CN115223436B - 一种模拟重力压缩空气储能系统运行的实验模型装置 - Google Patents

一种模拟重力压缩空气储能系统运行的实验模型装置 Download PDF

Info

Publication number
CN115223436B
CN115223436B CN202210795445.8A CN202210795445A CN115223436B CN 115223436 B CN115223436 B CN 115223436B CN 202210795445 A CN202210795445 A CN 202210795445A CN 115223436 B CN115223436 B CN 115223436B
Authority
CN
China
Prior art keywords
gravity
assembly
pressure
air
vertical shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210795445.8A
Other languages
English (en)
Other versions
CN115223436A (zh
Inventor
文军
胡亚安
李阳
倪尉翔
赵瀚辰
李中华
杨成龙
赵建平
于在松
薛淑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Hydraulic Research Institute of National Energy Administration Ministry of Transport Ministry of Water Resources
Xian Thermal Power Research Institute Co Ltd
Huaneng Group Technology Innovation Center Co Ltd
Original Assignee
Nanjing Hydraulic Research Institute of National Energy Administration Ministry of Transport Ministry of Water Resources
Xian Thermal Power Research Institute Co Ltd
Huaneng Group Technology Innovation Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Hydraulic Research Institute of National Energy Administration Ministry of Transport Ministry of Water Resources, Xian Thermal Power Research Institute Co Ltd, Huaneng Group Technology Innovation Center Co Ltd filed Critical Nanjing Hydraulic Research Institute of National Energy Administration Ministry of Transport Ministry of Water Resources
Priority to CN202210795445.8A priority Critical patent/CN115223436B/zh
Publication of CN115223436A publication Critical patent/CN115223436A/zh
Application granted granted Critical
Publication of CN115223436B publication Critical patent/CN115223436B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones

Abstract

本发明的目的在于提出一种模拟重力压缩空气储能系统运行的实验模型装置,通过本实验装置按照一定的比例真实还原重力压缩空气储能系统,并模拟重力压缩空气储能系统的各种工况,可有效并全面地研究重力压缩空气储能系统中储气库气动性能、安保装置、偏心重影响以及重力压块‑储气库整体运行性能,优化重力压缩空气储能系统的布置方案,为重力压缩空气储能系统的建设奠定坚实的理论基础。

Description

一种模拟重力压缩空气储能系统运行的实验模型装置
技术领域
本发明涉及空气储能技术领域,尤其涉及一种模拟重力压缩空气储能系统运行的实验模型装置。
背景技术
压缩空气储能系统通过压缩空气储存多余的电能,在需要时,将高压空气释放通过膨胀机做功发电。在储能时,压缩空气储能系统耗用电能将空气压缩并存于储气库中;在释能时,高压空气从储气库释放,进入燃烧室利用燃料燃烧加热升温后驱动发电,也可不用燃料燃烧加热,通过回收压缩热用于加热空气。其中重力压缩空气储能系统中现阶段具有较多的问题,例如储气库的气动性能,即密封膜内部的储气库内储存着压缩空气,密封膜承受这巨大的拉力,提出合理的密封锚固方式,尽量保证密封膜的气密性和耐久性;以及密封膜漏气或密封膜不同破损程度下重力压块对地基的冲击载荷无法知晓;以及重力压缩空气储能系统中的安保装置、重力组件的偏心影响以及其他等优化布设方式,因此如何提供一种模拟重力压缩空气储能系统运行的实验模型装置,以合理的模型模拟重力压缩空气储能系统的各种工况以及重力压缩空气储能系统中不同的设置带来的性能优化和影响,为重力压缩空气储能系统的实际工况提供有力依据。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的目的在于提出一种模拟重力压缩空气储能系统运行的实验模型装置,通过本实验装置与真实的重力压缩空气储能系统按照一定的比例真实还原重力压缩空气储能系统,并模拟重力压缩空气储能系统的各种工况,可有效并全面地研究重力压缩空气储能系统中储气库气动性能、安保装置、偏心重影响以及重力压块-储气库整体运行性能,优化重力压缩空气储能系统的布置方案,为重力压缩空气储能系统的建设奠定坚实的理论基础。
为达到上述目的,本发明提出的一种模拟重力压缩空气储能系统运行的实验模型装置,包括:
竖井,所述竖井设置在支撑平台下方且其上端开放,其中活动插接有重力组件,所述重力组件外壁与所述竖井内壁之间有间隙,所述间隙中设置有密封膜,所述密封膜与所述重力组件外壁和所述竖井内壁之间密封连接,以使所述密封膜、所述竖井位于所述密封膜下方的空间、所述重力组件之间围成储气库;
其中所述重力组件包括多个压块箱件形成的重力块组和承压组件;其中多个所述压块箱件在竖直方向上且间隔一定的距离进行依次设置,并设置在所述承压组件的顶部;所述承压组件的底部伸入所述竖井内且其外壁与所述密封膜相连;所述承压组件的顶部位于所述支撑平台上方;
塔楼结构;其包括多个位于所述竖井顶端外部的所述支撑平台上并分布在所述竖井周侧的;所述重力组件位于所述塔楼结构的内侧且两者之间具有一定的水平距离;
气流组件;其包括与所述竖井的底部连通的充排气管以及与所述储气库连通的支管组件;其中所述充排气管用于向所述储气库中充入、抽出气体;所述支管组件与所述充排气管连通并抽出所述储气库不同位置的气体,用于模拟所述密封膜不同位置破损的工况;
导向装置;其分布在所述重力组件周侧位于所述竖井的内壁或所述塔楼结构与所述重力组件之间,以使所述重力组件在竖直方向上进行上下移动;和
调整检测组件;其包括检测组件和结构调整组件,其中结构调整组件用于对所述实验模型装置的运行工况进行调节;所述检测组件用于实时测量所述实验模型装置的运行工况参数。
在一些实施例中,实验模型装置还包括外框支撑架;其中所述外框支撑架位于所述塔楼结构的外侧并设置在所述支撑平台上方,用于在竖直方向上设置多个观察台和多个固定伸缩座;其中所述固定伸缩座的一端与所述外框支撑架连接,另一端伸长时穿过所述塔楼结构并位于在所述压块箱件的下方,用于支撑所述压块箱件;待其支撑的所述压块箱件向上移动时,所述固定伸缩座收缩至所述塔楼结构内。
在一些实施例中,其中每相邻设置的所述压块箱件上分别设置凸台和/或与所述凸台适配的凹槽,其中所述凸台和所述凹槽均位于所述固定伸缩座伸长到极限时的内侧;且在竖直方向上,所述凸台与所述凹槽高度的差值等于所述固定伸缩座的高度。
在一些实施例中,多个所述压块箱件内均设置多个在竖直方向上层层叠加设置的重力压块;其中每一所述压块箱件内所述重力压块层层叠加的方式均不同,用于检测不同叠加设置的所述重力压块对所述实验模型装置运行的影响。
在一些实施例中,所述支管组件包括出气支管,其一端与所述充排气管连通,另一端分别通过多个连通管与所述储气库连通;且连通处均位于所述密封膜与所述竖井连接密封端的上方。
在一些实施例中,所述承压组件包括承压筒和承压底座;其中所述承压筒的底部伸入所述竖井内且其顶部设置承压底座;所述重力块组位于所述承压底座上方,以使所述承压筒向下移动至最低限位时通过所述承压底座支撑在所述竖井顶部的所述支撑平台上;其中所述承压底座与所述支撑平台可拆卸连接。
在一些实施例中,检测组件包括气压检测件,其包括多个分别周向设置在所述承压底座的底部并位于所述竖井的内侧,用于在所述承压筒位于最低限位时采集所述密封膜上方的所述竖井内的压力。
在一些实施例中,所述结构调整组件包括液体减震组件;其包括容纳有一定体积液体的水箱;所述水箱设置在所述重力组件的上方,通过所述水箱内液体的晃动产生的能量耗散所述重力组件振动的能量。
在一些实施例中,所述导向装置包括导槽和滚轮;其中所述导槽设置多个,多个所述导槽分布在所述塔楼结构上并位于在所述压块箱件周侧;所述滚轮与所述导槽配合并与所述导槽的槽底相接,以使所述重力组件上下移动时所述滚轮沿着所述导槽的槽底上下移动。
在一些实施例中,所述结构调整组件包括液体减震组件;其包括容纳有一定体积液体的水箱;所述水箱设置在所述重力组件的上方,通过所述水箱内液体的晃动产生的能量耗散所述重力组件振动的能量。
在一些实施例中,所述结构调整组件包括姿态调整组件;其中在竖直方向上,所述姿态调整组件设置在所述竖井的内壁上并位于所述密封膜运行上限位的上端;所述姿态调整组件包括竖井固定环和调整导轮;其中所述竖井固定环固定设置在所述竖井的内壁上并位于所述密封膜运行上限位的上端;所述调整导轮为多个沿所述竖井固定环的内侧周向设置并与所述重力组件接触连接,且所述调整导轮位于所述重力组件的外侧。
在一些实施例中,所述结构调整组件包括支撑组件;所述支撑组件竖向设置并在沿竖直方向伸缩,其底部设置在所述竖井底部且顶端延伸至所述承压筒内部,并与所述承压筒插入式连接。
在一些实施例中,所述支撑组件包括多个设置在所述重力组件底部的支撑柱;其中所述支撑柱的底部通过锁定支架与所述竖井的底部连接;所述支撑柱的顶部在伸长时延伸至所述承压筒底部的凹槽内;其中所述支撑柱靠近所述锁定支架一端的横向截面面积大于伸入所述凹槽的一端的横向截面面积。
在一些实施例中,所述密封膜与所述重力组件外壁和所述竖井内壁之间通过锚固结构密封连接;其中所述锚固结构包括:
夹膜底板;其在竖直方向上设置在所述重力组件的下方且与所述重力组件之间具有间隙;
防漏组件;包括密封垫片,其中所述密封垫片包括第一密封垫片和第二密封垫片;其中所述第一密封垫片和所述第二密封垫片设置在所述间隙内并在的竖直方向上相对设置;且所述密封膜锚的一端设置在所述第一密封垫片和第二密封垫片之间,实现所述密封膜与所述重力组件的连接;和
外接环;所述外接环在所述第一密封垫片和所述第二密封垫片的周侧设置;所述外接环位于所述间隙的周侧并与所述间隙外的所述密封膜接触,用于减小所述密封膜的拉扯应力。
在一些实施例中,所述检测组件包括压力检测件,其包括多个传感器;所述传感器分布在所述导向装置和姿态调整组件上,用于检测所述实验模型装置运行过程中各处的运行压力。
在一些实施例中,利用上述任一实施例中的实验模型装置用于模拟重力压缩空气储能系统的运行,包括:
布设空气压缩单元、空气膨胀单元和发电机;所述空气压缩单元的进口连接有进气装置;所述空气压缩单元的出口通过储能管路与储气室的进口连接;所述储气室的出口通过释能管路与所述空气膨胀单元的进口连接;且空气膨胀单元的出口与发电机连接;
模拟所述储能系统进行储能,关闭所述释能管路并开启所述储能管路,空气通过所述进气装置进入所述空气压缩单元压缩后成为压缩空气;所述压缩空气通过所述储能管路进入所述储气室并使得所述储气室体积增大,重力组件恒压上升;
模拟所述储能系统进行释能,开启所述释能管路并关闭所述储能管路;所述储气室11体积减小以致所述重力组件下降;所述压缩空气经所述释能管路进入所述空气膨胀单元恒压做功并带动所述发电机发电。
在一些实施例中,在模拟所述储能系统储能阶段,所述储能管路与所述释能管路之间设有热交换单元;空气进入所述空气压缩单元压缩过程产生的热量存储在所述热交换单元;在模拟所述储能系统释能阶段,压缩空气由所述储气室经过所述热交换单元加热后,再经释能管路进入空气膨胀单元。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明一实施例提出的模拟重力压缩空气储能系统运行的实验模型装置的结构示意图;
图2是图1部分结构图;
图3是本发明一实施例提出的压块箱件的结构示意图;
图4是图3的俯视图;
图5是图1部分结构示意图;
图6是图1部分结构示意图;
图7是本发明一实施例提出的姿态调整组件的结构示意图;
图8是本发明一实施例提出的锚固结构的结构示意图;
图9是本发明一实施例提出的锚固结构的结构示意图;
图10是本发明一实施例提出的锚固结构的结构示意图;
图11是本发明一实施例提出的锚固结构的结构示意图;
图中,1、竖井;2、压块箱件;211、重力压块;3、密封膜;4、支撑平台;5、观察台;6、外框支撑架;7、连通管;8、承压筒;9、储气库;10、塔楼结构;11、导向装置;12、承压底座;13、气压检测件;14、水箱;15、隔液板;16、竖井固定环;17、调整导轮;18、支撑柱;19、锁定支架;20、锚固结构;201、夹膜底板;202、外接环;203、第一密封垫片;204、第二密封垫片;205、第一抗压垫片;206、第二抗压垫片;207、高强锚固螺栓;208、螺栓钢托;209、压紧底托;21、传感器;22、充排气管;23、出气支管;24、楔形插销;25、箱体;26、固定伸缩座;27、固定圆销;28、压块插销;29、凸台。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
参见图1-图11是本发明一实施例提出的一种模拟重力压缩空气储能系统运行的实验模型装置,包括:竖井1、重力组件、塔楼结构10、气流组件、导向装置11、调整检测组件;其中本实施例中为了更真实的还原重力压缩空气储能系统,本实施例还包括空气压缩单元、空气膨胀单元和发电机;空气压缩单元进口连接有进气装置,空气压缩单元的出口通过储能管路与气流组件中的充排气管22的进口连接,充排气管22的出口通过释能管路与空气膨胀单元的进口连接,空气膨胀单元的出口与发电机连接;储能管路与释能管路之间设有热交换单元。示例性的空气压缩单元可以根据实际需要设置若干级空气压缩机;空气膨胀单元可以根据实际需要设置若干级膨胀机。
释能管路上设有流量检测装置、压力检测装置和调节阀,流量检测装置、压力检测装置和调节阀均分别与重力压缩空气储能系统的控制单元连接能够对系统的关键参数进行实时监测和控制。
本实施例中的实验模型装置在工作时:
关闭释能管路,开启储能管路,空气通过进气装置进入空气压缩单元压缩后成为压缩空气,产生的热量存储在热交换单元,压缩空气经储能管路进入储气库9,储气库9体积增大,重力组件被压缩空气恒压抬升,将电能转化为压缩空气能和重力组件的重力势能;
开启释能管路,关闭储能管路,重力组件下降,储气库9体积减小,压缩空气经热交换单元加热后,再经释能管路进入空气膨胀单元恒压做功并带动发电机发电,将压缩空气能和重力组件的重力势能转化为电能。本实施例按照一定的比例真实还原重力压缩空气储能系统,并模拟重力压缩空气储能系统的各种工况,可有效并全面地研究重力压缩空气储能系统中储气库9气动性能、安保装置、偏心重影响以及重力压块-储气库9整体运行性能,优化重力压缩空气储能系统的布置方案,为重力压缩空气储能系统的建设奠定坚实的理论基础。
具体的,如图1所示,竖井1设置在支撑平台4下方且其上端开放,其中活动插接有重力组件;竖井1为采用有机玻璃管和钢筒联合布置,便于固定安装,底部为钢筒结构,钢筒结构的上部为两节有机玻璃管,两节有机玻璃管之间设置锚固密封膜3的锚固结构20实现将密封膜3的一端锚固在竖井1的内壁上,而密封膜3的另一端也同样通过锚固结构20设置在重力组件外壁上,重力组件外壁与竖井1的内壁之间有间隙,间隙中设置有密封膜3,以使密封膜3、竖井1位于密封膜3下方的空间、重力组件之间围成储气库9。
需要解释的是,密封膜3两端分别通过锚固结构20锚固在重力组件外壁与竖井1的内壁之间,但是在储气库9极限的充气状态下,密封膜3的顶端与竖井1的顶板之间具有竖直距离,保证密封膜3在竖直方向上自由变形和保留安全阈度。
在一些实施例中,重力组件包括支撑平台4上方的多个压块箱件2形成的重力块组和承压组件,其中承压组件底端伸入竖井1内部并且密封膜3直接与承压组件外壁的底端相连,而多个压块箱件2均位于竖井1外部,在实现大能量存储时,无需将所有重力块都集中在竖井1中,可以减少竖井1的高度,大大减少竖井1的经济耗费。其中承压组件包括承压筒8和承压底座12,其中承压筒8的底端伸入竖井1内部,并且密封膜3直接与承压筒8外壁底端相连,承压筒8的顶部位于竖井1顶部的支撑平台4上且与承压底座12连接,压块箱件2设置在承压底座12上方。本实施例中的承压底座12可理解为法兰盘,其中法兰盘的直径大于竖井1的内径,以使承压筒8向下移动至最低限位时承压底座12支撑在竖井1周侧的支撑平台4上,法兰盘两可通过螺栓固定在支撑平台4上,在实验模型装置进行检测时,根据不同的检测项目将其与支撑平台4连接或拆离。
在一些实施例中,多个压块箱件2在竖直方向上且间隔一定的距离进行设置,本实施例中压块箱件2分布在不同的位置,其中在位于底部的压块箱件2向上运行一段距离后,与其上方的另一压块箱件2接触连接后,二者再共同向上运行。此过程可模拟重力压缩空气储能系统中不同重量、高度、叠加方式的重力压块211对系统运行的影响,以及如何改善重力压块211的吊装方式和叠放方式,保证重力压块211的中心始终保持同一铅直方向且不易脱落和倾斜。在本实施例中为了实现压块箱件2在竖直方向上设置,本实施例中的实验模型装置还包括外框支撑架6;其中外框支撑架6位于塔楼结构10的外侧并设置在支撑平台4上方。在竖直方向上设置多个观察台5和多个固定伸缩座26;其中观察台5用于观察本实施例实验模型装置的运行工况,而固定伸缩座26用于支撑压块箱件2,实现压块箱件2间隔设置,其中,固定伸缩座26的一端与外框支撑架6连接,另一端伸长时穿过塔楼结构10并位于在压块箱件2的下方,用于支撑压块箱件2;待其支撑的压块箱件2向上移动时,固定伸缩座26收缩至塔楼结构10内。
示例性的,如图2所示从上到下依次为第一压块箱件和第二压块箱件第一压块箱件设置在承压底座12的上方与承压底座12接触连接,且为方便第一压块箱件与承压底座12连接且保证第一压块箱件不掉落,也可使用插销将第一压块箱件固定在承压底座12接上。其中第二压块箱件通过固定伸缩座26设置在第一压块箱件的上方,在实验模型装置运行时,只有第一压块箱件向上运动达到一定的高度才能与第二压块箱件接触,并带动第二压块箱件一起向上运动。此时为保证第二压块箱件和第一压块箱件的重心在同一铅垂方向,可在第一压块箱件上设置凸台29和/或与凸台29适配的凹槽。示例性的在第一压块箱件上设置至少一个凸台29并在第二压块箱件上设置与在第一压块箱件上的凸台29数量相同的凹槽,将凸台29与凹槽配合实现第一压块箱件和第二压块箱件的插入式接触连接。同理可在第一压块箱件上设置至少一个凹槽,则第二压块箱件上设置与凹槽适配的凸台29,以及第一压块箱件上同时设置凹槽和凸台29,并在第二压块箱件上同时设置凹槽和凸台29试下竖直方向上相邻压块箱件2层层叠加。
此外,本实施例中压块箱件2上设置凹槽和/或凸台29,且凸台29的在竖直方向的高度大于固定伸缩座26在竖直方向上的高度,同时为方便相邻压块箱件2接触连接后固定伸缩座26收缩且不引起其所支撑的压块箱件2的晃动,在竖直方向上凸台29的长度略大于凹槽的深度,且凸台29的长度与凹槽深度的差值等于固定伸缩座26的厚度。
在一些实施例中,多个压块箱件2内均包括箱体25以及在箱体25内设置多个在竖直方向上层层叠加设置的重力压块211;但是每一压块箱件2内重力压块211层层叠加的方式均不同,用于模拟不同叠加设置的重力压块211在实验模型装置运行过程中是否有重心偏移的缺陷,且通过模拟可改进实际重力压缩空气储能系统中重力压块211的叠加方式。本实施例通过将压块箱件2设置成多个叠加的重力压块211,进而减少了每个重力压块211的重量,在满足大能量存储的同时减低吊装难度,使得吊装施工过程中,先将承压组件吊装至竖井1中,承压组件上端支撑在竖井1周侧的支撑平台4上,然后在承压组件的顶部层层吊装重力压块211。
示例性的,在一些实施例中,一个压块箱件2内为保证层层叠加设置的重力压块211设置在箱体25内的重心始终保持在同一水平和铅直方向,可在箱体25内部竖向设置的固定圆销27,并在每一重力压块211的中部开设通孔,将每一重力压块211套设在固定圆销27上。
示例性的,在一些实施例中,一个压块箱件2内每相邻设置的重力压块211上分别设置压块插销28和/或与压块插销28适配的固定孔,可理解的由下到上第一个重力压块的顶部至少设置一个向上凸出的压块插销28或至少设置一个向下凹陷的固定孔;或者在第一个重力压块顶部至少设置一个向上凸出的压块插销28和至少设置一个向下凹陷的固定孔;同理的为了实现第一个重力压块与第二个重力压块的吊装叠加,与第一个重力压块相邻的第二个重力压块的底部设置与第一个重力压块上适配的压块插销28和/或固定孔,其他的重力压块211按照次方法依次吊装叠加不再赘述。但压块插销28和/或固定孔的数量可以为一个或多个,本实施例中通过压块插销28与固定孔配合的结构形式层层叠压,可有效的控制重力压块211在升降过程中发生位移,保证重心在同一水平或铅直方向,避免对塔楼或导向装置11造成过多的负载。
示例性的如图3所示,由下到上第一个重力压块的顶部设置一个向上凸出的压块插销28,与第一个重力压块相邻的第二个重力压块的底部设置固定孔与压块插销28适配;且在第二个重力压块顶部设置向上凸出的压块插销28,与第三个重力压块211的底部设置的固定孔;且压块插销28和固定圆销27联用,实现多个重力压块211始终在同一水平和铅直方向。
在实际应用中为方便重力压块211上压块插销28和固定孔的制备,本实施例中的重力压块211采用大容重的废铁矿石为原材料浇筑而成,重力压块211截面可以为多边形或圆形,由各独立的立方体或圆柱或异型性压块组成,优选的重力组件中的各重力压块211的截面相同。压块插销28截面尺寸小固定孔截面尺寸,优选的各重力压块211凸起与凹陷的截面形式相同。本实施例可有效的降低拼装重力组件的高度,从而也将减小控制重力组件的导向结构和塔楼结构10的高度和造价。
在一些实施例中,重力压块211的四角可开设楔形凹槽如图4所示,在箱体25内的四角均设置与楔形凹槽相适配的楔形插销24,其中楔形插销24可与楔形凹槽之间具有一定的过盈空间,从而保证重力压块211的顺利吊装。其中楔形凹槽的作用与固定圆销27的作用相同,不再赘述。本领域技术人员可认为楔形插销24的高度与固定圆销27相同,便于同时对重力压块211的四角和中心同时固定。
其中本实施例中重力压块211的吊装具体步骤如下:首先重力压块211中部的通孔先对准箱体25中部的固定圆销27进行初步吊装,其次再将重力压块211四角的楔形凹槽仔细对准箱体25四角的楔形插销24;将在竖直方向上相邻的重力压块211之间利用压块插销28连接并微调其相对位置,使得各重力压块211的重心位于同一铅直方向,将楔形插销24、固定圆销27和压块插销28联用,保证了重力压缩空气储能系统运行过程中最大限度降低重力压块211重心位置偏的影响。
在一些实施例中,箱体25内设置隔板将其分为至少两个容纳腔;示例性的如图3和图4所示,箱体25内设置隔板将其分为三个容纳腔,每一容纳腔的中心均设置固定圆销27,重力压块211分别吊装在容纳腔内;实现灵活调整重力组件总重,在保证箱体25平衡的情况下,通过重力块不同组合可以满足更多范围的有效储气体积需求。可理解的每一容纳腔的四角处均竖向设置楔形插销24,且楔形插销24与重力压块211四周开设的楔形凹槽相适配;楔形插销24的高度与固定圆销27的高度相同。
在一些实施例中,气流组件包括充排气管22和储气库9连通的支管组件;其中充排气管22与竖井1的底部连通用于向储气库9中充入、抽出气体;支管组件与储气库9连通并抽出储气库9不同位置的气体,用于模拟密封膜3不同位置破损的工况。
具体的,其中充排气管22将压缩空气输入至储气库9中,压缩空气的压力推动重力组件向上移动;反之在充排气管22向储气库9中抽出压缩空气时,重力组件受到自身重力向下移动。而本实施例中支管组件包括出气支管23,其一端与充排气管22连通,另一端分别通过多个连通管7与密封膜3连接实现与储气库9连通;且出气支管23和连通管7上均设置阀门。多个连通管7分别与密封膜3的不同位置连接,且连接处均位于密封膜3与竖井1连接处锚固结构20的上方,通过分别和全部打开连通管7上的阀门和阀门开度,近似模拟密封膜3三个不同位置局部破损或全部破损下储气库9内压缩空气对重力组件的冲击力。
在一些实施例中,可通过更换锚固结构20对密封膜3的锚固密封性进行测试,示例性的锚固结构20包括夹膜底板201、防漏组件和外接环202;其中在竖直方向上夹膜底板201设置在重力组件的下方,且夹膜底板201与重力组件的底部外壁之间具有间隙;其中防漏组件可设置在夹膜底板201与重力组件的底部外壁之间的间隙内。
示例性的,本实施例中的夹膜底板201和防漏组件通过高强锚固螺栓207即可进行固定,但本实施例中包括并不限制高强锚固螺栓207。本实施例中的防漏组件包括密封垫片如图8所示,其中密封垫片包括第一密封垫片203和第二密封垫片204;其中第一密封垫片203和第二密封垫片204设置在夹膜底板201与重力组件的底部外壁之间的间隙内,第一密封垫片203和第二密封垫片204在竖直方向上相对设置。例如第一密封垫片203与重力组件的底部外壁紧密接触设置,第二密封垫片204与夹膜底板201的上表面紧密接触设置,且密封膜3的一端位于夹膜底板201与重力组件的底部外壁之间的间隙内,且利用第一密封垫片203与第二密封垫片204夹紧密封膜3,初步防止密封膜3锚固后在接缝处存在漏气的现象。可理解的,利用高强锚固螺栓207实现夹膜底板201和防漏组件连接时,可将高强锚固螺栓207锚固在密封垫片处,此时密封膜3不仅可利用第一密封垫片203与第二密封垫片204夹紧固定,利用高强锚固螺栓207穿过密封膜3对密封膜3进一步固定适用于大容量高压储气场景,实现了安全储能理念,且利用第一密封垫片203与第二密封垫片204对高强锚固螺栓207与密封膜3接缝处密封,防止漏气,实现密封膜3与重力组件的外壁密封连接。
在一些实施例中,锚固结构20还包括外接环202;其中分别在第一密封垫片203和第二密封垫片204的周侧设置外接环202;且优选的,外接环202位于夹膜底板201与重力组件的底部外壁形成间隙的周侧。可理解的,为保证第一密封垫片203与第二密封垫片204对高强锚固螺栓207和密封膜3接缝处的密封性,外接环202设置在间隙外,其用于对间隙外的密封膜3接触,从而减小密封膜3的拉扯应力。
具体的,第一密封垫片203和第二密封垫片204均与外接环202为一体式结构;其中以第一密封垫片203与重力组件的底部外壁紧密接触设置,第二密封垫片204与夹膜底板201的上表面紧密接触设置为例,外接环202的底部的一端与第一密封垫片203的外侧连接,其另一端向远离间隙的一侧斜向上延伸并与第一密封垫片203呈一定圆弧度。同理可推及第二密封垫片204,即外接环202的上部的一端与第二密封垫片204的外侧连接,其另一端向远离间隙的一侧斜向下延伸并与第二密封垫片204呈一定圆弧度。
本实施例中,在密封膜3内充气后,重力组件随着密封膜3内的充气和放气在竖直方向上做上下运动,而在此过程中外接环202的设置可使得在间隙外的密封膜3与之充分接触,与第一密封垫片203连接的外接环202不仅可以与密封膜3充分接触,而且当重力组件做升降运动时,密封膜3会将外接环202的外部端头下压,有效的防止了密封膜3锚固接缝处的漏气问题;而与第二密封垫片204连接的外接环202不仅可以与密封膜3充分接触,而且当重力组件做升降运动时,外接环202可有效减小密封膜3的弯折损伤;因此本实施例中利用外接环202作为缓冲,相较于不设置外接环202的技术方案,可有效对密封膜3在间隙处的接触连接进行过渡,减小密封膜3的拉扯应力。
在一些实施例中,防漏组件包括抗压垫片;其中抗压垫片包括第一抗压垫片205和第二抗压垫片206;其中第一抗压垫片205和第二抗压垫片206在间隙内并在竖直方向上相对设置;且第一抗压垫片205位于第一密封垫片203的内侧;第二抗压垫片206位于第二密封垫片204的内侧;密封膜3的一端位于第一抗压垫片205和第二抗压垫片206之间。
具体的如图9所示,抗压垫片包括第一抗压垫片205和第二抗压垫片206,第一抗压垫片205设置在间隙内并位于第一密封垫片203的内侧,且在竖直方向上,第一抗压垫片205的上表面与重力组件的外壁紧密接触设置,其下表面与密封膜3紧密接触设置;而第二抗压垫片206设置在间隙内并位于第二密封垫片204的内侧,且在竖直方向上,第二抗压垫片206的上表面与密封膜3紧密接触设置,其下表面与夹膜底板201的上表面紧密接触设置。
本实施例中抗压垫片的设置在固定和密封膜3的作用上与密封垫片的作用相同,其原理也相同不再赘述,可参考前述密封垫片对密封膜3的固定和密封作用。有利的,第一抗压垫片205和第二抗压垫片206的表面均设置磨砂层,本领域技术人员可理解为在第一抗压垫片205的上表面和下表面,在第二抗压垫片206的上表面和下表面均贴设磨砂层,其中磨砂层可增大第一抗压垫片205和第二抗压垫片206对与之表面接触的装置之间的摩擦力,例如通过设置磨砂层可增强对密封膜3的固定作用,防止密封膜3的滑动和位移;同时增大在竖直方向上与之紧邻的夹膜底板201、重力组件的外壁之间的摩擦作用,减小密封膜3的受拉作用,从而减小密封膜3的拉扯应力。
在一些实施例中,防漏组件包括设置在间隙内的压紧底托209;在竖直方向上压紧底托209设置在抗压垫片和密封垫片的下方;其中压紧底托209的设置可使得在竖直方向上密封膜3与抗压垫片和密封垫片充分接触,有效降低密封膜3锚固接缝处的漏气情况。
本领域技术人员可理解,如图10和图11所示,在竖直方向上高强锚固螺栓207可依次穿过夹膜底板201、压紧底托209、第二密封垫片204、密封膜3、第一密封垫片203和重力组件的外壁,并伸入重力组件内实现对密封膜3的锚固和密封固定;此外也可同时利用高强锚固螺栓207依次穿过夹膜底板201、压紧底托209、第二抗压垫片206、密封膜3、第一抗压垫片205和重力组件的外壁,并伸入重力组件内实现对密封膜3的锚固和密封固定,加强对密封膜3的锚固和密封固定,并减小密封膜3的拉扯应力,防止密封膜3漏气的同时增大密封膜3的使用寿命。
此外为了实增强高强锚固螺栓207的锚固强度,因成本问题,大多重力组件中的重力压块211为混凝土,高强锚固螺栓207伸入重力组件内进行锚固密封膜3的强度有限,因此可在重力组件的内部的底端设置螺栓钢托208如图11所示,高强锚固螺栓207伸入重力组件内的螺栓钢托208,其中高强锚固螺栓207的端部不超过螺栓钢托208,实现增强高强锚固螺栓207的锚固强度。
在一些实施例中,实验模型装置包括导向装置11,其包括导槽和滚轮;其中导槽设置多个,多个导槽分布在重力组件周侧,导槽设置在竖井1内壁或竖井1外部;滚轮与导槽配合与导槽的槽底相接,以使重力组件上下移动时滚轮沿着导槽的槽底上下移动。
具体的导槽设置多个,多个导槽分布在重力组件周侧,导槽设置在竖井1内壁或竖井1外部,也就是说或,导槽可以设置在竖井1内部,也可以设置在竖井1外部。滚轮设置多个,多个滚轮分别通过转轴安装在重力组件周侧,滚轮与导槽的槽底相接,以使重力组件上下移动时滚轮沿着导槽的槽底上下移动。定期向导槽与滚轮接触的位置添加润滑剂,如黄油、石墨,从而减小摩擦,提高重力势能的转化率。优选的,多个导槽分别安装在多个塔楼结构10上,即可以设置4个塔楼结构10,然后将4个导槽设置在竖井1外部的4个塔楼结构10上,在储能过程中,重力组件一部分位于竖井1外部,一部分位于竖井1内部。
在一些实施例中,压块箱件2的周侧均设置有导向装置11,导向装置11安装在压块箱件2和与压块箱件2相对的塔楼结构10之间。其中压块箱件2的外侧壁与塔楼内侧壁预留间隙,以使支撑平台4上方压块箱件2和承压筒8上下移动过程中通过滚轮沿着导槽上下移动。
在一些实施例中如图2所示,液体减震组件包括具有一定容纳空间的水箱14且水箱14设置在重力组件的上方并具有一定的重量,可代替部分重力组件中重力压块211的重量,减小重力压块211的造价;有利的,水箱14采用玻璃钢制作而成,同时水箱14的重量与重力压块211的重量相同,减缓水箱14重力组件做升降运动过程中脱离,使得水箱14在任意高度都对重力压块211具有减振效果。
水箱14中盛放一定体积的液体,可选的,水箱14内液体的液面高度不小于水箱14高度的三分之一,优选的,水箱14内液体的液面高度为水箱14高度的三分之一,使得水箱14内液体的运动主要在上层表面附近,而下层的液体是相对静止的,另外,水箱14自由液面过大,容易产生波浪破碎面失去减震效果,因此本实施例根据调谐液体阻尼器的减振原理,通过水箱14内液体的晃动产生的能量耗散重力组件振动的能量。示例性的,水箱14内液体可以为清水、盐水或防冻液等其他粘度较小的液体。有利的液体为防冻液,原因为防冻液具有冬天防冻,夏天防蒸发,全年防水垢、防腐蚀等性能。
在一些实施例中,液体减震组件包括隔液板15;水箱14通过多个隔液板15分割为多个容纳腔;其中在相邻的容纳腔之间的隔液板15上开设连通孔,相邻容纳腔内的液体可以实现连通,即多个容纳腔构成连通器,保证每一容纳腔内的液体的液面高度均相同。当重力压缩空气储能系统工程遭遇风荷载、地震荷载时,液体在多个容纳腔的水箱14中晃动产生的能量耗散重力压块211结构自振的能量;且在水箱14晃动过程中,水箱14的隔液板15可避免水箱14内水流不规律晃动而导致的内耗,从而提高减振效果。当水箱14内液体晃动结束后,通过隔液板15之间的连通孔,使得水箱14内各个容纳腔的液面又恢复到自由液面。其中,为保证水箱14内液体的质量,应定期更换水箱14内液体。有利的,长期重力压缩空气储能系统运行下水箱14暴露于复杂环境中,可在水箱14顶部设有黑色防护罩,其中防护罩为玻璃罩,防止水箱14内的液体蒸发,影响液体减振效果。
在一些实施例中,结构调整组件包括姿态调整组件;其包括竖井固定环16和调整导轮17具体如图5和图7所示,其中竖井固定环16固定设置在竖井1的内壁上,并且为了保证密封膜3在竖直方向上的运行自由度,竖井固定环16位于密封膜3运行上限位的上端;而调整导轮17为多个沿竖井固定环16的内侧周向设置并位于重力组件的外周侧;当重力压缩空气储能系统运行时,重力组件与竖井1活动插入式连接形成活塞结构,重力组件因密封膜3受力不均导致姿态倾斜时,调整导轮17与重力组件接触连接。因此本实施例中,通过调整竖井1内壁面上的调整导轮17与重力组件之间的间距,可以进一步修正重力压缩空气储能系统运行过程中,重力组件由于密封膜3受力不均导致的不同程度的姿态偏斜以及密封膜3漏气的风险。
在一些实施例中,沿竖井固定环16的内侧周向设置的相邻调整导轮17之间的夹角为22.5°-30°。可理解的,为保证调整导轮17全方位修正重力压缩空气储能系统运行过程中,重力组件由于密封膜3受力不均导致的不同程度的姿态偏斜,多角度的调整导轮17的设置极为必要,经过实际模拟和实地实验后,将相邻调整导轮17之间的夹角设置为22.5°-30°可以有效的修正重力组件的姿态偏斜且相较于调整导轮17越多越好的理论,本实施例在保障效地修正重力组件姿态偏斜的效果下,还可减小竖井1上的负载,有利于重力压缩空气储能系统稳定高效运行。优选的,相邻调整导轮17之间的夹角设置为22.5°。
在一些实施例中,结构调整组件包括支撑组件;支撑组件竖向设置并在沿竖直方向伸缩,其底部设置在竖井1底部且顶端延伸至承压筒8内部,并与承压筒8插入式连接。具体的,支撑组件包括多个设置在重力组件底部的支撑柱18,其中在竖直方向上支撑柱18如图6所示可包括四个,其中支撑柱18的横向截面的面积由下到上逐渐变小;其中支撑柱18的底端通过锁定支架19与竖井1的底部连接,其顶部向上延伸;其中重力组件底部开设有向重力组件内部凹陷的凹槽,在重力压缩空气储能系统在运行的初始阶段,即重力组件位于运行的最低限位时,支撑柱18的顶端插入凹槽内。
可理解的,支撑组件整体位于储气库9内,其中支撑柱18的横向截面的面积由下到上逐渐变小,相较于支撑柱18横向截面的面积上下相同的情况,不仅在同样的重力负载下,增加了支撑柱18的底端与竖井1底部的锚固接触面积,增大了支撑柱18的锚固强度,而且其上端伸入凹槽内除却发挥矫正重力组件姿态的作用下,尽量减小对重力组件运行的其他影响。在重力压缩空气储能系统运行过程中,本领域技术人员可认为随着重力组件在竖井1内上移,凹槽与支撑柱18逐渐抽离,当储气库9内的气体量达到最大极限时,支撑柱18的顶端依然伸入内凹槽或支撑柱18的顶端与凹槽无连接且有一定的竖直距离。需要解释的是,本实施例主要针对重力压缩空气储能系统中承压筒8初始和运行过程中姿态倾斜的调整,后续随着重力压缩空气储能系统运行结束,当储气库9内的气体量达到最大极限时,支撑柱18的顶端依然伸入内凹槽是对重力压缩空气储能系统运行结束较为有利的设置。
在一些实施例中,检测组件包括气压检测件13和压力检测件,其中气压检测件13主要设置在竖井1内,用于检测密封膜3的密封性能和锚固结构20的锚固强度以及锚固密封性;而压力检测件设置在实验模型装置较多的位置,其具体检测运行的重力组件对周侧的接触载荷。
具体的,气压检测件13包括多个,其可理解为气体压力检测传感器,其中气压检测件13分别周向设置在承压底座12的底部并位于竖井1的内侧,用于在承压筒8位于最低限位时采集密封膜3上方的竖井1内的压力。
可知的,在模拟密封膜3的锚固的密封性工况时,气压检测件13为方便实测密封膜3上方的竖井1内的压力,多个气压检测件13分别周向设置在承压底座12的底部,且位于竖井1的内侧,通过多次分级加压方式向储气库9中通入高压的压缩空气,充气如图5箭头所指方向,通过气压检测件13实测密封膜3上方的竖井1内的压力,将采集到的压力数据传送至后台中心,后台中心根据压力波动曲线验证密封膜3的气密性能,从而检验密封膜3气密性和耐久性。此外,可通过更换密封膜3的锚固结构20实现对锚固结构20的密封改进。
在一些实施例中,压力检测件为多个传感器21,其中传感器21为接触压力传感器,其中,多个接触压力传感器可设置在塔楼结构10上,并位于塔楼结构10上导槽的一侧,用于检测压块箱件2上的滚轮经过导槽时对外侧塔楼结构10的侧压载荷,从而判断压块箱件2内重力压块211在运行过程中是否重心始终在同一铅直方向。其中接触压力传感器还设置在姿态调整组件上,用于判断承压筒8对在任何工况下对外侧竖井1的接触载荷,并通过姿态调整组件上接触载荷调整承压筒8的不同程度的姿态偏斜;此外液体减震组件与周侧的塔楼结构10上也可设置导向装置11,其与上述的导向装置11在压块箱件2和塔楼结构10上的设置相同,因此接触压力传感器也可以布设在与液体减震组件相对的塔楼结构10,其布设方式同压块箱件2,用于检测液体减震组件上的滚轮经过导槽时对外侧塔楼结构10的侧压载荷,从而判断不同工况下液体减震组件中液体的晃动产生的能量耗散重力组件自振能量的减震效果。因此本实施例能够全面模拟重力压缩空气储能系统运行中储气库9气动性能、安保装置、偏心重影响以及重力压块-储气库整体运行性能为重力压缩空气储能系统的建设奠定坚实的理论基础。
在一些实施例中,实验模型装置模拟重力压缩空气储能系统运行且验证重力压缩空气储能系统整体运行性能的方法包括:储气库9气动性能、安保装置、偏心重影响以及重力压块-储气库9整体运行性能。
即将承压底座12通过螺栓固定在支撑平台4上,利用上述实施例中的某一锚固结构20,模拟密封膜3的锚固的密封性,同时可更换锚固结构20以及承压筒8的形状,验证不同的密封膜3锚固结构20的密封性。并观察运行过程中密封膜3变形情况,反复试验,根据结果调整密封膜3初始形态。研究储气库9不同充/排气方式下,储气库9内压缩空气流动、压强、体积和温度变化规律,确定合理的储气库9进排气口布置型式,推荐合适的充排气阀门尺寸,给出合理的充气压力和排气方案及控制器件性能指标,保障重力压块211平稳升降运行。其中,通过密封膜3变形量与储气库9的充气速度、充排气管22上阀门动作规律、密封膜3锚固情况等有关,通过大量实验,分析密封膜3变形主要影响因素并针对主要影响因素,开展不同方案研究。同时拟采取充排气管22上阀门的不同开启时间,研究储气库9充气过程中不同流场分布下承压筒8底部受力对顶部重力压块211运动姿态影响。
(一)具体的储气库9气动性能研究包括如下方案:
向储气库9充入高压的压缩空气时,压缩空气在储气库9内形成射流且具有典型的三维特征。为开展后续研究,建立压缩空气与重力压块211气固两相耦合作用三维数学模型。首先通过“压缩空气-重力压块”气固耦合模型研究压缩空气在有限空间内的射流流态。
其次通过承压筒8姿态对顶部重力压块211运动姿态影响:
理想运行状态下,充气过程中承压筒8和重力压块211随着储气库9内压缩空气体积的增大竖直沿轴向缓慢上升,此时,密封膜3各处受力均匀。但是在重力压缩空气储能系统实际运行过程中,承压筒8运行姿态与重力压块211偏心、承压筒8底部受力不均、密封膜3侧向力等影响因素有关。其中,重力压块211姿态对承压筒8运行姿态的影响可在重力压块211偏心影响实验方案中集中开展研究;通过40℃下压缩空气的进气体积流量为0.1372m3/s,进气管直径250mm,进气流速为2.8m/s,充气时间1h,可以发现,储气库9进气缓慢,承压筒8底部受力不均所导致的承压筒8姿态变化影响可通过调节进气阀门动作时间控制;承压筒8姿态主要取决于密封膜3运行过程中受力不均导致的侧向力,密封膜3受力不均与气室流场分布、密封膜3初始状态、密封膜3运动中变形有关。示例性的,承压筒8运行过程中,右侧密封膜3顶端偏向竖井1侧,密封膜3侧向力导致承压筒8向右偏斜,从而重力组件向右倾斜较大的偏斜度导致产生侧向作用力,极端情况下导致滚轮卡死或导槽较大程度变形,危及系统安全。综合上述分析,主要针对运行过程中密封膜3变形对承压筒8姿态的影响进行实验研究。根据承压筒8运行姿态和力的传导过程,在支撑平台4和观察台5上部布置激光位移传感器,数据处理后用以研究不同工况下承压筒8姿态倾斜度;在各导向装置11上布置传感器21,用以测量导槽承压,研究承压筒8姿态倾斜度与压力变化关系,提出合理的控制标准。实验步骤如下:
a)运行实验模型装置,检测密封膜3锚固密封情况,观察运行过程中密封膜3变形情况,反复试验,根据结果调整密封膜3初始形态;
b)拟采取调节进气阀门开启时间,研究储气库9充气过程中不同流场分布下承压筒8底部受力对顶部重力压块211运动姿态影响;
c)密封膜3变形量与充气速度、进气阀门动作规律、密封膜3锚固情况等有关,通过大量实验,分析密封膜3变形主要影响因素。针对主要影响因素,开展不同方案研究(需结合现场密封膜3运行观测结果拟定具体方案)。
(二)具体的气动性能研究方案如下:
压缩气体其压强、体积和温度等特性与其热力学状态密切相关,可以认为0.25MPa(2.5MPa)室内气体为理想气体。综合考虑重力压块211受力特性及压缩空气热力学特性,建立系统非恒定气动力数学模型。研究储气库9不同充/排气方式下,储气库9内气体流动、压强、体积和温度变化规律,确定合理的储气库9进排气口布置型式,推荐合适的充排气阀门尺寸,给出合理的充气压力和排气方案及控制器件性能指标,保障重力压块211平稳升降运行。
其中储气库9内气体压强、体积和温度变化规律的主要影响因素包括:①进气阀门动作规律;②气室温度;③管径;④承压筒8底部结构形式。
①阀门动作规律包括储气库9充气和储气库9排气;其中
储气库9进气:气压稳定在0.25MPa时,打开进气阀门至70%开度,开阀时间60s、120s、180s,当储气库9内密封膜3基本受力均衡时,进气阀门180s、240s、300s至全开;正常充气,此时气室内含压缩空气。进气阀门初采用240s、300s、360s一段折线开阀规律,初始充气采用二折线动作规律,开度和开阀时间根据实验结果调整,最终确认合适方案。根据最终充气开阀方案和实验观测,当重力块运行到接近指定高度水,缓慢关闭控制阀,关阀动作时刻、和阀门关闭时间需根据现场调整。
储气库9排气:排气阶段,排气阀门操作顺序为打开开关阀→承压底座12落在支撑平台4→排气阀门关闭,排气阀门动作时间240s、300s、360s,根据实验结果调整。
②气室温度;通过钢筒内加热装置,拟开展30℃、40℃、50℃下储气库9内气体流动研究,分析初始温度对重力块升降运行的影响。
③管径;研究气体同流量、不同流速下系统运行特性和安保防护。
④承压筒8底部结构形式;同一进排气方案下,通过底部受力、导轮受力实测数据,研究不同结构形式下气室分布。其中承压筒8底部形状为倒锥形、矩形或梯形等。
(三)安保装置研究
即将利用螺栓将承压底座12通过固定在支撑平台4上的螺栓拆卸,使得储气库9内压缩空气在一定的体积下承压底座12带动其上方的重力压块211沿轴向即在竖直方向上向上运行,通过设置不同的压块箱件2,且压块箱件2分布在不同的位置,其中在位于底部的压块箱件2向上运行一段距离后,与其上方的另一压块箱件2接触连接后,二者再共同向上运行。此过程可模拟重力压缩空气储能系统中不同重量、高度、叠加方式的重力压块211对系统运行的影响,以及如何改善重力压块211的吊装方式和叠放方式,保证重力压块211的中心始终保持同一铅直方向且不易脱落和倾斜。同时通过压块箱件2外传感器21的设置,用以测量导槽承压,研究承压筒8姿态倾斜度与压力变化关系,提出合理的控制标准,保障重力压块211平稳升降,提高系统的运行稳定性,此外还可根据压块箱件2周侧滚轮与导槽的数量研究最佳导向装置11的布设情况;即
①用数值模拟,开展不同压块箱件2形成的配重在偏心条件下稳定性和受力分析;
②整体模型实验,模拟配重不同偏心条件,研究配重的稳定性、导向受力特性等;
③初步确定保障重力压块211稳定的合理重心偏差控制条件;以及通过液体减震组件分析减振效果。
其中调偏心操作方法如下:包括单个重力压块211偏心的设置以及压块箱件2整体偏向的设置:示例性的其中单个重力压块211的底部、中部、顶部压块距中心轴0.05m、0.15m、0.25m;压块箱件2内重力压块211的底部、中部、顶部距中心轴0.05m、0.15m、0.25m。其中具体偏向距离可调整。
当密封膜3破损时,重力压块211突然快速掉落。通过实验,模拟力压块意外掉落造成冲击荷载以及对周边构筑物(导向装置11、支撑平台4、竖井1等)的影响范围,提出合理的防护措施。即通过分别和全部打开连通管7上的阀门和阀门开度,近似模拟密封膜3不同位置局部破损或全部破损下储气库9内压缩空气对重力组件的冲击力。示例性的,竖井1高为2.5m,其中密封膜3与竖井1密封端距离竖井1顶端的竖直距离为1.5m;在本实施例中储气库9极限的充气状态下,密封膜3的顶端与竖井1顶部之间具有6cm的竖直距离;本实施例中的三个连通管7由上到下与竖井1顶部之间的竖直距离为6cm、21cm和36cm。
需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

1.一种模拟重力压缩空气储能系统运行的实验模型装置,其特征在于,包括:
竖井,所述竖井设置在支撑平台下方且其上端开放,其中活动插接有重力组件,所述重力组件外壁与所述竖井内壁之间有间隙,所述间隙中设置有密封膜,所述密封膜与所述重力组件外壁和所述竖井内壁之间通过锚固结构密封连接,以使所述密封膜、所述竖井位于所述密封膜下方的空间、所述重力组件之间围成储气库;所述锚固结构包括:夹膜底板、防漏组件和外接环;所述夹膜底板在竖直方向上设置在所述重力组件的下方且与所述重力组件之间具有间隙;所述防漏组件包括密封垫片,其中所述密封垫片包括第一密封垫片和第二密封垫片;其中所述第一密封垫片和所述第二密封垫片设置在所述间隙内并在的竖直方向上相对设置;且所述密封膜锚的一端设置在所述第一密封垫片和第二密封垫片之间,实现所述密封膜与所述重力组件的连接;所述外接环在所述第一密封垫片和所述第二密封垫片的周侧设置;所述外接环位于所述间隙的周侧并与所述间隙外的所述密封膜接触,用于减小所述密封膜的拉扯应力;
其中所述重力组件包括多个压块箱件形成的重力块组和承压组件;其中多个所述压块箱件在竖直方向上且间隔一定的距离进行依次设置,并设置在所述承压组件的顶部;所述承压组件的底部伸入所述竖井内且其外壁与所述密封膜相连;所述承压组件的顶部位于所述支撑平台上方;
塔楼结构;其包括多个位于所述竖井顶端外部的所述支撑平台上并分布在所述竖井周侧的;所述重力组件位于所述塔楼结构的内侧且两者之间具有一定的水平距离;
气流组件;其包括与所述竖井的底部连通的充排气管以及与所述储气库连通的支管组件;其中所述充排气管用于向所述储气库中充入、抽出气体;所述支管组件与所述充排气管连通并抽出所述储气库不同位置的气体,用于模拟所述密封膜不同位置破损的工况;
导向装置;其分布在所述重力组件周侧位于所述竖井的内壁或所述塔楼结构与所述重力组件之间,以使所述重力组件在竖直方向上进行上下移动;和
调整检测组件;其包括检测组件和结构调整组件,其中结构调整组件用于对所述实验模型装置的运行工况进行调节;所述检测组件用于实时测量所述实验模型装置的运行工况参数。
2.根据权利要求1所述的实验模型装置,其特征在于,还包括外框支撑架;其中所述外框支撑架位于所述塔楼结构的外侧并设置在所述支撑平台上方,用于在竖直方向上设置多个观察台和多个固定伸缩座;其中所述固定伸缩座的一端与所述外框支撑架连接,另一端伸长时穿过所述塔楼结构并位于在所述压块箱件的下方,用于支撑所述压块箱件;待其支撑的所述压块箱件向上移动时,所述固定伸缩座收缩至所述塔楼结构内。
3.根据权利要求2所述的实验模型装置,其特征在于,其中每相邻设置的所述压块箱件上分别设置凸台和/或与所述凸台适配的凹槽,其中所述凸台和所述凹槽均位于所述固定伸缩座伸长到极限时的内侧;且在竖直方向上,所述凸台与所述凹槽高度的差值等于所述固定伸缩座的高度。
4.根据权利要求1-3任一所述的实验模型装置,其特征在于,多个所述压块箱件内均设置多个在竖直方向上层层叠加设置的重力压块;其中每一所述压块箱件内所述重力压块层层叠加的方式均不同,用于检测不同叠加设置的所述重力压块对所述实验模型装置运行的影响。
5.根据权利要求4所述的实验模型装置,其特征在于,所述支管组件包括出气支管,其一端与所述充排气管连通,另一端分别通过多个连通管与所述储气库连通;且连通处均位于所述密封膜与所述竖井连接密封端的上方。
6.根据权利要求4所述的实验模型装置,其特征在于,所述承压组件包括承压筒和承压底座;其中所述承压筒的底部伸入所述竖井内且其顶部设置承压底座;所述重力块组位于所述承压底座上方,以使所述承压筒向下移动至最低限位时通过所述承压底座支撑在所述竖井顶部的所述支撑平台上;其中所述承压底座与所述支撑平台可拆卸连接。
7.根据权利要求6所述的实验模型装置,其特征在于,检测组件包括气压检测件,其包括多个分别周向设置在所述承压底座的底部并位于所述竖井的内侧,用于在所述承压筒位于最低限位时采集所述密封膜上方的所述竖井内的压力。
8.根据权利要求4所述的实验模型装置,其特征在于,所述结构调整组件包括液体减震组件;其包括容纳有一定体积液体的水箱;所述水箱设置在所述重力组件的上方,通过所述水箱内液体的晃动产生的能量耗散所述重力组件振动的能量。
9.根据权利要求8所述的实验模型装置,其特征在于,所述液体减震组件包括隔板;所述水箱通过所述隔板分割为多个容纳腔,相邻所述容纳腔连通实现多个所述容纳腔内液体的液面齐平。
10.根据权利要求4所述的实验模型装置,其特征在于,所述导向装置包括导槽和滚轮;其中所述导槽设置多个,多个所述导槽分布在所述塔楼结构上并位于在所述压块箱件周侧;所述滚轮与所述导槽配合并与所述导槽的槽底相接,以使所述重力组件上下移动时所述滚轮沿着所述导槽的槽底上下移动。
11.根据权利要求4所述的实验模型装置,其特征在于,所述结构调整组件包括姿态调整组件;其中在竖直方向上,所述姿态调整组件设置在所述竖井的内壁上并位于所述密封膜运行上限位的上端;所述姿态调整组件包括竖井固定环和调整导轮;其中所述竖井固定环固定设置在所述竖井的内壁上并位于所述密封膜运行上限位的上端;所述调整导轮为多个沿所述竖井固定环的内侧周向设置并与所述重力组件接触连接,且所述调整导轮位于所述重力组件的外侧。
12.根据权利要求6所述的实验模型装置,其特征在于,所述结构调整组件包括支撑组件;所述支撑组件竖向设置并在沿竖直方向伸缩,其底部设置在所述竖井底部且顶端延伸至所述承压筒内部,并与所述承压筒插入式连接。
13.根据权利要求12所述的实验模型装置,其特征在于,所述支撑组件包括多个设置在所述重力组件底部的支撑柱;其中所述支撑柱的底部通过锁定支架与所述竖井的底部连接;所述支撑柱的顶部在伸长时延伸至所述承压筒底部的凹槽内;其中所述支撑柱靠近所述锁定支架一端的横向截面面积大于伸入所述凹槽的一端的横向截面面积。
14.根据权利要求4所述的实验模型装置,其特征在于,所述检测组件包括压力检测件,其包括多个传感器;所述传感器分布在所述导向装置和姿态调整组件上,用于检测所述实验模型装置运行过程中各处的运行压力。
15.一种模拟重力压缩空气储能系统运行的方法,其特征在于,利用如权利要求1-14任一所述的实验模型装置用于模拟重力压缩空气储能系统的运行,包括:
布设空气压缩单元、空气膨胀单元和发电机;所述空气压缩单元的进口连接有进气装置;所述空气压缩单元的出口通过储能管路与储气室的进口连接;所述储气室的出口通过释能管路与所述空气膨胀单元的进口连接;且空气膨胀单元的出口与发电机连接;
模拟所述储能系统进行储能,关闭所述释能管路并开启所述储能管路,空气通过所述进气装置进入所述空气压缩单元压缩后成为压缩空气;所述压缩空气通过所述储能管路进入所述储气室并使得所述储气室体积增大,重力组件恒压上升;
模拟所述储能系统进行释能,开启所述释能管路并关闭所述储能管路;所述储气室11体积减小以致所述重力组件下降;所述压缩空气经所述释能管路进入所述空气膨胀单元恒压做功并带动所述发电机发电。
16.根据权利要求15所述的方法,其特征在于,在模拟所述储能系统储能阶段,所述储能管路与所述释能管路之间设有热交换单元;空气进入所述空气压缩单元压缩过程产生的热量存储在所述热交换单元;在模拟所述储能系统释能阶段,压缩空气由所述储气室经过所述热交换单元加热后,再经释能管路进入空气膨胀单元。
CN202210795445.8A 2022-07-07 2022-07-07 一种模拟重力压缩空气储能系统运行的实验模型装置 Active CN115223436B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210795445.8A CN115223436B (zh) 2022-07-07 2022-07-07 一种模拟重力压缩空气储能系统运行的实验模型装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210795445.8A CN115223436B (zh) 2022-07-07 2022-07-07 一种模拟重力压缩空气储能系统运行的实验模型装置

Publications (2)

Publication Number Publication Date
CN115223436A CN115223436A (zh) 2022-10-21
CN115223436B true CN115223436B (zh) 2023-11-17

Family

ID=83609712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210795445.8A Active CN115223436B (zh) 2022-07-07 2022-07-07 一种模拟重力压缩空气储能系统运行的实验模型装置

Country Status (1)

Country Link
CN (1) CN115223436B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116312188B (zh) * 2023-03-10 2023-10-20 中国矿业大学 一种模拟废弃矿井压缩空气储能系统运行的模型装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007506A2 (en) * 2003-05-05 2005-01-27 Robert Daniel Hunt Air glider or sea glider alternately being lighter than air or water to being heavier than air or water, having a gas turbine of hydro-turbine to harness the kinetic energy of motion through the air or water, and method
DE102012011491A1 (de) * 2012-06-09 2013-12-12 Walter Schopf Unterwasser-Druckluft-Energiespeicher mit volumenvariablem Druckspeichergefäß
DE102012011492A1 (de) * 2012-06-09 2013-12-12 Walter Schopf Unterwasser-Druckluft-Energiespeicher
CN108062440A (zh) * 2017-12-12 2018-05-22 清华大学 先进绝热压缩空气储能系统全动态模型的生成方法及装置
CN111237144A (zh) * 2020-01-14 2020-06-05 中国华能集团有限公司 一种重力压缩空气储能系统及其工作方法
CN111272353A (zh) * 2020-02-18 2020-06-12 中国科学院工程热物理研究所 一种闭式旋转机械气体密封件的实验系统及方法
CN211370627U (zh) * 2020-01-14 2020-08-28 中国华能集团有限公司 一种重力压缩空气储能系统
WO2021159697A1 (zh) * 2020-08-06 2021-08-19 中国科学院广州能源研究所 一种大尺度全尺寸开采井三维综合试验开采系统
CN114033636A (zh) * 2021-11-10 2022-02-11 西安西热锅炉环保工程有限公司 一种悬浮式重力储能系统及方法
CN114061352A (zh) * 2021-11-15 2022-02-18 车双柱 一种基于相变材料的电热储能供热装置、供热系统
CN114458572A (zh) * 2022-01-05 2022-05-10 华北电力大学 一种重力与压缩空气相结合的储能系统及其工作方法
CN216811786U (zh) * 2021-10-29 2022-06-24 势加透博(上海)能源科技有限公司 压缩空气储能系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007506A2 (en) * 2003-05-05 2005-01-27 Robert Daniel Hunt Air glider or sea glider alternately being lighter than air or water to being heavier than air or water, having a gas turbine of hydro-turbine to harness the kinetic energy of motion through the air or water, and method
DE102012011491A1 (de) * 2012-06-09 2013-12-12 Walter Schopf Unterwasser-Druckluft-Energiespeicher mit volumenvariablem Druckspeichergefäß
DE102012011492A1 (de) * 2012-06-09 2013-12-12 Walter Schopf Unterwasser-Druckluft-Energiespeicher
CN108062440A (zh) * 2017-12-12 2018-05-22 清华大学 先进绝热压缩空气储能系统全动态模型的生成方法及装置
CN211370627U (zh) * 2020-01-14 2020-08-28 中国华能集团有限公司 一种重力压缩空气储能系统
CN111237144A (zh) * 2020-01-14 2020-06-05 中国华能集团有限公司 一种重力压缩空气储能系统及其工作方法
WO2021143349A1 (zh) * 2020-01-14 2021-07-22 中国华能集团有限公司 一种重力压缩空气储能系统及其工作方法
CN111272353A (zh) * 2020-02-18 2020-06-12 中国科学院工程热物理研究所 一种闭式旋转机械气体密封件的实验系统及方法
WO2021159697A1 (zh) * 2020-08-06 2021-08-19 中国科学院广州能源研究所 一种大尺度全尺寸开采井三维综合试验开采系统
CN216811786U (zh) * 2021-10-29 2022-06-24 势加透博(上海)能源科技有限公司 压缩空气储能系统
CN114033636A (zh) * 2021-11-10 2022-02-11 西安西热锅炉环保工程有限公司 一种悬浮式重力储能系统及方法
CN114061352A (zh) * 2021-11-15 2022-02-18 车双柱 一种基于相变材料的电热储能供热装置、供热系统
CN114458572A (zh) * 2022-01-05 2022-05-10 华北电力大学 一种重力与压缩空气相结合的储能系统及其工作方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
压气储能系统中储气装置的性能分析与改进;庞永超;韩中合;;化工进展(S2);全文 *
压缩空气含水层储能系统设计及可行性分析;郭朝斌;张可倪;李采;;同济大学学报(自然科学版)(第07期);全文 *
基于涡旋机的新型压缩空气储能系统动态建模与效率分析;褚晓广;张承慧;李珂;荆业飞;;电工技术学报(第07期);全文 *
基于盐穴储气的先进绝热压缩空气储能技术及应用前景;梅生伟;公茂琼;秦国良;田芳;薛小代;李瑞;;电网技术(10);全文 *

Also Published As

Publication number Publication date
CN115223436A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
CN108872530B (zh) 一种模拟非对称小净距隧道开挖过程的大型模型试验装置
CN115223436B (zh) 一种模拟重力压缩空气储能系统运行的实验模型装置
CN113550803A (zh) 一种重力压缩空气储能的储气装置及其方法
CN112005022B (zh) 用于能量储存的大型飞轮
CN111929150B (zh) 多雨山区下穿铁路隧道围岩动力学测试系统及方法
CN101142434A (zh) 轻型低渗透套管内活塞蓄能器
CN109556965B (zh) 盾构管片力学性能模拟试验装置
WO2023237019A1 (zh) 分层式重力块地下布置的重力压缩空气储能装置
CN114718686B (zh) 一种低压差密封的重力压缩空气储能系统和方法
CN105350799A (zh) 一种钢结构双曲线空冷塔
CN106884654A (zh) 集装箱式二氧化碳致裂器检修、灌注工作站
CN218095407U (zh) 一种基于整流结构进行储放压缩空气的储气库
CN115208072A (zh) 一种密封膜的锚固结构及重力压缩空气储能系统
GB2527195A (en) Method and apparatus for generating clean renewable energy through the application of hydrostatic pressure gradients associated with liquid reservoirs
CN206554927U (zh) 集装箱式二氧化碳致裂器检修、灌注工作站
US20060239832A1 (en) Compressed air power generating systems using a rotary gravity compressor
CN113820136A (zh) 一种注气式蓄压器压力平衡试验装置及其试验方法
CN115234477A (zh) 用于黄土地质的重力压缩空气储能系统的竖井及加固方法
CN218002931U (zh) 一种模拟密封膜漏气的实验装置
CN110805532B (zh) 采用充气保压增强型塔筒的超大型水平轴风力发电机
JPS63298023A (ja) 圧力容器の耐圧試験方法
CN217816205U (zh) 一种压缩空气储能系统用储气装置
CN115199933B (zh) 一种基于柔性导气的储气室及重力压缩空气储能系统
CN215374914U (zh) 气体爆破式桩基力学性能检测装置
KR20090058422A (ko) 대기압, 진공, 압축공기를 이용한 에너지 발생장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant