WO2021227384A1 - 一种超重力水合物研究实验系统及方法 - Google Patents

一种超重力水合物研究实验系统及方法 Download PDF

Info

Publication number
WO2021227384A1
WO2021227384A1 PCT/CN2020/124918 CN2020124918W WO2021227384A1 WO 2021227384 A1 WO2021227384 A1 WO 2021227384A1 CN 2020124918 W CN2020124918 W CN 2020124918W WO 2021227384 A1 WO2021227384 A1 WO 2021227384A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
gas
hydrate
reactor
pressure
Prior art date
Application number
PCT/CN2020/124918
Other languages
English (en)
French (fr)
Inventor
张健
王金意
荆铁亚
赵文韬
张国祥
Original Assignee
中国华能集团有限公司
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团有限公司, 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团有限公司
Publication of WO2021227384A1 publication Critical patent/WO2021227384A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/222Solid fuels, e.g. coal

Definitions

  • the invention relates to the field of hydrate development, in particular to a supergravity hydrate research experimental system and method.
  • Deep-sea gas hydrate reservoirs exist in a certain high-pressure and low-temperature environment on the seabed. They are multi-phase and multi-component complex sediments composed of natural gas, water, natural gas hydrate, ice and sand.
  • the special deep-sea high-pressure and low-temperature environment makes deep-sea natural gas hydrate mining extremely difficult.
  • the exploitation of natural gas hydrates mainly includes the four basic physical processes of hydrate decomposition, phase transition, multiphase seepage, heat and mass transfer, and formation deformation.
  • phase change decomposition of solid hydrate within a certain range around the mining well produces natural gas and water, and then the gas, liquid, and solid phases (hydrates, sediments) in the decomposition zone seep in the porous medium, and the temperature difference and potential energy difference cause energy and Mass transfer, accompanied by changes in the effective stress and strength of the formation, causes the seabed to deform.
  • the purpose of the present invention is to provide a high-gravity hydrate research experimental system and method to overcome the problems in the prior art.
  • the present invention can simulate the geological environment and reservoir conditions of the submarine hydrate, and depressurize and inject heat through mining wells. Methods such as changing the temperature and pressure environment for the stable existence of natural gas hydrates, that is, the hydrate phase equilibrium conditions, decompose solid hydrates into natural gas and water in-situ in the reservoir, and then extract natural gas through mining wells.
  • a high-gravity hydrate research experiment system including a first gas cylinder for storing CH 4 gas or CO 2 gas and a second gas cylinder for storing N 2 gas.
  • the first gas cylinder and the second gas cylinder pass through
  • the first valve and the second valve are connected to the gas booster pump, and the outlet of the gas booster pump is connected to the three branches through the first pressure gauge;
  • the first safety valve is connected to the first branch; the third valve, the first buffer tank, the fifth valve, the first pressure regulating valve, the third pressure gauge, the first one-way valve and The first flowmeter, wherein the top of the first buffer tank is designed with a second pressure gauge, the bottom is designed with a fourth valve, the outlet end of the first flowmeter is connected to the reactor, and the inside of the reactor is divided from top to bottom. It is a gas layer, a liquid layer, a cap layer, a hydrate reservoir and a bottom layer; the sixth valve, the second buffer tank, the eighth valve, the second pressure regulating valve, the fifth pressure gauge, and the second A flow meter and a second one-way valve.
  • the top and bottom of the second buffer tank are respectively designed with a fourth pressure gauge and a seventh valve.
  • the outlet of the second one-way valve is connected to the internal hydration of the reactor in multiple branches. Physical reservoir
  • the system also includes a first liquid storage tank and a second liquid storage tank with heating and temperature control functions.
  • the outlet of the first liquid storage tank is sequentially connected with a first filter, a first metering pump, a third one-way valve, and The preheater and the ninth valve.
  • the outlet end of the ninth valve is connected to the outlet of the second one-way valve;
  • the outlet of the second liquid storage tank is connected to the second filter, the second metering pump, and the fourth one-way valve in sequence through the pipeline.
  • a valve and a tenth valve, the outlet of the tenth valve is provided with a sixth pressure gauge, and the outlet of the tenth valve is connected to the inlet of the well bore inserted in the reactor;
  • the side of the reaction kettle is connected with a vacuuming device for vacuuming the system; the inlet of the wellbore is also connected with a gas-liquid separation device for separating the system from gas and liquid.
  • the vacuum pumping device includes a vacuum pump, a fourth buffer tank, an eighth pressure gauge, a fourteenth valve, and a filter connected in sequence through a pipeline, the filter is connected to the side of the reactor, and the fourth buffer The bottom of the tank is designed with a fifteenth valve.
  • the gas-liquid separation device includes a gas-liquid separator, and the inlet end of the gas-liquid separator is connected to the inlet of the wellbore through a back pressure valve and a twelfth valve in sequence; the back pressure valve and the twelfth valve are connected There is a branch, and a thirteenth valve is arranged on the branch; the side of the back pressure valve is connected to the third buffer tank and the back pressure pump through a pipeline, and the top of the third buffer tank is designed with a seventh pressure gauge; a gas-liquid separator The gas outlet end of the gas-liquid separator is sequentially connected with a wet flow meter and a gas storage tank, and the liquid outlet end of the gas-liquid separator is sequentially connected with an eleventh valve and a liquid storage tank.
  • the top of the reaction kettle is designed with a thermometer and a second safety valve, and the bottom is designed with a sixteenth valve for venting and cleaning.
  • the side wall of the reaction kettle is provided with an observation window, a circulating water jacket and a temperature control device used for temperature control of the longitudinal different heights of the high pressure reaction kettle to simulate the actual geothermal gradient of the seabed are also provided.
  • a number of data collection interfaces for collecting pressure and temperature data are provided on the peripheral side walls of the reaction kettle.
