further includes a sensor data collector and an upper computer, the upper computer is installed with data analysis and recording software, and the sensor data collector is hydrated with the natural gas
  • the material generation and decomposition system is connected with the control signals of the various electronic devices of the filter device, and is used for real-time collection and analysis of experimental data.
  • a method for separating and measuring gas, water and sand from simulated exploitation of natural gas hydrate wherein the method applies any one of the above-mentioned devices for separating and measuring gas from water and sand from simulated exploitation of natural gas hydrate, and comprises the following steps:
  • the simulated gas hydrate depressurization mining or thermal injection mining is carried out.
  • the gas-water sand produced during the mining process enters the kettle body of the filter device, and the gas-water sand sequentially After the multi-layer filter layer, the sand is filtered and collected many times, the gas enters the gas recovery device, and the liquid enters the water collection airtight container; when the three phases are separated, the gas recovery device and the water collection airtight container are connected; when the solid and liquid are separated When the phases are separated, connect the water-collecting airtight container; when the gas-liquid phases are separated, connect the gas recovery device and the water-collecting airtight container; when the gas-solid phases are separated, turn on the vibrator and connect the gas recovery device.
  • the present invention has the following beneficial effects:
  • This device can perform dynamic monitoring on the simulated generation, decomposition and exploitation of natural gas hydrate, and analyze the changes in parameters such as gas, water, sand and pressure in different stages of the sand and sand control test of natural gas hydrate exploitation; analyze the simulation of natural gas hydrate Changes in pressures and corresponding gas-liquid-solid production laws during the various stages of gas-producing water-sand mining; by adjusting the simulated mining conditions, feedback on the effect of gas-producing water-sand sand can be realized, evaluating and optimizing the sand-producing sand control effect of simulated mining for easy analysis Calculate the change law and characteristics of gas hydrate simulated production of water and sand, and provide support for the formulation of sand control schemes for actual hydrate production.
  • This device can realize the separation and measurement of solid-liquid-gas three-phase flow based on the simulated exploitation of natural gas hydrate, and the observation, separation and measurement of liquid-solid, gas-solid and gas-liquid two-phase flow can be based on
  • the separation measurement situation provides practical verification for the simulation of natural gas hydrate sand production and sand control tests, and facilitates the analysis and calculation of the changing laws and characteristics of natural gas hydrate simulated production of gas, water and sand, and provides support for the formulation of sand production and sand control schemes.
  • This device has the ability to detect and measure the gas flow rate, the weight of the sand with different particle diameters, and the real-time measurement of the effluent volume. It also has an anti-blocking vibration device, expands the sensor interface to realize real-time monitoring of the pressure and temperature in the kettle, and the core component is For the separation and measurement of different particle sizes of sand, there are four thin film sensors for each particle size screen to measure its weight. Later, the weight pressure curve can be analyzed to obtain the sand location distribution, sand particle size distribution and other analysis results.
  • the device has the advantages of simple structure, high pressure resistance, convenient disassembly, washing and installation, and visualization and real-time observation of the dynamic flow of air, water, and sand.
  • Figure 1 is a schematic diagram of the structure of the separation and metering device of the present invention.
  • Figure 2 is a partial view 1 of the filtering device of the present invention.
  • Figure 3 is a second partial view of the filtering device of the present invention.
  • Water outlet valve; 40 Water-collecting airtight container; 41. Exhaust valve; 42, balance; 43. Pressure point limit ring of membrane pressure sensor; 44. Pressure point of membrane pressure sensor (force point) 45. Ring frame; 46. Coarse screen; 47. Middle screen; 48. Fine screen; 49. Circle formed by the cross section of the inner kettle wall; 50. Outer kettle wall; 51. Compressed air pump; 52 , Axial pressure sensor; 53, Axial pressure air chamber; 54, Water bath constant temperature control; 55, Natural gas hydrate formation and decomposition reactor; 56, Inner cavity piston; 57, Piston limit; 58, Natural gas hydrate reactor pressure sensor 59. Left temperature sensor; 60. Middle temperature sensor; 61. Gas injection valve; 62.
  • the present invention simulates the production of natural gas hydrate for gas-produced water-sand separation and measurement
  • the device includes: Compressed air pump 51, natural gas hydrate formation and decomposition reactor 55, methane gas pressure injection 62, horizontal flow pump 66, sand particle size analyzer 78, sensor data collector 80 and data analysis and recording software 81 Natural gas hydrate generation and decomposition system; gas-water-sand inlet pipeline composed of gas hydrate production gas-sand sand pipeline 1, inlet ball valve 2 and inlet and outlet curved pipeline 3; consists of a removable upper cover 4, a transparent window 5, and a filter device
  • the axial pressure zone of the natural gas hydrate generation and decomposition system is located at the leftmost end of the natural gas hydrate generation and decomposition reactor 55.
  • Compressed air is injected through the compressed air pump 51, so that the axial pressure air cavity 53 pushes the inner cavity piston 56 to control the hydration on the right side of the axial pressure zone.
  • the axial pressure in the object zone is used to compact the porous medium in the hydrate zone; the axial pressure air chamber is provided with an axial pressure pressure sensor 52.
  • the left side of the natural gas hydrate generation and decomposition zone 67 of the natural gas hydrate generation and decomposition system is connected to the axial pressure zone by a piston.
  • the hydrate generation and decomposition zone 67 is provided with a piston limit 57, and the right side is drawn away by a controllable partition mechanism 68
  • the partition wall 69 is connected to the screen area; the reserved injection port 63 on the outer wall of the kettle in this area can realize the in-situ generation of natural gas hydrate and the decompression, heat injection, chemical injection, and combined decomposition.
  • the hydrate formation and decomposition zone 67 is provided with a number of temperature sensors along the axial direction. In this embodiment, the left temperature sensor 59, the middle temperature sensor 60 and the right temperature sensor 64 are included.
  • the sand control screen area 72 can use the screen injection reserved port 71 to realize the filling of the screen screen, the injection of the filler in the screen, etc., and the study of the screen to realize the sand control of the screen; the right side of this area passes its sand control screen
  • the screen wall of the pipe area 72 is separated from the mining area to realize the simulation of the actual screen and well wall; the production observation area of the natural gas hydrate generation and decomposition system can realize the real-time observation of the simulated sand production through the sand particle size analyzer 78.
  • the wellbore temperature sensor 73 is installed in the wellbore mining area, and the wellbore injection reserve 75 and the wellbore exit 77 are used to study the injection of liquid in the well to simulate the production of gas and water sand; the right side of the area is the detachable threaded right kettle
  • the cover 74 facilitates the cleaning of the kettle body and the filling of the contents; pressure sensors and temperature sensors are reserved in different areas of the reaction kettle of the natural gas hydrate formation and decomposition system to realize accurate monitoring of the experimental environment; all sensor lines of the system are connected to
  • the sensor data collector 80 then observes and analyzes its data through the computer data analysis and recording software 81.
  • Natural gas hydrate production gas water sand pipeline 1 is connected to the inlet ball valve 2; one end of the inlet and outlet bend pipeline 3 is connected to the inlet ball valve 2, and the other end is connected to the removable upper cover 4; the upper end of the filter device kettle body 20 is connected to the removable upper cover 4, and the lower end Connect the detachable cover 31; air and water sand flows into the filter device kettle body 20 from the detachable upper cover 4.
