WO2021159697A1 - 一种大尺度全尺寸开采井三维综合试验开采系统 - Google Patents

一种大尺度全尺寸开采井三维综合试验开采系统 Download PDF

Info

Publication number
WO2021159697A1
WO2021159697A1 PCT/CN2020/114092 CN2020114092W WO2021159697A1 WO 2021159697 A1 WO2021159697 A1 WO 2021159697A1 CN 2020114092 W CN2020114092 W CN 2020114092W WO 2021159697 A1 WO2021159697 A1 WO 2021159697A1
Authority
WO
WIPO (PCT)
Prior art keywords
central vertical
vertical well
scale
reactor
pressure sensor
Prior art date
Application number
PCT/CN2020/114092
Other languages
English (en)
French (fr)
Inventor
李小森
王屹
陈朝阳
夏志明
张郁
李刚
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Priority to US17/251,501 priority Critical patent/US11879322B2/en
Publication of WO2021159697A1 publication Critical patent/WO2021159697A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/002Survey of boreholes or wells by visual inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0099Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimizing the spacing of wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/04Ball valves

Definitions

  • the natural gas hydrate mining field of the present invention specifically relates to a three-dimensional comprehensive test mining system for large-scale full-scale mining wells.
  • Deep-sea oil and gas resources are considered to be an important frontier of the petroleum industry. Deep-water and ultra-deep-water oil and gas resources have become a hot spot for exploitation by Western developed countries such as the United States and the United Kingdom.
  • the main natural gas hydrate resource with a buried depth of 1-3km is generally considered to be an unconventional oil and gas resource with huge untapped reserves and one of the most potential alternative energy sources in the 21st century. Its huge resource potential attracts the continuous in-depth work of various countries in the world in prospecting, experimental mining, and supporting environmental impact assessment.
  • the United States, Canada, Germany, Norway, and neighboring countries such as Japan, India, South Korea, and Vietnam have all formulated long-term research plans for natural gas hydrates.
  • the design requirements of the gas hydrate simulation test device have also evolved from the original single function requirements to the integrated and systematic design requirements.
  • the current gas hydrate simulation test device can also simulate the sedimentary strata of hydrates, and test various physical and chemical properties of the formations when hydrates are formed. Characteristics of formation parameters of hydrates, etc.
  • an embodiment of the present invention provides a large-scale full-scale three-dimensional comprehensive test production system for production wells.
  • a three-dimensional comprehensive test mining system for large-scale and full-scale mining wells including:
  • the reaction kettle is used to prepare natural gas hydrate samples to truly simulate the natural gas hydrate accumulation environment in the seabed sediments;
  • the reaction kettle includes a reaction kettle body and an upper kettle cover installed on the upper end of the reaction kettle body and installed on the reaction kettle body Lower kettle cover on the lower end;
  • Gas injection module used to quantitatively inject gas into the reactor during hydrate synthesis
  • Liquid injection module used to quantitatively inject liquid into the reactor during hydrate synthesis
  • Temperature control module used to control the temperature in the reactor
  • the data acquisition, processing and display module is used to collect, store, process and display the data during the test of the experimental mining system.
  • a central vertical well is penetrated in the middle of the vertical direction of the reactor, and the part of the central vertical well located in the reactor body is provided with boreholes at intervals along the height direction;
  • a reversing ball valve is installed in the upper part of the reactor.
  • One outlet end of the reversing ball valve is connected with a central vertical well discharge pipeline.
  • the central vertical well discharge pipeline is provided with a visible window, and a first Camera and first lighting;
  • An endoscopic camera hose lead is also arranged in the central vertical well, and the endoscopic camera hose lead is arranged in the central vertical well and extends through the reversing ball valve to the outside of the central vertical well; in the endoscopic camera hose lead A second camera and a second illuminating lamp are installed in the bottom end of the second camera, and the second illuminating lamp is located above the second camera and is arranged obliquely;
  • the pictures captured by the first camera and the second camera are transmitted to the data acquisition, processing and display module;
  • a mechanical sensor is also installed in the bottom end of the camera hose lead, and the mechanical sensor transmits the monitored data to the data acquisition and processing display module;
  • the part of the central vertical well located outside the reactor is provided with a visual scale window for grit.
  • the reactor body is divided into several layers from top to bottom, and each layer is distributed with several vertical wells, the vertical well located in the center is a central vertical well, and the rest are non-central vertical wells;
  • Each non-central vertical well is provided with a non-central vertical well outlet pipeline, and each non-central vertical well outlet pipeline is correspondingly connected with a non-central vertical well pressure sensor, a non-central vertical well outlet valve, a differential pressure sensor, and a connection. Valves, all the communicating device valves are connected to the communicating device; the number of the non-central vertical well pressure sensor, the non-central vertical well outlet valve, the differential pressure sensor, the communicating device valve is the same as that of the non-central vertical well;
  • the central vertical well is provided with a central vertical well outlet pipeline, the central vertical well outlet pipeline is connected with a central vertical well pressure sensor and a central vertical well outlet valve in sequence, and the central vertical well outlet valve is connected to a communicating device;
  • each of the non-central vertical well pressure sensor, the central vertical well pressure sensor and the differential pressure sensor are all connected to the display terminal data acquisition and processing display module;
  • the accuracy of the pressure difference sensor is higher than the accuracy of the central vertical well pressure sensor and the non-central vertical well pressure sensor, and the range is smaller than the range of the central vertical well pressure sensor and the non-central vertical well pressure sensor.
  • the communicating device is also provided with a communicating device pressure sensor and a gas injection valve beside it.
  • an upper circulation coil and a lower circulation coil are respectively arranged at the upper and lower ends of the reactor body, and the upper circulation coil and the lower circulation coil adopt independent heat exchange devices to realize the heat transfer medium in the disk.
  • Circulation in the tube; N temperature control tubes are arranged in the reactor body, between the upper circulation coil and the lower circulation coil, so as to generate a vertical temperature gradient in the reactor body, and N is a positive integer; the control The temperature tubes also use independent heat exchange devices to realize the circulation of the heat transfer medium in the temperature control tube.
  • the N temperature control tubes are equidistantly distributed from bottom to top and the temperature difference between the temperature control tubes is constant, and the temperature difference is expressed as:
  • T 1 is the temperature of the lower circulation coil
  • T 2 is the temperature of the upper circulation tube
  • a temperature sensor is also provided in the reactor body to monitor the temperature of the upper circulation coil, the lower circulation coil and the N temperature control tubes, and transmit the monitored temperature data to the temperature control module In the process, the temperature control module adjusts the work of each heat exchange device in real time according to the monitored temperature data, so that the vertical temperature gradient in the reactor body can be kept stable in real time.
  • the reactor body is divided into an upper covering layer, a sediment layer, and a lower covering layer from top to bottom.
  • a displacement sensor fixing plate is also installed in the reaction kettle body, and the displacement sensor fixing plate is evenly fixed and installed.
  • a displacement sensor, the other end of the displacement sensor is retractable and sealed and fixed in the upper thin-walled rubber piston, the upper thin-walled rubber piston is close to the upper covering layer; the data measured by the displacement sensor is transmitted to the data acquisition processing display module .
  • the upper thin-walled rubber piston includes a piston frame and a rubber piston plate with a peripheral seal installed in the piston frame; the upper thin-walled rubber piston also includes a rubber insert, a piston seal ring and a clip; the piston seal The ring is embedded in the groove of the piston frame, the periphery of the rubber piston plate is sealed and installed in the lower surface of the piston frame through a rubber insert, and a clip is embedded in the rubber insert.
  • the three-dimensional comprehensive test production system for large-scale full-scale production wells also includes a stabilized gas production module, which is used for hydrate production to control the pressure drop range and pressure drop rate of the reactor, and to control the gas production, water production, and sand production.
  • a stabilized gas production module which is used for hydrate production to control the pressure drop range and pressure drop rate of the reactor, and to control the gas production, water production, and sand production.
  • the gas injection module includes a natural gas source, a booster pump, a gas flow meter, and a gas switch valve connected in sequence, and the outlet end of the gas switch valve is connected to the reactor;
  • the liquid injection module includes a liquid phase source, a liquid injection pump, a liquid injection thermostat, and a gas switch valve connected in sequence, and the outlet end of the gas switch valve is connected to the reactor
  • the present invention has the following beneficial effects:
  • Figure 1 is a block diagram of the composition of a three-dimensional comprehensive test mining system for large-scale and full-scale mining wells according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of the structure of the reaction kettle of the visual observation scheme
  • Fig. 3 is an enlarged schematic diagram of A in Fig. 2;
  • reactor body 1001, upper cover layer; 1002, sediment layer; 1003, lower cover layer; 11, upper kettle cover; 12, lower kettle cover; 13, center vertical well; 131, borehole; 132 , Grit visual scale window; 14 reversing ball valve; 15, central vertical well straight discharge pipeline; 151, visible window; 16, first camera; 17, endoscopic camera hose lead; 18, second camera; 19, first 2. Illumination lamp.
  • Figure 4 is a schematic cross-sectional view of the reactor in another embodiment
  • Figure 5 is a schematic diagram of the distribution of displacement sensors
  • Figure 6 is a schematic view of the structure of the upper thin-walled rubber piston
  • displacement sensor fixing plate 31, displacement sensor; 32, upper thin-walled rubber piston; 321 piston frame; 322, rubber piston plate; 323, rubber insert; 324, piston seal ring; 325, clip.
  • Figure 7 is a diagram of the well position distribution in the reactor body in an embodiment
  • Figure 8 is a schematic diagram of the composition of the flow field measuring device
  • non-central vertical well pressure sensor 21, non-central vertical well outlet valve; 22, communicating device valve; 23, differential pressure sensor; 24, communicating device; 25, central vertical well outlet valve; 26, central vertical Well pressure sensor; 27.
  • Central vertical well outlet pipeline; 28. Communicator pressure sensor; 29. Gas injection valve; 200. Non-central vertical well outlet pipeline.
  • Figure 9 is a schematic diagram of the structure of the reactor kettle in an embodiment
  • Figure 10 is a schematic diagram of the distribution of the lower circulation coil
  • Figure 11 is a schematic diagram of the distribution of the upper circulating coil
  • the terms “installation” and “connection” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral Ground connection; it can be a mechanical connection, an electrical connection, or a signal connection; it can be a direct connection or an indirect connection through an intermediate medium, which can be said to be the internal communication between the two components.
  • installation and “connection” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral Ground connection; it can be a mechanical connection, an electrical connection, or a signal connection; it can be a direct connection or an indirect connection through an intermediate medium, which can be said to be the internal communication between the two components.
  • the large-scale full-scale production well three-dimensional comprehensive test production system includes a reactor 1, a gas injection module 2, a liquid injection module 3, a temperature control module, and a data acquisition and processing display module 4.
  • the reactor 1 is divided into an upper covering layer 1001, a deposit layer 1002, and a lower covering layer 1003 from top to bottom.
  • the reaction vessel 1 includes a reaction vessel body 10, an upper vessel cover 11 installed on the upper end surface of the reaction vessel body 10, and a lower vessel cover 12 installed on the lower end surface of the reaction vessel body 10;
  • the internal volume of the reaction vessel body 10 is 2500L, and the pressure range is 0- 30MPa, the pressure control accuracy is ⁇ 0.1MPa, the temperature range is -15-130°C, and the temperature control accuracy is ⁇ 0.5°C.
  • the reactor body 10 is made of high-strength alloy steel with internal overlay welding stainless steel, and the reactor cover adopts a flat head and flange connection structure.
  • the above-mentioned gas injection module 2 includes a natural gas source 51, a booster pump 52, a gas flow meter 53, and a gas switch valve 54 connected in sequence.
  • the outlet end of the gas switch valve 54 is connected to the reactor 1;
  • the liquid injection module 3 It includes a liquid phase source 61, a liquid injection pump 62, a liquid injection thermostat 63, and a gas switch valve 64 connected in sequence.
  • the outlet end of the gas switch valve 64 is connected to the reactor 1.
  • the gas injection module 2 and the liquid phase source 61 inject natural gas and liquid into the reactor to prepare natural gas hydrate samples in the reactor.
  • the above-mentioned three-dimensional comprehensive test production system for large-scale and full-scale production wells also includes a stabilized gas production module, which is used for hydrate production, to control the pressure drop range and rate of the reactor, and to separate the three-phase gas production, water production, and sand production. And measurement.
  • a stabilized gas production module which is used for hydrate production, to control the pressure drop range and rate of the reactor, and to separate the three-phase gas production, water production, and sand production. And measurement.
  • the starting point of visualization technology in the field of natural gas hydrate is to observe the formation, distribution, and decomposition characteristics of natural gas hydrate. Including like a visible window installed on the wall of the reactor, inserting a camera from the center vertical well and aiming at the reactor to take pictures of the distribution of porous medium hydrates. Some very small gas hydrate reactors will be made into transparent water baths and transparent reactions. Some of the autoclaves directly use XRD, CT and other imaging techniques to realize visualization and so on.
  • X-ray CT imaging technology depends on the object to be measured
  • the hydrate is mainly composed of natural gas (mainly methane molecules) and water molecules. The molecular weights of the two are close. X-ray CT is difficult to distinguish between them.
  • phase state imaging accuracy of natural gas hydrate is extremely limited; central vertical well imaging
  • the technology is currently immature; the characteristics of natural gas hydrate extraction such as multiphase flow and sand production in the central vertical well have not been visualized; the outlet pipe flow has not been observed and tested in real time; the observation and measurement of the amount of sedimentation have not been paid attention to, etc.
  • a central vertical well 13 is provided in the middle of the vertical direction of the reactor 1, and the part of the central vertical well 13 located in the reactor body 10 is along its height.
  • Wellbore holes 131 are arranged at intervals in the direction; a reversing ball valve 14 is installed in the upper part of the central vertical well 13 outside the reactor 1, and an outlet end of the reversing ball valve 14 is connected with a central vertical well discharge pipeline 15, and
  • the fluid flow direction in the central vertical well 13 can be changed under the action of the reversing ball valve 14, so that the pipe flow of the central vertical well 13 flows to the central vertical well discharge pipeline 15, and the central vertical well discharge pipeline 15 is provided with a
  • the window 151 is provided with a first camera 16 and a first illuminating lamp on the periphery of the window 151 to capture the pipe flow in the central vertical well discharge pipeline 15, so that under the action of the first camera 16, it can be real-time
  • the pipe flow discharged from the central vertical well 13 can be
  • An endoscopic camera hose lead 17 is also provided in the central vertical well 13.
  • the endoscopic camera hose lead 17 is arranged in the central vertical well 13 and extends through the reversing ball valve 14 to the outside of the central vertical well 13 so that The endoscopic camera hose lead 17 can move up and down in the central vertical well 13 and rotate 360°; as shown in Figure 3, a second camera 18 and a second camera 18 and a second camera are installed in the bottom end of the endoscopic camera hose lead 17.
  • the illuminating lamp 19 and the second illuminating lamp 19 are located above the second camera 18 and arranged obliquely, so that the second camera 18 can take pictures clearly.
  • the second camera 18 and the second illuminating lamp 19 can move up and down in the central vertical well 13 with the endoscopic camera hose lead 17, while the second camera 18 and the second The illuminating lamp 19 can rotate 360°.
  • the observation of multiphase flow and sand production in any geological layer and any position can be done through the endoscopic camera hose lead 17, the second camera 18 and the second illumination
  • the lamp 19 is moved to the designated place and aimed at the borehole 131 in this direction.
  • the second illuminating lamp 19 provides an oblique light source to facilitate the shooting of the second camera 18, so that the sand production of different geological layers can be observed, including Sand production time, sand blasting phenomenon, sand production volume and other information, and can be rotated to take local shots of the wellbore, and observe the sand production speed and gas production speed of a single hole at a certain wellbore.
  • the second camera 18 and the second illuminating lamp 19 can be selected according to the needs of the experiment. They need to be displaced to the designated observation point when they are needed, and they do not need to be contracted to the upper storage space of the reversing ball valve 14 without affecting the vertical pipe flow. It is also a kind of protection.
  • infrared and ultrasonic measuring devices can also be installed on the lead of the endoscopic camera hose to measure the velocity of the fluid to obtain more information in the center vertical well.
  • a mechanical sensor (not shown) is also installed in the bottom end of the camera hose lead 17, and the mechanical sensor collects and processes the monitored data in the display module 4. In this way, while observing the sandblasting, The mechanical sensor can transmit the information of the sand particles to the data acquisition and processing display module 4 for analysis, and can obtain information such as the particle size of some sand particles to realize the visualization of the sand particles.
  • the part of the central vertical well 13 outside the reactor is provided with a grit visible scale window 132, which is a sapphire visible window with a scale display, so that the amount of grit at the bottom of the central vertical well can be visually observed.
  • the first camera can take real-time pictures of the discharged pipe flow
  • the first camera and the second camera transmit the captured images to the data acquisition and processing display module to realize imaging in the central vertical well; while observing the sandblasting, the mechanical sensor transmits the sand information to the data acquisition processing display module 4 for analysis, and obtains The particle size information of sand particles can realize the visualization of sand particles;
  • the information of the fluid in the discharge pipeline for hydrate mining including whether the pipe flow contains hydrate phase; whether it contains sand, and if it contains sand, the information on the particle size of the sand; the observation of the gas phase and the water phase of the pipe flow, etc.
  • the movability and 360°rotatability of its camera device can be used to take local shots of the wellbore, and observe the sand production speed and gas production speed of a single hole at a certain wellbore;
  • the position of the camera can be selected according to the needs of the experiment, it needs to be displaced to the specified observation point when it takes time, and it does not need to be contracted to the storage space above the ball valve, which will not affect the vertical pipe flow, and it is also a protection for the camera;
  • the camera in the central vertical well can be equipped with mechanical sensors and other devices to measure the sandblasting and multiphase flow of the wellbore to obtain more information;
  • a displacement sensor fixing plate 30 is also installed in the reaction kettle body 10, and a plurality of displacement sensors are uniformly fixed and installed in the displacement sensor fixing plate 30 31.
  • the other end of the displacement sensor 31 is retractable and sealed and fixed in the upper thin-walled rubber piston 32, and the upper thin-walled rubber piston 32 is in close contact with the upper covering layer 1001.
  • the natural gas hydrate will deform when the sediment layer is decomposed, which will affect the stability of the upper covering layer and cause the deformation of the upper covering layer.
  • the upper thin-walled rubber piston connecting the displacement sensor and the upper covering layer can follow The deformation and deformation of the upper cover layer can accurately transmit the settlement deformation of the upper cover layer to the displacement sensor.
  • the upper thin-walled rubber piston 32 includes a piston frame 321 and a rubber piston plate 322 whose periphery is sealed and mounted in the piston frame 321; the upper thin-walled rubber piston also includes a rubber insert 323, a piston seal 324 and a clip 325;
  • the piston seal ring 324 is embedded in the groove of the piston frame 321, the periphery of the rubber piston plate 322 is sealed and installed in the lower surface of the piston frame 321 through a rubber insert 323, and a clip is also embedded in the rubber insert 323. 325.
  • the above-mentioned displacement sensor 31 uses an axial rigid head LVDT high-precision displacement sensor: brand: imported Abeck sensor, model: LCA50, measurement and control range: 0-50mm, measurement resolution: 0.001mm, measurement accuracy: ⁇ 0.2%FS.
  • the measurement range is large, the measurement range is the sum of the piston range and the elastic limit of the rubber piston plate;
  • the device has good sealing performance and high pressure resistance, and will not affect the natural gas hydrate experimental system, because the rubber piston plate is high pressure resistant, and the piston seal ring can effectively seal the telescopic movement of the piston frame;
  • the current flow field measurement devices are mostly visualization equipment, such as some light generators combined with imaging devices such as cameras, or some installations. Visualized windows and other equipment are used to observe, photograph and record changes in the flow field to achieve the measurement effect of the flow field.
  • most natural gas hydrates are attached to the porous medium, and the porous medium can only be observed through the window system. It is difficult for the photography equipment to penetrate the reactor, and it is also difficult to take pictures in the environment of the reactor. None of these methods can effectively observe or measure the flow field in the reactor.
  • each layer in the reactor body is symmetrically distributed with nine vertical wells, numbered 1-A, 2-A,..., 9-B, 9-C, respectively,
  • the vertical well 9-B located in the center is the central vertical well, and the other vertical wells are all non-central vertical wells.
  • all non-central vertical well outlet pipelines 200 except the 9-B vertical well are sequentially connected to the non-central vertical well pressure sensor 20, the non-central vertical well outlet valve 21, and one end of the differential pressure sensor 23.
  • the other end of the sensor 23 is connected to the communicating device valve 22, the communicating device valve 22 is collected to the communicating device 24, and the other end of the communicating device 24 is sequentially connected to the central vertical well outlet valve 25, the central vertical well pressure sensor 26, and the central vertical well outlet pipeline 27.
  • the numbers of the 26 differential pressure sensors are A1, B1, C1, A2,..., A9, C9, which respectively represent the differential pressure sensors connecting wells 1-A and 9-B, and connecting wells 1-B and 9-B.
  • Differential pressure sensor ..., connect the differential pressure sensor of well 9-A and well 9-B, connect the differential pressure sensor of well 9-C and well 9-B.
  • the accuracy of the differential pressure sensor 23 is higher than the accuracy of the central vertical well pressure sensor 26 and the non-central vertical well pressure sensor 20, and the range is smaller than the range of the central vertical well pressure sensor 26 and the non-central vertical well pressure sensor 20.
  • the accuracy of the sensor cannot measure a small pressure difference.
  • the differential pressure sensor 23 has higher accuracy.
  • the pressure displayed by the pressure sensor may be the same, but the differential pressure sensor can measure the pressure difference, and the pressure difference is relatively large.
  • the range of the differential pressure sensor is exceeded, the differential pressure sensor will be damaged, that is to say, the differential pressure sensor has high accuracy but a small range.
  • the pressure sensor has a large range, but the accuracy is not enough, so the two must be used in conjunction with each other.
  • the flow field in the reactor can be quantified by the pressure difference of each point in the reactor, which is accurate and efficient; the measuring point of the central vertical well is connected to the measuring point of each vertical well to measure the pressure difference.
  • the simulated flow field is easier to analyze the gas-liquid flow trend in the reactor; the initial judgment is made through the information fed back by the pressure sensor, and then it is decided whether to turn on the differential pressure sensor.
  • the flow field in the reactor can be measured under the working condition of small difference, and the differential pressure sensor can also be effectively protected.
  • the entire measuring device is connected through the outlet pipeline of the vertical well, that is to say, the entire measuring device can be connected to the reactor, that is, the differential pressure sensor and the communicating device are both installed outside the reactor, and there is no need to hydrate the entire natural gas.
  • the large-scale transformation of the physical system will not cause damage to the existing experimental device.
  • this device can be added at any time.
  • each non-central vertical well pressure sensor 20, central vertical well pressure sensor 26, and differential pressure sensor 23 are all connected to the data acquisition and processing display module 4.
  • the data acquisition and processing display module 4 can be used in real time. Display and record related data, so that the flow field in the reactor can be measured in real time. .
  • the aforementioned communicating device 24 is further provided with a communicating device pressure sensor 28 and a gas injection valve 29 beside it.
  • the gas injection valve 29 can be used to test the differential pressure sensor 23.
  • the specific method is to close the non-central vertical well outlet valve, so that the pressure value of the end connecting the differential pressure sensor sensor and the non-central vertical well outlet valve is consistent.
  • the differential pressure is at this time
  • the differential pressure measured by the sensor should be consistent, and the differential pressure sensor that does not show differential pressure or has a significant difference in differential pressure should be replaced or repaired.
  • the pressure sensor and the differential pressure sensor are connected to the data acquisition and processing display module, which can measure the flow field in the reactor in real time;
  • the external differential pressure sensor reflects the design of the flow field in the reactor and will not affect the natural gas hydrate experiment
  • the design of the communicating device can detect the differential pressure sensor without the natural gas hydrate experimental system, and the operation is simple, safe and reliable.
  • the existing gas hydrate experimental equipment scales are not enough to have a temperature gradient compared with the actual formation environment. Therefore, most gas hydrate reactors are made of constant temperature water baths.
  • the gas hydrate reservoir is affected by the formation. The influence of temperature, temperature changes with depth, there is a certain temperature difference and temperature gradient, and the existence of this temperature gradient will have a certain impact on the formation and production of natural gas hydrates, which needs to be closer to the actual mining situation.
  • the large-scale natural gas hydrate equipment in China has higher requirements for simulating the formation temperature gradient. How to accurately control the formation temperature gradient to realize the in-situ temperature field simulation of the NGH reservoir is the current technical problem to be solved.
  • an upper circulation coil 41 and a lower circulation coil 42 are respectively arranged at the upper and lower ends of the reactor body.
  • the upper circulation coil 41 and the lower circulation coil 42 are both independent
  • the heat exchange device (not shown) realizes the circulation of the heat transfer medium in the coil.
  • the heat exchange device has the functions of cooling, heating and constant temperature.
  • the upper and lower parts of the reactor body can form isothermal surfaces. However, if only the upper and lower parts of the reactor form isothermal surfaces, it will not be possible to do around the reactor.
  • N temperature control tubes 43 are arranged in the reactor body 10, between the upper circulation coil 41 and the lower circulation coil 42, so that a vertical temperature is generated in the reactor body 10.
  • N is a positive integer.
  • the number of temperature control tubes 43 can be determined according to actual needs. In some embodiments, N is 3, that is, three temperature control tubes 43 are arranged, and each temperature control tube 43 is also independent The heat exchange device to realize the circulation of the heat transfer medium in the temperature control tube.
  • the design of the upper and lower circulation coils guarantees the stability of heating.
  • the function of heating and constant temperature so that the temperature of each temperature control tube can be adjusted individually, so that the formation temperature gradient can be simulated in the reactor body.
  • the N temperature control tubes are equally spaced from bottom to top and the temperature difference between the temperature control tubes is constant. In this way, it is possible to realize the equidistant top-down arrangement with the isothermal difference from low temperature to high temperature.
  • the lower circulating coil 42 is set to high temperature T1
  • the upper circulating coil 41 is set to low temperature T2
  • the reactor body 10 is also provided with a temperature sensor for detecting the upper circulation coil 41 and the lower circulation coil. 42 and N temperature control tubes 43, and transmit the monitored temperature data to the temperature control module.
  • the temperature control module adjusts the work of each heat exchange device in real time according to the monitored temperature data to ensure that the reactor body
  • the vertical temperature gradient maintains a steady state in real time.
  • the direct temperature gradient temperature difference control is 5°C
  • the temperature control accuracy is ⁇ 0.5°C.
  • the arrangement of the lower circulation coil 42 in the reactor body is to avoid sand injection holes, lower central well vias, and liquid injection and gas injection holes under the premise of uniform heating.
  • the specific shape arrangement is shown in Figure 10 As shown, the heating or cooling method is a water bath; similarly, the arrangement of the upper circulating coil 41 in the reactor is to avoid the upper central well via holes, well patterns, and installation holes for measuring points under the premise of satisfying uniform heating. , The specific shape arrangement is shown in Figure 11.
  • the design of the upper and lower circulation coils ensures stable heating and uniform heat dissipation without affecting other operations of the reactor, such as sand filling, liquid injection and gas injection, etc.;
  • the upper and lower circulation coils adopt independent heat exchange devices to circulate, and the upper and lower circulation coils can work at the same time, and have the functions of cooling, heating and constant temperature;
  • the temperature control tube adopts an independent heat exchange device cycle, can work at the same time, and has the functions of cooling, heating and constant temperature;
  • the vertical temperature gradient is controlled by the test output signal feedback of the temperature measuring column set in the reactor to ensure that the formation temperature gradient can maintain a stable state in real time and achieve the most realistic simulation of the formation;
  • the entire formation temperature gradient simulator can accurately control the formation temperature gradient to realize the in-situ temperature field simulation of the NGH reservoir.
  • the large-scale and full-scale three-dimensional comprehensive test mining system for mining wells provided by this embodiment has the following technical advantages:

Abstract

一种大尺度全尺寸开采井三维综合试验开采系统,包括:反应釜(1),用于制备天然气水合物样品,真实模拟海底沉积层中天然气水合物成藏环境;反应釜包括反应釜体(10)以及安装在反应釜体上端面的上釜盖(11)以及安装在反应釜体下端面的下釜盖(12);气体注入模块(2),用于水合物合成时定量向反应釜注入气体;液体注入模块(3),用于水合物合成时向反应釜定量注入液体;温度控制模块,用于控制反应釜内的温度;数据采集处理显示模块(4),用于采集、存储、处理和显示试验开采系统进行试验时的数据。该系统可以制备天然气水合物样品,在不同井网布置形式下开展降压、注热等开采试验模拟研究,以及研究开采过程中水合物分解、气液渗流、传热、沉积物稳定性。

Description

一种大尺度全尺寸开采井三维综合试验开采系统 技术领域
本发明天然气水合物开采领域,具体涉及一种大尺度全尺寸开采井三维综合试验开采系统。
背景技术
深海油气资源被认为是石油工业的一个重要前沿领地,深水、超深水油气资源已成为美、英等西方发达国家竞相开采的热点。埋藏海深1-3km的天然气水合物主资源,被普遍认为是尚未开发的储量巨大的一种非常规油气资源,也是21世纪最有潜力的替代能源之一。它巨大的资源潜力吸引着世界各国在勘查、试验开采、配套环境影响评价等方面的工作不断深入。美国、加拿大、德国、挪威以及我国周边的日本、印度、韩国、越南等国家都制定了天然气水合物长期研究计划。
随着天然气水合物研究工作的不断深入,已经发展出了一批模拟水合物生成和开采过程的试验装置,比如专利文献CN102305052A所公开的天然气水合物三维多井联合开采实验装置及其实验方法,该实验装置通过实验实现对水合物多井开采的模拟,从而使三维模拟实验得到扩展,为大规模开采天然气水合物提供实验基础和依据。但随着研究的不断深入,对于此类试验装置的要求越来越高,当前国内和国际上对于天然气水合物的试验模拟装置的要求大致如下:
(1)试验综合性越来越强
随着科学研究的不断深入,科学研究已经成单一化想跨学科化和集成化发展。天然气水合物模拟试验装置的设计要求也由原来的单一功能需求演变成了集成化系统化的设计要求。根据调研发现,现在的天然气水合物模拟试验装置,除了模拟水合物的物相态关系以外,还可以模拟水合物的沉积地层,测试在有无水合物生成时地层的各项物理化学属性,研究水合物的地层参数特性等。
(2)可视化程度越来越高
宏观科学发展到一定地步后,已经不足以解释主动物理现象,为尽可能清楚了分析和了解天然气水合物的各项机理特性,对试验模拟系统提出了更高的功能性要求,希望能够通过可视化技术实时采集地层内天然气水合物的生成、聚集和分解等物相态变化过程。甚至能够通过其他测试设备对研究对象进行微观世界的观测和记录分析。
(3)试验模拟的环境条件越来越苛刻
随着天然气水合物实地取样的不断深入,对天然气水合物是成藏环境越来越清晰,也堆试验模拟装置提出了新的挑战。巨大的地层压力以及较低的环境温度是天然气水合物生成的必要条件。为创造这一条件,也堆试验模拟系统提出了更高要求。如何能够精确的控制模拟环境,如何保证各试验装置在苛刻的环境条件下正常工作,如何保证试验装置在如此环境条件下结构可靠性较高都是试验系统设计研究的重点内容。
(4)测量精度越来越高
为精确解读天然气水合物的成藏状态以及开采方式对地层的影响等,真实反映天然气水合物在地层中的各种特性,了解并掌握各项机理关系,对试验模拟系统的测试能力提出了更高要求。高精度测量,高精度控制是实现精确模拟的必要前提,为实现这一目的,除了选用可靠准确的传感器以外,也对设计方案提出了更高要求,如何合理的布置和使用传感器等各类元器件设备,也是影响试验模拟装置测量精度的重要内容。
发明内容
为了至少满足上述天然气水合物的试验模拟装置的要求之一,本发明实施例提供了一种大尺度全尺寸开采井三维综合试验开采系统。
为实现上述目的,本发明的技术方案是:
一种大尺度全尺寸开采井三维综合试验开采系统,包括:
反应釜,用于制备天然气水合物样品,真实模拟海底沉积层中天然气水合物成藏环境;所述反应釜包括反应釜体以及安装在反应釜体上端面的上釜盖以及安装在反应釜体下端面的下釜盖;
气体注入模块,用于水合物合成时定量向反应釜注入气体;
液体注入模块,用于水合物合成时向反应釜定量注入液体;
温度控制模块,用于控制反应釜内的温度;
数据采集处理显示模块,用于采集、存储、处理和显示试验开采系统进行试验时的数据。
进一步地,在所述反应釜的垂直方向中部贯穿设置有中心垂直井,所述中心垂直井位于反应釜体内的那一部分沿着其高度方向间隔设置有井眼孔;在所述中心垂直井位于反应釜之外的上部中安装有换向球阀,换向球阀的一出口端连接安装有中心垂直井排出管线,在中心垂直井排出管线上设置有可视窗,在可视窗的周边设置有第一摄像机以及第一照明灯;
在所述中心垂直井内还设置有内窥摄像软管引线,内窥摄像软管引线设置在中心垂直井内并穿过换向球阀延伸至中心垂直井之外;在所述内窥摄像软管引线的底端中安装有第二摄 像机和第二照明灯,第二照明灯位于第二摄像机的上方并倾斜设置;
所述第一摄像机和第二摄像机所拍摄到的画面传输至数据采集处理显示模块;
在所述窥摄像软管引线的底端中还安装有力学传感器,所述力学传感器将其监测得到的数据传输至数据采集处理显示模块中;
位于反应釜之外的那一部分中心垂直井设置有沉砂可视刻度窗。
进一步地,所述反应釜体内由上至下分为若干层,每一层分布着若干口垂直井,位于中心的那一口垂直井为中心垂直井,其余的为非中心垂直井;
每一非中心垂直井均设置有非中心垂直井出口管线,每一非中心垂直井出口管线均对应地依次连通安装有非中心垂直井压力传感器、非中心垂直井出口阀门、差压传感器、连通阀门,所有的连通器阀门均汇集连通至连通器;所述非中心垂直井压力传感器、非中心垂直井出口阀门、差压传感器、连通器阀门的个数和非中心垂直井相同;
所述中心垂直井设置有中心垂直井出口管线,中心垂直井出口管线依次连通安装有中心垂直井压力传感器和中心垂直井出口阀门,中心垂直井出口阀门连通至连通器;
所述每一非中心垂直井压力传感器、中心垂直井压力传感器以及差压传感器的数据输出端均连接至显示终端数据采集处理显示模块中;
所述压差传感器的精度高于中心垂直井压力传感器和非中心垂直井压力传感器的精度,量程小于中心垂直井压力传感器和非中心垂直井压力传感器的量程。
进一步地,所述连通器还旁设有连通器压力传感器和注气阀。
进一步地,在所述反应釜体内的上下两端分别布置有上循环盘管和下循环盘管,所述上循环盘管和下循环盘管均采用独立的热交换装置来实现热传导介质在盘管内的循环;在所述反应釜体内、上循环盘管和下循环盘管之间间隔设置有N根控温管,以使得在反应釜体内产生垂直温度梯度,N为正整数;所述控温管也均是采用独立的热交换装置来实现热传导介质在控温管内的循环。
进一步地,所述N根控温自下而上等距分布且控温管之间的温差恒定,温差表示为:
ΔT=(T 1-T 2)/(N+1);其中,T 1为下循环盘管的温度,T 2为上循环管的温度,T 1>T 2
进一步地,在所述反应釜体内还设置有温度传感器,以用于监测上循环盘管、下循环盘管以及N根控温管的温度,并将所监测到的温度数据传输至温度控制模块中,由温度控制模块根据所监测到温度数据来实时调整各热交换装置的工作,以使得反应釜体内的垂直温度梯度实时保持稳定状态。
进一步地,所述反应釜体内自上而下分为上覆盖层、沉积物层以及下覆盖层,在反应釜 体内还安装有位移传感器固定板,在位移感器固定板中均匀固定安装有多个位移传感器,位移传感器的另一端可伸缩并密封固定在上薄壁橡胶活塞中,该上薄壁橡胶活塞紧贴上覆盖层;所述位移传感器传感器所测量到数据传输至数据采集处理显示模块。
进一步地,所述上薄壁橡胶活塞包括活塞骨架以及周边密封安装在活塞骨架中的橡胶活塞板;该上薄壁橡胶活塞还包括有橡胶嵌件、活塞密封圈以及卡夹;所述活塞密封圈嵌装在活塞骨架的槽位中,橡胶活塞板的周边通过橡胶嵌件密封安装在活塞骨架的下表面中,在橡胶嵌件中还嵌装有卡夹。
进一步地,所述大尺度全尺寸开采井三维综合试验开采系统还包括稳压产气模块,用于水合物开采时,控制反应釜的降压幅度及降压速率,并对产气产水产砂三相分离及计量;
所述气体注入模块包括依次连接的天然气源、增压泵、气体流量计以及气体开关阀,气体开关阀的出口端连通至反应釜;
所述液体注入模块包括依次连接的液相源、注液泵、注液温控器以及气体开关阀,气体开关阀的出口端连通至反应釜
本发明与现有技术相比,其有益效果在于:
(1)制备天然气水合物样品,真实模拟南海3000m水深沉积层中天然气水合物成藏环境;
(2)开展不同井网布置形式下,降压、注热等开采试验模拟研究;
(3)开展全尺寸井开采研究,优化开采井结构、产砂防砂方式研究;
(4)研究开采过程中水合物分解、气液渗流、传热,沉积物稳定性机理。
附图说明
图1为本发明实施例挺的大尺度全尺寸开采井三维综合试验开采系统的组成框图;
图中:1、反应釜;2、气体注入模块;3、液体注入模块;4、数据采集处理显示模块;51、天然气源;52、增压泵;53、气体流量计;54、气体开关阀;61、液相源;62、注液泵;63、注液温控器;64、气体开关阀;
图2为可视化观察方案反应釜的结构示意图;
图3为图2中A处的放大示意图;
图中:10反应釜体;1001、上覆盖层;1002、沉积物层;1003、下覆盖层;11、上釜盖;12、下釜盖;13、中心垂井直;131、井眼孔;132、沉砂可视刻度窗;14换向球阀;15、中心垂井直排出管线;151、可视窗;16、第一摄像机;17、内窥摄像软管引线;18、第二摄像机;19、第二照明灯。
图4为在另一实施例中反应釜的剖面示意图;
图5为位移传感器的分布示意图;
图6为上薄壁橡胶活塞的结构示意图;
图中:30、位移传感器固定板;31、位移传感器;32、上薄壁橡胶活塞;321活塞骨架;322、橡胶活塞板;323、橡胶嵌件;324、活塞密封圈;325、卡夹。
图7为一实施例中反应釜体内井位分布图;
图8为流场测量装置的组成示意图;
图中:20、非中心垂直井压力传感器;21、非中心垂直井出口阀门;22、连通器阀门;23、差压传感器;24、连通器;25、中心垂直井出口阀门;26、中心垂直井压力传感器;27、中心垂直井出口管线;28、连通器压力传感器;29、注气阀;200、非中心垂直井出口管线。
图9为一实施例中反应釜釜的结构示意图;
图10为下循环盘管的分布示意图;
图11为上循环盘管的分布示意图;
图中:41、上循环盘管;42、下循环盘管;43、控温管。
具体实施方式
实施例:
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接、信号连接;可以是直接相连,也可以是通过中间媒介间接连接,可以说两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明的具体含义。下面结合附图和实施例对本发明的技术方案做进一步的说明。
参阅图1-11所述,本实施例提供的大尺度全尺寸开采井三维综合试验开采系统包括反应釜1、气体注入模块2、液体注入模块3、温度控制模块以及数据采集处理显示模块4。
其中,用于制备天然气水合物样品,真实模拟南海3000米水深沉积层中天然气水合物成藏环境(温度、压力、沉积物、气-水-水合物饱和度),与其他模块结合实现试验装置其他功能等,反应釜1内自上而下分为上覆盖层1001、沉积物层1002和下覆盖层1003。该反应釜1包括反应釜体10以及安装在反应釜体10上端面的上釜盖11以及安装在反应釜体10下端面的下釜盖12;反应釜体10内部容积2500L,压力范围为0-30MPa,控压精度±0.1MPa,温度范围为-15-130℃,控温精度为±0.5℃。反应釜体10材质采用高强度合金钢内部堆焊不 锈钢,反应釜盖采用平板封头,法兰连接结构。
具体地,上述的气体注入模块2包括依次连接的天然气源51、增压泵52、气体流量计53以及气体开关阀54,气体开关阀54的出口端连通至反应釜1;该液体注入模块3包括依次连接的液相源61、注液泵62、注液温控器63以及气体开关阀64,气体开关阀64的出口端连通至反应釜1。气体注入模块2和液相源61向反应釜注入天然气和液体即可以在反应釜内制备出天然气水合物样品。上述的大尺度全尺寸开采井三维综合试验开采系统还包括稳压产气模块,用于水合物开采时,控制反应釜的降压幅度及降压速率,并对产气产水产砂三相分离及计量。
由于现有技术无法可视化观察反应釜内天然气水合物的生成特性。目前天然气水合物领域可视化技术的出发点都是想观察天然气水合物的生成特性,分布情况,分解特性。包括像安装在反应釜壁上的可视窗,从中心垂直井插入摄像头对准反应釜拍摄多孔介质水合物分布情况,有一些很小型的天然气水合物反应釜会做成透明的水浴,透明的反应釜,有些直接利用XRD、CT之类的成像技术,实现可视化等。摄像头想直接拍摄多孔介质里的水合物难以现实,大多被多孔介质包裹,无法拍摄;透明反应釜造价太高,不能适用大部分的天然气水合物反应釜;X射线CT成像技术依赖于待测物体的密度差异,而水合物主要由天然气(主要为甲烷分子)和水分子组成,两者分子量接近,X射线CT难以将其区分,因而天然气水合物的相态成像精度极为有限;中心垂直井成像技术目前不成熟;未对中心垂直井内多相流、出砂等天然气水合物开采的特性进行可视化;未对出口管流进行实时观察检测;未重视对沉砂量的观察与测量等等
因此在一些实施例中,如图2-3所示,在该反应釜1的垂直方向中部贯穿设置有中心垂直井13,该中心垂井直13位于反应釜体10内的那一部分沿着其高度方向间隔设置有井眼孔131;在该中心垂直井13位于反应釜1之外的上部中安装有换向球阀14,该换向球阀14的一出口端连接安装有中心垂直井排出管线15,如此,在换向球阀14的作用下可以改变中心垂直井13内的流体流向,使得中心垂直井13的管流流向中心垂直井排出管线15,而在该中心垂直井排出管线15上设置有可视窗151,在可视窗151的周边设置有第一摄像机16以及第一照明灯,以用于拍摄中心垂直井排出管线15内的管流情况,如此在第一摄像机16的作用下即可以实时地拍摄中心垂直井13排出的管流情况,可以对出中心垂直井13的水平管流进行可视化,能得到水合物开采排出管线内流体的信息,包括管流是否含水合物相;是否含砂,含砂的话,含砂粒径信息。
在中心垂直井13内还设置有内窥摄像软管引线17,该内窥摄像软管引线17设置在中心 垂直井13内并穿过换向球阀14延伸至中心垂直井13之外,以使得内窥摄像软管引线17能在中心垂直井13内上下移动以及360°旋转;如图3所示,在所述内窥摄像软管引线17的底端中安装有第二摄像机18和第二照明灯19,第二照明灯19位于第二摄像机18的上方并倾斜设置,以便于第二摄像机18清楚地拍摄。如此,通过牵拉内窥摄像软管引线17,第二摄像机18和第二照明灯19可随着内窥摄像软管引线17在中心垂直井13内上下移动,同时第二摄像机18和第二照明灯19可以360°旋转,天然气水合物开采时,对任意地质层,任意位置的多相流和出砂情况的观察,就通过内窥摄像软管引线17,第二摄像机18和第二照明灯19位移到指定地方,对准该方位上的井眼131,第二照明灯19提供斜向光源,方便第二摄像机18的拍摄,如此就可以观察各个不同的地质层的出砂情况,包括出砂时间,喷砂现象,出砂的量等信息,并可旋转性对井眼进行局部拍摄,观察到某一井眼处的单孔出砂速度,出气速度等。同时,该第二摄像机18和第二照明灯19可以随实验需要选择位置,需要用时位移至制定观测点,不需要用时收缩至换向球阀14上部存储空间,不会影响垂直管流,对摄像机同时也是一种保护。此外,还可以在内窥摄像软管引线上安装红外线超声波等测量装置对流体测速,获得更多中心垂直井内的信息。
此外,该窥摄像软管引线17的底端中还安装有力学传感器(未图示),该力学传感器将其监测得到的数据采集处理显示模块4中,如此,在对喷砂观察的同时,力学传感器可以将砂粒的信息传输至数据采集处理显示模块4进行分析,可以得到部分砂粒的粒径等信息,实现砂粒的可视化。此外,位于反应釜之外的那一部分中心垂直井13设置有沉砂可视刻度窗132,是一个带有刻度显示的蓝宝石可视窗,如此即可以可视化地观察中心垂直井底部的沉砂量。
天然气水合物开采时,对任意地质层,任意位置的多相流和出砂情况的观察,拉动内窥摄像软管引线,移动第二摄像机和第二照明灯位移到指定地方,并旋转对准第二摄像机和第二照明灯,以对准该方位上的井眼,观察单孔出砂情况、产气情况以及垂直中心垂直井内多相流实时监测;
在第一照明灯的照射作用下,第一摄像机可以实时拍摄排出的管流情况;
第一摄像机和第二摄像机将拍摄的影像传输至数据采集处理显示模块,实现中心垂直井内成像;对喷砂观察的同时,力学传感器将砂粒的信息传输至数据采集处理显示模块4进行分析,得到砂粒的粒径信息,实现砂粒的可视化;
当不需要进行垂直中心垂直井内摄像时,拉动内窥摄像软管引线,将第二摄像机和第二照明灯位移至换向球阀上方,转动换向球阀,对其进行保护。
如此,通过在反应釜内安装有上述的仪器装置,可可视化观察天然气水合物生成特性,可以完成中心垂直井内成像,实时观察中心垂直井内的多相流,包括多相流中除了气液砂,是否含有水合物相,流体的流速是怎样的动态变化情况等;可以观察各个不同的地质层的出砂情况,包括出砂时间,喷砂现象,出砂的量等信息;可以随实验需要选择位置,需要用时位移至制定观测点,不需要用时收缩至球阀上部存储空间,不会影响垂直管流,对摄像机同时也是一种保护;可以对出中心垂直井的水平管流进行可视化,能得到水合物开采排出管线内流体的信息,包括管流是否含水合物相;是否含砂,含砂的话,含砂粒径信息;气相和水相的管流观察等。
因此,通过采用图2-3的方案,其与现有技术相比具有如下技术优势:
(1)可以完成中心垂直井内成像;
(2)可以实时观察中心垂直井内的多相流,包括多相流中除了气液砂,是否含有水合物相,流体的流速是怎样的动态变化情况等;
(3)可以观察各个不同的地质层的出砂情况,包括出砂时间,喷砂现象,出砂的量等信息;
(4)可以利用其摄像装置的可移动性与360°可旋转性对井眼进行局部拍摄,观察到某一井眼处的单孔出砂速度,出气速度等;
(5)摄像头可以随实验需要选择位置,需要用时位移至制定观测点,不需要用时收缩至球阀上部存储空间,不会影响垂直管流,对摄像机同时也是一种保护;
(6)中心垂直井内摄像机可以安装力学传感器等装置,对井眼的喷砂,多相流等进行测量,获得更多信息;
(7)可以对中心垂直井底部沉砂进行可视化研究,包括沉砂过程的观察,沉砂量的统计等;
(8)可以对出中心垂直井的水平管流进行可视化,能得到水合物开采排出管线内流体的信息,包括管流是否含水合物相;是否含砂,含砂的话,含砂粒径信息;气相和水相的管流观察等。
此外,由于天然气水合物的开采会影响沉积层力学行为,进而有可能诱发地层沉降和边坡滑移等地质灾害,是目前天然气水合物开采面临的重大安全问题,因此分析水合物沉积层的力学行为具有非常重要的现实意义。目前对于天然气水合物分解地层形变的研究大多为三轴实验,通过施加轴压和围压来模拟地层情况,然后通过水合物分解后体积变化来计算沉降量,进而分析地层形变。这种方法能有效的对地层形变进行分析,但是实验的尺度往往都比 较小。当实验尺度放大时,这种方法就不适用了,大尺度的天然气水合物分解,会带来较大的形变,这是目前测量的重难点,而且由于反应釜的增大,水合物分解时形变的不规则性也难以用一维的沉降量来体现。面对大尺度的天然气水合物实验系统,目前技术不足主要体现在:无法测量大面积地层形变;无法测量较大的地层形变;地层形变的测量难以突破一维的限制。
因此,在其他的一些实施例中,如图4-6所示,在该反应釜体10内还安装有位移传感器固定板30,在位移感器固定板30中均匀固定安装有多个位移传感器31,位移传感器31的另一端可伸缩并密封固定在上薄壁橡胶活塞32中,该上薄壁橡胶活塞32紧贴上覆盖层1001。
如此,天然气水合物在沉积物层分解的时候,会发生形变,进而影响上覆盖层的稳定,引起上覆盖层的形变,而连接位移传感器和上覆盖层的上薄壁橡胶活塞,能跟随着上覆盖层的变形而变形,可以将上覆盖层的沉降形变精确传递给位移传感器。
当天然气水合物实验系统尺度大时,构造的地质层面积大,天然气水合物分解又充满着不确定性,导致整个面积上各个地方的沉降形变不会一致,由于在整个上覆盖层上上薄壁橡胶活塞上连接了足够多的位移传感器,这样就能将各个点的位移沉降量测量出来,进而解决了大面积地层形变的测量问题,将各个点的位移沉降量汇总,就能形成一个底层变形凹凸不平的面出来,突破地层形变一维测量的限制,实现地层形变的三维测量。
该上薄壁橡胶活塞32包括活塞骨架321以及周边密封安装在活塞骨架321中的橡胶活塞板322;该上薄壁橡胶活塞还包括有橡胶嵌件323、活塞密封圈324以及卡夹325;所述活塞密封圈324嵌装在活塞骨架321的槽位中,橡胶活塞板322的周边通过橡胶嵌件323密封安装在活塞骨架321的下表面中,在橡胶嵌件323中还嵌装有卡夹325。当地层沉降过大时,此时如果橡胶活塞板322两端是固定的话,变形会达到甚至超过橡胶活塞板322的变形极限,导致无法精确测量地层变形甚至损害橡胶活塞板,本实施例将橡胶活塞板322的两端密封在一个带活塞密封圈324的活塞骨架322上,当地层沉降过大时,橡胶活塞板322会压缩橡胶嵌件323,橡胶嵌件323通过橡胶活塞板非金属卡夹325装置拉动活塞骨架321进行伸缩运动,此时位移传感器31测量的位移就是活塞的位移加上各个橡胶活塞板322上各个测量点的位移,大大增大了地层沉降的测量量程,也即沉降过大的地层形变也能被精确测量。
具体地,上述的位移传感器31选用的采用轴向刚性机头LVDT高精度位移传感器:品牌:进口阿贝克传感器,型号:LCA50,测控范围:0~50mm,测量分辨率:0.001mm,测量精度:<±0.2%FS。
因此,通过采用图4-6的方案,其与现有技术相比具有如下的技术优势:
(1)可以测量大尺度天然气水合物分解带来的地层形变,因为位移传感器足够多;
(2)测量量程大,测量量程为活塞量程与橡胶活塞板的弹性极限之和;
(3)可以测量天然气水合物分解地层形变的形变曲面,实现地层形变三维测量,因为测量点多,而且橡胶活塞板足够柔软轻薄,能够实现每个测点的单独测量;
(4)装置密封性好,耐高压,不会对天然气水合物实验系统造成影响,因为橡胶活塞板耐高压,活塞密封圈能有效密封活塞骨架的伸缩运动;
(5)天然气水合物实验系统安全性提高,加了上薄壁橡胶活塞设计之后不仅能使测量量程增大,还能有效保护橡胶活塞板,否则当地层形变较大时,橡胶活塞板会过度变形,超过弹性极限后就会被破坏,导致实验系统受到损伤;
(6)测量精度提高,一方面测量点的增加,另一方面在沉降达到橡胶活塞板的弹性极限附近时,橡胶活塞板对于沉降的体现就会不再灵敏,上薄壁橡胶活塞设计之后,有效提高了这种工况下的测量精度。
同时,由于大尺度的天然气水合物实验系统有测量流场的意义与需要,但是难以实现,目前流场测量装置大多为可视化设备,比如一些光发生器与摄像机等成像装置结合,又或者安装一些可视化的视窗之类的设备,去观察、拍摄记录流场的变化,达到对流场的测量效果。但是天然气水合物大多附存于多孔介质中,视窗系只能观察到多孔介质,摄影设备难以深入反应釜,也难以在反应釜内的环境下进行拍摄。这些手段都无法有效的观察或者测量到反应釜内的流场。
为此,在一些实施例中,如图7所示,反应釜体内的每层对称分布九口垂直井,分别编号为1-A,2-A,…,9-B,9-C,其中位于中心的垂直井9-B为中心垂直井,其余的垂直井均为非中心垂直井。
如图8所示,将除9-B垂直井外的所有非中心垂直井出口管线200依次连接非中心垂直井压力传感器20,非中心垂直井出口阀门21,差压传感器23的一端,差压传感器23的另一端接到连通器阀门22,连通器阀门22汇集至连通器24,连通器24的另一端依次连接中心垂直井出口阀门25、中心垂直井压力传感器26、中心垂直井出口管线27。
26个差压传感器的编号分别为A1,B1,C1,A2,…,A9,C9,分别代表连接1-A井与9-B井的差压传感器,连接1-B井与9-B井的差压传感器,…,连接9-A井与9-B井的差压传感器,连接9-C井与9-B井的差压传感器。具体地,该压差传感器23的精度高于中心垂直井压力传感器26和非中心垂直井压力传感器20的精度,量程小于中心垂直井压力传感器26和非中心垂直井压力传感器20的量程,由于压力传感器精度测不了小压差,差压传感器23的精度更 高,在压力差比较小的时候,压力传感器显示的的压力可能是一样的,但是差压传感器能测出来压力差,压力差比较大的时候,超出差压传感器的量程就会损害差压传感器,也就是说,压差传感器精度高,但是量程小。压力传感器量程大,但是精度不够,所以二者要相互配合使用。
如此,当需要观察天然气水合物反应釜内流场的时候,先通过观察27个压力传感器的数值,比较反应釜的每一口垂直井与中心的垂直井的压力差,看是否超过差压传感器的量程;若超过差压传感器的量程,则得到该差压传感器所对应的非中心垂直井与中心垂直井的压力差;若未超过差压传感器量程,则同时打开该差压传感器两侧的非中心垂直井出口阀门和连通器阀门,利用该差压传感器测量到相应的非中心垂直井与中心垂直井的压力差。受压力差的影响,气液会自发从高压流向低压(或有自发从高压流向低压的趋势),也即反应釜内的流场被准确测量出来。
由此可见,通过反应釜内各点的压力差来量化反应釜内流场,准确、高效;将中心垂直井的测点分别与各个垂直井的测点之间连接差压传感器,测量压力差,对于整个反应釜内部三维空间分配合理,模拟出的流场更加易于分析反应釜内气液流动趋势;通过压力传感器反馈的信息进行初判断,再决定是否开启差压传感器,在压力差大和压力差小的工况下,均能测量反应釜内流场,同时对差压传感器也能得到有效的保护。同时由于整个测量装置是通过垂直井出口管线相连接的,也就是说整个测量装置可以外接反应釜的,亦即该差压传感器和连通器均设置于反应釜之外,不需要对整个天然气水合物系统进行大的改造,不会对现有的实验装置造成损坏,对于不具备流场测量功能的天然气水合物实验系统,可以随时外加本装置。
具体地,每一非中心垂直井压力传感器20、中心垂直井压力传感器26以及差压传感器23的数据输出端均连接至数据采集处理显示模块4,如此,通过数据采集处理显示模块4能够实时地显示记录相关数据,从而可以实时测量反应釜内流场。。
优选地,上述的连通器24还旁设有连通器压力传感器28和注气阀29。如此,可以利用注气阀29对差压传感器23进行测试,具体方法为关闭非中心垂直井出口阀门,使得差压传感器传感器与非中心垂直井出口阀相连接的这一端的压力数值都一致,将连通器的注气阀门连接至已知压力值不超过差压传感器量程的气瓶,打开连通器阀门,打开气瓶阀门,观察记录差压传感器所显示的数值,正常情况下,此时差压传感器测得的差压应该是一致的,不显示差压或差压有明显的差异的差压传感器应该被更换或进行维修。
因此,通过采用图7-8的方案,其与现有技术相比具有如下技术优势:
(1)压力传感器和差压传感器连接至数据采集处理显示模块,可以实时测量反应釜内流场;
(2)通过反应釜内各点的压力差来量化反应釜内流场,准确、高效;
(3)将中心垂直井的测点分别与各个垂直井的测点之间连接差压传感器,测量压力差,对于整个反应釜内部三维空间分配合理,模拟出的流场更加易于分析反应釜内气液流动趋势;
(4)通过压力传感器反馈的信息进行初判断,再决定是否开启差压传感器,在压力差大和压力差小的工况下,均能测量反应釜内流场,同时对差压传感器也能得到有效的保护;
(5)外接差压传感器反映反应釜内流场的设计,不会对天然气水合物实验造成影响;
(6)不需要对整个天然气水合物系统进行大的改造,不会对现有的实验装置造成损坏,对于不具备流场测量功能的天然气水合物实验系统,可以随时外加该装置;
(7)连通器的设计可以在脱离天然气水合物实验系统的情况下检测差压传感器,操作简便、安全、可靠。
另外,目前已有的天然气水合物实验设备尺度对比实际地层环境都不足以拥有温度梯度,所以大多天然气水合物反应釜都是做的恒温水浴,但是在实际开采中,天然气水合物储层受地层温度的影响,温度随着深度的变化是有一定温差与温度梯度的,且这种温度梯度的存在会对天然气水合物的生成开采均具有一定的影响,这就需要对更接近实际开采真实情况的大尺度天然气水合物设备有着需要模拟地层温度梯度更高要求,如何精确控制地层温度梯度以实现NGH藏原位温度场模拟就是目前要解决的技术难题。
为此,如图9-11所示,在该反应釜体内的上下两端分别布置有上循环盘管41和下循环盘管42,该上循环盘管41和下循环盘管42均采用独立的热交换装置(未图示)来实现热传导介质在盘管内的循环,该热交换装置具有制冷、加热以及恒温的功能。在上循环盘管41和下循环盘管42的作用下,可以使得反应釜体内的上部和下部均形成等温面,但如果仅仅是反应釜上部和下部均形成等温面,由于反应釜四周无法做到绝热,在热对流的影响下,会形成高温自下而上占据大部分空间,无法做到均衡的温度梯度,从而不能模拟地层温度梯度。为此,在本实施中,在该反应釜体10内、上循环盘管41和下循环盘管42之间间隔设置有N根控温管43,以使得在反应釜体10内产生垂直温度梯度,N为正整数,当然控温管43数量可根据实际需求而定,在一些实施例中,N为3,即布置有三根控温管43,每一控温管43也均是采用独立的热交换装置来实现热传导介质在控温管内的循环。
如此,通过在反应釜体内的上下两端布置有上循环盘管和下循环盘管,上循环盘管和下循环盘管的设计保障了加热稳定,而通过在循环盘管和下循环盘管之间间隔设置有N根控温 管,控温管环绕反应釜体,而每一根空温管也是有独立的热交换装置来实现热传导介质在控温管内的循环,即也是可以实现制冷、加热以及恒温的功能,如此即可以单独地调整每一根控温管的温度,从而可以在反应釜体内模拟出地层温度梯度。
此外,由于地层温度为自下而上温度以一定梯度逐渐降低,为了更精确地模拟出地层温度梯度,该N根控温管自下而上等距分布且控温管之间的温差恒定,如此,即可以实现低温到高温等温差等距自上而下排列,具体为下循环盘管42为设定高温T1,上循环盘管41为设定低温T2,有N根控温管43,控温管43之间温差可以表示为:ΔT=(T1-T2)/(N+1),也即控温管6自上而下温度分别设定为T2+ΔT、T2+2ΔT、…、T2+NΔT。
另外,为了使得温管之间温差ΔT实时保持稳定状态,以达到对地层最真实的模拟,该反应釜体10内还设置有温度传感器,以用于检测上循环盘管41、下循环盘管42以及N根控温管43的温度,并将所监测到的温度数据传输至温度控制模块,由温度控制模块根据所监测到温度数据来实时调整各热交换装置的工作,以保证反应釜体内的垂直温度梯度实时保持稳定状态。具体到本实施例中,直温度梯度温差控制为5℃,控温精度为±0.5℃。
优选地,上述下循环盘管42在反应釜体内的布置方式为在满足加热均匀的前提下,避开注砂孔、下中心井过孔以及注液注气孔,具体的形状布置如图10所示,加热或者冷却方式为水浴;同理,该上循环盘管41在反应釜内的布置方式为在满足加热均匀的前提下,避开上中心井过孔、井网及测点布置安装孔,具体的形状布置如图11所示。
因此,通过采用图9-11的方案,其与现有技术相比,具有如下技术优势:
(1)上下循环盘管的设计,保障了加热稳定,散热均匀,同时不会影响反应釜的其他操作,比如填砂、注液注气等;
(2)上下循环盘管采用独立的热交换装置循环,上下循环盘管可以同时工作,并且具有制冷、加热以及恒温的功能;
(3)控温管采用独立的热交换装置循环,可以同时工作,并且具有制冷、加热以及恒温的功能;
(4)垂直温度梯度受反应釜内套装温度测柱测试输出信号反馈进行控制,保证地层温度梯度能实时保持稳定状态,达到对地层最真实的模拟;
(5)整个地层温度梯度模拟器能精确控制地层温度梯度以实现NGH藏原位温度场模拟。
综上所示,本实施例提供的大尺度全尺寸开采井三维综合试验开采系统与现有技术相比具有如下技术优势:
(1)制备天然气水合物样品,真实模拟南海3000m水深沉积层中天然气水合物成藏环境;
(2)开展不同井网布置形式下,降压、注热等开采试验模拟研究;
(3)开展全尺寸井开采研究,优化开采井结构、产砂防砂方式研究;
(4)研究开采过程中水合物分解、气液渗流、传热,沉积物稳定性机理。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

  1. 一种大尺度全尺寸开采井三维综合试验开采系统,其特征在于,包括:
    反应釜,用于制备天然气水合物样品,真实模拟海底沉积层中天然气水合物成藏环境;所述反应釜包括反应釜体以及安装在反应釜体上端面的上釜盖以及安装在反应釜体下端面的下釜盖;
    气体注入模块,用于水合物合成时定量向反应釜注入气体;
    液体注入模块,用于水合物合成时向反应釜定量注入液体;
    温度控制模块,用于控制反应釜内的温度;
    数据采集处理显示模块,用于采集、存储、处理和显示试验开采系统进行试验时的数据。
  2. 如权利要求1所述的大尺度全尺寸开采井三维综合试验开采系统,其特征在于,在所述反应釜的垂直方向中部贯穿设置有中心垂直井,所述中心垂直井位于反应釜体内的那一部分沿着其高度方向间隔设置有井眼孔;在所述中心垂直井位于反应釜之外的上部中安装有换向球阀,换向球阀的一出口端连接安装有中心垂直井排出管线,在中心垂直井排出管线上设置有可视窗,在可视窗的周边设置有第一摄像机以及第一照明灯;
    在所述中心垂直井内还设置有内窥摄像软管引线,内窥摄像软管引线设置在中心垂直井内并穿过换向球阀延伸至中心垂直井之外;在所述内窥摄像软管引线的底端中安装有第二摄像机和第二照明灯,第二照明灯位于第二摄像机的上方并倾斜设置;
    所述第一摄像机和第二摄像机所拍摄到的画面传输至数据采集处理显示模块;
    在所述窥摄像软管引线的底端中还安装有力学传感器,所述力学传感器将其监测得到的数据传输至数据采集处理显示模块中;
    位于反应釜之外的那一部分中心垂直井设置有沉砂可视刻度窗。
  3. 如权利要求1所述大尺度全尺寸开采井三维综合试验开采系统,其特征在于,所述反应釜体内由上至下分为若干层,每一层分布着若干口垂直井,位于中心的那一口垂直井为中心垂直井,其余的为非中心垂直井;
    每一非中心垂直井均设置有非中心垂直井出口管线,每一非中心垂直井出口管线均对应地依次连通安装有非中心垂直井压力传感器、非中心垂直井出口阀门、差压传感器、连通阀门,所有的连通器阀门均汇集连通至连通器;所述非中心垂直井压力传感器、非中心垂直井出口阀门、差压传感器、连通器阀门的个数和非中心垂直井相同;
    所述中心垂直井设置有中心垂直井出口管线,中心垂直井出口管线依次连通安装有中心垂直井压力传感器和中心垂直井出口阀门,中心垂直井出口阀门连通至连通器;
    所述每一非中心垂直井压力传感器、中心垂直井压力传感器以及差压传感器的数据输出端均连接至显示终端数据采集处理显示模块中;
    所述压差传感器的精度高于中心垂直井压力传感器和非中心垂直井压力传感器的精度,量程小于中心垂直井压力传感器和非中心垂直井压力传感器的量程。
  4. 如权利要求3所述大尺度全尺寸开采井三维综合试验开采系统,其特征在于,所述连通器还旁设有连通器压力传感器和注气阀。
  5. 如权利要求1所述的大尺度全尺寸开采井三维综合试验开采系统,其特征在于,在所述反应釜体内的上下两端分别布置有上循环盘管和下循环盘管,所述上循环盘管和下循环盘管均采用独立的热交换装置来实现热传导介质在盘管内的循环;在所述反应釜体内、上循环盘管和下循环盘管之间间隔设置有N根控温管,以使得在反应釜体内产生垂直温度梯度,N为正整数;所述控温管也均是采用独立的热交换装置来实现热传导介质在控温管内的循环。
  6. 如权利要求5所述的大尺度全尺寸开采井三维综合试验开采系统,其特征在于,所述N根控温自下而上等距分布且控温管之间的温差恒定,温差表示为:
    ΔT=(T 1-T 2)/(N+1);其中,T 1为下循环盘管的温度,T 2为上循环管的温度,T 1>T 2
  7. 如权利要求6所述的大尺度全尺寸开采井三维综合试验开采系统,其特征在于,在所述反应釜体内还设置有温度传感器,以用于检测上循环盘管、下循环盘管以及N根控温管的温度,并将所监测到的温度数据传输至温度控制模块中,由温度控制模块根据所监测到温度数据来实时调整各热交换装置的工作,以使得反应釜体内的垂直温度梯度实时保持稳定状态。
  8. 如权利要求1所述的大尺度全尺寸开采井三维综合试验开采系统,其特征在于,所述反应釜体内自上而下分为上覆盖层、沉积物层以及下覆盖层,在反应釜体内还安装有位移传感器固定板,在位移感器固定板中均匀固定安装有多个位移传感器,位移传感器的另一端可伸缩并密封固定在上薄壁橡胶活塞中,该上薄壁橡胶活塞紧贴上覆盖层;所述位移传感器传感器所测量到数据传输至数据采集处理显示模块。
  9. 如权利要求8所述的大尺度全尺寸开采井三维综合试验开采系统,其特征在于,所述上薄壁橡胶活塞包括活塞骨架以及周边密封安装在活塞骨架中的橡胶活塞板;该上薄壁橡胶活塞还包括有橡胶嵌件、活塞密封圈以及卡夹;所述活塞密封圈嵌装在活塞骨架的槽位中,橡胶活塞板的周边通过橡胶嵌件密封安装在活塞骨架的下表面中,在橡胶嵌件中还嵌装有卡夹。
  10. 如权利要求1所述大尺度全尺寸开采井三维综合试验开采系统,其特征在于,
    还包括稳压产气模块,用于水合物开采时,控制反应釜的降压幅度及降压速率,并对产 气产水产砂三相分离及计量;
    所述气体注入模块包括依次连接的天然气源、增压泵、气体流量计以及气体开关阀,气体开关阀的出口端连通至反应釜;
    所述液体注入模块包括依次连接的液相源、注液泵、注液温控器以及气体开关阀,气体开关阀的出口端连通至反应釜。
PCT/CN2020/114092 2020-08-06 2020-09-08 一种大尺度全尺寸开采井三维综合试验开采系统 WO2021159697A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/251,501 US11879322B2 (en) 2020-08-06 2020-09-08 Comprehensive three-dimensional exploitation experimental system for large-scale and full-sized exploitation wells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010784465.6 2020-08-06
CN202010784465.6A CN112031714B (zh) 2020-08-06 2020-08-06 一种大尺度全尺寸开采井三维综合试验开采系统

Publications (1)

Publication Number Publication Date
WO2021159697A1 true WO2021159697A1 (zh) 2021-08-19

Family

ID=73582681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114092 WO2021159697A1 (zh) 2020-08-06 2020-09-08 一种大尺度全尺寸开采井三维综合试验开采系统

Country Status (3)

Country Link
US (1) US11879322B2 (zh)
CN (1) CN112031714B (zh)
WO (1) WO2021159697A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166937A (zh) * 2021-12-08 2022-03-11 中国科学院广州能源研究所 一种沉积物中水合物分解及二次生成的实验系统
CN115223436A (zh) * 2022-07-07 2022-10-21 西安热工研究院有限公司 一种模拟重力压缩空气储能系统运行的实验模型装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11187691B2 (en) * 2018-03-05 2021-11-30 Zhejiang University Pressure-control temperature-control hypergravity experimental device for simulating deep-sea seabed responses
CN111948370B (zh) 2020-08-06 2021-06-08 中国科学院广州能源研究所 用于天然气水合物实验系统的流场测量装置及测量方法
CN111997568B (zh) * 2020-08-06 2021-07-30 中国科学院广州能源研究所 一种天然气水合物全尺寸开采模拟井装置及实验方法
CN112730196B (zh) * 2020-12-25 2022-03-11 西南石油大学 一种高温高压微观可视化流动装置及实验方法
CN112727418B (zh) * 2021-01-20 2022-09-02 太原理工大学 一种多变量因子控制下高温流体开采油页岩的模拟装置
US11905812B2 (en) * 2021-08-24 2024-02-20 China University Of Petroleum (East China) Intra-layer reinforcement method, and consolidation and reconstruction simulation experiment system and evaluation method for gas hydrate formation
CN114034571B (zh) * 2021-11-04 2023-06-09 中国石油大学(华东) 一种模拟油井动态出砂与固相控制的实验装置及方法
CN114542021B (zh) * 2022-01-27 2023-05-23 华南理工大学 一种热化学法强化co2置换开采ch4水合物的装置及方法
CN114624419B (zh) * 2022-03-15 2023-10-10 广东石油化工学院 一种水合物可视化开发模拟装置及实验方法
CN114618379A (zh) * 2022-04-12 2022-06-14 中国海洋石油集团有限公司 一种模拟水合物成藏及开采的实验模型及其实验方法
CN115452505B (zh) * 2022-08-26 2023-04-11 青岛海洋地质研究所 海底受力条件下水合物反应过程模拟观测装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550816A (zh) * 2009-05-20 2009-10-07 中国科学院广州能源研究所 天然气水合物三维开采模拟实验装置
CN102678090A (zh) * 2011-03-16 2012-09-19 中国海洋石油总公司 天然气水合物三维合成与开采模拟装置
CN103470220A (zh) * 2013-08-20 2013-12-25 中国石油天然气股份有限公司 天然气水合物模拟实验装置
CN104453794A (zh) * 2014-11-20 2015-03-25 中国科学院广州能源研究所 天然气水合物开采全过程模拟实验系统及模拟方法
US20150090455A1 (en) * 2013-09-30 2015-04-02 Chevron U.S.A. Inc. Natural Gas Hydrate Reservoir Heating
US20150107826A1 (en) * 2013-10-22 2015-04-23 Korea Advanced Institute Of Science And Technology Method for Recovering Methane Gas from Natural Gas Hydrate by Injecting CO2 and Air Mixed Gas

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963057B (zh) * 2010-09-21 2013-01-23 中国科学院广州能源研究所 一种天然气水合物地质分层模拟实验装置
CN102109513B (zh) * 2010-12-23 2014-01-08 中国科学院广州能源研究所 一种天然气水合物三维生成开采物性检测实验装置
CN102305052A (zh) * 2011-09-05 2012-01-04 中国科学院广州能源研究所 天然气水合物三维多井联合开采实验装置及其实验方法
CN103257079A (zh) * 2013-04-28 2013-08-21 中国科学院广州能源研究所 天然气水合物开采地层稳定性三维模拟装置
CN103527176B (zh) * 2013-10-28 2016-10-05 东北石油大学 稠油油藏立体开发三维实验装置
CN104500031B (zh) * 2014-11-20 2017-03-29 中国科学院广州能源研究所 天然气水合物地层钻井模拟装置
CA2912301C (en) * 2015-01-23 2018-01-09 Exxonmobil Upstream Research Company Method and system for enhancing the recovery of heavy oil from a reservoir
CN107045054B (zh) * 2016-12-20 2019-07-12 中国科学院广州能源研究所 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法
CN107559000A (zh) * 2017-05-22 2018-01-09 哈尔滨工程大学 用于井空间分布影响下可燃冰开采性能研究的试验装置及方法
CN108344837A (zh) * 2018-02-08 2018-07-31 中国石油大学(华东) 一种海底有上覆致密盖层水合物开采诱发灾害实验模拟研究装置与实验方法
CN109611086B (zh) * 2018-12-06 2019-11-05 青岛海洋地质研究所 基于多分支井的二次水合物形成监测与抑制系统及其方法
CN110469301B (zh) * 2019-09-09 2022-03-01 中国海洋石油集团有限公司 一种用于大尺度模型下稠油热采三维注采模拟装置
CN211159795U (zh) * 2019-10-29 2020-08-04 中国科学院西北生态环境资源研究院 水合物形成模拟设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550816A (zh) * 2009-05-20 2009-10-07 中国科学院广州能源研究所 天然气水合物三维开采模拟实验装置
CN102678090A (zh) * 2011-03-16 2012-09-19 中国海洋石油总公司 天然气水合物三维合成与开采模拟装置
CN103470220A (zh) * 2013-08-20 2013-12-25 中国石油天然气股份有限公司 天然气水合物模拟实验装置
US20150090455A1 (en) * 2013-09-30 2015-04-02 Chevron U.S.A. Inc. Natural Gas Hydrate Reservoir Heating
US20150107826A1 (en) * 2013-10-22 2015-04-23 Korea Advanced Institute Of Science And Technology Method for Recovering Methane Gas from Natural Gas Hydrate by Injecting CO2 and Air Mixed Gas
CN104453794A (zh) * 2014-11-20 2015-03-25 中国科学院广州能源研究所 天然气水合物开采全过程模拟实验系统及模拟方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166937A (zh) * 2021-12-08 2022-03-11 中国科学院广州能源研究所 一种沉积物中水合物分解及二次生成的实验系统
CN114166937B (zh) * 2021-12-08 2023-09-05 中国科学院广州能源研究所 一种沉积物中水合物分解及二次生成的实验系统
CN115223436A (zh) * 2022-07-07 2022-10-21 西安热工研究院有限公司 一种模拟重力压缩空气储能系统运行的实验模型装置
CN115223436B (zh) * 2022-07-07 2023-11-17 西安热工研究院有限公司 一种模拟重力压缩空气储能系统运行的实验模型装置

Also Published As

Publication number Publication date
CN112031714B (zh) 2021-07-27
CN112031714A (zh) 2020-12-04
US20220235646A1 (en) 2022-07-28
US11879322B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
WO2021159697A1 (zh) 一种大尺度全尺寸开采井三维综合试验开采系统
WO2018112902A1 (zh) 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法
CN205426212U (zh) 天然气水合物开采多物理场演化模拟测试装置
CN101550816B (zh) 天然气水合物三维开采模拟实验装置
CN102109513B (zh) 一种天然气水合物三维生成开采物性检测实验装置
CN101476458B (zh) 一种油藏开发模拟系统、油藏模型本体及其数据处理方法
CN105571647A (zh) 天然气水合物开采多物理场演化模拟测试装置及方法
CN103104254B (zh) 一种多功能油藏模拟实验装置及其实验方法
WO2021159695A1 (zh) 一种天然气水合物开采地层形变测量装置
US20150205004A1 (en) Three-dimensional simulating device for the stratum stability in the natural hydrate exploitation
CN103470220B (zh) 天然气水合物模拟实验装置
CN102042930B (zh) 天然气水合物力学性能实验装置
CN201965059U (zh) 一种天然气水合物岩石力学三轴试验装置
CN105223336B (zh) 一种模拟地铁盾构隧道地层空洞引发地层损失的试验装置及方法
CN108072749A (zh) 一种隧道盾构开挖高精度渗流示踪模拟试验装置
CN111175466A (zh) 一种可围压生成天然气水合物及保压转移分解装置及方法
Ding et al. A new type of temperature-based sensor for monitoring of bridge scour
CN111997568B (zh) 一种天然气水合物全尺寸开采模拟井装置及实验方法
WO2021159836A1 (zh) 一种天然气水合物洞穴完井评价测试装置及方法
Gao et al. Experimental study on heat transfer in hydrate-bearing reservoirs during drilling processes
Wu et al. Discrete element simulation of the hydrate-bearing sediments mechanical behaviors under typical hydrate dissociation patterns
WO2021159694A1 (zh) 缩尺天然气水合物藏流场测量装置及方法
CN201396130Y (zh) 一种油藏开发模拟系统
CN112031745B (zh) 一种用于观察天然气水合物生成特性的装置及方法
CN111042801A (zh) 一种测量环空水泥浆失重的装置及测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919300

Country of ref document: EP

Kind code of ref document: A1