CN109707377A - 水合物开采储层响应与出砂综合模拟实验系统及其方法 - Google Patents

水合物开采储层响应与出砂综合模拟实验系统及其方法 Download PDF

Info

Publication number
CN109707377A
CN109707377A CN201910081514.7A CN201910081514A CN109707377A CN 109707377 A CN109707377 A CN 109707377A CN 201910081514 A CN201910081514 A CN 201910081514A CN 109707377 A CN109707377 A CN 109707377A
Authority
CN
China
Prior art keywords
gas
pressure
liquid
hydrate
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910081514.7A
Other languages
English (en)
Other versions
CN109707377B (zh
Inventor
宁伏龙
刘志超
张准
张凌
欧文佳
孙嘉鑫
李彦龙
王冬冬
胡维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN201910081514.7A priority Critical patent/CN109707377B/zh
Publication of CN109707377A publication Critical patent/CN109707377A/zh
Application granted granted Critical
Publication of CN109707377B publication Critical patent/CN109707377B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Abstract

本发明公开一种水合物开采储层响应与出砂综合模拟实验系统及其方法,实验系统包括:气体供应装置、液体供应装置、气液混合装置、反应釜、轴压控制装置、气液固分离装置和温控装置;反应釜包括:釜体、上端盖和下端盖、活塞、堵头、收集口;气体供应装置提供气体来源,液体供应装置提供液体来源,气液混合装置提供气液的混合途径,并与反应釜连接;轴压控制装置提供试样固结所需的上覆地层应力,与反应釜连接;气液固分离装置在水合物储层出砂后对出砂产物进行气液固三相分离和采集计量,与反应釜连接;温控装置控制反应釜的温度。本发明能用于水合物储层开采过程中多场、多相耦合作用下的出砂以及多物性参数联合测量。

