CN102109513A - 一种天然气水合物三维生成开采物性检测实验装置 - Google Patents

一种天然气水合物三维生成开采物性检测实验装置 Download PDF

Info

Publication number
CN102109513A
CN102109513A CN2010106032510A CN201010603251A CN102109513A CN 102109513 A CN102109513 A CN 102109513A CN 2010106032510 A CN2010106032510 A CN 2010106032510A CN 201010603251 A CN201010603251 A CN 201010603251A CN 102109513 A CN102109513 A CN 102109513A
Authority
CN
China
Prior art keywords
dimensional
exploitation
rerum natura
gas hydrate
generates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010106032510A
Other languages
English (en)
Other versions
CN102109513B (zh
Inventor
李小森
李刚
王屹
张郁
陈朝阳
杨波
吴慧杰
黄宁生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Energy Conversion of CAS
Original Assignee
Guangzhou Institute of Energy Conversion of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Energy Conversion of CAS filed Critical Guangzhou Institute of Energy Conversion of CAS
Priority to CN201010603251.0A priority Critical patent/CN102109513B/zh
Publication of CN102109513A publication Critical patent/CN102109513A/zh
Application granted granted Critical
Publication of CN102109513B publication Critical patent/CN102109513B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种天然气水合物三维生成开采物性检测实验装置,包括:三维反应釜,设有密封的模拟腔,用于模拟天然气水合物的生成及开采;物性检测单元,通过检测三维反应釜内的各种物性对三维反应釜内的情况进行监控;数据处理单元,对物性检测单元的信号进行采集和处理;进口控制单元,用于向三维反应釜内输入水和天然气,并控制输入的天然气的压力;出口控制单元,用于控制模拟开采之后的天然气、水等的输出压力;温度控制单元,用于控制三维反应釜的环境温度。采用上述方案,本发明的装置体积小、易操作、可以精确测量开采时物性变化,能用于综合研究各种水合物生成和开采时水合物藏内部的基础物性变化。

Description

一种天然气水合物三维生成开采物性检测实验装置
技术领域
本发明涉及一种模拟实验装置,尤其涉及一种天然气水合物三维生成开采物性检测实验装置。
背景技术
天然气水合物(以下简称水合物)是指天然气与水在一定温度和压力下生成的一种笼状晶体物质,其遇火即可燃烧,俗称“可燃冰”。早期对天然气水合物的研究主要针对抑制水合物的生成,是为了解决油、气生产和运输过程中管道、设备的堵塞问题。随着人们对天然气水合物研究的不断深入,天然气水合物的特性及对环境的影响越来越为人类认识,其作为一种有效的替代能源的价值也益显突出。
天然气水合物可以以多种方式存在于自然界中,天然气水合物在洋底埋藏时呈固体,在开采过程中分子构造发生变化,从固体变为气体,也就是说,水合物在开采过程中发生相变。基于天然气水合物的特点,它与常规传统型能源的开发方式不同。目前大多数有关天然气水合物的开发思路基本上都是首先考虑如何将蕴藏在沉积物中的天然气水合物进行分解,然后再将分解得到的天然气开采至地面。一般来说,人为地打破天然气水合物稳定存在的温度压力条件,造成其分解,是目前开发天然气水合物中甲烷资源量的主要方法。
开采过程中伴随产生的水合物藏自身内部变化,主要有如下三方面:
(一)温度场,由于生成分解水合物的能量消耗不同及水合物内存在不同情况导热的温度场,所以温度场变化及其复杂,多种数学模型尚不能完全成功描述。
(二)压力场,压力和温度是水合物开采最为重要的两个参数,由于矿藏内部的水合物分解变成甲烷气和水,对压力产生直观影响,水合物藏内的压力变化直接影响到水合物开采的顺利程度。
(三)水合物饱和度的变化,饱和度就是水合物占水合物藏空隙中的体积比例,饱和度的研究直接关系到水合物藏的可开采性。
现有的开采方法大体上可分为以下三类:
热力开采法,该方法主要是将蒸气、热水、热盐水或其它热流体从地面泵入天然气水合物储层,或采用火驱法、电极原位加热等诸多方法促使储层温度上升而达到水合物分解的目的。
化学剂开采法,该方法主要是利用某些化学剂,诸如盐水、甲醇、乙醇、乙二醇、丙三醇等来改变水合物形成的相平衡条件,降低水合物稳定温度,以达到使其分解的目的。
降压开采法,该方法主要是通过降低压力而引起天然气水合物稳定的相平衡曲线的移动,从而促使天然气水合物分解,开采水合物层之下的游离气是降低储层压力的一种有效方法。
由于各地的地质条件和天然气水合物的成分不同,形成机制各异,所以需要通过模拟实验进行研究,通过实际开采对模型进行验证同时可以进一步对水合物开采的机理进行深入分析。但是,现有的设备大多为一维层面,三维模拟开采设备体积巨大,不便于操作,也难以实现水合物开采时水合物层物性变化的精确测量。
因此,现有技术有待于完善和发展。
发明内容
本发明所要解决的问题在于提供一种体积小、易操作、精确测量开采时物性变化的天然气水合物三维生成开采物性检测实验装置。
为了解决上述技术问题,本发明的技术方案如下:
一种天然气水合物三维生成开采物性检测实验装置,包括:
三维反应釜,设有密封的模拟腔,用于模拟天然气水合物的生成及开采;
物性检测单元,通过检测三维反应釜内的各种物性对三维反应釜内的情况进行监控;
数据处理单元,对物性检测单元的信号进行采集和处理;
进口控制单元,用于向三维反应釜内输入水和天然气,并控制输入的天然气的压力;
出口控制单元,用于控制模拟开采之后的天然气、水等的输出压力;
温度控制单元,用于控制三维反应釜的环境温度。
所述的天然气水合物三维生成开采物性检测实验装置,所述三维反应釜为耐压范围为0~40MPa、内腔容积为5~500L的正方体不锈钢反应釜,内腔三维空间长度均大于150mm。
所述的天然气水合物三维生成开采物性检测实验装置,所述三维反应釜包括筒体、上法兰、下法兰,所述筒体、上法兰、下法兰之间的密封腔形成模拟腔,所述筒体、上法兰、下法兰三者靠近所述模拟腔一侧设有隔热板,以减少模拟腔与外界的热交换,提高模拟腔的恒温效果。
所述的天然气水合物三维生成开采物性检测实验装置,所述物性检测单元设于三维反应釜之上,并采用以下测量点阵排布:把所述模拟腔的正方体空间划分为a*a*a个大小完全相等、并与模拟腔正方体相似平行的小正方体空间,每个正方体空间的顶点在模拟腔内形成(a-1)*(a-1)*(a-1)的测量点阵,其中,a为大于3的正整数,用于测量的传感器或探头置于测量点阵上。
所述的天然气水合物三维生成开采物性检测实验装置,所述a为6。
所述的天然气水合物三维生成开采物性检测实验装置,所述物性检测单元具有温度测量、饱和度测量、压力测量、差压测量及超声波测量的功能。
所述的天然气水合物三维生成开采物性检测实验装置,所述超声波测量是将超声波探头分别置于模拟腔垂直方向和水平方向各一个,其中,两相对探头中间无阻碍,并且垂直超声波探头和水平超声波探头分别独占一列测量点阵。
所述的天然气水合物三维生成开采物性检测实验装置,所述饱和度测量是利用电极来实现,每一根电极包括正负极探头,每一根电极的正负极距离相同。
所述的天然气水合物三维生成开采物性检测实验装置,所述电极的正负极距离为1cm。
采用上述方案,本发明提供的天然气水合物三维生成开采物性检测实验装置可以综合研究各种水合物生成和开采时水合物藏内部的基础物性变化,其具有如下优点:
1、本实验装置中的三维反应釜体积较小,装卸方便。
2、通过本实验装置可准确的得到生成及开采的物性变化数据;
3、由于反应釜体积小,试验周期较短。