  • the uppermost end of the outer kettle wall 50 of the filter device kettle body 20 is the round transparent windows 5 on the left and right sides, and the camera monitors 9 and The fill light 6 realizes the monitoring of the inflow of air, water and sand in the cavity of the detachable upper cover 4; the left and right under the transparent window 5 are the pre-screening pre-screening sensor 10 and the pre-screening pressure sensor 11 to realize the monitoring of the detachable upper cover 4 The gas pressure temperature and other parameters of the cavity are monitored.
  • the detachable upper cover 4 has a hollow cylinder below the cavity, and its gradually decreasing inner diameter is a round-curved filtering device kettle body 20.
  • the filtering device kettle body 20 with successively reduced inner diameters is divided into three layers of coarse, medium and fine filtering sections, each layer There are 4 membrane pressure sensors, the upper part is the coarse screen and the ring frame 8, the middle screen and the ring frame 19, the fine screen and the ring frame 25.
  • the coarse screen and the ring frame 8 are composed of the coarse screen 46 and the pressure point limit ring 43 of the film pressure sensor, the pressure point (force point) 44 of the film pressure sensor and the ring frame 45, wherein the coarse screen is fixed and covered
  • a pressure sensor senses the weight of the screen and the sand production;
  • the middle screen and the ring frame 19 include the middle screen 47 and the ring frame, and the sensor of the middle screen layer includes the left membrane pressure sensor 15 of the middle screen and the front membrane of the middle screen.
  • Fine screen and ring frame 25 include fine screen 48 and ring frame, fine screen layer sensor includes fine screen left Membrane pressure sensor 21, fine-mesh front membrane pressure sensor 22, fine-mesh rear membrane pressure sensor 23, and fine-mesh right membrane pressure sensor 24.
  • the inner wall of the filter device body 20 is divided into three layers at equal intervals. Each layer reserves four small holes for placing the thin film sensor.
  • the pressure sensor line at the corresponding position of the kettle body there are reserved holes for the pressure sensor line at the corresponding position of the kettle body; a short distance below the minimum inner diameter, the uppermost inner diameter of the kettle section is restored after the inner diameter of the kettle section is opened with a reserved sensor port 26 after screening;
  • the medium and fine screens and the corresponding ring brackets, the coarse, medium and fine screens are fixed on the corresponding three ring brackets of different sizes, and they are respectively placed on the thin film pressure sensors of different layers with gradually smaller inner diameters for real-time detection
  • the weight of different sand sizes; the left outer wall 50 in the cavity below the fine screen layer is respectively equipped with a sensor 26 reserved after sieving to detect the temperature and other parameters in the cavity after sieving.
  • a block Water plate 28 Below this cavity is a block Water plate 28; below the high end of the water baffle 28 is a pressure sensor 27 after screening for detecting the pressure after screening. Combining the pressure sensor 11 before screening and the pressure sensor 27 after screening can display the degree of screen clogging and The degree of airflow stability, combined with the pre-screening sensor 10 and the post-screening pre-screened sensor 26, can detect changes in parameters such as the temperature of air, water and sand after passing through the coarse, medium and fine screen; the lower end of the baffle 28 is opened with a semicircle The opening is used to place a very fine screen 29 to filter the fine particles remaining in the air, water and sand; below the baffle 28 is an air outlet 30, which is connected to the air outlet pipeline, and the other end is connected to the inlet and outlet curved pipe 3 of the air outlet valve.
  • the inlet and outlet of 39 bend the pipe 3, and then flow through the outlet valve 39 to the airtight container 40 where the water is collected.
  • the airtight container 40 for collecting water is used to collect the separated product water. It is weighed and measured with a balance 42.
  • the container has a water inlet and an exhaust port, and the exhaust port is connected to an exhaust valve 41; the whole filter device kettle body 20 and vibration
  • the device 34 is fixed on the bracket 33 to generate vibration to better separate the sand in the kettle body and promote fluid flow; the bracket 33 is used to fix and support the filter device kettle body 20, and the cushion bracket pad 35 is used to reduce vibration Noise and protection bracket.
  • test method of the present invention will be described in detail with reference to FIGS. 1 to 3.
  • a natural gas hydrate generation and decomposition system including methane gas pressure injection 62 and horizontal flow pump 66 components, water bath constant temperature control 54 components, natural gas hydrate generation and decomposition reactor 55, sand particle size analyzer 78 and other components, and include gas and water
  • each sensor line After the installation is completed, connect each sensor line to the sensor data collector port 80, and open the gas injection valve 61 at the gas injection port of the natural gas hydrate formation and decomposition zone 67 to allow nitrogen to be used. Soapy water is used for leak detection.
  • the partition divider 69 is closed, and the pressure is maintained at a relatively high pressure for a period of time. After a period of time, the partition is removed.
  • the gas hydrate reactor pressure sensor 58 Under pressure, prepare to simulate natural gas hydrate mining. Before the process starts, turn on the sand particle size analyzer 78, fill light 6 and camera monitoring 9 to monitor.
  • the gas and liquid are respectively measured by the gas flow meter 37 and the balance 42; when the pressure difference between the pre-screening pressure sensor 11 and the post-screening pressure sensor 27 reaches the set value, it can be inferred that the screen is blocked, and the vibration is turned on at this time
  • the device 34 promotes fluid flow to unblock, or can be opened regularly or continuously when the simulated mining is expected to produce less water Vibrator 34;
  • the vibrator 34 can also be continuously turned on during the simulated mining process, and temporarily stopped when the membrane pressure sensor collects data.
  • a method for separating and measuring gas, water and sand from simulated exploitation of natural gas hydrate is applied to any one of the above-mentioned devices for separating and measuring gas and water from simulated exploitation of natural gas hydrate, and comprises the following steps:
  • the gas-water sand in the hydrate formation and decomposition zone enters the filter device kettle body, where the gas-water sand sequentially passes through the multi-layer filter layer, and the sand is filtered multiple times And collect, the gas enters the gas recovery device, and the liquid enters the collection water airtight container; when the three phases are separated, the gas recovery device and the water collection airtight container are connected; when the solid-liquid two phases are separated, the water collection airtight container is connected; When the gas-liquid phase is separated, the gas recovery device and the water-collecting airtight container are connected; when the gas-solid phase is separated, the vibrator is turned on and the gas recovery device is connected.
  • the vibrator When the pressure difference before and after the screening of the pressure sensor reaches the set value, it can be inferred that the screen is clogged. At this time, the vibrator is turned on to promote fluid flow and unblocking, or it can be timed or continuous when the simulated mining is expected to produce less water. Turn on the vibrator; the vibrator can also be continuously turned on during the simulated mining process, and temporarily stopped when the membrane pressure sensor collects data.
  • the mining method can be selected according to the needs of reduced pressure mining or heat injection mining.
  • reduced pressure mining is currently one of the main natural gas hydrate mining methods, which is to reduce the pressure of the hydrate layer to make it lower than the temperature of the hydrate in the area.
  • the lower phase balances the pressure, so that the hydrate is decomposed from the solid phase to produce methane gas.
  • the design of the depressurization method is similar to that of conventional oil and gas production.
  • the pressure in the well-permeable hydrate reservoir spreads quickly. Therefore, the depressurization method is the most potential economical and effective mining method.
  • Heat injection mining also known as thermal excitation mining method, is a mining method that directly injects heat or heats the natural gas hydrate layer to make the temperature of the natural gas hydrate layer exceed its equilibrium temperature, thereby promoting the decomposition of natural gas hydrate into water and natural gas.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种天然气水合物开采产气水砂分离计量试验装置及方法,该装置包括天然气水合物生成分解系统、过滤装置,该天然气水合物生成分解系统包括压缩空气泵(51)、天然气水合物生成分解反应釜(55)、水浴恒温控制装置,过滤装置包括过滤装置釜体(20),过滤装置釜体的入口端与防砂筛管区连接且过滤装置釜体的出口端与收集水密闭容器连接,过滤装置釜体内从入口端到出口端设有多层过滤层。该方法和装置能够分离计量模拟开采过程中的气水砂混合物,能更加直观的反映出出砂防砂效果。

Description

一种天然气水合物开采产气水砂分离计量试验装置及方法 技术领域
本发明涉及天然气水合物开采出砂防砂工艺试验,具体涉及一种天然气水合物开采产气水砂分离计量试验装置及方法。
背景技术
天然气水合物是极具潜力的未来清洁能源,在实际试开采中天然气水合物开采过程中出砂问题是亟待解决的问题之一,而关于模拟开采天然气水合物时的产砂问题研究尚少,关于如何计量出砂,分离模拟开采的产气水砂也一直没有很好解决。因此,分离计量天然气水合物模拟开采的产气水砂分离问题已成为研究天然气水合物模拟开采出砂防砂过程中的关键步骤和因素。
目前,对于天然气水合物模拟开采使用的出砂计量方式和气水砂分离方式并不能实时计量与观测,且不能实现气液固三相流以及液固,气固,气液两相流的分离计量。
发明内容
针对现有技术中的不足,本发明提供一种天然气水合物模拟开采产气水砂分离计量装置及方法,以便分离计量模拟开采过程中的产气水砂混合物,能更加直观的反映出出砂防砂效果,同时能实现气液固三相流以及液固,气固,气液两相流的分离计量,便于分析计算天然气水合物模拟开采产气水砂的变化规律及其特征。
为实现上述目的,本发明的技术方案如下:
一种天然气水合物模拟开采产气水砂分离计量装置,包括天然气水合物生成分解系统、过滤装置,
所述天然气水合物生成分解系统包括压缩空气泵、天然气水合物生成分解反应釜、水浴恒温控制装置,所述天然气水合物生成分解反应釜内腔沿轴线设有内腔活塞和分区分隔板,所述内腔活塞与所述天然气水合物生成分解反应釜的内腔一端形成的密闭空间为轴压空气腔,所述压缩空气泵用于给所述轴压空气腔注入气体驱动所述内腔活塞朝向所述分区分隔板方向运动;所述内腔活塞与所述分区分隔板之间形成的密闭空间为水合物生成分解区,所述水合物生成分解区连接有甲烷气加压注入源和注水平流泵;所述分区分隔板与所述天然气水合物生成分解反应釜的内腔另一端形成的密闭空间分别为防砂筛管区和井筒开采区;所述轴压空 气腔、水合物生成分解区、防砂筛管区、井筒开采区和过滤装置均设有采集物理量的电子器件;
所述过滤装置包括过滤装置釜体,所述过滤装置釜体的入口端与所述防砂筛管区连接且所述过滤装置釜体的出口端与收集水密闭容器连接,所述过滤装置釜体内从入口端到出口端设有多层过滤层,多层过滤层的横切面内径逐渐减小且多层过滤层的过滤粒径逐渐减小;过滤层的出口端连接有接气体回收装置;所述过滤层的入口端上方的过滤装置釜体的釜壁上设有视窗,所述视窗的周围设有监测摄像头和补光灯,所述监测摄像头透过所述视窗监测过滤装置釜体内气水砂的流入情况,过滤装置釜体的下端有用于固定和支撑过滤装置釜体的支架,所述支架内设有振动器,振动器用于产生振动从而使过滤装置釜体内的出砂更好分离以及促进流体流动。
如上所述的天然气水合物模拟开采产气水砂分离计量装置,进一步地,所述过滤层为过滤粒径逐渐减小的粗筛层、中筛层和细筛层,所述粗筛层、中筛层和细筛层均包括圆环架和连接在所述圆环架上的筛网,圆环架上设有若干薄膜压力传感器压点,在每个薄膜压力传感器压点的周围设有薄膜压力传感器压点限位圆环,所述薄膜压力传感器压点限制在所述薄膜压力传感器压点限位圆环的面积范围内,所述过滤装置釜体上设有与所述薄膜压力传感器压点对应的若干筛网后薄膜压力传感器,所述筛网后薄膜压力传感器用于测量筛网、圆环架以及过滤砂的总重量。
如上所述的天然气水合物模拟开采产气水砂分离计量装置,进一步地,所述粗筛层的上方设有筛分前压力传感器和筛分前温度传感器,所述细筛层的下方设有挡水板,所述挡水板倾斜一角度布置在所述过滤装置釜体内,所述挡水板高的一端下方设有筛分后压力传感器,结合筛分前压力传感器和筛网后薄膜压力传感器可以显示出筛网的堵塞程度和气流稳定程度,所述挡水板低的一端开有半圆形开口极细筛网,极细筛网的过滤粒径比细筛层的小,极细筛网与细筛层之间设有筛分后温度传感器,筛分前温度传感器和筛分后温度传感器用于检测气水砂经过过滤层后的温度变化。
如上所述的天然气水合物模拟开采产气水砂分离计量装置,进一步地,所述过滤装置釜体的上端连接有可拆上盖,所述过滤装置釜体的内腔下端设有可拆下盖。
如上所述的天然气水合物模拟开采产气水砂分离计量装置,进一步地,所述可拆下盖具有向出水口倾斜的坡度,出水口通过管道与所述收集水密闭容器连通,其连通管道上设有出水阀,所述收集水密闭容器设置在天平上,所述收集水密闭容器上设置有排气阀;所述接气体回收装置通过管道连接至所述挡水板高的一端下方,其连通管道上设有出气阀和气体流量 计。
如上所述的天然气水合物模拟开采产气水砂分离计量装置,进一步地,
所述轴压空气腔设有轴压压力传感器;
所述水合物生成分解区设有活塞限位,所述甲烷气加压注入源和所述注水平流泵对应设置有注气阀和注水阀,所述水合物生成分解区沿轴向设置有若干温度传感器且所述水合物生成分解区的釜壁内侧设有天然气水合物反应釜压力传感器,所述水合物生成分解区还设置有天然气水合物生成分解区预留注入口;
所述防砂筛管区内依次安装有筛管壁网、筛管填料和筛管壁网且所述防砂筛管区74内设有筛管区温度传感器,所述防砂筛管区还设置有筛管注入预留口;
所述分区分隔板受可控制分隔板机构控制进行开闭动作。
如上所述的天然气水合物模拟开采产气水砂分离计量装置,进一步地,所述井筒开采区内设置有井筒温度传感器、井筒压力传感器且所述井筒开采区连接有出砂粒度分析仪,井筒注入预留口用于注入模拟井筒液,井筒开采区一侧的天然气水合物生成分解反应釜的端面采用可拆卸釜盖。
如上所述的天然气水合物模拟开采产气水砂分离计量装置,进一步地,所述井筒开采区设有井筒出口,所述井筒出口与所述可拆上盖的开口通过相互连接的开采出砂分析管段和进出口弯曲管道连通,开采出砂分析管段和进出口弯曲管道连接处还设有入口球阀。
如上所述的天然气水合物模拟开采产气水砂分离计量装置,进一步地,还包括传感器数据采集器和上位机,所述上位机安装有数据分析记录软件,所述传感器数据采集器与天然气水合物生成分解系统和过滤装置的各电子器件控制信号相连,用于实时采集和分析实验过程的数据。
一种天然气水合物模拟开采产气水砂分离计量方法,所述方法应用如上任一所述的天然气水合物模拟开采产气水砂分离计量装置,包括以下步骤:
从天然气水合物生成分解反应釜的一端填入多孔介质砂质,关闭分区分隔板,使天然气水合物生成分解反应釜的各区为密闭状态;
检查天然气水合物生成分解反应釜的气密性,确保各采集物理量的电子器件正常工作;
向天然气水合物生成分解反应釜的水合物生成分解区依次注入设定量的液体和甲烷气体,通过水浴恒温控制装置控制天然气水合物生成分解反应釜的环境温度,通过压缩空气泵注入气体推动内腔活塞以维持水合物生成分解区的轴压稳定,以实现在水合物生成分解区形成天然气水合物;
当水合物生成分解区的轴压不再变化或达到预定压力时,进行模拟天然气水合物降压开采或注热开采,开采过程产生的气水砂进入过滤装置釜体,其中,气水砂依次经过多层过滤层,砂得到多次过滤并收集,气体进入接气体回收装置,液体进入收集水密闭容器;当三相分离时,接通接气体回收装置和收集水密闭容器;当固液两相分离时,接通收集水密闭容器;当气液两相分离时,接通接气体回收装置和收集水密闭容器;当气固两相分离时,开启振动器和接通接气体回收装置。
本发明与现有技术相比,其有益效果在于:
本装置可以对天然气水合物模拟生成,分解及开采产气水砂实施动态监测,分析天然气水合物开采出砂防砂砂试验不同阶段的产气产水产砂以及压力等参数变化;分析天然气水合物模拟开采产气水砂的各阶段压力等变化及相对应的气液固产量规律;通过调整模拟开采条件方案,可以实现产气水砂效果的反馈,评价及优化模拟开采出砂防砂效果,便于分析计算天然气水合物模拟开采产气水砂的变化规律及其特征,为实际水合物开采出砂防砂方案的制定提供支撑。
(1)本装置根据天然气水合物模拟开采产气水砂情况可实现固液气三相流的的分离和计量,液固,气固,气液两相流的观测、分离和计量,可根据分离计量情况为模拟天然气水合物出砂防砂试验提供实践验证,便于分析计算天然气水合物模拟开采产气水砂的变化规律及其特征,为开采出砂防砂方案的制定提供支撑。
(2)本装置具有检测计量产气流量,出砂不同粒径的重量,出水体积的实时计量,还具有防堵振动装置,拓展传感器接口实现釜内压力温度的实时监控,而最核心部件是出砂不同粒径的分离和计量,每个粒径筛分有四个薄膜传感器计量其重量后期可分析其重量压力曲线得出出砂部位分布,出砂粒径分布等分析结果。
(3)本装置结构简单,耐高压,拆洗安装方便,具有可视化实时观察出气水砂的动态流动情况等优点。
附图说明
图1为本发明的分离计量装置的结构示意图;
图2为本发明的过滤装置的局部视图一;
图3为本发明的过滤装置的局部视图二。
图中:1、天然气水合物开采产气水砂管道;2、入口球阀;3、进出口弯曲管道;4、可拆上盖;5、透明视窗;6、补光灯;7、粗筛网后薄膜压力传感器;8、粗筛网和圆环架;9、 摄像头监测;10、筛分前预留传感器;11、筛分前压力传感器;12、粗筛网左薄膜压力传感器;13、粗筛网前薄膜压力传感器;14、粗筛网右薄膜压力传感器;15、中筛网左薄膜压力传感器;16、中筛网前薄膜压力传感器;17、中筛网后薄膜压力传感器;18、中筛网右薄膜压力传感器;19、中筛网和圆环架;20、过滤装置釜体;21、细筛网左薄膜压力传感器;22、细筛网前薄膜压力传感器;23、细筛网后薄膜压力传感器;24、细筛网右薄膜压力传感器;25、细筛网和圆环架;26、筛分后预留传感器;27、筛分后压力传感器;28、挡水板;29、极细筛网;30、出气口;31、可拆下盖;32、出水口;33、支架;34、振动器;35、缓冲支架垫;36、出气阀;37、气体流量计;38、接气体回收装置;39、出水阀;40、收集水密闭容器;41、排气阀;42、天平;43、薄膜压力传感器压点限位圆环;44、薄膜压力传感器压点(受力点);45、圆环架;46、粗筛网;47、中筛网;48、细筛网;49、内釜壁横切面所形成的圆;50、外釜壁;51、压缩空气泵;52、轴压压力传感器;53、轴压空气腔;54、水浴恒温控制;55、天然气水合物生成分解反应釜;56、内腔活塞;57、活塞限位;58、天然气水合物反应釜压力传感器;59、左温度传感器;60、中温度传感器;61、注气阀;62、甲烷气加压注入;63、天然气水合物生成分解区预留注入口;64、右温度传感器;65、注水阀;66、注水平流泵;67、水合物生成分解区;68、控制分隔板机构;69、分区分隔板;70、筛管区温度传感器;71、筛管注入预留口;72、防砂筛管区;73、井筒温度传感器;74、可拆螺纹右釜盖;75、井筒注入预留口;76、井筒压力传感器;77、井筒出口;78、出砂粒度分析仪;79、开采出砂分析管段;80、传感器数据采集器;81、数据分析记录软件。
具体实施方式
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
实施例:
如图1-图3所示(图3的粗中细三层筛网只是错开展示,并不代表筛网和环架大小及位置关系),本发明天然气水合物模拟开采产气水砂分离计量装置包括:由压缩空气泵51、天然气水合物生成分解反应釜55、甲烷气加压注入62、注水平流泵66、出砂粒度分析仪78、传感器数据采集器80和数据分析记录软件81组成的天然气水合物生成分解系统;由天然气水合物开采产气水砂管道1、入口球阀2和进出口弯曲管道3组成的气水砂入口管线;由可拆上盖4、透明视窗5、过滤装置釜体20、挡水板28、可拆下盖31、支架33等组成的过滤釜釜体;由粗筛网和圆环架8、中筛网和圆环架19、细筛网和圆环架25等组成的粗中细筛网和相对应的圆环支架;由出气口30、出气阀36、气体流量计37等组成的出气口管线;由出 水口32、出水阀39、收集水的密闭容器40、排气阀41、天平42等组成的出水口管线等。
天然气水合物生成分解系统的轴压区位于天然气水合物生成分解反应釜55最左端,通过压缩空气泵51注入压缩气体,使轴压空气腔53推动内腔活塞56控制位于轴压区右侧水合物区的轴压,以压实水合物区多孔介质;轴压空气腔设有轴压压力传感器52。
天然气水合物生成分解系统的天然气水合物生成分解区67左侧通过活塞与轴压区相连,水合物生成分解区67设有活塞限位57,右侧通过可控制分隔板机构68抽离的分区分隔板69与筛管区相连;该区釜体外壁预留注入口63可实现天然气水合物的原位生成及降压、注热、注化学剂及联合分解等不同方式的模拟分解开采,所述水合物生成分解区67沿轴向设置有若干温度传感器,本实施例中包括左温度传感器59、中温度传感器60和右温度传感器64。防砂筛管区72可利用筛管注入预留口71来实现筛管筛网的填装,筛管内填充物的注入等方式作用与筛管实现筛管防砂的研究;该区右侧通过其防砂筛管区72的筛管壁本身与开采区分隔开,实现实际筛管及井壁的模拟;天然气水合物生成分解系统的开采观测区通过出砂粒度分析仪78可实现模拟开采出砂的实时观测,井筒开采区内设置有井筒温度传感器73,通过开采井筒注入预留口75及井筒出口77实现井内液体的注入研究,模拟开采产气水砂的产出;该区右侧为可拆螺纹右釜盖74方便其釜体的清洗及内容物的填装;天然气水合物生成分解系统的反应釜不同区均预留压力传感器和温度传感器实现对实验环境的精准监控;该系统所有传感器线均连接至传感器数据采集器80后通过电脑数据分析记录软件81观测分析其数据。
天然气水合物开采产气水砂管道1接入口球阀2;进出口弯曲管道3一端接入口球阀2,另一端接入可拆上盖4;过滤装置釜体20上端连接可拆上盖4,下端连接可拆下盖31;气水砂从可拆上盖4流入过滤装置釜体20,过滤装置釜体20的外釜壁50最上端为左右两侧圆形透明视窗5,利用摄像头监测9和补光灯6实现可拆上盖4内的空腔气水砂流入情况监测;透明视窗5下方左右分别为筛分前预留传感器10和筛分前压力传感器11实现对可拆上盖4内的空腔的气体压力温度等参数的监测。可拆上盖4内空腔下方中空圆柱体,其逐渐减小的内径圆曲面的过滤装置釜体20,在依次缩小内径的过滤装置釜体20分为粗中细三层过滤段,每层4个薄膜压力传感器,上方分别为粗筛网和圆环架8、中筛网和圆环架19、细筛网和圆环架25。
粗筛网和圆环架8由粗筛网46和薄膜压力传感器压点限位圆环43、薄膜压力传感器压点(受力点)44和圆环架45组成,其中粗筛网固定覆盖在圆环架45上,在圆环架下方分别为粗筛网左薄膜压力传感器12、粗筛网前薄膜压力传感器13、粗筛网右薄膜压力传感器14、粗筛网后薄膜压力传感器7这四个压力传感器感应筛网及产砂重量;中筛网和圆环架19包括 中筛网47和圆环架,中筛层的传感器则包括中筛网左薄膜压力传感器15、中筛网前薄膜压力传感器16、中筛网后薄膜压力传感器17、中筛网右薄膜压力传感器18;细筛网和圆环架25包括细筛网48和圆环架,细筛层的传感器包括细筛网左薄膜压力传感器21、细筛网前薄膜压力传感器22、细筛网后薄膜压力传感器23、细筛网右薄膜压力传感器24。
从筛分前传感器下方开始中釜段的内釜壁横切面所形成的圆49内径逐渐减小,过滤装置釜体20内壁面等距分三层每层预留四个用于放置薄膜传感器的小凸起平台,釜体相应位置留有压力传感器线的预留孔道;在内径最小处之下一小段距离内径恢复中釜段最上端的内径后釜壁开有筛分后预留传感器口26;粗、中、细筛网和相对应的圆环支架,粗中细筛网固定在相对应的三个不同大小的圆环支架,分别放置在内径逐渐变小的不同分层的薄膜压力传感器上来实时检测不同出砂粒径的重量;在细筛网层下方空腔内左外釜壁50分别有筛分后预留传感器26用于检测筛分后腔内温度等参数,在这空腔下方为挡水板28;挡水板28高的一端下方为筛分后压力传感器27用于检测筛分后压力大小,结合筛分前压力传感器11和筛分后压力传感器27可以显示出筛网堵塞程度和气流稳定程度,结合筛分前预留传感器10和筛分后预留传感器26可检测出气水砂经过粗中细筛网后的温度等参数变化;挡水板28低的一端开有半圆形开口用于放置极细筛网29来过滤气水砂中残留的细小颗粒;在挡水板28下方为出气口30,连上出气口管线,另一端接在出气阀的进出口弯曲管道3,之后经过出气阀36流向气体流量计37管段,流出气体流量计接气体回收装置38;可拆下盖31底部连接出水口管线,一端接在过滤釜釜体的出水口32,一端接在出水阀39的进出口弯曲管道3,之后经过出水阀39流向收集水的密闭容器40。收集水的密闭容器40,用于收集分离出的产水,使用天平42称重计量,容器开有入水口和排气口,排气口连接排气阀41;整个过滤装置釜体20和振动器34,固定于支架33上,用于产生振动使釜体内的出砂更好分离,促进流体流动;支架33用于固定和支撑过滤装置釜体20,缓冲支架垫35用于减少振动产生的噪声和保护支架。
下面结合图1-图3详细说明本发明的试验方法。
搭建包含甲烷气加压注入62和注水平流泵66部件,水浴恒温控制54部件和天然气水合物生成分解反应釜55,出砂粒度分析仪78等部件的天然气水合物生成分解系统和包含气水砂入口管线的开采出砂分析管段79和天然气水合物开采产气水砂管道1,过滤装置釜体20,粗、中、细筛网和相对应的圆环支架45,出气口管线,出水口管线,收集水的密闭容器40,振动器34,支架33和缓冲支架垫35等产气水砂分离计量的试验装置;
在确保按照试验要求,开启水合物反应釜可拆螺纹右釜盖74,将天然气水合物生成分解反应釜55装置内水合物区填入多孔介质砂质,控制分隔板机构68关闭分区分隔板69,再依 次装入防砂筛管区72的筛管壁网、筛管填料和筛管壁网,防砂筛管区74内设有筛管区温度传感器70,装好可拆螺纹右釜盖74后,通过井筒注入预留口75注入模拟井筒液,装置搭建完成后,将各传感器线接入传感器数据采集器80口,在天然气水合物生成分解区67的注气口打开注气阀61通入氮气利用肥皂水进行检漏操作,此时分区分隔板69为关,压力维持较高压不变一段时间后抽离隔板若压力维持较高压不变则证明整个装置不漏,否则重新检漏,这样以保证分离后的气液固准确计量;校正筛分前压力传感器11和筛分后压力传感器27、天平42、气体流量计37,归零薄膜压力传感器数据,确保出砂、产水、产气计量准确,传感器数据准确;打开天然气水合物生成分解反应釜55水合物区注水口的注水阀65和注水平流泵66,注气阀61和甲烷气加压注入62部件依次注入定量液体和气体,左侧注气注入轴压区维持水合物区的轴压空气腔53的轴压,此时水合物生成,当通过天然气水合物反应釜压力传感器58检测到水合物区压力不再变化或达到预定压力时,准备进行模拟天然气水合物开采,其过程开始前,打开出砂粒度分析仪78,补光灯6和摄像头监测9监测,可通过出砂粒度分析仪78和摄像头监测9查看内部实时出砂影像;关闭入口球阀2、排气阀41,出气阀36和出水阀39,将天然气水合物开采产气水砂管道1与入口球阀2连;开启入口球阀2正式模拟水合物开采过程;通过井筒压力传感器76和筛分前压力传感器11监测开采压力;对于模拟天然气水合物开采过程的气水砂三相分离来说,在开启入口球阀2后开启出气阀36和出水阀39,(对于固液两相分离来说,在开启入口球阀2后开启出水阀39,对于气液两相分离来说,在开启入口球阀2后开启出水阀39和出气阀36,对于气固两相分离来说,在开启入口球阀2后开启振动器34和出气阀36),水合物分解过程中的产出砂依次通过开采观测区,粗中细筛网进行分离并进行薄膜压力传感器进行称重计量,产出气体和液体分别通过气体流量计37与天平42计量;当筛分前压力传感器11和筛分后压力传感器27的压差到达设定值时,可以推断筛网有堵塞现象,此时开启振动器34促进流体流动解堵,或者在模拟开采预计产水较少时可定时或连续开启振动器34;振动器34也可在模拟开采过程中持续开启,在薄膜压力传感器采集数据时暂时停止。
通过电脑数据分析记录软件81采集的数据,关闭入口球阀2、出水阀39、出气阀36完成天然气水合物模拟开采的气水砂分离及计量;实验结束后取出圆环架45和极细筛网29进行产砂粒径分析,各个釜体清洗与实验装置整理等操作。这样,就可以对天然气水合物模拟生成,分解及开采产气水砂实施动态监测,分析天然气水合物开采出砂防砂砂试验不同阶段的产气产水产砂以及压力等参数变化;分析天然气水合物模拟开采产气水砂的各阶段压力等变化及相对应的气液固产量规律;通过调整模拟开采条件方案,可以实现产气水砂效果的反 馈,评价及优化模拟开采出砂防砂效果,便于分析计算天然气水合物模拟开采产气水砂的变化规律及其特征,为实际水合物开采出砂防砂方案的制定提供支撑。
一种天然气水合物模拟开采产气水砂分离计量方法,所述方法应用于上任一所述的天然气水合物模拟开采产气水砂分离计量装置,包括以下步骤:
从天然气水合物生成分解反应釜的一端填入多孔介质砂质,关闭分区分隔板,使天然气水合物生成分解反应釜的各区为密闭状态;
检查天然气水合物生成分解反应釜的气密性,确保各采集物理量的电子器件正常工作;
向天然气水合物生成分解反应釜的水合物生成分解区依次注入设定量的液体和甲烷气体;
通过压缩空气泵注入气体推动内腔活塞以维持水合物生成分解区的轴压稳定;
当水合物生成分解区的轴压不再变化或达到预定压力时,水合物生成分解区的气水砂进入过滤装置釜体,其中,气水砂依次经过多层过滤层,砂得到多次过滤并收集,气体进入接气体回收装置,液体进入收集水密闭容器;当三相分离时,接通接气体回收装置和收集水密闭容器;当固液两相分离时,接通收集水密闭容器;当气液两相分离时,接通接气体回收装置和收集水密闭容器;当气固两相分离时,开启振动器和接通接气体回收装置。
本实施例中:
1)搭建包含注气注水部件,恒温部件和天然气水合物反应釜,粒度仪等部件的天然气水合物生成分解系统和包含气水砂入口管线,过滤釜釜体,粗、中、细筛网和相对应的圆环支架,出气口管线,出水口管线,收集水的密闭容器,振动器,支架和缓冲支架垫等产气水砂分离计量的试验装置;
2)在确保按照试验要求,开启水合物反应釜可拆右盖,将天然气水合物生成分解装置内水合物区填入多孔介质砂质,关闭分隔板,再依次装入筛管壁网、筛管填料和筛管壁网,装好可拆右盖后,注入模拟井筒液,装置搭建完成后,将传感器线接入数据采集口,在天然气水合物生成分解反应釜生成区的注气口通入氮气利用肥皂水进行检漏操作,此时分区分隔板为关,压力维持较高压不变一段时间后抽离隔板若压力维持较高压不变则证明整个装置不漏,否则重新检漏,这样以保证分离后的气液固准确计量;校正筛分前后压力传感器、天平、流量计,归零薄膜压力传感器数据,打开补光灯和摄像头监测,确保出砂、产水、产气计量准确,传感器数据准确,并可通过粒度仪和摄像头查看内部实时出砂影像;
3)向天然气水合物生成分解反应釜的水合物区注水口和注气口依次注入定量液体和气体,左侧注气注入轴压区维持水合物区的轴压,此时水合物生成,当水合物区压力不再变化或达到预定压力时,准备进行模拟天然气水合物开采,其过程开始前,关闭入口球阀、排气阀, 出气阀和出水阀,将天然气水合物开采的产气水砂产出管道与球阀连;开启入口球阀正式模拟水合物开采过程;通过井筒压力传感器和筛分前压力传感器监测开采压力;
4)对于模拟天然气水合物开采过程的气水砂三相分离来说,在开启入口球阀后开启出气阀和出水阀,(对于固液两相分离来说,在开启入口球阀后开启出水阀,对于气液两相分离来说,在开启入口球阀后开启出水阀和出气阀,对于气固两相分离来说,在开启入口球阀后开启振动器和出气阀),水合物分解过程中的产出砂依次通过开采观测区,粗中细筛网进行分离并进行薄膜压力传感器进行称重计量,产出气体和液体分别通过流量计与天平计量;
5)当压力传感器的筛分前后压差到达设定值时,可以推断筛网有堵塞现象,此时开启振动器促进流体流动解堵,或者在模拟开采预计产水较少时可定时或连续开启振动器;振动器也可在模拟开采过程中持续开启,在薄膜压力传感器采集数据时暂时停止。
6)通过电脑软件实时分析采集的数据,关闭入口球阀、出水阀、出气阀完成天然气水合物模拟开采的气水砂分离及计量;实验结束后取出圆环架和极细筛网进行产砂粒径分析,各个釜体清洗与实验装置整理等操作。
开采方法可根据需要选择降压开采或注热开采,其中,降压开采是目前主要的天然气水合物开采方法之一,是通过降低水合物层压力,使其低于水合物在该区域温度条件下相平衡压力,从而使水合物从固体分解相变产生甲烷气体的过程。降压法开采井的设计与常规油气开采相近,渗透性较好的水合物藏内压力传播很快,因此,降压法是最有潜力的经济、有效的开采方式。注热开采,又称热激发开采法,是直接对天然气水合物层进行注热或加热,使天然气水合物层的温度超过其平衡温度,从而促使天然气水合物分解为水与天然气的开采方法。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

  1. 一种天然气水合物模拟开采产气水砂分离计量装置,包括天然气水合物生成分解系统、过滤装置,其特征在于,
    所述天然气水合物生成分解系统包括压缩空气泵、天然气水合物生成分解反应釜、水浴恒温控制装置,所述天然气水合物生成分解反应釜内腔沿轴线设有内腔活塞和分区分隔板,所述内腔活塞与所述天然气水合物生成分解反应釜的内腔一端形成的密闭空间为轴压空气腔,所述压缩空气泵用于给所述轴压空气腔注入气体驱动所述内腔活塞朝向所述分区分隔板方向运动;所述内腔活塞与所述分区分隔板之间形成的密闭空间为水合物生成分解区,所述水合物生成分解区连接有甲烷气加压注入源和注水平流泵;所述分区分隔板与所述天然气水合物生成分解反应釜的内腔另一端形成的密闭空间分别为防砂筛管区和井筒开采区;所述轴压空气腔、水合物生成分解区、防砂筛管区、井筒开采区和过滤装置均设有采集物理量的电子器件;
    所述过滤装置包括过滤装置釜体,所述过滤装置釜体的入口端与所述防砂筛管区连接且所述过滤装置釜体的出口端与收集水密闭容器连接,所述过滤装置釜体内从入口端到出口端设有多层过滤层,多层过滤层的横切面内径逐渐减小且多层过滤层的过滤粒径逐渐减小;过滤层的出口端连接有接气体回收装置;所述过滤层的入口端上方的过滤装置釜体的釜壁上设有视窗,所述视窗的周围设有监测摄像头和补光灯,所述监测摄像头透过所述视窗监测过滤装置釜体内气水砂的流入情况,过滤装置釜体的下端有用于固定和支撑过滤装置釜体的支架,所述支架内设有振动器,振动器用于产生振动从而使过滤装置釜体内的出砂更好分离以及促进流体流动。
  2. 根据权利要求1所述的天然气水合物模拟开采产气水砂分离计量装置,其特征在于,所述过滤层为过滤粒径逐渐减小的粗筛层、中筛层和细筛层,所述粗筛层、中筛层和细筛层均包括圆环架和连接在所述圆环架上的筛网,圆环架上设有若干薄膜压力传感器压点,在每个薄膜压力传感器压点的周围设有薄膜压力传感器压点限位圆环,所述薄膜压力传感器压点限制在所述薄膜压力传感器压点限位圆环的面积范围内,所述过滤装置釜体上设有与所述薄膜压力传感器压点对应的若干筛网后薄膜压力传感器,所述筛网后薄膜压力传感器用于测量筛网、圆环架以及过滤砂的总重量。
  3. 根据权利要求2所述的天然气水合物模拟开采产气水砂分离计量装置,其特征在于,所述粗筛层的上方设有筛分前压力传感器和筛分前温度传感器,所述细筛层的下方设有挡水板,所述挡水板倾斜一角度布置在所述过滤装置釜体内,所述挡水板高的一端下方设有筛分 后压力传感器,结合筛分前压力传感器和筛网后薄膜压力传感器可以显示出筛网的堵塞程度和气流稳定程度,所述挡水板低的一端开有半圆形开口极细筛网,极细筛网的过滤粒径比细筛层的小,极细筛网与细筛层之间设有筛分后温度传感器,筛分前温度传感器和筛分后温度传感器用于检测气水砂经过过滤层后的温度变化。
  4. 根据权利要求3所述的天然气水合物模拟开采产气水砂分离计量装置,其特征在于,所述过滤装置釜体的上端连接有可拆上盖,所述过滤装置釜体的内腔下端设有可拆下盖。
  5. 根据权利要求4所述的天然气水合物模拟开采产气水砂分离计量装置,其特征在于,所述可拆下盖具有向出水口倾斜的坡度,出水口通过管道与所述收集水密闭容器连通,其连通管道上设有出水阀,所述收集水密闭容器设置在天平上,所述收集水密闭容器上设置有排气阀;所述接气体回收装置通过管道连接至所述挡水板高的一端下方,其连通管道上设有出气阀和气体流量计。
  6. 根据权利要求1所述的天然气水合物模拟开采产气水砂分离计量装置,其特征在于,
    所述轴压空气腔设有轴压压力传感器;
    所述水合物生成分解区设有活塞限位,所述甲烷气加压注入源和所述注水平流泵对应设置有注气阀和注水阀,所述水合物生成分解区沿轴向设置有若干温度传感器且所述水合物生成分解区的釜壁内侧设有天然气水合物反应釜压力传感器,所述水合物生成分解区还设置有天然气水合物生成分解区预留注入口;
    所述防砂筛管区内依次安装有筛管壁网、筛管填料和筛管壁网且所述防砂筛管区74内设有筛管区温度传感器,所述防砂筛管区还设置有筛管注入预留口;
    所述分区分隔板受可控制分隔板机构控制进行开闭动作。
  7. 根据权利要求6所述的天然气水合物模拟开采产气水砂分离计量装置,其特征在于,所述井筒开采区内设置有井筒温度传感器、井筒压力传感器且所述井筒开采区连接有出砂粒度分析仪,井筒注入预留口用于注入模拟井筒液,井筒开采区一侧的天然气水合物生成分解反应釜的端面采用可拆卸釜盖。
  8. 根据权利要求7所述的天然气水合物模拟开采产气水砂分离计量装置,其特征在于,所述井筒开采区设有井筒出口,所述井筒出口与所述可拆上盖的开口通过相互连接的开采出砂分析管段和进出口弯曲管道连通,开采出砂分析管段和进出口弯曲管道连接处还设有入口球阀。
  9. 根据权利要求1-8任一所述的天然气水合物模拟开采产气水砂分离计量装置,其特征在于,还包括传感器数据采集器和上位机,所述上位机安装有数据分析记录软件,所述传感 器数据采集器与天然气水合物生成分解系统和过滤装置的各电子器件控制信号相连,用于实时采集和分析实验过程的数据。
  10. 一种天然气水合物模拟开采产气水砂分离计量方法,所述方法应用于权利要求1-9任一所述的天然气水合物模拟开采产气水砂分离计量装置,其特征在于,包括以下步骤:
    从天然气水合物生成分解反应釜的一端填入多孔介质砂质,关闭分区分隔板,使天然气水合物生成分解反应釜的各区为密闭状态;
    检查天然气水合物生成分解反应釜的气密性,确保各采集物理量的电子器件正常工作;
    向天然气水合物生成分解反应釜的水合物生成分解区依次注入设定量的液体和甲烷气体,通过水浴恒温控制装置控制天然气水合物生成分解反应釜的环境温度,通过压缩空气泵注入气体推动内腔活塞以维持水合物生成分解区的轴压稳定,以实现在水合物生成分解区形成天然气水合物;
    当水合物生成分解区的轴压不再变化或达到预定压力时,进行模拟天然气水合物降压开采或注热开采,开采过程产生的气水砂进入过滤装置釜体,其中,气水砂依次经过多层过滤层,砂得到多次过滤并收集,气体进入接气体回收装置,液体进入收集水密闭容器;当三相分离时,接通接气体回收装置和收集水密闭容器;当固液两相分离时,接通收集水密闭容器;当气液两相分离时,接通接气体回收装置和收集水密闭容器;当气固两相分离时,开启振动器和接通接气体回收装置。
PCT/CN2020/114099 2020-08-06 2020-09-08 一种天然气水合物开采产气水砂分离计量试验装置及方法 WO2021159699A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/257,313 US11708748B2 (en) 2020-08-06 2020-09-08 Device and method for gas-water-sand separation and measurement in experiment of natural gas hydrate exploitation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010784600.7A CN112031711B (zh) 2020-08-06 2020-08-06 一种天然气水合物模拟开采产气水砂分离计量装置及方法
CN202010784600.7 2020-08-06

Publications (1)

Publication Number Publication Date
WO2021159699A1 true WO2021159699A1 (zh) 2021-08-19

Family

ID=73582699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114099 WO2021159699A1 (zh) 2020-08-06 2020-09-08 一种天然气水合物开采产气水砂分离计量试验装置及方法

Country Status (3)

Country Link
US (1) US11708748B2 (zh)
CN (1) CN112031711B (zh)
WO (1) WO2021159699A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112067785B (zh) * 2020-08-07 2021-05-14 中国科学院广州能源研究所 可拆分式天然气水合物模拟出砂防砂试验反应装置及方法
CN113062713B (zh) * 2021-03-04 2023-01-24 中国石油大学(华东) 一种模拟天然气水合物开采近井堵塞和解堵的实验装置及方法
US11905812B2 (en) * 2021-08-24 2024-02-20 China University Of Petroleum (East China) Intra-layer reinforcement method, and consolidation and reconstruction simulation experiment system and evaluation method for gas hydrate formation
CN115012925B (zh) * 2022-08-08 2022-10-21 西南石油大学 一种高压条件下垂直气井井筒流型的实验确定方法
CN115492558B (zh) * 2022-09-14 2023-04-14 中国石油大学(华东) 一种海域天然气水合物降压开采井筒中水合物二次生成防治装置及防治方法
US11912588B1 (en) 2023-05-19 2024-02-27 King Abdulaziz University Gas hydrate desalination system
CN117326635B (zh) * 2023-10-23 2024-06-11 大连理工大学 基于水合物技术的油水分离装置及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2027001C1 (ru) * 1991-03-05 1995-01-20 Черней Эдуард Иванович Агрегат для добычи гидратов природных газов
CN102052065A (zh) * 2010-07-01 2011-05-11 青岛海洋地质研究所 天然气水合物模拟开采实验装置
CN102109513A (zh) * 2010-12-23 2011-06-29 中国科学院广州能源研究所 一种天然气水合物三维生成开采物性检测实验装置
CN102305052A (zh) * 2011-09-05 2012-01-04 中国科学院广州能源研究所 天然气水合物三维多井联合开采实验装置及其实验方法
WO2017024538A1 (zh) * 2015-08-11 2017-02-16 深圳朝伟达科技有限公司 一种岩心制备方法
CN107860569A (zh) * 2017-10-31 2018-03-30 中国石油大学(华东) 天然气水合物开采过程中防砂筛管堵塞特性的评价实验装置及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU872730A1 (ru) * 1979-12-26 1981-10-15 Азербайджанский государственный научно-исследовательский и проектный институт нефтяной промышленности Установка дл исследовани противопесочных фильтров
CN103257079A (zh) * 2013-04-28 2013-08-21 中国科学院广州能源研究所 天然气水合物开采地层稳定性三维模拟装置
CN105372392B (zh) * 2015-10-30 2017-02-15 中国科学院力学研究所 天然气水合物分解导致甲烷气体泄漏的模拟实验装置
CN105403672B (zh) * 2015-11-25 2017-08-22 中国科学院广州能源研究所 模拟天然气水合物开采过程地层形变的实验装置和方法
CN107121359B (zh) * 2017-04-20 2018-07-10 青岛海洋地质研究所 含水合物沉积物出砂-力学参数耦合过程模拟装置及方法
CN107462677B (zh) * 2017-08-10 2024-06-04 中国地质调查局水文地质环境地质调查中心 天然气水合物开采防砂试验装置及方法
CN109681198B (zh) * 2019-01-25 2021-11-19 大连理工大学 一种针对不同类型天然气水合物储层的多方式开采模拟装置及方法
CN209742884U (zh) * 2019-01-28 2019-12-06 中国地质大学(武汉) 水合物开采储层响应与出砂综合模拟实验系统
CN109707377B (zh) * 2019-01-28 2023-06-06 中国地质大学(武汉) 水合物开采储层响应与出砂综合模拟实验系统及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2027001C1 (ru) * 1991-03-05 1995-01-20 Черней Эдуард Иванович Агрегат для добычи гидратов природных газов
CN102052065A (zh) * 2010-07-01 2011-05-11 青岛海洋地质研究所 天然气水合物模拟开采实验装置
CN102109513A (zh) * 2010-12-23 2011-06-29 中国科学院广州能源研究所 一种天然气水合物三维生成开采物性检测实验装置
CN102305052A (zh) * 2011-09-05 2012-01-04 中国科学院广州能源研究所 天然气水合物三维多井联合开采实验装置及其实验方法
WO2017024538A1 (zh) * 2015-08-11 2017-02-16 深圳朝伟达科技有限公司 一种岩心制备方法
CN107860569A (zh) * 2017-10-31 2018-03-30 中国石油大学(华东) 天然气水合物开采过程中防砂筛管堵塞特性的评价实验装置及方法

Also Published As

Publication number Publication date
CN112031711B (zh) 2021-07-02
US20220298892A1 (en) 2022-09-22
US11708748B2 (en) 2023-07-25
CN112031711A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2021159699A1 (zh) 一种天然气水合物开采产气水砂分离计量试验装置及方法
CN110306972B (zh) 水合物开采防砂完井分析实验装置及方法
CN107121359B (zh) 含水合物沉积物出砂-力学参数耦合过程模拟装置及方法
CN110146395A (zh) 一种测定原位压力下多层土样渗流侵蚀特性的室内试验装置
CN212376640U (zh) 天然气水合物储层水平井开采出砂模拟实验装置
CN109707377A (zh) 水合物开采储层响应与出砂综合模拟实验系统及其方法
CN108169062B (zh) 模拟地下煤层气赋存解吸过程的可视化试验装置及方法
WO2021159701A1 (zh) 可拆分式天然气水合物出砂防砂试验装置及方法
CN104897543A (zh) 多相渗透仪及岩石渗透特性测定方法
CN205786187U (zh) 一种天然气水合物井轴向出砂一维物理模拟装置
CN107271344A (zh) 一种疏松砂泥岩互层防砂筛管堵塞评价实验装置和方法
CN108344677A (zh) 可同时测定孔隙度、给水度与渗透系数的循环实验装置
CN107807084A (zh) 一种岩石试件渗流试验装置及方法
CN106290443A (zh) 基于核磁共振的煤层气产出过程甲烷状态监测装置及方法
CN107290501B (zh) 裂隙断层型地质构造内部充填介质渗透失稳突水实验装置与方法
CN110346529A (zh) 天然气水合物水平井开采三维径向流出砂、防砂试验反应釜
CN111337650A (zh) 一种研究地下工程土体渗流破坏机制的多功能试验装置
CN111272637B (zh) 一种压裂充填防砂性能测试系统及其测试方法与评价方法
CN110907329A (zh) 一种大型潜蚀试验系统及其试验方法
Shih Permeability characteristics of rubble material–New formulae
CN104846926B (zh) 一种体积法测量管网外源入侵的系统和方法
CN108508179B (zh) 水溶气运移模拟装置
CN108872529A (zh) 用于测量页岩破裂甲烷散失的模拟实验装置及其方法
CN201795982U (zh) 一种评价筛管防砂性能的装置
CN106841578B (zh) 一种泥水盾构掌子面泥水压力实验测试装置及测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919178

Country of ref document: EP

Kind code of ref document: A1