WO2017024538A1 - 一种岩心制备方法 - Google Patents

一种岩心制备方法 Download PDF

Info

Publication number
WO2017024538A1
WO2017024538A1 PCT/CN2015/086690 CN2015086690W WO2017024538A1 WO 2017024538 A1 WO2017024538 A1 WO 2017024538A1 CN 2015086690 W CN2015086690 W CN 2015086690W WO 2017024538 A1 WO2017024538 A1 WO 2017024538A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
sand
porosity
permeability
binder
Prior art date
Application number
PCT/CN2015/086690
Other languages
English (en)
French (fr)
Inventor
赵龙
Original Assignee
深圳朝伟达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳朝伟达科技有限公司 filed Critical 深圳朝伟达科技有限公司
Priority to PCT/CN2015/086690 priority Critical patent/WO2017024538A1/zh
Priority to PCT/CN2015/096204 priority patent/WO2017024701A1/zh
Publication of WO2017024538A1 publication Critical patent/WO2017024538A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q

Definitions

  • the invention relates to oil and gas production simulation experiment technology, in particular to a core preparation method.
  • hydrate simulation experiments at home and abroad generally use quartz sand, silica gel, glass, activated carbon and other materials to simply fill the reactor and then compact to make the core.
  • the basic physical property parameters of the hydrate formation including permeability, porosity, mechanical strength and the like, are generally not considered in the production process, the core obtained by artificial filling and compression is compared with the real gas hydrate formation: core The mechanical strength is low, easy to loose, and it is easy to cause blockage of the instrument pipeline; the reproducibility of basic physical parameters such as core permeability and porosity is low, which is not conducive to the comparison experiment and repeated experiments.
  • a core preparation method comprising:
  • the core preparation method further comprises subjecting the determined amount of the base sand, the adjusting agent and the binder in the S3 to a constant temperature treatment, the temperature range is 20 degrees Celsius to 50 degrees Celsius, and the constant temperature treatment time is at least 10 minutes. .
  • the method further includes:
  • the temperature of the constant temperature treatment and constant temperature curing is 35 degrees Celsius.
  • the sand obtained in S4 comprises:
  • the base sands of various particle sizes are uniformly mixed, and then the binder is added by a differential method, and finally the modifier is added.
  • pressing the core sand in S5 comprises:
  • the core sand material is first divided into at least 2 parts, and then the core sand material is loaded into the core mold at least 2 times and pressurized in several stages.
  • the pressurization time ranges from 20 minutes to 60 minutes; the pressurized pressure ranges from 5 MPa to 15 MPa.
  • it further comprises:
  • S10 repeating S1 to S9 to the prepared core, the permeability and porosity are close to or equal to the permeability and porosity of the simulated formation.
  • the permeability decreases as the regulator, binder content, pressure and time of pressing increase
  • the porosity first increases as the content of the regulator increases, and then decreases as the content of the regulator increases; the porosity increases with the binder content, pressure And the time increases and decreases.
  • the base sand comprises natural quartz sand of different particle sizes selected according to particle gradation of the original formation;
  • the binder is an epoxy resin and a polyamide resin;
  • the modifier is a sodium base Bentonite.
  • the invention has the characteristics and advantages that the present invention provides a core preparation method, which is based on basic physical parameters such as permeability, porosity and mechanical strength of an artificial core used in a conventional hydrate simulation experiment, and an in situ hydrate formation. big different In the core preparation method of the present invention, under the premise of determining the basic physical parameters of the formation, the ratio of the particle size of the base sand and the ratio of the regulator and the binder are used to suppress the core, thereby simulating the hydrate. The formation can also be adjusted by orthogonal test, and the basic physical parameters of the core are close to the natural gas hydrate formation in the real frozen soil area.
  • the core prepared by using the core preparation method of the invention has multiple mechanical strengths, and the physical properties of the core can be adjusted according to orthogonal experiments, which is advantageous for batch production for comparison and repeated tests.
  • the basic physical parameters satisfy the simulation experiment of hydrate formation properties and mining technology.
  • Figure 1 is a flow chart 1 of a method for preparing a core according to the present invention
  • Figure 2 is a flow chart 2 of the steps of the core preparation method of the present invention.
  • FIG. 3 is a schematic structural view of an artificial core preparation device
  • FIG. 4 is a histogram of a core mercury intrusion volume and a core pore size obtained by performing a mercury intrusion test using a core preparation method of the present invention
  • Figure 5 is a trend diagram of a regulator, a binder, a pressure, and a time and permeability obtained using a core preparation method of the present invention
  • Figure 6 is a graph of the regulator, binder, pressure and time versus porosity obtained using a core preparation process of the present invention.
  • a flow chart 1 of a method for preparing a core according to the present invention includes:
  • the core size is set in S3 to set the length of the core and the diameter of the core to obtain the volume of the core.
  • the amount of the base sand and the amount of the regulator are calculated according to the set core volume and density.
  • the core preparation method further comprises subjecting the determined amount of the base sand, the adjusting agent and the binder in the S3 to a constant temperature treatment, the temperature range is 20 degrees Celsius to 50 degrees Celsius, and the constant temperature treatment time is at least 10 minutes. .
  • the determined amount of the base sand, the adjusting agent and the binder are subjected to a constant temperature treatment, the weighed base sand, the adjusting agent and the binder may be placed in an incubator. After the constant weighing of the weighed base sand, the adjusting agent and the binder, the materials are kept at the same temperature, and the constant temperature treatment can also heat the binder. To ensure its good liquidity.
  • the oven has a set temperature range of 20 degrees Celsius to 50 degrees Celsius.
  • the oven has a set temperature of 35 degrees Celsius.
  • the temperature is lower than 20 degrees Celsius, the fluidity of the binder is deteriorated; when the temperature is higher than 50 degrees Celsius, the binder easily decomposes a small amount of ammonia gas, and when the temperature is 35 degrees Celsius, the The binder has good fluidity and does not decompose.
  • the time of the constant temperature treatment can be set to 10 minutes or more to ensure that the various materials are maintained at the same temperature.
  • obtaining the sand in S4 comprises: uniformly mixing the base sands of different particle sizes, then adding the binder by a differential method, and finally adding the adjusting agent.
  • pressing the core sand material in S5 comprises: first dividing the core sand material into at least 2 parts, and then loading the core sand material into the core mold at least 2 times, and pressurizing in stages.
  • the pressurization time ranges from 20 minutes to 60 minutes; the pressurized pressure ranges from 5 MPa to 15 MPa.
  • the flow chart 2 of the core preparation method of the present invention further includes:
  • S10 repeating S1 to S9 to the prepared core, the permeability and porosity are close to or equal to the permeability and porosity of the simulated formation.
  • the core When the obtained core is subjected to constant temperature maintenance in S6, the core may be placed in an incubator and subjected to constant temperature treatment.
  • the set temperature of the oven is the same as the temperature of the constant temperature treatment in S3.
  • the constant temperature curing time is 3 to 5 days to protect After the constant temperature curing, the binder is fully consolidated to ensure the mechanical strength of the core.
  • the core prepared by the core preparation method of the invention has a permeability which decreases with the increase of the regulator, the binder content, the pressing pressure and the time; the porosity first follows the content of the regulator The increase increases and then decreases as the modifier content increases; the porosity decreases as the binder content, pressurization pressure and time increase. Therefore, when the prepared core has a difference in permeability and porosity from the permeability and porosity of the formation to be simulated, one of adjusting the modifier content, the binder content, the pressure and the pressure can be adjusted. Or a plurality such that the core prepared by the core preparation method of the present invention is close to or equal to the permeability and porosity of the simulated formation.
  • the base sand in the core preparation method may be natural quartz sand of different particle diameters selected according to the particle size distribution of the original formation;
  • the binder may be an epoxy resin and a polyamide resin corresponding thereto;
  • the agent may be sodium bentonite.
  • the core prepared by the core preparation method is prepared by mixing natural quartz sand, epoxy resin and corresponding polyamide resin and sodium bentonite, and the core formula is proportioned by weight.
  • the experiment was to simulate a hydrate well section formation, and a man-made core with a diameter of 50 mm and a length of about 600 mm was prepared for subsequent hydrate simulation experiments.
  • the basic physical parameters of the formation are shown in Table 1.
  • the basic physical parameters of the formation are to be simulated, including porosity and permeability, unit millidarcy (mD); density, in grams per cubic centimeter (g/cm 3 ); Uniaxial compressive strength in megapascals (MPa) and composition.
  • the components described in Table 1 are volume percent, wherein the sand and silt correspond to the volume percent of the base sand and the clay corresponds to the volume percent of the conditioner.
  • the density of the sand and silt was 2.6 g/cm 3 ; the density of the clay was 1.4 g/cm 3 .
  • sodium bentonite can be used to adjust the permeability, porosity and hydrophilicity of the core and as the main source of mineral components.
  • the binder can be selected from epoxy resin with good epoxy value and medium strength and low temperature. 44 and the corresponding polyamide resin.
  • the proportion of different sizes of different sizes of ground sand can be determined according to the particle gradation of the original formation, and the amount of the base sand and the regulator can be roughly calculated according to the cross-sectional area, length and density of the pressed core.
  • the range of dosage For example, it may be 3 to 6 parts of a modifier, 0.5 to 1.1 parts of an epoxy resin, and 0.5 to 1.1 parts of a polyamide resin under conditions of 40 parts of a base sand.
  • the amount of each core material of each core of the nine cores in the orthogonal test was calculated.
  • the core length to be produced in the test is 600 mm (mm) and the diameter is 50 mm.
  • the initial core density is 2 g/cm 3
  • the required base sand is calculated to be 2140 g (g) according to Table 3.
  • 2140 g of base sand was sieved and mixed according to Table 3 using a sample sieve, and 240.75 g of a regulator was weighed.
  • the weighed base sand, conditioner and binder were placed in an incubator at 35 ° C for 10 minutes (min) to ensure good fluidity of the binder and to make the temperatures of the materials the same.
  • the core sand material is obtained.
  • the core sand material is placed in an artificial core preparation device for pressing to obtain a preliminary core.
  • FIG. 3 is a schematic structural view of an artificial core preparation device.
  • the artificial core preparation device comprises a core barrel 1 Plug 2, first clamp 3 and second clamp 4.
  • the core barrel 1 is a cylindrical barrel spliced by two semi-cylindrical shells.
  • the axial length L of the core barrel 1 is 900 mm.
  • a plug 2 is provided at one end of the core barrel 1, and the plug 2 is used to seal one end of the core barrel 1.
  • the first clip 3 is disposed at the periphery of the plug 2.
  • the inner wall of the first clamp 3 is stepped and is a step clamp.
  • the first clamp 3 is used to fasten the plug 2 and the core barrel 1.
  • At the other end of the core barrel 1 is an open end for adding core sand.
  • a second clamp 4 is provided at one end of the core barrel 1 to which the core sand is added for fastening the core barrel 1.
  • the inner diameter of the second clamp 4 is the same as the outer wall of the core barrel 1, and is a through clamp.
  • Matching screws 5 are also provided on the two cylinders of the core barrel 1. The screws 5 are evenly distributed along the direction in which the core barrel 1 extends in the axial direction.
  • the inner walls of the two cylinders of the core barrel 1 are first wiped with a small amount of bentonite to reduce the friction of the inner wall.
  • the two cylinders of the core barrel 1 are combined, one end of the plug 2 is mounted and tightened with the first clamp 3, and the other end is tightened by the second clamp 4.
  • the clamp tightening gap should be perpendicular to the gap of the core barrel. After the two ends of the clamp are installed, the core barrel 1 is screwed.
  • the second clamp 4 is removed, and the core cylinder 1 is erected, and the end of the plug 2 is disposed at the lower end and the open end is at the upper end.
  • the open end of the core barrel 1 is filled with 1/2 of the sand, and after being compacted with a wooden rod, the remaining depth is L1, and the L1 is about 450 mm.
  • the second clamp 3 is removed, the plug 2 is removed and a core rod having a length of 400 mm is filled, and the core cylinder 1 filled with sand is placed horizontally on the pressurizing device.
  • the stop pressure value is set to 10 MPa, and the movable plug is disposed at both ends of the core barrel 1, and the core sand is axially pressurized by the movable plugs at both ends. During the movement of the active plug, the pressure gradually reaches the set value and stops.
  • the core barrel was removed and the 400 mm core rod was pulled out, and the remaining sand and 100 mm core rods were loaded in the same manner, pressurized to 10 MPa and maintained under pressure for 60 minutes. The uniformity of the pressed core can be ensured by two fillings and pressurization of the movable plug at both ends.
  • the obtained core was subjected to a mercury intrusion experiment for obtaining a ratio of pores of different sizes to the total pore volume.
  • the pore size distribution obtained by the mercury intrusion experiment is as shown in Fig. 4.
  • the abscissa is the pore size in micrometers ( ⁇ m); the ordinate is the mercury intrusion volume in milliliters (ml).
  • Fig. 4 It can be seen from Fig. 4 that the pore size distribution of the prepared core is continuous and uninterrupted, and is normally distributed.
  • the pore size distribution of the core which is normally distributed is close to that of the natural core.
  • the remaining 8 cores were prepared in the same manner according to the formulation of the orthogonal test and subjected to constant temperature curing.
  • the main influencing factors of the permeability of the target core are: bentonite, binder, pressure and time.
  • bentonite is obtained by range analysis.
  • the ordinate on the graph indicates the permeability of the core in millidarcy (mD), and the abscissa corresponds to each level of each factor, where factor A represents the regulator, Factor B represents the binder, factor C represents the pressure, and factor D represents time.
  • the permeability decreases as the regulator, binder content, pressure and time increase.
  • the main influencing factors of the target core porosity are: regulator, binder, pressure and time.
  • the trend diagram of the influence of modifier, binder, pressure and time on porosity is obtained by range analysis.
  • the ordinate indicates the porosity of the core, and the abscissa corresponds to each level of each factor.
  • A represents bentonite
  • factor B represents binder
  • factor C represents pressure
  • factor D represents time. It can be seen from Fig. 6 that the porosity first increases with the increase of the regulator content, and then decreases with the increase of the modifier content, and decreases with the increase of the binder content, pressure and time.
  • the artificial core of the formula can be adjusted according to the relationship to simulate the hydrate formation of various desired physical parameters.
  • the core preparation method of the present invention can accurately simulate the hydrate formation skeleton in the permafrost region by the orthogonal core analysis, and the permeability, porosity and actual formation of the core are very close, and the mechanical strength is satisfied.
  • the experiment requires and the pore distribution is the same normal distribution as the natural core.
  • the invention provides a core preparation method, and the invention is larger than the basic physical parameters such as permeability, porosity and mechanical strength of the artificial core used in the existing hydrate simulation experiment, and the difference in the in situ hydrate formation.
  • the core preparation method determines the basic physical property parameters of the formation, and rationally selects the ratio of the particle size of the base sand and the ratio of the regulator and the binder to suppress the core, thereby simulating the hydrate formation; Through the orthogonal experiment, the parameter adjustment is made, and the basic physical parameters of the core are close to the natural gas hydrate formation in the real frozen soil area, and the pore distribution is closer to the normal distribution characteristics of the real formation.
  • the core prepared by using the core preparation method of the invention has multiple mechanical strengths, and the physical properties of the core can be adjusted according to orthogonal experiments, which is advantageous for batch production for comparison and repeated tests.
  • the basic physical parameters satisfy the simulation experiment of hydrate formation properties and mining technology.
  • the core preparation method of the present invention in the production process, a constant temperature curing method is adopted, and the fluidity of the binder is increased by increasing the temperature to uniformly mix the core sand material.
  • the core sand material In the existing core production, the core sand material is usually uniformly mixed by adding a diluent.
  • the present invention reduces the addition of chemical agents due to the absence of a diluent, and makes the core electrical properties closer to the real formation.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

一种岩心制备方法,包括:S1:获取欲模拟地层的组份、颗粒级配以及密度;S2:根据所述模拟地层的组份确定基砂与调节剂的比例范围,根据所述颗粒级配确定基砂的颗粒级配;S3:设定岩心尺寸,根据所述设定的岩心尺寸及所述欲模拟地层的密度确定所述基砂和调节剂的用量;S4:在上述确定用量的基砂中加入一定量的粘结剂,再加入与所述基砂用量相适应比例的调节剂,再混合均匀以获得岩心砂料;S5:通过模压成型的方式压制所述岩心砂料,以获得岩心;S6:将所述获得的岩心进行恒温养护。通过使用所述的岩心制备方法制作出的岩心的基本物性参数接近真实冻土区天然气水合物地层,孔隙分布更加接近真实地层的正态分布特征,有利于批量制作进行对比和重复试验。

Description

一种岩心制备方法 技术领域
本发明涉及油气开采模拟实验技术,特别涉及一种岩心制备方法。
背景技术
随着世界常规能源储量的日益消耗与人类对能源需求的急速增长,寻找新的可替代能源迫在眉睫。其中天然气水合物作为一种新型高效能源,已经成为全球能源和环境研究的热点,被誉为21世纪具有商业开发前景的战略资源。
由于所述天然气水合物广泛分布世界冻土区和海洋地区,开采难度大,因此开采技术要求高。而针对水合物地层的开采技术进行研究时,通常需要先对水合物对地层取样,以进行相关的水合物模拟实验研究。然而由于水合物地层天然岩心的获取异常困难且成本高昂,进行所述水合物模拟实验研究时,通常使用人造岩心以替代天然岩心。
目前国内外水合物模拟实验研究中一般通过采用石英砂、硅胶、玻璃、活性炭等材料简单充填到反应釜中然后压实来制作岩心。由于所述制作过程中一般不考虑与水合物地层基本物性参数包括:渗透率,孔隙度,力学强度等参数的匹配,因此目前人工充填压制获得的岩心与真实的天然气水合物地层相比:岩心力学强度较低,易松散,容易会造成仪器管路的堵塞;岩心渗透率、孔隙度等基本物性参数的可重复性低,不利于对比实验和重复实验的进行。
因此目前需要一种能够使得岩心的基本物性参数接近真实冻土区天然气水合物地层的岩心制作方法。
发明内容
本发明的目的是提供一种岩心制备方法,以获得基本物性参数与真实天然气水合物地层的物性参数接近的岩心。
本发明的上述目的可采用下列技术方案来实现:
一种岩心制备方法,包括:
S1:获取欲模拟地层的组份、颗粒级配以及密度;
S2:根据所述模拟地层的组份确定基砂与调节剂的比例范围,根据所述颗粒级配确定基砂的颗粒级配;
S3:设定岩心尺寸,根据所述设定的岩心尺寸及所述欲模拟地层的密度确定所述基砂和调节剂的用量;
S4:在上述确定用量的基砂中加入一定量的粘结剂,再加入与所述基砂用量相适应比例的调节剂,再混合均匀以获得岩心砂料;
S5:通过模压成型的方式压制所述岩心砂料,以获得岩心。
在优选的实施方式中,所述岩心制备方法还包括将S3中确定用量的基砂、调节剂以及粘结剂进行恒温处理,温度范围为20摄氏度至50摄氏度,恒温处理的时间至少为10分钟。
在优选的实施方式中,还包括:
S6:将所述获得的岩心进行恒温养护,温度范围为20摄氏度至50摄氏度,恒温养护的时间为3至5天。
在优选的实施方式中,所述恒温处理、恒温养护的温度为35摄氏度。
在优选的实施方式中,S4中获得砂料包括:
先将各种不同粒径的基砂混合均匀,然后通过差量法加入粘结剂,最后加入调节剂。
在优选的实施方式中,S5中压制所述岩心砂料包括:
先将岩心砂料至少分为2份,然后在岩心模具中分至少2次装入岩心砂料,并分次加压。
在优选的实施方式中,所述加压的时间范围为:20分钟至60分钟;所述加压的压力范围为:5兆帕至15兆帕。
在优选的实施方式中,其还包括:
S7:获取欲模拟地层的渗透率、孔隙度;
S8:测定所述经过恒温养护的岩心的渗透率、孔隙度,并与所述欲模拟地层的渗透率、孔隙度对比;
S9:当两者的渗透率或孔隙度有差异时,调整所述调节剂含量、粘结剂含量,加压的压力和时间中的一个或多个;
S10:重复S1至S9至制备的岩心的渗透率、孔隙度与所述欲模拟地层的渗透率、孔隙度接近或相等为止。
在优选的实施方式中,所述渗透率随着所述调节剂、粘结剂含量,压制的压力和时间的增大而减小;
所述孔隙度先随着所述调节剂含量的增大而增加,后随着所述调节剂含量的增大而减小;所述孔隙度随着所述粘结剂含量,加压的压力和时间的增大而减小。
在优选的实施方式中,所述基砂包括依据原始地层的颗粒级配选取的不同粒径的天然石英砂;所述粘结剂为环氧树脂和聚酰胺树脂;所述调节剂为钠基膨润土。
本发明的特点和优点是:本发明提供了一种岩心制备方法,相对于现有水合物模拟实验中所用的人造岩心的渗透率、孔隙度和力学强度等基本物性参数与原位水合物地层差异较大 而言,本发明所述的岩心制备方法在确定地层的基本物性参数的前提下,合理选用基砂的粒径配比与以及调节剂、粘结剂的比例来压制岩心,进而来模拟水合物地层;另外还可通过正交试验,进行参数调整,所制作出的岩心的基本物性参数接近真实冻土区天然气水合物地层。另外使用本发明所述的岩心制备方法制作的岩心由于是多次加压,具有较强的力学强度加上岩心物性参数可以根据正交试验进行调整,有利于批量制作进行对比和重复试验,其基本物性参数满足水合物地层物性及开采技术模拟实验研究。
附图说明
图1是本发明一种岩心制备方法的步骤流程图1;
图2是本发明一种岩心制备方法的步骤流程图2;
图3是一种人造岩心制备装置的结构示意图;
图4是使用本发明一种岩心制备方法进行压汞实验获得的岩心汞侵入体积与岩心孔隙尺寸直方图;
图5是使用本发明一种岩心制备方法获得的调节剂、粘结剂、压力和时间与渗透率的趋势图;
图6是使用本发明一种岩心制备方法获得的调节剂、粘结剂、压力和时间与孔隙度的趋势图。
具体实施方式
下面将结合附图和具体实施例,对本发明的技术方案作详细说明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落入本申请所附权利要求所限定的范围内。
本发明提供了一种岩心制备方法,解决了现有水合物模拟实验中所用人造岩心的渗透率、孔隙度和力学强度等基本物性参数与原水合物地层差异较大的问题。请参阅图1,本发明所述岩心制备方法步骤流程图1包括:
S1:获取欲模拟地层的组份、颗粒级配以及密度;
S2:根据所述模拟地层的组份确定基砂与调节剂的比例范围,根据所述颗粒级配确定基砂的颗粒级配;
S3:设定岩心尺寸,根据所述设定的岩心尺寸及所述欲模拟地层的密度确定所述基砂和调节剂的用量;
S4:在上述确定用量的基砂中加入一定量的粘结剂,再加入与所述基砂用量相适应比例的 调节剂,再混合均匀以获得岩心砂料;
S5:通过模压成型的方式压制所述岩心砂料,以获得岩心。
S3中所述设定岩心尺寸为设定岩心的长度和岩心的直径,以获得岩心的体积。按照所设定的岩心体积以及密度计算出基砂的用量和调节剂的用量。
在优选的实施方式中,所述岩心制备方法还包括将S3中确定用量的基砂、调节剂以及粘结剂进行恒温处理,温度范围为20摄氏度至50摄氏度,恒温处理的时间至少为10分钟。将所述确定用量的基砂、调节剂和粘结剂进行恒温处理时,可将所述称量好的基砂、调节剂及粘结剂放置于恒温箱中。通过对所述称量好的基砂、调节剂及粘结剂进行恒温处理后,使得各种材料都保持在相同的温度上,另外所述恒温处理还可以对所述粘结剂进行加热,以保证其良好的流动性。所述恒温箱的设定温度范围为20摄氏度至50摄氏度。在优选的实施方式中,所述恒温箱的设定温度为35摄氏度。当温度低于20摄氏度时,所述粘结剂的流动性变差;当温度高于50摄氏度时,所述粘结剂容易分解出少量的氨气,而当温度为35摄氏度时,所述粘结剂的流动性较好且不会进行分解。所述恒温处理的时间可设定为10分钟(min)以上,以保证所述各种材料都保持在相同的温度上。
在优选的实施方式中,S4中获得砂料包括:先将各种不同粒径的基砂混合均匀,然后通过差量法加入粘结剂,最后加入调节剂。
在优选的实施方式中,S5中压制所述岩心砂料包括:先将岩心砂料至少分为2份,然后在岩心模具中分至少2次装入岩心砂料,并分次加压。所述加压的时间范围为:20分钟至60分钟;所述加压的压力范围为:5兆帕至15兆帕。
请参阅图2,本发明所述岩心制备方法步骤流程图2还包括:
S6:将所述获得的岩心进行恒温养护,温度范围为20摄氏度至50摄氏度,恒温养护的时间为3至5天;
S7:获取欲模拟地层的渗透率、孔隙度;
S8:测定所述经过恒温养护的岩心的渗透率、孔隙度,并与所述欲模拟地层的渗透率、孔隙度对比;
S9:当两者的渗透率或孔隙度有差异时,调整所述调节剂含量、粘结剂含量,加压的压力和时间中的一个或多个;
S10:重复S1至S9至制备的岩心的渗透率、孔隙度与所述欲模拟地层的渗透率、孔隙度接近或相等为止。
S6中将所述获得的岩心进行恒温养护时,可以将所述岩心放入恒温箱中,进行恒温处理所述恒温箱的设定温度与S3中恒温处理的温度相同。所述恒温养护的时间为3至5天,以保 证恒温养护后所述粘结剂充分固结,保证岩心的力学强度。
本发明所述岩心制备方法制备的岩心,其渗透率随着所述调节剂、粘结剂含量,压制的压力和时间的增大而减小;其孔隙度先随着所述调节剂含量的增大而增加,后随着所述调节剂含量的增大而减小;所述孔隙度随着所述粘结剂含量,加压的压力和时间的增大而减小。因此当所述制备的岩心其渗透率和孔隙度与欲模拟地层的渗透率和孔隙度有差别时,可以通过调整所述调节剂含量、粘结剂含量,加压的压力和时间中的一个或多个,使得通过本发明所述的岩心制备方法制备的岩心与所述欲模拟地层的渗透率和孔隙度接近或相等。
所述岩心制备方法中的基砂可为依据原始地层的颗粒级配选取的不同粒径的天然石英砂;所述粘结剂可为环氧树脂和与之对应的聚酰胺树脂;所述调节剂可为钠基膨润土。
所述岩心制备方法制备的岩心由天然石英砂、环氧树脂和与之对应的聚酰胺树脂和钠基膨润土混合压制而成,岩心的配方按重量份进行配比。
下面结合具体的实例对本发明作进一步说明。
实验欲模拟某一水合物井井段地层,制作直径为50毫米,长度约为600毫米的人造岩心用于后续水合物模拟实验。
井段地层的基本物性参数如表1所示,欲模拟地层的基本物性参数,包括孔隙度、渗透率,单位毫达西(mD);密度,单位克每立方厘米(g/cm3);单轴抗压强度,单位兆帕(MPa)和组份。表1中所述组份为体积百分含量,其中砂和粉砂对应着基砂的体积百分数,粘土对应着调节剂的体积百分数。所述砂和粉砂的密度为2.6g/cm3;所述粘土的密度为1.4g/cm3
表1
Figure PCTCN2015086690-appb-000001
试验中根据预模拟地层的颗粒级配选取不同粒径的天然石英砂均匀混合制作成基砂,以构建岩心的主要骨架。
实验中对应选取的基砂配比如表2所示。
表2
Figure PCTCN2015086690-appb-000002
Figure PCTCN2015086690-appb-000003
另外试验中可选用钠基膨润土调节岩心的渗透率、孔隙度和亲水性以及作为矿物成分的主要来源;粘结剂可选择环氧值中等、低温条件下强度较好的环氧树脂E-44和对应的聚酰胺树脂。上述岩心配方中,可根据原始地层的颗粒级配确定不同目数不同行粒径基砂的比例,按照所压制岩心的横截面积和长度以及密度大致计算出基砂的用量和调节剂的用量范围。例如可在基砂40份条件下,调节剂3至6份,环氧树脂0.5至1.1份,聚酰胺树脂0.5至1.1份。
试验中选取调节剂、粘结剂含量,压力及加压时间四个因素作为渗透率和孔隙度的主要影响因素,每个因素选择三个水平设计L9(34)正交试验,其正交试验因素和水平如表3所示。
表3
Figure PCTCN2015086690-appb-000004
根据欲制作岩心的尺寸及配方表计算正交试验中9根岩心每单根岩心各材料的用量。
试验中需制作的岩心长为600毫米(mm),直径50毫米,初步设岩心密度为2g/cm3,则按表3计算所需基砂为2140克(g)。利用样品筛按照表3筛选并混合制作2140g基砂,称量240.75g调节剂。将所述称量好的基砂、调节剂以及粘结剂放置于35℃的恒温箱中保温10分钟(min),以保证所述粘结剂具有良好流动性和使各材料温度相同。将2140g基砂大致分成三分,一份放入搅拌器器皿中,然后放置在调整水平后的电子天平上归零,缓慢倒入粘结剂中的环氧树脂,使天平读数为53.5g。在所述加入所述环氧树脂的过程中,如若超量,可用纸张蘸取取出。接着撒上第二份基砂盖住环氧树脂,天平归零,用同样的方法倒入粘结剂中的53.5g聚酰胺树脂,然后撒上基砂,以尽量使粘结剂在搅拌的过程中接触混合。将器皿安置在搅拌机上搅拌5分钟使粘结剂均匀覆膜于基砂颗粒表面,然后边搅拌的过程中边缓慢加入调节剂使搅拌均匀。
当将所述基砂与粘结剂、调节剂混合均匀后,获得岩心砂料。接下来,将所述岩心砂料放入人造岩心制备装置中进行压制,以获得初步的岩心。
请参阅图3,为一种人造岩心制备装置结构示意图。所述人造岩心制备装置包括岩心筒1、 堵头2、第一卡箍3和第二卡箍4。所述岩心筒1为由两半圆柱壳体拼接的圆柱筒体。所述岩心筒1的轴向长度L为900毫米。在所述岩心筒1的一端设置有堵头2,所述堵头2用于密封所述岩心筒1的一端。在所述堵头2的外围设置有所述第一卡箍3。所述第一卡箍3内壁成台阶状,为台阶卡箍。所述第一卡箍3用于将所述堵头2和岩心筒1紧固。在所述岩心筒1的另一端为敞口端,用于加入岩心砂料。在所述岩心筒1加入岩心砂料的一端设置有第二卡箍4,用于将所述岩心筒1紧固。所述第二卡箍4内径与所述岩心筒1的外壁相同,为直通卡箍。在所述岩心筒1的两半筒体上还设置匹配的螺丝5。所述螺丝5沿着所述岩心筒1轴向延伸的方向均匀分布。
使用所述人造岩心制备装置进行压制岩心砂料时,先将所述岩心筒1的两半筒体的内壁用少量膨润土擦试以减小内壁的摩擦力。再将所述岩心筒1的两半筒体合并,一端安装上堵头2并用所述第一卡箍3拧紧,另一端用所述第二卡箍4拧紧。在拧卡箍时,卡箍收紧豁口应与岩心筒的缝隙垂直。装好两端卡箍后,再将所述岩心筒体1螺丝拧紧。
当所述人造岩心制备装置安装好后,拆掉所述第二卡箍4,将所述岩心筒1立起,所述设置有堵头2的一端在下,敞口端在上。接着向所述岩心筒1的敞口端填入砂料的1/2,用木棒冲实后剩余深度为L1,所述L1约为450毫米。拆掉所述第二卡箍3,取下所述堵头2并填入长度为400毫米的岩心棒,将填好砂的岩心筒1水平放置在加压设备上。设定停止压力值为10兆帕,在所述岩心筒1的两端设置活动堵头,通过两端活动堵头行进,对所述岩心砂料进行轴向加压。活动堵头行进过程中压力逐渐达到设定值并停止。取下岩心筒拉出400毫米岩心棒,用相同的方法装入剩下的砂料和100毫米岩心棒,加压至10兆帕并维持加压状态60分钟。通过两次填料和两端活动堵头加压可以确保所压制岩心的均匀性。
取下所述岩心筒1水平放置在工作台上,拧下螺丝后打开两半岩心筒1,用橡胶棰轻敲岩心棒然后将岩心沿岩心筒2的筒体内壁缓慢推出,用平板承接后水平放入35℃的恒温箱中养护72小时使粘结剂充分固结。最后得到直径49.95mm,长度63.35mm,渗透率677.5毫达西(mD),孔隙度31.85%,单轴抗压强度5.85MPa,密度2.00g/cm3的柱状岩心。
将所述获得的岩心进行压汞实验,用于得到不同尺寸的孔隙所占总孔隙体积的比例。如图4所示由所述压汞实验得到的孔隙尺寸分布直方,图中横坐标为孔隙尺寸,单位为微米(μm);纵坐标为汞侵入体积,单位为毫升(ml)。由图4可知:所制作的岩心孔隙尺寸分布连续无间断,且呈正态分布。所述呈正态分布的岩心孔隙尺寸分布情况与天然岩心较为接近。
用相同的方法按照正交试验的配方制作其余8根岩心并进行恒温养护。
请参照表3,当所述正交试验的目标值为岩心的渗透率,所述目标值岩心的渗透率的主要影响因素分别为:膨润土、粘结剂、压力和时间。请参照图5,通过极差分析得到膨润土、 粘结剂、压力和时间对渗透率的趋势图,图中纵坐标表示岩心的渗透率,单位为毫达西(mD),横坐标对应了各个因素的各个水平,其中因素A表示调节剂,因素B表示粘结剂,因素C表示压力,因素D表示时间。由图5可知,渗透率随着调节剂、粘结剂含量,压力和时间的增大而减小。
请参照表3,当所述正交试验的目标值为岩心的孔隙度,所述目标值岩心孔隙度的主要影响因素分别为:调节剂、粘结剂、压力和时间。请参照图6,通过极差分析得到调节剂、粘结剂、压力和时间对孔隙度影响的趋势图,图中纵坐标表示岩心的孔隙度,横坐标对应了各个因素的各个水平,其中因素A表示膨润土,因素B表示粘结剂,因素C表示压力,因素D表示时间。由图6可知,孔隙度先随着调节剂含量的增大而增加,后随着调节剂含量的增大而减小,随着粘结剂含量,压力和时间的增大而减小。
通过因素大小变化对目标值的影响趋势情况,进而可以根据此关系调整配方制作人造岩心来模拟各种所需物性参数的水合物地层。综上,本发明所述岩心制备方法通过正交试验分析确定的岩心最优配方可以较好地模拟冻土区水合物地层骨架,岩心的渗透率、孔隙度和实际地层非常接近,力学强度满足实验需要且孔隙分布呈与天然岩心相同的正态分布。
本发明提供了一种岩心制备方法,相对于现有水合物模拟实验中所用的人造岩心的渗透率、孔隙度和力学强度等基本物性参数与原位水合物地层差异较大而言,本发明所述的岩心制备方法在确定地层的基本物性参数的前提下,合理选用基砂的粒径配比与以及调节剂、粘结剂的比例来压制岩心,进而来模拟水合物地层;另外还可通过正交试验,进行参数调整,所制作出的岩心的基本物性参数接近真实冻土区天然气水合物地层,孔隙分布更加接近真实地层的正态分布特征。另外使用本发明所述的岩心制备方法制作的岩心由于是多次加压,具有较强的力学强度加上岩心物性参数可以根据正交试验进行调整,有利于批量制作进行对比和重复试验,其基本物性参数满足水合物地层物性及开采技术模拟实验研究。
另外本发明所述的岩心制备方法,在制作过程中,采用了恒温养护的方式,通过升高温度增加粘结剂的流动性来使岩心砂料混合均匀。而现有的岩心制作时,通常通过添加稀释剂的方式,来使得岩心砂料混合均匀。本发明相对于现有的岩心制备方法而言,由于不添加稀释剂,减少了化学试剂的加入,使岩心电学性质更接近真实地层。
以上所述仅为本发明的几个实施例,虽然本发明所揭露的实施方式如上,但所述内容只是为了便于理解本发明而采用的实施方式,并非用于限定本发明。任何本发明所属技术领域的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施方式的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附权利要求书所界定的范围为准。

Claims (8)

  1. 一种岩心制备方法,其特征在于,包括:
    S1:获取欲模拟地层的组份、颗粒级配以及密度;
    S2:根据所述模拟地层的组份确定基砂与调节剂的比例范围,根据所述颗粒级配确定基砂的颗粒级配;
    S3:设定岩心尺寸,根据所述设定的岩心尺寸及所述欲模拟地层的密度确定所述基砂和调节剂的用量;
    S4:在上述确定用量的基砂中加入一定量的粘结剂,再加入与所述基砂用量相适应比例的调节剂,再混合均匀以获得岩心砂料;
    S5:通过模压成型的方式压制所述岩心砂料,以获得岩心。
  2. 如权利要求1中所述的岩心制备方法,其特征在于:还包括将S3中确定用量的基砂、调节剂以及粘结剂进行恒温处理,温度范围为20摄氏度至50摄氏度,恒温处理的时间至少为10分钟。
  3. 如权利要求1中所述的岩心制备方法,其特征在于,还包括:
    S6:将所述获得的岩心进行恒温养护,温度范围为20摄氏度至50摄氏度,恒温养护的时间为3至5天。
  4. 如权利要求2或3中所述的岩心制备方法,其特征在于:所述恒温处理、恒温养护的温度为35摄氏度。
  5. 如权利要求1所述的岩心制备方法,其特征在于,S4中获得砂料包括:
    先将各种不同粒径的基砂混合均匀,然后通过差量法加入粘结剂,最后加入调节剂。
  6. 如权利要求1所述的岩心制备方法,其特征在于,S5中压制所述岩心砂料包括:
    先将岩心砂料至少分为2份,然后在岩心模具中分至少2次装入岩心砂料,并分次加压。
  7. 如权利要求6所述的岩心制备方法,其特征在于,所述加压的时间范围为:20分钟至60分钟;所述加压的压力范围为:5兆帕至15兆帕。
  8. 如权利要求3所述的岩心制备方法,其特征在于,其还包括:
    S7:获取欲模拟地层的渗透率、孔隙度;
    S8:测定所述经过恒温养护的岩心的渗透率、孔隙度,并与所述欲模拟地层的渗透率、孔隙度对比;
    S9:当两者的渗透率或孔隙度有差异时,调整所述调节剂含量、粘结剂含量,加压的压力和时间中的一个或多个;
    S10:重复S1至S9至制备的岩心的渗透率、孔隙度与所述欲模拟地层的渗透率、孔隙度 接近或相等为止。
PCT/CN2015/086690 2015-08-11 2015-08-11 一种岩心制备方法 WO2017024538A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/086690 WO2017024538A1 (zh) 2015-08-11 2015-08-11 一种岩心制备方法
PCT/CN2015/096204 WO2017024701A1 (zh) 2015-08-11 2015-12-02 一种岩心制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/086690 WO2017024538A1 (zh) 2015-08-11 2015-08-11 一种岩心制备方法

Publications (1)

Publication Number Publication Date
WO2017024538A1 true WO2017024538A1 (zh) 2017-02-16

Family

ID=57983112

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/086690 WO2017024538A1 (zh) 2015-08-11 2015-08-11 一种岩心制备方法
PCT/CN2015/096204 WO2017024701A1 (zh) 2015-08-11 2015-12-02 一种岩心制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096204 WO2017024701A1 (zh) 2015-08-11 2015-12-02 一种岩心制备方法

Country Status (1)

Country Link
WO (2) WO2017024538A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108412469A (zh) * 2018-02-14 2018-08-17 中国石油大学(北京) 一种填砂管及其制备方法与储层渗流模拟方法
WO2021159699A1 (zh) * 2020-08-06 2021-08-19 中国科学院广州能源研究所 一种天然气水合物开采产气水砂分离计量试验装置及方法
CN114486417A (zh) * 2021-12-25 2022-05-13 中国石油天然气股份有限公司 一种高保真非均质砾岩人造岩心及其制作方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112147049B (zh) * 2019-06-11 2024-04-19 中国石油化工股份有限公司 一种岩心水膜厚度的确定方法
CN110374556B (zh) * 2019-07-16 2021-02-26 大连理工大学 具有储层多层位压力补偿功能的天然气水合物开采装置
CN110470515B (zh) * 2019-08-22 2022-06-24 中国石油大学(华东) 一种非成岩水合物粉砂岩芯制作装置及方法
CN111257075B (zh) * 2020-02-19 2021-01-19 青岛海洋地质研究所 一种含天然气水合物土体样品的强化制备装置及方法
CN111396034A (zh) * 2020-02-26 2020-07-10 中国石油天然气股份有限公司 一种裂缝型人工砂岩模型及其制作方法
CN114427999B (zh) * 2020-10-12 2024-06-07 中国石油化工股份有限公司 一种高温高压摩阻测试仪泥页岩岩样及其制备方法和应用
CN113107459B (zh) * 2021-03-29 2022-02-15 西安石油大学 一种驱油砂管模型的填-卸砂一体化装置及实验方法
CN113916886B (zh) * 2021-10-11 2023-06-23 合肥工业大学 一种基于微观形貌图像分析的泥岩重塑方法
CN114252312B (zh) * 2021-12-03 2023-10-24 西南石油大学 一种纹层状页岩人造岩心制备方法
CN114397228A (zh) * 2022-01-20 2022-04-26 西南石油大学 一种评价驱油用聚合物在地层长期运移性能的方法
CN114428010A (zh) * 2022-01-26 2022-05-03 广东石油化工学院 一种模拟水合物地层人造岩心的制备方法
CN114935486B (zh) * 2022-06-06 2023-04-11 陕西科技大学 一种基于玉米秸秆芯的非均质岩心材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250327A (ja) * 1986-04-23 1987-10-31 Sekiyu Kodan 物性試験用岩石コア供試体の製造方法
JPH11241980A (ja) * 1998-02-25 1999-09-07 Dia Consultant:Kk 軟岩材料及び凍結土の整形方法及びその整形装置
CN102305735A (zh) * 2010-06-10 2012-01-04 中国石油化工股份有限公司 中渗透砂岩模拟岩心及其制备方法
CN103159453A (zh) * 2013-03-22 2013-06-19 中国石油化工股份有限公司 一种室内实验用中渗透模拟岩心及其制备方法
CN103880384A (zh) * 2014-03-25 2014-06-25 中国石油大学(北京) 一种人造砂岩岩心、制备方法及其用途
CN104198243A (zh) * 2014-08-29 2014-12-10 中国石油天然气股份有限公司 模拟冻土区水合物地层骨架的人造岩心制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104326708B (zh) * 2014-10-22 2016-11-16 杜江民 一种页岩储层人造岩心及其制备方法
CN104634638B (zh) * 2015-03-12 2017-03-29 中国地质大学(武汉) 一种通用型非胶粘的人造砂岩岩心

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250327A (ja) * 1986-04-23 1987-10-31 Sekiyu Kodan 物性試験用岩石コア供試体の製造方法
JPH11241980A (ja) * 1998-02-25 1999-09-07 Dia Consultant:Kk 軟岩材料及び凍結土の整形方法及びその整形装置
CN102305735A (zh) * 2010-06-10 2012-01-04 中国石油化工股份有限公司 中渗透砂岩模拟岩心及其制备方法
CN103159453A (zh) * 2013-03-22 2013-06-19 中国石油化工股份有限公司 一种室内实验用中渗透模拟岩心及其制备方法
CN103880384A (zh) * 2014-03-25 2014-06-25 中国石油大学(北京) 一种人造砂岩岩心、制备方法及其用途
CN104198243A (zh) * 2014-08-29 2014-12-10 中国石油天然气股份有限公司 模拟冻土区水合物地层骨架的人造岩心制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108412469A (zh) * 2018-02-14 2018-08-17 中国石油大学(北京) 一种填砂管及其制备方法与储层渗流模拟方法
WO2021159699A1 (zh) * 2020-08-06 2021-08-19 中国科学院广州能源研究所 一种天然气水合物开采产气水砂分离计量试验装置及方法
US11708748B2 (en) 2020-08-06 2023-07-25 Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences Device and method for gas-water-sand separation and measurement in experiment of natural gas hydrate exploitation
CN114486417A (zh) * 2021-12-25 2022-05-13 中国石油天然气股份有限公司 一种高保真非均质砾岩人造岩心及其制作方法

Also Published As

Publication number Publication date
WO2017024701A1 (zh) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2017024538A1 (zh) 一种岩心制备方法
CN104198243A (zh) 模拟冻土区水合物地层骨架的人造岩心制备方法
CN100573092C (zh) 一种含粘土人工岩心的制作方法
CN103868772B (zh) 一种用于岩石可钻性测试的人造岩心制备方法
CN103454127B (zh) 用于中小型固流耦合模型试验的相似材料及其制备方法
CN107101854B (zh) 一种泥质疏松砂岩岩心制作方法
CN112485096B (zh) 用于地热试验的具有非均质岩样的模拟地层的制作方法
CN109443877A (zh) 一种稠油蒸汽驱耐高温高压岩心制备方法
Kremieniewski Ultra-lightweight cement slurry to seal wellbore of poor wellbore stability
Perrot et al. Effect of coarse particle volume fraction on the hydraulic conductivity of fresh cement based material
CN110194611B (zh) 粉砂质泥岩相似材料及其制备方法
Wang et al. Effects of tailings gradation on rheological properties of filling slurry
CN106501054B (zh) 一种制备人造方岩心的模具及方岩心的制备方法
CN110890010A (zh) 一种裂缝型储层地震物理模型材料及物理模型和制作方法
Zhao et al. Experimental research on the properties of “solid–gas” coupling physical simulation similar materials and testing by computer of gas in coal rock
Udayakantha et al. An evaluation of the reduction of heat loss enabled by halloysite modification of oilwell cement
CN108801739B (zh) 一种人工物理岩心制作方法
CN112146957A (zh) 一种基于数字岩心实现人造岩心定量制作方法
CN106370486A (zh) 利用冷冻钻取技术制作人造岩心的方法
Cabalar et al. Effect of temperature on triaxial behavior of a sand with disaccharide
CN108659439B (zh) 一种可视化相似模拟材料及其制备方法
Guan et al. Influence of Curing Humidity on the Compressive Strength of Gypsum‐Cemented Similar Materials
CN102914641A (zh) 快速测试硫铝酸钙类膨胀剂限制膨胀率的简易方法
Zhao et al. Physicochemical characterization of cement stabilized highly expansive soil
CN114075056B (zh) 地震物理模型低波阻抗人工砂岩储层样品及其制备与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900736

Country of ref document: EP

Kind code of ref document: A1