Description

水合物开采储层响应与出砂综合模拟实验系统及其方法
技术领域
本发明涉及出砂及多物性参数联合测量技术领域,尤其涉及一种水合物开采储层响应与出砂综合模拟实验系统及其方法。
背景技术
水合物储层的高效安全开采的核心主要涉及:储层力学稳定与流体流动效率,二者相互耦合作用的过程最终决定了开采过程中的出砂量以及气体和水的产出量。国内外对于开采过程中相关问题的实验研究一般都是独立分开探索储层力学响应和出砂规律,在基本掌握沉积物力学性质和流体流动特征的前提条件下,着重针对流固耦合后的出砂和产水产气问题进行深入的研究,最终结合流固耦合过程对产能进行分析和评价。
在水合物沉积物的固体力学实验方面,和水合物储层开采密切相关的水合物分解过程中力学性质的研究还有所欠缺,且水合物分解对沉积物力学强度削弱影响非常大。而分解造成的力学强度损失正是开采过程中储层出砂的一个重要原因,需要在水合物力学稳定性以及流固耦合实验中予以重点关注。在流体流动特征实验研究方面,研究中多采用透明窗口、透明材料、核磁共振和CT扫描等手段,掌握水合物沉积物的具体结构特征,厘清沉积物中孔隙大小,孔隙度,水合物含量及位置,气、液相的比例等因素对绝对以及相对渗透率的影响。然而,实际的天然气水合物开采渗流过程同时还涉及沉积层骨架结构的变化、水合物的二次生成、结冰等因素的影响,单纯的稳态条件下测试不能反映实际天然气水合物开采过程中沉积层渗透性变化规律,极大地影响渗透率模型的应用以及对气、水多相渗流的预测准确性。
而水气流动过程中携带的固相砂颗粒,削弱了地层的支撑结构,可能造成井壁垮塌风险,进入循环通道内的砂颗粒也会造成设备磨损,通道堵塞或卡死,极大的威胁开采的可持续性。现阶段国内外针对出砂的原因及机理暂不明确,实验多从定性角度出发,描述各类影响因素对出砂规律的作用,关于水合物出砂实验的研究难以服务于现场实际应用。
综上可知,自然界中的水合物开采本质上是一个涉及多场多相的复杂系统,针对水合物开采过程中的水合物分解,内部结构变化,地层应力重新分布以及气液固三相运移等问题,需考虑各个环节相互耦合作用下的流固运移,才能更有效的揭示水合物开采内在机理和发展规律,保证水合物开发的安全有效进行。
发明内容
有鉴于此,本发明的实施例提供了一种水合物开采储层响应与出砂综合模拟实验系统及其方法,能用于水合物储层开采过程中多场、多相耦合作用下的出砂以及多物性参数联合测量。
为实现上述目的,本发明采用了一种技术方案:水合物开采储层响应与出砂综合模拟实验系统,包括:气体供应装置、液体供应装置、气液混合装置、反应釜、轴压控制装置、气液固分离装置和温控装置;
所述反应釜包括:放置试样的釜体、分别位于所述釜体顶部和底部的上端盖和下端盖、穿过所述上端盖的活塞、设于所述釜体侧面的堵头;所述釜体的侧面设有若干个流体口、所述堵头下方设有收集口,出砂测试时分别用于流入流体和收集出砂产物;所述上端盖设有轴压注入孔,固结测试时用于注入液压;所述下端盖和活塞分别设有进口和出口,渗透测试时分别用于流入和流出流体;所述下端盖和活塞分别设有声波发射探头、声波接收探头,声波测试时分别用于发射和接收声波信号;所述釜体的侧面设有电阻率探头,电阻率测试时用于采集电阻率;
由所述气体供应装置和液体供应装置分别提供的气体、液体在气液混合装置中混合,所述气液混合装置分别与反应釜的进口、流体口连接,以供气和/或供液;
所述轴压控制装置与轴压注入孔连接,以提供固结压力以推动活塞移动;所述气液固分离装置与收集口连接,以进行出砂产物的气液固三相分离和采集计量;所述温控装置设于釜体的外围,以控制所述反应釜的温度。
进一步地,所述气体供应装置包括:气瓶、空压机、气体增压泵、气体减压阀、流量控制器、气体储罐、若干个第一压力传感器,所述气瓶、空压机、气体增压泵、气体减压阀、流量控制器、气体储罐通过管线连接,所述流量控制器通过管线连接气液混合装置;所述气瓶与气体增压泵的连接管线上、所述气体增压泵与空压机的连接管线上、所述气体增压泵与气体储罐的连接管线上、所述气体储罐与气体减压阀的连接管线上、所述气体减压阀与气体流量控制器的连接管线上均设有第一压力传感器,以监测各处的压力。
进一步地,所述液体供应装置包括:水箱、恒流泵、液体储罐,所述恒流泵通过管线分别连接水箱和液体储罐,所述液体储罐通过管线连接气液混合装置。
进一步地,所述气液混合装置包括:混合器、第二压力传感器,所述混合器通过管线分别连接流量控制器、液体储罐、反应釜的进口和流体口;所述第二压力传感器设于混合器与液体储罐和/或气体流量控制器之间的管线上,以监测压力。
进一步地,所述气瓶与气体增压泵的连接管线上、所述气体增压泵与空压机的连接管线上、所述气体增压泵与气体储罐的连接管线上、所述气体储罐与气体减压阀的连接管线上、所述气体减压阀与气体流量控制器的连接管线上、所述恒流泵与液体储罐的连接管线上、所述液体储罐与混合器的连接管线上、所述混合器与反应釜的进口和流体口的连接管线上均设有截止阀,分别用于控制各管线的开启/关闭和流体流量,为所述反应釜提供气体、液体或气液混合物。
进一步地,所述轴压控制装置包括:轴压跟踪泵、第三压力传感器,所述轴压跟踪泵通过管线连接轴压注入孔,所述第三压力传感器设于轴压跟踪泵与轴压注入孔之间的管线上,以监控压力。
进一步地,所述气液固分离装置包括:出砂收集器、第四压力传感器、过滤器、回压阀、跟踪泵、气液分离器、电子天平、干燥容器、气体流量计,所述出砂收集器、过滤器、回压阀、跟踪泵、气液分离器、干燥容器、气体流量计通过管线连接,所述出砂收集器、过滤器通过管线与收集口连接,所述过滤器通过管线连接反应釜的出口;所述第四压力传感器设于出砂收集器和过滤器之间的管线上,以监控压力。
进一步地,所述温控装置包括:水冷夹套、若干个温度探头,所述水冷夹套设于釜体的外围,提供循环冷浴以控温;所述温度探头分别设于釜体的上、下端,以监测温度。
进一步地,所述活塞上还连接有位移传感器,以测量所述活塞的位移。
为实现上述目的,本发明采用了另一种技术方案:利用上述所述的水合物开采储层响应与出砂综合模拟实验系统进行实验的方法,包括如下步骤:
气密性检测:试样装填之前,检查整个实验系统的气密性,保证密封部件的密封性能良好,各功能部件的工作性能正常;
试样装填:将配置好的水合物沉积物地层骨架材料装填至反应釜内,连接好各路阀门与管线,用真空泵对整个实验系统进行抽真空,保证系统内部的纯净;
监控声波和电阻率变化:在试样装填完毕之后,开始对试样内部的水合物沉积物试样的声波和电阻率情况进行全面的实时监控,直至试样结束,获取水合物沉积物试样各个阶段的波速以及电阻率变化情况;
固结压实:通过所述轴压控制装置施加上覆地层应力,模拟实际海底地层环境,对沉积物试样进行预先压实;
水合物合成:通过所述气体供应装置对试样进行加压,并使气体逐渐渗透进试样内部;再通过所述温控装置,对试样进行降温直至水合物形成条件;维持并实时监测试样内部的温度和压力曲线,使水合物充分合成;
固结实验-渗流实验:待试样中水合物完全合成之后,通过所述轴压控制装置,获取不同上覆应力条件下的地层固结沉降量的变化,得到地层应力和孔隙度之间的对应关系;同时,在每一级固结实验完成后,分别进行相应的气体和液体渗透率测试,综合获取应力-孔隙度-渗透率之间的关系;
开采出砂实验:与此同时,在一定的固结压力下,通过温度或压力的改变促使水合物分解,分解造成地层结构弱化和水气流动后,通过所述气液固分离装置实时采集和监测试样的出砂和产水,产气状况;同时,在水合物分解发生后,通过所述轴压控制装置和渗透测试了解地层应力、沉降和渗透系数等的变化情况,获得开采过程中水气砂产出状况对地层结构和应力以及渗透性的影响;
出砂机制研究:在开采条件下,通过所述轴压控制装置控制上覆地层压力,以及通过所述反应釜模拟不同气液流动状态的情况下,测试地层应力剪切破坏出砂以及流体运移出砂的破坏机制及具体的出砂规律。
本发明的实施例提供的技术方案带来的有益效果是:(1)设计压力为0-20MPa,设计温度为-10-100℃,在使用范围内可快速自由地控制试样内部温度和压力,真实模拟水合物储层初始相平衡条件以及不同的水合物开采手段;(2)通过上部端盖与活塞间的液压驱动施加固结压力和下部端盖的流体通道施加孔隙水、气压力,可以实时维持试样的上覆地层压力和孔隙流体压力,真实反映水合物储层地应力条件;(3)通过水合物合成功能,固结功能和渗流功能的组合,可以实现原位试样在不同应力场条件下的力学响应以及渗流条件变化测试,掌握水合物储层在(外部扰动或水合物分解等)应力荷载下的孔隙度和渗透率的演化规律;(4)以出砂测试功能为主导,并耦合了相应过程中的应力场(固结测试)和流体场(渗流测试)的监测,有利于掌握出砂过程中多场(应力场,位移场,渗流场)多相(气,液,固)的变化,分析力学破坏以及流体迁移对地层出砂的影响以及发生出砂对开采过程中经济性指标(产水,产气等)的影响。
附图说明
图1为本发明的水合物开采储层响应与出砂综合模拟实验系统的结构示意图;
图2为本发明的水合物开采储层响应与出砂综合模拟实验系统的结构示意图;
图3为本发明的水合物开采储层响应与出砂综合模拟实验系统的反应釜主视图;
图4为本发明的水合物开采储层响应与出砂综合模拟实验系统的反应釜侧视图;
图5为本发明的水合物开采储层响应与出砂综合模拟实验系统的实验方法流程图。
其中,10-气体供应装置,11-气瓶,12-空压机,13-气体增压泵,14-气体减压阀,15-气体流量控制器,16-气体储罐,17-第一压力传感器,18-单向阀,20-液体供应装置,21-水箱,22-恒流泵,23-液体储罐,30-气液混合装置,31-混合器,32-第二压力传感器,40-反应釜,41-釜体,411-流体口,42-上端盖,421-轴压注入孔,43-下端盖,431-进口,44-活塞,441-出口,442-位移传感器,45-堵头,46-声波发射探头,47-声波接收探头,48-电阻率探头,49-收集口,491-气体口,492-液体口,493-固体口,50-轴压控制装置,51-轴压跟踪泵,52-第三压力传感器,70-气液固分离装置,71-出砂收集器,72-第四压力传感器,73-过滤器,74-回压阀,75-跟踪泵,76-气液分离器,77-电子天平,78-干燥容器,79-气体流量计,80-温控装置,81-水冷夹套,82-温度探头,90-管线,91-截止阀。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。
如图1和2所示,本发明的实施例提供了一种水合物开采储层响应与出砂综合模拟实验系统,包括:气体供应装置10、液体供应装置20、气液混合装置30、反应釜40、轴压控制装置50、气液固分离装置70和温控装置80。
所述气体供应装置10提供水合物合成、气驱出砂以及气体渗流率测试时的气体来源,包括:气瓶11、空压机12、气体增压泵13、气体减压阀14、流量控制器15、气体储罐16、若干个第一压力传感器17,所述气体供应装置10的各个部件安装关系为:所述气瓶11通过管线90连接气体增压泵13、所述气体增压泵13通过管线90分别连接空压机12和气体储罐16、所述气体储罐16通过管线90连接气体减压阀14、所述气体减压阀14通过管线90连接气体流量控制器15、所述流量控制器15通过管线90连接气液混合装置30。
所述气瓶11与气体增压泵13的连接管线90上、所述气体增压泵13与空压机12的连接管线90上、所述气体增压泵13与气体储罐16的连接管线90上、所述气体储罐16与气体减压阀14的连接管线90上、所述气体减压阀14与气体流量控制器15的连接管线90上均设有第一压力传感器17,用于监测各处的压力。所述气瓶11与气体增压泵13的连接管线90上、所述气体增压泵13与空压机12的连接管线90上、所述气体增压泵13与气体储罐16的连接管线90上、所述气体储罐16与气体减压阀14的连接管线90上、所述气体减压阀14与气体流量控制器15的连接管线90上均设有截止阀91,分别用于控制各管线90的开启/关闭、流量大小等。所述气体流量控制器15与气液混合装置30连接的管线90上还设有单向阀18。
所述液体供应装置20提供水合物合成、模拟液相环境饱和、液驱出砂以及液体渗流率测试时的液体来源,包括:水箱21、恒流泵22、液体储罐23,通过所述恒流泵22将水箱21中的水抽至液体储罐23。所述液体供应装置20的各个部件安装关系为:所述恒流泵22通过管线90分别连接水箱21和液体储罐23、所述液体储罐23通过管线90连接气液混合装置30。所述恒流泵22与液体储罐23的连接管线90上、所述液体储罐23与气液混合装置30的连接管线90上均设有截止阀91。
所述气液混合装置30提供溶解气合成水合物以及气液共同作用出砂测试时的气体和液体混合途径,包括:混合器31、第二压力传感器32,所述气液混合装置30的各个部件安装关系为:所述混合器31通过管线90分别连接进口431、流体口411,所述第二压力传感器32设于混合器31与液体储罐23和/或气体流量控制器15之间的管线90上,用于监测压力。由所述气体流量控制器15输出的气体和由液体储罐23输出的液体在混合器31内混合后进反应釜40。所述混合器31与进口431、流体口411、液体储罐23的连接管线90上均设有截止阀91。通过控制所述气体供应装置10、液体供应装置20和气液混合装置30上各管线90上的截止阀91,以为所述反应釜40提供气体、液体或气液混合物。
如图3和4所示,所述反应釜40包括:釜体41、分别位于所述釜体41顶部和底部的上端盖42和下端盖43、穿过所述上端盖43的活塞44、设于所述釜体41侧面的堵头45、设于所述堵头45下方的收集口49。
在所述釜体41的侧面上还设有若干个流体口411,所述流体口411与堵头45所在的两侧面相对,所述流体口411和收集口49在出砂测试时分别用于流入流体和收集出砂产物。所述上端盖42上设有轴压注入孔421,固结测试时用于注入液压。所述下端盖43和活塞44上还分别设有进口431和出口441,渗透测试时分别用于流入和流出流体。所述下端盖43的顶部还设有声波发射探头46、所述活塞44的底部设有声波接收探头47,声波测试时分别用于发射和接收声波信号。所述釜体1的侧面还设有电阻率探头48,电阻率测试时用于采集电阻率,所述电阻率探头48在釜体1侧面上对称布置,与所述流体口411的连线呈垂直交叉布置。所述收集口49由上至下依次设有气体口491、液体口492和固体口493,经出砂测试后的气体、液体和固体分别通过所述气体口491、液体口492和固体口493收集。所述活塞44上还连接有位移传感器442,用以测量所述活塞44的位移。
气液分别通过所述进口431和出口441进、出,用于水合物沉积物试样的原位合成以及渗流测试。所述活塞44用于传递轴压控制装置50所施加的上覆地层应力进行固结测试。所述声波发射探头46、声波接收探头47,用于水合物沉积物试样的波速测试。气液通过一侧的所述流体口411进入,再通过相对侧的堵头45的出砂口流出,用于水合物沉积物试样的出砂测试。通过所述电阻率探头48,用于水合物沉积物试样的电阻率测试。
所述轴压控制装置50提供试样固结所需的上覆地层应力,包括:轴压跟踪泵51、第三压力传感器52,所述轴压控制装置50的各个部件安装关系为:所述轴压跟踪泵51通过管线90连接反应釜40的轴压注入孔421,为所述反应釜40提供上覆地层压力,所述第三压力传感器52设于轴压跟踪泵51与轴压注入孔421之间的管线90上,以监控压力。
所述气液固分离装置70在水合物储层出砂后对出砂产物进行气液固三相分离,并保证固体砂颗粒的定时采集以及水和气体的实时采集,包括:出砂收集器71、第四压力传感器72、过滤器73、回压阀74、跟踪泵75、气液分离器76、电子天平77、干燥容器78、气体流量计79,所述气液固分离装置70的各个部件安装关系为:所述出砂收集器71通过管线90连接反应釜40的固体口493、所述过滤器73通过管线90连接反应釜40的液体口492和回压阀74、所述第四压力传感器72连接在过滤器73与液体口492之间的管线90上、所述回压阀74通过管线90连接跟踪泵75和气液分离器76、所述气液分离器76通过管线90连接干燥容器78、所述电子天平77位于气液分离器76的下方、所述干燥容器78通过管线90连接气体流量计79。所述过滤器73还通过管线90连接出口441,且该管线90上还设有截止阀91,所述出砂收集器71与固体口493的连接管线90上、所述过滤器73与液体口492之间的管线90上、所述气液分离器76的管线90上均设有截止阀91。
所述温控装置80控制实验系统的温度,实现水合物合成以及分解所需的温度条件,所述温控装置80包括:水冷夹套81、若干个温度探头82,所述水冷夹套81设于釜体41的外围,为所述反应釜40提供循环冷浴;在所述釜体1的上、下端分别设有温度探头82,分别用于监测温度。
本发明中的安装于各管线90上的若干个截止阀91,可以根据实验的具体需求,改变其安装位置,图1中的各截止阀91仅作为安装示例,并不局限于图1中的安装位置。
如图5所示,本发明的实施例提供了一种水合物开采储层响应与出砂综合模拟实验系统的实验方法,利用本发明的水合物开采储层响应与出砂综合模拟实验系统,包括如下步骤:
步骤1:气密性检测:试样装填之前,检查整个实验系统的气密性,保证密封部件的密封性能良好,各功能部件的工作性能正常;
步骤2:试样装填:将配置好的水合物沉积物地层骨架材料装填至反应釜40内,根据合成方法的不同,还可以将水和骨架材料先混合,连接好各路阀门与管线90,用真空泵对整个实验系统进行抽真空,保证系统内部的纯净;
步骤3:监控声波和电阻率变化:在试样装填完毕之后,开始对试样内部的水合物沉积物试样的声波和电阻率情况进行全面的实时监控,直至试样结束,获取水合物沉积物试样各个阶段的波速以及电阻率变化情况;
步骤4:固结压实:通过所述轴压控制装置50施加上覆地层应力,模拟实际海底地层环境,对沉积物试样进行预先压实;
步骤5:水合物合成:通过所述气体供应装置10对试样进行加压,并使气体逐渐渗透进试样内部;再通过所述温控装置80,对试样进行降温直至水合物形成条件;维持并实时监测试样内部的温度和压力曲线,使水合物充分合成;
步骤6:固结实验-渗流实验:待试样中水合物完全合成之后,通过所述轴压控制装置50,获取不同上覆应力条件下的地层固结沉降量的变化,得到地层应力和孔隙度(沉降量)之间的对应关系;同时,在每一级固结实验完成后,分别进行相应的气体和液体渗透率测试,综合获取应力-孔隙度-渗透率之间的关系;
步骤7:开采出砂实验:与此同时,在一定的固结压力下,通过温度或压力的改变促使水合物分解,分解造成地层结构弱化和水气流动后,通过所述气液固分离装置70实时采集和监测试样的出砂和产水,产气状况;同时,在水合物分解发生后,通过所述轴压控制装置50和渗透测试了解地层应力、沉降和渗透系数等的变化情况,获得开采过程中水气砂产出状况对地层结构和应力以及渗透性的影响;
步骤8:出砂机制研究:在开采条件下,通过所述轴压控制装置50控制上覆地层压力,以及通过所述釜体41一侧的流体口411模拟不同气液流动状态的情况下,测试地层应力剪切破坏出砂以及流体运移出砂的破坏机制及具体的出砂规律。
本发明的实施例提供的技术方案带来的有益效果是:(1)设计压力为0-20MPa,设计温度为-10-100℃,在使用范围内可快速自由地控制试样内部温度和压力,真实模拟水合物储层初始相平衡条件以及不同的水合物开采手段;(2)通过上部端盖与活塞间的液压驱动施加固结压力和下部端盖的流体通道施加孔隙水、气压力,可以实时维持试样的上覆地层压力和孔隙流体压力,真实反映水合物储层地应力条件;(3)通过水合物合成功能,固结功能和渗流功能的组合,可以实现原位试样在不同应力场条件下的力学响应以及渗流条件变化测试,掌握水合物储层在(外部扰动或水合物分解等)应力荷载下的孔隙度和渗透率的演化规律;(4)以出砂测试功能为主导,并耦合了相应过程中的应力场(固结测试)和流体场(渗流测试)的监测,有利于掌握出砂过程中多场(应力场,位移场,渗流场)多相(气,液,固)的变化,分析力学破坏以及流体迁移对地层出砂的影响以及发生出砂对开采过程中经济性指标(产水,产气等)的影响。
值得说明的是:在本发明的描述中,“若干个”的含义是两个或两个以上,除非另有明确具体的限定。在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接,可以是机械连接,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。上述所述的固定等连接方式均是本领域人员公知的现有连接方式,举例来说可以通过胶合、焊接等固定方式。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.水合物开采储层响应与出砂综合模拟实验系统,其特征在于:包括:气体供应装置、液体供应装置、气液混合装置、反应釜、轴压控制装置、气液固分离装置和温控装置;