  • the wellbore is provided with boreholes around the corresponding hydrate reservoir location.
  • the pressure resistance of the reactor is greater than 20 MPa
  • the material is selected from 316L stainless steel
  • the pipelines are all wrapped with insulation materials.
  • Step 1 According to the needs of the experimental plan, weigh the sand and place it in the reactor to simulate the formation and prepare for the experimental test;
  • Step 2 Fix the wellbore, seal the reaction kettle, check the air tightness of the system, and exhaust the interference of the air to the experiment, and prepare for the experiment;
  • Step 3 Use the first metering pump to inject the clean water from the first storage tank into the reactor for synthesizing hydrate; close the third valve, open the sixth valve, and inject CH 4 or CO 2 into the reactor. According to the experimental plan, Set the reactor to an appropriate temperature for the formation of combustible ice;
  • Step 4 Inject N 2 into the reactor to maintain the overburden pressure, which is convenient for simulating the supergravity field;
  • Step 5 When researching hot water injection mining: use the second metering pump to inject the hot water in the second reservoir into the hydrate reservoir through the wellbore, observe the decomposition of the combustible ice reservoir, and separate it with a gas-liquid separator device. Gas and liquid after hydrate decomposition;
  • Step 6 When studying the temperature control method for mining: adjust the temperature distribution inside the reactor. Similarly, observe the decomposition of the internal combustible ice reservoir, and use a gas-liquid separator to separate the gas and liquid after hydrate decomposition;
  • Step 7 Change the N 2 overpressure, or change the internal temperature and pressure of the reactor, or change the amount, temperature, and displacement conditions of the injected hot water, test and observe again; compare and analyze the overpressure, temperature, pressure and the amount of hot water injected
  • the present invention has the following beneficial technical effects:
  • the invention can use the principle of the deep-sea engineering high-pressure experiment platform.
  • the system can simulate the submarine hydrate reservoir and the upper and lower environments, and change the temperature and pressure environment in which the natural gas hydrate exists stably through methods such as depressurization of the mining well and heat injection, that is, the hydrate Under the conditions of phase equilibrium, the solid hydrate is decomposed into natural gas and water in situ in the reservoir, and then the natural gas is produced through the production well.
  • the system can also use the supergravity field to simulate the scale effect of the prototype normal gravity field, and use the supergravity field to reproduce the stress field generated by the weight of the prototype seabed and hydrate reservoir in the model seabed and hydrate layer. ; Through the reactor simulation to apply vertical pressure to the seabed and the reservoir to simulate the stress field generated by the weight of the overlying seawater on the prototype seabed.
  • the superimposition of the two can truly reproduce the stress field of the prototype deep-sea seabed foundation and hydrate reservoir, and the reactor can also simulate the deep-sea temperature environment, thereby making the hydrate decomposition, seepage and seabed deformation similarity in the porous media seabed Only on this basis can the four basic physical processes of natural gas hydrate decomposition, phase transition, multiphase seepage, heat and mass transfer, and formation deformation be established in the true state of the reaction: phase transition-heat transfer-mass transfer-deformation multi-field Coupling analysis model.
  • Figure 1 is a schematic diagram of the system structure of the present invention.
  • a high-gravity hydrate research experimental system includes: a first gas cylinder 1, a second gas cylinder 2, a first valve 3, a second valve 4, a gas booster pump 5, an air compressor 6, a A pressure gauge 7, the first safety valve 8, the third valve 9, the first buffer tank 10, the fourth valve 11, the second pressure gauge 12, the fifth valve 13, the first pressure regulating valve 14, the third pressure gauge 15 , The first one-way valve 16, the first flow meter 17, the reactor 18, the sixth valve 19, the second buffer tank 20, the fourth pressure gauge 21, the seventh valve 22, the eighth valve 23, the second pressure regulating valve 24.
  • the first gas cylinder 1 and the first valve 3 are connected to the inlet of the gas booster pump 5 in sequence, and the second gas cylinder 2 and the second valve 4 are also connected to the inlet of the gas booster pump 5 in sequence.
  • the air compressor 6 is connected to the side of the gas booster pump 5 to provide power for its work.
  • the first gas cylinder 1 stores CH 4 gas
  • the second gas cylinder 2 stores N 2 gas.
  • the outlet of the gas booster pump 5 is connected with a first pressure gauge 7, and then it is divided into three branches:
  • the first branch through the pipeline, the first safety valve 8 is connected.
  • the second branch through the pipeline, the third valve 9, the first buffer tank 10, the fifth valve 13, the first pressure regulating valve 14, the third pressure gauge 15, the first one-way valve 16, the first
  • the flow meter 17 is further connected to the reactor 18.
  • the bottom of the first buffer tank 10 is designed with a fourth valve 11 and the top of the first buffer tank 10 is designed with a second pressure gauge 12.
  • the first flow meter 17 can measure the mass of N 2 flowing through.
  • the third branch through the pipeline, the sixth valve 19, the second buffer tank 20, the eighth valve 23, the second pressure regulating valve 24, the fifth pressure gauge 25, the second flow meter 26, and the second one-way valve in turn 27 entrance.
  • the top and bottom of the second buffer tank 20 are respectively designed with a fourth pressure gauge 21 and a seventh valve 22.
  • the outlet of the second one-way valve 27 is connected to the internal hydrate reservoir D of the reactor 18 in multiple branches.
  • the second flow meter 26 can measure the mass of CH 4 flowing through.
  • first reservoir 28, the first filter 29, the first metering pump 30, the third one-way valve 31, the preheater 32, and the ninth valve 33 are connected to the inlet of the second one-way valve 27 through pipelines.
  • the first liquid storage tank 28 stores clean clean water
  • the first metering pump 30 and the second metering pump 36 can respectively measure the quality of the clean water flowing through
  • the preheater 32 can heat and control the temperature of the clean water flowing through.
  • the second reservoir 34, the second filter 35, the second metering pump 36, the fourth one-way valve 37, the tenth valve 38, and the sixth pressure gauge 39 are sequentially connected to the inlet of the well bore 59 through pipelines.
  • the second liquid storage tank 34 has a heating and temperature control function, which can heat the internal liquid, which is convenient for carrying out the hot water injection development simulation experiment.
  • the first metering pump 30 and the second metering pump 36 adjust the displacement of liquids such as clean water, hot water, etc. according to the needs of the experiment, so that the output can be stably output with a certain displacement, and the displacement value can be measured at the same time.
  • thermometer 51 and a second safety valve 58 are designed on the top of the reaction kettle 18, and a sixteenth valve 60 is designed on the bottom for emptying and cleaning.
  • the side wall of the reactor 18 is provided with an observation window, a circulating water jacket and a temperature control function, and a multi-layer control complex design is adopted.
  • the temperature parameter control module is used to control the temperature of different depths in the high pressure reactor to simulate the sea.
  • the actual temperature gradient of the bed It can simulate the ground temperature gradient and mechanical and seepage characteristics of real submarine gas hydrate reservoirs.
  • the temperature control is divided into multiple layers from high to low (the experimental conditions recommend at least 3 layers, the more the better), and the thickness of the foundation controlled by each layer can be the same , Each layer has independent temperature control, the temperature range is -10°C-30°C, and the temperature is adjustable and controllable.
  • the pressure resistance of the reactor (simulated mining reservoir pressure) is greater than 20MPa, the material is made of 316L stainless steel, and the sidewall data acquisition interface 4 ⁇ 4 columns (the number of interfaces can be increased according to the experimental needs, and the distribution method can be changed), which is helpful for gas and liquid
  • the uniform injection is used for data collection such as pressure and temperature.
  • One production well interface is reserved at the top and the middle, and outlets are reserved at the bottom and the middle.
  • the top of the reactor is reserved for pressure measurement points, temperature measurement points, safety valves, N 2 overpressure injection ports, and liquid injection ports.
  • the middle section of the side of the reactor is designed with injection ports and vacuum outlets that can be used for combined temperature water injection and pressure reduction.
  • the bottom There is a drain outlet.
  • the inside of the reactor 18 is designed with a wellbore 59 for simulating an in-situ natural gas hydrate mining shaft, and a hole is set on the cover of the reactor.
  • the diameter of the production well is determined by reducing the diameter of the in-situ well pipe.
  • the production well is drilled around the position D of the corresponding hydrate reservoir to simulate the in-situ well pipe as a gas-liquid seepage channel.
  • the hole diameter and number of the holes are , Density can be flexibly designed according to experimental needs.
  • a vacuum pump 52, a fourth buffer tank 53, an eighth pressure gauge 54, a fourteenth valve 55, and a filter 56 are connected to the side of the reactor 18 through pipelines, which can vacuum the system and eliminate air interference.
  • the bottom of the fourth buffer tank 53 is designed with a fifteenth valve 57.
  • Another branch is connected to the gas storage tank 40, the wet flow meter 41, the gas-liquid separator 42, the eleventh valve 43, and the liquid storage tank 44 in sequence through pipelines.
  • the side of the gas-liquid separator 42 is connected to the back pressure valve 45, the third buffer tank 46, and the back pressure pump 47 through pipelines.
  • a seventh pressure gauge 48 is designed on the third buffer tank 46.
  • the outlet of the back pressure valve 45 is connected to the first Twelve valves 49 and the top of the wellbore 59.
  • a thirteenth valve 50 is designed between the outlet of the back pressure valve 45 and the twelfth valve 49 for emptying.
  • the gas-liquid separator 42 can perform gas-liquid separation of the system, and the mass of the separated gas and liquid can be measured by using the wet flow meter 41 and the liquid storage tank 44, respectively.
  • the reactor 18 is divided into a gas layer A, a liquid layer B, a cap layer C, a hydrate reservoir layer D, and a bottom layer E from top to bottom.
  • the top of the reactor 18 is a gas layer A, which may be CH 4 or N 2 gas, and then a liquid layer B, a cap layer C, a hydrate reservoir layer D, and a bottom layer E are successively downward.
  • the upper liquid layer B in the kettle combines with the top gas layer A to generate pressure, which simulates the pressure of in-situ deep sea water.
  • the bottom is the seabed liquid, which contains caprock C, hydrate reservoir D, and bottom E from top to bottom. Hydrate reservoir D is set in the simulated seabed. This part uses high gravity field to simulate the stress conditions of natural gas hydrate reservoirs.
  • All connecting pipelines of the system use 316L pipelines to prevent internal fluid from corroding the pipelines, and the pipelines are wrapped with insulation materials to prevent local temperature drops, which may cause secondary formation of hydrates or ice formation and block the pipes. Road, affect the effect of experiment development, and cause safety hazards to the experiment.
  • the parameters such as displacement, temperature, and pressure can all be collected through a data acquisition control card for real-time monitoring and data collection of the flow, temperature, and pressure in the experimental system.
  • a proper amount of clean water in the first liquid storage tank 28 is injected into the reaction vessel 18 through the first metering pump 30 for the purpose of synthesizing hydrate.
  • the reactor 18 is set to an appropriate temperature for the formation of combustible ice.
  • Mining by hot water injection method use the second metering pump 36 to inject an appropriate amount of hot water with a certain temperature inside the second reservoir 34 into the hydrate reservoir D through the wellbore 59 to observe the decomposition of the combustible ice reservoir.
  • the gas-liquid separator 42 is used to separate the gas and liquid after the hydrate decomposition, and the wet flow meter 41 and the liquid storage tank 44 are used to measure and store the output gas and liquid mass.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

一种超重力水合物研究实验系统及方法,可以模拟海底水合物储层及其上下地质环境,通过开采井降压、注热等方法来改变天然气水合物储层的温-压环境,即水合物相平衡条件,将固体水合物在储层原位分解成天然气和水后,再通过开采井将天然气采出,从而研究有关因素对水合物分解的影响规律。

Description

一种超重力水合物研究实验系统及方法 技术领域
本发明涉及水合物开发领域,具体涉及一种超重力水合物研究实验系统及方法。
背景技术
深海天然气水合物藏存在于一定的海床高压、低温环境中,是由天然气、水、天然气水合物、冰和砂等组成的多相、多组分复杂沉积物。特殊的深海高压低温环境使得深海天然气水合物开采极为困难。开采天然气水合物主要包括水合物分解相变、多相渗流、传热传质和地层变形四个方面的基本物理过程。
开采井周边一定范围内的固态水合物相变分解产生天然气和水,随后分解区域内气相、液相和固相(水合物、沉积物)在多孔介质中渗流,同时温差和势能差引起能量和质量转移,伴随着地层有效应力和强度改变引起海床变形。
天然气水合物降压法开采过程中,井内压力过低将导致大量水合物分解,进而可能造成井径严重扩大、井喷、井塌、套管变形及地层塌陷等事故。
由于天然气水合物储层环境复杂,如何真实模拟实际天然气水合物藏所处地质环境、储层条件和开采过程,是天然气水合物开采模型实验必须解决的关键和难点。当前行业内一般实验设备和实验方法不能满足此部分功能要求。
发明内容
本发明的目的在于提供一种超重力水合物研究实验系统及方法,以克服 现有技术中存在的问题,本发明可以模拟海底水合物地质环境、储层条件,通过开采井降压、注热等方法改变天然气水合物稳定存在的温度、压力环境,即水合物相平衡条件,将固体水合物在储层原位分解成天然气和水后再通过开采井将天然气采出。
为达到上述目的,本发明采用如下技术方案:
一种超重力水合物研究实验系统,包括用于储存CH 4气体或CO 2气体的第一气瓶以及用于储存N 2气体的第二气瓶,第一气瓶和第二气瓶分别通过第一阀和第二阀连接至气体增压泵,气体增压泵的出口通过第一压力计连接至三个支路;
其中,第一支路上连接有第一安全阀;第二支路上依次连接有第三阀、第一缓冲罐、第五阀、第一调压阀、第三压力计、第一单向阀和第一流量计,其中所述第一缓冲罐的顶部设计有第二压力计,底部设计有第四阀,第一流量计的出口端连接至反应釜,所述反应釜内部自上向下分为气体层、液体层、盖层、水合物储层和底层;第三支路上依次连接有第六阀、第二缓冲罐、第八阀、第二调压阀、第五压力计、第二流量计和第二单向阀,所述第二缓冲罐的顶部和底部分别设计有第四压力计和第七阀,第二单向阀的出口分多个支路连接到反应釜的内部水合物储层;
该系统还包括第一储液池和具有加热控温功能的第二储液池,第一储液池的出口通过管线依次连接有第一过滤器、第一计量泵、第三单向阀、预热器和第九阀,第九阀的出口端连接至第二单向阀的出口;第二储液池的出口通过管线依次连接有第二过滤器、第二计量泵、第四单向阀和第十阀,第十阀的出口设置有第六压力计,且第十阀的出口连接至穿插在反应釜中的井筒的入口;
所述反应釜的侧面连接有用于对系统进行抽真空的抽真空装置;井筒的入口处还连接有用于对系统进行气液分离的气液分离装置。
进一步地,所述抽真空装置包括通过管线依次连接的真空泵、第四缓冲罐、第八压力计、第十四阀和过滤器,所述过滤器连接至反应釜的侧面,所述第四缓冲罐的底部设计有第十五阀。
进一步地,所述气液分离装置包括气液分离器,气液分离器的入口端依次通过回压阀和第十二阀连接至井筒的入口处;回压阀和第十二阀之间连接有支路,支路上设置有第十三阀;回压阀的侧面通过管线与第三缓冲罐、回压泵依次连接,所述第三缓冲罐顶部设计有第七压力计;气液分离器的气体出口端依次连接有湿式流量计和储气罐,气液分离器的液体出口端依次连接有第十一阀和储液罐。
进一步地,所述反应釜顶部设计有温度计和第二安全阀,底部设计有用于放空清洗的第十六阀。
进一步地,所述反应釜的侧壁设置有观测窗,还设置循环水夹套及用于对高压反应釜的纵向不同高度进行温度控制来模拟海床实际地温梯度的控温装置。
进一步地,所述反应釜的四周侧壁设置有若干用于采集压力及温度数据的数据采集接口。
进一步地,井筒在对应水合物储层位置的四周设置有钻孔。
进一步地,所述反应釜耐压大于20MPa,材质选用316L不锈钢材料,且管线均用保温材料缠绕包裹。
一种超重力水合物研究实验方法,包括以下步骤:
步骤1:根据实验方案需要,称取砂子平铺置于反应釜内部,用于模拟 地层,准备开展实验测试;
步骤2:固定好井筒,密封反应釜,检查系统气密性,抽真空从而排出空气对实验的干扰,为实验做好准备;
步骤3:通过第一计量泵将第一储液池内部清水注入反应釜用于合成水合物;关闭第三阀,打开第六阀,将CH 4或CO 2注入反应釜,根据实验方案,将反应釜设置到适当的温度,用于形成可燃冰;
步骤4:将N 2注入反应釜,用于保持覆压,便于模拟超重力场;
步骤5:研究注热水法开采时:利用第二计量泵将第二储液池内部热水通过井筒注入水合物储层,观测可燃冰储层分解情况,同时分别利用气液分离器装置分离水合物分解后的气体和液体;
步骤6:研究控温法开采时:调节反应釜内部温度分布,同理,观测内部可燃冰储层分解情况,同时利用气液分离器分离水合物分解后的气体和液体;
步骤7:改变N 2覆压,或改变反应釜内部温度、压力,或改变注入热水的量、温度、排量条件,再次测试观测;对比分析覆压、温度、压力以及注入热水的量、温度、排量条件对天然气水合物的合成及分解现象的影响规律,及水合物平面分解分布规律,从而判断其开采效果,从而指导生产。
与现有技术相比,本发明具有以下有益的技术效果:
本发明可以利用深海工程高压实验平台的原理,本系统可以模拟海底水合物储层及上下环境,通过开采井降压、注热等方法改变天然气水合物稳定存在的温度、压力环境,即水合物相平衡条件,将固体水合物在储层原位分解成天然气和水后,再通过开采井将天然气采出。
除此以外,本系统还能够利用超重力场模拟原型常重力场的缩尺效应, 通过超重力场在模型海床和水合物层中再现原型海床和水合物储层自重所产生的应力场;通过反应釜模拟对海床及储层施加竖向压强,模拟上覆海水自重对原型海床产生的应力场。两者的叠加作用能真实再现原型深海海床地基和水合物储层的应力场,反应釜还能模拟深海温度环境,从而使得多孔介质海床中水合物分解、渗流和海床变形的相似性得到满足,在此基础上才能建立反应真实状态下天然气水合物分解相变、多相渗流、传热传质和地层变形四个方面基本物理过程的相变-传热-传质-变形多场耦合分析模型。
附图说明
图1为本发明系统结构示意图。
其中,1-第一气瓶,2-第二气瓶,3-第一阀,4-第二阀,5-气体增压泵,6-空气压缩机,7-第一压力计,8-第一安全阀,9-第三阀,10-第一缓冲罐,11-第四阀,12-第二压力计,13-第五阀,14-第一调压阀,15-第三压力计,16-第一单向阀,17-第一流量计,18-反应釜,19-第六阀,20-第二缓冲罐,21-第四压力计,22-第七阀,23-第八阀,24-第二调压阀,5-第五压力计,26-第二流量计,27-第二单向阀,28-第一储液池,29-第一过滤器,30-第一计量泵,31-第三单向阀,32-预热器,33-第九阀,34-第二储液池,35-第二过滤器,36-第二计量泵,37-第四单向阀,38-第十阀,39-第六压力计,40-储气罐,41-湿式流量计,42-气液分离器,43-第十一阀,44-储液罐,45-回压阀,46-第三缓冲罐,47-回压泵,48-第七压力计,49-第十二阀,50-第十三阀,51-温度计,52-真空泵,53-第四缓冲罐,54-第八压力计,55-第十四阀,56-过滤器,57-第十五阀,58-第二安全阀,59-井筒,60-第十六阀,A-气体层,B-液体层,C-盖层,D-水合物储层,E-底层。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明:
参见图1,一种超重力水合物研究实验系统,包括:第一气瓶1、第二气瓶2、第一阀3、第二阀4、气体增压泵5、空气压缩机6、第一压力计7、第一安全阀8、第三阀9、第一缓冲罐10、第四阀11、第二压力计12、第五阀13、第一调压阀14、第三压力计15、第一单向阀16、第一流量计17、反应釜18、第六阀19、第二缓冲罐20、第四压力计21、第七阀22、第八阀23、第二调压阀24、第五压力计25、第二流量计26、第二单向阀27、第一储液池28、第一过滤器29、第一计量泵30、第三单向阀31、预热器32、第九阀33、第二储液池34、第二过滤器35、第二计量泵36、第四单向阀37、第十阀38、第六压力计39、储气罐40、湿式流量计41、气液分离器42、第十一阀43、储液罐44、回压阀45、第三缓冲罐46、回压泵47、第七压力计48、第十二阀49、第十三阀50、温度计51、真空泵52、第四缓冲罐53、第八压力计54、第十四阀55、过滤器56、第十五阀57、第二安全阀58、井筒59、第十六阀60、气体层A、液体层B、盖层C、水合物储层D及地层E等。
所述实验系统中第一气瓶1、第一阀3依次连接到气体增压泵5的入口,第二气瓶2、第二阀4也依次连接到气体增压泵5的入口。空气压缩机6连接到气体增压泵5的侧面,为它工作提供动力。所述第一气瓶1储存CH 4气体,第二气瓶2储存N 2气体。
气体增压泵5的出口连接有第一压力计7,然后分为三个支路:
第一个支路:通过管线,连接有第一安全阀8。
第二个支路:通过管线,依次连接有第三阀9、第一缓冲罐10、第五阀13、第一调压阀14、第三压力计15、第一单向阀16、第一流量计17,进而连接到反应釜18。所述第一缓冲罐10的底部设计有第四阀11、顶部设计有 第二压力计12。所述第一流量计17可以计量流经的N 2质量。
第三个支路:通过管线,依次第六阀19、第二缓冲罐20、第八阀23、第二调压阀24、第五压力计25、第二流量计26、第二单向阀27入口。所述第二缓冲罐20的顶部和底部分别设计有第四压力计21、第七阀22。所述第二单向阀27出口分多个支路连接到反应釜18的内部水合物储层D。所述第二流量计26可以计量流经的CH 4质量。
此外,第一储液池28、第一过滤器29、第一计量泵30、第三单向阀31、预热器32、第九阀33,通过管线依次连接到第二单向阀27入口。所述第一储液池28储存干净的清水,第一计量泵30、第二计量泵36可以分别计量流经清水的质量,所述预热器32可以对流经清水加热控温。
第二储液池34、第二过滤器35、第二计量泵36、第四单向阀37、第十阀38、第六压力计39,通过管线依次连接到井筒59的入口。所述第二储液池34具有加热控温功能,可以对内部液体加热,便于开展注热水开发模拟实验。
所述第一计量泵30和第二计量泵36根据实验需要,调节输出清水、热水等液体的排量大小,可以以一定排量稳定输出,同时计量排量值。
所述反应釜18顶部设计有温度计51、第二安全阀58,底部设计有第十六阀60用于放空清洗。
所述反应釜18侧壁设置有观测窗,还设置循环水夹套及控温功能,采用多层控制复杂设计,通过温度参数控制模块,对高压反应釜内的不同深度进行温度控制,模拟海床实际的地温梯度。可以模拟真实海底天然气水合物藏地温梯度及力学和渗流特征,温度控制从高到低均匀分为多层(实验条件推荐至少3层以上,越多越好),每层控制的地基厚度可以相同,每层独立控温, 温度范围为-10℃-30℃,温度可调可控。
反应釜耐压(模拟开采储层压力)大于20MPa,材质选用316L不锈钢材料,侧壁数据采集接口4个×4列(可以根据实验需要增加接口数量,改变分布方式),有助于气体和液体的均匀注入,用于压力、温度等数据采集,顶部中间预留开采井接口1个,底部和中间预留出口。反应釜顶部预留设置测压点、测温点、安全阀、N 2覆压注入口、液体注入口,反应釜侧面中段设计注入口、抽真空出口可用于注温水-降压联合开采,底部有排空出口。
所述反应釜18内部设计有井筒59,用于模拟原位天然气水合物开采竖井,在反应釜釜盖上开孔进行设置。开采井直径按原位井管直径进行缩尺确定,开采井在对应水合物储层D位置的四周钻孔,用于模拟原位井管,作为气液渗出通道,钻孔的孔径、数量、密度可以根据实验需要灵活设计。
另有真空泵52、第四缓冲罐53、第八压力计54、第十四阀55、过滤器56、通过管线依次连接到所述反应釜18侧面,可以对系统抽真空,排除空气干扰。所述第四缓冲罐53底部,设计有第十五阀57。
另有支路通过管线依次连接储气罐40、湿式流量计41、气液分离器42、第十一阀43、储液罐44。所述气液分离器42侧面通过管线依次连接回压阀45、第三缓冲罐46、回压泵47,第三缓冲罐46上面设计有第七压力计48,回压阀45出口依次连接第十二阀49、井筒59顶部。所述回压阀45出口与第十二阀49之间设计有第十三阀50,用于排空。所述气液分离器42可以对系统进行气液分离,并且利用湿式流量计41和储液罐44可以分别计量分离出的气体和液体质量。
所述反应釜18,内部自上向下分为气体层A、液体层B、盖层C、水合物储层D、底层E。所述反应釜18顶部为气体层A,可能是CH 4或者N 2气 体,再往下依次为液体层B,盖层C,水合物储层D,底层E。釜内上部液体层B结合顶部气体层A产生压力,模拟原位深海水压力。下部为海床液体,自上向下包含盖层C,水合物储层D,底层E。模拟的海床中设置水合物储层D,此部分利用超重力场模拟天然气水合物藏的应力条件。
所述系统所有连接管线均采用316L管线,以防内部流体对管线的腐蚀,且管线均用保温材料缠绕包裹,防止局部温度降低,从而可能引起水合物的二次生成或者冰的生成,堵塞管路,影响实验开展效果,给实验造成安全隐患。所述排量、温度、压力等参数均可以通过数据采集控制卡采集数据,用于对实验系统内的流量、温度、压力进行实时监控和数据采集。
具体实施过程如下:
(1)如图,连接好设备,清洗好设备,根据实验方案需要,称取适量的砂子平铺置于反应釜18内部,用于模拟地层,通常建议上部选用粒径相对下部更较小的砂子,便于模拟盖层,开展实验测试。
(2)固定好井筒59,密封反应釜18。
(3)检查系统气密性,关闭第一阀3,第二阀4,第四阀11,第七阀22,第九阀33,打开其他阀门,然后打开真空泵52,排空实验系统和管线内部空气,从而排出空气对实验的干扰,为实验做好准备。
(4)通过第一计量泵30将第一储液池28内部适量清水注入反应釜18,用于合成水合物。
(5)关闭第三阀9,打开第六阀19,将适量CH 4经过第二缓冲罐20、第二流量计26等注入反应釜18。
(6)根据实验方案,将反应釜18设置到适当的温度,用于形成可燃冰。
(7)打开第三阀9,关闭第六阀19,将适量N 2经过第一缓冲罐10、第 一流量计17注入反应釜18,保持适当的覆压,便于超重力场模拟。
(8)注热水法开采:利用第二计量泵36将第二储液池34内部一定温度的适量热水通过井筒59注入水合物储层D,观测可燃冰储层分解情况。同时利用气液分离器42分离水合物分解后的气体液体,分别利用湿式流量计41、储液罐44计量、储存输出气体、液体质量。
(9)控温法开采:调节反应釜18内部温度分布,同理,观测反应釜18内部可燃冰储层分解情况。同时利用气液分离器42分离水合物分解后的气体、液体,分别利用湿式流量计41、储液罐44储存计量气体液体质量。
(10)适当改变N 2覆压,或改变反应釜内部温度、压力,或改变注入热水的量、温度、排量条件,再次测试观测。对比分析覆压、温度、压力,以及注入热水的量、温度、排量等条件对天然气水合物的合成及分解现象的影响规律,及水合物储层分解分布规律,从而判断其对开采效果的影响,从而指导生产。
(11)本系统中将CH 4换为CO 2可以同理满足CO 2水合物的相关实验研究。

Claims (9)

  1. 一种超重力水合物研究实验系统,其特征在于,包括用于储存CH 4气体或CO 2气体的第一气瓶(1)以及用于储存N 2气体的第二气瓶(2),第一气瓶(1)和第二气瓶(2)分别通过第一阀(3)和第二阀(4)连接至气体增压泵(5),气体增压泵(5)的出口通过第一压力计(7)连接至三个支路;
    其中,第一支路上连接有第一安全阀(8);第二支路上依次连接有第三阀(9)、第一缓冲罐(10)、第五阀(13)、第一调压阀(14)、第三压力计(15)、第一单向阀(16)和第一流量计(17),其中所述第一缓冲罐(10)的顶部设计有第二压力计(12),底部设计有第四阀(11),第一流量计(17)的出口端连接至反应釜(18),所述反应釜(18)内部自上向下分为气体层(A)、液体层(B)、盖层(C)、水合物储层(D)和底层(E);第三支路上依次连接有第六阀(19)、第二缓冲罐(20)、第八阀(23)、第二调压阀(24)、第五压力计(25)、第二流量计(26)和第二单向阀(27),所述第二缓冲罐(20)的顶部和底部分别设计有第四压力计(21)和第七阀(22),第二单向阀(27)的出口分多个支路连接到反应釜(18)的内部水合物储层(D);
    该系统还包括第一储液池(28)和具有加热控温功能的第二储液池(34),第一储液池(28)的出口通过管线依次连接有第一过滤器(29)、第一计量泵(30)、第三单向阀(31)、预热器(32)和第九阀(33),第九阀(33)的出口端连接至第二单向阀(27)的出口;第二储液池(34)的出口通过管线依次连接有第二过滤器(35)、第二计量泵(36)、第四单向阀(37)和第十阀(38),第十阀(38)的出口设置有第六压力计(39),且第十阀(38)的出口连接至穿插在反应釜(18)中的井筒(59)的入口;
    所述反应釜(18)的侧面连接有用于对系统进行抽真空的抽真空装置; 井筒(59)的入口处还连接有用于对系统进行气液分离的气液分离装置。
  2. 根据权利要求1所述的一种超重力水合物研究实验系统,其特征在于,所述抽真空装置包括通过管线依次连接的真空泵(52)、第四缓冲罐(53)、第八压力计(54)、第十四阀(55)和过滤器(56),所述过滤器(56)连接至反应釜(18)的侧面,所述第四缓冲罐(53)的底部设计有第十五阀(57)。
  3. 根据权利要求1所述的一种超重力水合物研究实验系统,其特征在于,所述气液分离装置包括气液分离器(42),气液分离器(42)的入口端依次通过回压阀(45)和第十二阀(49)连接至井筒(59)的入口处;回压阀(45)和第十二阀(49)之间连接有支路,支路上设置有第十三阀(50);回压阀(45)的侧面通过管线与第三缓冲罐(46)、回压泵(47)依次连接,所述第三缓冲罐(46)顶部设计有第七压力计(48);气液分离器(42)的气体出口端依次连接有湿式流量计(41)和储气罐(40),气液分离器(42)的液体出口端依次连接有第十一阀(43)和储液罐(44)。
  4. 根据权利要求1所述的一种超重力水合物研究实验系统,其特征在于,所述反应釜(18)顶部设计有温度计(51)和第二安全阀(58),底部设计有用于放空清洗的第十六阀(60)。
  5. 根据权利要求1所述的一种超重力水合物研究实验系统,其特征在于,所述反应釜(18)的侧壁设置有观测窗,还设置循环水夹套及用于对高压反应釜的纵向不同高度进行温度控制来模拟海床实际地温梯度的控温装置。
  6. 根据权利要求1所述的一种超重力水合物研究实验系统,其特征在于,所述反应釜(18)的四周侧壁设置有若干用于采集压力及温度数据的数据采集接口。
  7. 根据权利要求1所述的一种超重力水合物研究实验系统,其特征在于, 井筒(59)在对应水合物储层(D)位置的四周设置有钻孔。
  8. 根据权利要求1所述的一种超重力水合物研究实验系统,其特征在于,所述反应釜(18)耐压大于20MPa,材质选用316L不锈钢材料,且管线均用保温材料缠绕包裹。
  9. 一种超重力水合物研究实验方法,采用权利要求1-8任一项所述的一种超重力水合物研究实验系统,其特征在于,包括以下步骤:
    步骤1:根据实验方案需要,称取砂子平铺置于反应釜(18)内部,用于模拟地层,准备开展实验测试;
    步骤2:固定好井筒(59),密封反应釜(18),检查系统气密性,抽真空从而排出空气对实验的干扰,为实验做好准备;
    步骤3:通过第一计量泵(30)将第一储液池(28)内部清水注入反应釜(18)用于合成水合物;关闭第三阀(9),打开第六阀(19),将CH 4或CO 2注入反应釜(18),根据实验方案,将反应釜(18)设置到适当的温度,用于形成可燃冰;
    步骤4:将N 2注入反应釜(18),用于保持覆压,便于模拟超重力场;
    步骤5:研究注热水法开采时:利用第二计量泵(36)将第二储液池(34)内部热水通过井筒注入水合物储层(D),观测可燃冰储层分解情况,同时分别利用气液分离器装置分离水合物分解后的气体和液体;
    步骤6:研究控温法开采时:调节反应釜(18)内部温度分布,同理,观测内部可燃冰储层分解情况,同时利用气液分离器分离水合物分解后的气体和液体;
    步骤7:改变N 2覆压,或改变反应釜内部温度、压力,或改变注入热水的量、温度、排量条件,再次测试观测;对比分析覆压、温度、压力以及注 入热水的量、温度、排量条件对天然气水合物的合成及分解现象的影响规律,及水合物平面分解分布规律,从而判断其开采效果,从而指导生产。
PCT/CN2020/124918 2020-05-09 2020-10-29 一种超重力水合物研究实验系统及方法 WO2021227384A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010388494.0 2020-05-09
CN202010388494.0A CN111443182B (zh) 2020-05-09 2020-05-09 一种超重力水合物研究实验系统及方法

Publications (1)

Publication Number Publication Date
WO2021227384A1 true WO2021227384A1 (zh) 2021-11-18

Family

ID=71652227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124918 WO2021227384A1 (zh) 2020-05-09 2020-10-29 一种超重力水合物研究实验系统及方法

Country Status (2)

Country Link
CN (1) CN111443182B (zh)
WO (1) WO2021227384A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114215510A (zh) * 2021-12-14 2022-03-22 大连理工大学 一种适用于鼓式离心机的天然气水合物开采模拟装置
CN114278274A (zh) * 2021-12-28 2022-04-05 中国地质大学(北京) 一种天然气水合物开采模拟装置和方法
CN115370335A (zh) * 2022-10-25 2022-11-22 中国石油大学(华东) 自生热辅助降压的水合物强化开采实验系统及实验方法
CN116201523A (zh) * 2022-12-30 2023-06-02 浙江大学 精确控制温压环境的天然气水合物开采超重力模拟装置
CN116398237A (zh) * 2023-04-10 2023-07-07 大连理工大学 一种大尺度co2注入封存利用模拟装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111443182B (zh) * 2020-05-09 2024-08-27 中国华能集团有限公司 一种超重力水合物研究实验系统及方法
CN111997568B (zh) * 2020-08-06 2021-07-30 中国科学院广州能源研究所 一种天然气水合物全尺寸开采模拟井装置及实验方法
CN112031745B (zh) * 2020-08-06 2021-08-10 中国科学院广州能源研究所 一种用于观察天然气水合物生成特性的装置及方法
CN111879692B (zh) * 2020-08-12 2021-09-03 中国特种设备检测研究院 小分子有机酸腐蚀模拟装置及其使用方法
CN112461837A (zh) * 2020-11-05 2021-03-09 东北石油大学 一种水合物合成及分解可视化实验装置
US11834620B2 (en) * 2020-11-16 2023-12-05 The Hong Kong University Of Science And Technology Centrifuge energy harvesting chamber
CN112816386B (zh) * 2020-12-31 2023-08-18 中国石油大学(华东) 水合物相变过程中含水合物储层渗透率的测定方法
CN112858018B (zh) * 2021-01-08 2022-06-28 青岛海洋地质研究所 含水合物沉积物旁压蠕变试验装置及方法
CN113072990B (zh) * 2021-03-16 2022-03-01 浙江大学 可模拟真实地层中天然气水合物储层的模型制备装置及方法
CN113385309B (zh) * 2021-04-29 2022-05-31 浙江大学 一种超重力离心模型液体排放控制装置和方法
CN113323633B (zh) * 2021-06-28 2022-03-25 西南石油大学 一种海洋天然气水合物原位成藏及一体化开采模拟装置
CN113356800B (zh) * 2021-06-28 2022-09-09 西南石油大学 一种海洋水合物与自由气联合开采的实验装置及方法
CN113958292B (zh) * 2021-11-25 2024-03-01 山东科技大学 一种可燃冰开采地层失稳机理模拟试验装置及其使用方法
CN115749787B (zh) * 2022-11-21 2023-06-23 中国海洋大学 一种喷洒二氧化碳固化海底稀软底质的系统与方法
CN117052361A (zh) * 2023-08-29 2023-11-14 浙江大学 层状分布储层中天然气水合物分段开采模拟实验装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3669432A (en) * 1969-09-10 1972-06-13 Niro Atomizer As Process for producing cement from cement slurry and a plant for carrying out the process
JP2005232301A (ja) * 2004-02-19 2005-09-02 Mitsubishi Heavy Ind Ltd ハイドレート生成方法および生成装置
CN102678090A (zh) * 2011-03-16 2012-09-19 中国海洋石油总公司 天然气水合物三维合成与开采模拟装置
CN103285781A (zh) * 2013-06-27 2013-09-11 常州大学 一种超重力水合物合成装置
CN108386164A (zh) * 2018-03-05 2018-08-10 浙江大学 超重力条件下的天然气水合物热激法开采模拟装置
CN108490151A (zh) * 2018-03-05 2018-09-04 浙江大学 天然气水合物降压开采超重力模拟系统
CN110761749A (zh) * 2019-11-19 2020-02-07 中国华能集团有限公司 一种天然气水合物的合成及开采模拟实验系统及实验方法
CN111443182A (zh) * 2020-05-09 2020-07-24 中国华能集团有限公司 一种超重力水合物研究实验系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102865066B (zh) * 2012-10-16 2014-03-12 中国石油大学(华东) 含天然气水合物相变的深水井筒多相流动实验装置及方法
CN105277660B (zh) * 2015-10-12 2016-09-07 中国石油大学(华东) 监测不同钻采方法下水合物分解区域的装置及方法
CN212111398U (zh) * 2020-05-09 2020-12-08 中国华能集团有限公司 一种超重力水合物研究实验系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3669432A (en) * 1969-09-10 1972-06-13 Niro Atomizer As Process for producing cement from cement slurry and a plant for carrying out the process
JP2005232301A (ja) * 2004-02-19 2005-09-02 Mitsubishi Heavy Ind Ltd ハイドレート生成方法および生成装置
CN102678090A (zh) * 2011-03-16 2012-09-19 中国海洋石油总公司 天然气水合物三维合成与开采模拟装置
CN103285781A (zh) * 2013-06-27 2013-09-11 常州大学 一种超重力水合物合成装置
CN108386164A (zh) * 2018-03-05 2018-08-10 浙江大学 超重力条件下的天然气水合物热激法开采模拟装置
CN108490151A (zh) * 2018-03-05 2018-09-04 浙江大学 天然气水合物降压开采超重力模拟系统
CN110761749A (zh) * 2019-11-19 2020-02-07 中国华能集团有限公司 一种天然气水合物的合成及开采模拟实验系统及实验方法
CN111443182A (zh) * 2020-05-09 2020-07-24 中国华能集团有限公司 一种超重力水合物研究实验系统及方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114215510A (zh) * 2021-12-14 2022-03-22 大连理工大学 一种适用于鼓式离心机的天然气水合物开采模拟装置
CN114215510B (zh) * 2021-12-14 2022-06-14 大连理工大学 一种适用于鼓式离心机的天然气水合物开采模拟装置
CN114278274A (zh) * 2021-12-28 2022-04-05 中国地质大学(北京) 一种天然气水合物开采模拟装置和方法
CN115370335A (zh) * 2022-10-25 2022-11-22 中国石油大学(华东) 自生热辅助降压的水合物强化开采实验系统及实验方法
CN115370335B (zh) * 2022-10-25 2022-12-16 中国石油大学(华东) 自生热辅助降压的水合物强化开采实验系统及实验方法
CN116201523A (zh) * 2022-12-30 2023-06-02 浙江大学 精确控制温压环境的天然气水合物开采超重力模拟装置
CN116201523B (zh) * 2022-12-30 2024-02-27 浙江大学 精确控制温压环境的天然气水合物开采超重力模拟装置
CN116398237A (zh) * 2023-04-10 2023-07-07 大连理工大学 一种大尺度co2注入封存利用模拟装置
CN116398237B (zh) * 2023-04-10 2023-12-08 大连理工大学 一种大尺度co2注入封存利用模拟装置

Also Published As

Publication number Publication date
CN111443182B (zh) 2024-08-27
CN111443182A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2021227384A1 (zh) 一种超重力水合物研究实验系统及方法
CN109681198B (zh) 一种针对不同类型天然气水合物储层的多方式开采模拟装置及方法
WO2017080353A1 (zh) 一种天然气水合物开采出砂特性测试装置
CN107045054B (zh) 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法
CN109707377B (zh) 水合物开采储层响应与出砂综合模拟实验系统及其方法
CN103233704B (zh) 一种co2/n2置换开采冻土区天然气水合物实验模拟装置
US10301894B2 (en) Experimental device and method used for polyphase separation of natural gas hydrate drilling fluid
CN105403672B (zh) 模拟天然气水合物开采过程地层形变的实验装置和方法
WO2019170044A1 (zh) 模拟深海海床响应的控压控温超重力实验装置
CN102865066B (zh) 含天然气水合物相变的深水井筒多相流动实验装置及方法
CN105203716B (zh) 海洋天然气水合物固态流化开采实验模拟装置
CN105651648B (zh) 一种置换及吸附解析模拟测试系统及方法
RU2407889C1 (ru) Способ определения анизотропии проницаемости пласта в лабораторных условиях
WO2017008354A1 (zh) 一种研究天然气水合物分解过程中多孔介质骨架变化的实验装置及实验方法
CN107842341A (zh) 一种天然气水合物开采监测模拟装置及方法
CN110630228A (zh) 评价co2/n2置换法开采水合物时井筒出砂与防砂的装置及方法
CN111472729B (zh) 一种天然气水合物洞穴完井评价测试方法
CN110454146A (zh) 评价水合物开采过程中水平井内出砂与防砂的装置及方法
CN110939411B (zh) 一种超临界co2置换开采ch4水合物的实验装置及使用方法
CN109826612A (zh) 天然气水合物储层径向水平井钻采模拟装置及方法
CN108051354B (zh) 一种基于脉冲衰减分析的低渗水合物沉积物渗透率测量方法与装置
WO2021159700A1 (zh) 一种天然气水合物全尺寸生产井开采试验装置及方法
CN109882149B (zh) 一种模拟缝洞型碳酸盐岩凝析气藏生产动态的实验装置及方法
CN203214026U (zh) 一种co2/n2置换开采冻土区天然气水合物实验模拟装置
Wang et al. Numerical simulation of natural gas hydrate development with radial horizontal wells based on thermo-hydro-chemistry coupling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20935681

Country of ref document: EP

Kind code of ref document: A1