WO2021159701A1 - 可拆分式天然气水合物出砂防砂试验装置及方法 - Google Patents

可拆分式天然气水合物出砂防砂试验装置及方法 Download PDF

Info

Publication number
WO2021159701A1
WO2021159701A1 PCT/CN2020/114106 CN2020114106W WO2021159701A1 WO 2021159701 A1 WO2021159701 A1 WO 2021159701A1 CN 2020114106 W CN2020114106 W CN 2020114106W WO 2021159701 A1 WO2021159701 A1 WO 2021159701A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand
reactor
screen
assembly
reaction kettle
Prior art date
Application number
PCT/CN2020/114106
Other languages
English (en)
French (fr)
Inventor
李小森
王屹
陈朝阳
夏志明
李刚
张郁
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Priority to US17/257,311 priority Critical patent/US11899005B2/en
Publication of WO2021159701A1 publication Critical patent/WO2021159701A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • B01J19/1818Tubular reactors in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00281Individual reactor vessels
    • B01J2219/00283Reactor vessels with top opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00281Individual reactor vessels
    • B01J2219/00286Reactor vessels with top and bottom openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00331Details of the reactor vessels
    • B01J2219/00333Closures attached to the reactor vessels
    • B01J2219/00337Valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00423Means for dispensing and evacuation of reagents using filtration, e.g. through porous frits
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/20Computer models or simulations, e.g. for reservoirs under production, drill bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0099Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • E21B43/084Screens comprising woven materials, e.g. mesh or cloth

Definitions

  • the invention relates to a sand production and sand control process test for natural gas hydrate mining, in particular to a detachable natural gas hydrate sand production and sand control test device and method.
  • the prior art simulation device is not flexible enough and can only simulate a few cases of hydrate sand production and sand control tests.
  • the lack of modularization of each part of the device makes the device complex and difficult to do more experimental design schemes.
  • the present invention provides a detachable natural gas hydrate simulation sand production and sand control test reaction device and method.
  • the reaction kettle system has the characteristics of flexible assembly design, and the reaction kettle components in the reaction kettle system Different combinations can be used to complete sand production and sand control experiments for different experimental purposes.
  • the technical solution of the present invention is as follows:
  • a detachable gas hydrate simulation sand production and sand control test reaction device comprising a reactor system, a water injection gas sand system, and is characterized in that it also includes a gas water sand separation metering system, a low temperature water bath jacket system, a support and a safety system And the software record analysis system,
  • the water injection gas sand system is used to provide gas, liquid and sand to the reactor system to form natural gas hydrate in the reactor system;
  • the reaction kettle system is arranged in the low temperature water bath jacket system, and the low temperature water bath jacket system is used to control the temperature in the reaction kettle system to simulate the ambient temperature of the natural gas hydrate reservoir;
  • the support and safety system includes an operating platform, and the low-temperature water bath jacket system is fixed on the operating platform in a vertical or horizontal manner to simulate sand production and sand control in different directions of the sand control screen in the natural gas hydrate reservoir. test;
  • the operation platform is provided with a parameter detection and collection module, which collects data of the reactor system in the process of simulating natural gas hydrate mining through a number of sensors,
  • the gas-water-sand separation and metering system is connected to the production port of the reactor system to simulate the inflow of gas-water-sand mixture during the natural gas hydrate mining process, and separate and measure the gas-water-sand mixture.
  • the gas-water-sand separation The measurement data of the measurement system is transmitted to the parameter detection and collection module;
  • the software recording analysis system is in communication connection with the parameter detection and collection module
  • the reaction kettle system includes a first reaction kettle assembly, a second reaction kettle assembly, a third reaction kettle assembly, a ball valve, a screen and a cover.
  • the first reaction kettle assembly is a cylindrical shell with one end open and one end closed.
  • the second reaction kettle assembly and the third reaction kettle assembly are cylindrical shells with open ends, and the cylindrical shells of the first reaction kettle assembly, the second reaction kettle assembly and the third reaction kettle assembly are all on the cylindrical shells. There are reserved holes for installing sensors.
  • the first reaction kettle assembly, the second reaction kettle assembly and the third reaction kettle assembly are also provided with pressure relief ports and liquid drains.
  • the first reaction kettle Components and the third reactor assembly sand injection port, water injection port, gas injection methane gas port, mining port and observation port, the cover has a mining port;
  • any combination of the first reactor component, the second reactor component, the third reactor component, the ball valve, the screen and the cover can realize the simulation of single and double observation areas of the reactor system, single and double well mining and sand control screen Sand production and sand control test in different azimuths of gas hydrate reservoirs.
  • first reaction kettle assembly and the third reaction kettle assembly further include a movable piston, one end of the first reaction kettle assembly is provided with a nitrogen injection port, and the cylindrical shell of the third reaction kettle assembly A nitrogen injection port is opened on the upper side, and the nitrogen injection port is used to inject gas to drive the movable piston toward the filling direction in the reaction kettle system.
  • the first reaction kettle assembly is provided with a movable piston. The movable piston moves toward the open end of the first reaction kettle assembly when working, and the third reaction kettle assembly is provided with two movable pistons, and the movable piston moves toward both ends of the third reaction kettle assembly when working.
  • the reaction kettle system when the reaction kettle system is used as a single well sand control test without an observation zone, the reaction kettle system consists of a first reaction kettle assembly, a ball valve, a screen, a second reaction kettle assembly, a screen and a cover. Assembled in sequence, the first reactor assembly is used to simulate the hydrate area, the ball valve, the screen, the second reactor assembly and the screen are used to simulate the sand control screen area, and the cover is used to simulate the sand collection port; specifically When the reactor system is arranged vertically and the cover is located at the bottom end, the simulation is the sand control test of the sand control screen under the hydrate reservoir; when the reactor system is arranged horizontally, the simulation is the sand control screen The screen on the right side of the hydrate reservoir is tested for sand production and sand control; when the reactor system is vertically arranged and the cover is at the top, it simulates the sand production and sand control test of the screen with the sand control screen above the
  • the reactor system when used as a double-well sand production and sand control test without an observation zone, the reactor system consists of a cover, a screen, a second reactor assembly, a screen, a ball valve, and a third reactor assembly.
  • Ball valve, screen, second reactor assembly, screen and cover are assembled in sequence.
  • the third reactor assembly is used to simulate the hydrate zone, and the ball valve, screen, second reactor assembly and screen are used for simulation.
  • the cover is used to simulate the mining sand collection port; specifically, when the reactor system is vertically arranged, it simulates the sand control test of the sand control screen above and below the hydrate reservoir; When the reactor system is arranged horizontally, it simulates the sand control test of the sand control screens on the left and right sides of the hydrate reservoir.
  • the reaction kettle system when used as a single well sand control test in a single observation zone, the reaction kettle system consists of a first reaction kettle assembly, a ball valve, a screen, a second reaction kettle assembly, a screen and a first
  • the reactor components are assembled in sequence, the first reactor component near the ball valve is used to simulate the hydrate zone, the ball valve, the screen, the second reactor component and the screen are used to simulate the sand control screen area, and the first reactor far away from the ball valve
  • the components are used to simulate the sand production observation area and the mining sand collection port; specifically, when the reactor system is vertically arranged and the ball valve is close to the top, it simulates the sand production and sand control test of the sand control screen below the hydrate reservoir.
  • the first reactor assembly far away from the ball valve is equivalent to the third reactor assembly and cover combination; when the reactor system is arranged vertically and the ball valve is close to the bottom end, the simulation is that the sand control screen is above the hydrate reservoir.
  • Sand production and sand control test of the screen when the reactor system is arranged horizontally, it simulates the sand production and sand control test of the screen with the sand control screen on the right side of the hydrate reservoir.
  • the reaction kettle system when used as a two-well sand production and sand control test in a single observation zone, the reaction kettle system consists of a first reaction kettle assembly, a ball valve, a screen, a second reaction kettle assembly, a screen, and a third
  • the reactor assembly, the screen, the second reactor assembly, the screen, the ball valve and the cover are composed; specifically,
  • the reactor system When the reactor system is arranged horizontally, it simulates the sand control test with the sand control screen on the right side of the hydrate reservoir.
  • the connection and assembly relationship is the first reactor assembly, ball valve, screen, and second reactor assembly. , Partition net, third reaction kettle assembly, partition net, second reaction kettle assembly, partition net, ball valve and cover are assembled in sequence.
  • the first reaction kettle assembly is used to simulate the hydrate zone, ball valve, partition net, second
  • the reactor components and screens are used to simulate the sand control screen area
  • the third reactor components are used to simulate the sand production observation area and the mining sand collection port
  • the screens, second reactor components, screens, and ball valves are used to simulate the sand control screen.
  • the cover In the pipe area, the cover is used to simulate the sand collection port during mining;
  • the simulation is the sand control test with the sand control screen below the hydrate reservoir
  • the first reactor assembly is used to simulate hydration Object area
  • ball valve, screen, second reactor assembly and screen are used to simulate the sand control screen area
  • the third reactor assembly is used to simulate the sand production observation area and the mining sand collection port
  • the screen, the second reactor assembly The screen and ball valve are used to simulate the sand control screen area
  • the cover is used to simulate the sand collection port of mining;
  • the reaction kettle system is vertically arranged and connected and assembled in a first reaction kettle assembly, a partition screen, a second reaction kettle assembly, a partition net, a ball valve, a third reaction kettle assembly, a ball valve, a partition screen, a second reaction kettle assembly, and a partition.
  • the simulation is the sand control test of the sand control screen above and below the hydrate reservoir.
  • the first reactor assembly is used to simulate the sand production observation area and the mining sand collection port, and the screen is separated.
  • the second reactor assembly, screen, and ball valve are used to simulate the sand control screen area
  • the third reactor assembly is used to simulate the hydrate area.
  • the reactor system when the reactor system is used as a single well sand control test with dual observation areas, the reactor system consists of a first reactor assembly, a screen, a second reactor assembly, a screen, a ball valve, and a third Reactor components, ball valves, screens, second reactor components, screens, and caps are assembled in sequence.
  • the first reactor is used to simulate the hydrate zone
  • the screens, second reactor components, screens, and ball valves are used to simulate the hydrate zone.
  • the third reactor assembly is used to simulate the sand production observation area and the mining sand collection port.
  • the reactor system when the reactor system is arranged horizontally, it is simulated that hydrate is stored on the left and right sides of the sand control screen.
  • the reactor system When the reactor system is arranged vertically, it simulates the sand production and sand control test of the hydrate stored above and below the sand control screen.
  • the reactor system when used as a double-well sand production and sand control test in a dual observation zone, the reactor system consists of a first reactor assembly, a screen, a second reactor assembly, a screen, a ball valve, and a third
  • the reaction kettle assembly, the ball valve, the screen, the second reaction kettle assembly, the screen, and the cover are composed, specifically,
  • the reactor system is arranged horizontally or vertically, and the connection and assembly relationship is the first reactor assembly, the screen, the second reactor assembly, the screen, the ball valve, the third reactor assembly, the ball valve, the screen, and the second reaction.
  • the corresponding simulation is the sand control test of the sand control screen above and below the hydrate reservoir.
  • the third reactor component is used to simulate the hydrate zone.
  • the second reactor assembly, screen, and ball valve are used to simulate the sand control screen area
  • the first reactor assembly is used to simulate the sand production observation area
  • the cover is used to simulate the mining sand collection port;
  • the reaction kettle system is arranged horizontally and connected and assembled in a first reactor assembly, a ball valve, a screen, a second reactor assembly, a screen, a third reactor assembly, a screen, a second reactor assembly, a screen, When the ball valve and the cover are assembled in sequence, the simulated sand control screen is on the right side of the hydrate reservoir.
  • the sand control test in which sand is produced in the same direction, from the left to the right of the reactor system: for the first reactor assembly In the simulated hydrate area, the ball valve, the screen, the second reactor assembly, and the screen are used to simulate the sand control screen area, the third reactor assembly is used to simulate the sand production observation area and the mining sand collection port, and the first reactor assembly Used to simulate sand production observation area and mining sand collection port;
  • the reaction kettle system is vertically arranged and connected and assembled in a first reactor assembly, a ball valve, a screen, a second reactor assembly, a screen, a third reactor assembly, a screen, a second reactor assembly, a screen,
  • the sand control screen is simulated in the same direction as the sand control screen above the hydrate reservoir.
  • the first reactor component is used to simulate hydration
  • the object area, the ball valve, the screen, the second reactor assembly, and the screen are used to simulate the sand control screen area
  • the third reactor component is used to simulate the sand production observation area and the mining sand collection port
  • the first reactor component is used to simulate Sand production observation area and mining sand collection port;
  • the reaction kettle system is vertically arranged and connected and assembled in a first reactor assembly, a ball valve, a screen, a second reactor assembly, a screen, a third reactor assembly, a screen, a second reactor assembly, a screen,
  • the sand control screen is simulated in the same direction as the sand control screen below the hydrate reservoir.
  • the first reactor component is used to simulate hydration
  • the object area, the ball valve, the screen, the second reactor assembly, and the screen are used to simulate the sand control screen area
  • the third reactor component is used to simulate the sand production observation area and the mining sand collection port
  • the first reactor component is used to simulate Sand production observation area and mining sand collection port;
  • the reactor system is arranged horizontally or vertically, and the connection and assembly relationship is the first reactor assembly, the ball valve, the screen, the second reactor assembly, the screen, the third reactor assembly, the screen, and the second reactor assembly.
  • the corresponding simulation is that the hydrate is hidden above and below the sand control screen.
  • the first reactor component is used to simulate the hydrate area
  • the ball valve, the screen, the second reactor component, and the screen are used to simulate the sand control screen area
  • the third reactor component is used to simulate the sand production observation area and mining sand collection mouth.
  • the cover includes a hemispherical cover and a flat cover, and the hemispherical cover is used for the vertical arrangement of the reactor system
  • the flat cover is used for the horizontal arrangement of the reactor system
  • the assembly of the third reactor assembly and the cover is equivalent to the first reactor assembly.
  • observation port includes a transparent window above the observation port and a transparent window below the observation port, so as to realize real-time inspection of sand production or changes in the components of the reactor system during the natural gas hydrate mining process.
  • the water injection gas sand system includes a nitrogen source, a water injection source, a screen filler, a hydrate filler, and a methane gas source.
  • the nitrogen source is in communication with the nitrogen injection port in the reactor system, and the connecting pipeline It is equipped with a nitrogen flow meter, a nitrogen pressure gauge and a nitrogen pipeline valve; the water injection source is connected with the water injection port in the reactor system, and the connecting pipeline is equipped with a water injection flow meter, a water injection pressure gauge and a water pipeline valve;
  • the screen filler is in communication with the sand injection port in the reactor system, and the connecting pipe is provided with a screen filler balance and a screen filler sand injection port cover; the hydrate filler is connected to the sand injection port in the reactor system
  • the sand injection port is connected, and the connecting pipe is provided with a hydrate filler balance and a hydrate filler sand injection port cover.
  • the screen filler sand injection port cover and the hydrate filler sand injection port cover are used for the injection of the reactor system
  • the sealing of the sand port; the methane gas source is connected with the methane gas injection port in the reactor system, and the communicating pipeline is provided with a methane gas flowmeter, a methane gas pressure gauge and a methane gas pipeline valve.
  • the nitrogen source, water injection source, screen packing, hydrate packing and methane gas source are respectively connected to the nitrogen injection port, water injection port, sand injection port and methane injection port in the reactor system.
  • Hub the data collection hub is used for real-time data collection.
  • the gas, water and sand separation metering system includes a sand particle size separation metering cylinder and a water collection metering cylinder.
  • a filter channel composed of a fine filter screen.
  • the inlet end of the filter channel is connected with the mining port in the reactor system and is equipped with a mining sand pressure reducing valve.
  • the outlet end of the filter channel is connected with the inlet end of the water collecting cylinder.
  • the outlet end is connected with the inlet end of the gas collection tank.
  • the pipe connecting the water collecting measuring cylinder and the gas collecting tank is provided with a cylinder gas outlet flow meter and a measuring cylinder gas outlet pressure gauge; a coarse sand outlet filter, a middle sand outlet filter and a outlet pressure gauge.
  • Corresponding measuring cylinders are respectively arranged downstream of the sand fine filter screen, and the bottoms of the sand particle size separation measuring cylinder and the water collecting measuring cylinder are equipped with unscrewed threaded sealing bottom covers.
  • the gas-water-sand separation metering system also includes a monitoring camera for recording the dynamic process during the gas-water-sand separation process.
  • the gas-water-sand-sand separation metering system also includes a data collection hub, which is used to collect data from camera monitoring, mining sand pressure reducing valve, cylinder gas outlet flow meter, and graduated cylinder gas outlet pressure gauge.
  • the low-temperature water bath jacket system includes a thermostat and a water jacket housing, the water jacket housing has a temperature control water outlet and a temperature control water inlet, and the temperature control water outlet and the temperature control water inlet respectively pass through a hose Connected with a thermostat, the thermostat is used to adjust the temperature of the water flowing out of the temperature control water outlet and flow out to the temperature control water inlet; Keep the hole column.
  • the reaction kettle system is provided with a support nut
  • the water jacket housing is provided with a water jacket housing fixing nut
  • the operation platform is provided with a horizontal fixing rod and a vertical fixing rod, both of which are horizontal fixing rods and vertical fixing rods.
  • a fixing hole is provided, and the supporting nut, the water jacket housing fixing nut and the fixing hole are connected by a fixing member to fix the reaction kettle system on the operating table in a vertical or horizontal manner.
  • the coordination of the various systems of the entire reaction device is: the reactor system is placed in the low temperature water bath jacket system, and the low temperature water bath jacket system is built into the support and safety system; the gas injection water sand system provides gas water sand to the reaction kettle system, and the reaction kettle The system extracts gas-water sand to the gas-water-sand separation system; the data collection and power supply of the entire device are responsible for the support and safety system, and finally the hub in the support and safety system transmits the data to the software recording system for data viewing, processing and analysis;
  • the reaction kettle in the reaction kettle system can be combined into different reaction kettles according to different experimental conditions and purposes; the left and right reaction kettles (first reaction kettle assembly) are combined with a cover to form a hydrate generation and decomposition reaction kettle without a screen; through the left and right reaction kettles Adding reactor accessories and adding the left and right reactor (second reactor component) and central reactor (third reactor component) can be used as single well and double well without observation area, single well and double well with single observation area A series of sand production and sand control tests for single wells and double wells in dual observation areas; left and right reactors (which can serve as left or right reactor sections) and central reactors can serve as hydrate formation and decomposition zones and observation zones, and second left and right reactors In addition, the two ends of the filter can serve as a sand control screen area;
  • the reactor is arranged vertically, which simulates the sand production and sand control test with the sand control screen below the hydrate reservoir.
  • the hydrate zone the left reactor section
  • the sand control screen zone the second left and right reactor
  • the mining sand collection port hemispherical cover
  • the reactor is arranged horizontally to simulate It is the sand control test of the sand control screen on the right side of the hydrate reservoir.
  • the reactor is arranged vertically, which simulates the sand control test with the sand control screen above the hydrate reservoir. From bottom to top, the hydrate zone (left reactor section) ), sand control screen area (second left and right reaction kettle) and mining sand collection port (flat cover);
  • the reactor is arranged vertically, which simulates the sand production and sand control test of the sand control screen above and below the hydrate reservoir. From top to bottom are the mining sand collection port (flat cover), sand control screen area (second left and right reactor), hydrate area (central reactor section), sand control screen area (second left and right reactor) and mining sand collection Port (hemispherical cover); in the second combination method, the reactor is arranged horizontally, which simulates the sand control test of the sand control screen on the left and right sides of the hydrate reservoir.
  • the piston in the hydrate zone decides whether to put it in according to the requirements.
  • the piston can be put in to compact the hydrate packing, or the piston can not be put in, and the hydrate packing can be pre-compacted and reacted from the center. Put in the openings on both sides of the kettle;
  • the reactor is arranged vertically. To the bottom are the hydrate area (left reactor section), sand control screen area (second left and right reactor), sand production observation area (left reactor section) and mining sand collection port (left reactor section mining port); in the second type In the combination mode, the reactor is arranged vertically, which simulates the sand production and sand control test with the sand control screen above the hydrate reservoir.
  • the reactor is arranged horizontally, and the sand control screen is simulated in the hydrate reservoir.
  • the screen on the right is the sand control test, from left to right are the hydrate zone (left reactor section), the sand control screen zone (second left reactor section), the sand production observation zone (left reactor section) and the mining sand collection port. (Mining port of the left reactor section);
  • the reactor is arranged vertically, which simulates the sand control test of the sand control screen under the hydrate reservoir. From top to bottom, it is the hydrate zone. (Left reactor section), sand control screen area (second left and right reactor), sand production observation area (central reactor section) and mining sand collection port (hemispherical cover);
  • the reactor is arranged horizontally, which simulates the sand control test with the sand control screen on the right side of the hydrate reservoir.
  • the reactor is arranged vertically, which simulates the sand control test of the sand control screen above and below the hydrate reservoir, from top to bottom
  • the mining sand collection port left reactor section mining port
  • sand production observation area left reactor section
  • sand control screen area second left and right reactor
  • hydrate area central reactor section
  • sand control screen area second left and right
  • mining sand collection port hemispherical cover
  • the reactor is arranged vertically, which simulates the sand control test of the sand control screen under the hydrate reservoir.
  • hydrate zone left reactor section
  • sand control screen zone second left and right reactor
  • sand production observation zone central reactor section
  • sand control screen zone second left and right reactor
  • sand production collection port Semi-spherical cover
  • the reactor is arranged horizontally, which simulates the sand production and sand control test of the screen with hydrate stored on the left and right sides of the sand control screen.
  • hydrate area left reactor section
  • sand control screen area second left and right reactor
  • sand collection port left mining port in central reactor section
  • sand production observation area central reactor section
  • mining Sand collection port right mining port in the central reactor section
  • sand control screen area second left and right reactors
  • hydrate area left reactor section
  • the simulation is hydration
  • the contents are stored in the sand control screen above and below the sand control test. From top to bottom, there are hydrate area (left reactor section), sand control screen area (second left and right reactor), and mining sand collection port (left mining port in central reactor section).
  • sand production observation area central reactor section
  • mining sand collection port central reactor section right mining port
  • sand control screen area second left and right reactor
  • hydrate area left reactor section
  • the first two methods are the horizontal and vertical layout of the reactor, which are away from the sand production in the opposite direction.
  • the simulation is the sieve of the sand control screen on the left and right and the upper and lower sides of the hydrate reservoir.
  • Tube sand production and sand control test. These two methods are hydrate zone (central reaction vessel section), sand control screen zone (second left and right reaction vessel), and sand production observation zone (left and right reaction vessel section) from the central reactor to the two ends of the reactor.
  • the mining sand collection port (the left and right reactor section mining ports or hemispherical cover), according to whether the hydrate packing is compacted or not, the central reactor piston can be selected; third, fourth, and fifth are the horizontal layout of the reactor, Vertical arrangement and vertical arrangement, sand production in the same direction. The simulation is followed by sand production and sand control tests with sand control screens on the right, upper and lower sides of the hydrate reservoir. These three methods are from the left, lower and upper ends of the reactor to the reaction.
  • the other section of the kettle is followed by hydrate area (left reactor section), sand control screen area (second left and right reactor), sand production observation area (central reactor section), mining sand collection port (central reactor section mining port), sand control screen Pipe area (second left and right reactor), sand production observation area (left reactor section), mining sand collection port (left reactor section mining port); the last two methods are the horizontal and vertical layout of the reactor, and the opposite direction is close to the sand production , The simulation is the sand control test of the hydrates hidden in the left and right and upper and lower screens of the sand control screen. These two methods are the hydrate zone (left reaction vessel section) from the two ends of the reactor to the central reactor. Screening area (second left and right reactor section), sand production observation area (central reactor section), mining sand collection port (left and right mining port of central reactor section).
  • a natural gas hydrate simulation sand production and sand control test method which is carried out by using the simulated sand production and sand control test reaction device as described above, and includes the following steps:
  • the corresponding reactor components are preliminarily filled with hydrate filler, and the corresponding sensors are inserted into the reserved holes.
  • the sensors include pressure sensors, temperature sensors and resistors. sensor;
  • the water injection gas sand system fills the reactor system with corresponding hydrate fillers, and stops the water injection and methane gas injection after the water and methane gas is injected to the set pressure value of the sand production and sand control test.
  • the pressure and low temperature water bath jacket system provides Natural gas hydrate is gradually formed under temperature conditions.
  • the pressure sensor is used to monitor the pressure change in the reactor system. When the pressure value no longer changes or the change is small to the set value after a period of time, the natural gas hydrate is already in the reactor. Generated in the system;
  • the gas-water-sand separation metering system measures the amount of sand, water, and gas produced during the mining process and separates the sand;
  • the present invention has the beneficial effects that the entire test reaction device can be reasonably combined according to different simulated sand production and sand control tests to achieve solid-liquid-gas multiphase flow research and simulated measurement of sand production and optimize sand control effects.
  • the reactor system is composed of three parts and accessories, the left and right half reactors, the second left and right reactor sections, and the central reactor section. Each reactor section of the three parts is connected by a flange. Fixed, among them, the left and right half reactors and the central reactor section can simultaneously realize the observation of sand production in the simulated mining of natural gas hydrate and the sand metering function, the sand filling function of filling different porous media, the function of simulating sand production and water vapor production, and the generation of natural gas.
  • the initial water and gas injection function of hydrate; the second and left reaction kettles can realize different functions such as observation, sand filling, simulated mining, water and gas injection according to needs; in addition, it is also equipped with a flat kettle cover and a hemispherical kettle cover, which can make the test
  • the scheme is more flexible and practical.
  • the invention can realize the dynamic monitoring of sand production and sand control in the test process, and analyze the experimental parameter changes in each stage of the sand production and sand control experiment that simulates actual natural gas hydrate mining under design conditions; according to different temperatures, pressures, screen thicknesses and filler particle sizes Under the conditions of the same parameters, the particle size and volume of the reservoir sand particles and the cumulative flow volume of gas and liquid carried out during the gas-liquid seepage flow.
  • Sand law and gas production prediction provide practical and theoretical support for mining sand control technology.
  • Fig. 1 is a schematic diagram of the structure of the test reaction device for simulating sand production and sand control according to the present invention
  • Figure 2 is a schematic diagram of the structure of the reactor system of the present invention, in which Figure 1 (a) is the left and right reactor, Figure 1 (b) is the second left and right reactor, Figure 1 (c) is the central reactor, Figure 1 (d) Accessories for the reactor;
  • Figure 3 is a schematic diagram of the structure of the water injection gas sand system
  • Figure 4 is a schematic diagram of the structure of the gas, water and sand separation metering system
  • Figure 5 is a schematic diagram of the structure of the low temperature water bath jacket system
  • Figure 6 is a schematic diagram of the structure of the support and safety system
  • Figure 7 is a simple combination and component replacement form of the reactor system.
  • Figure 7(a) is the simplest combination form of the reactor system, and
  • Figure 7(b) is the component replacement form of the reactor system;
  • Figure 8 is a schematic diagram of three combinations of sand production and sand control tests for a single well without an observation area
  • Figure 9 is a schematic diagram of two combination modes of the double-well sand production and sand control test without observation area;
  • Figure 10 is a schematic diagram of four combinations of sand production and control tests for a single well in a single observation area
  • Figure 11 is a schematic diagram of three combinations of sand production and sand control tests with dual wells in a single observation area;
  • Figure 12 is a schematic diagram of two combined methods of single well sand production and sand control tests in dual observation areas
  • Figure 13 is a schematic diagram of the seven combination modes of the double-well sand production and sand control test in the double observation area.
  • 100 reaction kettle system
  • 200 water injection gas sand system
  • 300 gas water sand separation metering system
  • 400 low temperature water bath jacket system
  • 500 support and safety system
  • 600 software recording and analysis system
  • Water pipeline valve 30. Screen filler injection Sand port cover; 31, hydrate filler sand injection port cover; 32, methane gas pipeline valve; 33, water injection gas sand system data collection hub; 34, nitrogen flow meter; 35, nitrogen pressure gauge; 36, water injection flow meter; 37 , Water injection pressure gauge; 38, screen packing balance; 39, hydrate packing balance; 40, methane gas flow meter; 41, methane gas pressure gauge; 42, nitrogen source; 43, water injection source; 44, screen packing; 45 , Hydrate filler; 46, methane gas source; 47, camera monitoring; 48, sand particle size separation metering cylinder; 49, water collecting measuring cylinder; 50, measuring cylinder sealing cover; 51, measuring cylinder outlet flow meter; 52, measuring cylinder output Air port pressure gauge; 53, gas collection tank; 54, gas, water and sand separation measurement data collection hub; 55, fine sand filter; 56 sand medium filter; 57, sand coarse filter; 58, mining sand Pressure reducing valve;
  • the first reactor assembly, the second reactor assembly, and the third reactor assembly can be referred to as left and right reactors, second left and right reactors, and center, respectively.
  • the reaction kettle and the reaction kettle system can be referred to as the reaction kettle for short.
  • the mining method can be selected according to the needs of reduced pressure mining or heat injection mining.
  • reduced pressure mining is currently one of the main natural gas hydrate mining methods, which is to reduce the pressure of the hydrate layer to make it lower than the temperature of the hydrate in the area. The lower phase balances the pressure, so that the hydrate is decomposed from the solid phase to produce methane gas.
  • the design of the depressurization method is similar to that of conventional oil and gas production.
  • the pressure in the well-permeable hydrate reservoir spreads quickly. Therefore, the depressurization method is the most potential economical and effective mining method.
  • Heat injection mining also known as thermal excitation mining method, is a mining method that directly injects heat or heats the natural gas hydrate layer to make the temperature of the natural gas hydrate layer exceed its equilibrium temperature, thereby promoting the decomposition of natural gas hydrate into water and natural gas.
  • the detachable natural gas hydrate simulation sand production and sand control test reaction device of the present invention includes: a reactor system 100, a water injection gas sand system 200, a gas water sand separation metering system 300, a low temperature water bath jacket system 400, and a support and safety system 500 And the software record analysis system 600. in:
  • the three reactor sections of the left and right reactor walls 1, the second left and right reactor walls 17 and the central reactor wall 18 of the reactor system are all cylindrical pipe sections, and there are support nuts 10, device reserved holes 16 and temperature and pressure sensors on both sides of the three pipe walls.
  • the hole 6 is reserved to realize the supporting function of the reactor structure and the control and collection of device and parameter information; each part of the three-tank section is connected by a flange 11, and the bottom of the three-tank section is provided with a pressure relief port 4 and a liquid discharge port 7 to realize the matching
  • the pressure in the compression space is reduced, the solid and liquid discharge in the kettle and the cleaning of the kettle section; the left and right reactor walls of the 1 reactor section are open at one end and closed at the other end.
  • the movable piston 3 in the left and right reaction kettle and the central reaction kettle can be disassembled, and the movable piston 3 is used to fill the filling with nitrogen in conjunction with the nitrogen injection port 2 to compact the filling in the kettle.
  • the left and right reactor walls 1 and the upper part of the central reactor wall 18 are equipped with sand injection ports 12, water injection ports 14, and methane gas injection ports 15 to inject sand and water vapor into the reactor section; the left and right reactor walls 1 and the upper part of the central reactor wall 18 and There are transparent windows 13 on the observation port and transparent windows 8 under the observation port respectively at the bottom to realize the function of real-time viewing of the sand production in the kettle section or changes in the kettle during the mining process and the experiment process, and the left and right reactor walls 1 and the central reactor wall 18 All are equipped with mining ports 9, and the left and right reactor walls 1 are also provided with auxiliary mining ports; ball valve 19 and sand control screen wall or well wall rigid screen 20 are placed between the hydrate zone and the screen filler zone to
  • the separation between the hydrate reservoir and the well wall or the screen; the flat cover 21 and the hemispherical cover 22 can effectively seal the reactor in the simple design of sand production and sand control experiments, and both have mining openings at the bottom to achieve mining Sand production function in the process; the hemispherical cover 22 can be used in the experiment of designing a vertical reaction device, and the sand can be fully collected by using the hemisphere.
  • the production port 59 in the gas-water-sand-sand separation metering system is connected to the production port 9 in the reactor system to simulate the inflow of gas-water-sand during the mining process;
  • the appropriate range is suitable for the separation of air, water and sand;
  • the sand particle size separation metering cylinder 48 collects the particle size range filtered by the sand coarse filter 57, the sand medium filter 56 and the sand fine filter 55; the water collecting cylinder 49
  • the water production during sand production; the bottom of the sand particle size separation metering cylinder 48 and the water collecting measuring cylinder 49 have unscrewed screw-sealed bottom covers to realize the cleaning of the sand and water at the end of the experiment.
  • the bottom of the water collecting measuring cylinder 49 is also provided There is a measuring cylinder sealing cover 50; the gas production in the mining process flows through the measuring cylinder gas outlet flow meter 51 and the measuring cylinder gas outlet pressure gauge 52 and finally enters the gas collection tank 53 to achieve gas parameter measurement; the camera in the gas, water and sand separation metering system
  • the monitoring 47 can record the dynamic process during the separation of gas, water and sand; the data of the camera monitoring 47, the mining sand pressure reducing valve 58, the cylinder outlet flow meter 51 and the measuring cylinder outlet pressure gauge are collected by the gas, water and sand separation measurement data collection hub 54 collect.
  • the low temperature water bath jacket system is composed of a thermostat 60, a hose connection 70 and a water jacket housing 66; the thermostat 60 can flow the water from the temperature control water outlet 62 into the thermostat 60 through a hose and then adjust the temperature. It flows out through the hose to the temperature-controlled water inlet 67; the water jacket shell 66 contains the experimental reaction kettle, and between the shell and the reaction kettle are reserved holes 61 for nitrogen injection, holes 63 for devices and sensors, and on the wall of the kettle.
  • the hole column 64, the water jacket housing fixing nut, the reactor column hole column 65 and the hole column 69 under the wall of the kettle are jointly supported, and the hole column is reserved so that each interface of the reactor can be protected from water.
  • the jacket shell 66 blocks; the gap between the reaction kettle and the water jacket shell 66 is filled with temperature-controlled water to meet the low temperature requirements of simulated mining; each part of the water jacket shell 66 is composed of sections, and the water jacket method is used between the sections Lan connection 68 is sealed.
  • the support and safety system consists of three parts: the console 76, the input and power input 74 of each system and the output 75 of the total output 75, namely the support structure, parameter detection and collection and power management; power distribution box/air switch /Relays and other safety linkage devices 72 bring together the power input and power output 71 in each system hub input and power input 74 to each system such as output to the thermostat power supply 80 to realize power management; each system hub input and Each system hub input in the power input 74 is connected to the main hub input 73 and then connected to the main hub output 75 to the computer after being merged, and the computer software records and analyzes the experimental data and controls the equipment and components; each system hub input comes from each system such as The reaction kettle sensor and device collection line 78 and the temperature controller collection line 79, etc.; the operating table 76 is composed of a horizontal fixed rod 77, a vertical fixed rod 81 and an operating table bracket 83; the horizontal fixed rod 77 and the vertical fixed rod 81 have fixing holes 82 is fixed with the support nut 10 containing
  • the combination as shown in Figure 7 is the simplest combination of the reactor. It is composed of the left reactor on the left and right reactor walls 1, the sand control screen wall or the well wall rigid screen 20 and the hemispherical cover 22 or flat cover 21; Use a flat cover 21 for the horizontal arrangement, and a hemispherical cover 22 for the vertical arrangement. This is because this allows the sand to be fully collected; the left reactor of the simplest combined reactor is the hydrate formation and decomposition zone, the hemispherical The shaped cover 22 or the flat cover 21 is used to collect the sand produced during the hydrate decomposition process and flow out through the mining opening;
  • the left reactor section can be equivalently replaced with the combination of the central reactor and the flat cover 21.
  • the central reactor wall 18 has all the injections and observations of the left and right reactor walls 1.
  • Mining port the direction of the arrows in Figures 8-13 represents the flow direction of sand production during the hydrate decomposition process; the two openings on the left and right reactor walls 17 are added with sand control screen walls or well wall rigid screens 20 to simulate sand control screens. Tube.
  • Figure 8 shows the three combinations of sand production and control tests for a single well without observation area, which are explained from left to right; in the first combination method ( Figure 8(a)), the reactor is arranged vertically, and the simulation is The sand control test of the sand control screen below the hydrate reservoir is the hydrate area, the sand control screen area and the mining sand collection port from top to bottom; in the second combination method ( Figure 8(b)) , Is the horizontal arrangement of the reactor, simulating the sand control test of the sand control screen on the right side of the hydrate reservoir, from left to right are the hydrate area, the sand control screen area and the mining sand collection port; in the third In this combination (( Figure 8(c)), the reactor is arranged vertically, which simulates the sand control test with the sand control screen above the hydrate reservoir. From bottom to top, it is the hydrate area and the sand control screen area. And mining the sand collection port.
  • Figure 8(c)
  • Figure 9 shows the two combination methods of the double-well sand production and sand control test without observation area, which are explained from left to right;
  • the reactor in the first combination method ( Figure 9(a)), the reactor is arranged vertically, and the simulation is The sand control screen is the sand control test of the screens above and below the hydrate reservoir. From top to bottom, they are the mining sand collection port, the sand control screen area, the hydrate area, the sand control screen area and the mining sand collection port;
  • the reactor is arranged horizontally, which simulates the sand control test of the sand control screens on the left and right sides of the hydrate reservoir. From left to right, the sand production is collected.
  • the piston in the hydrate area decides whether to put in according to the requirements.
  • the piston can be put in to realize the hydrate packing
  • the hydrate filling can be pre-compacted and put into the opening on both sides of the central reactor without the piston.
  • Figure 10 shows the four combinations of sand production and control tests for single wells in a single observation area, illustrated from left to right; in the first combination method ( Figure 10(a)), the reactor is arranged vertically, and the simulation is The sand control test of the sand control screen below the hydrate reservoir is the hydrate area, the sand control screen area, the sand production observation area and the mining sand collection port from top to bottom; in the second combination method ( Figure 10(b)) is the vertical arrangement of the reactor. It simulates the sand production and sand control test with the sand control screen above the hydrate reservoir.
  • the reactor is arranged horizontally, which simulates the sand control test with the sand control screen on the right side of the hydrate reservoir, from left to right Followed by the hydrate zone, the sand control screen zone, the sand production observation zone and the mining sand collection port; in the fourth combination method ( Figure 10(c)), the reactor is arranged vertically, which simulates the sand control screen in the hydration
  • the screens under the storage are tested for sand production and sand control. From top to bottom, they are the hydrate area, the sand control screen area, the sand production observation area and the mining sand collection port.
  • Figure 12 shows the two combination methods of the single well sand production and sand control test in the dual observation area, which are explained from left to right;
  • the reactor in the first combination method ( Figure 12(a)), the reactor is arranged horizontally, and the simulation is Sand production and sand control tests on the screens with hydrates hidden on the left and right sides of the sand control screen. From left to right are hydrate area, sand control screen area, mining sand collection port, sand production observation area, mining sand collection port, sand control Screen area and hydrate area;
  • the reactor is arranged vertically, which simulates the sand control test when the hydrate is stored above and below the sand control screen, from top to bottom.
  • Figure 13 shows the seven combination methods of the double-well sand production and sand control test in the double observation area, which are explained from left to right and from top to bottom: the first two methods are the horizontal and vertical layout of the reactor respectively ( Figure 13( a)), away from the sand production in the reverse direction, respectively, simulated sand production and sand control tests with the sand control screens on the left and right of the hydrate reservoir and the upper and lower screens of the hydrate reservoir. The two methods are from the central reactor to both ends of the reactor.
  • the presence or absence of the central reactor piston can be selected according to whether the hydrate packing is compacted or not; third, fourth, and fifth respectively are reactor levels Layout, vertical layout and vertical layout, sand production in the same direction, the simulation sequence is the sand production and sand control test ( Figure 13(b)) with the sand control screen on the right side, upper side, and lower side of the hydrate reservoir ( Figure 13(b)).
  • the left end of the reactor, the lower end and the upper end to the other end of the reactor are all in order of hydrate area, sand control screen area, sand production observation area, mining sand collection port, sand control screen area, sand production observation area, and mining sand collection port; finally
  • the two methods are the horizontal and vertical layout of the reactor ( Figure 13(c)). They are close to the sand production in the opposite direction.
  • the simulation is the sand production and sand control test of the screen with hydrate stored on the left and right and above and below the sand control screen.
  • the two methods from the two ends of the reactor to the central reactor are hydrate area, sand control screen area, sand production observation area, and mining sand collection port in sequence.
  • the invention has the characteristics of modularization and divides the simulated natural gas hydrate mining sand production and sand control test into a reaction kettle system, a gas injection water-sand system, a gas-water-sand separation metering system, a low-temperature water bath jacket system, a support and safety system.
  • the reaction kettles in the reaction kettle system can be combined into different reaction kettles according to different experimental conditions and purposes; the reaction kettles mainly include: left and right reaction kettles, second left and right reaction kettles, central reaction kettle and cover.
  • the left and right reaction kettles are combined with a cover to form a reaction kettle without screens for hydrate formation and decomposition; the left and right reaction kettles can be simulated by adding reactor accessories (valves, covers, screens, etc.) to the left and right reaction kettles and central reaction kettles.
  • a series of sand production and sand control tests such as single well and double well without observation area, single well and double well in single observation area, single well and double well in double observation area; among them, the left and right reactors and the central reactor can act as hydrate generation Decomposition zone and observation zone, the left and right reactors plus filters at both ends can serve as sand control screens.
  • the horizontal and vertical support frame can simulate vertical and horizontal sand production and sand control tests.
  • FIG. 7 shows the configuration and assembly method of the reactor system according to the experimental requirements. ;
  • the function of the reactor section in the reactor system as different zones is explained as follows: the inner cavity of the left reactor section serves as the observation area for sand production. At this time, the nitrogen injection port 2 at the left end is closed after exhausting air, and the movable piston 3 is on the left.
  • the reactor section is close to the left inner wall; the second left and right reactors are filled with screen sand control fillers, and both sides are added with sand control screen walls or well wall rigid screens 20; both ends of the central reactor are connected with ball valves 19, and there are two inside the reactor.
  • the end space is filled with hydrate packing, and the center is the hydrate packing on both sides of the compressed nitrogen.
  • the right-most flat cover seals the entire reactor; insert the temperature and pressure sensors into the reserved holes 6 of the temperature and pressure sensors of the reactor.
  • Adding materials and gas to control temperature and pressure Fill the reactor with corresponding fillers using a water injection gas sand system, close the lid and inject water and methane gas to the experimental high pressure, close the water injection and gas injection valves, where the high pressure and the water bath jacket increase the low temperature conditions
  • the lower hydrate begins to form gradually, and the pressure change is monitored by a pressure sensor. When the pressure does not change or changes very little after a period of time, it can be considered that the hydrate has been formed in the reactor.
  • Mining measurement data collection At this time, it is ready to perform mining sand production simulation. Connect the gas-water-sand separation system to the mining port port 59; open the mining port 9 in the mining port observation area and the mining port at the bottom of the cap to perform decompression mining.
  • the sand production pressure reducing valve 58 is adjusted so that the sand production is produced by the coarse sand production filter 57 and the sand production filter 56; the sand production fine filter 55 is produced by sand particles
  • Diameter separation metering cylinder 48 collects sand with different particle sizes; during the mining process, the gas production flows through the measuring cylinder gas outlet flow meter 51 and the measuring cylinder gas outlet pressure gauge 52 and finally enters the gas collection tank 53 to achieve gas parameter measurement;
  • the camera monitoring 47 in the sand separation metering system can record the dynamic process during the gas-water-sand separation process; the camera monitoring 47, the mining sand pressure reducing valve 58, the measuring cylinder gas outlet flow meter 51 and the measuring cylinder gas outlet pressure gauge data are composed of gas and water.
  • the sand separation metering data collection hub 54 collects.

Abstract

一种可拆分式天然气水合物出砂防砂试验装置及方法被公开。该试验装置包括反应釜系统(100),注气水砂系统(200),气水砂分离计量系统(300),低温水浴夹套系统(400),支撑和安全系统(500)。反应釜系统(100)中反应釜可根据不同实验条件和目的组合成不同反应釜;反应釜主要包括:左右反应釜,次左右反应釜,中央反应釜和封盖。该反应釜系统具有组装设计灵活的特点,通过左右反应釜加封盖组合成实现水合物生成分解无筛管的反应釜;通过左右反应釜加反应釜配件加次左右反应釜和中央反应釜组合可模拟无观察区的单井和双井、单观察区的单井和双井,双观察区的单井和双井等一系列出砂防砂试验。

Description

可拆分式天然气水合物出砂防砂试验装置及方法 技术领域
本发明涉及天然气水合物开采出砂防砂工艺试验,具体涉及一种可拆分式天然气水合物出砂防砂试验装置及方法。
背景技术
随着传统能源的日益枯竭,天然气水合物具有储量大、能量密度大和分布广的特点成为非常具有潜力的替代能源。目前全世界关于天然气水合物的研究及进展已进入到实际开采阶段。在实际开采阶段遇到十分严重的问题——砂堵,这成为目前制约天然气水合物长期可持续开采的关键问题。因此研究天然气水合物在开采过程中的出砂防砂问题显得尤为重要。
现有技术模拟装置不够灵活,只能模拟少数几种情况的水合物出砂防砂试验。装置各部分没有模块化使得装置复杂难以再做更多的实验设计方案。
发明内容
针对现有技术中的不足,本发明提供一种可拆分式天然气水合物模拟出砂防砂试验反应装置及方法,其反应釜系统具有组装设计灵活的特点,反应釜系统内的各反应釜组件可通过不同组合完成不同实验目的出砂防砂试验研究。为实现上述目的,本发明的技术方案如下:
一种可拆分式天然气水合物模拟出砂防砂试验反应装置,包括反应釜系统、注水气砂系统,其特征在于,还包括气水砂分离计量系统、低温水浴夹套系统、支撑和安全系统以及软件记录分析系统,
所述注水气砂系统用于给所述反应釜系统提供气体、液体和砂,以在所述反应釜系统内形成天然气水合物;
所述反应釜系统设置于所述低温水浴夹套系统内,所述低温水浴夹套系统用于控制所述反应釜系统内的温度,以模拟天然气水合物储层的环境温度;
所述支撑和安全系统包括操作台,所述低温水浴夹套系统被以竖直或水平方式固定在所述操作台上,以模拟防砂筛管在天然气水合物储层储藏不同方位的出砂防砂试验;
所述操作台设有参数检测收集模块,所述参数检测收集模块通过若干传感器采集所述反应釜系统在模拟天然气水合物开采过程中的数据,
所述气水砂分离计量系统与所述反应釜系统的开采口连接以模拟天然气水合物开采过程中气水砂混合物的流入,并对气水砂混合物进行分离及计量,所述气水砂分离计量系统的计量数据传至所述参数检测收集模块;
所述软件记录分析系统与所述参数检测收集模块通信连接;
所述反应釜系统包括第一反应釜组件、第二反应釜组件、第三反应釜组件、球阀、隔网和封盖,所述第一反应釜组件为一端开口一端封闭的圆柱壳体,所述第二反应釜组件和第三反应釜组件为两端开口的圆柱壳体,所述第一反应釜组件、所述第二反应釜组件和所述第三反应釜组件的圆柱壳体上均设有用于安装传感器的预留孔,所述第一反应釜组件、所述第二反应釜组件和所述第三反应釜组件还设有泄压口和排液口,所述第一反应釜组件和第三反应釜组件注砂口、注水口、注气甲烷气口、开采口和观察口,所述封盖具有开采口;
第一反应釜组件、第二反应釜组件、第三反应釜组件、球阀、隔网和封盖的任意组合可实现所述反应釜系统模拟单、双观察区,单、双井开采以及防砂筛管在天然气水合物储层储藏不同方位的出砂防砂试验。
进一步地,所述第一反应釜组件和所述第三反应釜组件还包括可移动活塞,所述第一反应釜组件的一端设有注氮气口,所述第三反应釜组件的圆柱壳体上开设有注氮气口,所述注氮气口用于注入气体驱动所述可移动活塞朝向所述反应釜系统内的填料方向运动,其中,所述第一反应釜组件设有一可移动活塞,该可移动活塞工作时朝向第一反应釜组件开口端移动,所述第三反应釜组件设有两可移动活塞,该可移动活塞工作时朝向第三反应釜组件两端移动。
进一步地,当所述反应釜系统用作无观察区的单井出砂防砂试验时,所述反应釜系统由第一反应釜组件、球阀、隔网、第二反应釜组件、隔网和封盖依次组装而成,第一反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件和隔网用于模拟防砂筛管区,封盖用于模拟开采出砂收集口;具体地,所述反应釜系统垂直布置且封盖位于底端时,模拟的是防砂筛管在水合物藏下方的筛管出砂防砂试验;所述反应釜系统水平布置时,模拟的是防砂筛管在水合物藏右侧的筛管出砂防砂试验;所述反应釜系统垂直布置且封盖位于顶端时,模拟的是防砂筛管在水合物藏上方的筛管出砂防砂试验。
进一步地,当所述反应釜系统用作无观察区的双井出砂防砂试验时,所述反应釜系统由封盖、隔网、第二反应釜组件、隔网、球阀、第三反应釜组件、球阀、隔网、第二反应釜组件、隔网和封盖依次组装而成,第三反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件和隔网用于模拟防砂筛管区,封盖用于模拟开采出砂收集口;具体地,所述反应釜系统垂直布置时,模拟的是防砂筛管在水合物藏上方和下方的筛管出砂防砂试验;所述反应釜系统水平布置时,模拟的是防砂筛管在水合物藏左右两侧的筛管出砂防砂试验。
进一步地,当所述反应釜系统用作单观察区的单井出砂防砂试验时,所述反应釜系统由第一反应釜组件、球阀、隔网、第二反应釜组件、隔网和第一反应釜组件依次组装而成,靠近球阀的第一反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件和隔网用于模拟 防砂筛管区,远离球阀的第一反应釜组件用于模拟出砂观察区和开采出砂收集口;具体地,所述反应釜系统垂直布置且球阀靠近顶端时,模拟的是防砂筛管在水合物藏下方的筛管出砂防砂试验,此时,远离球阀的第一反应釜组件等效为第三反应釜组件与封盖组合;所述反应釜系统垂直布置且球阀靠近底端时,模拟的是防砂筛管在水合物藏上方的筛管出砂防砂试验;所述反应釜系统水平布置时,模拟的是防砂筛管在水合物藏右侧的筛管出砂防砂试验。
进一步地,当所述反应釜系统用作单观察区的双井出砂防砂试验时,所述反应釜系统由第一反应釜组件、球阀、隔网、第二反应釜组件、隔网、第三反应釜组件、隔网、第二反应釜组件、隔网、球阀和封盖组成;具体地,
所述反应釜系统水平布置时,模拟的是防砂筛管在水合物藏右侧的筛管出砂防砂试验,其连接组装关系为第一反应釜组件、球阀、隔网、第二反应釜组件、隔网、第三反应釜组件、隔网、第二反应釜组件、隔网、球阀和封盖依次组装而成,第一反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件和隔网用于模拟防砂筛管区,第三反应釜组件用于模拟出砂观察区和开采出砂收集口,隔网、第二反应釜组件、隔网、球阀用于模拟防砂筛管区,封盖用于模拟开采出砂收集口;
所述反应釜系统垂直布置且连接组装关系和所述反应釜系统水平布置一致时,模拟的是防砂筛管在水合物藏下方的筛管出砂防砂试验,第一反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件和隔网用于模拟防砂筛管区,第三反应釜组件用于模拟出砂观察区和开采出砂收集口,隔网、第二反应釜组件、隔网、球阀用于模拟防砂筛管区,封盖用于模拟开采出砂收集口;
所述反应釜系统垂直布置且连接组装关系为第一反应釜组件、隔网、第二反应釜组件、隔网、球阀、第三反应釜组件、球阀、隔网、第二反应釜组件、隔网、封盖依次组装时,模拟的是防砂筛管在水合物藏上方和下方的筛管出砂防砂试验,第一反应釜组件用于模拟出砂观察区和开采出砂收集口,隔网、第二反应釜组件、隔网、球阀用于模拟防砂筛管区,第三反应釜组件用于模拟水合物区。
进一步地,当所述反应釜系统用作双观察区的单井出砂防砂试验时,所述反应釜系统由第一反应釜组件、隔网、第二反应釜组件、隔网、球阀、第三反应釜组件、球阀、隔网、第二反应釜组件、隔网、封盖依次组装而成,第一反应釜用于模拟水合物区,隔网、第二反应釜组件、隔网、球阀用于模拟防砂筛管区,第三反应釜组件用于模拟出砂观察区和开采出砂收集口,具体地,所述反应釜系统水平布置时,模拟的是水合物藏在防砂筛管左右两侧的筛管出砂防砂试验;所述反应釜系统垂直布置时,模拟的是水合物藏在防砂筛管上下方出砂防 砂试验。
进一步地,当所述反应釜系统用作双观察区的双井出砂防砂试验时,所述反应釜系统由第一反应釜组件、隔网、第二反应釜组件、隔网、球阀、第三反应釜组件、球阀、隔网、第二反应釜组件、隔网、封盖组成,具体地,
所述反应釜系统水平布置或垂直布置,且连接组装关系为第一反应釜组件、隔网、第二反应釜组件、隔网、球阀、第三反应釜组件、球阀、隔网、第二反应釜组件、隔网、封盖依次组装时,分别对应模拟的是防砂筛管在水合物藏上方和下方的筛管出砂防砂试验,第三反应釜组件用于模拟水合物区,隔网、第二反应釜组件、隔网、球阀用于模拟防砂筛管区,第一反应釜组件用于模拟出砂观察区,封盖用于模拟开采出砂收集口;
所述反应釜系统水平布置且连接组装关系为第一反应釜组件、球阀、隔网、第二反应釜组件、隔网、第三反应釜组件、隔网、第二反应釜组件、隔网、球阀和封盖依次组装时,模拟防砂筛管在水合物物藏的右侧的筛管同向出砂的出砂防砂试验,从反应釜系统的左侧到右侧:第一反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件、隔网用于模拟防砂筛管区,第三反应釜组件用于模拟出砂观察区和开采出砂收集口,第一反应釜组件用于模拟出砂观察区和开采出砂收集口;
所述反应釜系统垂直布置且连接组装关系为第一反应釜组件、球阀、隔网、第二反应釜组件、隔网、第三反应釜组件、隔网、第二反应釜组件、隔网、球阀和封盖依次组装时,模拟防砂筛管在水合物物藏的上方的筛管同向出砂的出砂防砂试验,从反应釜系统的下方到上方:第一反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件、隔网用于模拟防砂筛管区,第三反应釜组件用于模拟出砂观察区和开采出砂收集口,第一反应釜组件用于模拟出砂观察区和开采出砂收集口;
所述反应釜系统垂直布置且连接组装关系为第一反应釜组件、球阀、隔网、第二反应釜组件、隔网、第三反应釜组件、隔网、第二反应釜组件、隔网、球阀和封盖依次组装时,模拟防砂筛管在水合物物藏的下方的筛管同向出砂的出砂防砂试验,从反应釜系统的上方到下方:第一反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件、隔网用于模拟防砂筛管区,第三反应釜组件用于模拟出砂观察区和开采出砂收集口,第一反应釜组件用于模拟出砂观察区和开采出砂收集口;
所述反应釜系统水平布置或垂直布置,且连接组装关系为第一反应釜组件、球阀、隔网、第二反应釜组件、隔网、第三反应釜组件、隔网、第二反应釜组件、隔网、球阀和封盖依次组装时,分别对应模拟的是水合物藏在防砂筛管上方和下方的筛管反向靠近出砂的出砂防砂 试验,从反应釜系统的两端至中央:第一反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件、隔网用于模拟防砂筛管区,第三反应釜组件用于模拟出砂观察区和开采出砂收集口。
如上任一所述的可拆分式天然气水合物模拟出砂防砂试验反应装置,进一步地,所述封盖包括半球形盖和平封盖,所述半球形盖用于所述反应釜系统垂直布置时,所述平封盖用于所述反应釜系统水平布置时,所述第三反应釜组件与所述封盖组装等效于所述第一反应釜组件。
进一步地,所述观察口包括观察口上透明视窗和观察口下透明视窗,以实现在天然气水合物开采过程中对反应釜系统各组件内出砂情况或变化情况进行实时查看。
进一步地,所述注水气砂系统包括氮气源、注水源、筛管填料、水合物填料和甲烷气源,所述氮气源与所述反应釜系统中的注氮气口连通,且其连通管道上设有氮气流量计、氮气压力计和氮气管道阀门;所述注水源与所述反应釜系统中的注水口连通,且其连通管道上设有注水流量计、注水压力计和水管道阀门;所述筛管填料与所述反应釜系统中的注砂口连通,且其连通管道上设有筛管填料天平和筛管填料注砂口盖子;所述水合物填料与所述反应釜系统中的的注砂口连通,且其连通管道上设有水合物填料天平和水合物填料注砂口盖子,筛管填料注砂口盖子和水合物填料注砂口盖子用于所述反应釜系统的注砂口的密封;甲烷气源与所述反应釜系统中的注甲烷气口连通,且其连通管道上设有甲烷气流量计、甲烷气压力计和甲烷气管道阀门。氮气源、注水源、筛管填料、水合物填料和甲烷气源分别与反应釜系统中的注氮气口、注水口、注砂口和注甲烷气口连通管道上均通过数据采集线连接有数据采集集线器,所述数据采集集线器用于实时数据采集。
进一步地,所述气水砂分离计量系统包括出砂粒径分离计量筒和集水量筒,所述出砂粒径分离计量筒的具有由出砂粗过滤网、出砂中过滤网和出砂细过滤网组成的过滤通道,过滤通道的入口端是与反应釜系统中的开采口连通且安装有开采出砂降压阀,过滤通道的出口端与集水量筒的入口端连接,集水量筒的出口端与气体收集罐的入口端连通,集水量筒与气体收集罐连通的管道上设有筒出气口流量计和量筒出气口压力计;出砂粗过滤网、出砂中过滤网和出砂细过滤网的下游分别设有相应的量筒,出砂粒径分离计量筒和集水量筒的底部均设有有可拧开的螺纹密封底盖。所述气水砂分离计量系统还包括监测摄像头,所述监测摄像头用于在气水砂分离过程中记录动态过程。所述气水砂分离计量系统还包括数据收集集线器,所述数据收集集线器用于采集摄像头监测、开采出砂降压阀、筒出气口流量计和量筒出气口压力计的数据。
进一步地,所述低温水浴夹套系统包括温控器和水夹套外壳,所述水夹套外壳具有控温水出口和控温水入口,控温水出口和控温水入口分别通过软管与温控器连接,所述温控器用于将由控温水出口流出水调温后流出至控温水入口;水夹套外壳设有与所述反应釜系统的预留孔和部分开口的预留孔柱。
进一步地,所述反应釜系统设有支撑螺母,所述水夹套外壳设有水夹套外壳固定螺母,所述操作台设有水平固定杆和垂直固定杆,水平固定杆和垂直固定杆均设有固定孔,通过固定件将支撑螺母、水夹套外壳固定螺母和固定孔连接将反应釜系统以竖直或水平方式固定在所述操作台上。
整个反应装置各个系统协作为:反应釜系统置于低温水浴夹套系统内,低温水浴夹套系统内置于支撑和安全系统之上;注气水砂系统提供气水砂给反应釜系统,反应釜系统开采出气水砂至气水砂分离系统;整个装置的数据收集及供电由支撑和安全系统负责,最后由支撑和安全系统内的集线器将数据传给软件记录系统实现数据查看,处理和分析;
反应釜系统中反应釜可根据不同实验条件和目的组合成不同反应釜;通过左右反应釜(第一反应釜组件)加封盖组合成实现水合物生成分解无筛管的反应釜;通过左右反应釜加反应釜配件加次左右反应釜(第二反应釜组件)和中央反应釜(第三反应釜组件)组合可做无观察区的单井和双井、单观察区的单井和双井和双观察区的单井和双井等一系列出砂防砂试验;左右反应釜(可充当左反应釜段或右反应釜段)和中央反应釜可充当水合物生成分解区和观察区,次左右反应釜加上两端滤网可充当防砂筛管区;
无观察区的单井出砂防砂试验的有三种组合方式,在第一种组合方式中,为垂直布置反应釜,模拟的是防砂筛管在水合物藏下方的筛管出砂防砂试验,从上至下依次是水合物区(左反应釜段),防砂筛管区(次左右反应釜)和开采出砂收集口(半球形封盖);在第二种组合方式中,为水平布置反应釜,模拟的是防砂筛管在水合物藏右侧的筛管出砂防砂试验,从左至右依次是水合物区(左反应釜段),防砂筛管区(次左右反应釜)和开采出砂收集口(平封盖);在第三种组合方式中,为垂直布置反应釜,模拟的是防砂筛管在水合物藏上方的筛管出砂防砂试验,从下至上依次是水合物区(左反应釜段),防砂筛管区(次左右反应釜)和开采出砂收集口(平封盖);
无观察区的双井出砂防砂试验的两种组合方式,在第一种组合方式中,为垂直布置反应釜,模拟的是防砂筛管在水合物藏上方和下方的筛管出砂防砂试验,从上至下依次是开采出砂收集口(平封盖),防砂筛管区(次左右反应釜),水合物区(中央反应釜段),防砂筛管区(次左右反应釜)和开采出砂收集口(半球形封盖);在第二种组合方式中,为水平布 置反应釜,模拟的是防砂筛管在水合物藏左右两侧的筛管出砂防砂试验,从左至右依次是开采出砂收集口(平封盖),防砂筛管区(次左右反应釜),水合物区(中央反应釜段),防砂筛管区(次左右反应釜)和开采出砂收集口(平封盖);其中水合物区的活塞根据要求决定是否放入,当要求水合物填料压实,可以放入活塞实现对水合物填料的压实,也可不放入活塞,对水合物填料预先压实从中央反应釜两侧开口放入;
单观察区的单井出砂防砂试验的四种组合方式,在第一种组合方式中,为垂直布置反应釜,模拟的是防砂筛管在水合物藏下方的筛管出砂防砂试验,从上至下依次是水合物区(左反应釜段),防砂筛管区(次左右反应釜),出砂观察区(左反应釜段)和开采出砂收集口(左反应釜段开采口);在第二种组合方式中,为垂直布置反应釜,模拟的是防砂筛管在水合物藏上方的筛管出砂防砂试验,从下至上依次是水合物区(左反应釜段),防砂筛管区(次左右反应釜),出砂观察区(左反应釜段)和开采出砂收集口(左反应釜段开采口);在第三种组合方式中,为水平布置反应釜,模拟的是防砂筛管在水合物藏右侧的筛管出砂防砂试验,从左至右依次是水合物区(左反应釜段),防砂筛管区(次左右反应釜),出砂观察区(左反应釜段)和开采出砂收集口(左反应釜段开采口);在第四种组合方式中,为垂直布置反应釜,模拟的是防砂筛管在水合物藏下方的筛管出砂防砂试验,从上至下依次是水合物区(左反应釜段),防砂筛管区(次左右反应釜),出砂观察区(中央反应釜段)和开采出砂收集口(半球形封盖);
单观察区的双井出砂防砂试验的三种组合方式,在第一种组合方式中,为水平布置反应釜,模拟的是防砂筛管在水合物藏右侧的筛管出砂防砂试验,从左至右依次是水合物区(左反应釜段),防砂筛管区(次左右反应釜),出砂观察区(中央反应釜段及开采出砂收集口),防砂筛管区(次左右反应釜)和开采出砂收集口(平封盖);在第二种组合方式中,为垂直布置反应釜,模拟的是防砂筛管在水合物藏上方和下方的筛管出砂防砂试验,从上至下依次是开采出砂收集口(左反应釜段开采口),出砂观察区(左反应釜段),防砂筛管区(次左右反应釜),水合物区(中央反应釜段),防砂筛管区(次左右反应釜),和开采出砂收集口(半球形封盖);在第三种组合方式中,为垂直布置反应釜,模拟的是防砂筛管在水合物藏下方的筛管出砂防砂试验,从上至下依次是水合物区(左反应釜段),防砂筛管区(次左右反应釜),出砂观察区(中央反应釜段),防砂筛管区(次左右反应釜)和开采出砂收集口(半球形封盖);在这三种组合方式中第一种和第三种有两个防砂筛管区和两个开采出砂收集口是由于水合物开采过程中模拟出砂分别经过两个防砂筛管的出沙量;
双观察区的单井出砂防砂试验的两种组合方式,在第一种组合方式中,为水平布置反应 釜,模拟的是水合物藏在防砂筛管左右两侧的筛管出砂防砂试验,从左至右依次是水合物区(左反应釜段),防砂筛管区(次左右反应釜),开采出砂收集口(中央反应釜段左开采口),出砂观察区(中央反应釜段),开采出砂收集口(中央反应釜段右开采口),防砂筛管区(次左右反应釜)和水合物区(左反应釜段);在第二种组合方式中,为垂直布置反应釜,模拟的是水合物藏在防砂筛管上下方出砂防砂试验,从上至下依次是水合物区(左反应釜段),防砂筛管区(次左右反应釜),开采出砂收集口(中央反应釜段左开采口),出砂观察区(中央反应釜段),开采出砂收集口(中央反应釜段右开采口),防砂筛管区(次左右反应釜)和水合物区(左反应釜段);这两种组合方式很好的模拟了实际水合物开采过程中的水合物垂直井出砂和水平井出砂情况;
双观察区的双井出砂防砂试验的七种组合方式,前两种方式分别为反应釜水平布置和垂直布置,反向远离出砂,模拟的是防砂筛管在水合物藏左右和上下的筛管出砂防砂试验,这两种方式从中央反应釜至反应釜两端均依次为水合物区(中央反应釜段),防砂筛管区(次左右反应釜),出砂观察区(左右反应釜段),开采出砂收集口(左右反应釜段开采口或半球形封盖),根据水合物填料压实与否可选择中央反应釜活塞的有无;第三,四,五分别为反应釜水平布置,垂直布置和垂直布置,同向出砂,模拟依次是防砂筛管在水合物物藏的右侧,上方,下方的出砂防砂试验,这三种方式分别从反应釜左端,下端和上端至反应釜另一段均依次为水合物区(左反应釜段),防砂筛管区(次左右反应釜),出砂观察区(中央反应釜段),开采出砂收集口(中央反应釜段开采口),防砂筛管区(次左右反应釜),出砂观察区(左反应釜段),开采出砂收集口(左反应釜段开采口);最后两种方式分别为反应釜水平布置和垂直布置,反向靠近出砂,模拟的是水合物藏在防砂筛管左右方和上下方的筛管出砂防砂试验,这两种方式从反应釜两端至中央反应釜均依次为水合物区(左反应釜段),防砂筛管区(次左右左反应釜段),出砂观察区(中央反应釜段),开采出砂收集口(中央反应釜段左右开采口)。
一种天然气水合物模拟出砂防砂试验方法,其利用如上任一所述的模拟出砂防砂试验反应装置进行,包括以下步骤:
根据试验目的设计并组合反应釜系统,根据反应釜系统的不同组合形式在对应的反应釜组件内初步填充水合物填料,预留孔插入相应的传感器,所述传感器包括压力传感器、温度传感器和电阻传感器;
将注水气砂系统、气水砂分离计量系统的各接口接在反应釜系统的相应开口上,将反应釜系统以竖直或水平方式安装在低温水浴夹套系统中,将低温水浴夹套系统固定在所述操作 台上;
检查反应釜系统和低温水浴夹套系统的气密性;
注水气砂系统将反应釜系统内填满相应的水合物填料,注水和甲烷气至出砂防砂试验的设定压力值后停止注水和注甲烷气,在此压力和低温水浴夹套系统提供的温度条件下天然气水合物逐渐生成,通过压力传感器监测其反应釜系统内的压力值变化,当压力值经一段时间后不再变化或变化小到设定值,此时天然气水合物已在反应釜系统内生成;
对开采口进行降压开采或注热开采,气水砂分离计量系统分别计量开采过程中的出砂出水产气量并对出砂进行分离;
待到开采产气量的压力值降至设定值且不再发生变化时,结束天然气水合物模拟开采,开采过程中的数据经支撑和安全系统传至软件记录分析系统。
本发明与现有技术相比,其有益效果在于:整个试验反应装置可以根据不同模拟出砂防砂试验合理组合达到固液气多相流研究和模拟计量出砂和优化防砂效果。
反应釜系统各个组件能根据实验目的进行多用途组合,具体地,反应釜系统由左右半反应釜,次左右反应釜段和中央反应釜段三部分和配件组成,三部分的各反应釜段由法兰连接固定,其中,左右半反应釜和中央反应釜段可以同时实现天然气水合物模拟开采出砂的观察及出砂计量功能、装填不同的多孔介质的填砂功能、模拟开采产沙水气功能和生成天然气水合物的初始注水气功能;次左右反应釜可以根据需要可以分别实现不同的观察、填砂、模拟开采、注水气等功能;此外,还配有平釜盖和半球形釜盖,可以使试验方案更加灵活实用。
本发明可以实现对试验过程中出砂防砂实施动态监测,分析在设计条件下模拟实际天然气水合物开采出砂防砂实验各个阶段的实验参数变化;根据不同温度、压力、筛管厚度和填料粒径等参数条件下,气液渗流析出时携带出的储层砂颗粒粒径和体积及气、液累计流量体积,在模拟实验中不同开采方案与不同防砂粒径等参数条件的出砂量、出砂规律与产气预测,为开采防砂技术提供实践和理论支撑。
附图说明
图1为本发明模拟出砂防砂试验反应装置的结构示意图;
图2为本发明反应釜系统的结构示意图,其中,图1(a)为左右反应釜,图1(b)为次左右反应釜,图1(c)为中央反应釜,图1(d)为反应釜的配件;
图3为注水气砂系统的结构示意图;
图4为气水砂分离计量系统的结构示意图;
图5为低温水浴夹套系统的结构示意图;
图6为支撑和安全系统的结构示意图;
图7为反应釜系统的简单组合及组件替换形式,其中,图7(a)为最简单的一种反应釜系统的组合形式,图7(b)为反应釜系统的组件替换形式;
图8为无观察区的单井出砂防砂试验的三种组合方式示意图;
图9是无观察区的双井出砂防砂试验的两种组合方式示意图;
图10是单观察区的单井出砂防砂试验的四种组合方式示意图;
图11是单观察区的双井出砂防砂试验的三种组合方式示意图;
图12是双观察区的单井出砂防砂试验的两种组合方式示意图;
图13是双观察区的双井出砂防砂试验的七种组合方式示意图。
附图中:100、反应釜系统;200、注水气砂系统;300、气水砂分离计量系统;400、低温水浴夹套系统;500、支撑和安全系统;600、软件记录分析系统;
1、左右反应釜壁;2、注氮气口;3、可移动活塞;4、泄压口;5、副开采口;6、温压传感器预留孔;7、排液口;8、观察口下透明视窗;9、开采口;10、支撑螺母;11、法兰;12、注砂口;13、观察口上透明视窗;14、注水口;15、注甲烷气口;16、器件预留孔;17、次左右反应釜壁;18、中央反应釜壁;19、球阀;20、防砂筛管壁或井壁刚性隔网;21、平封盖;22、半球形盖;23、接注氮气口;24、接注水口;25、接注筛管砂口;26、接注水合物砂口;27、接注甲烷口;28、氮气管道阀门;29、水管道阀门;30、筛管填料注砂口盖子;31、水合物填料注砂口盖子;32、甲烷气管道阀门;33、注水气砂系统数据采集集线器;34、氮气流量计;35、氮气压力计;36、注水流量计;37、注水压力计;38、筛管填料天平;39、水合物填料天平;40、甲烷气流量计;41、甲烷气压力计;42、氮气源;43、注水源;44、筛管填料;45、水合物填料;46、甲烷气源;47、摄像头监测;48、出砂粒径分离计量筒;49、集水量筒;50、量筒密封盖;51、量筒出气口流量计;52、量筒出气口压力计;53、气体收集罐;54、气水砂分离计量数据收集集线器;55、出砂细过滤网;56、出砂中过滤网;57、出砂粗过滤网;58、开采出砂降压阀;59、接开采口端口;60、温控器;61、注氮气气预留孔柱;62、控温水出口;63、器件和传感器预留孔柱;64、釜壁上开孔预留孔柱;65、水夹套外壳固定螺母及反应釜预留孔柱;66、水夹套外壳;67、控温水进口;68、水夹套法兰连接;69、釜壁下开孔预留孔柱;70、软管连接;71、电源输出;72、配电箱/空气开关/继电器等安全联动装置;73、总集线器输入;74、各系统集线输入和电源输入;75、总集线输出;76、操作台;77、水平固定杆;78、反应釜传感器及器件集线;79、控温器集线;80、温控器电源;81、垂直固定杆;82、固定孔;83、操作台支架。
具体实施方式
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
实施例:
本实施例中,为更清楚讲解本发明的反应釜系统的组合特点,第一反应釜组件、第二反应釜组件、第三反应釜组件可分别称为左右反应釜、次左右反应釜和中央反应釜,反应釜系统可简称为反应釜。开采方法可根据需要选择降压开采或注热开采,其中,降压开采是目前主要的天然气水合物开采方法之一,是通过降低水合物层压力,使其低于水合物在该区域温度条件下相平衡压力,从而使水合物从固体分解相变产生甲烷气体的过程。降压法开采井的设计与常规油气开采相近,渗透性较好的水合物藏内压力传播很快,因此,降压法是最有潜力的经济、有效的开采方式。注热开采,又称热激发开采法,是直接对天然气水合物层进行注热或加热,使天然气水合物层的温度超过其平衡温度,从而促使天然气水合物分解为水与天然气的开采方法。
本发明的可拆分式天然气水合物模拟出砂防砂试验反应装置包括:反应釜系统100,注水气砂系统200,气水砂分离计量系统300,低温水浴夹套系统400,支撑和安全系统500以及软件记录分析系统600。其中:
反应釜系统的左右反应釜壁1,次左右反应釜壁17和中央反应釜壁18三个釜段均为圆柱形管段且三管壁两侧有支撑螺母10和器件预留孔16和温压传感器预留孔6以实现反应釜结构的支撑作用和器件与参数信息的控制与收集;三釜段各部分由法兰11连接,且三釜段底部设有泄压口4,排液口7以实现对压缩空间内压力降低和釜内固液排出和釜段的清洗;左右反应釜壁1釜段为一端开口一端封闭,次左右反应釜壁17和中央反应釜壁18两釜段均为两端开口且各自镜像对称结构;左右反应釜和中央反应釜内的可移动活塞3均可拆卸,可移动活塞3作用是配合注氮气口2往内充氮气压实釜内填料。左右反应釜壁1和中央反应釜壁18上部均有注砂口12、注水口14、注甲烷气口15以实现往釜段内注砂水气;左右反应釜壁1和中央反应釜壁18上部和底部分别有观察口上透明视窗13和观察口下透明视窗8以实现在开采过程和实验过程中对釜段内出砂情况或釜内变化实时查看功能,且左右反应釜壁1和中央反应釜壁18均设有开采口9,左右反应釜壁1还设有副开采口;球阀19和防砂筛管壁或井壁刚性隔网20放置于充当水合物区和筛管填料区釜段之间以模拟实际水合物藏与井壁或筛管之间的隔开;平封盖21和半球形盖22在设计简单的出砂防砂实验中能有效封闭反应釜且两者在底部均有开采口可实现开采过程中出砂功能;半球形盖22可用于设计垂直反应装置实验中,利用半球形可充分收集出砂。
注水气砂系统中的氮气流量计34、氮气压力计35、注水流量计36;注水压力计37;筛管填料天平38、水合物填料天平39、甲烷气流量计40和甲烷气压力计41实现了对注水气砂的流量,压力和质量的计量且通过注水气砂系统数据采集集线器33可进行实时数据采集;氮气管道阀门28,水管道阀门29和甲烷气管道阀门32实现了对气体和液体的关断;筛管填料注砂口盖子30和水合物填料注砂口盖子31使反应釜密封;氮气源42和甲烷气源46由氮气瓶或甲烷气瓶和气体压缩机组成为反应釜提供设定压力的氮气和或甲烷气;注水源43由水箱内加符合实验要求的水来提供天然气水合物生成中的水合物和观察区内的水源供应;筛管填料44和水合物填料45根据实验研究可加入不同组分和类型的填料以达到实验研究以填料为变量筛选出合适的筛管填料和水合物藏砂质的优化及渗流等研究;接注氮气口23、接注水口24、接注筛管砂口25、接注水合物砂口26、接注甲烷口27分别对应接上反应釜系统中的注氮气口2、注水口14、筛管和水合物注砂口12、注甲烷气口15。
气水砂分离计量系统中的接开采口端口59与反应釜系统中的开采口9相连以实现模拟开采过程中气水砂的流入;开采出砂降压阀58使得流入分离筒内压力降低到合适范围适合气水砂分离;出砂粒径分离计量筒48收集出由出砂粗过滤网57,出砂中过滤网56和出砂细过滤网55过滤的粒径范围出砂;集水量筒49出砂过程中的产水量;出砂粒径分离计量筒48和集水量筒49底部均有可拧开的螺纹密封底盖实现实验结束出砂和出水的清理,集水量筒49底部还设有量筒密封盖50;开采过程中的产气量流经量筒出气口流量计51和量筒出气口压力计52最后进入气体收集罐53实现对气体的参数计量;在气水砂分离计量系统中的摄像头监测47可在气水砂分离过程中记录动态过程;摄像头监测47、开采出砂降压阀58、筒出气口流量计51和量筒出气口压力计的数据由气水砂分离计量数据收集集线器54收集。
低温水浴夹套系统由温控器60,软管连接70和水夹套外壳66三部分组成;温控器60可将由控温水出口62流出水经软管流入控温器60调温后再经软管流出至控温水进口67;水夹套外壳66内包含着实验反应釜,外壳与反应釜之间由注氮气预留孔柱61、器件和传感器预留孔柱63、釜壁上开孔预留孔柱64、水夹套外壳固定螺母及反应釜预留孔柱65和釜壁下开孔预留孔柱69共同支撑,并且预留孔柱使反应釜各接口能够不受水夹套外壳66阻挡;反应釜与水夹套外壳66之间的间隙填充控温水以达到模拟开采的低温要求;水夹套外壳66各部分分段构成,分段之间由水夹套法兰连接68密封。
支撑和安全系统由操作台76,各系统集线输入和电源输入74和总集线输出75三部分组成,也就是由支撑结构,参数检测收集和电源管理三大块;配电箱/空气开关/继电器等安全联动装置72汇集了各系统集线输入和电源输入74中的电源输入和电源输出71至各系统中如 输出给温控器电源80来实现电源的管理;各系统集线输入和电源输入74中的各系统集线输入连至总集线器输入73经汇合后连至总集线输出75至电脑,由电脑软件记录分析实验数据和操控设备器件;各系统集线输入来自各系统如反应釜传感器及器件集线78和控温器集线79等;操作台76由水平固定杆77,垂直固定杆81和操作台支架83构成;水平固定杆77和垂直固定杆81开有固定孔82来和包含反应釜的支撑螺母10以及水夹套外壳固定螺母及反应釜预留孔柱65固定,这样就可以使包含反应釜的水浴夹套固定在操作台76上。
下面详细说明每一种组合方法的作用及模拟出砂防砂试验情况的说明。
如图7组合是反应釜最简单的组合,它是由左右反应釜壁1的左反应釜,防砂筛管壁或井壁刚性隔网20和半球形盖22或平封盖21组成;一般情况下水平布置时用平封盖21,垂直布置时用半球形盖22,这是因为这样可以使出砂充分收集;在此最简单的组合反应釜的左反应釜为水合物生成分解区,半球形盖22或平封盖21用来收集水合物分解过程中出砂并通过开采口流出;
在图7~13所有试验反应釜组合中,左反应釜段可以与中央反应釜加平封盖21的组合等效互相替代,这是因为中央反应釜壁18具有左右反应釜壁1的所有注入、观察、开采口;图8~13中箭头的方向代表水合物分解过程中出砂流动方向;以次左右反应釜壁17两段开口左右加防砂筛管壁或井壁刚性隔网20来模拟防砂筛管。
如图8是无观察区的单井出砂防砂试验的三种组合方式,从左至右依次说明;在第一种组合方式中(图8(a)),为垂直布置反应釜,模拟的是防砂筛管在水合物藏下方的筛管出砂防砂试验,从上至下依次是水合物区,防砂筛管区和开采出砂收集口;在第二种组合方式中(图8(b)),为水平布置反应釜,模拟的是防砂筛管在水合物藏右侧的筛管出砂防砂试验,从左至右依次是水合物区,防砂筛管区和开采出砂收集口;在第三种组合方式中((图8(c)),为垂直布置反应釜,模拟的是防砂筛管在水合物藏上方的筛管出砂防砂试验,从下至上依次是水合物区,防砂筛管区和开采出砂收集口。
如图9是无观察区的双井出砂防砂试验的两种组合方式,从左至右依次说明;在第一种组合方式中(图9(a)),为垂直布置反应釜,模拟的是防砂筛管在水合物藏上方和下方的筛管出砂防砂试验,从上至下依次是开采出砂收集口,防砂筛管区,水合物区,防砂筛管区和开采出砂收集口;在第二种组合方式中(图9(b)),为水平布置反应釜,模拟的是防砂筛管在水合物藏左右两侧的筛管出砂防砂试验,从左至右依次是开采出砂收集口,防砂筛管区,水合物区,防砂筛管区和开采出砂收集口;其中水合物区的活塞根据要求决定是否放入,当要求水合物填料压实,可以放入活塞实现对水合物填料的压实,也可不放入活塞,对水合 物填料预先压实从中央反应釜两侧开口放入。
如图10是单观察区的单井出砂防砂试验的四种组合方式,从左至右依次说明;在第一种组合方式中(图10(a)),为垂直布置反应釜,模拟的是防砂筛管在水合物藏下方的筛管出砂防砂试验,从上至下依次是水合物区,防砂筛管区,出砂观察区和开采出砂收集口;在第二种组合方式中(图10(b)),为垂直布置反应釜,模拟的是防砂筛管在水合物藏上方的筛管出砂防砂试验,从下至上依次是水合物区,防砂筛管区,出砂观察区和开采出砂收集口;在第三种组合方式中(图10(c)),为水平布置反应釜,模拟的是防砂筛管在水合物藏右侧的筛管出砂防砂试验,从左至右依次是水合物区,防砂筛管区,出砂观察区和开采出砂收集口;在第四种组合方式中(图10(c)),为垂直布置反应釜,模拟的是防砂筛管在水合物藏下方的筛管出砂防砂试验,从上至下依次是水合物区,防砂筛管区,出砂观察区和开采出砂收集口。
如图11是单观察区的双井出砂防砂试验的三种组合方式,从左至右依次说明;在第一种组合方式中(图11(a)),为水平布置反应釜,模拟的是防砂筛管在水合物藏右侧的筛管出砂防砂试验,从左至右依次是水合物区,防砂筛管区,出砂观察区,开采出砂收集口,防砂筛管区和开采出砂收集口;在第二种组合方式中(图11(b)),为垂直布置反应釜,模拟的是防砂筛管在水合物藏上方和下方的筛管出砂防砂试验,从上至下依次是开采出砂收集口,出砂观察区,防砂筛管区,水合物区,防砂筛管区和开采出砂收集口;在第三种组合方式中(图11(c)),为垂直布置反应釜,模拟的是防砂筛管在水合物藏下方的筛管出砂防砂试验,从上至下依次是水合物区,防砂筛管区,出砂观察区,防砂筛管区和开采出砂收集口;在这三种组合方式中第一种和第三种有两个防砂筛管区和两个开采出砂收集口是由于水合物开采过程中模拟出砂分别经过两个防砂筛管。
如图12是双观察区的单井出砂防砂试验的两种组合方式,从左至右依次说明;在第一种组合方式中(图12(a)),为水平布置反应釜,模拟的是水合物藏在防砂筛管左右两侧的筛管出砂防砂试验,从左至右依次是水合物区,防砂筛管区,开采出砂收集口,出砂观察区,开采出砂收集口,防砂筛管区和水合物区;在第二种组合方式中(图12(b)),为垂直布置反应釜,模拟的是水合物藏在防砂筛管上下方出砂防砂试验,从上至下依次是水合物区,防砂筛管区,开采出砂收集口,出砂观察区,开采出砂收集口,防砂筛管区和水合物区;这两种组合方式很好的模拟了实际水合物开采过程中的水合物垂直井出砂和水平井出砂情况。
如图13是双观察区的双井出砂防砂试验的七种组合方式,从左至右依次说明,从上到下依次说明:前两种方式分别为反应釜水平布置和垂直布置(图13(a)),反向远离出砂, 分别模拟的是防砂筛管在水合物藏左右和水合物藏的上下的筛管出砂防砂试验,这两种方式从中央反应釜至反应釜两端均依次为水合物区,防砂筛管区,出砂观察区,开采出砂收集口,根据水合物填料压实与否可选择中央反应釜活塞的有无;第三,四,五分别为反应釜水平布置,垂直布置和垂直布置,同向出砂,模拟依次是防砂筛管在水合物物藏的右侧,上方,下方的出砂防砂试验(图13(b)),这三种方式分别从反应釜左端,下端和上端至反应釜另一端均依次为水合物区,防砂筛管区,出砂观察区,开采出砂收集口,防砂筛管区,出砂观察区,开采出砂收集口;最后两种方式分别为反应釜水平布置和垂直布置(图13(c)),反向靠近出砂,模拟的是水合物藏在防砂筛管左右方和上下方的筛管出砂防砂试验,这两种方式从反应釜两端至中央反应釜均依次为水合物区,防砂筛管区,出砂观察区,开采出砂收集口。
本发明创造具有模块化特点,将模拟天然气水合物开采出砂防砂试验划分为反应釜系统,注气水砂系统,气水砂分离计量系统,低温水浴夹套系统,支撑和安全系统。反应釜系统中反应釜可根据不同实验条件和目的组合成不同反应釜;反应釜主要包括:左右反应釜,次左右反应釜,中央反应釜和封盖。通过左右反应釜加封盖组合成实现水合物生成分解无筛管的反应釜;通过左右反应釜加反应釜配件(阀门,封盖,筛网等)加次左右反应釜和中央反应釜组合可模拟无观察区的单井和双井、单观察区的单井和双井,双观察区的单井和双井等一系列出砂防砂试验;其中左右反应釜和中央反应釜可充当水合物生成分解区和观察区,次左右反应釜加上两端滤网可充当防砂筛管区。支撑架的水平和垂直可模拟垂直和水平出砂防砂试验。
下面结合图2,图3,图4,图5,图6详细说明本发明的不同反应釜组合的一种天然气水合物模拟出砂防砂试验方法。
根据试验目的设计并组合:首先根据实验目的设计并组装好反应釜,这里以单观察区的双井模拟开采出砂防砂实验为例:根据该实验要求图7为其反应釜系统的配置组装方式;反应釜系统内的反应釜段充当不同区功能说明如下:左反应釜段内腔充当开采出砂观察区,此时左端的注氮气口2在排尽空气后封闭,此时可移动活塞3在左反应釜段紧贴左侧内釜壁;次左右反应釜内填充筛管防砂填料且两侧加防砂筛管壁或井壁刚性隔网20;中央反应釜两端与球阀19相连,且釜内两端空间填充水合物填料,中心为注入氮气压缩两侧水合物填料;最右端平封盖使整个反应釜内部密封;将温度和压力传感器分别插入到反应釜的温压传感器预留孔6中,对于器件预留孔我们可以选择在左反应釜插入测量电阻传感器以测量观察区的电阻变换;将注水气砂系统、气水砂分离计量系统各接口接在相应反应釜的开口上;根据图7 组装好装置后将整个反应釜装入水浴夹套系统中,再由水夹套外壳固定螺母65和反应釜固定螺母10共同组装固定在支撑和安全系统中的水平支架上。
检查装置气密性:组装好反应釜及低温水浴水夹套系统后使用注氮气对反应釜段内密闭空间进行检漏和排气;关闭釜壁各进出口将左反应釜和中央反应釜注气口注入氮气至一定压力一段时间不变后可认为反应釜气密性良好。
加料加气控温控压:使用注水气砂系统将反应釜内填满相应填料,关闭盖子注水和甲烷气至实验高压后关闭注水和注气阀门,在此高压和水浴夹套提高的低温条件下水合物开始逐渐生成,通过压力传感器监测其压力变化,当压力经一段时间后不再变化或变化很小可以认为水合物已在反应釜内生成。
开采计量数据收集:此时准备进行开采出砂模拟,将气水砂分离系统接开采口端口59;开启开采口观察区的开采口9和平封盖底部的开采口进行降压开采,在分别计量开采过程中的出砂出水产气量;开采过程中调节开采出砂降压阀58,使出砂由出砂粗过滤网57,出砂中过滤网56;出砂细过滤网55被出砂粒径分离计量筒48收集不同粒径大小出砂;开采过程中的产气量流经量筒出气口流量计51和量筒出气口压力计52最后进入气体收集罐53实现对气体的参数计量;在气水砂分离计量系统中的摄像头监测47可在气水砂分离过程中记录动态过程;摄像头监测47、开采出砂降压阀58、量筒出气口流量计51和量筒出气口压力计的数据由气水砂分离计量数据收集集线器54收集。
拆分装置和分析数据:待到开采产气量压力降至较低值且不再发生变化可以认为水合物模拟开采已经结束;过程中传感器信息采集经过各系统集线输入74和总集线输入73至集线器经信号处理至总集线器输出75至电脑,使用操作软件实时监测记录分析数据;实验结束后,关闭实验设备电源,先进行反应釜降压放气,残留气体由气罐收集;打开反应釜进行清理填料操作。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

  1. 一种可拆分式天然气水合物模拟出砂防砂试验反应装置,包括反应釜系统、注水气砂系统,其特征在于,还包括气水砂分离计量系统、低温水浴夹套系统、支撑和安全系统以及软件记录分析系统,
    所述注水气砂系统用于给所述反应釜系统提供气体、液体和砂,以在所述反应釜系统内形成天然气水合物;
    所述反应釜系统设置于所述低温水浴夹套系统内,所述低温水浴夹套系统用于控制所述反应釜系统内的温度,以模拟天然气水合物储层的环境温度;
    所述支撑和安全系统包括操作台,所述低温水浴夹套系统被以竖直或水平方式固定在所述操作台上,以模拟防砂筛管在天然气水合物储层储藏不同方位的出砂防砂试验;
    所述操作台设有参数检测收集模块,所述参数检测收集模块通过若干传感器采集所述反应釜系统在模拟天然气水合物开采过程中的数据,
    所述气水砂分离计量系统与所述反应釜系统的开采口连接以模拟天然气水合物开采过程中气水砂混合物的流入,并对气水砂混合物进行分离及计量,所述气水砂分离计量系统的计量数据传至所述参数检测收集模块;
    所述软件记录分析系统与所述参数检测收集模块通信连接;
    所述反应釜系统包括第一反应釜组件、第二反应釜组件、第三反应釜组件、球阀、隔网和封盖,所述第一反应釜组件为一端开口一端封闭的圆柱壳体,所述第二反应釜组件和第三反应釜组件为两端开口的圆柱壳体,所述第一反应釜组件、所述第二反应釜组件和所述第三反应釜组件的圆柱壳体上均设有用于安装传感器的预留孔,所述第一反应釜组件、所述第二反应釜组件和所述第三反应釜组件还设有泄压口和排液口,所述第一反应釜组件和第三反应釜组件注砂口、注水口、注气甲烷气口、开采口和观察口,所述封盖具有开采口;
    第一反应釜组件、第二反应釜组件、第三反应釜组件、球阀、隔网和封盖的任意组合可实现所述反应釜系统模拟单、双观察区,单、双井开采以及防砂筛管在天然气水合物储层储藏不同方位的出砂防砂试验。
  2. 根据权利要求1所述的可拆分式天然气水合物模拟出砂防砂试验反应装置,其特征在于,所述第一反应釜组件和所述第三反应釜组件还包括可移动活塞,所述第一反应釜组件的一端设有注氮气口,所述第三反应釜组件的圆柱壳体上开设有注氮气口,所述注氮气口用于注入气体驱动所述可移动活塞朝向所述反应釜系统内的填料方向运动,其中,所述第一反应釜组件设有一可移动活塞,该可移动活塞工作时朝向第一反应釜组件开口端移动,所述第三 反应釜组件设有两可移动活塞,该可移动活塞工作时朝向第三反应釜组件两端移动。
  3. 根据权利要求2所述的可拆分式天然气水合物模拟出砂防砂试验反应装置,其特征在于,当所述反应釜系统用作无观察区的单井出砂防砂试验时,所述反应釜系统由第一反应釜组件、球阀、隔网、第二反应釜组件、隔网和封盖依次组装而成,第一反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件和隔网用于模拟防砂筛管区,封盖用于模拟开采出砂收集口;具体地,所述反应釜系统垂直布置且封盖位于底端时,模拟的是防砂筛管在水合物藏下方的筛管出砂防砂试验;所述反应釜系统水平布置时,模拟的是防砂筛管在水合物藏右侧的筛管出砂防砂试验;所述反应釜系统垂直布置且封盖位于顶端时,模拟的是防砂筛管在水合物藏上方的筛管出砂防砂试验。
  4. 根据权利要求2所述的可拆分式天然气水合物模拟出砂防砂试验反应装置,其特征在于,当所述反应釜系统用作无观察区的双井出砂防砂试验时,所述反应釜系统由封盖、隔网、第二反应釜组件、隔网、球阀、第三反应釜组件、球阀、隔网、第二反应釜组件、隔网和封盖依次组装而成,第三反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件和隔网用于模拟防砂筛管区,封盖用于模拟开采出砂收集口;具体地,所述反应釜系统垂直布置时,模拟的是防砂筛管在水合物藏上方和下方的筛管出砂防砂试验;所述反应釜系统水平布置时,模拟的是防砂筛管在水合物藏左右两侧的筛管出砂防砂试验。
  5. 根据权利要求2所述的可拆分式天然气水合物模拟出砂防砂试验反应装置,其特征在于,当所述反应釜系统用作单观察区的单井出砂防砂试验时,所述反应釜系统由第一反应釜组件、球阀、隔网、第二反应釜组件、隔网和第一反应釜组件依次组装而成,靠近球阀的第一反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件和隔网用于模拟防砂筛管区,远离球阀的第一反应釜组件用于模拟出砂观察区和开采出砂收集口;具体地,所述反应釜系统垂直布置且球阀靠近顶端时,模拟的是防砂筛管在水合物藏下方的筛管出砂防砂试验,此时,远离球阀的第一反应釜组件等效为第三反应釜组件与封盖组合;所述反应釜系统垂直布置且球阀靠近底端时,模拟的是防砂筛管在水合物藏上方的筛管出砂防砂试验;所述反应釜系统水平布置时,模拟的是防砂筛管在水合物藏右侧的筛管出砂防砂试验。
  6. 根据权利要求2所述的可拆分式天然气水合物模拟出砂防砂试验反应装置,其特征在于,当所述反应釜系统用作单观察区的双井出砂防砂试验时,所述反应釜系统由第一反应釜组件、球阀、隔网、第二反应釜组件、隔网、第三反应釜组件、隔网、第二反应釜组件、隔网、球阀和封盖组成;具体地,
    所述反应釜系统水平布置时,模拟的是防砂筛管在水合物藏右侧的筛管出砂防砂试验, 其连接组装关系为第一反应釜组件、球阀、隔网、第二反应釜组件、隔网、第三反应釜组件、隔网、第二反应釜组件、隔网、球阀和封盖依次组装而成,第一反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件和隔网用于模拟防砂筛管区,第三反应釜组件用于模拟出砂观察区和开采出砂收集口,隔网、第二反应釜组件、隔网、球阀用于模拟防砂筛管区,封盖用于模拟开采出砂收集口;
    所述反应釜系统垂直布置且连接组装关系和所述反应釜系统水平布置一致时,模拟的是防砂筛管在水合物藏下方的筛管出砂防砂试验,第一反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件和隔网用于模拟防砂筛管区,第三反应釜组件用于模拟出砂观察区和开采出砂收集口,隔网、第二反应釜组件、隔网、球阀用于模拟防砂筛管区,封盖用于模拟开采出砂收集口;
    所述反应釜系统垂直布置且连接组装关系为第一反应釜组件、隔网、第二反应釜组件、隔网、球阀、第三反应釜组件、球阀、隔网、第二反应釜组件、隔网、封盖依次组装时,模拟的是防砂筛管在水合物藏上方和下方的筛管出砂防砂试验,第一反应釜组件用于模拟出砂观察区和开采出砂收集口,隔网、第二反应釜组件、隔网、球阀用于模拟防砂筛管区,第三反应釜组件用于模拟水合物区。
  7. 根据权利要求2所述的可拆分式天然气水合物模拟出砂防砂试验反应装置,其特征在于,当所述反应釜系统用作双观察区的单井出砂防砂试验时,所述反应釜系统由第一反应釜组件、隔网、第二反应釜组件、隔网、球阀、第三反应釜组件、球阀、隔网、第二反应釜组件、隔网、封盖依次组装而成,第一反应釜用于模拟水合物区,隔网、第二反应釜组件、隔网、球阀用于模拟防砂筛管区,第三反应釜组件用于模拟出砂观察区和开采出砂收集口,具体地,所述反应釜系统水平布置时,模拟的是水合物藏在防砂筛管左右两侧的筛管出砂防砂试验;所述反应釜系统垂直布置时,模拟的是水合物藏在防砂筛管上下方出砂防砂试验。
  8. 根据权利要求2所述的可拆分式天然气水合物模拟出砂防砂试验反应装置,其特征在于,当所述反应釜系统用作双观察区的双井出砂防砂试验时,所述反应釜系统由第一反应釜组件、隔网、第二反应釜组件、隔网、球阀、第三反应釜组件、球阀、隔网、第二反应釜组件、隔网、封盖组成,具体地,
    所述反应釜水平布置或垂直布置,且连接组装关系为第一反应釜组件、隔网、第二反应釜组件、隔网、球阀、第三反应釜组件、球阀、隔网、第二反应釜组件、隔网、封盖依次组装时,分别对应模拟的是防砂筛管在水合物藏左右方和上下方的筛管出砂防砂试验,第三反应釜组件用于模拟水合物区,隔网、第二反应釜组件、隔网、球阀用于模拟防砂筛管区,第 一反应釜组件用于模拟出砂观察区,封盖用于模拟开采出砂收集口;
    所述反应釜系统水平布置且连接组装关系为第一反应釜组件、球阀、隔网、第二反应釜组件、隔网、第三反应釜组件、隔网、第二反应釜组件、隔网、球阀和封盖依次组装时,模拟防砂筛管在水合物物藏的右侧的筛管同向出砂的出砂防砂试验,从反应釜系统的左侧到右侧:第一反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件、隔网用于模拟防砂筛管区,第三反应釜组件用于模拟出砂观察区和开采出砂收集口,第一反应釜组件用于模拟出砂观察区和开采出砂收集口;
    所述反应釜系统垂直布置且连接组装关系为第一反应釜组件、球阀、隔网、第二反应釜组件、隔网、第三反应釜组件、隔网、第二反应釜组件、隔网、球阀和封盖依次组装时,模拟防砂筛管在水合物物藏的上方的筛管同向出砂的出砂防砂试验,从反应釜系统的下方到上方:第一反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件、隔网用于模拟防砂筛管区,第三反应釜组件用于模拟出砂观察区和开采出砂收集口,第一反应釜组件用于模拟出砂观察区和开采出砂收集口;
    所述反应釜系统垂直布置且连接组装关系为第一反应釜组件、球阀、隔网、第二反应釜组件、隔网、第三反应釜组件、隔网、第二反应釜组件、隔网、球阀和封盖依次组装时,模拟防砂筛管在水合物物藏的下方的筛管同向出砂的出砂防砂试验,从反应釜系统的上方到下方:第一反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件、隔网用于模拟防砂筛管区,第三反应釜组件用于模拟出砂观察区和开采出砂收集口,第一反应釜组件用于模拟出砂观察区和开采出砂收集口;
    所述反应釜系统水平布置或垂直布置,且连接组装关系为第一反应釜组件、球阀、隔网、第二反应釜组件、隔网、第三反应釜组件、隔网、第二反应釜组件、隔网、球阀和封盖依次组装时,分别对应模拟的是水合物藏在防砂筛管上方和下方的筛管反向靠近出砂的出砂防砂试验,从反应釜系统的两端至中央:第一反应釜组件用于模拟水合物区,球阀、隔网、第二反应釜组件、隔网用于模拟防砂筛管区,第三反应釜组件用于模拟出砂观察区和开采出砂收集口。
  9. 根据权利要求1-8任一所述的可拆分式天然气水合物模拟出砂防砂试验反应装置,其特征在于,所述封盖包括半球形盖和平封盖,所述半球形盖用于所述反应釜系统垂直布置时,所述平封盖用于所述反应釜系统水平布置时,所述第三反应釜组件与所述封盖组装等效于所述第一反应釜组件。
  10. 一种天然气水合物模拟出砂防砂试验方法,其利用如权利要求1-9任一所述的模拟 出砂防砂试验反应装置进行,包括以下步骤:
    根据试验目的设计并组合反应釜系统,根据反应釜系统的不同组合形式在对应的反应釜组件内初步填充水合物填料,预留孔插入相应的传感器,所述传感器包括压力传感器、温度传感器和电阻传感器;
    将注水气砂系统、气水砂分离计量系统的各接口接在反应釜系统的相应开口上,将反应釜系统以竖直或水平方式安装在低温水浴夹套系统中,将低温水浴夹套系统固定在所述操作台上;
    检查反应釜系统和低温水浴夹套系统的气密性;
    注水气砂系统将反应釜系统内填满相应的水合物填料,注水和甲烷气至出砂防砂试验的设定压力值后停止注水和注甲烷气,在此压力和低温水浴夹套系统提供的温度条件下天然气水合物逐渐生成,通过压力传感器监测其反应釜系统内的压力值变化,当压力值经一段时间后不再变化或变化小到设定值,此时天然气水合物已在反应釜系统内生成;
    对开采口进行降压开采,气水砂分离计量系统分别计量开采过程中的出砂出水产气量并对出砂进行分离;
    待到开采产气量的压力值降至设定值且不再发生变化时,结束天然气水合物模拟开采,开采过程中的数据经支撑和安全系统传至软件记录分析系统。
PCT/CN2020/114106 2020-08-07 2020-09-08 可拆分式天然气水合物出砂防砂试验装置及方法 WO2021159701A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/257,311 US11899005B2 (en) 2020-08-07 2020-09-08 Divisible experimental device and method for sand production and sand control during natural gas hydrate exploitation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010789778.0A CN112067785B (zh) 2020-08-07 2020-08-07 可拆分式天然气水合物模拟出砂防砂试验反应装置及方法
CN202010789778.0 2020-08-07

Publications (1)

Publication Number Publication Date
WO2021159701A1 true WO2021159701A1 (zh) 2021-08-19

Family

ID=73660853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114106 WO2021159701A1 (zh) 2020-08-07 2020-09-08 可拆分式天然气水合物出砂防砂试验装置及方法

Country Status (3)

Country Link
US (1) US11899005B2 (zh)
CN (1) CN112067785B (zh)
WO (1) WO2021159701A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111997568B (zh) * 2020-08-06 2021-07-30 中国科学院广州能源研究所 一种天然气水合物全尺寸开采模拟井装置及实验方法
CN113482607B (zh) * 2021-08-02 2023-06-06 山东科技大学 一种油气开采过程井筒出砂模拟可视化试验装置
CN114166937B (zh) * 2021-12-08 2023-09-05 中国科学院广州能源研究所 一种沉积物中水合物分解及二次生成的实验系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040084186A1 (en) * 2002-10-31 2004-05-06 Allison David B. Well treatment apparatus and method
CN109025985A (zh) * 2018-09-19 2018-12-18 青岛海洋地质研究所 基于多分支孔技术开采水合物的实验模拟装置
CN110346529A (zh) * 2019-07-05 2019-10-18 中国地质调查局水文地质环境地质调查中心 天然气水合物水平井开采三维径向流出砂、防砂试验反应釜
CN110630228A (zh) * 2019-09-23 2019-12-31 中国地质大学(武汉) 评价co2/n2置换法开采水合物时井筒出砂与防砂的装置及方法
CN111411943A (zh) * 2020-03-27 2020-07-14 青岛海洋地质研究所 一种测量水合物储层沉降变形场的装置及方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2687223B1 (fr) * 1992-02-12 1995-04-07 Inst Francais Du Petrole Dispositif et methode pour surveiller les variations de consistance d'un melange.
CN104405345B (zh) * 2014-10-20 2017-01-18 中国科学院广州能源研究所 一种可渗透边界层天然气水合物开采模拟实验装置
CN104453794B (zh) * 2014-11-20 2017-05-17 中国科学院广州能源研究所 天然气水合物开采全过程模拟实验系统及模拟方法
KR101621504B1 (ko) * 2015-11-10 2016-05-16 한국지질자원연구원 가스 하이드레이트 생산에 의한 사질생산 모사장치 및 모사방법
CN205786187U (zh) * 2016-02-01 2016-12-07 青岛海洋地质研究所 一种天然气水合物井轴向出砂一维物理模拟装置
CN206008676U (zh) * 2016-08-22 2017-03-15 江苏联友科研仪器有限公司 一种天然气水合物出砂防砂反应釜
CN107045054B (zh) * 2016-12-20 2019-07-12 中国科学院广州能源研究所 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法
CN107462677A (zh) * 2017-08-10 2017-12-12 中国地质调查局水文地质环境地质调查中心 天然气水合物开采防砂试验装置及方法
CN107478809B (zh) * 2017-10-09 2018-09-07 中国石油大学(华东) 一种弱胶结砂岩油藏微观出砂可视化模拟实验装置及其应用
US10683736B2 (en) * 2018-01-08 2020-06-16 Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences Method and system for recovering gas in natural gas hydrate exploitation
CN208990766U (zh) * 2018-07-12 2019-06-18 中国科学院广州能源研究所 一种含天然气水合物沉积物出砂反应釜
CN109696360B (zh) * 2019-01-28 2023-10-31 中国地质大学(武汉) 水合物开采储层响应与出砂模拟多功能反应釜
CN210221866U (zh) * 2019-06-13 2020-03-31 广州海洋地质调查局 一种沉积物结构变化的可视实验装置
CN210858697U (zh) * 2019-07-31 2020-06-26 中国地质大学(武汉) 评价水合物开采过程中水平井内出砂与防砂的装置
CN110454146A (zh) * 2019-07-31 2019-11-15 中国地质大学(武汉) 评价水合物开采过程中水平井内出砂与防砂的装置及方法
CN111259564A (zh) * 2020-02-10 2020-06-09 广州海洋地质调查局 一种水合物预充填防砂筛管出砂规律预测方法
CN111396001B (zh) * 2020-03-25 2021-05-11 中国石油大学(华东) 出水气井和天然气水合物井防砂筛管及其防砂控水方法
CN112031711B (zh) * 2020-08-06 2021-07-02 中国科学院广州能源研究所 一种天然气水合物模拟开采产气水砂分离计量装置及方法
CN111999466B (zh) * 2020-08-07 2021-04-16 中国科学院广州能源研究所 一种用于天然气水合物开采的可拆分式出砂防砂反应釜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040084186A1 (en) * 2002-10-31 2004-05-06 Allison David B. Well treatment apparatus and method
CN109025985A (zh) * 2018-09-19 2018-12-18 青岛海洋地质研究所 基于多分支孔技术开采水合物的实验模拟装置
CN110346529A (zh) * 2019-07-05 2019-10-18 中国地质调查局水文地质环境地质调查中心 天然气水合物水平井开采三维径向流出砂、防砂试验反应釜
CN110630228A (zh) * 2019-09-23 2019-12-31 中国地质大学(武汉) 评价co2/n2置换法开采水合物时井筒出砂与防砂的装置及方法
CN111411943A (zh) * 2020-03-27 2020-07-14 青岛海洋地质研究所 一种测量水合物储层沉降变形场的装置及方法

Also Published As

Publication number Publication date
US20220299495A1 (en) 2022-09-22
CN112067785A (zh) 2020-12-11
CN112067785B (zh) 2021-05-14
US11899005B2 (en) 2024-02-13

Similar Documents

Publication Publication Date Title
WO2021159701A1 (zh) 可拆分式天然气水合物出砂防砂试验装置及方法
CN109681198B (zh) 一种针对不同类型天然气水合物储层的多方式开采模拟装置及方法
WO2021227384A1 (zh) 一种超重力水合物研究实验系统及方法
CN105301200B (zh) 一种天然气水合物开采出砂特性测试装置
CN107358858B (zh) 煤层生物气成藏过程模拟装置及实验方法
CN108169062B (zh) 模拟地下煤层气赋存解吸过程的可视化试验装置及方法
CN106437639A (zh) 一种co2混相驱油效率和剩余油分布评价方法和专用装置
CN112031711B (zh) 一种天然气水合物模拟开采产气水砂分离计量装置及方法
CN109236243A (zh) 三维综合性储层水合物模拟分析系统及分析方法
CN105651648A (zh) 一种置换及吸附解析模拟测试系统及方法
CN205483902U (zh) 一种置换及吸附解析模拟测试装置
CN209398398U (zh) 三维综合性储层水合物模拟分析系统
CN109386270A (zh) 煤岩层瓦斯动力增透渗流与驱替模拟试验系统与试验方法
CN106053317A (zh) 非饱和垃圾土双向气体渗透系数测定仪
CN110454146A (zh) 评价水合物开采过程中水平井内出砂与防砂的装置及方法
CN109599021B (zh) 一种地质储层径向流模拟装置
CN108952678B (zh) 非均质含煤岩系储层产气贡献率模拟测试装置与测试方法
CN111472729B (zh) 一种天然气水合物洞穴完井评价测试方法
CN106640042A (zh) 一种评价气井单井产能装置及方法
CN105717026A (zh) 一种出口压力可调的煤岩渗流实验系统及方法
CN113882837B (zh) 一种底水稠油油藏水平井水锥形态模拟及控水降粘实验装置及实验方法
CN107725042A (zh) 一种高温高压大型碳酸盐岩缝洞型油藏物理模拟实验装置和方法
CN111999466B (zh) 一种用于天然气水合物开采的可拆分式出砂防砂反应釜
CN110952958B (zh) 一种天然气水合物水平井均衡排液测试装置及方法
CN207352864U (zh) 煤层生物气成藏过程模拟装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE