WO2016061854A1 - 一种可渗透边界层天然气水合物开采模拟实验装置 - Google Patents

一种可渗透边界层天然气水合物开采模拟实验装置 Download PDF

Info

Publication number
WO2016061854A1
WO2016061854A1 PCT/CN2014/090331 CN2014090331W WO2016061854A1 WO 2016061854 A1 WO2016061854 A1 WO 2016061854A1 CN 2014090331 W CN2014090331 W CN 2014090331W WO 2016061854 A1 WO2016061854 A1 WO 2016061854A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage tank
water
liquid storage
aquifer
pressure
Prior art date
Application number
PCT/CN2014/090331
Other languages
English (en)
French (fr)
Inventor
李小森
张郁
王屹
李刚
陈朝阳
徐纯刚
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Priority to US14/765,475 priority Critical patent/US9970267B2/en
Publication of WO2016061854A1 publication Critical patent/WO2016061854A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/241Earth materials for hydrocarbon content
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/02Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor for obtaining at least one reaction product which, at normal temperature, is in the solid state
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0099Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/60Measuring or analysing fractions, components or impurities or process conditions during preparation or upgrading of a fuel
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the invention relates to the field of natural gas hydrate development, and relates to an experimental device for conducting relevant simulation research in an actual geological environment, in particular to a simulation experiment device for gas hydrate mining in a permeable boundary layer.
  • Natural gas hydrate refers to a cage-like crystalline substance produced by natural gas and water at a certain temperature and pressure, and can exist in nature in various ways. Due to its huge reserves and clean and efficient properties, it is considered a potential alternative energy source. If natural gas hydrates can be extracted efficiently, quickly and economically, the increasing energy pressure can be alleviated. Therefore, the research on natural gas hydrate mining methods is an important issue to be solved urgently in the field of oil and gas engineering.
  • the huge water production seriously affects the pressure reduction efficiency and the hydrate decomposition rate due to the osmosis effect of seawater on the hydrate reservoir during the depressurization process.
  • the research on natural gas hydrate mining technology mainly uses laboratory simulation, but the existing experimental equipment is relatively simple. It mainly uses a constant volume method to synthesize and decompose hydrates, and it is difficult to realistically simulate actual marine geological conditions, especially lacking.
  • the experimental equipment for simulating the infiltration process of seawater and aquifers into natural gas hydrates during natural gas hydrate mining results in a mismatch between experimental simulation results and numerical simulation results, and it is difficult to truly reflect the hydrate mining process under actual geological conditions.
  • the present invention provides a gas hydrate mining simulation device simulating a permeable boundary layer, which simulates a real hydrate reservoir through a high pressure reactor, a formation simulation unit and an aquifer maintenance unit.
  • the geological environment and thus more comprehensive assessment of the accumulation and mining process, provides guidance for gas hydrate mining.
  • a permeable boundary layer natural gas hydrate mining simulation device comprises a high pressure reactor, a formation simulation unit and an aquifer maintaining unit, wherein an outer wall of the high pressure reactor is provided with a water bath jacket externally connected to a constant temperature water bath to provide a high pressure
  • the temperature conditions required for the reaction kettle are arranged at the top of the top of the high pressure reactor with an external injection liquid injection gas and a simulation well for the gas production water production equipment.
  • the bottom of the high pressure reaction reactor is provided with an aquifer interface, and the formation simulation unit is arranged in the high pressure reaction kettle.
  • the aquifer maintaining unit is connected to the aquifer through a pipeline.
  • the inside of the high-pressure reactor is cylindrical, and the inside of the high-pressure reactor is provided with a confining jacket, and the confining jacket is connected to the confining pump through the confining pressure port to control the confining pressure by the confining pump.
  • the formation simulation unit comprises a hydrate layer, a low permeability layer and an aquifer, wherein the hydrate layer, the low permeability layer and the aquifer are placed in the confining jacket from top to bottom, and different simulated formations are avoided by loading confining pressure Gas and water flow between.
  • the hydrate layer is filled with quartz sand, and the desired solution is injected into the simulated well to form a hydrate with the gas.
  • the low permeability layer is a ceramic plate, and the permeability and thickness of the ceramic plate are prepared according to experimental requirements.
  • the aquifer is a porous conglomerate.
  • the aquifer maintaining unit comprises a nitrogen bottle, a pressure reducing valve, a gas boosting pump, a high pressure gas storage tank, a first pressure control valve, a low pressure gas storage tank, a second pressure control valve, a liquid storage container, an electronic balance, and an advection pump. , liquid storage tank; where:
  • the bottom of the liquid storage tank is connected to the aquifer through a pipeline to connect with the aquifer, to supplement the water of the aquifer and maintain the pressure of the aquifer;
  • the nitrogen bottle is connected to the high pressure gas storage tank through a pressure reducing valve and a gas boosting pump in sequence;
  • the high pressure gas storage tank is connected to the liquid storage tank through the first pressure control valve, and is stored by the high pressure gas storage tank through the first pressure control valve. Injecting high pressure nitrogen into the liquid tank to maintain the pressure of the aquifer, simulating the pressure difference between the aquifer and the hydrate layer;