4、在实验时,三维反应釜可同时检测各种水合物生成开采方案的数据;
5、本发明所述实验装置可以真实的模拟水合物物性,对开采和生成的数学模型进行验证。
附图说明
图1是本发明所述实验装置的系统示意图;
图2是本发明所述实验装置中三维反应釜的结构图;
图3是本发明所述实验装置中三维反应釜的俯视图。
附图标记说明:1-三维反应釜;2-筒体;3-模拟腔;4-隔热板;5-上法兰;6-下法兰;7-恒温水浴;8-超声波探头;9-测量点阵。
具体实施方式
下面结合附图,对本发明的较佳实施例作进一步详细说明。
请参见图1-图3,本发明的天然气水合物三维生成开采物性检测实验装置(见图1),包括A:三维反应釜、B:物性检测单元、C:进口控制单元、D:温度控制单元、E:出口控制单元、F:数据处理单元,共六个单元。
A三维反应釜1:三维反应釜1置于恒温水浴7中,三维反应釜1内为密封的模拟腔3,。釜内填充制备完成的多孔介质,作为水合物生成的空间,模拟海底高压环境,物性检测单元B、进口控制单元C、温度控制单元D和出口控制单元E分别均通过控制阀和管道连接至三维反应釜1。
B物性检测单元:利用各种测量手段的组合对三维反应釜1内的情况进行详细监控。可以检测三维反应釜1内的温度、压力、差压以及电阻,并由数据处理单元进行处理分析,可根据各感应元件的输入信号输出温度场三维云图,压力场三维云图和电阻三维云图,时间-温度曲线、时间-压力曲线、时间-差压曲线、时间-电阻曲线、压力-开采量曲线等等,以对各数据进行综合评价。
C进口控制单元:进口控制单元用于向三维反应釜内输入水,天然气,并可控制输入的天然气的压力。
D温度控制单元:温度控制单元用于控制三维反应釜1的环境温度。
E出口控制单元:出口控制单元用于控制模拟开采之后的天然气、水等的输出压力。
F数据处理单元:用于感应信号的采集和处理。记录各感应元件所感应的压力、差压、温度、电阻开采量等参数。通过各种软件将各感应元件的感应信号进行处理,以取得温度场三维云图,压力场三维云图和电阻三维云图,时间-压力、时间-差压、时间-温度、时间-开采量等曲线,用于对生成开采的物性情况进行分析。物性检测单元、进口控制单元、出口控制单元、温度控制单元内各感应元件均通过信号线与数据线与数据处理单元连接。
所述三维反应釜A优选为耐压范围为0~40MPa,内腔容积为5~500L的正方体不锈钢反应釜;内腔容积优选6±0.5L,内腔三维空间长度均大于150mm。
如图2、图3所示,置于恒温水浴7中的三维反应釜1包括筒体2、上法兰5、下法兰6,所述上法兰5与筒体2、下法兰6与筒体2之间分别使用若干螺栓固定密封;筒体2、上法兰5、下法兰6之间的密封腔形成模拟腔3。所述筒体2、上法兰5、下法兰6三者靠近所述模拟腔3的一侧设有隔热板4,以减少模拟腔3与外界的热交换,提高模拟腔3的恒温效果。所述模拟腔3分别通过管道和控制阀与进口控制单元C和出口控制单元E相连。
所述物性检测单元B置于三维反应釜1之上,主要为如图中所示的测量点阵9,其中设有多组温度传感器,多组电极,多组压力传感器及压差传感器,两组超声波探头,用于温度测量,饱和度测量,压力测量,差压测量及超声波测量。
为准确测量出温度场,饱和度场,绘制云图,采用特定探头排布。例如,可以把所述模拟腔3的正方体空间划分为a*a*a(a为大于3的正整数)个大小完全相等,并与模拟腔3正方体相似平行的小正方体空间,每个正方体空间的顶点在模拟腔3内形成(a-1)*(a-1)*(a-1)的测量点阵,为保证测量点密度合适,a优选6,即形成5*5*5的点阵。
各种测量方式的安装方式如下:
如图2、图3中所示,所述超声波测量优选将超声波探头8分别置于模拟腔3垂直方向和水平方向各一个,用于探测水合物生成速度和分布情况。要求超声波探头8两相对探头中间无阻碍,并且垂直超声波探头和水平超声波探头分别独占测量点阵9中的一列。
所述温度测量选用热电偶温度传感器直接测量,在所述三维反应釜1的上法兰5上开孔后垂直插入热电偶温度传感器并密封。温度传感器布置于所述测量点阵9上。
所述测量饱和度利用电极,每一根电极包括正负极探头,令每一根电极的正负极距离相同,优选1cm,令电极的探头放置在所述测量点阵9上。
所述压力测量和差压测量分别由测量点阵9连接至压力传感器和差压传感器。
本发明模拟实验装置的使用方法如下:
实验开始时,往模拟腔3内填充多孔介质,之后关闭三维反应釜1,连接管线,调节温度控制单元D至试验温度8℃,通过进口控制单元C向反应釜注入一定量的纯水,并注入一定量甲烷使得釜内压力达到要求值(20MPa左右)。关釜等待水合物生成。
此时打开物性测量单元B,通过数据处理单元F记录各感应元件所感应的压力、差压、温度、电阻开采量等参数。通过各种软件将各感应元件的感应信号进行处理,以取得温度场三维云图,压力场三维云图和电阻三维云图,时间-压力、时间-差压、时间-温度,用于对生成的物性情况进行分析。
当水合物生成完毕时开始模拟开采,使用注热或降压的方法进行开采,由出口控制单元E计量并控制出口产气。此时物性测量单元B继续工作,通过数据处理单元F记录各感应元件所感应的压力、差压、温度、电阻开采量等参数。通过各种软件将各感应元件的感应信号进行处理,以取得温度场三维云图,压力场三维云图和电阻三维云图,时间-压力、时间-差压、时间-温度、时间-开采量等曲线,用于对开采的物性情况进行分析。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (9)

1.一种天然气水合物三维生成开采物性检测实验装置,其特征在于,包括:
三维反应釜,设有密封的模拟腔,用于模拟天然气水合物的生成及开采;
物性检测单元,通过检测三维反应釜内的各种物性对三维反应釜内的情况进行监控;
数据处理单元,对物性检测单元的信号进行采集和处理;
进口控制单元,用于向三维反应釜内输入水和天然气,并控制输入的天然气的压力;
出口控制单元,用于控制模拟开采之后的天然气、水的输出压力;
温度控制单元,用于控制三维反应釜的环境温度。
2.根据权利要求1所述的天然气水合物三维生成开采物性检测实验装置,其特征在于,所述三维反应釜为耐压范围为0~40MPa、内腔容积为5~500L的正方体不锈钢反应釜,内腔三维空间长度均大于150mm。
3.根据权利要求1所述的天然气水合物三维生成开采物性检测实验装置,其特征在于,所述三维反应釜包括筒体、上法兰、下法兰,所述筒体、上法兰、下法兰之间的密封腔形成模拟腔,所述筒体、上法兰、下法兰三者靠近所述模拟腔一侧设有隔热板。
4.根据权利要求1所述的天然气水合物三维生成开采物性检测实验装置,其特征在于,所述物性检测单元设于三维反应釜之上,并采用以下测量点阵排布:把所述模拟腔的正方体空间划分为a*a*a个大小完全相等、并与模拟腔正方体相似平行的小正方体空间,每个正方体空间的顶点在模拟腔内形成(a-1)*(a-1)*(a-1)的测量点阵,其中,a为大于3的正整数,用于测量的传感器或探头置于测量点阵上。
5.根据权利要求4所述的天然气水合物三维生成开采物性检测实验装置,其特征在于,所述a为6。
6.根据权利要求4或5所述的天然气水合物三维生成开采物性检测实验装置,其特征在于,所述物性检测单元具有温度测量、饱和度测量、压力测量、差压测量及超声波测量的功能。
7.根据权利要求6所述的天然气水合物三维生成开采物性检测实验装置,其特征在于,所述超声波测量是将超声波探头分别置于模拟腔垂直方向和水平方向各一个,其中,两相对探头中间无阻碍,并且垂直超声波探头和水平超声波探头分别独占一列测量点阵。
8.根据权利要求6所述的天然气水合物三维生成开采物性检测实验装置,其特征在于,所述饱和度测量是利用电极来实现,每一根电极包括正负极探头,每一根电极的正负极距离相同。
9.根据权利要求8所述的天然气水合物三维生成开采物性检测实验装置,其特征在于,所述电极的正负极距离为1cm。
CN201010603251.0A 2010-12-23 2010-12-23 一种天然气水合物三维生成开采物性检测实验装置 Active CN102109513B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010603251.0A CN102109513B (zh) 2010-12-23 2010-12-23 一种天然气水合物三维生成开采物性检测实验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010603251.0A CN102109513B (zh) 2010-12-23 2010-12-23 一种天然气水合物三维生成开采物性检测实验装置

Publications (2)

Publication Number Publication Date
CN102109513A true CN102109513A (zh) 2011-06-29
CN102109513B CN102109513B (zh) 2014-01-08

Family

ID=44173727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010603251.0A Active CN102109513B (zh) 2010-12-23 2010-12-23 一种天然气水合物三维生成开采物性检测实验装置

Country Status (1)

Country Link
CN (1) CN102109513B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323394A (zh) * 2011-08-23 2012-01-18 中国地质大学(武汉) 研究天然气水合物地层对钻井液侵入响应特性的实验装置及实验方法
CN103257079A (zh) * 2013-04-28 2013-08-21 中国科学院广州能源研究所 天然气水合物开采地层稳定性三维模拟装置
CN104399716A (zh) * 2014-09-28 2015-03-11 中国海洋石油总公司 解除油气输送管道中水合物堵塞的方法
CN104399716B (zh) * 2014-09-28 2017-01-04 中国海洋石油总公司 解除油气输送管道中水合物堵塞的方法
WO2017008354A1 (zh) * 2015-07-10 2017-01-19 中国科学院广州能源研究所 一种研究天然气水合物分解过程中多孔介质骨架变化的实验装置及实验方法
CN106896785A (zh) * 2015-12-19 2017-06-27 西安瑞联新材料股份有限公司 一种基于bim的有机合成自动控制系统
CN107045054A (zh) * 2016-12-20 2017-08-15 中国科学院广州能源研究所 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法
CN107741380A (zh) * 2017-11-28 2018-02-27 青岛海洋地质研究所 一种精确测算小体积沉积物中水合物含量变化的实验装置与方法
CN109162708A (zh) * 2018-08-14 2019-01-08 山东科技大学 一种模拟水合物开采过程中储层参数多维监测装置
CN109490504A (zh) * 2018-12-03 2019-03-19 北京大学 一种天然气水合物岩样物理参数测量仪
CN110273679A (zh) * 2019-05-17 2019-09-24 江苏联友科研仪器有限公司 一种水合物开发分层物理模拟实验装置
CN111997568A (zh) * 2020-08-06 2020-11-27 中国科学院广州能源研究所 一种天然气水合物全尺寸开采模拟井装置及实验方法
CN112031714A (zh) * 2020-08-06 2020-12-04 中国科学院广州能源研究所 一种大尺度全尺寸开采井三维综合试验开采系统
CN112083124A (zh) * 2020-08-06 2020-12-15 中国科学院广州能源研究所 天然气水合物大尺度实验系统中物性表征装置及方法
CN112112610A (zh) * 2019-06-19 2020-12-22 中国石油大学(北京) 天然气水合物开采的模拟装置、模拟系统及模拟方法
CN112903732A (zh) * 2021-01-20 2021-06-04 中国科学院广州能源研究所 一种外场对气体水合物物性影响的综合测试装置
WO2021159699A1 (zh) * 2020-08-06 2021-08-19 中国科学院广州能源研究所 一种天然气水合物开采产气水砂分离计量试验装置及方法
CN114278267A (zh) * 2020-09-28 2022-04-05 中国石油天然气股份有限公司 实现三维应力加载的天然气水合物实验反应釜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588022A (zh) * 2004-10-12 2005-03-02 中国科学院广州能源研究所 原位测量气体水合物及含水合物沉积物热物性的方法和装置
CN101055276A (zh) * 2007-02-14 2007-10-17 中国科学院广州能源研究所 天然气水合物相平衡模拟实验装置
CN101477093A (zh) * 2008-12-29 2009-07-08 中国科学院广州能源研究所 气体水合物动力学分析装置
CN101550816A (zh) * 2009-05-20 2009-10-07 中国科学院广州能源研究所 天然气水合物三维开采模拟实验装置
CN101575964A (zh) * 2009-06-05 2009-11-11 中国石油大学(北京) 模拟天然气水合物开采的实验方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588022A (zh) * 2004-10-12 2005-03-02 中国科学院广州能源研究所 原位测量气体水合物及含水合物沉积物热物性的方法和装置
CN101055276A (zh) * 2007-02-14 2007-10-17 中国科学院广州能源研究所 天然气水合物相平衡模拟实验装置
CN101477093A (zh) * 2008-12-29 2009-07-08 中国科学院广州能源研究所 气体水合物动力学分析装置
CN101550816A (zh) * 2009-05-20 2009-10-07 中国科学院广州能源研究所 天然气水合物三维开采模拟实验装置
CN101575964A (zh) * 2009-06-05 2009-11-11 中国石油大学(北京) 模拟天然气水合物开采的实验方法及装置

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323394A (zh) * 2011-08-23 2012-01-18 中国地质大学(武汉) 研究天然气水合物地层对钻井液侵入响应特性的实验装置及实验方法
CN102323394B (zh) * 2011-08-23 2014-02-19 中国地质大学(武汉) 研究天然气水合物地层对钻井液侵入响应特性的实验装置及实验方法
CN103257079A (zh) * 2013-04-28 2013-08-21 中国科学院广州能源研究所 天然气水合物开采地层稳定性三维模拟装置
CN104399716A (zh) * 2014-09-28 2015-03-11 中国海洋石油总公司 解除油气输送管道中水合物堵塞的方法
CN104399716B (zh) * 2014-09-28 2017-01-04 中国海洋石油总公司 解除油气输送管道中水合物堵塞的方法
WO2017008354A1 (zh) * 2015-07-10 2017-01-19 中国科学院广州能源研究所 一种研究天然气水合物分解过程中多孔介质骨架变化的实验装置及实验方法
CN106896785A (zh) * 2015-12-19 2017-06-27 西安瑞联新材料股份有限公司 一种基于bim的有机合成自动控制系统
CN107045054A (zh) * 2016-12-20 2017-08-15 中国科学院广州能源研究所 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法
CN107045054B (zh) * 2016-12-20 2019-07-12 中国科学院广州能源研究所 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法
CN107741380A (zh) * 2017-11-28 2018-02-27 青岛海洋地质研究所 一种精确测算小体积沉积物中水合物含量变化的实验装置与方法
CN109162708A (zh) * 2018-08-14 2019-01-08 山东科技大学 一种模拟水合物开采过程中储层参数多维监测装置
CN109490504A (zh) * 2018-12-03 2019-03-19 北京大学 一种天然气水合物岩样物理参数测量仪
CN109490504B (zh) * 2018-12-03 2020-09-25 北京大学 一种天然气水合物岩样物理参数测量仪
CN110273679A (zh) * 2019-05-17 2019-09-24 江苏联友科研仪器有限公司 一种水合物开发分层物理模拟实验装置
CN112112610A (zh) * 2019-06-19 2020-12-22 中国石油大学(北京) 天然气水合物开采的模拟装置、模拟系统及模拟方法
CN111997568A (zh) * 2020-08-06 2020-11-27 中国科学院广州能源研究所 一种天然气水合物全尺寸开采模拟井装置及实验方法
CN112031714A (zh) * 2020-08-06 2020-12-04 中国科学院广州能源研究所 一种大尺度全尺寸开采井三维综合试验开采系统
CN112083124A (zh) * 2020-08-06 2020-12-15 中国科学院广州能源研究所 天然气水合物大尺度实验系统中物性表征装置及方法
CN112083124B (zh) * 2020-08-06 2021-08-17 中国科学院广州能源研究所 天然气水合物大尺度实验系统中物性表征装置及方法
WO2021159699A1 (zh) * 2020-08-06 2021-08-19 中国科学院广州能源研究所 一种天然气水合物开采产气水砂分离计量试验装置及方法
US20220298892A1 (en) * 2020-08-06 2022-09-22 Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences Device and method for gas-water-sand separation and measurement in experiment of natural gas hydrate exploitation
US11708748B2 (en) * 2020-08-06 2023-07-25 Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences Device and method for gas-water-sand separation and measurement in experiment of natural gas hydrate exploitation
CN114278267A (zh) * 2020-09-28 2022-04-05 中国石油天然气股份有限公司 实现三维应力加载的天然气水合物实验反应釜
CN114278267B (zh) * 2020-09-28 2023-11-28 中国石油天然气股份有限公司 实现三维应力加载的天然气水合物实验反应釜
CN112903732A (zh) * 2021-01-20 2021-06-04 中国科学院广州能源研究所 一种外场对气体水合物物性影响的综合测试装置

Also Published As

Publication number Publication date
CN102109513B (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
CN102109513B (zh) 一种天然气水合物三维生成开采物性检测实验装置
CN107045054B (zh) 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法
US9841531B2 (en) Three-dimensional simulating device for the stratum stability in the natural hydrate exploitation
CN201747338U (zh) 天然气水合物模拟开采实验装置
WO2021159697A1 (zh) 一种大尺度全尺寸开采井三维综合试验开采系统
CN103233704B (zh) 一种co2/n2置换开采冻土区天然气水合物实验模拟装置
CN101476458B (zh) 一种油藏开发模拟系统、油藏模型本体及其数据处理方法
CN101550816B (zh) 天然气水合物三维开采模拟实验装置
Li et al. Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator
CN103206210B (zh) 热流体压裂开采天然气水合物藏实验装置
Li et al. Experimental investigation into methane hydrate production during three-dimensional thermal huff and puff
CN108386164A (zh) 超重力条件下的天然气水合物热激法开采模拟装置
CN201396129Y (zh) 一种油藏注蒸汽热采多方式联动三维比例模拟系统
Chong et al. Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments
CN102052065A (zh) 天然气水合物模拟开采实验装置
CN101376854A (zh) 模拟三维条件下气体水合物成藏过程的方法及装置
CN107842341A (zh) 一种天然气水合物开采监测模拟装置及方法
CN105571647A (zh) 天然气水合物开采多物理场演化模拟测试装置及方法
CN102305052A (zh) 天然气水合物三维多井联合开采实验装置及其实验方法
Han et al. Experimental study on sediment deformation during methane hydrate decomposition in sandy and silty clay sediments with a novel experimental apparatus
CN108490151A (zh) 天然气水合物降压开采超重力模拟系统
CN103603637B (zh) 一种气体辅助sagd开采超稠油的实验装置及系统
CN101696949B (zh) 柱形水合物沉积物中含相变热传导测量装置
CN102678090A (zh) 天然气水合物三维合成与开采模拟装置
CN101697018B (zh) 一种水合物分解致地层分层破坏的模拟方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant