WO2021159623A1 - 可移动装置、控制终端、利用可移动装置中的红外热像仪测温的方法以及可移动系统 - Google Patents

可移动装置、控制终端、利用可移动装置中的红外热像仪测温的方法以及可移动系统 Download PDF

Info

Publication number
WO2021159623A1
WO2021159623A1 PCT/CN2020/090355 CN2020090355W WO2021159623A1 WO 2021159623 A1 WO2021159623 A1 WO 2021159623A1 CN 2020090355 W CN2020090355 W CN 2020090355W WO 2021159623 A1 WO2021159623 A1 WO 2021159623A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
target
measured
infrared thermal
thermal imager
Prior art date
Application number
PCT/CN2020/090355
Other languages
English (en)
French (fr)
Inventor
李想
江宝坦
杨逢春
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080042524.0A priority Critical patent/CN114008420A/zh
Publication of WO2021159623A1 publication Critical patent/WO2021159623A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Definitions

  • the embodiments of the present application relate to the technical field of infrared temperature measurement, in particular to a movable device, a control terminal, a method for temperature measurement using an infrared thermal imager in the movable device, and a movable system.
  • the temperature of the human body or the object needs to be measured to determine the condition of the human body or the object according to the temperature of the human body or the object.
  • Traditional temperature measurement methods include contact temperature measurement methods and non-contact temperature measurement methods.
  • Contact temperature measurement methods usually require that the temperature measurement device is in close contact with the measured target. Because it needs to be in close contact with the measured target, the temperature measurement device is required to be in close contact with the measured target. It can only measure the temperature of one measured target. When it is required to not contact the measured target (or try to avoid contact with the measured target), and the number of measured targets is large, the contact temperature measurement method obviously cannot meet the demand.
  • Non-contact temperature measurement methods are mainly based on long-wave infrared temperature measurement, such as infrared thermal imaging cameras, but there are many factors that affect the measurement accuracy of non-contact temperature measurement methods, such as the thermal radiation of the temperature measurement device itself or the environmental temperature. , Resulting in low measurement accuracy of non-contact temperature measurement methods.
  • the measurement accuracy of non-contact temperature measurement methods is generally ⁇ 2°C, which is obviously not suitable for some high-precision requirements (accuracy requirements less than ⁇ 2°C).
  • the accuracy requirement is ⁇ 0.3°C.
  • the embodiments of the present application provide a movable device, a control terminal, a method for temperature measurement using an infrared thermal imager in the movable device, and a movable system.
  • the first aspect of the embodiments of the present application is to provide a method for measuring temperature by using an infrared thermal imager in a movable device, the movable device is also provided with a reference black body, and the method includes:
  • the temperature measurement value of the target to be measured is corrected according to the temperature measurement value of the reference black body to obtain the temperature correction value of the target to be measured.
  • the second aspect of the embodiments of the present application is to provide a movable device, including a mobile body, and an infrared thermal imager and a reference black body fixed on the mobile body;
  • the infrared thermal imager is used to obtain the temperature measurement value of the target to be measured in the field of view of the infrared thermal imager and the temperature measurement value of the reference black body, wherein the temperature measurement value of the reference black body is used for
  • the temperature measurement value of the target to be measured is corrected to obtain the temperature correction value of the target to be measured.
  • the third aspect of the embodiments of the present application is to provide a control terminal, including:
  • the target to be tested, the reference black body is fixed on the movable device, and the temperature measurement value of the target to be tested and the temperature measurement value of the reference black body are both detected by the infrared thermal imager on the movable device get;
  • the processor is configured to correct the temperature measurement value of the target to be measured according to the temperature measurement value of the reference blackbody to obtain the temperature correction value of the target to be measured.
  • the fourth aspect of the embodiments of the present application is to provide a movable system, including a movable device and a control terminal, wherein the movable device is provided with an infrared thermal imager and a reference black body;
  • the movable device is used to obtain the temperature measurement value of the target to be measured in the field of view of the infrared thermal imager and the temperature measurement value of the reference black body by using the infrared thermal imager;
  • the control terminal or the movable device is configured to correct the temperature measurement value of the target to be measured according to the temperature measurement value of the reference black body to obtain the temperature correction value of the target to be measured.
  • This embodiment provides a movable device, a control terminal, a method for temperature measurement using an infrared thermal imager in the movable device, and a movable system.
  • the infrared thermal imager is installed on the movable device to detect The temperature of the target to be measured in the field of view realizes the remote temperature measurement process without contact with the target to be measured, and all the targets to be measured in the field of view of the infrared thermal imager can be detected, realizing multiple targets to be measured Measure the temperature at the same time, which is beneficial to improve the efficiency of temperature measurement; further, considering that the measurement accuracy of the temperature measurement value obtained by the infrared thermal imager measuring the target to be measured is low, this embodiment is used in the movable device A reference black body is set in the black body, the environmental black body functions to correct the temperature measurement value of the target to be measured to improve the temperature measurement accuracy, and the infrared thermal imager measures the temperature of the reference black body to obtain the temperature measurement value, Then, the movable device correct
  • FIG. 1 is a structural diagram of a first movable device provided by an embodiment of this application.
  • FIG. 2A is a structural diagram of a second type of movable device provided by an embodiment of this application.
  • 2B is a structural diagram of an unmanned aerial vehicle provided by an embodiment of the application.
  • FIG. 3 is a structural diagram of a third movable device provided by an embodiment of this application.
  • 4A is a structural diagram of a fourth type of movable device provided by an embodiment of this application.
  • 4B is a structural diagram of an unmanned vehicle provided by an embodiment of the application.
  • FIG. 5 is a structural diagram of a fifth movable device provided by an embodiment of this application.
  • FIG. 6 is a structural diagram of a temperature control black body provided by an embodiment of the application.
  • FIG. 23 is a schematic diagram of a field of view of an infrared thermal imager provided by an embodiment of the application.
  • FIG. 24 is a structural diagram of a twenty-second movable device provided by an embodiment of this application.
  • FIG. 25 is a structural diagram of the first control terminal provided by an embodiment of this application.
  • FIG. 26 is a structural diagram of a second control terminal provided by an embodiment of this application.
  • FIG. 27 is a structural diagram of a third control terminal provided by an embodiment of this application.
  • FIG. 28 is a flowchart of a method for measuring temperature by using an infrared thermal imager in a movable device according to an embodiment of the application;
  • FIG. 29 is a structural diagram of a mobile system provided by an embodiment of this application.
  • a component when referred to as being "fixed to” another component, it can be directly on the other component or a central component may also exist. When a component is considered to be “connected” to another component, it can be directly connected to the other component or there may be a centered component at the same time.
  • FIG. 1 is a structural diagram of a movable device 10 according to an exemplary embodiment of the present application.
  • the movable device 10 includes a movable body 11, and an infrared thermal imager 12 and a reference black body 13 fixed on the movable body 11.
  • the infrared thermal imager 12 is used to obtain the temperature measurement value of the target to be measured located in the field of view of the infrared thermal imager 12 and the temperature measurement value of the reference black body 13, wherein the temperature measurement value of the reference black body 13 The value is used to correct the temperature measurement value of the target to be measured to obtain the temperature correction value of the target to be measured.
  • the movable device 10 includes, but is not limited to, unmanned vehicles, unmanned ships, unmanned aerial vehicles, and movable robots.
  • the movable device 10 can be applied to the human body temperature measurement field, industrial detection field, security field, electric power, railway and other fields to perform temperature measurement on the human body or an object.
  • the remote temperature measurement process is realized without contact with the target to be measured, and It can detect all the targets to be measured in the field of view of the infrared thermal imager 12, so that the temperature of multiple targets to be measured can be measured at the same time, which is beneficial to improve the temperature measurement efficiency; further, considering the infrared thermal imager 12 The problem of low measurement accuracy of the temperature measurement value obtained by measuring the target to be measured.
  • a reference black body 13 is set in the movable device 10, and the reference black body 13 functions to correct the temperature of the target to be measured The measurement value is used to improve the temperature measurement accuracy.
  • the infrared thermal imager 12 measures the temperature of the reference black body 13 to obtain the temperature measurement value, and then the movable device 10 compares the temperature measurement value of the reference black body 13
  • the temperature measurement value of the target to be measured measured by the infrared thermal imager 12 is corrected to further improve the measurement accuracy of the temperature measurement of the target to be measured, and to ensure the accuracy of the temperature correction value of the target to be measured finally obtained, Therefore, the movable device 10 of the present application is suitable for temperature measurement scenarios that require high measurement accuracy.
  • the reference black body 13 can be installed at a position that can be detected by the infrared camera 12 in its field of view, so as to ensure that the infrared camera 12 can detect the ambient temperature.
  • FIG. 2A is a structural diagram of a second movable device 10 according to an exemplary embodiment of this application.
  • the movable device 10 includes a support 14, and
  • the supporting member 14 is used to fix the reference black body 13 and the infrared thermal imager 12 to each other, and the position of the reference black body 13 in the field of view of the infrared thermal imager 12 is kept fixed; as an example,
  • the supporting member 14 supports the reference black body 13 to be suspended at the front end of the infrared thermal imager 12 to ensure that the reference black body 13 can be detected by the infrared thermal imager 12 in its field of view;
  • the position of the reference black body 13 in the field of view of the infrared thermal imager 12 is kept fixed, and the support 14 used to support the reference black body 13 is required to also have a certain degree of hardness, so that it can bear the In the case of resistance generated during the movement of the mobile device 10, it will not be bent or deformed, that is, its structure is relatively fixed,
  • the movable device 10 in order to increase the range of the temperature measurement area of the movable device 10, the movable device 10 further includes a pan/tilt 15 fixed on the movable body 11, and the infrared thermal imager 12 is fixed on the pan/tilt 15 so that the rotation of the pan/tilt 15 can drive the infrared thermal imager 12 to rotate, thereby adjusting the angle of view of the infrared thermal imager 12 and changing the infrared thermal image
  • the position detected by the camera 12 enables the infrared thermal imaging camera 12 to detect the temperature of the target to be measured at different positions, thereby expanding the range of the temperature measurement area.
  • the movable device 10 is an unmanned aerial vehicle.
  • FIG. 2B is a structural diagram of an unmanned aerial vehicle according to an exemplary embodiment of this application.
  • a mobile body 301 a pan/tilt 305 fixed on the mobile body 301, an infrared thermal imager 302 fixed on the pan/tilt 305, and a support 304 fixed to the infrared thermal imager 302
  • the position of the reference black body 303 in the field of view of the infrared thermal imager 302 remains fixed.
  • the cone-shaped area in FIG. 2B represents the field of view range of the infrared thermal imager 302.
  • the infrared thermal imager 22 is used to obtain the temperature measurement value of the target to be measured located in the field of view of the infrared thermal imager 302 and the temperature measurement value of the reference black body 303, wherein The temperature measurement value of the reference black body 303 is used to calibrate the temperature measurement value of the target to be measured to obtain the temperature correction value of the target to be measured; in this embodiment, the infrared thermal imager 302
  • the UAV corrects the temperature measurement value of the target to be measured measured by the infrared thermal imager 302 by referring to the temperature measurement value of the black body 303, and further improves the temperature measurement of the target to be measured
  • the rotation of the pan/tilt 305 drives the infrared thermal imager 302 and the reference black body 303 to rotate together, so that the position detected by the infrared thermal imager 302 can be changed.
  • the infrared thermal imaging camera 302 can detect the temperature of the target to be measured at different positions, and correct the temperature of the target to be measured by the temperature of the reference black body 303 that rotates with it, so as to ensure the accuracy of temperature measurement.
  • the pan-tilt 305 also expands the area of temperature measurement.
  • the movable device 10 includes the PTZ 15, this embodiment provides a second possible implementation manner for setting the position of the reference black body 13.
  • FIG. 3 is an exemplary implementation of this application. Illustrated in the third structure diagram of the movable device 10, the movable device 10 includes a support 14 for fixing the reference black body 13 and the pan/tilt 15 to each other, and The reference black body 13 is fixed in the field of view of the infrared thermal imager 12; as an example, the reference black body 13 may be supported by the support 14 to hang on the front end of the pan/tilt 15 and when the pan/tilt 15 rotates , Driving the infrared thermal imager 12 and the reference black body 13 to rotate at the same time, so that the reference black body 13 is always at the front end of the infrared thermal imager 12, at a position within the field of view of the infrared thermal imager 12 Keep it fixed and be able to be detected in its field of view.
  • FIG. 4A is a structural diagram of a fourth movable device 10 according to an exemplary embodiment of this application.
  • the movable platform further includes a support 14, and
  • the support 14 is used to fix the reference black body 13 and the mobile body 11 of the movable device 10 to each other, and the reference black body 13 is fixed in the field of view of the infrared camera 12; as an example,
  • the support 14 supports the reference black body 13 to hang on the front end of the mobile body 11 to ensure that the reference black body 13 can be detected by the infrared thermal imager 12 in its field of view.
  • the movable device is an unmanned vehicle.
  • FIG. 4B is a structural diagram of an unmanned vehicle according to an exemplary embodiment of this application.
  • the driving vehicle includes a mobile body 401, a reference black body 403 fixed on the mobile body 401 through a support 402, and an infrared thermal imager 404 fixed on the mobile body 401.
  • the reference black body 403 is in the infrared
  • the position in the field of view of the thermal imager 404 remains fixed.
  • the infrared thermal imager 404 is used to obtain the temperature measurement value of the target to be measured located in the field of view of the infrared thermal imager 404 and the temperature measurement value of the reference black body 403, where , The temperature measurement value of the reference black body 403 is used to correct the temperature measurement value of the target to be measured to obtain the temperature correction value of the target to be measured; in this embodiment, the infrared thermal imager 404
  • the remote temperature measurement process is realized without contact with the target to be tested, and all targets to be tested in the field of view of the infrared thermal imager 404 can be detected, and the temperature of multiple targets to be tested can be measured at the same time, which is beneficial to improve Temperature measurement efficiency; moreover, the unmanned vehicle corrects the temperature measurement value of the target to be measured measured by the infrared camera 404 by referring to the temperature measurement value of the black body 403, further improving the performance of the target to be measured The measurement accuracy of the temperature measurement ensures the accuracy of the finally obtained
  • this embodiment also provides a fourth possible implementation manner for setting the position of the reference black body 13. Based on the rotation attribute of the pan/tilt head 15, the The reference black body 13 may not be fixed at the position in the field of view of the infrared thermal imager 12. Please refer to FIG. 5.
  • the movable platform of the movable device 10 further includes a support 14 which is used
  • the reference black body 13 and the mobile body 11 of the movable device 10 are fixed to each other, and the pan/tilt 15 can be adjusted during the detection process of the infrared thermal imager 12 so that the reference black body 13 enters the infrared The field of view of the thermal imager 12; in this embodiment, during the temperature detection process of the infrared thermal imager 12, the movable device 10 can adjust the pan/tilt 15 at specified intervals to realize the
  • the infrared thermal imaging camera 12 measures the temperature of the reference black body 13, and the rotation of the pan/tilt 15 drives the infrared thermal imaging camera 12 to rotate at intervals of the specified time until the rotation can be detected in its field of view
  • the reference black body 13 when the reference black body 13 enters the field of view of the infrared thermal imager 12 through the adjustment of the pan/tilt 15, the reference black body 13 is within the field of view of the infrared thermal imager 12
  • the position of is fixed, by setting a fixed angle in advance, the fixed angle is determined based on the fixed position of the reference black body 13 on the mobile body 11 of the movable device 10, every time (every designated time )
  • the movable device 10 may send a first rotation instruction to the pan/tilt 15 so that the pan/tilt 15 rotates by the fixed angle in response to the first rotation instruction , So as to drive the infrared thermal imager 12 to rotate to a position where the reference black body 13 can be detected in its field of view, and then the infrared thermal imager 12 can detect the temperature of the reference black body 13 in its field of view
  • the reference black body 13 when the reference black body 13 enters the field of view of the infrared thermal imager 12 through the adjustment of the pan/tilt head 15, the reference black body 13 is in the field of view of the infrared thermal imager 12
  • the position inside may also be unfixed, and the infrared thermal imager 12 may obtain information characterizing the reference black body 13 in advance, and the information includes but not limited to the shape information or image information of the reference black body 13, so as to Each subsequent time (every specified time) the temperature of the reference black body 13 needs to be detected, the movable device 10 may send a second rotation instruction to the pan/tilt 15 so that the pan/tilt 15 responds to the The second rotation instruction rotates.
  • the movable device 10 determines whether it is in the infrared camera according to the information characterizing the reference black body 13. If the reference black body 13 is detected in the field of view of the thermal imager 12, if it is determined that the reference black body 13 is detected in the field of view of the infrared thermal imager 12, the movable device 10 can notify the cloud
  • the table 15 stops rotating, so that the infrared thermal imager 12 can detect the temperature of the reference black body 13 in its field of view; this embodiment uses the flexible identification process of the infrared thermal imager 12 to make the reference black body 13
  • the position that appears in the field of view of the infrared thermal imager 12 is not fixed.
  • the reference black body 13 in order to ensure that the reference black body 13 can be clearly imaged in the field of view of the infrared thermal imager 12, the reference black body 13 may be determined based on the focal length of the infrared thermal imager 12. The distance between the infrared thermal imagers 12, so that the length of the support 14 can also be determined based on the distance between the reference black body 13 and the infrared thermal imager 12.
  • the focal length of the thermal imaging camera 12 is F
  • the image distance of the thermal imaging camera 12 is V
  • the distance between the reference black body 13 and the thermal imaging camera 12 is U
  • the lens selected for the thermal imaging camera 12 can be specifically set according to actual application scenarios, and the embodiment of the present application does not impose any limitation on this.
  • the thermal imaging camera 12 uses a wide-angle and short-focus lens. Lens.
  • the reference black body 13 includes an ambient temperature black body 13 and a temperature control black body 13.
  • the ambient temperature black body 13 is described here: the ambient temperature black body 13 represents a constant temperature object with high emissivity and uniform temperature; the temperature uniformity can be measured by the specific heat capacity of the constant temperature object, and the specific heat capacity is greater than a preset value. It can be regarded as an object with uniform temperature; for example, the ambient temperature black body 13 may be an object made of foam; it is understood that this application does not impose any restrictions on the preset value, and can be specifically set according to actual application scenarios.
  • the ambient temperature black body 13 is set on the movable device 10, the following requirements are imposed on the ambient temperature black body 13:
  • the first requirement is that due to the mobility of the movable device 10, it may cause a certain resistance to the movable device 10 due to the influence of environmental factors (such as the wind during the movement) during the movement.
  • the ring temperature black body 13 is required to have a certain hardness, so that the ring temperature black body 13 will not be bent or deformed when it bears the resistance generated by the movable device 10 during the movement process, that is, its own structure Relatively fixed.
  • the second requirement is to take into account that carrying heavy objects may accelerate the power loss of the movable device. Therefore, in order to save the power loss of the movable device 10, the lighter the weight of the ambient temperature black body 13, the more Good, that is, it is required that the weight of the ambient temperature black body 13 needs to be less than a specified weight threshold.
  • the specified weight threshold can be determined comprehensively based on the load-bearing capacity and power of the movable device 10, and the size of the specified weight threshold can be based on the movable
  • the type of the device 10 is specifically set, and the embodiment of the present application does not impose any restriction on this.
  • the third requirement is that considering the limited field of view of the infrared thermal imager 12, in order to achieve temperature detection of as many targets as possible in the field of view of the infrared thermal imager 12, the ambient temperature
  • the volume of the black body 13 needs to be as small as possible, that is, the volume of the ambient temperature black body 13 needs to be smaller than the specified volume threshold, so as to ensure that more targets to be tested can be detected in the field of view of the infrared thermal imager 12. It is possible to reduce the occlusion effect of the ambient temperature black body 13; wherein, the specified volume threshold may be determined according to the size of the field of view of the infrared thermal imager 12.
  • the temperature control black body 13 is described: the temperature of the temperature control black body 13 is maintained at a specified temperature value.
  • the temperature control black body 13 includes a semiconductor cooler (Thermo Electric Cooler, TEC), and the semiconductor cooler is used to keep the temperature of the temperature control black body 13 at a specified temperature.
  • TEC Thermo Electric Cooler
  • the specified temperature can be specifically set according to actual application scenarios, and this embodiment does not impose any restrictions on this; for example, in a human body temperature measurement scenario, the specified temperature is 36°C or 40°C, etc., and the accuracy is controlled At ⁇ 0.1°C.
  • This embodiment is not limited to using a semiconductor cooler to maintain a specified temperature, but may also be other devices that can maintain a specified temperature, and this embodiment does not impose any limitation on this.
  • FIG. 6 is a schematic structural diagram of a temperature control black body 13 provided by an embodiment of the present application.
  • the temperature control black body 13 includes a semiconductor cooler 31, and the semiconductor cooler 31 It is used to keep the temperature of the temperature control black body 13 at a specified temperature.
  • the semiconductor cooler 31 (Thermoelectriccooler, TEC) refers to a device that uses the thermoelectric effect of semiconductors to produce cold energy.
  • the semiconductor cooler 31 has the characteristics of no noise, no vibration, no need for refrigerant, small size, light weight, etc., and Reliable work, simple operation, easy cooling capacity adjustment.
  • the temperature control black body 13 further includes a radiation layer 32 as a black body radiation surface, the radiation layer 32 and the semiconductor refrigerator 31 are fixed to each other, and the radiation layer 32 is connected to the lens of the infrared thermal imager 12
  • the energy radiated by the temperature control black body 13 through the radiation layer 32 can be detected by the infrared thermal imager 12, so that the infrared thermal imager 12 can obtain the temperature measurement value of the temperature control black body 13; It is understood that this embodiment does not impose any restrictions on the material and thickness of the radiation layer 32, and the size of the side of the radiation layer 32 opposite to the lens of the infrared thermal imager 12, and can be specified according to actual application scenarios.
  • the radiation layer 32 may be a red copper plate with high emissivity, with a thickness of 2 mm, and the side of the radiation layer 32 opposite to the lens of the infrared thermal imager 12 is a circular area with a diameter of 3 mm.
  • the temperature control black body 13 further includes a first heat dissipation layer 33 fixed to the semiconductor refrigerator 31, and the first heat dissipation layer 33 is used to dissipate heat for the semiconductor refrigerator 31. It should be understood that, This embodiment does not impose any restriction on the material of the first heat dissipation layer 33, and can be specifically set according to actual application scenarios.
  • the temperature control black body 13 further includes a processing module 34 for controlling the operation of the semiconductor refrigerator 31 to adjust the temperature of the temperature control black body 13.
  • the processing module 34 further includes a wireless communication unit for receiving and transmitting an external instruction to the processing module 34, so that the processing module 34 controls the semiconductor refrigerator 31 according to the external instruction Operate to adjust the temperature of the temperature control black body 13.
  • the external instruction is obtained from the control terminal of the movable device, or may also be obtained from other devices, which is not limited in this embodiment.
  • the temperature control black body 13 further includes a second heat dissipation layer 35 fixed to the processing module 34.
  • the second heat dissipation layer 35 is used to dissipate heat for the processing module 34.
  • the material of the second heat dissipation layer 35 is not limited, and can be specifically set according to actual application scenarios.
  • the embodiment of the present application does not impose any restriction on the specific structure of the temperature control black body 13, and specific settings can be made according to actual application scenarios.
  • the temperature control black body 13 may have a cavity structure, and the temperature control black body 13 further includes heat insulation and heat preservation that wraps the semiconductor refrigerator 31 Layer 36, the thermal insulation layer 36 is used to keep the temperature of the temperature control black body 13 at a specified temperature.
  • the present embodiment does not impose any limitation on the material constituting the thermal insulation layer 36, and can be specifically set according to actual application scenarios.
  • the material of the thermal insulation layer 36 is an epoxy resin material.
  • the temperature control black body 13 The volume needs to be as small as possible, that is, the volume of the temperature control black body 13 needs to be smaller than the specified volume threshold, so as to ensure that more targets to be tested can be detected in the field of view of the infrared thermal imager 12, and the size is reduced as much as possible
  • the shading effect of the temperature control black body 13 in an example, the temperature control black body 13 may be a cylindrical structure with a depth of 10 mm and a diameter of 10 mm.
  • the next step is to use the infrared thermal imager 12 to obtain the temperature measurement value and the temperature measurement value of the reference black body 13 in the field of view of the infrared thermal imager 12.
  • the process of the temperature measurement value of the target to be measured is described.
  • the infrared thermal imager 12 obtains the temperature measurement value of the reference black body 13 located in the field of view of the infrared thermal imager 12, first determine the viewing angle of the reference black body 13 in the infrared thermal imager 12 According to the position in the field picture, the temperature measurement value of the reference black body 13 is obtained according to the infrared energy at the position.
  • determining the position of the reference black body 13 in the field of view image of the infrared thermal imager 12 includes but is not limited to the following at least three implementation manners:
  • the position of the reference black body 13 in the field of view of the infrared thermal imager 12 is fixed, that is, the reference black body 13 and the infrared thermal imager 12 are fixed to each other, And fixed at the same position in the field of view of the infrared thermal imager 12, the position of the reference black body 13 in the field of view of the infrared thermal imager 12 can be determined in advance, and the reference black body 13
  • the position information in the field of view picture of the infrared thermal imager 12 is stored, so that when the infrared thermal imager 12 obtains the temperature measurement value of the reference black body 13, the reference is determined according to the stored position information.
  • the mobile device 10 is determined and entered by the developer when it leaves the factory; it can also be determined by the user based on the field of view of the infrared camera 12 when the user uses it for the first time.
  • the movable device 10 may send the field of view picture of the infrared thermal imager 12 to the control terminal of the movable device 10, and the control terminal is displayed on the interactive interface of the control terminal.
  • the movable device 10 may include a receiver 16 arranged in the mobile body 11, and the receiver 16 is used to receive the reference black body transmitted by the control terminal.
  • the temperature measurement value of the reference black body 13; in this embodiment, the position of the reference black body 13 is determined through the user's operation, which helps to ensure the accuracy of the determination result.
  • the user's operation can also be specifically set according to actual application scenarios.
  • the user's operation includes, but is not limited to, a click operation, a long press operation, or a box selection operation.
  • the movable device 10 may pre-store information characterizing the reference black body 13, and the information characterizing the reference black body 13 includes, but is not limited to, the shape information of the reference black body 13 Or image information, etc., in the process of determining the position of the reference black body 13 in the field of view picture of the infrared thermal imager 12, the reference black body 13 may be identified according to the information characterizing the reference black body 13, and Then determine its position in the field of view of the infrared thermal imager 12 based on the recognition result; in this embodiment, there is no need for the user's operation every time the position of the reference black body 13 needs to be determined, which reduces the user's operation. Steps are convenient for users to use.
  • the information that characterizes the reference black body 13 may be determined and entered by the developer when the movable device 10 is shipped from the factory; it may also be that the user uses the infrared camera 12 for the first time when the user uses it. As determined by the scene, this embodiment does not impose any restriction on this.
  • the temperature measurement value of the target to be measured may be measured according to the infrared thermal imager 12
  • the obtained infrared energy radiated by the designated area of the target to be measured is determined.
  • the thermal imaging camera 12 can first identify all targets to be tested from the field of view of the thermal imaging camera 12, and then recognize the targets to be tested from the targets to be tested. Finally, the temperature measurement value of the target to be measured is determined according to the infrared energy radiated from the designated area of the target to be measured.
  • the target to be measured is a human body
  • the designated area includes the forehead area of the human body. , Firstly identify all the human body to be tested from the field of view image acquired by the infrared thermal imager 12, then identify the forehead area of the target to be tested from the human body to be tested, and finally according to the forehead of the target to be tested The infrared energy radiated by the area determines the temperature measurement value of the target to be measured.
  • the field of view image of the infrared thermal imager 12 includes, but is not limited to, thermal images or RGB images obtained by binocular vision sensors.
  • the movable device 10 further includes a visible light camera 17, and the shooting range of the visible light camera 17 overlaps with the field of view of the infrared thermal imager 12 in whole or in part;
  • the partial overlap can be understood as at least 70% overlap, so as to ensure that the object photographed by the visible light camera 17 is also detected by the infrared thermal imager 12, so that the image taken by the visible light camera 17 can be used for the target to be measured.
  • Recognition because the technology for recognizing images taken by the visible light camera 17 in the related technology is more mature, which is beneficial to improve the accuracy of recognition.
  • the movable device 10 When measuring the temperature of the target to be measured, first the movable device 10 recognizes all the targets to be tested from the images taken by the visible light camera 17, and identifies the designated area of the target to be tested from the targets to be tested , And determine the third position of the designated area of the target under test in the image; and then determine according to the third position that the designated area of the target under test is in the field of view of the infrared camera 12 Finally, the infrared thermal imager 12 obtains the temperature measurement value of the target to be measured according to the infrared energy at the fourth position; wherein, the fourth position is based on the visible light camera 17 and the The position relationship of the infrared thermal imager 12 is obtained by converting the third position.
  • the positional relationship between the visible light camera 17 and the infrared thermal imager 12 can be pre-calibrated and stored in the movable device 10.
  • the positional relationship may be that the visible light camera 17 and the infrared thermal imager 12 The external parameter conversion relationship of the infrared thermal imager 12.
  • the process of obtaining the temperature correction value of the target to be measured may be performed in the movable device 10
  • the above implementation can also be executed by a control terminal that is communicatively connected with the movable device 10, and this embodiment does not impose any restriction on this, which will be described separately below.
  • the process of obtaining the temperature correction value of the target to be measured is performed by a control terminal communicatively connected with the movable device 10.
  • the movable device 10 further includes a transmitter 18.
  • the transmitter 18 may be arranged in the mobile body 11; the transmitter 18 is used to send the temperature measurement value of the target to be measured and the temperature measurement value of the reference black body 13 to the movable device 10, so that the control terminal corrects the temperature measurement value of the target under test according to the temperature measurement value of the reference black body 13 to obtain the temperature correction value of the target under test; in this embodiment,
  • the temperature measurement value of the target to be measured measured by the infrared thermal imager 12 is corrected by referring to the temperature measurement value of the black body 13, so as to further improve the measurement accuracy of the temperature measurement of the target to be measured, and ensure that the final obtained The accuracy of the temperature correction value of the target to be measured.
  • the transmitter 18 includes, but is not limited to, a short-range wireless communication transmitter or a mobile communication transmitter, and the short-range wireless communication protocol used by the short-range wireless communication transmitter includes at least one of the following: infrared protocol, WiFi protocol , Bluetooth protocol, UWB protocol or ZigBee protocol; the mobile communication protocol used by the mobile communication transmitter includes at least any of the following: 3G communication protocol, 4G communication protocol, GSM communication protocol or GPRS communication protocol.
  • the movable device includes a visible light camera 17, and the transmitter 18 is also used to transmit the image captured by the visible light camera 17 to all
  • the control terminal enables the control terminal to perform identity recognition on the target to be measured from the image taken by the visible light camera 17 and obtain the identity information of the target to be measured.
  • the control terminal may associate the identity information of the target to be measured with the corresponding temperature correction value, so as to track the temperature of the target to be measured based on the identity information, which is further convenient for users to use.
  • the control terminal may display the identity information of the target to be measured and the temperature correction value together, so as to allow the user to know the temperature of the target to be measured in real time, which is further convenient for the user to use.
  • the process of obtaining the temperature correction value of the target to be measured may be implemented on the movable device 10.
  • the movable device 10 further includes a processor 19, The processor 19 is configured to correct the temperature measurement value of the target to be measured according to the temperature measurement value of the reference black body 13 to obtain the temperature correction value of the target to be measured.
  • the temperature measurement value of the target to be measured measured by the infrared thermal imager 12 is corrected by referring to the temperature measurement value of the black body 13, so as to further improve the measurement accuracy of the temperature measurement of the target to be measured. Ensure the accuracy of the final temperature correction value of the target to be measured.
  • the movable device 10 further includes a transmitter
  • the transmitter 18 is used to send the temperature correction value of the target to be measured and/or (and/or indicate either or both) the field of view image of the infrared thermal imager 12 to the
  • the control terminal communicatively connected to the mobile device, so as to display the field of view screen of the infrared thermal imager 12 on the control terminal, and display the indication of the temperature correction value of the target to be measured on the field of view screen Information;
  • the indication information includes, but is not limited to, the temperature correction value of the target to be tested or the color corresponding to the temperature correction value of the target to be tested, so as to serve as a reminder to the user.
  • the user can conveniently view the temperature correction value of the target to be measured.
  • the movable device 10 further includes a visible light camera 17, and the processor 19 is configured to obtain images from the visible light camera 17 For the identified target to be tested, identity recognition is performed on the shooting target, and the identity information of the target to be tested is obtained.
  • the identity information of the target to be measured may be associated with the corresponding temperature correction value, so as to track the temperature of the target to be measured based on the identity information, which is further convenient for users to use.
  • At least one of the following information may be sent to the control terminal through the transmitter 18: the temperature correction value of the target to be measured, the field of view image of the infrared camera 12, the The identity information of the target to be measured and the image taken by the visible light camera 17 enable the control terminal to display the to be measured on the field of view screen of the infrared thermal imager 12 and/or the image taken by the visible light camera 17.
  • the indication information of the temperature correction value of the test target and/or the identity information of the target to be tested so as to allow the user to know the identity and temperature of the target to be tested in real time, which is further convenient for the user to use.
  • the movable device 10 is an unmanned vehicle or a mobile robot, etc., and the user can bring the movable device 10 to inspect the target area, and the movable device 10 may also A display is installed, and the display is used to display the field of view picture of the infrared thermal imager 12 and/or the image taken by the visible light camera 17, and the field of view picture of the infrared thermal imager 12 and/or the
  • the image taken by the visible light camera 17 displays the indication information of the temperature correction value of the target to be tested and/or the identity information of the target to be tested, so that the user can understand the identity and temperature of the target to be tested in real time, which is further convenient User use.
  • the correction process of the temperature measurement value of the target to be measured is also different.
  • the process of correction and the process of using the ambient temperature black body 13 to perform temperature correction will be described separately.
  • the reference black body 13 is taken as the ambient temperature black body 13, and the temperature correction process of the ambient temperature black body 13 is used to illustrate:
  • the infrared thermal imager 12 is provided with a temperature measurement mode. After the temperature measurement mode, the infrared thermal imager 12 acquires the temperature measurement value of the target to be measured in the field of view of the infrared thermal imager 12 and the temperature measurement value of the ambient temperature black body 13.
  • a "temperature measurement mode” control is displayed on the interactive interface of the control terminal of the movable device 10, and when it is detected that the user triggers the "temperature measurement mode” control, the mobile device 10 Send a temperature measurement instruction, so that the infrared thermal imager 12 in the movable device 10 enters the temperature measurement mode in response to the temperature measurement instruction, and the infrared thermal imager 12 acquires the location of the infrared thermal imager 12
  • the temperature measurement value of the target to be measured in the field of view and the temperature measurement value of the ambient temperature black body 13 can be obtained by referring to the above description, which will not be repeated here.
  • the temperature correction value of the target to be measured is obtained by the control terminal for description: as shown in FIG. 9 or FIG.
  • the movable device 10 transmits the temperature measurement value of the target to be measured and the temperature measurement value of the ambient temperature black body 13 to the control terminal through the transmitter 18, so that the control terminal can follow
  • the temperature measurement value of the ambient temperature black body 13 corrects the temperature measurement value of the target to be measured to obtain the temperature correction value of the target to be measured.
  • the temperature correction value of the target to be measured is obtained by the movable device 10 for description: in FIG. 12 or FIG.
  • the processor 19 is configured to correct the temperature measurement value of the target to be measured according to the temperature measurement value of the ambient temperature black body 13 to obtain the temperature correction of the target to be measured
  • the transmitter 18 is used to send the temperature correction value of the target to be measured and/or the field of view image of the infrared thermal imager 12 to the control terminal of the movable device 10.
  • the processor 19 is also used to obtain the temperature measurement correction of the infrared thermal imager 12. Value; According to the temperature measurement correction value of the infrared thermal imager 12 and the temperature measurement value of the ambient temperature black body 13, the temperature measurement value of the target is corrected to obtain the temperature correction value of the target to be measured.
  • the temperature measurement correction value can be obtained in the following manner: before the temperature measurement of the target to be measured, the infrared thermal imager 12 needs to be calibrated, and the infrared thermal imager 12 is also provided with In the calibration mode, after entering the calibration mode, the temperature measurement correction value of the infrared thermal imager 12 can be obtained in the calibration mode.
  • a "calibration mode” control may be displayed on the interactive interface of the control terminal of the movable device 10, and when it is detected that the user triggers the "calibration mode” control, the control is sent to the mobile device 10 Calibration instruction, so that the infrared thermal imager 12 in the movable device 10 enters the calibration mode in response to the calibration instruction.
  • calibration can be performed when the movable device 10 is in a stationary state or moving at a low speed (moving speed is less than a specified speed threshold), so as to ensure the accuracy of the temperature measurement correction value obtained, which is beneficial to improve the subsequent temperature measurement process.
  • the temperature measurement correction value obtained in the calibration mode is used as the correction value
  • One of the indicators of the temperature measurement value of the target to be measured is to correct the target position (the reference The error caused by the position of the target is beneficial to ensure the accuracy of the obtained temperature correction value of the target to be measured.
  • the temperature correction value is the result of subtracting the temperature measurement value of the ambient temperature black body 13 from the sum of the temperature measurement value of the target to be measured and the temperature measurement correction value of the infrared thermal imager 12.
  • the above is only an example, and does not constitute a restriction on the determination of the temperature correction value in the embodiment of the present application, and a specific method for obtaining the temperature correction value can be determined according to actual application scenarios.
  • the reference target and the target to be measured are both human bodies.
  • the distance between the reference target and the thermal imaging camera 12 and the distance between the target to be measured and the thermal imaging camera 12 are the same or the difference between the two is small, such as less than a preset value.
  • the control terminal determining the reference target and the ambient temperature black body 13 includes the following steps: the processor 19 transmits the field of view image of the infrared thermal imager 12 to the control device through the transmitter 18 Terminal, after receiving the field of view image, the control terminal displays the field of view image of the infrared thermal imager 12 on the interactive interface of the control terminal, wherein the reference target and the ambient temperature black body 13 Located in the field of view picture; then the control terminal determines the reference target and the ambient temperature black body 13 according to the user's operation on the field of view picture, and will be related to the reference target and the ambient temperature black body 13 The information is transmitted to the mobile device 10. In one embodiment, referring to FIG.
  • the movable device 10 further includes a receiver 16 arranged on the mobile body 11, and the receiver 16 is used to receive the reference target and the ambient temperature black body. 13 related information.
  • the information related to the reference target and the ambient temperature black body 13 may be information about the positions of the reference target and the ambient temperature black body 13 in the field of view picture of the infrared thermal imager 12 respectively.
  • the field of view picture may be a thermal image;
  • the field of view picture may be an RGB image obtained by a binocular sensor.
  • the user's operations can also be specifically set according to actual application scenarios.
  • the user's operations include, but are not limited to, click operations, long-press operations, or box selection operations.
  • acquiring the actual temperature value of the reference target through the control terminal of the movable device 10 includes: the actual temperature value of the reference target is measured by the user based on a temperature measuring device, and then the actual temperature value of the reference target is measured by the user The actual temperature value of the reference target is input on the interactive interface provided by the control terminal, and the control terminal receives the actual temperature value of the reference target input by the user and sends it to the movable device 10.
  • the movable device 10 may receive the actual temperature value of the reference target through the receiver 16.
  • the corresponding temperature measurement correction value is different in different scenarios, that is, when the temperature is measured in different scenarios, the infrared
  • the thermal imager 12 obtains the temperature measurement correction value corresponding to the scene in the calibration mode, and then measures the temperature of the target to be measured in the scene.
  • the reference black body 13 is used as the temperature control black body 13, and the process of using the temperature control black body 13 to perform temperature correction is described:
  • the temperature correction value of the target to be measured is obtained by the control terminal for description: it is considered that the infrared energy radiated by the human body or the object will gradually weaken with the increase of the distance, thereby affecting the obtained The accuracy of the temperature correction value of the target to be measured. Based on this, on the basis of the embodiment shown in FIG. 9 or FIG. 10, please refer to FIG. 15 or FIG. 16.
  • the movable device 10 further includes The distance measurement module 20 on the mobile body 11, the distance measurement module 20 is used to measure the distance between the movable device 10 and the target to be measured;
  • the field of view of the infrared thermal imager 12 is fully or partially overlapped; the partial overlap can be understood as at least 70% overlap, so as to ensure that the target to be measured detected by the infrared thermal imager 12 can also be photographed by the distance measuring device In this way, the distance measuring device can be used to measure the distance between the movable device 10 and the target to be measured.
  • the transmitter 18 is also used to send the distance between the movable device 10 and the target to be measured to the control terminal of the movable device 10, so that the control terminal can be controlled according to the
  • the distance between the mobile device 10 and the target to be measured obtains the temperature correction value of the infrared thermal imager 12 at the distance, and the temperature measurement value of the temperature control black body 13 and the temperature correction value are used to compare the temperature
  • the temperature measurement value of the target to be measured is corrected to obtain the temperature correction value of the target to be measured.
  • This embodiment comprehensively considers the influence of distance on the temperature correction value of the target to be measured, and determines the corresponding temperature correction amount to adapt to different distances, and corrects that the temperature control black body 13 is set on the movable device 10 instead of
  • the error caused by setting at the same or similar position as the target to be tested ensures the accuracy of the temperature correction value of the target to be tested finally obtained.
  • the distance measurement module 20 includes, but is not limited to, a TOF camera, a structured light depth camera, a binocular vision sensor, or a laser scanner.
  • the movable device 10 when acquiring the distance between the movable device 10 and the target to be tested, the movable device 10 first determines that the designated area of the target to be tested is in the target area. The first position in the field of view of the infrared thermal imager 12, and then determine the second position of the designated area of the target to be measured in the depth image obtained by the distance measuring module 20 according to the first position, and finally The distance measurement module 20 determines the distance between the movable device 10 and the target to be measured according to the depth information at the second position. Wherein, the second position is obtained by converting the first position according to the positional relationship between the distance measuring module 20 and the infrared thermal imager 12.
  • the positional relationship between the infrared thermal imager 12 and the distance measuring module 20 can be pre-calibrated and stored in the movable device 10.
  • the positional relationship may be an infrared thermal image.
  • the external parameter conversion relationship between the meter 12 and the ranging module 20 is not limited to.
  • the movable device 10 further includes a visible light camera 17, and the shooting range of the visible light camera 17 and the measuring range of the distance measuring module 20 overlap completely or partially;
  • the partial overlap can be understood as at least 70% overlap, so as to ensure that the object photographed by the visible light camera 17 is also detected by the distance measuring module 20; when obtaining the distance between the movable device 10 and the target to be measured
  • the fifth position is obtained by transforming the third position according to the positional relationship between the distance measuring module 20 and the visible light camera 17. It is understandable that the positional relationship between the visible light camera 17 and the ranging module 20 can be pre-calibrated and stored in the movable device 10. In an example, the positional relationship may be the visible light camera 17 and the distance measuring module 20. The external parameter conversion relationship of the ranging module 20 is described.
  • the environmental temperature will also affect the problems of the human body or objects
  • the higher the environmental temperature the temperature of the human body or the object will also increase accordingly, and the lower the environmental temperature, the human body or the object
  • the temperature will also be reduced, which will affect the accuracy of the temperature correction value of the target to be measured.
  • the mobile device 10 further includes a temperature sensor 21 arranged on the mobile body 11, and the temperature sensor 21 is used to measure the environmental temperature of the environment; the transmitter 18 is also used to send the environmental temperature to The control terminal of the movable device 10, so that the control terminal obtains the ambient temperature compensation amount according to the ambient temperature, and compares the standby temperature with the temperature measurement value of the temperature control black body 13 and the ambient temperature compensation amount. The temperature measurement value of the target to be measured is corrected, and the temperature correction value of the target to be measured is obtained.
  • the influence of the environmental temperature on the temperature correction value of the target to be measured is comprehensively considered, and the corresponding environmental temperature compensation amount is obtained according to different environmental temperatures, and the environmental temperature and the environmental temperature compensation amount are in a negative correlation. That is, the higher the ambient temperature, the smaller the ambient temperature compensation amount, the higher the ambient temperature, the lower the ambient temperature compensation amount, and the greater the ambient temperature compensation amount, so as to ensure the accuracy of the finally obtained temperature correction value of the target to be measured.
  • the transmitter 18 may also transmit the movable device
  • the distance between 10 and the target to be measured and the environmental temperature are sent to the control terminal of the mobile device 10, so that the control terminal obtains the environmental temperature compensation amount according to the environmental temperature, and according to the The distance between the movable device 10 and the target to be measured obtains the temperature correction value of the infrared thermal imager 12 at this distance, and finally according to the temperature measurement value of the temperature control black body 13, the temperature correction value and the temperature correction value.
  • the ambient temperature compensation amount corrects the temperature measurement value of the target to be measured. This embodiment comprehensively considers the influence of the environmental temperature and the distance on the temperature correction value of the target to be measured, and ensures the accuracy of the temperature correction value of the target to be measured finally.
  • the temperature correction value of the target to be measured is obtained by the movable device 10 for explanation: it is considered that the infrared energy radiated by the human body or the object will gradually decrease with the increase of the distance, thereby affecting the acquisition. According to the accuracy of the temperature correction value of the target to be measured, based on this, on the basis of the embodiment shown in Fig. 10, Fig. 11 or Fig. 12, please refer to Fig. 19 or Fig. 20.
  • the movable The device 10 further includes a distance measuring module 20 arranged on the mobile body 11, the distance measuring module 20 is used to measure the distance between the movable device 10 and the target to be measured; the movable device The processor 19 on 10 is used to obtain the temperature correction value of the infrared thermal imager 12 at the distance according to the distance between the movable device 10 and the target to be measured; according to the temperature control black body 13 The temperature measurement value of and the temperature correction value are corrected to the temperature measurement value of the target to be measured to obtain the temperature correction value of the target to be measured.
  • This embodiment comprehensively considers the influence of distance on the temperature correction value of the target to be measured, and determines the corresponding temperature correction amount to adapt to different distances, and corrects that the temperature control black body 13 is set on the movable device 10 instead of
  • the error caused by setting at the same or similar position as the target to be tested ensures the accuracy of the temperature correction value of the target to be tested finally obtained.
  • the processor 19 determines that the designated area of the target to be tested is in the infrared The first position in the field of view of the thermal imager 12, and then determine the second position of the designated area of the target to be measured in the depth image obtained by the distance measuring module 20 according to the first position, and then the The ranging module 20 determines the distance between the movable device 10 and the target to be measured according to the depth information at the second position.
  • the second position is obtained by converting the first position according to the positional relationship between the distance measuring module 20 and the infrared thermal imager 12.
  • the positional relationship between the infrared thermal imager 12 and the distance measuring module 20 can be pre-calibrated and stored in the movable device 10.
  • the positional relationship may be an infrared thermal image.
  • the external parameter conversion relationship between the meter 12 and the ranging module 20 is not limited to.
  • the movable device 10 further includes a visible light camera 17, and the shooting range of the visible light camera 17 and the measuring range of the distance measuring module 20 fully or partially overlap;
  • the processor 19 recognizes all targets under test from the images taken by the visible light camera 17; and recognizes from the targets under test The designated area of the target to be measured, and determine the third position of the designated area of the target to be measured in the image; then, according to the third position, it is determined that the designated area of the target to be measured is in the depth image
  • the ranging module 20 determines the distance between the movable device 10 and the target to be measured according to the depth information at the fifth position.
  • the fifth position is obtained by transforming the third position according to the positional relationship between the distance measuring module 20 and the visible light camera 17. It is understandable that the positional relationship between the visible light camera 17 and the distance measuring module 20 can be pre-calibrated and stored in the movable device 10. In an example, the positional relationship may be the visible light camera 17 and the distance measuring module 20. The external parameter conversion relationship of the ranging module 20 is described.
  • the temperature correction amount of the infrared thermal imager 12 may be obtained according to the distance between the movable device 10 and the target to be measured and a pre-stored first corresponding relationship; A corresponding relationship indicates the temperature correction amount corresponding to different distances. It is understandable that the embodiment of the present application does not impose any limitation on the representation form of the first correspondence relationship, and specific settings can be made according to actual applications.
  • the first correspondence relationship may be expressed by a function equation relationship, such as a function f(x), where x is the distance between the movable device 10 and the target under test, so that f (x), that is, the temperature correction amount of the infrared thermal imager 12.
  • this embodiment does not impose any restrictions on the specific function representation form, and can be specifically set according to actual application scenarios.
  • it can also be represented by a table of correspondence between distance and temperature correction.
  • distance A corresponds to temperature correction a
  • distance B corresponds to temperature correction B
  • distance C corresponds to temperature correction c
  • a , B, C indicate different distance values
  • a, b, and c indicate different temperature corrections.
  • it can also be represented by a change curve that reflects the corresponding relationship between the distance and the temperature correction amount.
  • the first corresponding relationship may be obtained by pre-calibration of the movable device 10 before leaving the factory and stored in the movable device 10; or the movable device 10 may be obtained from other equipment such as the control terminal or the cloud. Obtained by the server; this embodiment does not impose any restriction on this.
  • the infrared thermal imager 12 acquires the temperature measurement value of the temperature-controlled black body 13 in the field of view of the infrared thermal imager 12 and a plurality of target black bodies located at different distances. It is understandable that the distance at which the target black body is placed can be specifically set according to actual application scenarios. For example, in a human body temperature measurement scene, the target black body can be placed at a distance from the infrared camera 12 has 1m, 2m, 3m, 4m...Nm (N is greater than 1) position. The target black body represents a black body whose actual temperature value is known.
  • the infrared thermal imager 12 acquires the temperature measurement value of the temperature-control black body 13 in the field of view of the infrared thermal imager 12, first determine the viewing angle of the reference black body 13 in the infrared thermal imager 12 According to the position in the field picture, the temperature measurement value of the reference black body 13 is obtained according to the infrared energy at the position.
  • the process of determining the position of the reference black body 13 in the field of view picture of the infrared thermal imager 12 reference may be made to the above description, which will not be repeated here.
  • the infrared thermal imager 12 acquires the temperature measurement values of multiple target black bodies located at different distances in the field of view of the infrared thermal imager 12, it is first determined that the target black body is in the infrared thermal imager 12 And then obtain the temperature measurement value of the target black body according to the infrared energy at the position in the field of view picture.
  • the process of determining the position of the target black body in the field of view picture of the infrared thermal imager 12 is similar to the process of determining the position of the reference black body 13 in the field of view picture of the infrared thermal imager 12, which can be referred to The above description will not be repeated here.
  • the placement position of, that is, the target black body is placed at a different distance from the infrared thermal imager 12 each time.
  • multiple target black bodies may also be placed in the field of view of the infrared thermal imager 12. The multiple target black bodies are located at different distances from the field of view of the infrared thermal imager 12. The field of view of the imager 12 simultaneously obtains temperature measurement values of multiple target black bodies at different distances.
  • the processor 19 is further configured to: obtain the actual temperature values of the multiple target black bodies; temperature measurement values and actual temperature values of the target black bodies corresponding to each distance, and the temperature of the temperature control black body 13 The measured value is used to obtain the temperature correction value at the distance; and the first corresponding relationship is obtained according to the temperature correction values corresponding to different distances.
  • the temperature correction amount is the sum of the difference between the temperature measurement value of the target black body and the actual temperature value and the temperature measurement value of the temperature control black body 13.
  • a fitting operation may be performed corresponding to the meaning of the distance and the temperature correction amount, so as to obtain the first corresponding relationship.
  • the movable device 10 further includes a receiver 16, and the receiver 16 is configured to receive the control terminal of the movable device 10.
  • the actual temperature values of multiple target black bodies the user can measure the actual temperature values of multiple target black bodies through a temperature measurement device, and input the actual temperature values of the multiple target black bodies on the control terminal; or the temperature measurement device and the The control terminal is in communication connection, and the temperature measurement device transmits the actual temperature values of the multiple target black bodies to the control terminal.
  • the temperature correction value of the infrared thermal imager 12 may be obtained as follows: the processor 19 obtains the reference temperature correction value of the infrared thermal imager 12 at a reference distance; According to the difference between the distance between the movable device 10 and the target to be measured and the reference distance, a temperature-related distance compensation amount relative to the reference distance is obtained; based on the reference temperature correction amount and the distance compensation The temperature correction value of the infrared thermal imager 12 at the distance is obtained. It is understandable that the reference distance can be set according to actual application scenarios.
  • the distance compensation amount is a value that characterizes the temperature.
  • the distance compensation amount may be based on the distance difference between the distance between the movable device 10 and the target to be measured and the reference distance, and the correspondence between the distance difference and the distance compensation amount. The relationship is determined. The corresponding relationship between the distance difference and the distance compensation amount can be pre-calibrated before the device leaves the factory.
  • the movable device 10 is also equipped with a temperature sensor 21; the temperature sensor 21 is used for measuring The ambient temperature of the environment; the processor 19 is further configured to: obtain an ambient temperature compensation amount according to the ambient temperature of the current environment measured by the temperature sensor 21; according to the temperature measurement value of the reference black body 13 and the environment The temperature compensation is used to correct the temperature measurement value of the target to be measured.
  • the influence of the environmental temperature on the temperature correction value of the target to be measured is comprehensively considered, and the corresponding environmental temperature compensation amount is obtained according to different environmental temperatures, and the environmental temperature and the environmental temperature compensation amount are in a negative correlation. That is, the higher the ambient temperature, the smaller the ambient temperature compensation amount, the higher the ambient temperature, the lower the ambient temperature compensation amount, and the greater the ambient temperature compensation amount, so as to ensure the accuracy of the finally obtained temperature correction value of the target to be measured.
  • the ambient temperature compensation amount is obtained based on the ambient temperature of the current environment measured by the temperature sensor 21 and a pre-stored second corresponding relationship; the second corresponding relationship indicates the ambient temperature compensation amount corresponding to different ambient temperatures .
  • the second correspondence relationship may be represented by a function equation relationship.
  • it can also be represented by a correspondence table between the ambient temperature and the ambient temperature compensation amount.
  • it can also be represented by a change curve that reflects the corresponding relationship between the ambient temperature and the ambient temperature compensation amount.
  • the second correspondence may be obtained by pre-calibration of the movable device 10 before leaving the factory and stored in the movable device 10; or the movable device 10 may be obtained from other equipment such as the control terminal or the cloud. Obtained by the server; this embodiment does not impose any restriction on this.
  • the processor 19 is connected to the movable device 10 according to Obtaining the temperature correction value of the infrared thermal imager 12 at the distance between the targets to be measured; and obtaining the environmental temperature compensation value according to the current environmental temperature measured by the temperature sensor 21; and then according to The temperature measurement value of the temperature control black body 13, the temperature correction amount, and the ambient temperature compensation amount are used to correct the temperature measurement value of the target to be measured.
  • the temperature correction value of the target under test is the temperature measurement value of the target under test, the ambient temperature compensation amount, and the sum of the temperature correction amount minus the temperature measurement value of the temperature control blackbody the result of.
  • the temperature correction amount is B
  • the ambient temperature compensation amount is C
  • the temperature measurement value of the target to be measured is D
  • the temperature measurement value of the target to be measured is D.
  • the movable device 10 obtains the temperature correction value of the target to be measured, on the basis of the embodiment shown in FIG. 12 or FIG.
  • At least one of the field of view image of the infrared thermal imager 12, the identity information of the target to be measured, and the image captured by the visible light camera 17 are sent to the control terminal communicatively connected with the mobile device, so that the The control terminal displays the field of view picture of the infrared thermal imager 12 and/or the image taken by the visible light camera 17, and displays the to-be-read picture on the field of view picture and/or the image taken by the visible light camera 17.
  • the indication information and/or identity information of the temperature correction value of the target to be measured so as to allow the user to know the identity and temperature of the target to be tested in real time, which is further convenient for the user to use.
  • the control terminal may display the temperature correction value of the target to be measured; and/or, according to the temperature correction of the target to be measured
  • the temperature range to which the value belongs is marked with the corresponding color for the target to be measured, wherein different temperature ranges correspond to different colors, thereby serving as a reminder to the user.
  • the control terminal may also display a specific mark in a designated area of the target to be tested, and display the information of the target to be tested in an area near the specific mark.
  • the temperature correction value, the designated area represents the measurement area where the infrared thermal imager 12 performs temperature measurement on the target to be measured, and the location of the specific mark is that the thermal imager 12 performs temperature measurement on the target to be measured.
  • the specific measurement location for temperature measurement which serves as a reminder to the user.
  • the designated area can be specifically set according to the specific type of the target to be tested; in an example, for example, the target to be tested is a human body, and the designated area can be the forehead area or the hand of the human body. Area etc.
  • the target to be measured is a human body.
  • FIG. 23 is a schematic diagram of the field of view of the infrared thermal imager 12 according to an exemplary embodiment of this application. , A specific mark is displayed on the forehead area of each target to be tested, and the temperature correction value of the target to be tested is displayed in the area near the specific mark.
  • the target to be measured is a human body. Please refer to FIG. 24.
  • the movable device 10 further includes a loudspeaker 22.
  • the user is prompted through the interactive interface of the control terminal; or, an instruction is sent to the movable device so that the loudspeaker 22 receives
  • a voice prompts that the forehead area of the target to be measured is blocked.
  • the control terminal 50 includes, but is not limited to, a smart phone, a computer, a tablet, a personal digital assistant, or a remote control, etc., the control terminal 50 include:
  • the receiver 51 is configured to receive the temperature measurement value of the target to be measured and the temperature measurement value of the reference black body sent by the movable device, wherein the target to be measured is the field of view of an infrared thermal imager located on the movable device
  • the reference black body is fixed on the movable device, the temperature measurement value of the target to be measured and the temperature measurement value of the reference black body are both determined by the infrared thermal imager on the movable device Detected.
  • the processor 52 is configured to correct the temperature measurement value of the target to be measured according to the temperature measurement value of the reference blackbody to obtain the temperature correction value of the target to be measured.
  • the temperature measurement value of the target to be measured measured by the infrared thermal imager is corrected by referring to the temperature measurement value of the black body, to further improve the measurement accuracy of the temperature measurement of the target to be measured, and to ensure the final The accuracy of the obtained temperature correction value of the target to be measured.
  • the reference black body is a temperature-controlled black body.
  • the receiver 51 is also used to receive the ambient temperature sent by the movable device.
  • the processor 52 is further configured to obtain an ambient temperature compensation amount according to the ambient temperature, and correct the temperature measurement value of the target to be measured according to the temperature measurement value of the reference black body and the ambient temperature compensation amount to obtain The temperature correction value of the target to be measured.
  • the reference black body is a temperature-controlled black body.
  • the receiver 51 is also configured to receive the distance between the movable device and the target to be tested sent by the movable device.
  • the processor 52 is further configured to: obtain the temperature correction amount of the infrared thermal imager at the distance according to the distance between the movable device and the target to be measured, and obtain the temperature correction value of the infrared thermal imager according to the temperature measurement of the temperature control black body Value and the temperature correction value to correct the temperature measurement value of the target to be measured to obtain the temperature correction value of the target to be measured.
  • the temperature correction amount of the infrared thermal imager is obtained according to the distance between the movable device and the target to be measured and a first pre-stored corresponding relationship; the first corresponding relationship indicates different distances The corresponding temperature correction amount.
  • the receiver 51 when acquiring the first corresponding relationship, is further configured to receive the temperature measurement value of the temperature-control black body acquired by the infrared thermal imager and the respective values sent by the movable device. Temperature measurements of multiple target black bodies located at different distances. And the processor 52 is further configured to: obtain the actual temperature values of the multiple target black bodies; temperature measurement values and actual temperature values of the target black bodies corresponding to each distance, and temperature measurement of the temperature control black bodies Value, the temperature correction value at the distance is obtained; and the first corresponding relationship is obtained according to the temperature correction values corresponding to different distances.
  • the processor 52 when acquiring the temperature correction amount, is further configured to: acquire the reference temperature correction amount of the infrared thermal imager at a reference distance; Obtain the distance compensation amount based on the difference between the distance between the target to be measured and the reference distance; and obtain the temperature correction amount of the infrared thermal imager at the distance according to the reference temperature correction amount and the distance compensation amount.
  • the receiver 51 is further configured to receive the ambient temperature sent by the movable device.
  • the processor 52 is further configured to: obtain an environmental temperature compensation amount according to the environmental temperature; obtain the temperature correction amount of the infrared thermal imager at the distance according to the distance between the movable device and the target to be measured And according to the temperature measurement value of the temperature control blackbody, the temperature correction amount and the ambient temperature compensation amount, the temperature measurement value of the target to be measured is corrected to obtain the temperature correction value of the target to be measured.
  • the ambient temperature compensation amount is obtained based on the ambient temperature of the current environment measured by the temperature sensor and a second pre-stored corresponding relationship; the second corresponding relationship indicates the environment corresponding to different ambient temperatures The amount of temperature compensation.
  • the temperature correction value of the target under test is the temperature measurement value of the target under test, the ambient temperature compensation amount, and the sum of the temperature correction amount minus the temperature measurement of the temperature control black body The result of the value.
  • the reference black body is an ambient temperature black body.
  • the processor 52 is further configured to: obtain the temperature measurement correction value of the infrared thermal imager; and compare the temperature of the target according to the temperature measurement correction value of the infrared thermal imager and the temperature measurement value of the ambient temperature black body The measured value is corrected.
  • the processor 52 when the processor 52 obtains the temperature measurement correction value of the infrared thermal imager, it is specifically configured to: determine a reference target and the ambient temperature black body; and use the infrared thermal imager to obtain a reference target Obtain the actual temperature value of the reference target; according to the temperature measurement value and actual temperature value of the reference target, and the temperature measurement value of the ambient temperature black body, Determine the temperature measurement correction value.
  • control terminal 50 further includes a display 53, the display 53 provides an interactive interface, the display 53 is used to display the field of view of the infrared camera on the interactive interface, and the reference target And the ambient temperature black body is located in the field of view picture.
  • the processor 52 is further configured to determine the reference target and the ambient temperature black body according to the user's operation on the field of view screen.
  • the processor 52 is further configured to receive the actual temperature value of the reference target input by the user.
  • the infrared thermal imager is provided with a calibration mode
  • the processor 52 is further configured to obtain the temperature measurement correction value of the infrared thermal imager in the calibration mode.
  • the display 53 provides an interactive interface, and a "calibration mode" control may be displayed on the interactive interface, and when it is detected that the user triggers the "calibration mode” control, a calibration instruction is sent to the movable device, Therefore, the infrared thermal imager in the movable device enters the calibration mode in response to the calibration instruction.
  • the control terminal 50 further includes a transmitter 54.
  • the processor 52 is further configured to determine the position of the ambient temperature black body in the field of view picture of the infrared thermal imager according to the user's operation on the field of view picture or according to the stored position.
  • the transmitter 54 is used to send the position to the movable device, so that the movable device determines the temperature measurement value of the ambient temperature black body according to the position.
  • control terminal 50 further includes a display 53.
  • the receiver 51 is also used to receive the field of view image of the infrared thermal imager sent by the movable device.
  • the display 53 is used to display the field of view picture of the infrared thermal imager, wherein the indication information used to indicate the temperature correction value of the target to be measured is displayed on the field of view picture.
  • control terminal 50 further includes a display 53.
  • the receiver 51 is also used to receive the field of view picture of the infrared thermal imager and/or the image taken by the visible light camera sent by the movable device.
  • the processor 52 is further configured to identify the target to be measured from the image taken by the visible light camera, to identify the photographed target, and to obtain the identity information of the target to be measured.
  • the display 53 is used to display the field of view picture of the infrared thermal imager and/or the image taken by the visible light camera, wherein the display on the field of view picture and/or the image is used to indicate the waiting The indication information of the temperature correction value of the test target and/or the identity information of the target to be tested.
  • control terminal 50 further includes a display 53.
  • the receiver 51 is also used to receive the field of view picture of the infrared thermal imager and/or the image taken by the visible light camera and the identity information of the target to be measured sent by the movable device.
  • the display 53 is used to display the field of view picture of the infrared thermal imager and/or the image taken by the visible light camera, wherein the display on the field of view picture and/or the image is used to indicate the waiting The indication information of the temperature correction value of the test target and/or the identity information of the target to be tested.
  • the display 53 is further used to: display the temperature correction value of the target to be measured; and/or, according to the temperature range to which the temperature correction value of the target to be measured belongs, Marked as the corresponding color, where different temperature ranges correspond to different colors.
  • the display 53 is further configured to display a specific mark in a designated area of the target to be measured, and display a temperature correction value of the target to be measured in an area near the specific mark.
  • the display 53 includes, but is not limited to, a CRT (Cathode Ray Tube) display, an LCD (liquid crystal) display, an LED (light emitting diode) display, or a PDP (Plasma Display Panel, plasma display) display.
  • the display 53 may provide an interactive interface to interact with the user through the interactive interface.
  • the target to be measured is a human body; the designated area includes at least a forehead area or a hand area.
  • the target to be tested is a human body; the processor 52 is further configured to: when it is recognized that the forehead area of the target to be tested is blocked, prompt the user through an interactive interface.
  • the ambient temperature in the temperature correction value process and the ambient temperature in the temperature measurement process (the process of obtaining the temperature correction value of the target to be measured) are the same or the difference between the two is within the first range. Therefore, it can be in the
  • the display 53 of the control terminal 50 displays ambient temperature reminder information, which is used to remind the user to keep the calibration process and the temperature measurement process at the same ambient temperature or the difference between the two is within the first range.
  • the relative distance reminder information can be displayed on the display 53 of the control terminal 50, which is used to remind the user to keep the distance between the movable device and the reference target under test during the calibration process.
  • the relative distance between the movable device and the target to be measured is the same or the difference is within the second range.
  • the process of measuring the temperature of the target to be measured is to measure the designated area of the target to be measured
  • the process of measuring the temperature of the human body is to measure the forehead area of the human body.
  • the pan/tilt can adjust the field of view of the infrared thermal imager, thereby affecting the detection of the specified area of the target to be measured by the infrared thermal imager in its field of view, for example, the rotation of the pan/tilt
  • the rotation of the infrared thermal imager makes it impossible to detect or difficult to detect the designated area of the target to be measured in the field of view, which in turn affects the accuracy of the temperature correction value of the target to be measured finally.
  • the control terminal can be
  • the display 53 of the 50 displays the pitch angle reminder information of the gimbal, which is used to remind the user to keep the pitch angle of the gimbal within the third range.
  • the pitch angle reminder information of the pan/tilt may be the size of the pitch angle of the pan/tilt and the allowable range of the pitch angle.
  • first range, the second range, and the third range can be specifically set according to actual application scenarios, which are not limited in the embodiment of the present application.
  • An embodiment of the present application also provides a method for measuring temperature by using an infrared thermal imager in a movable device.
  • the method is characterized in that a reference black body is also provided on the movable device.
  • the method may be executed by a movable device or a control terminal communicatively connected with the movable device, and the method includes:
  • step S101 the temperature measurement value of the target to be measured located in the field of view of the infrared thermal imager and the temperature measurement value of the reference black body are obtained by using the infrared thermal imager.
  • step S102 the temperature measurement value of the target to be measured is corrected according to the temperature measurement value of the reference black body to obtain the temperature correction value of the target to be measured.
  • the relevant part can refer to the part of the description of the device embodiment.
  • the embodiment of the present application also provides a method for measuring temperature by using an infrared thermal imager in a movable device.
  • the infrared thermal imager is provided with a calibration mode and a temperature measurement mode, and the infrared thermal imager is provided with A black body with ring temperature.
  • the method includes the steps:
  • Step S201 Display the field of view picture of the infrared thermal imager, and determine the position of the reference target and the ambient temperature black body according to the user's operation on the field of view picture.
  • step S202 the temperature measurement value of the reference target and the temperature measurement value of the ambient temperature black body are obtained by using the infrared thermal imager.
  • Step S203 Obtain the actual temperature value of the reference target.
  • Step S204 Determine the temperature measurement correction value according to the temperature measurement value and the actual temperature value of the reference target, and the temperature measurement value of the ambient temperature blackbody.
  • the method includes the steps:
  • step S205 the temperature measurement value of the target to be measured and the temperature measurement value of the ambient temperature black body located in the field of view of the infrared thermal imager are obtained by using the infrared thermal imager.
  • step S206 the temperature measurement value of the target to be measured is corrected according to the temperature measurement correction value of the infrared thermal imager and the temperature measurement value of the ambient temperature blackbody to obtain the temperature correction value of the target to be measured.
  • the relevant part can refer to the part of the description of the device embodiment.
  • an embodiment of the present application also provides a movable system, which is characterized by comprising a movable device 10 and a control terminal 50, wherein the movable device 10 is provided with an infrared thermal imager And refer to boldface.
  • the movable device 10 is used to obtain the temperature measurement value of the target to be measured in the field of view of the infrared thermal imager and the temperature measurement value of the reference black body by using the infrared thermal imager.
  • the control terminal 50 or the movable device 10 is configured to correct the temperature measurement value of the target to be measured according to the temperature measurement value of the reference black body to obtain the temperature correction value of the target to be measured.
  • the relevant part can refer to the part of the description of the device embodiment.
  • this embodiment also provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by the processor to realize the temperature measurement using the infrared thermal imager in the movable device as described in the above embodiment.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated unit implemented in the form of a software functional unit may be stored in a computer readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium, and includes several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute the method described in each embodiment of the present application. Part of the steps.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

一种可移动装置(10)、控制终端、利用可移动装置(10)中的红外热像仪(12)测温的方法以及可移动系统,可移动装置(10)上还设有参考黑体(13),测温的方法包括:利用红外热像仪(12)获取位于红外热像仪(12)视场内的待测目标的温度测量值以及参考黑体(13)的温度测量值;根据参考黑体(13)的温度测量值对待测目标的温度测量值进行校正,得到待测目标的温度校正值。可移动装置(10)实现了远程温度测量过程,并且保证了测量结果的准确性。

Description

可移动装置、控制终端、利用可移动装置中的红外热像仪测温的方法以及可移动系统 技术领域
本申请实施例涉及红外测温技术领域,尤其涉及一种可移动装置、控制终端、利用可移动装置中的红外热像仪测温的方法以及可移动系统。
背景技术
在一些场景中,需要对人体或者物体的温度进行测量,以根据人体或者物体的温度确定人体或物体的状况。
传统的测温方式包括接触式测温方式和非接触式测温方式,接触式测温方式通常要求测温设备与被测目标紧密接触,由于需要与被测目标紧密接触,使得测温设备一次只能测量一个被测目标的温度,在要求不能跟被测目标接触(或者尽量避免跟被测目标接触),并且被测目标数量众多的情况下,接触式测温方式显然无法满足需求。
非接触式测温方式主要以长波红外测温为主,如红外热像仪,但影响非接触式测温方式的测量精度的因素有很多,比如测温设备自身的热辐射或者环境温度等因素,导致非接触式测温方式的测量精度较低,目前非接触式测温方式的测量精度一般在±2℃,这显然无法适用于某些高精度要求(精度要求小于±2℃)的测温场景,比如人体测温场景下,对于精度要求为±0.3℃。
发明内容
本申请实施例提供一种可移动装置、控制终端、利用可移动装置中的红外热像仪测温的方法以及可移动系统。
本申请实施例的第一方面是提供一种利用可移动装置中的红外热像仪测温的方法,所述可移动装置上还设有参考黑体,所述方法包括:
利用所述红外热像仪获取位于所述红外热像仪视场内的待测目标的温度测量值以及所述参考黑体的温度测量值;
根据所述参考黑体的温度测量值对所述待测目标的温度测量值进行校正,得到所述待 测目标的温度校正值。
本申请实施例的第二方面是提供一种可移动装置,包括移动机身,以及固定在所述移动机身上的红外热像仪和参考黑体;
所述红外热像仪用于获取位于所述红外热像仪视场内的待测目标的温度测量值以及所述参考黑体的温度测量值,其中,所述参考黑体的温度测量值用于对所述待测目标的温度测量值进行校正,以得到所述待测目标的温度校正值。
本申请实施例的第三方面是提供一种控制终端,包括:
接收器,用于接收可移动装置发送的待测目标的温度测量值和参考黑体的温度测量值,其中,所述待测目标为位于所述可移动装置上的红外热像仪的视场内的待测目标,所述参考黑体固定在所述可移动装置上,所述待测目标的温度测量值和所述参考黑体的温度测量值均由所述可移动装置上的红外热像仪检测得到;
处理器,用于根据所述参考黑体的温度测量值对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
本申请实施例的第四方面是提供一种可移动系统,包括可移动装置和控制终端,其中,所述可移动装置上设置有红外热像仪和参考黑体;
所述可移动装置用于利用所述红外热像仪获取位于所述红外热像仪视场内的待测目标的温度测量值以及所述参考黑体的温度测量值;
所述控制终端或所述可移动装置用于根据所述参考黑体的温度测量值对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
本实施例提供的一种可移动装置、控制终端、利用可移动装置中的红外热像仪测温的方法以及可移动系统,通过在所述可移动装置上设置红外热像仪,检测在其视场内的待测目标的温度,实现远程测温过程,无需与待测目标进行接触,并且可以检测到所述红外热像仪视场内的所有待测目标,实现对多个待测目标的温度同时进行测量,有利于提高温度测量效率;进一步地,考虑到所述红外热像仪测量待测目标得到的温度测量值的测量精度较低的问题,本实施例在所述可移动装置中设置了参考黑体,所述环境黑体起到校正所述待测目标的温度测量值以提高温度测量精度的作用,所述红外热像仪对所述参考黑体进行温度测量得到其温度测量值,然后所述可移动装置通过参考黑体的温度测量值对所述红外热像仪测得的待测目标的温度测量值进行校正,进一步提高对所述待测目标进行温度测量的测量精度,保证最后得到的所述待测目标的温度校正值的准确性,从而使本申请的可移动装置适用于测量精度要求高的测温场景。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的第一种可移动装置的结构图;
图2A为本申请实施例提供的第二种可移动装置的结构图;
图2B为本申请实施例提供的一种无人飞行器的结构图;
图3为本申请实施例提供的第三种可移动装置的结构图;
图4A为本申请实施例提供的第四种可移动装置的结构图;
图4B为本申请实施例提供的一种无人驾驶车辆的结构图;
图5为本申请实施例提供的第五种可移动装置的结构图;
图6为本申请实施例提供的一种控温黑体的结构图;
图7~22分别为本申请实施例提供的第六种~第二十一种可移动装置的结构图;
图23为本申请实施例提供的红外热像仪的视场画面示意图;
图24为本申请实施例提供的第二十二种可移动装置的结构图;
图25为本申请实施例提供的第一种控制终端的结构图;
图26为本申请实施例提供的第二种控制终端的结构图;
图27为本申请实施例提供的第三种控制终端的结构图;
图28为本申请实施例提供的一种利用可移动装置中的红外热像仪测温的方法的流程图;
图29为本申请实施例提供的一种可移动系统的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者 也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
基于相关技术中的问题,请参阅图1,本申请实施例提供了一种可移动装置10,图1为本申请根据一示例性实施例示出的一种可移动装置10的结构图。所述可移动装置10包括移动机身11,以及固定在所述移动机身11上的红外热像仪12和参考黑体13。
所述红外热像仪12用于获取位于所述红外热像仪12视场内的待测目标的温度测量值以及所述参考黑体13的温度测量值,其中,所述参考黑体13的温度测量值用于对所述待测目标的温度测量值进行校正,以得到所述待测目标的温度校正值。
在一实施例中,所述可移动装置10包括但不限于无人驾驶车辆、无人驾驶船只、无人飞行器以及可移动机器人等。所述可移动装置10可应用于人体测温领域、工业检测领域、安防领域以及电力、铁路等领域,对于人体或者物体进行温度测量。
在本实施例中,通过在所述可移动装置10上设置红外热像仪12,检测在其视场内的待测目标的温度,实现远程测温过程,无需与待测目标进行接触,并且可以检测到所述红外热像仪12视场内的所有待测目标,实现对多个待测目标的温度同时进行测量,有利于提高温度测量效率;进一步地,考虑到所述红外热像仪12测量待测目标得到的温度测量值的测量精度较低的问题,本实施例在所述可移动装置10中设置了参考黑体13,所述参考黑体13起到校正所述待测目标的温度测量值以提高温度测量精度的作用,所述红外热像仪12对所述参考黑体13进行温度测量得到其温度测量值,然后所述可移动装置10通过参考黑体13的温度测量值对所述红外热像仪12测得的待测目标的温度测量值进行校正,进一步提高对所述待测目标进行温度测量的测量精度,保证最后得到的所述待测目标的温度校正值的准确性,从而使本申请的可移动装置10适用于测量精度要求高的测温场景。
在一实施例中,所述参考黑体13可被安装于能够被所述红外热像仪12在其视场内检测到的位置,从而保证所述红外热像仪12能够检测到所述环温黑体13的温度。
以下对于所述参考黑体13在所述可移动装置10上可能设置的位置进行说明:
在第一种可能的实现方式中,请参阅图2A,为本申请根据一示例性实施例示出的第二 种可移动装置10的结构图,所述可移动装置10包括支撑件14,所述支撑件14用于将所述参考黑体13与所述红外热像仪12相互固定,且所述参考黑体13在所述红外热像仪12的视场内的位置保持固定;作为例子,可以通过所述支撑件14支撑所述参考黑体13悬挂于所述红外热像仪12的前端,保证所述参考黑体13能够被所述红外热像仪12在其视场内检测到;其中,为了使所述参考黑体13在所述红外热像仪12的视场内的位置保持固定,要求用于支撑所述参考黑体13的所述支撑件14也具有一定的硬度,使其在承受所述可移动装置10在移动过程中产生的阻力的情况下,自身不会发生弯曲或者变形,即自身结构相对固定不变,从而保证所述参考黑体13在所述红外热像仪12的视场内的位置保持固定。
在一实施例中,为了增大所述可移动装置10的温度测量的区域范围,所述可移动装置10还包括固定在所述移动机身11上的云台15,所述红外热像仪12固定在所述云台15上,从而可以通过所述云台15的旋转带动所述红外热像仪12转动,进而调节所述红外热像仪12的视场角,改变所述红外热像仪12检测的位置,使得所述红外热像仪12可以检测到不同位置上的待测目标的温度,扩大温度测量的区域范围。
在一示例性的实施例中,所述可移动装置10为无人飞行器,请参阅图2B,为本申请根据一示例性实施例示出的一种无人飞行器的结构图,所述无人飞行器包括移动机身301、固定在所述移动机身301上的云台305、固定在所述云台305上的红外热像仪302,以及通过支撑件304与所述红外热像仪302相互固定的参考黑体303,所述参考黑体303在所述红外热像仪302的视场内的位置保持固定。其中,图2B中的圆锥状区域表示所述红外热像仪302的视场范围。
图2B所示的实施例中,所述红外热像仪22用于获取位于所述红外热像仪302视场内的待测目标的温度测量值以及所述参考黑体303的温度测量值,其中,所述参考黑体303的温度测量值用于对所述待测目标的温度测量值进行校正,以得到所述待测目标的温度校正值;本实施例中,通过所述红外热像仪302实现远程测温过程,无需与待测目标进行接触,并且可以检测到所述红外热像仪302视场内的所有待测目标,实现对多个待测目标的温度同时进行测量,有利于提高温度测量效率;而且,所述无人飞行器通过参考黑体303的温度测量值对所述红外热像仪302测得的待测目标的温度测量值进行校正,进一步提高对所述待测目标进行温度测量的测量精度,保证最后得到的所述待测目标的温度校正值的准确性。
进一步地,图2B所示的实施例中,通过所述云台305的旋转带动所述红外热像仪302和所述参考黑体303一起转动,从而可以改变所述红外热像仪302检测的位置,使得所述红外热像仪302可以检测到不同位置上的待测目标的温度,并通过与其一起转动的参考黑 体303的温度对待测目标的温度进行校正,保证温度测量的准确性,通过所述云台305也扩大温度测量的区域范围。
在所述可移动装置10包括所述云台15的情况下,本实施例提供所述参考黑体13位置设置的第二种可能的实现方式,请参阅图3,为本申请根据一示例性实施例示出的第三种可移动装置10的结构图,所述可移动装置10包括支撑件14,所述支撑件14用于将所述参考黑体13与所述云台15相互固定,且所述参考黑体13固定在所述红外热像仪12的视场内;作为例子,可以通过该支撑件14支撑所述参考黑体13悬挂于所述云台15的前端,在所述云台15旋转时,同时带动所述红外热像仪12以及所述参考黑体13转动,使得所述参考黑体13始终在所述红外热像仪12的前端,在所述红外热像仪12的视场内的位置保持固定,能够在其视场内被检测到。
在第三种可能的实现方式中,请参阅图4A,为本申请根据一示例性实施例示出的第四种可移动装置10的结构图,所述可移动平台还包括支撑件14,所述支撑件14用于将所述参考黑体13与所述可移动装置10的移动机身11相互固定,且所述参考黑体13固定在所述红外热像仪12的视场内;作为例子,可以通过该支撑件14支撑所述参考黑体13悬挂于所述移动机身11的前端,保证所述参考黑体13能够被所述红外热像仪12在其视场内检测到。
在一示例性的实施例中,所述可移动装置为无人驾驶车辆,请参阅图4B,为本申请根据一示例性实施例示出的一种无人驾驶车辆的结构图,所述无人驾驶车辆包括移动机身401、通过支撑件402固定在所述移动机身401上的参考黑体403、以及固定在移动机身401上的红外热像仪404,所述参考黑体403在所述红外热像仪404的视场内的位置保持固定。
图4B所示的实施例中,所述红外热像仪404用于获取位于所述红外热像仪404视场内的待测目标的温度测量值以及所述参考黑体403的温度测量值,其中,所述参考黑体403的温度测量值用于对所述待测目标的温度测量值进行校正,以得到所述待测目标的温度校正值;本实施例中,通过所述红外热像仪404实现远程测温过程,无需与待测目标进行接触,并且可以检测到所述红外热像仪404视场内的所有待测目标,实现对多个待测目标的温度同时进行测量,有利于提高温度测量效率;而且,所述无人驾驶车辆通过参考黑体403的温度测量值对所述红外热像仪404测得的待测目标的温度测量值进行校正,进一步提高对所述待测目标进行温度测量的测量精度,保证最后得到的所述待测目标的温度校正值的准确性。
在所述可移动装置10包括所述云台15的情况下,本实施例还提供所述参考黑体13 位置设置的第四种可能的实现方式,基于所述云台15的旋转属性,所述参考黑体13也可以不固定在所述红外热像仪12的视场内的位置,请参阅图5,可移动装置10所述可移动平台还包括支撑件14,所述支撑件14用于将所述参考黑体13与所述可移动装置10的移动机身11相互固定,所述云台15在所述红外热像仪12检测的过程中能够调整,使得所述参考黑体13进入所述红外热像仪12的视场;本实施例中,在所述红外热像仪12进行温度检测过程中,所述可移动装置10可以每隔指定时间对所述云台15进行调整,实现所述红外热像仪12对所述参考黑体13温度的测量,每隔所述指定时间通过所述云台15的旋转带动所述红外热像仪12转动,直到转动至能够在其视场内检测到所述参考黑体13的位置,从而所述红外热像仪12能够在其视场内检测到所述参考黑体13的温度;可以理解的是,所述指定时间可依据实际情况进行具体设置,本申请实施例对此不作任何限制,例如所述指定时间为1分钟。
在一个例子中,通过所述云台15的调整使得所述参考黑体13进入所述红外热像仪12的视场的过程中,所述参考黑体13在所述红外热像仪12视场内的位置是固定的,通过预先设置一固定角度,所述固定角度基于所述参考黑体13在所述可移动装置10的移动机身11上固定的位置所确定,在每次(每隔指定时间)需要检测所述参考黑体13的温度时,所述可移动装置10可以向所述云台15发送第一旋转指令,使得所述云台15响应于所述第一旋转指令旋转所述固定角度,从而带动所述红外热像仪12转动至能够在其视场内检测到所述参考黑体13的位置,进而所述红外热像仪12能够在其视场内检测所述参考黑体13的温度;本实施例通过所述云台15转动固定角度使得所述参考黑体13每次出现在所述红外热像仪12视场内的位置是固定的。
在另一个例子中,通过所述云台15的调整使得所述参考黑体13进入所述红外热像仪12的视场的过程中,所述参考黑体13在所述红外热像仪12视场内的位置也可以是不固定的,所述红外热像仪12可以预先获取表征所述参考黑体13的信息,所述信息包括但不限于所述参考黑体13的形状信息或者图像信息等,从而在后续每次(每隔指定时间)需要检测所述参考黑体13的温度时,所述可移动装置10可以向所述云台15发送第二旋转指令,使得所述云台15响应于所述第二旋转指令进行旋转,在通过所述云台15的旋转带动所述红外热像仪12转动的过程中,所述可移动装置10根据表征所述参考黑体13的信息确定是否在所述红外热像仪12的视场内检测到所述参考黑体13,如果确定在所述红外热像仪12的视场内检测到所述参考黑体13,所述可移动装置10即可通知所述云台15停止旋转,从而所述红外热像仪12能够在其视场内检测所述参考黑体13的温度;本实施例通过所述红外热像仪12的灵活识别过程,使得所述参考黑体13出现在所述红外热像仪12 视场内的位置是不固定的。
在一实施例中,为了保证所述参考黑体13能够在所述红外热像仪12的视场画面中清晰成像,可以基于所述红外热像仪12的焦距确定所述参考黑体13与所述红外热像仪12之间的距离,从而也可以基于所述参考黑体13与所述红外热像仪12之间的距离确定所述支撑件14的长度。在一个例子中,设所述红外热像仪12的焦距为F,所述红外热像仪12的像距为V,所述参考黑体13与所述红外热像仪12之间的距离为U,则有
Figure PCTCN2020090355-appb-000001
可理解的是,所述红外热像仪12选用的镜头可依据实际应用场景进行具体设置,本申请实施例对此不做任何限制,比如所述红外热像仪12选用的镜头为广角短焦镜头。
在一实施例中,所述参考黑体13包括环温黑体13和控温黑体13。
这里对所述环温黑体13进行说明:所述环温黑体13表示辐射率高且温度均匀的恒温物体;所述温度均匀可以通过所述恒温物体的比热容来衡量,比热容大于预设数值的物体即可视为温度均匀的物体;例如所述环温黑体13可以是泡棉材质的物体;可以理解的是,本申请对于所述预设数值不作任何限制,可依据实际应用场景进行具体设置。
考虑到所述环温黑体13被设置在所述可移动装置10上,对于所述环温黑体13具有如下要求:
第一个要求,由于可移动装置10的可移动性,使其在移动过程中,由于环境因素(比如移动过程中的风力)的影响可能对所述可移动装置10会产生一定的阻力,因此,要求所述环温黑体13具有一定的硬度,使得所述环温黑体13在承受所述可移动装置10在移动过程中产生的阻力的情况下,自身不会发生弯曲或者变形,即自身结构相对固定不变。
第二个要求,考虑到携带重量太大的物体可能会加快所述可移动设备的电量损耗,因此,为了节省所述可移动装置10的电量损耗,所述环温黑体13的重量越轻越好,即要求所述环温黑体13的重量需要小于指定重量阈值,所述指定重量阈值可以基于所述可移动装置10的承重能力和电量综合确定,所述指定重量阈值的大小可依据可移动装置10的类型进行具体设置,本申请实施例对此不作任何限制。
第三个要求,考虑到所述红外热像仪12的视场范围有限,为了实现对在所述红外热像仪12视场内的尽可能多的待测目标进行温度检测,所述环温黑体13的体积需要尽量小,即是说,所述环温黑体13的体积需要小于指定体积阈值,从而保证在所述红外热像仪12视场内可以检测到更多的待测目标,尽可能减小所述环温黑体13的遮挡影响;其中,所述指定体积阈值可依据所述红外热像仪12的视场大小所确定。
这里对所述控温黑体13进行说明:所述控温黑体13的温度保持在指定温度值。在一示例中,所述控温黑体13包括有半导体制冷器(ThermoElectricCooler,TEC),所述半导 体制冷器用于使所述控温黑体13的温度保持指定温度。可理解的是,所述指定温度可依据实际应用场景进行具体设置,本实施例对此不做任何限制;例如在人体测温场景下,所述指定温度为36℃或者40℃等,精度控制在±0.1℃。本实施例不限于使用半导体制冷器来保持指定温度,也可以是其他可以保持指定温度的设备,本实施例对此不做任何限制。
在一示例性的实施例中,请参阅图6,为本申请实施例提供的一种控温黑体13的结构示意图,所述控温黑体13包括有半导体制冷器31,所述半导体制冷器31用于使所述控温黑体13的温度保持指定温度。所述半导体制冷器31(Thermoelectriccooler,TEC)是指利用半导体的热电效应制取冷量的器件,半导体制冷器31具有无噪声、无振动、不需制冷剂、体积小、重量轻等特点,且工作可靠,操作简便,易于进行冷量调节。
以及,所述控温黑体13还包括有作为黑体辐射面的辐射层32,所述辐射层32与所述半导体制冷器31相互固定,所述辐射层32与所述红外热像仪12的镜头相对,使得所述控温黑体13通过辐射层32辐射的能量能够被所述红外热像仪12探测到,以便所述红外热像仪12可以获取所述控温黑体13的温度测量值;应理解的是,本实施例对所述辐射层32的材料、厚度以及所述辐射层32与所述红外热像仪12的镜头相对的一面的大小不做任何限制,可依据实际应用场景进行具体设置,例如所述辐射层32可以是具有高辐射率的紫铜板,其厚度为2mm,所述辐射层32与所述红外热像仪12的镜头相对的一面为直径为3mm的圆形区域。
以及,所述控温黑体13还包括有与所述半导体制冷器31相互固定的第一散热层33,所述第一散热层33用于为所述半导体制冷器31散热,应理解的是,本实施例对第一散热层33的材料不做任何限制,可依据实际应用场景进行具体设置。
以及,控温黑体13还包括有处理模块34,所述处理模块34用于控制所述半导体制冷器31运行,以对所述控温黑体13进行温度调节。可选地,所述处理模块34中还包括有无线通信单元,用于根据接收外部指令并传输给所述处理模块34,使得所述处理模块34根据所述外部指令控制所述半导体制冷器31运行,以对所述控温黑体13进行温度调节。可选地,所述外部指令从所述可移动装置的控制终端获取,或者也可以从其他设备处获取,本实施例对此不作任何限制。
以及,控温黑体13还包括与所述处理模块34相互固定的第二散热层35,所述第二散热层35用于为所述处理模块34散热,应理解的是,本实施例对第二散热层35的材料不做任何限制,可依据实际应用场景进行具体设置。
进一步地,本申请实施例对于所述控温黑体13的具体结构不作任何限制,可依据实际应用场景进行具体设置。在一个例子中,为了保证所述控温黑体13稳定的控温性能, 所述控温黑体13可以为腔体结构,所述控温黑体13还包括包裹所述半导体制冷器31的隔热保温层36,所述隔热保温层36用于使所述控温黑体13的温度保持指定温度。应理解的是,本实施例对构成隔热保温层36的材料不做任何限制,可依据实际应用场景进行具体设置,例如所述隔热保温层36的材料采用环氧树脂材料。
其中,考虑到所述红外热像仪12的视场范围有限,为了实现对在所述红外热像仪12视场内的尽可能多的待测目标进行温度检测,所述控温黑体13的体积需要尽量小,即是说,所述控温黑体13的体积需要小于指定体积阈值,从而保证在所述红外热像仪12视场内可以检测到更多的待测目标,尽可能减小所述控温黑体13的遮挡影响;在一个例子中,所述控温黑体13可以为深度10mm且直径10mm的圆柱状结构。
在清楚所述环温黑体13和控温黑体13的情况下,接下来对利用红外热像仪12获取位于所述红外热像仪12视场内的所述参考黑体13的温度测量值和所述待测目标的温度测量值的过程进行说明。
当所述红外热像仪12在获取位于所述红外热像仪12视场内的所述参考黑体13的温度测量值时,首先确定所述参考黑体13在所述红外热像仪12的视场画面中的位置,然后根据所述位置处的红外能量获取所述参考黑体13的温度测量值。
其中,确定所述参考黑体13在所述红外热像仪12的视场画面中的位置包括但不限于以下至少三种实现方式:
在第一种可能的实现方式中,如果所述参考黑体13在所述红外热像仪12的视场画面内的位置固定,即所述参考黑体13与所述红外热像仪12相互固定,且固定在所述红外热像仪12的视场内的同一位置,则可以预先确定所述参考黑体13在所述红外热像仪12的视场画面内的位置,并将所述参考黑体13在所述红外热像仪12的视场画面内的位置信息存储起来,以便在所述红外热像仪12在获取所述参考黑体13的温度测量值时,根据存储的位置信息确定所述参考黑体13在所述红外热像仪12的视场画面中的位置,从而获取所述参考黑体13的温度测量值;其中,本申请对于预先确定所述参考黑体13位置的时机不作任何限制,可以是所述可移动装置10在出厂时,由开发人员确定并录入;也可以是用户在首次使用时,由用户基于所述红外热像仪12的视场画面所确定。
在第二种可能的实现方式中,所述可移动装置10可以将所述红外热像仪12的视场画面发送给所述可移动装置10的控制终端,在所述控制终端的交互界面上显示所述红外热像仪12的视场画面,然后根据用户在所述视场画面上的操作确定所述参考黑体13在所述红外热像仪12的视场画面内的位置信息并反馈给所述可移动装置10,则请参阅图7,所述可移动装置10可以包括有设置于移动机身11内的接收器16,所述接收器16用于接收 控制终端发射的所述参考黑体13在所述红外热像仪12的视场画面内的位置信息,从而所述红外热像仪12可以参考黑体13红外热像仪12根据所述位置信息指向的位置处的红外能量获取所述参考黑体13的温度测量值;本实施例中,通过用户的操作确定所述参考黑体13的位置,有利于保证确定结果的准确性。当然,所述用户的操作也可以依据实际应用场景进行具体设置,例如所述用户的操作包括但不限于点击操作、长按操作或者框选操作等。
在第三种可能的实现方式中,所述可移动装置10可以预先存储表征所述参考黑体13的信息,所述表征所述参考黑体13的信息包括但不限于所述参考黑体13的形状信息或者图像信息等,在确定所述参考黑体13在所述红外热像仪12的视场画面内的位置的过程中,可以根据表征所述参考黑体13的信息对所述参考黑体13进行识别,进而基于识别结果确定其在所述红外热像仪12的视场画面内的位置;在本实施例中,无需每次需要确定参考黑体13的位置时均需要用户的操作,减少了用户的操作步骤,方便用户使用。其中,表征所述参考黑体13的信息可以是所述可移动装置10在出厂时,由开发人员确定并录入;也可以是用户在首次使用时,由用户基于所述红外热像仪12的视场画面所确定,本实施例对此不作任何限制。
当所述红外热像仪12在获取位于所述红外热像仪12视场内的待测目标的温度测量值时,所述待测目标的温度测量值可以根据所述红外热像仪12测得的所述待测目标的指定区域辐射出的红外能量所确定。
在一种实现方式中,所述红外热像仪12首先可以从所述红外热像仪12的视场画面中识别出所有待测目标,然后从所述待测目标中识别所述待测目标的指定区域,最后根据所述待测目标的指定区域辐射出的红外能量确定所述待测目标的温度测量值。
作为例子,所述待测目标为人体,所述指定区域包括人体的额头区域,所述红外热像仪12在检测位于所述红外热像仪12视场内的待测人体的温度测量值时,首先从所述红外热像仪12获取的视场画面中识别出所有待测人体,然后从所述待测人体中识别所述待测目标的额头区域,最后根据所述待测目标的额头区域辐射出的红外能量确定所述待测目标的温度测量值。
可以理解的是,所述红外热像仪12的视场画面包括但不限于热图像或者由双目视觉传感器得到的RGB图像。
在另一种实现方式中,请参阅图8,所述可移动装置10还包括有可见光相机17,所述可见光相机17的拍摄范围与所述红外热像仪12的视场全部或部分重叠;所述部分重叠可理解为至少70%重叠,以保证所述可见光相机17拍摄的对象也被所述红外热像仪12检 测到,从而可利用所述可见光相机17拍摄的图像进行待测目标的识别,由于相关技术中对于可见光相机17拍摄的图像进行识别的技术更为成熟,有利于提高识别的准确性,所述红外热像仪12在获取位于所述红外热像仪12视场内的待测目标的温度测量值时,首先所述可移动装置10从所述可见光相机17拍摄的图像中识别出所有待测目标,以及从所述待测目标中识别所述待测目标的指定区域,并确定所述待测目标的指定区域在所述图像中的第三位置;然后根据所述第三位置确定所述待测目标的指定区域在所述红外热像仪12的视场画面中的第四位置,最后所述红外热像仪12根据所述第四位置处的红外能量获取所述待测目标的温度测量值;其中,所述第四位置根据所述可见光相机17与所述红外热像仪12的位置关系对所述第三位置进行转换得到。可理解的是,可以预先标定所述可见光相机17与所述红外热像仪12的位置关系并存储在所述可移动装置10中,在一个例子中,所述位置关系可以是可见光相机17与所述红外热像仪12的外参转换关系。本实施例中,通过对可见光相机17获得的图像准确识别待测目标的指定区域,进一步保证所述红外热像仪12获取所述待测目标准确的温度测量值。
在所述红外热像仪12获取所述待测目标的温度测量值以及所述参考黑体13的温度测量值之后,获取所述待测目标的温度校正值的过程可以在所述可移动装置10上实现,也可以由在与所述可移动装置10通信连接的控制终端执行,本实施例对此不做任何限制,以下分别进行说明。
在一实施例中,获取所述待测目标的温度校正值的过程由与所述可移动装置10通信连接的控制终端执行,请参阅图9,所述可移动装置10还包括发射器18,所述发射器18可设置于所述移动机身11内;所述发射器18用于将所述待测目标的温度测量值以及所述参考黑体13的温度测量值发送至所述可移动装置10的控制终端,以便所述控制终端根据所述参考黑体13的温度测量值对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值;在本实施例中,通过参考黑体13的温度测量值对所述红外热像仪12测得的待测目标的温度测量值进行校正,进一步提高对所述待测目标进行温度测量的测量精度,保证最后得到的所述待测目标的温度校正值的准确性。
其中,所述发射器18包括但不限于近距离无线通信发射器或移动通信发射器,所述近距离无线通信发射器所使用的近距离无线通信协议至少包括以下任一:红外协议、WiFi协议、蓝牙协议、UWB协议或者ZigBee协议;所述移动通信发射器所使用的移动通信协议至少包括以下任一:3G通信协议、4G通信协议、GSM通信协议或者GPRS通信协议。
可选地,在图9所述实施例的基础上,请参阅图10,所述可移动装置包括可见光相机17,所述发射器18还用于将所述可见光相机17拍摄的图像发射给所述控制终端,使得所 述控制终端可以从所述可见光相机17拍摄的图像中识别出的所述待测目标进行身份识别,获取所述待测目标的身份信息。在一个示例中,所述控制终端可以将所述待测目标的身份信息和对应的温度校正值关联起来,以基于所述身份信息对所述待测目标进行温度跟踪,进一步方便用户使用。在另一个示例中,所述控制终端可以将所述待测目标的身份信息和温度校正值一起显示,以便让用户实时了解该待测目标的温度情况,进一步方便用户使用。
在另一实施例中,获取所述待测目标的温度校正值的过程可以在所述可移动装置10上实现,请参阅图11,所述可移动装置10还包括有处理器19,所述处理器19用于根据所述参考黑体13的温度测量值对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。在本实施例中,通过参考黑体13的温度测量值对所述红外热像仪12测得的待测目标的温度测量值进行校正,进一步提高对所述待测目标进行温度测量的测量精度,保证最后得到的所述待测目标的温度校正值的准确性。
可选地,在由所述可移动装置10获取所述待测目标的温度校正值之后,在图11所述实施例的基础上,请参阅图12,所述可移动装置10还包括有发射器18,所述发射器18用于将所述待测目标的温度校正值和/或(和/或表示两者或两者之一)所述红外热像仪12的视场画面发送给与所述移动装置通信连接的控制终端,以便在所述控制终端上显示所述红外热像仪12的视场画面,以及在所述视场画面上显示所述待测目标的温度校正值的指示信息;所述指示信息包括但不限于所述待测目标的温度校正值或者所述待测目标的温度校正值对应的颜色,从而起到提醒用户的作用。本实施例中,实现用户可以方便查看待测目标的温度校正值。
可选地,在图12所述实施例的基础上,请参阅图13,所述可移动装置10还包括有可见光相机17,所述处理器19用于从所述可见光相机17拍摄的图像中识别出的所述待测目标,对所述拍摄目标进行身份识别,获取所述待测目标的身份信息。在一个示例中,可以将所述待测目标的身份信息和对应的温度校正值关联起来,以基于所述身份信息对所述待测目标进行温度跟踪,进一步方便用户使用。在另一个示例中,可以通过所述发射器18将以下至少一种信息发送给所述控制终端:所述待测目标的温度校正值、所述红外热像仪12的视场画面、所述待测目标的身份信息、所述可见光相机17拍摄的图像,使得所述控制终端可以在所述红外热像仪12的视场画面和/或所述可见光相机17拍摄的图像上显示所述待测目标的温度校正值的指示信息和/或所述待测目标的身份信息,以便让用户实时了解该待测目标的身份和温度情况,进一步方便用户使用。
可选地,在一些巡查场景中,比如所述可移动装置10为无人驾驶车辆或者移动机器人等,用户可以带着所述可移动装置10巡查目标区域,则所述可移动装置10也可以安装 有显示器,所述显示器用于显示所述红外热像仪12的视场画面和/或所述可见光相机17拍摄的图像,以及在所述红外热像仪12的视场画面和/或所述可见光相机17拍摄的图像上显示所述待测目标的温度校正值的指示信息和/或所述待测目标的身份信息,以便让用户实时了解该待测目标的身份和温度情况,进一步方便用户使用。
考虑到所述控温黑体13与所述环温黑体13的温度原理不同,因此其对于所述待测目标的温度测量值的校正过程也有所不同,以下对利用所述控温黑体13进行温度校正的过程和利用所述环温黑体13进行温度校正的过程分别进行说明。
这里以所述参考黑体13为环温黑体13,利用所述环温黑体13进行温度校正的过程进行说明:在一实施例中,所述红外热像仪12设置有测温模式,在进入所述测温模式之后,所述红外热像仪12获取位于所述红外热像仪12视场内的待测目标的温度测量值以及所述环温黑体13的温度测量值。在一个例子中,在所述可移动装置10的控制终端的交互界面上显示有“测温模式”控件,当检测到用户触发所述“测温模式”控件时,向所述可移动装置10发送测温指令,从而所述可移动装置10中的红外热像仪12响应于所述测温指令,进入所述测温模式,所述红外热像仪12获取位于所述红外热像仪12视场内的待测目标的温度测量值和所述环温黑体13的温度测量值,获取过程可参见上述描述,此处不再赘述。
在获取所述待测目标的温度测量值和所述环温黑体13的温度测量值之后,以由所述控制终端获取所述待测目标的温度校正值进行说明:在图9或图10所示的实施例中,所述可移动装置10将所述待测目标的温度测量值和所述环温黑体13的温度测量值通过发射器18发射给所述控制终端,以便所述控制终端根据所述环温黑体13的温度测量值对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
在获取所述待测目标的温度测量值和所述环温黑体13的温度测量值之后,以由所述可移动装置10获取所述待测目标的温度校正值进行说明:在图12或者图13所示的实施例的基础上,所述处理器19用于根据所述环温黑体13的温度测量值对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值;所述发射器18用于将所待测目标的温度校正值和/或所述红外热像仪12的视场画面发送至所述可移动装置10的控制终端。
在对所述待测目标的温度测量值进行校正时,考虑到所述环温黑体13设置于所述可移动装置10上,环温黑体13距所述红外热像仪12的距离和待测目标距所述红外热像仪12的距离不同,使得利用所述环温黑体13进行温度校正会产生误差,因此,所述处理器19还用于获取所述红外热像仪12的测温修正值;根据所述红外热像仪12的测温修正值和所述环温黑体13的温度测量值对所述目标的温度测量值进行校正,得到所述待测目标的温度校正值。
在一实施例中,可通过以下方式获得所述测温修正量:在对待测目标进行测温之前,需要对所述红外热像仪12进行标定过程,所述红外热像仪12还设置有标定模式,在进入所述标定模式后,可以在所述标定模式中获取所述红外热像仪12的测温修正值。
在一个示例中,在所述可移动装置10的控制终端的交互界面上可以显示有“标定模式”控件,当检测到用户触发所述“标定模式”控件时,向所述可移动装置10发送标定指令,从而所述可移动装置10中的红外热像仪12响应于所述标定指令,进入所述标定模式。
具体地,可在所述可移动装置10处于静止状态或者低速(移动速度小于指定速度阈值)移动时进行标定,从而保证获取的所述测温修正量的准确性,有利于提高后续测温过程的测温精度;在进入所述标定模式后,首先通过所述可移动装置10的控制终端确定参考目标和所述环温黑体13;然后利用所述红外热像仪12获取参考目标的温度测量值和所述环温黑体13的温度测量值;再通过所述可移动装置10的控制终端获取所述参考目标的实际温度值;最后所述可移动装置10的处理器19根据所述参考目标的温度测量值和实际温度值,以及所述环温黑体13的温度测量值,确定所述测温修正值;本实施例中,通过标定模式下获取的所述测温修正值作为校正所述待测目标的温度测量值的指标之一,修正了所述环温黑体13设置于所述可移动装置10而非设置于所述红外热像仪12的视场内的目标位置(所述参考目标的位置)所带来的误差,有利于保证获取的待测目标的温度校正值的准确性。
在一个示例中,所述温度校正值为所述红外热像仪12的所述待测目标的温度测量值和测温修正值之和减去所述环温黑体13的温度测量值的结果。当然,以上仅为举例说明,并不构成对本申请实施例确定所述温度校正值造成限制,可依据实际应用场景确定具体的获取所述温度校正值的方式。
另外,考虑到同一类型的目标的温度变化规律大致相同,因此设置所述参考目标与所述待测目标属于同一类,有利于减少误差,保证后续对待测目标进行测温的准确性;作为例子,比如在人体测温场景下,所述参考目标和待测目标均为人体。进一步地,为了保证温度校正结果的准确性,所述参考目标距红外热像仪12的距离和待测目标距红外热像仪12的距离相同或者两者的差值很小,比如小于预设值。
其中,所述控制终端确定所述参考目标以及所述环温黑体13包括以下步骤:所述处理器19将所述红外热像仪12的视场画面通过所述发射器18传输给所述控制终端,所述控制终端在接收所述视场画面后,在所述控制终端的交互界面上显示所述红外热像仪12的视场画面,其中,所述参考目标和所述环温黑体13位于所述视场画面内;然后所述控 制终端根据用户在所述视场画面上的操作确定所述参考目标和所述环温黑体13,并将与所述参考目标和环温黑体13有关的信息传输给所述可移动装置10。在一个实施例中,请参阅图14,所述可移动装置10上还包括有设置于移动机身11上的接收器16,所述接收器16用于接收与所述参考目标和环温黑体13有关的信息。在一个示例中,所述与所述参考目标和环温黑体13有关的信息可以是所述参考目标和环温黑体13分别在所述红外热像仪12的视场画面中的位置的信息。
可以理解的是,本申请对于所述红外热像仪12的视场画面的具体显示形式不作任何限制,可依据实际应用场景进行具体设置;作为例子,所述视场画面可以是热图像;作为另一个例子,所述视场画面可以是由双目传感器得到的RGB图像。另外,所述用户的操作也可以依据实际应用场景进行具体设置,例如所述用户的操作包括但不限于点击操作、长按操作或者框选操作等。
其中,在所述标定模式下,通过所述可移动装置10的控制终端获取所述参考目标的实际温度值包括:所述参考目标的实际温度值由用户基于测温设备测得,然后由用户在所述控制终端提供的交互界面上输入所述参考目标的实际温度值,所述控制终端接收用户输入的所述参考目标的实际温度值并发送给所述可移动装置10。所述可移动装置10可以通过所述接收器16来接收所述参考目标的实际温度值。
需要说明的是,当利用所述环温黑体13的温度测量值进行校正时,不同场景下其对应的测温修正值不同,即是说,在不同场景下测温时,首先需要所述红外热像仪12在标定模式下获取该场景对应的测温修正值再对该场景下的待测目标进行测温。
这里以所述参考黑体13为控温黑体13,利用所述控温黑体13进行温度校正的过程进行说明:
在一实施例中,以由所述控制终端获取所述待测目标的温度校正值进行说明:考虑到人体或者物体辐射的红外能量会随着距离的增加而逐渐减弱,从而影响获取的所述待测目标的温度校正值的准确性,基于此,在图9或图10所示实施例的基础上,请参阅图15或图16,本实施例中所述可移动装置10还包括设置于所述移动机身11上的测距模块20,所述测距模块20用于测量所述可移动装置10与所述待测目标之间的距离;所述测距模块20的拍摄范围与所述红外热像仪12的视场全部或部分重叠;所述部分重叠可理解为至少70%重叠,以保证所述红外热像仪12检测到的待测目标也能被所述测距装置拍摄到,从而可利用所述测距装置测量所述可移动装置10与所述待测目标之间的距离。
进一步地,所述发射器18还用于将所述可移动装置10与所述待测目标之间的距离发送给所述可移动装置10的控制终端,以使所述控制终端根据所述可移动装置10与所述待 测目标之间的距离获取该距离下所述红外热像仪12的温度修正量,以及根据所述控温黑体13的温度测量值以及所述温度修正量对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。本实施例综合考虑距离对所述待测目标的温度校正值的影响,适应于不同的距离确定相应的温度修正量,修正了所述控温黑体13设置于所述可移动装置10上而非设置于与待测目标相同或相近的位置上所带来的误差,保证最后得到的所述待测目标的温度校正值的准确性。
其中,所述测距模块20包括但不限于TOF相机、结构光深度相机、双目视觉传感器或者激光扫描仪等。
在一种实现方式中,请参阅图15,在获取所述可移动装置10与所述待测目标之间的距离时,所述可移动装置10首先确定所述待测目标的指定区域在所述红外热像仪12的视场画面中的第一位置,然后根据所述第一位置确定所述待测目标的指定区域在所述测距模块20获得的深度图像中的第二位置,最后所述测距模块20根据所述第二位置处的深度信息确定所述可移动装置10与所述待测目标之间的距离。其中,所述第二位置根据所述测距模块20与所述红外热像仪12的位置关系对所述第一位置进行转换得到。可理解的是,可以预先标定所述红外热像仪12与所述测距模块20的位置关系并存储于所述可移动装置10中,在一个例子中,所述位置关系可以是红外热像仪12与所述测距模块20的外参转换关系。
在另一种实现方式中,请参阅图16,所述可移动装置10还包括有可见光相机17,所述可见光相机17的拍摄范围与所述测距模块20的测量范围全部或部分重叠;所述部分重叠可理解为至少70%重叠,以保证所述可见光相机17拍摄的对象也被所述测距模块20检测到;在获取所述可移动装置10与所述待测目标之间的距离时,首先从所述可见光相机17拍摄的图像中识别出所有待测目标;以及从所述待测目标中识别所述待测目标的指定区域,并确定所述待测目标的指定区域在所述图像中的第三位置;然后根据所述第三位置确定所述待测目标的指定区域在所述深度图像中的第五位置;最后根据所述第五位置处的深度信息确定所述可移动装置10与所述待测目标的之间的距离。其中,所述第五位置根据所述测距模块20与所述可见光相机17的位置关系对所述第三位置进行转换得到。可理解的是,可以预先标定所述可见光相机17与所述测距模块20的位置关系并存储于所述可移动装置10中,在一个例子中,所述位置关系可以是可见光相机17与所述测距模块20的外参转换关系。
考虑到环境温度也会对人体或者物体的问题产生影响,环境温度越高的情况下,人体或者物体的温度也会相应得有所升高,而在环境温度越低的情况下,人体或者物体的温度 也会有所降低,从而影响获取的所述待测目标的温度校正值的准确性,基于此,在图9所示实施例的基础上,请参阅图17,本实施例中所述可移动装置10还包括设置于所述移动机身11上的温度传感器21,所述温度传感器21用于测量所处环境的环境温度;所述发射器18还用于将所述环境温度发送给所述可移动装置10的控制终端,以使所述控制终端根据所述环境温度获取环境温度补偿量,以及根据所述控温黑体13的温度测量值以及所述环境温度补偿量对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。本实施例综合考虑环境温度对所述待测目标的温度校正值的影响,适应于不同的环境温度获取相应的环境温度补偿量,所述环境温度与所述环境温度补偿量呈负相关关系,即环境温度越高,环境温度补偿量越小,环境温度越高越低,环境温度补偿量越大,从而保证最后得到的所述待测目标的温度校正值的准确性。
进一步地,请参阅图18,在所述可移动装置10包括设置于所述移动机身11上的温度传感器21和测距装置的情况下,所述发射器18还可以将所述可移动装置10与所述待测目标之间的距离、和所述环境温度发送给所述可移动装置10的控制终端,以使所述控制终端根据所述环境温度获取环境温度补偿量,以及根据所述可移动装置10与所述待测目标之间的距离获取该距离下所述红外热像仪12的温度修正量,最后根据所述控温黑体13的温度测量值、所述温度修正量以及所述环境温度补偿量,对所述待测目标的温度测量值进行校正。本实施例综合考虑环境温度和距离对所述待测目标的温度校正值的影响,保证最后得到的所述待测目标的温度校正值的准确性。
在另一实施例中,以由所述可移动装置10获取所述待测目标的温度校正值进行说明:考虑到人体或者物体辐射的红外能量会随着距离的增加而逐渐减弱,从而影响获取的所述待测目标的温度校正值的准确性,基于此,在图10、图11或者图12所示实施例的基础上,请参阅图19或图20,本实施例中所述可移动装置10还包括设置于所述移动机身11上的测距模块20,所述测距模块20用于测量所述可移动装置10与所述待测目标之间的距离;所述可移动装置10上的处理器19用于:根据所述可移动装置10与所述待测目标之间的距离,获取该距离下所述红外热像仪12的温度修正量;根据所述控温黑体13的温度测量值以及所述温度修正量,对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。本实施例综合考虑距离对所述待测目标的温度校正值的影响,适应于不同的距离确定相应的温度修正量,修正了所述控温黑体13设置于所述可移动装置10上而非设置于与待测目标相同或相近的位置上所带来的误差,保证最后得到的所述待测目标的温度校正值的准确性。
在一种实现方式中,请参阅图19,在获取所述可移动装置10与所述待测目标之间的 距离时,所述处理器19确定所述待测目标的指定区域在所述红外热像仪12的视场画面中的第一位置,然后根据所述第一位置确定所述待测目标的指定区域在所述测距模块20获得的深度图像中的第二位置,然后所述测距模块20根据所述第二位置处的深度信息确定所述可移动装置10与所述待测目标之间的距离。其中,所述第二位置根据所述测距模块20与所述红外热像仪12的位置关系对所述第一位置进行转换得到。可理解的是,可以预先标定所述红外热像仪12与所述测距模块20的位置关系并存储在所述可移动装置10中,在一个例子中,所述位置关系可以是红外热像仪12与所述测距模块20的外参转换关系。
在另一种实现方式中,请参阅图20,所述可移动装置10还包括有可见光相机17,所述可见光相机17的拍摄范围与所述测距模块20的测量范围全部或部分重叠;在获取所述可移动装置10与所述待测目标之间的距离时,所述处理器19从所述可见光相机17拍摄的图像中识别出所有待测目标;以及从所述待测目标中识别所述待测目标的指定区域,并确定所述待测目标的指定区域在所述图像中的第三位置;然后根据所述第三位置确定所述待测目标的指定区域在所述深度图像中的第五位置;最后所述测距模块20根据所述第五位置处的深度信息确定所述可移动装置10与所述待测目标的之间的距离。其中,所述第五位置根据所述测距模块20与所述可见光相机17的位置关系对所述第三位置进行转换得到。可理解的是,可以预先标定所述可见光相机17与所述测距模块20的位置关系并存储在所述可移动装置10中,在一个例子中,所述位置关系可以是可见光相机17与所述测距模块20的外参转换关系。
在一种可能的实现方式中,所述红外热像仪12的温度修正量可以根据所述可移动装置10与所述待测目标之间的距离以及预存的第一对应关系获取;所述第一对应关系指示不同距离所对应的温度修正量。可理解的是,本申请实施例对于所述第一对应关系的表示形式不做任何限制,可依据实际应用进行具体设置。在一个例子中,所述第一对应关系可以以函数等式关系表示,如函数f(x),其中,x为所述可移动装置10与所述待测目标之间的距离,从而得到f(x),即所述红外热像仪12的温度修正量,当然,本实施例对于具体的函数表示形式不作任何限制,可依据实际应用场景进行具体设置。在一个例子中,也可以通过距离与温度修正量之间的对应关系表来表示,比如距离A对应温度修正量a、距离B对应温度修正量B、距离C对应温度修正量c,其中,A、B、C表示不同的距离值,a、b、c表示不同的温度修正量。在一个例子中,还可以通过体现距离与温度修正量之间对应关系的变化曲线来表示。在一个示例中,所述第一对应关系可以是可移动装置10出厂前预先标定得到并存储于所述可移动装置10中;也可以是可移动装置10从其他设备诸如所述控制终端或者云端服务器获取的;本实施例对此不做任何限制。
在获取所述第一对应关系时,所述红外热像仪12获取位于所述红外热像仪12视场内的所述控温黑体13的温度测量值以及分别位于不同距离的多个目标黑体的温度测量值;可理解的是,所述目标黑体被放置的距离可依据实际应用场景进行具体设置,例如在人体测温场景下,所述目标黑体可被放置于距所述红外热像仪12有1m、2m、3m、4m……Nm(N大于1)的位置处。所述目标黑体表示已知实际温度值的黑体。
当所述红外热像仪12获取位于所述红外热像仪12视场内的所述控温黑体13的温度测量值时,首先确定所述参考黑体13在所述红外热像仪12的视场画面中的位置,然后根据所述位置处的红外能量获取所述参考黑体13的温度测量值。其中,确定所述参考黑体13在所述红外热像仪12的视场画面中的位置的过程可参考上述描述,此处不再赘述。
当所述红外热像仪12获取位于所述红外热像仪12视场内的分别位于不同距离的多个目标黑体的温度测量值,首先确定所述目标黑体在所述红外热像仪12的视场画面中的位置,然后根据所述位置处的红外能量获取所述目标黑体的温度测量值。其中,确定目标黑体在所述红外热像仪12的视场画面中的位置的过程与确定所述参考黑体13在所述红外热像仪12的视场画面中的位置的过程相似,可参考上述描述,此处不再赘述。在一个实施例中,每次可以在所述红外热像仪12视场内放置一个目标黑体,由所述红外热像仪12获取该目标黑体的温度测量值,然后在下一次改变所述目标黑体的放置位置,即每一次在距所述红外热像仪12不同距离下放置所述目标黑体。在一个实施例中,也可以在所述红外热像仪12视场内放置多个目标黑体,多个目标黑体分别位于距所述红外热像仪12视场不同的距离,由所述红外热像仪12视场同时获取不同距离下的多个目标黑体的温度测量值。
以及所述处理器19还用于:获取所述多个目标黑体的实际温度值;根据每一距离对应的所述目标黑体的温度测量值以及实际温度值,以及所述控温黑体13的温度测量值,获取该距离下的温度修正量;根据不同距离分别对应的温度修正量,获取所述第一对应关系。在一个示例中,所述温度修正量为所述目标黑体的温度测量值以及实际温度值之间的差值与所述控温黑体13的温度测量值之和。比如设所述目标黑体的温度测量值为a,所述目标黑体的实际温度值为b,所述控温黑体13的温度测量值为c,所述温度修正量为d,则在所述目标黑体对应的距离下的温度修正量d=b-a+c。在一个示例中,可以将距离与温度修正量意义对应进行拟合运算,从而获取所述第一对应关系。
其中,在图19或图20所示实施例的基础上,所述可移动装置10还包括有接收器16,所述接收器16用于接收所述可移动装置10的控制终端发射的所述多个目标黑体的实际温度值。在本实施例中,用户可以通过温度测量设备测量多个目标黑体的实际温度值,并在所述控制终端上输入所述多个目标黑体的实际温度值;或者所述温度测量设备与所述控制 终端通信连接,由所述温度测量设备将所述多个目标黑体的实际温度值传输给所述控制终端。
在另一种可能的实现方式中,所述红外热像仪12的温度修正量可以这样获取:所述处理器19获取在基准距离下所述红外热像仪12的基准温度修正量;根据所述可移动装置10与所述待测目标之间的距离与所述基准距离的差异,获取相对于所述基准距离的有关温度的距离补偿量;根据所述基准温度修正量以及所述距离补偿量,获取该距离下所述红外热像仪12的温度修正量。可理解的是,所述基准距离可依据实际应用场景进行距离设置。所述距离补偿量为表征温度的值。
在一个示例中,所述距离补偿量可以基于所述可移动装置10与所述待测目标之间的距离与所述基准距离的距离差值、以及距离差值与所述距离补偿量的对应关系所确定。所述距离差值与所述距离补偿量的对应关系可以在设备出厂前预先标定得到。
考虑到环境温度也会对人体或者物体的问题产生影响,环境温度越高的情况下,人体或者物体的温度也会相应得有所升高,从而影响获取的所述待测目标的温度校正值的准确性,基于此,在图10、图11或图12所示实施例的基础上,请参阅图21,所述可移动装置10还安装有温度传感器21;所述温度传感器21用于测量所处环境的环境温度;所述处理器19还用于:根据所述温度传感器21测得的当前环境的环境温度获取环境温度补偿量;根据所述参考黑体13的温度测量值以及所述环境温度补偿量,对所述待测目标的温度测量值进行校正。本实施例综合考虑环境温度对所述待测目标的温度校正值的影响,适应于不同的环境温度获取相应的环境温度补偿量,所述环境温度与所述环境温度补偿量呈负相关关系,即环境温度越高,环境温度补偿量越小,环境温度越高越低,环境温度补偿量越大,从而保证最后得到的所述待测目标的温度校正值的准确性。
其中,所述环境温度补偿量基于所述温度传感器21测得的当前环境的环境温度以及预存的第二对应关系所获取;所述第二对应关系指示不同的环境温度所对应的环境温度补偿量。可理解的是,本申请实施例对于所述第一对应关系的表示形式不做任何限制,可依据实际应用进行具体设置。在一个例子中,所述第二对应关系可以以函数等式关系表示。在一个例子中,也可以通过环境温度与环境温度补偿量之间的对应关系表来表示。在一个例子中,还可以通过体现环境温度与环境温度补偿量之间对应关系的变化曲线来表示。在一个示例中,所述第二对应关系可以是可移动装置10出厂前预先标定得到并存储于所述可移动装置10中;也可以是可移动装置10从其他设备诸如所述控制终端或者云端服务器获取的;本实施例对此不做任何限制。
进一步地,请参阅图22,在所述可移动装置10包括设置于所述移动机身11上的温度 传感器21和测距装置的情况下,所述处理器19根据所述可移动装置10与所述待测目标之间的距离,获取该距离下所述红外热像仪12的温度修正量;以及,根据所述温度传感器21测得的当前环境的环境温度获取环境温度补偿量;然后根据所述控温黑体13的温度测量值、所述温度修正量以及所述环境温度补偿量,对所述待测目标的温度测量值进行校正。在一个示例中,所述待测目标的温度校正值为所述待测目标的温度测量值、所述环境温度补偿量以及所述温度修正量之和减去所述控温黑体的温度测量值的结果。比如设所述控温黑体13的温度测量值为A,所述温度修正量为B,所述环境温度补偿量为C,所述待测目标的温度测量值为D,所述待测目标的温度校正值为E,则E=D-A+B+C。
可选地,在由所述可移动装置10获取所述待测目标的温度校正值之后,在图12或图13所述实施例的基础上,所述可移动装置10通过发射器18将所述红外热像仪12的视场画面、所述待测目标的身份信息、所述可见光相机17拍摄的图像中的至少一项发送给与所述移动装置通信连接的控制终端,以便在所述控制终端上显示所述红外热像仪12的视场画面和/或所述可见光相机17拍摄的图像,以及在所述视场画面和/或所述可见光相机17拍摄的图像上显示所述待测目标的温度校正值的指示信息和/或身份信息,以便让用户实时了解该待测目标的身份和温度情况,进一步方便用户使用。
其中,在显示用于指示所述待测目标的温度校正值的指示信息时,所述控制终端可以显示所述待测目标的温度校正值;和/或,根据所述待测目标的温度校正值所属的温度范围,将所述待测目标标示为对应的颜色,其中,不同的温度范围对应不同的颜色,从而起到提醒用户的作用。进一步地,在显示所述待测目标的温度校正值时,所述控制终端还可以在所述待测目标的指定区域显示特定标志,以及在所述特定标志附近区域显示所述待测目标的温度校正值,所述指定区域表示所述红外热像仪12对所述待测目标进行温度测量的测量区域,所述特定标志所在的位置为所述红外热像仪12对所述待测目标进行温度测量的具体测量位置,从而起到提醒用户的作用。
可以理解的是,所述指定区域可根据所述待测目标的具体类型进行具体设置;在一个例子中,例如所述待测目标为人体,所述指定区域可以是人体的额头区域或者手部区域等。
在一示例性实施例中,所述待测目标为人体,请参阅图23,为本申请根据一示例性实施例示出的红外热像仪12的视场画面示意图,图20所示的画面中,在每个待测目标的额头区域显示特定标志,并且在所述特定标志附近区域显示所述待测目标的温度校正值。
在一示例性实施例中,所述待测目标为人体,请参阅图24,所述可移动装置10还包括扩音器22,所述控制终端在检测到所述红外热像仪12的视场画面中所述待测目标的额头区域存在遮挡时,通过所述控制终端的交互界面对用户进行提示;或者,向所述可移动 设备发送指示,使得所述扩音器22在接收到来自所述控制终端的指示时,通过语音提示所述待测目标的额头区域存在遮挡。
相应的,请参阅图25,本申请实施例还提供了一种控制终端50,所述控制终端50包括但不限于智能手机、电脑、平板、个人数字助理或者遥控器等,所述控制终端50包括:
接收器51,用于接收可移动装置发送的待测目标的温度测量值和参考黑体的温度测量值,其中,所述待测目标为位于所述可移动装置上的红外热像仪的视场内的待测目标,所述参考黑体固定在所述可移动装置上,所述待测目标的温度测量值和所述参考黑体的温度测量值均由所述可移动装置上的红外热像仪检测得到。
处理器52,用于根据所述参考黑体的温度测量值对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
在本实施例中,通过参考黑体的温度测量值对所述红外热像仪测得的待测目标的温度测量值进行校正,进一步提高对所述待测目标进行温度测量的测量精度,保证最后得到的所述待测目标的温度校正值的准确性。
在一实施例中,所述参考黑体为控温黑体。所述接收器51还用于接收所述可移动装置发送的环境温度。所述处理器52还用于根据所述环境温度获取环境温度补偿量,以及根据所述参考黑体的温度测量值以及所述环境温度补偿量对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
在一实施例中,所述参考黑体为控温黑体。所述接收器51还用于接收所述可移动装置发送的所述可移动装置与所述待测目标之间的距离。所述处理器52还用于:根据所述可移动装置与所述待测目标之间的距离获取该距离下所述红外热像仪的温度修正量,以及根据所述控温黑体的温度测量值以及所述温度修正量对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
在一实施例中,所述红外热像仪的温度修正量根据所述可移动装置与所述待测目标之间的距离以及预存的第一对应关系获取;所述第一对应关系指示不同距离所对应的温度修正量。
在一实施例中,在获取所述第一对应关系时,所述接收器51还用于接收所述可移动装置发送的通过红外热像仪获取的所述控温黑体的温度测量值以及分别位于不同距离的多个目标黑体的温度测量值。以及所述处理器52还用于:获取所述多个目标黑体的实际温度值;根据每一距离对应的所述目标黑体的温度测量值以及实际温度值,以及所述控温黑体的温度测量值,获取该距离下的温度修正量;根据不同距离分别对应的温度修正量, 获取所述第一对应关系。
在一实施例中,在获取所述温度修正量时,所述处理器52还用于:获取在基准距离下所述红外热像仪的基准温度修正量;根据所述可移动装置与所述待测目标之间的距离与所述基准距离的差异,获取距离补偿量;根据所述基准温度修正量以及所述距离补偿量,获取该距离下所述红外热像仪的温度修正量。
在一实施例中,所述接收器51还用于接收所述可移动装置发送的环境温度。所述处理器52还用于:根据所述环境温度获取环境温度补偿量;根据所述可移动装置与所述待测目标之间的距离获取该距离下所述红外热像仪的温度修正量;以及根据所述控温黑体的温度测量值、所述温度修正量以及所述环境温度补偿量,对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
在一实施例中,所述环境温度补偿量基于所述温度传感器测得的当前环境的环境温度以及预存的第二对应关系所获取;所述第二对应关系指示不同的环境温度所对应的环境温度补偿量。
在一实施例中,所述待测目标的温度校正值为所述待测目标的温度测量值、所述环境温度补偿量以及所述温度修正量之和减去所述控温黑体的温度测量值的结果。
在一实施例中,所述参考黑体为环温黑体。所述处理器52还用于:获取所述红外热像仪的测温修正值;根据所述红外热像仪的测温修正值和所述环温黑体的温度测量值对所述目标的温度测量值进行校正。
在一实施例中,所述处理器52在获取所述红外热像仪的测温修正值时,具体用于:确定参考目标和所述环温黑体;利用所述红外热像仪获取参考目标的温度测量值和所述环温黑体的温度测量值;获取所述参考目标的实际温度值;根据所述参考目标的温度测量值和实际温度值,以及所述环温黑体的温度测量值,确定所述测温修正值。
在一实施例中,所述控制终端50还包括显示器53,所述显示器53提供交互界面,所述显示器53用于在交互界面上显示所述红外热像仪的视场画面,所述参考目标和所述环温黑体位于所述视场画面内。所述处理器52还用于根据用户在所述视场画面上的操作确定参考目标和环温黑体。
在一实施例中,所述处理器52还用于:接收用户输入的所述参考目标的实际温度值。
在一实施例中,所述红外热像仪设置有标定模式,所述处理器52还用于在所述标定模式中获取所述红外热像仪的测温修正值。其中,所述的显示器53提供交互界面,在所述交互界面上可以显示有“标定模式”控件,当检测到用户触发所述“标定模式”控件时,向所述可移动装置发送标定指令,从而所述可移动装置中的红外热像仪响应于所述标定指 令,进入所述标定模式。
在一实施例中,请参阅图26,所述控制终端50还包括发射器54。所述处理器52还用于根据用户在所述视场画面上的操作或者根据存储的位置确定所述环温黑体在所述红外热像仪的视场画面内的位置。所述发射器54用于将所述位置发送至所述可移动装置,以便所述可移动装置根据所述位置确定所述环温黑体的温度测量值。
在一实施例中,请参阅图27,所述控制终端50还包括显示器53。所述接收器51还用于接收所述可移动装置发送的所述红外热像仪的视场画面。所述显示器53用于显示所述红外热像仪的视场画面,其中,在所述视场画面上显示用于指示所述待测目标的温度校正值的指示信息。
在一实施例中,所述控制终端50还包括显示器53。所述接收器51还用于接收所述可移动装置发送的所述红外热像仪的视场画面和/或可见光相机拍摄的图像。所述处理器52还用于从所述可见光相机拍摄的图像中识别出的所述待测目标,对所述拍摄目标进行身份识别,获取所述待测目标的身份信息。所述显示器53用于显示所述红外热像仪的视场画面和/或所述可见光相机拍摄的图像,其中,在所述视场画面和/或所述图像上显示用于指示所述待测目标的温度校正值的指示信息和/或所述待测目标的身份信息。
在一实施例中,所述控制终端50还包括显示器53。所述接收器51还用于接收所述可移动装置发送的所述红外热像仪的视场画面和/或可见光相机拍摄的图像、以及所述待测目标的身份信息。所述显示器53用于显示所述红外热像仪的视场画面和/或所述可见光相机拍摄的图像,其中,在所述视场画面和/或所述图像上显示用于指示所述待测目标的温度校正值的指示信息和/或所述待测目标的身份信息。
在一实施例中,所述显示器53还用于:显示所述待测目标的温度校正值;和/或,根据所述待测目标的温度校正值所属的温度范围,将所述待测目标标示为对应的颜色,其中,不同的温度范围对应不同的颜色。
在一实施例中,所述显示器53还用于:在所述待测目标的指定区域显示特定标志,以及在所述特定标志附近区域显示所述待测目标的温度校正值。
所述显示器53包括但不限于CRT(CathodeRayTube,阴极射线管)显示器、LCD(液晶)显示器、LED(lightemittingdiode,发光二极管)显示器或者PDP(PlasmaDisplayPanel,等离子显示器)显示器。所述显示器53可以提供交互界面,以通过交互界面与用户进行交互。
在一实施例中,所述待测目标为人体;所述指定区域至少包括额头区域或者手部区域。
在一实施例中,所述待测目标为人体;所述处理器52还用于:当识别到所述待测目 标的额头区域存在遮挡时,通过交互界面对用户进行提示。
在第一实施例中,考虑到环境温度会对得到的待测目标的温度校正值的精度产生影响,为了保证温度测量结果的准确性,需要保证标定过程(获取所述红外热像仪的测温修正值的过程)中的环境温度和温度测量过程(获得所述待测目标的温度校正值的过程)中的环境温度相同或者两者差值在第一范围内,因此,可以在所述控制终端50的显示器53上显示环境温度提醒信息,所述环境温度提醒信息用于提醒用户保持标定过程跟温度测量过程在同一环境温度下或者两者的差值在第一范围内。
在第二个实施例中,考虑到所述可移动装置与所述待测目标之间的相对距离也会对得到的待测目标的温度校正值的精度产生影响,为了保证温度测量结果的准确性,需要保证标定过程中所述可移动装置与所述参考待测目标之间的相对距离和温度测量过程中所述可移动装置与所述待测目标之间的相对距离相同或者两者差值在第二范围内,因此,可以在所述控制终端50的显示器53上显示相对距离提醒信息,其用于提醒用户保持标定过程中所述可移动装置与所述参考待测目标之间的相对距离和温度测量过程中所述可移动装置与所述待测目标之间的相对距离相同或者差值在第二范围内。
在第三个实施例中,考虑到对待测目标进行测温的过程是对所述待测目标的指定区域进行测量,比如对人体进行温度测量的过程是对人体的额头区域进行测量,所述云台能够调节所述红外热像仪的视场角,从而影响所述红外热像仪在其视场内对所述待测目标的指定区域的检测,比如通过所述云台的旋转带动所述红外热像仪转动,使其在视场内无法检测或者难以检测到所述待测目标的指定区域,进而对最终得到的待测目标的温度校正值的精度产生影响,因此,为了保证温度测量结果的准确性,需要保证所述云台的俯仰角在第三范围内,使得所述红外热像仪在其视场内能够检测到所述待测目标;因此,可以在所述控制终端50的显示器53上显示云台俯仰角提醒信息,其用于提醒用户保持云台的俯仰角在第三范围内。所述云台俯仰角提醒信息可以是所述云台俯仰角大小以及俯仰角所允许的范围。
可以理解的是,所述第一范围、第二范围以及第三范围可依据实际应用场景进行具体设置,本申请实施例对此不作任何限制。
相应的,请参阅图28,本申请实施例还提供了一种利用可移动装置中的红外热像仪测温的方法,其特征在于,所述可移动装置上还设有参考黑体,所述方法可由可移动装置或者与可移动装置通信连接的控制终端来执行,所述方法包括:
在步骤S101中,利用所述红外热像仪获取位于所述红外热像仪视场内的待测目标的 温度测量值以及所述参考黑体的温度测量值。
在步骤S102中,根据所述参考黑体的温度测量值对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
对于方法实施例而言,由于其基本对应于装置实施例,所以相关之处参见装置实施例的部分说明即可。
相应地,本申请实施例还提供了一种利用可移动装置中的红外热像仪测温的方法,所述红外热像仪设置有标定模式和测温模式,所述红外热像仪上设有环温黑体。
在所述标定模式中,所述方法包括所述步骤:
步骤S201,显示所述红外热像仪的视场画面,根据用户对所述视场画面的操作确定参考目标和所述环温黑体的位置。
步骤S202,利用所述红外热像仪获取参考目标的温度测量值和所述环温黑体的温度测量值。
步骤S203,获取所述参考目标的实际温度值。
步骤S204,根据所述参考目标的温度测量值和实际温度值,以及所述环温黑体的温度测量值,确定所述测温修正值。
在所述测温模式中,所述方法包括所述步骤:
步骤S205,利用所述红外热像仪获取位于所述红外热像仪视场内的待测目标的温度测量值以及所述环温黑体的温度测量值。
步骤S206,根据所述红外热像仪的测温修正值和所述环温黑体的温度测量值对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
对于方法实施例而言,由于其基本对应于装置实施例,所以相关之处参见装置实施例的部分说明即可。
相应地,请参阅图29,本申请实施例还提供了一种可移动系统,其特征在于,包括可移动装置10和控制终端50,其中,所述可移动装置10上设置有红外热像仪和参考黑体。
所述可移动装置10用于利用所述红外热像仪获取位于所述红外热像仪视场内的待测目标的温度测量值以及所述参考黑体的温度测量值。
所述控制终端50或所述可移动装置10用于根据所述参考黑体的温度测量值对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
对于系统实施例而言,由于其基本对应于装置实施例,所以相关之处参见装置实施例的部分说明即可。
另外,本实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现上述实施例所述的利用可移动装置中的红外热像仪测温的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-OnlyMemory,ROM)、随机存取存储器(RandomAccessMemory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行 等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (105)

  1. 一种利用可移动装置中的红外热像仪测温的方法,其特征在于,所述可移动装置上还设有参考黑体,所述方法包括:
    利用所述红外热像仪获取位于所述红外热像仪视场内的待测目标的温度测量值以及所述参考黑体的温度测量值;
    根据所述参考黑体的温度测量值对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
  2. 根据权利要求1所述的方法,其特征在于,所述参考黑体包括以下至少一种:控温黑体或环温黑体。
  3. 根据权利要求1所述的方法,其特征在于,所述参考黑体为控温黑体;所述可移动装置上还安装有测距模块;
    所述方法还包括:
    通过所述测距模块测量所述可移动装置与所述待测目标之间的距离;
    根据所述可移动装置与所述待测目标之间的距离,获取该距离下所述红外热像仪的温度修正量;
    所述根据所述参考黑体的温度测量值对所述待测目标的温度测量值进行校正,包括:
    根据所述控温黑体的温度测量值以及所述温度修正量,对所述待测目标的温度测量值进行校正。
  4. 根据权利要求3所述的方法,其特征在于,所述红外热像仪的温度修正量根据所述可移动装置与所述待测目标之间的距离以及预存的第一对应关系获取;所述第一对应关系指示不同距离所对应的温度修正量。
  5. 根据权利要求4所述的方法,其特征在于,所述第一对应关系的获取包括以下步骤:
    利用所述红外热像仪获取位于所述红外热像仪视场内的所述控温黑体的温度测量值以及分别位于不同距离的多个目标黑体的温度测量值;
    获取所述多个目标黑体的实际温度值;
    根据每一距离对应的所述目标黑体的温度测量值以及实际温度值,以及所述控温黑体的温度测量值,获取该距离下的温度修正量;
    根据不同距离分别对应的温度修正量,获取所述第一对应关系。
  6. 根据权利要求5所述的方法,其特征在于,所述该距离下的温度修正量为所述 目标黑体的温度测量值以及实际温度值之间的差值与所述控温黑体的温度测量值之和。
  7. 根据权利要求5所述的方法,其特征在于,所述获取所述多个目标黑体的实际温度值包括:
    接收用户输入的所述多个目标黑体的实际温度值。
  8. 根据权利要求3所述的方法,其特征在于,所述根据所述可移动装置与所述待测目标之间的距离,获取该距离下所述红外热像仪的温度修正量,包括:
    获取在基准距离下所述红外热像仪的基准温度修正量;
    根据所述可移动装置与所述待测目标之间的距离与所述基准距离的差异,获取距离补偿量;
    根据所述基准温度修正量以及所述距离补偿量,获取该距离下所述红外热像仪的温度修正量。
  9. 根据权利要求1所述的方法,其特征在于,所述参考黑体为控温黑体;所述可移动装置还安装有温度传感器;所述温度传感器用于测量所处环境的环境温度;
    所述方法还包括:根据所述温度传感器测得的当前环境的环境温度获取环境温度补偿量;
    所述根据所述参考黑体的温度测量值对所述待测目标的温度测量值进行校正,包括:
    根据所述控温黑体的温度测量值以及所述环境温度补偿量,对所述待测目标的温度测量值进行校正。
  10. 根据权利要求3所述的方法,其特征在于,所述可移动装置还安装有温度传感器;所述温度传感器用于测量所处环境的环境温度;
    所述方法还包括:根据所述温度传感器测得的当前环境的环境温度获取环境温度补偿量;
    所述根据所述控温黑体的温度测量值以及所述温度修正量,对所述待测目标的温度测量值进行校正,包括:
    根据所述控温黑体的温度测量值、所述温度修正量以及所述环境温度补偿量,对所述待测目标的温度测量值进行校正。
  11. 根据权利要求10所述的方法,其特征在于,所述待测目标的温度校正值为所述待测目标的温度测量值、所述环境温度补偿量以及所述温度修正量之和减去所述控温黑体的温度测量值的结果。
  12. 根据权利要求9或10所述的方法,其特征在于,所述环境温度补偿量基于所 述温度传感器测得的当前环境的环境温度以及预存的第二对应关系所获取;所述第二对应关系指示不同的环境温度所对应的环境温度补偿量。
  13. 根据权利要求3所述的方法,其特征在于,所述待测目标的温度测量值根据所述红外热像仪从所述红外热像仪的视场画面中测得的所述待测目标的指定区域辐射出的红外能量所确定。
  14. 根据权利要求13所述的方法,其特征在于,所述通过所述测距模块测量所述可移动装置与所述待测目标之间的距离,包括:
    确定所述待测目标的指定区域在所述红外热像仪的视场画面中的第一位置;
    根据所述第一位置,确定所述待测目标的指定区域在所述测距模块获得的深度图像中的第二位置;
    根据所述第二位置处的深度信息确定所述可移动装置与所述待测目标之间的距离。
  15. 根据权利要求14所述的方法,其特征在于,所述第二位置根据所述测距模块与所述红外热像仪的位置关系对所述第一位置进行转换得到。
  16. 根据权利要求3所述的方法,其特征在于,所述可移动装置还包括可见光相机;
    所述方法还包括:
    从所述可见光相机拍摄的图像中识别出所有待测目标;
    从所述待测目标中识别所述待测目标的指定区域,并确定所述待测目标的指定区域在所述图像中的第三位置;
    则所述利用所述红外热像仪获取位于所述红外热像仪视场内的待测目标的温度测量值,包括:
    根据所述第三位置,确定所述待测目标的指定区域在所述红外热像仪的视场画面中的第四位置;
    根据所述第四位置处的红外能量获取所述待测目标的温度测量值。
  17. 根据权利要求16所述的方法,其特征在于,所述第四位置根据所述可见光相机与所述红外热像仪的位置关系对所述第三位置进行转换得到。
  18. 根据权利要求16所述的方法,其特征在于,所述通过所述测距模块测量所述可移动装置与所述待测目标之间的距离,包括:
    根据所述第三位置,确定所述待测目标的指定区域在所述深度图像中的第五位置;
    根据所述第五位置处的深度信息确定所述可移动装置与所述待测目标的之间的距离。
  19. 根据权利要求18所述的方法,其特征在于,所述第五位置根据所述测距模块与所述可见光相机的位置关系对所述第三位置进行转换得到。
  20. 根据权利要求16所述的方法,其特征在于,还包括:
    对所述待测目标进行身份识别,获取所述待测目标的身份信息;
    显示所述红外热像仪的视场画面和/或所述可见光相机拍摄的图像,其中,在所述视场画面和/或所述图像上显示用于指示所述待测目标的温度校正值的指示信息以及所述待测目标的身份信息。
  21. 根据权利要求3所述的方法,其特征在于,所述测距模块包括以下至少一种:TOF相机、结构光深度相机、双目视觉传感器或者激光扫描仪。
  22. 根据权利要求1所述的方法,其特征在于,所述利用所述红外热像仪获取位于所述红外热像仪视场内的所述参考黑体的温度测量值,包括:
    确定所述参考黑体在所述红外热像仪的视场画面中的位置;
    根据所述位置处的红外能量获取所述参考黑体的温度测量值。
  23. 根据权利要求22所述的方法,其特征在于,所述确定所述参考黑体在所述红外热像仪的视场画面中的位置,包括:
    在交互界面上显示所述红外热像仪的视场画面,根据用户在所述视场画面上的操作确定所述参考黑体在所述红外热像仪的视场画面中的位置;
    或者,根据存储的位置确定所述参考黑体在所述红外热像仪的视场画面中的位置;其中,所述参考黑体与所述红外热像仪相互固定,且固定在所述红外热像仪的视场内的同一位置。
  24. 根据权利要求1所述的方法,其特征在于,所述参考黑体为环温黑体;
    所述方法还包括:获取所述红外热像仪的测温修正值;
    所述根据所述参考黑体的温度测量值对所述待测目标的温度测量值进行校正,包括:
    根据所述红外热像仪的测温修正值和所述环温黑体的温度测量值对所述待测目标的温度测量值进行校正。
  25. 根据权利要求24所述的方法,其特征在于,所述温度校正值为所述红外热像仪的测温修正值和所述待测目标的温度测量值之和减去所述环温黑体的温度测量值的结果。
  26. 根据权利要求24所述的方法,其特征在于,所述获取所述红外热像仪的测温修正值,包括:
    确定参考目标和所述环温黑体;
    利用所述红外热像仪获取所述参考目标的温度测量值和所述环温黑体的温度测量值;
    获取所述参考目标的实际温度值;
    根据所述参考目标的温度测量值和实际温度值,以及所述环温黑体的温度测量值,确定所述测温修正值。
  27. 根据权利要求26所述的方法,其特征在于,所述测温修正值为所述参考目标的温度测量值和实际温度值之间的差值与所述环温黑体的温度测量值之和。
  28. 根据权利要求26所述的方法,其特征在于,所述确定参考目标和所述环温黑体,包括:
    在交互界面上显示所述红外热像仪的视场画面,所述参考目标和所述环温黑体位于所述视场画面内;
    根据用户在所述视场画面上的操作确定所述参考目标和环温黑体。
  29. 根据权利要求26所述的方法,其特征在于,所述获取所述参考目标的实际温度值,包括:
    接收用户输入的所述参考目标的实际温度值。
  30. 根据权利要求24所述的方法,其特征在于,所述红外热像仪设置有标定模式;
    所述获取所述红外热像仪的测温修正值之前,还包括:
    进入所述标定模式,在所述标定模式中获取所述红外热像仪的测温修正值。
  31. 根据权利要求24所述的方法,其特征在于,所述利用所述红外热像仪获取位于所述红外热像仪视场内的待测目标的温度测量值,包括:
    从所述红外热像仪的视场画面中识别出所有待测目标;
    从所述待测目标中识别所述待测目标的指定区域;
    根据所述待测目标的指定区域辐射出的红外能量确定所述待测目标的温度测量值。
  32. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    显示所述红外热像仪的视场画面,其中,在所述视场画面上显示用于指示所述待测目标的温度校正值的指示信息。
  33. 根据权利要求20或32所述的方法,其特征在于,所述显示用于指示所述待测目标的温度校正值的指示信息,包括:
    显示所述待测目标的温度校正值;和/或,
    根据所述待测目标的温度校正值所属的温度范围,将所述待测目标标示为对应的 颜色,其中,不同的温度范围对应不同的颜色。
  34. 根据权利要求33所述的方法,其特征在于,所述在所述视场画面上显示所述待测目标的温度校正值,包括:
    在所述待测目标的指定区域显示特定标志,以及在所述特定标志附近区域显示所述待测目标的温度校正值。
  35. 根据权利要求13~20、31中任意一项所述的方法,其特征在于,所述待测目标为人体;所述指定区域至少包括额头区域或者手部区域。
  36. 根据权利要求1所述的方法,其特征在于,所述待测目标为人体;所述方法还包括:
    当识别到所述待测目标的额头区域存在遮挡时,通过交互界面对用户进行提示;或者,
    所述可移动装置上设有扩音器,通过所述扩音器对所述待测目标进行提示。
  37. 一种可移动装置,其特征在于,包括移动机身,以及固定在所述移动机身上的红外热像仪和参考黑体;
    所述红外热像仪用于获取位于所述红外热像仪视场内的待测目标的温度测量值以及所述参考黑体的温度测量值,其中,所述参考黑体的温度测量值用于对所述待测目标的温度测量值进行校正,以得到所述待测目标的温度校正值。
  38. 根据权利要求37所述的装置,其特征在于,所述参考黑体包括以下至少一种:控温黑体或环温黑体。
  39. 根据权利要求37所述的装置,其特征在于,所述可移动装置还包括固定在所述移动机身上的云台,所述红外热像仪固定在所述云台上,所述云台用于调节所述红外热像仪的视场角。
  40. 根据权利要求39所述的装置,其特征在于,所述可移动装置还包括支撑件;
    所述支撑件用于将所述参考黑体与所述云台、所述红外热像仪或所述可移动装置的移动机身相互固定,且所述参考黑体在所述红外热像仪的视场内的位置保持固定;
    或者,所述支撑件用于将所述参考黑体与所述可移动装置的移动机身相互固定,所述云台在所述红外热像仪检测的过程中能够调整,使得所述参考黑体进入所述红外热像仪的视场。
  41. 根据权利要求37所述的装置,其特征在于,所述参考黑体与所述红外热像仪之间的距离基于所述红外热像仪的焦距所确定。
  42. 根据权利要求37所述的装置,其特征在于,所述参考黑体为控温黑体,所述 控温黑体包括有半导体制冷器,所述半导体制冷器用于使所述控温黑体的温度保持指定温度。
  43. 根据权利要求42所述的装置,其特征在于,所述控温黑体还包括有与所述半导体制冷器相互固定的第一散热层,所述第一散热层用于为所述半导体制冷器散热。
  44. 根据权利要求42所述的装置,其特征在于,所述控温黑体还包括有处理模块,所述处理模块用于控制所述半导体制冷器运行,以对所述控温黑体进行温度调节。
  45. 根据权利要求44所述的装置,其特征在于,所述控温黑体还包括与所述处理模块相互固定的第二散热层,所述第二散热层用于为所述处理模块散热。
  46. 根据权利要求42所述的装置,其特征在于,所述控温黑体为腔体结构,所述控温黑体还包括包裹所述半导体制冷器的隔热保温层,所述隔热保温层用于使所述控温黑体的温度保持指定温度。
  47. 根据权利要求42所述的装置,其特征在于,所述控温黑体还包括有作为黑体辐射面的辐射层,所述辐射层与所述半导体制冷器相互固定。
  48. 根据权利要求37所述的装置,其特征在于,所述可移动装置还包括发射器,用于将所述待测目标的温度测量值以及所述参考黑体的温度测量值发送给所述可移动装置的控制终端,以便所述控制终端根据所述参考黑体的温度测量值对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
  49. 根据权利要求48所述的装置,其特征在于,所述参考黑体为控温黑体,所述可移动装置还包括设置于所述移动机身上的温度传感器,所述温度传感器用于测量所处环境的环境温度;
    所述发射器还用于将所述环境温度发送给所述可移动装置的控制终端,以使所述控制终端根据所述环境温度获取环境温度补偿量,以及根据所述控温黑体的温度测量值以及所述环境温度补偿量对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
  50. 根据权利要求48所述的装置,其特征在于,所述参考黑体为控温黑体,所述可移动装置还包括设置于所述移动机身上的测距模块;所述测距模块用于测量所述可移动装置与所述待测目标之间的距离;
    所述发射器还用于将所述可移动装置与所述待测目标之间的距离发送给所述可移动装置的控制终端,以使所述控制终端根据所述可移动装置与所述待测目标之间的距离获取该距离下所述红外热像仪的温度修正量,以及根据所述控温黑体的温度测量值以及所述温度修正量对所述待测目标的温度测量值进行校正,得到所述待测目标的温 度校正值。
  51. 根据权利要求50所述的装置,其特征在于,所述可移动装置还包括设置于所述移动机身上的温度传感器,所述温度传感器用于测量所处环境的环境温度;
    所述发射器还用于将所述环境温度发送给所述可移动装置的控制终端,以使所述控制终端根据所述环境温度获取环境温度补偿量,以及根据所述控温黑体的温度测量值、所述温度修正量以及所述环境温度补偿量对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
  52. 根据权利要求48所述的装置,其特征在于,所述可移动装置还包括可见光相机,所述发射器还用于将所述可见光相机拍摄的图像发射给所述控制终端,以使所述控制终端从所述可见光相机拍摄的图像中识别出的所述待测目标,并对所述拍摄目标进行身份识别,获取所述待测目标的身份信息。
  53. 根据权利要求37所述的装置,其特征在于,所述可移动装置还包括:
    处理器,用于根据所述参考黑体的温度测量值对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
  54. 根据权利要求53所述的装置,其特征在于,所述可移动装置还包括发射器,用于将所述待测目标的温度校正值和/或所述红外热像仪的视场画面发送给与所述移动装置通信连接的控制终端。
  55. 根据权利要求53所述的装置,其特征在于,所述参考黑体为控温黑体;
    所述可移动装置还包括设置于所述移动机身上的测距模块;
    所述测距模块用于测量所述可移动装置与所述待测目标之间的距离;
    所述处理器还用于:根据所述可移动装置与所述待测目标之间的距离,获取该距离下所述红外热像仪的温度修正量;根据所述控温黑体的温度测量值以及所述温度修正量,对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
  56. 根据权利要求55所述的装置,其特征在于,所述红外热像仪的温度修正量根据所述可移动装置与所述待测目标之间的距离以及预存的第一对应关系获取;所述第一对应关系指示不同距离所对应的温度修正量。
  57. 根据权利要求56所述的装置,其特征在于,在获取所述第一对应关系时,所述红外热像仪获取位于所述红外热像仪视场内的所述控温黑体的温度测量值以及分别位于不同距离的多个目标黑体的温度测量值;
    以及,所述处理器还用于:获取所述多个目标黑体的实际温度值;根据每一距离对应的所述目标黑体的温度测量值以及实际温度值,以及所述控温黑体的温度测量值, 获取该距离下的温度修正量;根据不同距离分别对应的温度修正量,获取所述第一对应关系。
  58. 根据权利要求57所述的装置,其特征在于,所述该距离下的温度修正量为所述目标黑体的温度测量值以及实际温度值之间的差值与所述控温黑体的温度测量值之和。
  59. 根据权利要求57所述的装置,其特征在于,所述可移动装置还包括接收器,用于接收所述可移动装置的控制终端发射的所述多个目标黑体的实际温度值。
  60. 根据权利要求55所述的装置,其特征在于,在获取所述红外热像仪的温度修正量时,所述处理器还用于:获取在基准距离下所述红外热像仪的基准温度修正量;根据所述可移动装置与所述待测目标之间的距离与所述基准距离的差异,获取距离补偿量;根据所述基准温度修正量以及所述距离补偿量,获取该距离下所述红外热像仪的温度修正量。
  61. 根据权利要求53所述的装置,其特征在于,所述可移动装置还安装有温度传感器;所述温度传感器用于测量所处环境的环境温度;
    所述处理器还用于:根据所述温度传感器测得的当前环境的环境温度获取环境温度补偿量;根据所述参考黑体的温度测量值以及所述环境温度补偿量,对所述待测目标的温度测量值进行校正。
  62. 根据权利要求55所述的装置,其特征在于,所述可移动装置还安装有温度传感器;所述温度传感器用于测量所处环境的环境温度;
    所述处理器还用于:根据所述温度传感器测得的当前环境的环境温度获取环境温度补偿量;根据所述控温黑体的温度测量值、所述温度修正量以及所述环境温度补偿量,对所述待测目标的温度测量值进行校正。
  63. 根据权利要求62所述的装置,其特征在于,所述待测目标的温度校正值为所述待测目标的温度测量值、所述环境温度补偿量以及所述温度修正量之和减去所述控温黑体的温度测量值的结果。
  64. 根据权利要求61或62所述的装置,其特征在于,所述环境温度补偿量基于所述温度传感器测得的当前环境的环境温度以及预存的第二对应关系所获取;所述第二对应关系指示不同的环境温度所对应的环境温度补偿量。
  65. 根据权利要求37或53所述的装置,其特征在于,所述红外热像仪还用于:根据测得的所述待测目标的指定区域辐射出的红外能量确定所述待测目标的温度测量值。
  66. 根据权利要求65所述的装置,其特征在于,在测量所述可移动装置与所述待测目标之间的距离时,所述处理器具体用于:确定所述待测目标的指定区域在所述述红外热像仪的视场画面中的第一位置;根据所述第一位置,确定所述待测目标的指定区域在所述测距模块获得的深度图像中的第二位置;
    以及,所述测距模块具体用于:根据所述第二位置处的深度信息确定所述可移动装置与所述待测目标之间的距离。
  67. 根据权利要求66所述的装置,其特征在于,所述第二位置根据所述测距模块与所述红外热像仪的位置关系对所述第一位置进行转换得到。
  68. 根据权利要求53所述的装置,其特征在于,所述可移动装置还包括设置于所述移动机身上的可见光相机;
    所述处理器还用于:从所述可见光相机拍摄的图像中识别出所有待测目标;从所述待测目标中识别所述待测目标的指定区域,并确定所述待测目标的指定区域在所述图像中的第三位置;根据所述第三位置,确定所述待测目标的指定区域在所述红外热像仪的视场画面中的第四位置;
    所述红外热像仪在获取位于所述红外热像仪视场内的待测目标的温度测量值时,具体用于:根据所述第四位置处的红外能量获取所述待测目标的温度测量值。
  69. 根据权利要求68所述的装置,其特征在于,所述第四位置根据所述可见光相机与所述红外热像仪的位置关系对所述第三位置进行转换得到。
  70. 根据权利要求68所述的装置,其特征在于,
    所述处理器还用于:根据所述第三位置,确定所述待测目标的指定区域在所述深度图像中的第五位置;
    所述测距模块在测量所述可移动装置与所述待测目标之间的距离时,具体用于:根据所述第五位置处的深度信息确定所述可移动装置与所述待测目标的之间的距离。
  71. 根据权利要求70所述的装置,其特征在于,所述第五位置根据所述测距模块与所述可见光相机的位置关系对所述第三位置进行转换得到。
  72. 根据权利要求68所述的装置,其特征在于,
    所述处理器还用于:对从所述可见光相机拍摄的图像中识别出的所述待测目标进行身份识别,获取所述待测目标的身份信息。
  73. 根据权利要求70所述的装置,其特征在于,所述可移动设备还包括发射器,用于将所述可见光相机拍摄的图像和/或所述待测目标的身份信息发送给与所述移动装置通信连接的控制终端。
  74. 根据权利要求55所述的装置,其特征在于,所述测距模块包括以下至少一种:TOF相机、结构光深度相机、双目视觉传感器或者激光扫描仪。
  75. 根据权利要求53所述的装置,其特征在于,所述参考黑体为环温黑体;
    所述处理器还用于获取所述红外热像仪的测温修正值;根据所述红外热像仪的测温修正值和所述环温黑体的温度测量值对所述待测目标的温度测量值进行校正。
  76. 根据权利要求75所述的装置,其特征在于,在获取所述红外热像仪的测温修正值时,所述红外热像仪用于获取参考目标的温度测量值和所述环温黑体的温度测量值;
    以及,所述处理器具体用于:获取所述参考目标的实际温度值;根据所述参考目标的温度测量值和实际温度值,以及所述环温黑体的温度测量值,确定所述测温修正值。
  77. 根据权利要求37所述的装置,其特征在于,所述红外热像仪在获取位于所述红外热像仪视场内的待测目标的温度测量值时,具体用于:
    从所述红外热像仪获取的视场画面中识别出所有待测目标;
    从所述待测目标中识别所述待测目标的指定区域;
    根据所述待测目标的指定区域辐射出的红外能量确定所述待测目标的温度测量值。
  78. 根据权利要求37所述的装置,其特征在于,所述红外热像仪还包括接收器,所述红外热像仪还用于通过所述接收器接收控制终端发射的所述参考黑体在所述红外热像仪的视场画面内的位置,以及根据所述位置处的红外能量获取所述参考黑体的温度测量值。
  79. 根据权利要求65或77任意一项所述的装置,其特征在于,所述待测目标为人体;所述指定区域至少包括额头区域或者手部区域。
  80. 根据权利要求37所述的装置,其特征在于,所述待测目标为人体,所述可移动装置上还设置有扩音器,用于在接收到来自控制终端的指示时,通过语音提示所述待测目标的额头区域存在遮挡。
  81. 根据权利要求37所述的可移动装置,其特征在于,所述可移动装置为无人飞行器、移动机器、无人驾驶车辆或者换无人驾驶船只。
  82. 一种控制终端,其特征在于,包括:
    接收器,用于接收可移动装置发送的待测目标的温度测量值和参考黑体的温度测量值,其中,所述待测目标为位于所述可移动装置上的红外热像仪的视场内的待测目标,所述参考黑体固定在所述可移动装置上,所述待测目标的温度测量值和所述参考 黑体的温度测量值均由所述可移动装置上的红外热像仪检测得到;
    处理器,用于根据所述参考黑体的温度测量值对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
  83. 根据权利要求82所述的控制终端,其特征在于,所述参考黑体为控温黑体;
    所述接收器还用于接收所述可移动装置发送的环境温度;
    所述处理器还用于根据所述环境温度获取环境温度补偿量,以及根据所述参考黑体的温度测量值以及所述环境温度补偿量对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
  84. 根据权利要求83所述的控制终端,其特征在于,所述参考黑体为控温黑体;
    所述接收器还用于接收所述可移动装置发送的所述可移动装置与所述待测目标之间的距离;
    所述处理器还用于:根据所述可移动装置与所述待测目标之间的距离获取该距离下所述红外热像仪的温度修正量,以及根据所述控温黑体的温度测量值以及所述温度修正量对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
  85. 根据权利要求84所述的控制终端,其特征在于,所述红外热像仪的温度修正量根据所述可移动装置与所述待测目标之间的距离以及预存的第一对应关系获取;所述第一对应关系指示不同距离所对应的温度修正量。
  86. 根据权利要求85所述的控制终端,其特征在于,在获取所述第一对应关系时,所述接收器还用于接收所述可移动装置发送的通过红外热像仪获取的所述控温黑体的温度测量值以及分别位于不同距离的多个目标黑体的温度测量值;
    以及所述处理器还用于:获取所述多个目标黑体的实际温度值;根据每一距离对应的所述目标黑体的温度测量值以及实际温度值,以及所述控温黑体的温度测量值,获取该距离下的温度修正量;根据不同距离分别对应的温度修正量,获取所述第一对应关系。
  87. 根据权利要求84所述的控制终端,其特征在于,在获取所述温度修正量时,所述处理器还用于:获取在基准距离下所述红外热像仪的基准温度修正量;根据所述可移动装置与所述待测目标之间的距离与所述基准距离的差异,获取距离补偿量;根据所述基准温度修正量以及所述距离补偿量,获取该距离下所述红外热像仪的温度修正量。
  88. 根据权利要求84所述的控制终端,其特征在于,
    所述接收器还用于接收所述可移动装置发送的环境温度;
    所述处理器还用于:根据所述环境温度获取环境温度补偿量;根据所述可移动装置与所述待测目标之间的距离获取该距离下所述红外热像仪的温度修正量;以及根据所述控温黑体的温度测量值、所述温度修正量以及所述环境温度补偿量,对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
  89. 根据权利要求83或88所述的控制终端,其特征在于,所述环境温度补偿量基于所述温度传感器测得的当前环境的环境温度以及预存的第二对应关系所获取;所述第二对应关系指示不同的环境温度所对应的环境温度补偿量。
  90. 根据权利要求88所述的控制终端,其特征在于,所述待测目标的温度校正值为所述待测目标的温度测量值、所述环境温度补偿量以及所述温度修正量之和减去所述控温黑体的温度测量值的结果。
  91. 根据权利要求82所述的控制终端,其特征在于,所述参考黑体为环温黑体;
    所述处理器还用于:获取所述红外热像仪的测温修正值;根据所述红外热像仪的测温修正值和所述环温黑体的温度测量值对所述目标的温度测量值进行校正。
  92. 根据权利要求91所述的控制终端,其特征在于,所述处理器在获取所述红外热像仪的测温修正值时,具体用于:
    确定参考目标和所述环温黑体;
    利用所述红外热像仪获取参考目标的温度测量值和所述环温黑体的温度测量值;
    获取所述参考目标的实际温度值;
    根据所述参考目标的温度测量值和实际温度值,以及所述环温黑体的温度测量值,确定所述测温修正值。
  93. 根据权利要求92所述的控制终端,其特征在于,所述控制终端还包括显示器,所述显示器用于显示所述红外热像仪的视场画面,所述参考目标和所述环温黑体位于所述视场画面内;
    所述处理器还用于根据用户在所述视场画面上的操作确定参考目标和环温黑体。
  94. 根据权利要求92所述的控制终端,其特征在于,所述处理器还用于:接收用户输入的所述参考目标的实际温度值。
  95. 根据权利要求91所述的控制终端,其特征在于,所述红外热像仪设置有标定模式,所述处理器还用于在所述标定模式中获取所述红外热像仪的测温修正值。
  96. 根据权利要求91所述的控制终端,其特征在于,所述控制终端还包括发射器;
    所述处理器还用于根据用户在所述视场画面上的操作或者根据存储的位置确定所述环温黑体在所述红外热像仪的视场画面内的位置;
    所述发射器用于将所述位置发送至所述可移动装置,以便所述可移动装置根据所述位置确定所述环温黑体的温度测量值。
  97. 根据权利要求82所述的控制终端,其特征在于,还包括显示器;
    所述接收器还用于接收所述可移动装置发送的所述红外热像仪的视场画面;
    所述显示器用于显示所述红外热像仪的视场画面,其中,在所述视场画面上显示用于指示所述待测目标的温度校正值的指示信息。
  98. 根据权利要求82所述的控制终端,其特征在于,还包括显示器;
    所述接收器还用于接收所述可移动装置发送的所述红外热像仪的视场画面和/或可见光相机拍摄的图像;
    所述处理器还用于从所述可见光相机拍摄的图像中识别出的所述待测目标,对所述拍摄目标进行身份识别,获取所述待测目标的身份信息;
    所述显示器用于显示所述红外热像仪的视场画面和/或所述可见光相机拍摄的图像,其中,在所述视场画面和/或所述图像上显示用于指示所述待测目标的温度校正值的指示信息和/或所述待测目标的身份信息。
  99. 根据权利要求82所述的控制终端,其特征在于,还包括显示器;
    所述接收器还用于接收所述可移动装置发送的所述红外热像仪的视场画面和/或可见光相机拍摄的图像、以及所述待测目标的身份信息;
    所述显示器用于显示所述红外热像仪的视场画面和/或所述可见光相机拍摄的图像,其中,在所述视场画面和/或所述图像上显示用于指示所述待测目标的温度校正值的指示信息和/或所述待测目标的身份信息。
  100. 根据权利要求97~99任意一项所述的控制终端,其特征在于,所述显示器还用于:显示所述待测目标的温度校正值;和/或,根据所述待测目标的温度校正值所属的温度范围,将所述待测目标标示为对应的颜色,其中,不同的温度范围对应不同的颜色。
  101. 根据权利要求100所述的控制终端,其特征在于,所述显示器还用于:在所述待测目标的指定区域显示特定标志,以及在所述特定标志附近区域显示所述待测目标的温度校正值。
  102. 根据权利要求101所述的控制终端,其特征在于,所述待测目标为人体;所述指定区域至少包括额头区域或者手部区域。
  103. 根据权利要求102所述的控制终端,其特征在于,所述待测目标为人体;所述处理器还用于:当识别到所述待测目标的额头区域存在遮挡时,通过交互界面对用 户进行提示。
  104. 一种可移动系统,其特征在于,包括可移动装置和控制终端,其中,所述可移动装置上设置有红外热像仪和参考黑体;
    所述可移动装置用于利用所述红外热像仪获取位于所述红外热像仪视场内的待测目标的温度测量值以及所述参考黑体的温度测量值;
    所述控制终端或所述可移动装置用于根据所述参考黑体的温度测量值对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
  105. 一种利用可移动装置中的红外热像仪测温的方法,其特征在于,所述红外热像仪设置有标定模式和测温模式,所述红外热像仪上设有环温黑体;
    在所述标定模式中,所述方法包括所述步骤:
    显示所述红外热像仪的视场画面,根据用户对所述视场画面的操作确定参考目标和所述环温黑体的位置;
    利用所述红外热像仪获取参考目标的温度测量值和所述环温黑体的温度测量值;
    获取所述参考目标的实际温度值;
    根据所述参考目标的温度测量值和实际温度值,以及所述环温黑体的温度测量值,确定所述测温修正值;
    在所述测温模式中,所述方法包括所述步骤:
    利用所述红外热像仪获取位于所述红外热像仪视场内的待测目标的温度测量值以及所述环温黑体的温度测量值;
    根据所述红外热像仪的测温修正值和所述环温黑体的温度测量值对所述待测目标的温度测量值进行校正,得到所述待测目标的温度校正值。
PCT/CN2020/090355 2020-02-14 2020-05-14 可移动装置、控制终端、利用可移动装置中的红外热像仪测温的方法以及可移动系统 WO2021159623A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080042524.0A CN114008420A (zh) 2020-02-14 2020-05-14 可移动装置、控制终端、利用可移动装置中的红外热像仪测温的方法以及可移动系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/075426 WO2021159529A1 (zh) 2020-02-14 2020-02-14 可移动装置、控制终端、利用可移动装置中的红外热像仪测温的方法以及可移动系统
CNPCT/CN2020/075426 2020-02-14

Publications (1)

Publication Number Publication Date
WO2021159623A1 true WO2021159623A1 (zh) 2021-08-19

Family

ID=74953144

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/075426 WO2021159529A1 (zh) 2020-02-14 2020-02-14 可移动装置、控制终端、利用可移动装置中的红外热像仪测温的方法以及可移动系统
PCT/CN2020/090355 WO2021159623A1 (zh) 2020-02-14 2020-05-14 可移动装置、控制终端、利用可移动装置中的红外热像仪测温的方法以及可移动系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075426 WO2021159529A1 (zh) 2020-02-14 2020-02-14 可移动装置、控制终端、利用可移动装置中的红外热像仪测温的方法以及可移动系统

Country Status (2)

Country Link
CN (2) CN112513595A (zh)
WO (2) WO2021159529A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114136451A (zh) * 2021-11-30 2022-03-04 国网黑龙江省电力有限公司电力科学研究院 低温环境下红外广域测温系统
CN114459616A (zh) * 2021-12-25 2022-05-10 中国人民解放军空军工程大学 光谱辐射计视场响应非均匀性标定方法
CN114544005A (zh) * 2022-03-03 2022-05-27 成都盛锴科技有限公司 一种基于红外热成像的高精度快速目标测温方法
CN116794063A (zh) * 2022-11-01 2023-09-22 江苏方建质量鉴定检测有限公司 一种应用红外成像检测外墙保温系统缺陷的检测方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820018A (zh) * 2021-09-13 2021-12-21 深圳市巨龙创视科技有限公司 一种基于红外成像的测温方法、装置、系统及介质
WO2023039835A1 (zh) * 2021-09-17 2023-03-23 深圳市大疆创新科技有限公司 红外测温装置、可移动平台、控制装置和手持式红外测温设备
CN113701899B (zh) * 2021-09-27 2023-06-23 西安中科立德红外科技有限公司 一种非制冷红外热像仪及获取温度信息的方法
CN114136461B (zh) * 2021-11-29 2023-07-14 烟台艾睿光电科技有限公司 一种红外测温方法、系统、设备及计算机可读存储介质
CN115373444B (zh) * 2022-10-26 2022-12-27 常州京洋半导体材料科技有限公司 一种高温炉红外测温系统及其控温方法
CN115736844B (zh) * 2022-11-16 2023-10-24 吉林省科英医疗激光有限责任公司 一种体表温度实时检测系统和检测方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768072A (zh) * 2012-08-13 2012-11-07 电子科技大学 一种红外热像仪的校正装置及方法及其红外热像仪
JP2015203637A (ja) * 2014-04-15 2015-11-16 日本電気株式会社 赤外線撮像装置
CN105203212A (zh) * 2015-09-15 2015-12-30 武汉凯尔文光电技术有限公司 一种内置式动态黑体校准源
CN205027445U (zh) * 2015-09-15 2016-02-10 武汉凯尔文光电技术有限公司 外置式动态黑体校准源
CN105763783A (zh) * 2016-04-29 2016-07-13 广东能飞航空科技发展有限公司 一种无人机用红外双光拍摄系统
KR101729327B1 (ko) * 2015-11-10 2017-04-21 홍미선 듀얼 카메라를 이용한 체온 추적 모니터링 시스템
CN106682083A (zh) * 2016-11-21 2017-05-17 云南电网有限责任公司电力科学研究院 一种红外全景监测系统及监测方法
CN107764405A (zh) * 2017-10-19 2018-03-06 上海电力学院 基于激光测距及视角补偿的电力巡检机器人红外测温装置
CN107843939A (zh) * 2017-10-24 2018-03-27 防灾科技学院 基于无人机热红外影像的煤火识别方法
CN107941342A (zh) * 2017-10-19 2018-04-20 上海电力学院 综合距离及视角的电力巡检机器人红外测温装置及方法
US9969486B1 (en) * 2016-06-21 2018-05-15 Amazon Technologies, Inc. Unmanned aerial vehicle heat sensor calibration
CN207515910U (zh) * 2017-12-04 2018-06-19 中华人民共和国首都机场出入境检验检疫局 一种全自动红外测温仪
CN108700470A (zh) * 2015-12-09 2018-10-23 菲力尔系统公司 基于无人机系统的热成像和聚合系统和方法
CN110108364A (zh) * 2019-05-08 2019-08-09 武汉高德智感科技有限公司 一种基于黑体定时补偿的可移动人体温度筛选方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105092046B (zh) * 2015-05-15 2018-10-30 中国计量科学研究院 一种自校准地表红外辐射测温系统
CN205909933U (zh) * 2016-05-16 2017-01-25 国家电网公司 可移动非接触式在线测温装置
CN209589270U (zh) * 2019-02-21 2019-11-05 南京点连能源科技有限公司 无线移动式测温装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768072A (zh) * 2012-08-13 2012-11-07 电子科技大学 一种红外热像仪的校正装置及方法及其红外热像仪
JP2015203637A (ja) * 2014-04-15 2015-11-16 日本電気株式会社 赤外線撮像装置
CN105203212A (zh) * 2015-09-15 2015-12-30 武汉凯尔文光电技术有限公司 一种内置式动态黑体校准源
CN205027445U (zh) * 2015-09-15 2016-02-10 武汉凯尔文光电技术有限公司 外置式动态黑体校准源
KR101729327B1 (ko) * 2015-11-10 2017-04-21 홍미선 듀얼 카메라를 이용한 체온 추적 모니터링 시스템
CN108700470A (zh) * 2015-12-09 2018-10-23 菲力尔系统公司 基于无人机系统的热成像和聚合系统和方法
CN105763783A (zh) * 2016-04-29 2016-07-13 广东能飞航空科技发展有限公司 一种无人机用红外双光拍摄系统
US9969486B1 (en) * 2016-06-21 2018-05-15 Amazon Technologies, Inc. Unmanned aerial vehicle heat sensor calibration
CN106682083A (zh) * 2016-11-21 2017-05-17 云南电网有限责任公司电力科学研究院 一种红外全景监测系统及监测方法
CN107941342A (zh) * 2017-10-19 2018-04-20 上海电力学院 综合距离及视角的电力巡检机器人红外测温装置及方法
CN107764405A (zh) * 2017-10-19 2018-03-06 上海电力学院 基于激光测距及视角补偿的电力巡检机器人红外测温装置
CN107843939A (zh) * 2017-10-24 2018-03-27 防灾科技学院 基于无人机热红外影像的煤火识别方法
CN207515910U (zh) * 2017-12-04 2018-06-19 中华人民共和国首都机场出入境检验检疫局 一种全自动红外测温仪
CN110108364A (zh) * 2019-05-08 2019-08-09 武汉高德智感科技有限公司 一种基于黑体定时补偿的可移动人体温度筛选方法及系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114136451A (zh) * 2021-11-30 2022-03-04 国网黑龙江省电力有限公司电力科学研究院 低温环境下红外广域测温系统
CN114136451B (zh) * 2021-11-30 2023-10-31 国网黑龙江省电力有限公司电力科学研究院 低温环境下红外广域测温系统
CN114459616A (zh) * 2021-12-25 2022-05-10 中国人民解放军空军工程大学 光谱辐射计视场响应非均匀性标定方法
CN114544005A (zh) * 2022-03-03 2022-05-27 成都盛锴科技有限公司 一种基于红外热成像的高精度快速目标测温方法
CN114544005B (zh) * 2022-03-03 2024-01-30 成都盛锴科技有限公司 一种基于红外热成像的高精度快速目标测温方法
CN116794063A (zh) * 2022-11-01 2023-09-22 江苏方建质量鉴定检测有限公司 一种应用红外成像检测外墙保温系统缺陷的检测方法
CN116794063B (zh) * 2022-11-01 2024-01-09 江苏方建质量鉴定检测有限公司 一种应用红外成像检测外墙保温系统缺陷的检测方法

Also Published As

Publication number Publication date
CN112513595A (zh) 2021-03-16
CN114008420A (zh) 2022-02-01
WO2021159529A1 (zh) 2021-08-19

Similar Documents

Publication Publication Date Title
WO2021159623A1 (zh) 可移动装置、控制终端、利用可移动装置中的红外热像仪测温的方法以及可移动系统
US9897415B2 (en) Infrared-light and low-light two-phase fusion night-vision sighting device
US10362244B2 (en) Parallax reduction for multi-sensor camera systems
CN104272717A (zh) 用于执行投影图像到检测到的红外线(ir)辐射信息的对准的方法和系统
CN108007344B (zh) 用于可视地表示扫描数据的方法、存储介质和测量系统
KR102211136B1 (ko) 흑체를 구비한 온도 계측 시스템 및 방법
CN205333856U (zh) 一种基于普通摄像头芯片的低成本激光测距装置
WO2020083221A1 (zh) 色域匹配方法、装置、显示终端及可读存储介质
CN108731819B (zh) 热像检测装置
WO2017117749A1 (zh) 基于多种测距方式的跟焦系统、方法及拍摄系统
US20140267768A1 (en) Thermographic Camera Accessory for Personal Electronics
US10395340B2 (en) System and method of generating 3D infrared camera stitching for a thermal mapping
US10724860B2 (en) Surveying device and survey system
CN109974976B (zh) 多温度标定系统以及多温度标定方法
KR102251307B1 (ko) 거리측정 기능을 갖는 열상 카메라 시스템
US20170332062A1 (en) Thermal detecting system and thermal detecting method
WO2018018982A1 (zh) 无人机偏航角度值的校准方法和系统
JP2016072786A (ja) 俯瞰画像表示システム、端末装置、及びそのプログラム
CN104809990A (zh) 显示设备和用于确定格式的方法
KR102487590B1 (ko) 얼굴 인식에 기초하여 촬영 대상의 온도를 측정하는 방법
KR20200083037A (ko) 열화상 장치
CN114878004A (zh) 一种距离感知恒温热像装置及标定、测温方法
CN215865506U (zh) 一种红外热像仪
CN216309234U (zh) 一种具有近距离传输功能的红外热像仪
CN211855567U (zh) 一种体温测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919171

Country of ref document: EP

Kind code of ref document: A1