  • the liquid storage container is placed on an electronic balance, and the liquid storage container is connected to the liquid storage tank through a flat flow pump for replenishing the liquid storage tank;
  • the top of the liquid storage tank is connected to the low pressure gas storage tank through a second pressure control valve.
  • a liquid level gauge is provided in the liquid storage tank for measuring the amount of water remaining in the liquid storage tank.
  • the water in the liquid storage container is injected into the liquid storage tank through the advection pump, and the liquid storage tank is refilled.
  • the first pressure control valve is closed, and the second pressure control valve is opened, and the gas discharged from the water is injected into the low pressure gas storage tank to maintain the pressure of the liquid storage tank and the aquifer stably, according to the high pressure storage.
  • the pressure change in the gas tank and the low pressure gas storage tank and the calculation of the water injection amount obtain the water seepage amount of the aquifer to the hydrate layer.
  • the invention has the advantages that the experimental device of the invention can realistically simulate the geological environment of the hydrate reservoir, thereby more comprehensively evaluating the accumulation and mining process, and providing guidance for gas hydrate mining.
  • the experimental process of the simulation system is simple and easy, and the simulation process is operability and practical.
  • FIG. 1 is a schematic structural view of an embodiment of the present invention.
  • 1-High pressure reactor 2-contained jacket, 3-contained pump, 4-contained pressure port, 5-water bath jacket, 6-simulated well, 7-hydrate layer, 8-low permeability layer, 9- Aquifer, 10-aquifer interface, 11-nitrogen bottle, 12-pressure relief valve, 13-gas booster pump, 14-high pressure gas storage tank, 15-pressure control valve, 16-low pressure gas storage tank, 17-pressure Control valve, 18-reservoir container, 19-electronic balance, 20-advection pump, 21-tank, 22-level gauge.
  • the permeable boundary layer natural gas hydrate mining simulation system of the present invention has a structural diagram as shown in Fig. 1, which comprises a high pressure reactor 1, a formation simulation unit and an aquifer maintenance unit.
  • the inside of the high-pressure reactor 1 is cylindrical, and a confining jacket 2 is arranged inside.
  • the outer wall of the high-pressure reactor 1 is provided with a water bath jacket 5, and an external constant temperature water bath can be externally provided for providing the required temperature conditions; the top of the high-pressure reactor 1 is arranged centrally.
  • the formation simulation unit includes a hydrate layer 7, a low permeability layer 8 and an aquifer 9.
  • the aquifer maintaining unit includes a nitrogen bottle 11, a pressure reducing valve 12, a gas boosting pump 13, and a high
  • the gas storage tank 14, the pressure control valve 15, the low pressure gas storage tank 16, the pressure control valve 17, the liquid storage tank 18, the electronic balance 19, the advection pump 20, the liquid storage tank 21, and the liquid level gauge 22 are provided.
  • the hydrate layer 7 is filled with quartz sand, and the desired solution is injected into the simulated well 6 in the high pressure reactor 1 to form a hydrate with the gas.
  • the low permeability layer 8 is a low permeability ceramic plate, and its permeability and thickness can be prepared according to experimental requirements.
  • the aquifer 9 is a high permeability porous conglomerate.
  • the confining jacket 2 is connected to the confining pressure pump 3 through the confining pressure port 4, and the confining pressure is controlled by the confining pressure pump 3.
  • the hydrate layer 7, the low permeability layer 8 and the aquifer 9 are placed in the confining jacket 2 from top to bottom, and the gas-water stream between the different simulated formations is avoided by loading the confining pressure.
  • the bottom of the liquid storage tank 21 in the aquifer maintaining unit is connected to the aquifer interface 10 at the bottom of the high pressure reactor 1 through a line, connected to the aquifer 9 for replenishing the water of the aquifer 9 and maintaining the pressure of the aquifer 9.
  • the nitrogen bottle 11 in the aquifer maintaining unit is connected to the high pressure gas storage tank 14 through a pressure reducing valve 12 and a gas boosting pump 13; the high pressure gas storage tank 14 is connected to the liquid storage tank 21 through a pressure control valve 15. High pressure nitrogen gas is injected from the high pressure gas storage tank 14 into the liquid storage tank 21 through the pressure control valve 15 to maintain the pressure of the aquifer 9, simulating the pressure difference between the aquifer 9 and the hydrate layer 7.
  • the liquid storage container 18 is connected to the liquid storage tank 21 by the advection pump 20 for replenishing the liquid storage tank 21 with water.
  • a liquid level gauge 22 is provided in the liquid storage tank 21 for observing the amount of water remaining in the liquid storage tank 21.
  • the top of the liquid storage tank 21 is connected to the low pressure gas storage tank 16 through a pressure control valve 17. When the amount of remaining water in the liquid storage tank 21 is less than 1/3, the water in the liquid storage container 18 is injected into the liquid storage tank 21 by the advection pump 20.
  • the pressure control valve 15 is closed, and at the same time, the pressure control valve 17 is opened, and the gas discharged from the liquid storage tank 21 by the liquid entering the liquid storage tank 21 during the rehydration is injected into the low pressure gas storage tank 16 to maintain the storage.
  • the pressure of the liquid tank 21 and the aquifer 9 is stabilized.
  • the amount of water permeation from the aquifer 9 to the hydrate layer 7 is obtained from the change in the amount of water measured by the level gauge 22 and the amount of water injected.
  • the calculation formula for water seepage is as follows:
  • W2 Real-time water volume of the liquid storage tank.
  • Wi The amount of water injected into the reservoir during the experiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mining & Mineral Resources (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Operations Research (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

一种可渗透边界层天然气水合物开采模拟装置,其包括高压反应釜(1)、地层模拟单元与含水层维持单元,其中,所述高压反应釜(1)的外壁设置有外接恒温水浴的水浴夹套(5),以提供高压反应釜(1)所需的温度条件,高压反应釜(1)顶部中央布置有外接注液注气以及产气产水设备的模拟井(6),高压反应釜(1)底部设有一含水层接口(10),所述地层模拟单元设置于高压反应釜(1)中,所述含水层维持单元通过管路与含水层接口(10)连接。所述模拟装置可以真实的模拟水合物藏地质环境,可以更加真实的模拟天然气水合物开采过程,具有更高的可靠性与准确性,对地层不同渗透率、不同地层压力梯度下的水合物开采进行综合评估,为天然气水合物开采提供指导。

Description

一种可渗透边界层天然气水合物开采模拟实验装置 技术领域
本发明涉及天然气水合物开发领域,一套针对实际地质环境下进行相关模拟研究的实验装置,特别是涉及一种可渗透边界层天然气水合物开采模拟实验装置。
背景技术
天然气水合物是指天然气与水在一定温度和压力下生成的一种笼状晶体物质,可以以多种方式存在于自然界中。由于其巨大的储量以及清洁高效的特性,被认为是一种潜在的替代能源。如果能够有效、快速、经济的开采天然气水合物,可以缓解与日俱增的能源压力。因此,对天然气水合物开采方法的研究,是油气工程领域亟待解决的重要问题。
现有的开采方法大体上可分为以下三类:热力开采法,化学剂开采法,降压开采法。其中降压法是最早被提出来并被认为是简单经济、有效的一种方法,其主要是通过降低水合物藏的压力到天然气水合物的平衡分解压力以下,从而促使天然气水合物分解,开采水合物层之下的游离气是降低储层压力的一种有效方法。然而,降压法也具有水合物分解速度缓慢,开采周期长的缺点。同时,由于天然气水合物主要赋存于深水的海底沉积物中,如何降压也是一个难点问题。根据数值模拟研究发现,由于降压过程中海水对水合物藏的渗透作用,巨大的产水量严重影响了降压效率以及水合物分解速度。目前对天然气水合物开采技术的研究主要利用实验室模拟,但现有的实验设备相对比较简单,主要采用定容的方法合成与分解水合物,难以真实的模拟实际的海洋地质条件,特别是缺少模拟天然气水合物开采过程中海水以及含水层对天然气水合物藏渗透过程的实验设备,造成实验模拟结果与数值模拟结果的不匹配,也难以真实的反应实际地质条件下的水合物开采过程。
发明内容
针对以上不足,本发明提供一种模拟可渗透边界层的天然气水合物开采模拟装置,其通过高压反应釜、地层模拟单元与含水层维持单元真实的模拟水合物藏 地质环境,从而更加真是对成藏与开采过程进行综合评估,为天然气水合物开采提供指导。
为了实现上述目的,本发明采取的技术方案是:
一种可渗透边界层天然气水合物开采模拟装置,其包括高压反应釜、地层模拟单元与含水层维持单元,其中,所述高压反应釜的外壁设置有外接恒温水浴的水浴夹套,以提供高压反应釜所需的温度条件,高压反应釜顶部中央布置有外接注液注气以及产气产水设备的模拟井,高压反应釜底部设有一含水层接口,所述地层模拟单元设置于高压反应釜中,所述含水层维持单元通过管路与含水层接口连接。
所述高压反应釜内部为圆柱形,该高压反应釜的内部设有围压夹套,围压夹套通过围压接口连接围压泵,以通过围压泵控制围压压力。
所述地层模拟单元包括水合物层、低渗透层与含水层,所述水合物层、低渗透层与含水层由上至下置于围压夹套中,通过加载围压避免不同模拟地层之间的气水串流。
所述水合物层填充为石英砂,再由模拟井注入所需溶液与气体形成水合物。
所述低渗透层为陶瓷板,该陶瓷板的渗透率与厚度根据实验要求制备。
所述含水层为多孔砾岩。
所述含水层维持单元包括氮气瓶、减压阀、气体增压泵、高压储气罐、第一压力控制阀、低压储气罐、第二压力控制阀、储液容器、电子天平、平流泵、储液罐;其中:
所述储液罐底部通过管路连接含水层接口以与含水层相连,用于补充含水层的水以及维持含水层压力;
所述氮气瓶依次通过减压阀、气体增压泵与高压储气罐相连;高压储气罐通过第一压力控制阀与储液罐相连,通过第一压力控制阀由高压储气罐向储液罐中注入高压氮气以维持含水层的压力,模拟含水层与水合物层的压差;
所述储液容器放置于电子天平上,储液容器通过平流泵与储液罐相连,用于向储液罐中补充水;
所述储液罐顶部通过第二压力控制阀与低压储气罐相连。
所述储液罐中设有液位计,用于测量储液罐中剩余水量。
当储液罐中剩余水量少于1/3时,通过平流泵将储液容器中的水注入到储液罐中,对储液罐进行补液。
在储液罐补液过程中,关闭第一压力控制阀,同时打开第二压力控制阀,将由水排出的气体注入到低压储气罐中以维持储液罐与含水层的压力稳定,根据高压储气罐与低压储气罐中的压力变化以及注水量计算获得含水层向水合物层的渗水量。
综上,本发明的优点是:本发明所述实验装置可以真实的模拟水合物藏地质环境,从而更加真是对成藏与开采过程进行综合评估,为天然气水合物开采提供指导。该模拟系统的实验过程简单易行,各模拟过程的可操作性强且具有实用价值。
附图说明
图1是本发明实施例的结构示意图。
附图标记说明:
1-高压反应釜,2-围压夹套,3-围压泵,4-围压接口,5-水浴夹套,6-模拟井,7-水合物层,8-低渗透层,9-含水层,10-含水层接口,11-氮气瓶,12-减压阀,13-气体增压泵,14-高压储气罐,15-压力控制阀,16-低压储气罐,17-压力控制阀,18-储液容器,19-电子天平,20-平流泵,21-储液罐,22-液位计。
具体实施方式
为了更好地理解本发明,下面结合附图对本发明作进一步的描述,但本发明的实施方式不限于此。
实施例
本发明的可渗透边界层天然气水合物开采模拟系统,其结构图如图1所示,它包括高压反应釜1,地层模拟单元与含水层维持单元。高压反应釜1内部为圆柱形,内部设有围压夹套2,高压反应釜1外壁设置有水浴夹套5,可外接恒温水浴用于提供所需的温度条件;高压反应釜1顶部中央布置有模拟井6,模拟井6可外接注液注气以及产气产水设备。地层模拟单元包括水合物层7、低渗透层8与含水层9。含水层维持单元包括氮气瓶11、减压阀12、气体增压泵13、高 压储气罐14、压力控制阀15、低压储气罐16、压力控制阀17、储液容器18、电子天平19、平流泵20、储液罐21、液位计22。
水合物层7填充为石英砂,再由高压反应釜1中的模拟井6注入所需溶液与气体形成水合物。低渗透层8为低渗透率陶瓷板,其渗透率与厚度可根据实验要求制备。含水层9为高渗透率多孔砾岩。
围压夹套2通过围压接口4连接围压泵3,通过围压泵3控制围压压力。水合物层7、低渗透层8与含水层9由上至下置于围压夹套2中,通过加载围压避免不同模拟地层之间的气水串流。
含水层维持单元中的储液罐21底部通过管路连接高压反应釜1底部的含水层接口10,与含水层9相连,用于补充含水层9的水以及维持含水层9压力。
含水层维持单元中氮气瓶11通过减压阀12、气体增压泵13与高压储气罐14相连;高压储气罐14通过压力控制阀15与储液罐21相连。通过压力控制阀15由高压储气罐14向储液罐21中注入高压氮气以维持含水层9的压力,模拟含水层9与水合物层7的压差。
储液容器18通过平流泵20与储液罐21相连,用于向储液罐21中补充水。储液罐21中设有液位计22,用于观察储液罐21中剩余水量。储液罐21顶部通过压力控制阀17与低压储气罐16相连。当储液罐21中剩余水量少于1/3时,通过平流泵20将储液容器18中的水注入到储液罐21中。在补液过程中,关闭压力控制阀15,同时打开压力控制阀17,将由补液时进入储液罐21中的水从储液罐21中所排出的气体注入到低压储气罐16中以维持储液罐21与含水层9的压力稳定。根据液位计22测量的水量变化与注水量计算获得含水层9向水合物层7的渗水量。,渗水量计算方程如下所示:
Q=W1-W2+Wi    (1)
式中:
Q:含水层9向水合物层7的渗水量。
W1:储液罐初始水量。
W2:储液罐实时水量。
Wi:实验过程中向储液罐注水量。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来 说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种可渗透边界层天然气水合物开采模拟装置,其特征在于,其包括高压反应釜(1)、地层模拟单元与含水层维持单元,其中,所述高压反应釜(1)的外壁设置有外接恒温水浴的水浴夹套(5),以提供高压反应釜(1)所需的温度条件,高压反应釜(1)顶部中央布置有外接注液注气以及产气产水设备的模拟井(6),高压反应釜(1)底部设有一含水层接口(10),所述地层模拟单元设置于高压反应釜(1)中,所述含水层维持单元通过管路与含水层接口(10)连接。
  2. 如权利要求1所述的可渗透边界层天然气水合物开采模拟装置,其特征在于,所述高压反应釜(1)内部为圆柱形,该高压反应釜(1)的内部设有围压夹套(2),围压夹套(2)通过围压接口(4)连接围压泵(3),以通过围压泵(3)控制围压压力。
  3. 如权利要求2所述的可渗透边界层天然气水合物开采模拟装置,其特征在于,所述地层模拟单元包括水合物层(7)、低渗透层(8)与含水层(9),所述水合物层(7)、低渗透层(8)与含水层(9)由上至下置于围压夹套(2)中,通过加载围压避免不同模拟地层之间的气水串流。
  4. 如权利要求3所述的可渗透边界层天然气水合物开采模拟装置,其特征在于,所述水合物层(7)填充为石英砂,再由模拟井(6)注入所需溶液与气体形成水合物。
  5. 如权利要求3所述的可渗透边界层天然气水合物开采模拟装置,其特征在于,所述低渗透层(8)为陶瓷板,该陶瓷板的渗透率与厚度根据实验要求制备。
  6. 如权利要求3所述的可渗透边界层天然气水合物开采模拟装置,其特征在于,所述含水层(9)为多孔砾岩。
  7. 如权利要求3-6任一项所述的可渗透边界层天然气水合物开采模拟装置,其特征在于,所述含水层维持单元包括氮气瓶(11)、减压阀(12)、气体增压泵(13)、高压储气罐(14)、第一压力控制阀(15)、低压储气罐(16)、第二压力控制阀(17)、储液容器(18)、电子天平(19)、平流泵(20)、储液罐(21); 其中:
    所述储液罐(21)底部通过管路连接含水层接口(10)以与含水层(9)相连,用于补充含水层(9)的水以及维持含水层(9)压力;
    所述氮气瓶(11)依次通过减压阀(12)、气体增压泵(13)与高压储气罐(14)相连;高压储气罐(14)通过第一压力控制阀(15)与储液罐(21)相连,通过第一压力控制阀(15)由高压储气罐(14)向储液罐(21)中注入高压氮气以维持含水层(9)的压力,模拟含水层(9)与水合物层(7)的压差;
    所述储液容器(18)放置于电子天平(19)上,储液容器(18)通过平流泵(20)与储液罐(21)相连,用于向储液罐(21)中补充水;
    所述储液罐(21)顶部通过第二压力控制阀(17)与低压储气罐(16)相连。
  8. 如权利要求7所述的可渗透边界层天然气水合物开采模拟装置,其特征在于,所述储液罐(21)中设有液位计(22),用于测量储液罐(21)中剩余水量。
  9. 如权利要求8所述的可渗透边界层天然气水合物开采模拟装置,其特征在于,当储液罐(21)中剩余水量少于1/3时,通过平流泵(20)将储液容器(18)中的水注入到储液罐(21)中,对储液罐(21)进行补液。
  10. 如权利要求9所述的可渗透边界层天然气水合物开采模拟装置,其特征在于,在储液罐(21)补液过程中,关闭第一压力控制阀(15),同时打开第二压力控制阀(17),将由水排出的气体注入到低压储气罐(16)中以维持储液罐(21)与含水层(9)的压力稳定,根据液位计(22)测量的水量变化与注水量计算获得含水层(9)向水合物层(7)的渗水量,渗水量计算方程如下:
    Q=W1-W2+Wi
    式中:
    Q:含水层(9)向水合物层(7)的渗水量;
    W1:储液罐初始水量;
    W2:储液罐实时水量;
    Wi:实验过程中向储液罐注水量。
PCT/CN2014/090331 2014-10-20 2014-11-05 一种可渗透边界层天然气水合物开采模拟实验装置 WO2016061854A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/765,475 US9970267B2 (en) 2014-10-20 2014-11-05 Experimental device for simulating exploitation of natural gas hydrate in permeable boundary layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410559230.1 2014-10-20
CN201410559230.1A CN104405345B (zh) 2014-10-20 2014-10-20 一种可渗透边界层天然气水合物开采模拟实验装置

Publications (1)

Publication Number Publication Date
WO2016061854A1 true WO2016061854A1 (zh) 2016-04-28

Family

ID=52643001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090331 WO2016061854A1 (zh) 2014-10-20 2014-11-05 一种可渗透边界层天然气水合物开采模拟实验装置

Country Status (3)

Country Link
US (1) US9970267B2 (zh)
CN (1) CN104405345B (zh)
WO (1) WO2016061854A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109681198A (zh) * 2019-01-25 2019-04-26 大连理工大学 一种针对不同类型天然气水合物储层的多方式开采模拟装置及方法
CN109707377A (zh) * 2019-01-28 2019-05-03 中国地质大学(武汉) 水合物开采储层响应与出砂综合模拟实验系统及其方法
CN111411943A (zh) * 2020-03-27 2020-07-14 青岛海洋地质研究所 一种测量水合物储层沉降变形场的装置及方法
CN117130070A (zh) * 2023-07-28 2023-11-28 大连理工大学 模拟co2地质封存全过程多参数监测装置、方法及应用

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9897529B2 (en) * 2015-09-23 2018-02-20 China University Of Petroleum (East China) Test system and test method for a simulation experiment of gas hydrate in a porous medium
CN105650462B (zh) * 2016-02-25 2017-12-15 常州墨之萃科技有限公司 一种石墨烯反应气体的回收、存储及再利用系统
CN106546527B (zh) * 2016-11-25 2023-12-05 浙江科技学院(浙江中德科技促进中心) 用于测量岩石渗透率的渗透仪
CN107045054B (zh) * 2016-12-20 2019-07-12 中国科学院广州能源研究所 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法
CN106593381B (zh) * 2017-01-19 2022-09-09 安徽理工大学 一种注气对煤层气在煤岩中的解吸渗流影响的测试装置及方法
CN107462508B (zh) * 2017-08-16 2018-10-02 西南石油大学 一种多场耦合渗流多功能实验装置及测试方法
CN107526892B (zh) * 2017-08-30 2018-07-31 广州海洋地质调查局 一种海洋天然气水合物试采储层的稳定性评估方法
CN107542456B (zh) * 2017-09-21 2023-04-25 中国石油大学(北京) 模拟渗流阻力对排水过程地层压力影响的实验装置及方法
CN107542457B (zh) * 2017-09-21 2023-05-09 中国石油大学(北京) 模拟地质构造对排水过程地层压力影响的实验装置及方法
WO2019170044A1 (zh) * 2018-03-05 2019-09-12 浙江大学 模拟深海海床响应的控压控温超重力实验装置
CN108505987A (zh) * 2018-04-02 2018-09-07 西南石油大学 一种气藏不同裂缝分布模式水侵实验装置及方法
CN109236243B (zh) * 2018-11-02 2023-11-14 广州海洋地质调查局 三维综合性储层水合物模拟分析系统及分析方法
CN109468150A (zh) * 2018-11-13 2019-03-15 黑龙江科技大学 静电场作用下瓦斯水合物高速合成装置
CN109540974B (zh) * 2018-12-10 2019-11-05 青岛海洋地质研究所 水合物岩心样品测试系统及其使用方法
CN109797702A (zh) * 2019-03-13 2019-05-24 安徽理工大学 一种基于承压含水层激流成因的珍珠泉模型
CN110206516B (zh) * 2019-04-26 2021-08-20 中国石油化工股份有限公司 一种模拟断块油藏调控注采实验装置及方法
CN110273679B (zh) * 2019-05-17 2023-03-24 江苏联友科研仪器有限公司 一种水合物开发分层物理模拟实验装置
CN110174342B (zh) * 2019-06-06 2022-02-11 中国石油大学(华东) 一种井筒超声波-酸化复合解堵模拟实验装置及方法
CN110513091B (zh) * 2019-09-09 2022-02-25 中国海洋石油集团有限公司 一种用于稠油热采实验的长水平段多点注汽测量装置
CN110618255B (zh) * 2019-10-24 2021-10-08 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 模拟地层成藏的围压试验装置、安装方法及试验方法
CN110905496B (zh) * 2019-12-09 2021-12-17 中国石油大学(北京) 一种气驱超覆模拟装置及其使用方法
CN111583769B (zh) * 2020-03-26 2022-07-01 广东工业大学 一种深海环境模拟温度控制系统及其使用方法
CN111477084B (zh) * 2020-03-26 2021-09-28 南方海洋科学与工程广东省实验室(广州) 一种深海冷泉生态系统形成演化模拟系统及方法
CN111691855B (zh) * 2020-05-22 2022-04-08 中海石油(中国)有限公司湛江分公司 常规天然气储层与甲烷水合物储层合采的模拟装置及方法
CN111691856B (zh) * 2020-05-22 2022-07-15 中海石油(中国)有限公司湛江分公司 上覆和边低水层对甲烷水合物开采影响模拟装置及方法
CN111827988B (zh) * 2020-07-15 2022-07-08 大连理工大学 一种可视大尺度的伸缩井热流固耦合天然气水合物开采实验模拟装置及方法
CN111948370B (zh) * 2020-08-06 2021-06-08 中国科学院广州能源研究所 用于天然气水合物实验系统的流场测量装置及测量方法
CN112034135B (zh) * 2020-08-06 2021-06-22 中国科学院广州能源研究所 一种天然气水合物分解地层形变测量装置
CN111997595A (zh) * 2020-08-06 2020-11-27 中国科学院广州能源研究所 一种天然气水合物地质分层装置和方法
CN111735751B (zh) * 2020-08-07 2023-04-11 中国海洋石油集团有限公司 一种水合物岩心渗透率双测装置及方法
CN112067785B (zh) * 2020-08-07 2021-05-14 中国科学院广州能源研究所 可拆分式天然气水合物模拟出砂防砂试验反应装置及方法
CN111794722B (zh) * 2020-08-14 2022-07-22 西南石油大学 海洋天然气水合物成藏-开发模拟实验系统及方法
CN112362552B (zh) * 2020-10-30 2022-11-22 中国石油大学(北京) 一种页岩基质渗透率测定装置和方法
CN114509532A (zh) 2020-11-16 2022-05-17 香港科技大学 离心机能量收集腔室、离心机能量收集腔室系统、以及模拟气体制取采集的方法
CN112816386B (zh) * 2020-12-31 2023-08-18 中国石油大学(华东) 水合物相变过程中含水合物储层渗透率的测定方法
CN112858018B (zh) * 2021-01-08 2022-06-28 青岛海洋地质研究所 含水合物沉积物旁压蠕变试验装置及方法
CN113202444A (zh) * 2021-05-12 2021-08-03 南方科技大学 一种天然气水合物储层加固方法
CN113391050B (zh) * 2021-06-28 2023-12-12 西南石油大学 一种用于分层模拟水合物成藏过程的实验装置及方法
CN113484218B (zh) * 2021-07-09 2022-09-06 中国科学院地质与地球物理研究所 水合物多孔介质合成装置、渗透率张量测试系统和方法
US11905812B2 (en) * 2021-08-24 2024-02-20 China University Of Petroleum (East China) Intra-layer reinforcement method, and consolidation and reconstruction simulation experiment system and evaluation method for gas hydrate formation
CN113882837B (zh) * 2021-09-26 2024-02-02 中国石油大学(华东) 一种底水稠油油藏水平井水锥形态模拟及控水降粘实验装置及实验方法
CN113958292B (zh) * 2021-11-25 2024-03-01 山东科技大学 一种可燃冰开采地层失稳机理模拟试验装置及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263360A (en) * 1992-04-17 1993-11-23 Halliburton Company Low permeability subterranean formation testing methods and apparatus
US20090055098A1 (en) * 2007-08-23 2009-02-26 Mese Ali I Determination of point of sand production initiation in wellbores using residual deformation characteristics and real time monitoring of sand protection
CN101963057A (zh) * 2010-09-21 2011-02-02 中国科学院广州能源研究所 一种天然气水合物地质分层模拟实验装置
CN102539296A (zh) * 2010-12-23 2012-07-04 中国海洋石油总公司 水合物沉积物渗流测试的方法及其专用装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3477364A (en) * 1965-02-12 1969-11-11 Brunswick Corp Apparatus for densifying wood bowling pin cores and other articles
US5162235A (en) * 1989-06-27 1992-11-10 The United States Of America As Represented By The Secretary Of The Navy Method for assessing distillate fuel stability by oxygen overpressure
US5540190A (en) * 1994-09-29 1996-07-30 Mississippi State University (Msu) Gas hydrate storage system and method for using the gas hydrate storage system in automotive vehicles
CN101046146A (zh) * 2007-04-06 2007-10-03 中国科学院广州能源研究所 天然气水合物二维开采模拟实验装置
JP5538703B2 (ja) * 2008-10-24 2014-07-02 株式会社ブリヂストン パンクシーリング剤の製造方法
RU2391650C1 (ru) * 2008-12-05 2010-06-10 Шлюмберже Текнолоджи Б.В. Способ определения содержания равновесной с газовым гидратом поровой воды в дисперсных средах (варианты)
CN101550816B (zh) * 2009-05-20 2011-12-07 中国科学院广州能源研究所 天然气水合物三维开采模拟实验装置
CN101575964B (zh) * 2009-06-05 2013-04-03 中国石油大学(北京) 模拟天然气水合物开采的实验方法及装置
CN101709639B (zh) * 2009-11-20 2013-08-21 中国石油大学(华东) 模拟深水油气开采的井筒多相流动装置
CA2824181C (en) * 2011-01-17 2015-02-17 Enfrac Inc. Fracturing system and method for an underground formation
US9091156B2 (en) * 2011-03-03 2015-07-28 Battelle Memorial Institute Downhole fluid injection systems, CO2 sequestration methods, and hydrocarbon material recovery methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263360A (en) * 1992-04-17 1993-11-23 Halliburton Company Low permeability subterranean formation testing methods and apparatus
US20090055098A1 (en) * 2007-08-23 2009-02-26 Mese Ali I Determination of point of sand production initiation in wellbores using residual deformation characteristics and real time monitoring of sand protection
CN101963057A (zh) * 2010-09-21 2011-02-02 中国科学院广州能源研究所 一种天然气水合物地质分层模拟实验装置
CN102539296A (zh) * 2010-12-23 2012-07-04 中国海洋石油总公司 水合物沉积物渗流测试的方法及其专用装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109681198A (zh) * 2019-01-25 2019-04-26 大连理工大学 一种针对不同类型天然气水合物储层的多方式开采模拟装置及方法
CN109707377A (zh) * 2019-01-28 2019-05-03 中国地质大学(武汉) 水合物开采储层响应与出砂综合模拟实验系统及其方法
CN109707377B (zh) * 2019-01-28 2023-06-06 中国地质大学(武汉) 水合物开采储层响应与出砂综合模拟实验系统及其方法
CN111411943A (zh) * 2020-03-27 2020-07-14 青岛海洋地质研究所 一种测量水合物储层沉降变形场的装置及方法
CN117130070A (zh) * 2023-07-28 2023-11-28 大连理工大学 模拟co2地质封存全过程多参数监测装置、方法及应用
CN117130070B (zh) * 2023-07-28 2024-05-28 大连理工大学 模拟co2地质封存全过程多参数监测装置、方法及应用

Also Published As

Publication number Publication date
US20160251943A1 (en) 2016-09-01
CN104405345A (zh) 2015-03-11
CN104405345B (zh) 2017-01-18
US9970267B2 (en) 2018-05-15

Similar Documents

Publication Publication Date Title
WO2016061854A1 (zh) 一种可渗透边界层天然气水合物开采模拟实验装置
Li et al. Experimental measurement and mathematical model of permeability with methane hydrate in quartz sands
Yang et al. A three-dimensional study on the formation and dissociation of methane hydrate in porous sediment by depressurization
Wang et al. A three-dimensional study on methane hydrate decomposition with different methods using five-spot well
Shen et al. Coupling effect of porosity and hydrate saturation on the permeability of methane hydrate-bearing sediments
Li et al. Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator
Gao et al. Production characteristics of two class water-excess methane hydrate deposits during depressurization
Chong et al. Effect of NaCl on methane hydrate formation and dissociation in porous media
Wang et al. Methane hydrate reformation in porous media with methane migration
Li et al. Production behavior of methane hydrate in porous media using huff and puff method in a novel three-dimensional simulator
Wang et al. Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system
Tohidi et al. CO2 hydrates could provide secondary safety factor in subsurface sequestration of CO2
Yuan et al. Gas production from methane-hydrate-bearing sands by ethylene glycol injection using a three-dimensional reactor
WO2018112902A1 (zh) 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法
CN102865066B (zh) 含天然气水合物相变的深水井筒多相流动实验装置及方法
CN110847873B (zh) 一种低渗天然气水合物藏原位水力射流开采装置及方法
Li et al. Experimental study on gas production from methane hydrate in porous media by huff and puff method in pilot-scale hydrate simulator
Almenningen et al. Visualization of hydrate formation during CO2 storage in water-saturated sandstone
CN101376853B (zh) 模拟一维条件下气体水合物成藏过程的方法及装置
WO2016078164A1 (zh) 天然气水合物开采全过程模拟实验系统及模拟方法
Feng et al. Entropy generation analysis of hydrate dissociation by depressurization with horizontal well in different scales of hydrate reservoirs
CN108051354B (zh) 一种基于脉冲衰减分析的低渗水合物沉积物渗透率测量方法与装置
CN111894529B (zh) 可燃冰开采泄漏模拟及环境参数定量反演的系统与方法
CN113062713B (zh) 一种模拟天然气水合物开采近井堵塞和解堵的实验装置及方法
CN111577212A (zh) 大尺度天然气水合物形成分解地质环境模拟系统及方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14765475

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904282

Country of ref document: EP

Kind code of ref document: A1