所述反应釜包括:放置试样的釜体、分别位于所述釜体顶部和底部的上端盖和下端盖、穿过所述上端盖的活塞、设于所述釜体侧面的堵头;所述釜体的侧面设有若干个流体口、所述堵头下方设有收集口,出砂测试时分别用于流入流体和收集出砂产物;所述上端盖设有轴压注入孔,固结测试时用于注入液压;所述下端盖和活塞分别设有进口和出口,渗透测试时分别用于流入和流出流体;所述下端盖和活塞分别设有声波发射探头、声波接收探头,声波测试时分别用于发射和接收声波信号;所述釜体的侧面设有电阻率探头,电阻率测试时用于采集电阻率;
由所述气体供应装置和液体供应装置分别提供的气体、液体在气液混合装置中混合,所述气液混合装置分别与反应釜的进口、流体口连接,以供气和/或供液;
所述轴压控制装置与轴压注入孔连接,以提供固结压力以推动活塞移动;所述气液固分离装置与收集口连接,以进行出砂产物的气液固三相分离和采集计量;所述温控装置设于釜体的外围,以控制所述反应釜的温度。
2.根据权利要求1所述的水合物开采储层响应与出砂综合模拟实验系统,其特征在于:所述气体供应装置包括:气瓶、空压机、气体增压泵、气体减压阀、流量控制器、气体储罐、若干个第一压力传感器,所述气瓶、空压机、气体增压泵、气体减压阀、流量控制器、气体储罐通过管线连接,所述流量控制器通过管线连接气液混合装置;所述气瓶与气体增压泵的连接管线上、所述气体增压泵与空压机的连接管线上、所述气体增压泵与气体储罐的连接管线上、所述气体储罐与气体减压阀的连接管线上、所述气体减压阀与气体流量控制器的连接管线上均设有第一压力传感器,以监测各处的压力。
3.根据权利要求2所述的水合物开采储层响应与出砂综合模拟实验系统,其特征在于:所述液体供应装置包括:水箱、恒流泵、液体储罐,所述恒流泵通过管线分别连接水箱和液体储罐,所述液体储罐通过管线连接气液混合装置。
4.根据权利要求3所述的水合物开采储层响应与出砂综合模拟实验系统,其特征在于:所述气液混合装置包括:混合器、第二压力传感器,所述混合器通过管线分别连接流量控制器、液体储罐、反应釜的进口和流体口;所述第二压力传感器设于混合器与液体储罐和/或气体流量控制器之间的管线上,以监测压力。
5.根据权利要求4所述的水合物开采储层响应与出砂综合模拟实验系统,其特征在于:所述气瓶与气体增压泵的连接管线上、所述气体增压泵与空压机的连接管线上、所述气体增压泵与气体储罐的连接管线上、所述气体储罐与气体减压阀的连接管线上、所述气体减压阀与气体流量控制器的连接管线上、所述恒流泵与液体储罐的连接管线上、所述液体储罐与混合器的连接管线上、所述混合器与反应釜的进口和流体口的连接管线上均设有截止阀,分别用于控制各管线的开启/关闭和流体流量,为所述反应釜提供气体、液体或气液混合物。
6.根据权利要求1所述的水合物开采储层响应与出砂综合模拟实验系统,其特征在于:所述轴压控制装置包括:轴压跟踪泵、第三压力传感器,所述轴压跟踪泵通过管线连接轴压注入孔,所述第三压力传感器设于轴压跟踪泵与轴压注入孔之间的管线上,以监控压力。
7.根据权利要求1所述的水合物开采储层响应与出砂综合模拟实验系统,其特征在于:所述气液固分离装置包括:出砂收集器、第四压力传感器、过滤器、回压阀、跟踪泵、气液分离器、电子天平、干燥容器、气体流量计,所述出砂收集器、过滤器、回压阀、跟踪泵、气液分离器、干燥容器、气体流量计通过管线连接,所述出砂收集器、过滤器通过管线与收集口连接,所述过滤器通过管线连接反应釜的出口;所述第四压力传感器设于出砂收集器和过滤器之间的管线上,以监控压力。
8.根据权利要求1所述的水合物开采储层响应与出砂综合模拟实验系统,其特征在于:所述温控装置包括:水冷夹套、若干个温度探头,所述水冷夹套设于釜体的外围,提供循环冷浴以控温;所述温度探头分别设于釜体的上、下端,以监测温度。
9.根据权利要求1所述的水合物开采储层响应与出砂综合模拟实验系统,其特征在于:所述活塞上还连接有位移传感器,以测量所述活塞的位移。
10.利用权利要求1所述的水合物开采储层响应与出砂综合模拟实验系统进行实验的方法,其特征在于:包括如下步骤:
气密性检测:试样装填之前,检查整个实验系统的气密性,保证密封部件的密封性能良好,各功能部件的工作性能正常;
试样装填:将配置好的水合物沉积物地层骨架材料装填至反应釜内,连接好各路阀门与管线,用真空泵对整个实验系统进行抽真空,保证系统内部的纯净;
监控声波和电阻率变化:在试样装填完毕之后,开始对试样内部的水合物沉积物试样的声波和电阻率情况进行全面的实时监控,直至试样结束,获取水合物沉积物试样各个阶段的波速以及电阻率变化情况;
固结压实:通过所述轴压控制装置施加上覆地层应力,模拟实际海底地层环境,对沉积物试样进行预先压实;
水合物合成:通过所述气体供应装置对试样进行加压,并使气体逐渐渗透进试样内部;再通过所述温控装置,对试样进行降温直至水合物形成条件;维持并实时监测试样内部的温度和压力曲线,使水合物充分合成;
固结实验-渗流实验:待试样中水合物完全合成之后,通过所述轴压控制装置,获取不同上覆应力条件下的地层固结沉降量的变化,得到地层应力和孔隙度之间的对应关系;同时,在每一级固结实验完成后,分别进行相应的气体和液体渗透率测试,综合获取应力-孔隙度-渗透率之间的关系;
开采出砂实验:与此同时,在一定的固结压力下,通过温度或压力的改变促使水合物分解,分解造成地层结构弱化和水气流动后,通过所述气液固分离装置实时采集和监测试样的出砂和产水,产气状况;同时,在水合物分解发生后,通过所述轴压控制装置和渗透测试了解地层应力、沉降和渗透系数等的变化情况,获得开采过程中水气砂产出状况对地层结构和应力以及渗透性的影响;
出砂机制研究:在开采条件下,通过所述轴压控制装置控制上覆地层压力,以及通过所述反应釜模拟不同气液流动状态的情况下,测试地层应力剪切破坏出砂以及流体运移出砂的破坏机制及具体的出砂规律。
CN201910081514.7A 2019-01-28 2019-01-28 水合物开采储层响应与出砂综合模拟实验系统及其方法 Active CN109707377B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910081514.7A CN109707377B (zh) 2019-01-28 2019-01-28 水合物开采储层响应与出砂综合模拟实验系统及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910081514.7A CN109707377B (zh) 2019-01-28 2019-01-28 水合物开采储层响应与出砂综合模拟实验系统及其方法

Publications (2)

Publication Number Publication Date
CN109707377A true CN109707377A (zh) 2019-05-03
CN109707377B CN109707377B (zh) 2023-06-06

Family

ID=66261968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910081514.7A Active CN109707377B (zh) 2019-01-28 2019-01-28 水合物开采储层响应与出砂综合模拟实验系统及其方法

Country Status (1)

Country Link
CN (1) CN109707377B (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110361158A (zh) * 2019-06-27 2019-10-22 青岛海洋地质研究所 降压过程中水合物储层泥砂剥离运移的模拟方法及装置
CN110390130A (zh) * 2019-06-12 2019-10-29 中国地质大学(武汉) 含水合物沉积物的降压开采出砂室内实验数值模拟方法
CN110454146A (zh) * 2019-07-31 2019-11-15 中国地质大学(武汉) 评价水合物开采过程中水平井内出砂与防砂的装置及方法
CN110618255A (zh) * 2019-10-24 2019-12-27 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 模拟地层成藏的围压试验装置、安装方法及试验方法
CN110630228A (zh) * 2019-09-23 2019-12-31 中国地质大学(武汉) 评价co2/n2置换法开采水合物时井筒出砂与防砂的装置及方法
CN111022019A (zh) * 2019-12-12 2020-04-17 中国地质大学(武汉) 一体化模拟井周水合物储层出砂与改造的实验系统及方法
CN111679061A (zh) * 2020-07-03 2020-09-18 中国石油大学(北京) 冻土地层融化沉降试验模拟装置及方法
CN111691856A (zh) * 2020-05-22 2020-09-22 中海石油(中国)有限公司湛江分公司 上覆和边低水层对甲烷水合物开采影响模拟装置及方法
CN111691881A (zh) * 2020-07-03 2020-09-22 中国石油大学(北京) 含水合物地层受热沉降模拟实验装置及方法
CN111735751A (zh) * 2020-08-07 2020-10-02 中国海洋石油集团有限公司 一种水合物岩心渗透率双测装置及方法
CN111997595A (zh) * 2020-08-06 2020-11-27 中国科学院广州能源研究所 一种天然气水合物地质分层装置和方法
CN112031711A (zh) * 2020-08-06 2020-12-04 中国科学院广州能源研究所 一种天然气水合物模拟开采产气水砂分离计量装置及方法
CN112196501A (zh) * 2020-09-04 2021-01-08 中国地质大学(武汉) 一种模拟微生物加固天然气水合物储层的装置及方法
CN112630407A (zh) * 2020-12-09 2021-04-09 同济大学 水合物储层渗流出砂微观可视化模拟实验装置及方法
WO2021082224A1 (zh) * 2019-10-28 2021-05-06 中国科学院广州能源研究所 一种天然气水合物矿藏压裂实验装置
CN114062414A (zh) * 2020-08-07 2022-02-18 中国石油化工股份有限公司 一种热模拟实验生气过程中汞的收集与定量方法以及收集系统
CN114352238A (zh) * 2021-12-30 2022-04-15 中国地质大学(北京) 一种天然气水合物增产缝导流能力测试装置及方法
CN114961661A (zh) * 2021-02-19 2022-08-30 中国石油天然气集团有限公司 海域天然气水合物开采储层砂粒运移实验装置和实验方法
CN116559047A (zh) * 2023-05-06 2023-08-08 中国地质大学(武汉) 渗透实验装置、方法及渗透系数和流态的评估方法
CN115754009B (zh) * 2022-11-01 2024-04-26 山东科技大学 一种监测天然气水合物开采状态的实验装置及方法

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203396657U (zh) * 2013-06-07 2014-01-15 中国石油天然气股份有限公司 天然气水合物沉积物动三轴力学-声学-电学同步测试的实验装置
CN204746272U (zh) * 2015-06-30 2015-11-11 江苏宏博机械制造有限公司 水合物气液固三相分离的实验装置
CN105301200A (zh) * 2015-11-12 2016-02-03 中国科学院广州能源研究所 一种天然气水合物开采出砂特性测试装置
WO2016061854A1 (zh) * 2014-10-20 2016-04-28 中国科学院广州能源研究所 一种可渗透边界层天然气水合物开采模拟实验装置
CN105571647A (zh) * 2016-02-03 2016-05-11 青岛海洋地质研究所 天然气水合物开采多物理场演化模拟测试装置及方法
US20160357888A1 (en) * 2014-11-20 2016-12-08 Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences Simulation experiment system and simulation method of entire natural gas hydrate exploitation process
CN206008676U (zh) * 2016-08-22 2017-03-15 江苏联友科研仪器有限公司 一种天然气水合物出砂防砂反应釜
CN106593370A (zh) * 2017-01-17 2017-04-26 中国石油大学(华东) 一种天然气水合物降压开采模拟实验装置及工作方法
CN106680435A (zh) * 2017-01-12 2017-05-17 中国石油大学(华东) 一种水合物开采出砂模拟实验系统及方法
CN106761498A (zh) * 2016-12-20 2017-05-31 中国科学院广州能源研究所 一种用于对天然气水合物钻井液进行多相分离的实验装置及方法
CN106950153A (zh) * 2017-04-20 2017-07-14 青岛海洋地质研究所 含水合物沉积物出砂过程模拟专用反应釜及其测试方法
CN206329293U (zh) * 2016-12-27 2017-07-14 西南石油大学 一种模拟天然气水合物钻水平井全井眼携岩实验装置
CN107045054A (zh) * 2016-12-20 2017-08-15 中国科学院广州能源研究所 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法
CN107462677A (zh) * 2017-08-10 2017-12-12 中国地质调查局水文地质环境地质调查中心 天然气水合物开采防砂试验装置及方法
CN107860569A (zh) * 2017-10-31 2018-03-30 中国石油大学(华东) 天然气水合物开采过程中防砂筛管堵塞特性的评价实验装置及方法
CN107894383A (zh) * 2017-11-03 2018-04-10 青岛海洋地质研究所 三轴应力条件下含水合物沉积物渗透率测量装置及其方法
CN207379888U (zh) * 2017-11-03 2018-05-18 青岛海洋地质研究所 三轴应力条件下含水合物沉积物渗透率测量装置
CN207554023U (zh) * 2017-11-30 2018-06-29 青岛海洋地质研究所 水合物开采井管内砾石充填仿真系统
CN207620776U (zh) * 2017-11-30 2018-07-17 青岛海洋地质研究所 天然气水合物试采模拟装置
CN108798606A (zh) * 2018-06-03 2018-11-13 西南石油大学 一种模拟天然气水合物固态流化采掘实验装置及方法
CN108952638A (zh) * 2018-08-10 2018-12-07 常州大学 一种天然气水合物水平井开采防砂模拟装置及试验方法
CN109254137A (zh) * 2018-09-21 2019-01-22 青岛海洋地质研究所 联合x-ct技术的水合物沉积物流固体产出测量装置及测量方法
CN209742884U (zh) * 2019-01-28 2019-12-06 中国地质大学(武汉) 水合物开采储层响应与出砂综合模拟实验系统

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203396657U (zh) * 2013-06-07 2014-01-15 中国石油天然气股份有限公司 天然气水合物沉积物动三轴力学-声学-电学同步测试的实验装置
WO2016061854A1 (zh) * 2014-10-20 2016-04-28 中国科学院广州能源研究所 一种可渗透边界层天然气水合物开采模拟实验装置
US20160357888A1 (en) * 2014-11-20 2016-12-08 Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences Simulation experiment system and simulation method of entire natural gas hydrate exploitation process
CN204746272U (zh) * 2015-06-30 2015-11-11 江苏宏博机械制造有限公司 水合物气液固三相分离的实验装置
CN105301200A (zh) * 2015-11-12 2016-02-03 中国科学院广州能源研究所 一种天然气水合物开采出砂特性测试装置
CN105571647A (zh) * 2016-02-03 2016-05-11 青岛海洋地质研究所 天然气水合物开采多物理场演化模拟测试装置及方法
CN206008676U (zh) * 2016-08-22 2017-03-15 江苏联友科研仪器有限公司 一种天然气水合物出砂防砂反应釜
CN107045054A (zh) * 2016-12-20 2017-08-15 中国科学院广州能源研究所 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法
CN106761498A (zh) * 2016-12-20 2017-05-31 中国科学院广州能源研究所 一种用于对天然气水合物钻井液进行多相分离的实验装置及方法
US20180172574A1 (en) * 2016-12-20 2018-06-21 Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences Experimental device and method for studying relationship between sediment yield behavior and radial deformation of porous media during exploitation of natural gas hydrates
CN206329293U (zh) * 2016-12-27 2017-07-14 西南石油大学 一种模拟天然气水合物钻水平井全井眼携岩实验装置
CN106680435A (zh) * 2017-01-12 2017-05-17 中国石油大学(华东) 一种水合物开采出砂模拟实验系统及方法
CN106593370A (zh) * 2017-01-17 2017-04-26 中国石油大学(华东) 一种天然气水合物降压开采模拟实验装置及工作方法
CN106950153A (zh) * 2017-04-20 2017-07-14 青岛海洋地质研究所 含水合物沉积物出砂过程模拟专用反应釜及其测试方法
CN107462677A (zh) * 2017-08-10 2017-12-12 中国地质调查局水文地质环境地质调查中心 天然气水合物开采防砂试验装置及方法
CN107860569A (zh) * 2017-10-31 2018-03-30 中国石油大学(华东) 天然气水合物开采过程中防砂筛管堵塞特性的评价实验装置及方法
CN207379888U (zh) * 2017-11-03 2018-05-18 青岛海洋地质研究所 三轴应力条件下含水合物沉积物渗透率测量装置
CN107894383A (zh) * 2017-11-03 2018-04-10 青岛海洋地质研究所 三轴应力条件下含水合物沉积物渗透率测量装置及其方法
CN207554023U (zh) * 2017-11-30 2018-06-29 青岛海洋地质研究所 水合物开采井管内砾石充填仿真系统
CN207620776U (zh) * 2017-11-30 2018-07-17 青岛海洋地质研究所 天然气水合物试采模拟装置
CN108798606A (zh) * 2018-06-03 2018-11-13 西南石油大学 一种模拟天然气水合物固态流化采掘实验装置及方法
CN108952638A (zh) * 2018-08-10 2018-12-07 常州大学 一种天然气水合物水平井开采防砂模拟装置及试验方法
CN109254137A (zh) * 2018-09-21 2019-01-22 青岛海洋地质研究所 联合x-ct技术的水合物沉积物流固体产出测量装置及测量方法
CN209742884U (zh) * 2019-01-28 2019-12-06 中国地质大学(武汉) 水合物开采储层响应与出砂综合模拟实验系统

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DEXIANG LI: ""Dynamic behavior of hydrate dissociation for gas production via depressurization and its influencing factors"" *
LEI ZHAN: ""Experimental study on characteristics of methane hydrate formation and dissociation in porous medium with different particle sizes using depressurization"" *
PRATHYUSHA MEKALA: ""Effect of silica sand size on the formation kinetics of CO2 hydrate in porous media in the presence of pure water and seawater relevant for CO2 sequestration"" *
于锋: ""甲烷水合物及其沉积物的力学特性研究"" *
卜庆涛,等: ""含水合物沉积物二维声学特性实验研究"" *
张新军: ""天然气水合物藏降压开采实验与数值模拟研究"" *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110390130A (zh) * 2019-06-12 2019-10-29 中国地质大学(武汉) 含水合物沉积物的降压开采出砂室内实验数值模拟方法
CN110390130B (zh) * 2019-06-12 2023-03-24 中国地质大学(武汉) 含水合物沉积物的降压开采出砂室内实验数值模拟方法
CN110361158A (zh) * 2019-06-27 2019-10-22 青岛海洋地质研究所 降压过程中水合物储层泥砂剥离运移的模拟方法及装置
CN110454146A (zh) * 2019-07-31 2019-11-15 中国地质大学(武汉) 评价水合物开采过程中水平井内出砂与防砂的装置及方法
CN110630228A (zh) * 2019-09-23 2019-12-31 中国地质大学(武汉) 评价co2/n2置换法开采水合物时井筒出砂与防砂的装置及方法
CN110630228B (zh) * 2019-09-23 2023-11-03 中国地质大学(武汉) 评价co2/n2置换法开采水合物时井筒出砂与防砂的装置及方法
CN110618255A (zh) * 2019-10-24 2019-12-27 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 模拟地层成藏的围压试验装置、安装方法及试验方法
WO2021082224A1 (zh) * 2019-10-28 2021-05-06 中国科学院广州能源研究所 一种天然气水合物矿藏压裂实验装置
CN111022019A (zh) * 2019-12-12 2020-04-17 中国地质大学(武汉) 一体化模拟井周水合物储层出砂与改造的实验系统及方法
CN111691856A (zh) * 2020-05-22 2020-09-22 中海石油(中国)有限公司湛江分公司 上覆和边低水层对甲烷水合物开采影响模拟装置及方法
WO2022000834A1 (zh) * 2020-07-03 2022-01-06 中国石油大学(北京) 含水合物地层受热沉降模拟实验装置及方法
CN111679061A (zh) * 2020-07-03 2020-09-18 中国石油大学(北京) 冻土地层融化沉降试验模拟装置及方法
CN111691881B (zh) * 2020-07-03 2023-12-22 中国石油大学(北京) 含水合物地层受热沉降模拟实验装置及方法
CN111679061B (zh) * 2020-07-03 2024-04-05 中国石油大学(北京) 冻土地层融化沉降试验模拟装置及方法
CN111691881A (zh) * 2020-07-03 2020-09-22 中国石油大学(北京) 含水合物地层受热沉降模拟实验装置及方法
US20220298892A1 (en) * 2020-08-06 2022-09-22 Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences Device and method for gas-water-sand separation and measurement in experiment of natural gas hydrate exploitation
CN112031711A (zh) * 2020-08-06 2020-12-04 中国科学院广州能源研究所 一种天然气水合物模拟开采产气水砂分离计量装置及方法
CN111997595A (zh) * 2020-08-06 2020-11-27 中国科学院广州能源研究所 一种天然气水合物地质分层装置和方法
US11708748B2 (en) * 2020-08-06 2023-07-25 Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences Device and method for gas-water-sand separation and measurement in experiment of natural gas hydrate exploitation
CN114062414A (zh) * 2020-08-07 2022-02-18 中国石油化工股份有限公司 一种热模拟实验生气过程中汞的收集与定量方法以及收集系统
CN111735751A (zh) * 2020-08-07 2020-10-02 中国海洋石油集团有限公司 一种水合物岩心渗透率双测装置及方法
CN111735751B (zh) * 2020-08-07 2023-04-11 中国海洋石油集团有限公司 一种水合物岩心渗透率双测装置及方法
CN112196501B (zh) * 2020-09-04 2021-09-24 中国地质大学(武汉) 一种模拟微生物加固天然气水合物储层的装置及方法
CN112196501A (zh) * 2020-09-04 2021-01-08 中国地质大学(武汉) 一种模拟微生物加固天然气水合物储层的装置及方法
CN112630407A (zh) * 2020-12-09 2021-04-09 同济大学 水合物储层渗流出砂微观可视化模拟实验装置及方法
CN114961661A (zh) * 2021-02-19 2022-08-30 中国石油天然气集团有限公司 海域天然气水合物开采储层砂粒运移实验装置和实验方法
CN114352238A (zh) * 2021-12-30 2022-04-15 中国地质大学(北京) 一种天然气水合物增产缝导流能力测试装置及方法
CN115754009B (zh) * 2022-11-01 2024-04-26 山东科技大学 一种监测天然气水合物开采状态的实验装置及方法
CN116559047A (zh) * 2023-05-06 2023-08-08 中国地质大学(武汉) 渗透实验装置、方法及渗透系数和流态的评估方法
CN116559047B (zh) * 2023-05-06 2024-01-30 中国地质大学(武汉) 渗透实验装置、方法及渗透系数和流态的评估方法

Also Published As

Publication number Publication date
CN109707377B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
CN109707377A (zh) 水合物开采储层响应与出砂综合模拟实验系统及其方法
CN105259003B (zh) 一种合成海洋天然气水合物样品的实验装置和方法
CN105403672B (zh) 模拟天然气水合物开采过程地层形变的实验装置和方法
CN105301200B (zh) 一种天然气水合物开采出砂特性测试装置
CN107121359B (zh) 含水合物沉积物出砂-力学参数耦合过程模拟装置及方法
CN106290045B (zh) 非常规致密砂岩储层含油性和可动性评价实验方法
CN209742884U (zh) 水合物开采储层响应与出砂综合模拟实验系统
CN108169062B (zh) 模拟地下煤层气赋存解吸过程的可视化试验装置及方法
CN107063963A (zh) 一种致密储层微裂缝扩展及渗流特征的测试装置和方法
CN202339307U (zh) 测定泥页岩吸水扩散系数装置
WO2020087860A1 (zh) 一种煤层气水平井塌孔造洞穴卸压开采模拟试验系统
CN107063919B (zh) 一种测量页岩中二氧化碳与烷烃竞争吸附量的装置及方法
CN205483943U (zh) 一种模拟泥水盾构中泥浆浸入地层形成泥膜的实验装置
CN102565112B (zh) 煤层气中游离气含量的测算方法
CN202916270U (zh) 可井下测量的煤层防突瓦斯含量测定装置
CN106525526B (zh) 一种含瓦斯原煤高压注水及径向瓦斯渗透率的测定方法
CN107727530B (zh) 基于温压回溯原理的一体化全程气密含气量测量仪的应用
CN105223099B (zh) 页岩气含气量测试仪及其测试方法
CN102735548A (zh) 多功能真三轴流固耦合试验系统
CN103148888A (zh) 一种煤层气储层双层合采高温高压排采动态评价系统
CN201747363U (zh) 煤层气完井方式评价实验装置
CN109696360A (zh) 水合物开采储层响应与出砂模拟多功能反应釜
CN110454146A (zh) 评价水合物开采过程中水平井内出砂与防砂的装置及方法
CN105156094B (zh) 一种煤层气井排采产出煤粉运移模拟试验装置
US11905812B2 (en) Intra-layer reinforcement method, and consolidation and reconstruction simulation experiment system and evaluation method for gas hydrate formation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant