WO2023039835A1 - 红外测温装置、可移动平台、控制装置和手持式红外测温设备 - Google Patents

红外测温装置、可移动平台、控制装置和手持式红外测温设备 Download PDF

Info

Publication number
WO2023039835A1
WO2023039835A1 PCT/CN2021/119079 CN2021119079W WO2023039835A1 WO 2023039835 A1 WO2023039835 A1 WO 2023039835A1 CN 2021119079 W CN2021119079 W CN 2021119079W WO 2023039835 A1 WO2023039835 A1 WO 2023039835A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
infrared
thermal radiation
pixel units
measuring device
Prior art date
Application number
PCT/CN2021/119079
Other languages
English (en)
French (fr)
Inventor
江宝坦
李想
曹子晟
夏斌强
李琛
刘勇
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/119079 priority Critical patent/WO2023039835A1/zh
Publication of WO2023039835A1 publication Critical patent/WO2023039835A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer

Definitions

  • the present invention generally relates to the technical field of infrared temperature measurement, and more specifically relates to an infrared temperature measurement device, a movable platform, a control device and a hand-held infrared temperature measurement device.
  • Infrared thermal imaging technology uses photoelectric technology to detect the infrared specific band signal of the thermal radiation of the object, and can convert the signal into images and graphics that can be distinguished by human vision. Using the images and graphics, the temperature of the object body can be further calculated value. Because infrared thermal imaging technology can make people "see" the temperature distribution on the surface of an object, it is clear and intuitive, easy to analyze and judge, and it does not need to touch the object, and the temperature measurement distance is relatively long. Therefore, infrared thermal imaging technology is gradually applied to various In application scenarios that need to measure temperature.
  • the temperature measurement accuracy of infrared temperature measurement equipment based on infrared thermal imaging technology is greatly affected by the temperature rise of the equipment itself. In actual use, it is necessary to wait for the equipment to reach a thermal equilibrium state before the temperature measurement accuracy can reach the nominal value. Generally, it takes 0.5 to 1 For most application scenarios, this length of time is unacceptable; in addition, the temperature measurement accuracy of current infrared temperature measurement equipment is greatly affected by the working environment, resulting in actual temperature measurement accuracy and laboratory verification accuracy (general nominal ⁇ 2°C) has a large difference.
  • a constant temperature blackbody is placed at the target position in the infrared field of view to calibrate the infrared temperature measurement equipment in real time. In this case, the temperature measurement accuracy can generally meet the temperature measurement requirements, but this requires each Infrared temperature measurement equipment is equipped with a black body as a reference, and the black body has the disadvantages of large volume, heavy mass and high cost.
  • the present application has been made to solve at least one of the above-mentioned problems. Specifically, the present application provides an infrared temperature measuring device on the one hand, and the device includes:
  • the infrared detector comprising a plurality of pixel units, the plurality of pixel units comprising a first group of pixel units and a second group of pixel units;
  • a shielding member configured to shield the second group of pixel units, so as to prevent infrared light generated by thermal radiation outside the shielding member from entering the second group of pixel units;
  • the first group of pixel units is used to measure the first thermal radiation radiated by the target to be measured
  • the second group of pixel units is used to measure the second thermal radiation radiated by the shielding member
  • a temperature sensor for measuring the temperature of the shielding member as a reference temperature
  • a processor configured to: determine a target temperature of the target to be measured corresponding to the first thermal radiation based on the correspondence between the reference temperature and the second thermal radiation.
  • the processor determines the target temperature of the target to be measured corresponding to the first thermal radiation based on the correspondence between the reference temperature and the second thermal radiation, including:
  • the temperature difference between different regions of the shielding member is below a first threshold temperature.
  • the first threshold temperature is lower than or equal to 0.1°C.
  • the device also includes:
  • a casing, the infrared detector is arranged in the casing, and a light-transmitting area is arranged on the side of the casing facing the light-receiving surface of the infrared detector;
  • a lens assembly the lens assembly is disposed outside the casing and opposite to the light-transmitting area; wherein the blocking member is disposed between the lens assembly and the light-receiving surface of the infrared detector.
  • the shielding member is integrally formed with the housing, or the shielding member is fixedly connected to the housing.
  • the temperature difference between the shielding member and the lens assembly is lower than a second threshold temperature
  • the temperature difference between the shielding member and at least part of the housing on the side facing the light-receiving surface of the sensor is lower than third threshold temperature
  • the second threshold temperature is lower than or equal to 0.1°C
  • the third threshold temperature is lower than or equal to 0.1°C.
  • the plurality of pixel units are arranged in an array, and the second group of pixel units is located at an edge area of the area where the plurality of pixel units are located.
  • the second group of pixel units includes pixel units of a predetermined number of rows and/or pixel units of a predetermined number of columns located in the edge region.
  • the predetermined number of rows is between 0 and 30 rows
  • the predetermined number of columns is between 0 and 30 columns.
  • the shielding member is made of a material with a thermal conductivity higher than or equal to a threshold thermal conductivity, and the shielding member is opaque to light.
  • the threshold thermal conductivity corresponds to the thermal conductivity of aluminum material.
  • the material of the shielding member includes a metal material with a thermal conductivity higher than or equal to a threshold thermal conductivity.
  • the metal material includes one or more of the following materials: aluminum, copper, silver, gold.
  • the material of the housing includes a metal material
  • the metal material includes one or more of the following materials: aluminum, copper, silver, and gold.
  • a display device the display device is used to display at least one of the following: the first heat radiation distribution diagram, the second heat radiation distribution diagram and the target temperature.
  • Another aspect of the present application also provides a mobile platform, the mobile platform includes:
  • the aforementioned infrared temperature measuring device is arranged on the movable platform body.
  • the movable platform includes: an aircraft, a vehicle, a boat, and a robot.
  • control device for a movable platform
  • the control device is connected to the movable platform in communication
  • the body of the movable platform is provided with the aforementioned infrared temperature measuring device
  • the control device includes :
  • a communication interface used to communicate with the mobile platform
  • the processor is also used to: obtain data information output by the movable platform through the communication interface, and the data information includes: at least one of a first thermal radiation distribution diagram, a second thermal radiation distribution diagram, a target temperature, and a reference temperature ;
  • a display the display is used to display at least one of the following: the first thermal radiation distribution diagram, the second thermal radiation distribution diagram, the target temperature and the reference temperature.
  • Another aspect of the present application also provides a handheld infrared temperature measuring device, including:
  • the aforementioned infrared temperature measuring device is arranged on the handheld platform.
  • the infrared temperature measuring device in the embodiment of the present application includes a shielding member, and the shielding member shields the second group of pixel units, so as to prevent infrared light generated by thermal radiation outside the shielding member from entering the second group of pixel units , so that the second group of pixel units generally only receive the second heat radiation radiated by the shielding member, thereby eliminating the interference of heat radiation from the external environment and heat radiation generated by the infrared temperature measuring device itself on the imaging of the second group of pixel units,
  • the shielding member In order to make the shielding member play the same role as a black body, and measure the temperature of the shielding member as a reference temperature through a temperature sensor, so as to determine the target temperature of the target to be measured based on the reference temperature, thereby offsetting the time drift of the infrared temperature measuring device , temperature drift and the influence of the device's own thermal radiation, and improve the accuracy and accuracy of temperature measurement.
  • Figure 1 shows a schematic diagram of an aircraft in an embodiment of the present application
  • Fig. 2 shows a schematic block diagram of an infrared temperature measuring device in an embodiment of the present application
  • Figure 3A shows a schematic diagram of an infrared detector and a blocking member in one embodiment of the present application
  • Fig. 3B shows a schematic diagram of an infrared detector and a blocking member in another embodiment of the present application
  • Fig. 3C shows a schematic diagram of an infrared detector and a blocking member in another embodiment of the present application
  • Fig. 4 shows the schematic diagram of the infrared temperature measuring device in one embodiment of the present application
  • Figure 5 shows a schematic block diagram of a mobile platform in an embodiment of the present application
  • Fig. 6 shows a schematic block diagram of a control device of a movable platform in an embodiment of the present application
  • Fig. 7 shows a schematic block diagram of a handheld infrared temperature measuring device in an embodiment of the present application.
  • the infrared temperature measurement device provided in the embodiment of the present application can be applied to mobile platforms and any other application scenarios involving infrared imaging and temperature measurement.
  • the mobile platform can include aircraft (such as drones) , robots, cars, ships, etc., the embodiments of the present application do not limit specific application scenarios.
  • the case where the mobile platform is an aircraft is used as an example to describe the solution of the present application, but it can be understood that this is not intended to limit the application scenario of the present application.
  • FIG. 1 shows a schematic diagram of an aircraft 100 in an embodiment of the present application.
  • the aircraft 100 includes a carrier (ie frame) 102 and a payload 104 .
  • payload 104 may be located directly on aircraft 100 without carrier 102 .
  • Aircraft 100 may include processor 101 , memory 102 , powertrain 106 , sensing system 108 , and communication system 110 . These components are interconnected by a bus system and/or other form of connection mechanism (not shown).
  • the load 104 may include an infrared temperature measuring device and the like.
  • the power mechanism 106 may include one or more rotating bodies, propellers, blades, engines, motors, wheels, bearings, magnets, nozzles.
  • the rotating body of the power mechanism may be a self-tightening rotating body, a rotating body assembly, or other rotating body power units.
  • An aircraft may have one or more power units. All power mechanisms can be of the same type.
  • one or more power mechanisms may be of different types.
  • the power unit 106 may be mounted on the aircraft by suitable means, such as via a support member (eg, a drive shaft).
  • the power mechanism 106 can be installed in any suitable position of the aircraft 100, such as the top, the bottom, the front, the rear, the side or any combination thereof.
  • the power mechanism 106 is capable of vertically launching the vehicle from a surface, or vertically landing on a surface, without requiring any horizontal movement of the vehicle 100 (eg, without taxiing on a runway).
  • the power mechanism 106 may allow the aircraft 100 to hover at a preset position and/or direction in the air.
  • One or more powered mechanisms 106 may be controlled independently of the other powered mechanisms.
  • Sensing system 108 may include one or more sensors to sense spatial orientation, velocity, and/or acceleration (eg, rotation and translation relative to up to three degrees of freedom) of aircraft 100 .
  • the one or more sensors include any of the aforementioned sensors, including GPS sensors, motion sensors, inertial sensors, proximity sensors, or image sensors.
  • Sensing data provided by the sensing system 108 may be used to track the spatial orientation, velocity and/or acceleration of the target 100 (using a suitable processing unit and/or control unit as described below).
  • the sensing system 108 may be used to collect environmental data of the aircraft, such as weather conditions, potential obstacles to be approached, locations of geographical features, locations of man-made structures, image information, and the like.
  • the communication system 110 is capable of communicating with a control device 112 having a communication system 114 via a wireless signal 116 .
  • the communication systems 110, 114 may include any number of transmitters, receivers, and/or transceivers for wireless communication.
  • the communication may be one-way communication, such that data is sent in one direction.
  • control device 112 may provide control data to one or more of the aircraft 100, the carrier 102, and the payload 104, and receive data from one or more of the aircraft 100, the carrier 102, and the payload 104.
  • Information such as the position and/or motion information of the aircraft, carrier or load, load sensing data, such as thermal radiation data obtained by an infrared temperature measuring device, etc.
  • control data of the control means may include instructions regarding position, movement, actuation, or control of the aircraft, carrier and/or payload.
  • the movement of the aircraft, the movement of the carrier and the movement of the payload relative to a fixed reference object (such as the external environment), and/or the movement between each other, can be controlled by the control device.
  • the control device may be a remote control terminal located away from the aircraft, carrier and/or payload.
  • the control device may be located or attached to the support platform.
  • the control device may be hand-held or wearable.
  • the control device may include a smartphone, a tablet, a desktop, a computer, glasses, gloves, a helmet, a microphone, or any combination thereof.
  • the control device may comprise a user interface such as a keyboard, mouse, joystick, touch screen or display device. Any suitable user input may interact with the control device, such as manual input commands, voice control, gesture control, or positional control (eg by movement, position or tilt of the control device).
  • Aircraft 100 may include one or more memories 102 on which are stored computer programs executed by said processor.
  • One or more computer program products may be included, which may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory.
  • the volatile memory may include, for example, random access memory (RAM) and/or cache memory (cache).
  • the non-volatile memory may include, for example, a read-only memory (ROM), a hard disk, a flash memory, and the like.
  • the aircraft 100 may include one or more processors 101, and the processor 101 may be a central processing unit (CPU), a graphics processing unit (GPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or have a data processing capabilities and/or other forms of processing units that execute instructions and may control other components in aircraft 100 to perform desired functions.
  • the processor is capable of executing program instructions stored in memory.
  • a processor can include one or more embedded processors, processor cores, microprocessors, logic circuits, hardware finite state machines (FSMs), digital signal processors (DSPs), or combinations thereof.
  • the processor includes a Field Programmable Gate Array (FPGA), or one or more ARM processors.
  • the infrared temperature measurement device can be an area array uncooled thermal imager, which uses polysilicon, vanadium oxide and other types of detectors, which can display thermal images in real time, and the temperature measurement distance It is far away, but the infrared temperature measurement devices have problems such as time drift and temperature drift.
  • the thermal imager that is, the infrared temperature measurement device
  • the thermal imager needs to calibrate the detector in real time, but the calibration effect is affected by the environment, and the accuracy is low. To achieve high-precision temperature measurement requirements.
  • the first problem is: the temperature measurement accuracy of conventional infrared temperature measurement devices used for temperature measurement is greatly affected by the temperature rise of the equipment itself. In actual use, it is necessary to wait for the equipment to reach a thermal equilibrium state before the temperature measurement accuracy can reach the nominal value. , it generally takes 0.5 to 1 hour to achieve complete thermal balance. For drone loads, such a long thermal balance is unacceptable;
  • the second problem is: the temperature measurement accuracy of conventional infrared temperature measurement devices for temperature measurement is greatly affected by the working environment, especially the drone load, which is mostly used outdoors and the use environment is complex, which can easily lead to the actual measurement There is a large gap between temperature accuracy and laboratory verification accuracy (generally nominal ⁇ 2°C);
  • a constant temperature blackbody is placed at the target position in the infrared field of view as a real-time temperature reference to calibrate the infrared temperature measurement equipment in real time, so as to offset the detector's time drift, temperature drift and its own thermal radiation band. coming impact.
  • the UAV is flying and mobile for temperature measurement, so it is impossible to place a black body at a fixed position in the field of view, and the black body has the disadvantages of large volume, heavy mass, and high cost.
  • an infrared temperature measuring device in an embodiment of the present application, includes: an infrared detector, the infrared detector includes a plurality of pixel units, and the plurality of pixel units includes a first group of pixel units and a second group of The pixel unit; the shielding member is used to shield the second group of pixel units, so as to block the infrared light generated by the thermal radiation outside the shielding member from entering the second group of pixel units; the first group of pixel units is used to measure the radiation emitted by the target to be measured The first thermal radiation; the second group of pixel units, used to measure the second thermal radiation radiated by the shielding member; the temperature measuring device, used to measure the temperature of the shielding member as a reference temperature; the processor, used for: based on the reference temperature and the second thermal radiation The correspondence between the two thermal radiations determines the target temperature of the target to be measured corresponding to the first thermal radiation.
  • the infrared temperature measuring device in the embodiment of the present application includes a shielding member, and the shielding member shields the second group of pixel units, so as to block the infrared light generated by the thermal radiation outside the shielding member from entering the second group of pixel units, so that the second group of pixel units
  • the group of pixel units generally only receives the second heat radiation radiated by the shielding member, thereby eliminating the interference of the heat radiation from the external environment and the heat radiation generated by the infrared temperature measuring device itself on the imaging of the second group of pixel units, so that the shielding member can play a role.
  • It has basically the same function as a black body, and uses the temperature measuring device to measure the temperature of the shielding member as a reference temperature, so as to determine the target temperature of the target to be measured based on the reference temperature, thereby offsetting the time drift, temperature drift and device temperature of the infrared temperature measuring device
  • the influence of its own thermal radiation can improve the accuracy and accuracy of temperature measurement.
  • the infrared temperature measurement device of the present application can be applied to any mobile platform that requires infrared temperature measurement, such as vehicles, ships, robots, etc., and can also be applied to Hand-held infrared temperature measurement equipment, or can also be applied to fixed infrared temperature measurement equipment, the target object of the temperature measurement can be human body, animal, etc., or other objects, buildings, geographical environment.
  • the actual application scenario can be used to detect the temperature of the human body during security checks at airports, stations (including but not limited to railway stations, subway stations, or passenger stations, etc.), building gates, or to detect the temperature of animals when animal plagues occur. It can also be used for power inspection, or to detect short-circuit faults in mechanical equipment, electrical equipment, etc., or to detect fires in buildings, forests, etc., and to detect the extent of fire spread when a fire occurs ,etc.
  • the infrared temperature measuring device 200 of the present application includes an infrared detector 210 , and the infrared detector 210 includes a plurality of pixel units, and the plurality of pixel units includes a first group of pixel units 211 and a second group of pixel units 212 .
  • the infrared detector 210 may be an uncooled infrared focal plane detector, which can detect thermal radiation of a target object or multiple objects in the target scene, for example, it receives infrared light generated by thermal radiation through pixel units, and The infrared light is converted into an electrical signal, so as to obtain the thermal radiation distribution map of the target object or multiple objects in the target scene based on the electrical signal, wherein the thermal radiation distribution map is also used to characterize the temperature distribution of the detection target.
  • an uncooled infrared focal plane detector which can detect thermal radiation of a target object or multiple objects in the target scene, for example, it receives infrared light generated by thermal radiation through pixel units, and The infrared light is converted into an electrical signal, so as to obtain the thermal radiation distribution map of the target object or multiple objects in the target scene based on the electrical signal, wherein the thermal radiation distribution map is also used to characterize the temperature distribution of the detection target.
  • the first group of pixel units 211 is used to measure the first thermal radiation radiated by the object to be measured, and the object to be measured may be a human body, an animal, etc., or other objects, buildings, or geographic environments.
  • the actual application scenario can be used to detect the temperature of the human body during security checks at airports, stations (including but not limited to railway stations, subway stations, or passenger stations, etc.), building gates, or to detect the temperature of animals when animal plagues occur. It can also be used for power inspection, or to detect short-circuit faults in mechanical equipment, electrical equipment, etc., or to detect fires in buildings, forests, etc., and to detect the extent of fire spread when a fire occurs ,etc.
  • the first group of pixel units 211 and the second group of pixel units 212 are respectively used to receive infrared signals generated by thermal radiation of different objects, such as infrared light, etc., wherein the first group of pixel units 211 and the second group of pixel units 212 are in the infrared
  • the position and proportion of the pixel units of the detector 210 can be reasonably set according to actual needs, for example, as shown in Figure 3A to Figure 3C, a plurality of pixel units of the infrared detector 210 are arranged in an array, the second The pixel unit 212 is located in the edge area of the area where the multiple pixel units are located, wherein the edge area can be an edge area on any side or multiple sides of the area where the multiple pixel units are located, or the edge area can also be a plurality of pixel units The corner area of the area where it is located.
  • the number of the second group of pixel units 212 can be reasonably set as required, for example, the second group of pixel units 212 can include pixel units of a predetermined number of rows and/or pixel units of a predetermined number of columns located in the edge region, wherein , the predetermined number of rows and the predetermined number of columns can be reasonably set according to actual needs, optionally,
  • the predetermined number of rows is between 0 and 30 rows, and the predetermined number of columns is between 0 and 30 columns.
  • the second group of pixel units 212 can be a predetermined number of rows and a predetermined number of columns (the predetermined number of columns can be all columns) of the edge area on the first side of the region where the plurality of pixel units are located. number or part of the number of columns), for example, the predetermined number of rows is roughly 20 rows, and the first side can be the upper side or the lower side; or, in another example, as shown in FIG.
  • the second group of pixel units 212 It may be pixels of a predetermined number of columns and a predetermined number of rows (the predetermined number of rows may be all or part of the number of rows) located in the edge region of the second side of the region where the plurality of pixel units is located, for example, as shown in FIG.
  • the predetermined number of columns is generally 20 columns, and the second side can be the left side or the right side; or, in other examples, the second group of pixel units 212 can also include an edge area located on the first side of the area where the plurality of pixel units are located Pixels in a part of the rows and pixels in a part of the columns in the edge region on the second side of the region where the multiple pixel units are located, for example, if the pixel unit is an array of 100 rows*100 columns, then it can be the second group of pixel units 212 or may include approximately 20 rows of pixels located in the edge area on the first side of the area where the plurality of pixel units are located and approximately 20 columns of pixels located in the edge area on the second side of the area where the plurality of pixel units are located, or the second group of pixels
  • the unit 212 may further include approximately 20 rows*50 columns of pixels located in the edge area of the first side and approximately 20 columns*50 rows of pixels located in the edge area of the second side.
  • the pixel units of the plurality of pixel units of the infrared detector 210 except the second group of pixel units 212 may be the first group of pixel units 211 .
  • the infrared temperature measuring device 200 of the present application may include the following structures: a housing with an accommodating space for accommodating the processor 240 , the infrared detector 210 and other components of the infrared temperature measuring device 200 .
  • the casing encloses an accommodation space for accommodating other components of the infrared temperature measuring device 200, including but not limited to basic structures such as the infrared detector 210, the bridge board, the middle frame, the signal board, and the heat sink.
  • the infrared detector 210 , the middle frame, the signal board and the heat sink are sequentially arranged from front to back.
  • the infrared detector 210 is fixed on the bridge board.
  • the infrared temperature measuring device 200 also includes a lens assembly 202, which is arranged in front of the infrared detector 210.
  • the front may refer to the side facing the light-receiving surface of the infrared detector 210, such as the light-receiving surface of the housing facing the infrared detector 210.
  • One side of the surface is provided with a light-transmitting area, and the light-transmitting area may be an opening or may be an area composed of light-transmitting materials.
  • the lens assembly is arranged outside the casing and is opposite to the light-transmitting area.
  • the lens assembly 202 may It is fixed on the housing and is configured to shape the outgoing light of the target to be received by the first group of pixel units 211 .
  • lens assembly 202 may consist of one or more lenses.
  • the infrared temperature measuring device 200 of the present application further includes a shielding member 220, which is used to shield the second group of pixel units 212, so as to block the infrared light generated by the thermal radiation outside the shielding member from entering the
  • the second group of pixel units 212 that is, the second group of pixel units 212 is generally only used to receive the infrared light signal generated by the second thermal radiation radiated by the shielding member.
  • the shielding member 220 can be used as a simulated blackbody to measure infrared temperature. The effect of the real-time calibration of the temperature measured by the device 200.
  • the second group of pixel units 212 may be a part of the effective pixel unit of the entire pixel unit of the infrared detector 210, for example, the blocking member 220 may be arranged in front of the infrared detector 210, at a position opposite to the second group of pixel units 212, for example, The area of the pixel unit covered by the blocking member 220 may be greater than or equal to the area of the second group of pixel units 212.
  • the area of the pixel unit covered by the blocking member 220 is larger than the area of the second group of pixel units 212
  • other pixel units except the second group of pixel units 212 in the pixel units blocked by the blocking member 220 may also receive other thermal radiation except the second thermal radiation radiated by the blocking member 220, so here only the second The group pixel unit 212 is used for measuring the second thermal radiation radiated by the shielding member 220 .
  • the front of the infrared detector 210 refers to the side where the lens of the infrared temperature measuring device 200 is located.
  • the blocking member 220 is disposed between the lens assembly and the light-receiving surface of the infrared detector 210 .
  • the shielding structure can be integrally formed with the casing, which can be regarded as a part of the casing, or the shielding structure can also be fixedly connected to the casing through any suitable connection method, such as connecting the inner side wall of the casing, etc., and the connection method includes but not It is limited to screw connection or welding, etc. or a combination of multiple connection methods.
  • the shielding structure may be a shielding plate or other suitable structures, which always shield the second group of pixel units 212 during temperature measurement.
  • the temperature difference of the entire shielding member 220 in each area during the entire working process should be as small as possible.
  • the shielding member The temperature difference between different regions of 220 is lower than a first threshold temperature, wherein the first threshold temperature is lower than or equal to 0.1° C., or other threshold temperature ranges that meet requirements.
  • the shielding member 220 can be made of a material with a thermal conductivity higher than or equal to a threshold thermal conductivity, and the shielding member 220 is opaque to light, such as infrared light , so as to prevent the second group of pixel units 212 shielded by the shielding member 220 from receiving other heat radiation.
  • the threshold thermal conductivity can be reasonably selected according to actual needs.
  • the threshold thermal conductivity corresponds to the thermal conductivity of aluminum material, which is roughly 237W/mK.
  • the material of the blocking member 220 includes a metal material whose thermal conductivity is higher than or equal to the threshold thermal conductivity
  • the metal material may include one or more of the following materials: aluminum, copper, silver, gold, or It is an alloy material made of various metal materials, and the thermal conductivity of the alloy material is greater than or equal to the threshold thermal conductivity.
  • the shielding member 220 In order to enable the shielding member 220 to more realistically simulate the real temperature of the lens and the casing, it is necessary to ensure that the temperature of the shielding structure is as consistent as possible with the temperature of the inner lens and the casing of the infrared temperature measuring device 200, especially, the shielding member 220 and the casing
  • the temperature difference of the front part of the body also known as the front shell
  • the temperature difference between the shielding member 220 and the lens assembly is lower than the second threshold temperature, and the shielding member 220 and the side of the light-receiving surface facing the sensor
  • the temperature difference of at least part of the housing is lower than the third threshold temperature, wherein the second threshold temperature is lower than or equal to 0.1°C, or other temperatures that can meet the requirements, and the third threshold temperature is lower than or equal to 0.1°C or other temperatures that can meet the requirements required temperature.
  • the material of the housing includes a metal material
  • the metal material includes one or more of the following materials: aluminum, copper, silver, gold, the housing, or other suitable materials, the housing and shielding of the present application
  • the structure is connected, and the housing is made of a material with high thermal conductivity, so that heat can be quickly conducted between the housing and the shielding member 220, so as to ensure that the temperature of the shielding structure is as consistent as possible with the temperature of the inner lens of the infrared temperature measuring device 200 and the housing
  • the temperature difference between the shielding member 220 and the front part of the casing (also called the front shell) is as small as possible, so that the shielding member 220 can more accurately simulate the real temperature of the lens and the casing, thereby offsetting the temperature caused by the lens and the housing.
  • the thermal radiation of the casing and the like affects the temperature of the target to be measured, thereby improving the accuracy of temperature measurement of the target to be measured.
  • the shielding member 220 can also be arranged close to the second group of pixel units 212 of the infrared detector 210 , so as to better shield the second group of pixel units 212 .
  • the infrared temperature measuring device 200 of the present application further includes a temperature sensor 230 for measuring the temperature of the shielding member 220 as a reference temperature.
  • the temperature sensor 230 can measure the temperature of the shielding member 220 in real time while the infrared temperature measuring device 200 is measuring the temperature of the object to be measured, so as to use the temperature of the shielding member 220 as a reference temperature.
  • the temperature sensor 230 may be of any type, such as a bimetal thermometer, a pressure thermometer, a resistance thermometer, a thermistor, a thermocouple, and the like.
  • the infrared temperature measuring device 200 of the present application may also include a memory (not shown), the memory is used to store program instructions executable by the processor 240, and may include one or more computer program products, and the computer program products may include various forms of Computer-readable storage medium, such as volatile memory and/or non-volatile memory.
  • the volatile memory may include random access memory (RAM) and/or cache memory (cache), etc., for example.
  • Non-volatile memory may include, for example, read-only memory (ROM), hard disk, flash memory, and the like.
  • the memory can also be used to store various data generated during temperature measurement by the infrared temperature measuring device 200 .
  • the device of the present application also comprises processor 240, and this processor 240 can be central processing unit (CPU), image processing unit (GPU), application specific integrated circuit (ASIC), field programmable gate array (FPGA) Or other forms of processing units with data processing capabilities and/or instruction execution capabilities.
  • processor 240 can include one or more embedded processors, processor cores, microprocessors, logic circuits, hardware finite state machines (FSMs), digital signal processors (DSPs), or combinations thereof.
  • the processor includes a Field Programmable Gate Array (FPGA), or one or more ARM processors.
  • the processor 240 may be connected to the infrared detector 210 and the temperature sensor 230 to enable further processing of the signals obtained from both.
  • the processor 240 can be used to determine the target temperature of the object to be measured corresponding to the first thermal radiation based on the correspondence between the reference temperature and the second thermal radiation, by acquiring the temperature of the shielding member 220 measured by the temperature sensor 230 As a reference temperature, through a series of calculations, the accurate temperature of the actual target can be obtained, so as to achieve high-precision temperature measurement.
  • the processor 240 determines the target temperature of the target to be measured corresponding to the first thermal radiation based on the correspondence between the reference temperature and the second thermal radiation, including: acquiring the measurement of the first thermal radiation output by the infrared detector 210 Data, for example, the measurement data of the first thermal radiation may be an electrical signal converted from the infrared light generated by the first thermal radiation received by the first group of pixel units 211 of the infrared detector 210, and the electrical signal may be obtained via The first processing circuit has performed a series of processed signals such as amplification and conversion, and the first processing circuit may be a part of the processor 240, or may be a circuit independent of the processor 240 but connected to the processor 240, and based on the first A measurement data of thermal radiation, generating a first thermal radiation distribution map related to the intensity of the first thermal radiation; obtaining the measurement data of the second thermal radiation output by the infrared detector 210, for example, the measurement data of the second thermal radiation can be It is an electrical signal converted from infraredrare
  • the electrical signal can be amplified, converted, etc. through a second processing circuit.
  • the second processing circuit may be a part of the processor 240, or may be a circuit independent of the processor 240 but connected to the processor 240, wherein the second processing circuit may be the same as the first processing circuit
  • the circuit or it can also be a different circuit, and based on the second thermal radiation, generates a second thermal radiation distribution map related to the intensity of the second thermal radiation; and based on the correspondence between the reference temperature and the pixel value of the second thermal radiation distribution map relationship, and determine the target temperature corresponding to the pixel value of each pixel in the first heat radiation distribution diagram.
  • the thermal radiation distribution diagram may be the thermal radiation collected by the processor 240 through the acquired infrared detector to characterize the temperature-measured object.
  • the radiated infrared signal that is, infrared light
  • different colors are used in the heat radiation distribution map to represent different degrees of heat radiation of the object.
  • the thermal radiation distribution map can be a gray-scale processed infrared image
  • the pixel value of the thermal radiation distribution map can include the gray value of the thermal radiation distribution map. Different gray values represent different degrees of thermal radiation of objects.
  • the processor 240 determines the target temperature corresponding to the pixel value of each pixel in the first thermal radiation distribution diagram based on the correspondence between the reference temperature and the pixel value of the second thermal radiation distribution diagram, including the processor 240 based on the reference temperature and the second thermal radiation distribution diagram.
  • the corresponding relationship of the grayscale values of the radiation distribution diagram determines the target temperature corresponding to the grayscale value of each pixel in the first thermal radiation distribution diagram.
  • the infrared temperature measuring device 200 of the present application may also include a display device for displaying the first thermal radiation distribution diagram and the second thermal radiation distribution diagram, for example, the first group of pixel units 211 and the second group of pixel units 211 Two groups of pixel units 212 are arranged adjacently, therefore, the first thermal radiation distribution diagram and the second thermal radiation distribution diagram can be regarded as two different regions in the same thermal radiation distribution diagram, for example, the second thermal radiation distribution diagram can be It is an image area part of the edge of the entire thermal radiation distribution diagram displayed by the display device, or, the display device may simultaneously display the first thermal radiation distribution diagram and the second thermal radiation distribution diagram in different display areas on the same display interface.
  • the display device is also used to display the target temperature.
  • the target temperature can be displayed at the position of the target to be measured on the first thermal radiation distribution map;
  • An indicator bar showing the correspondence between temperature and pixel values of the thermal radiation distribution map, such as grayscale values or color values.
  • the display device can also be used to display a reference temperature.
  • the infrared temperature measuring device 200 in the embodiment of the present application includes a shielding member 220, and the shielding member 220 shields the second group of pixel units 212, so as to prevent the infrared light generated by the thermal radiation outside the shielding member 220 from entering the second group.
  • Pixel units so that the second group of pixel units generally only receive the second heat radiation radiated by the shielding member 220, thereby eliminating the imaging of the second group of pixel units by heat radiation from the external environment and heat radiation generated by the infrared temperature measuring device itself
  • the blocking member 220 In order to make the blocking member 220 play the same role as a black body, and measure the temperature of the blocking member 220 as a reference temperature through the temperature sensor 230, so as to determine the target temperature of the target to be measured based on the reference temperature, and then offset the infrared
  • the time drift and temperature drift of the temperature measurement device and the influence of the thermal radiation of the device itself can improve the accuracy and accuracy of temperature measurement.
  • An embodiment of the present application also provides a mobile platform, which may include an aircraft (such as a drone), a robot, a vehicle, a ship, a cloud platform, and the like.
  • a mobile platform which may include an aircraft (such as a drone), a robot, a vehicle, a ship, a cloud platform, and the like.
  • the movable platform of the present application includes a movable platform body and the infrared temperature measuring device 200 mentioned above, and the infrared temperature measuring device 200 may be arranged on the movable platform body.
  • the movable platform body When the infrared temperature measuring device 200 is applied to an unmanned aerial vehicle, the movable platform body is the fuselage of the unmanned aerial vehicle. When the infrared temperature measuring device 200 is applied to a vehicle, the movable platform body is the body of the vehicle.
  • the car may be an automatic driving car or a semi-automatic driving car, which is not limited here.
  • the infrared temperature measuring device 200 When the infrared temperature measuring device 200 is applied to a robot, the movable platform body is the body of the robot; when the infrared temperature measuring device 200 is applied to a ship, the movable platform body is the hull of the ship.
  • the infrared temperature measuring device 200 reference may be made to the relevant descriptions above.
  • the infrared temperature measuring device 200 includes an infrared detector, and the infrared detector includes a plurality of pixel units, and the plurality of pixel units includes a first group of pixel units and a second group of pixel units.
  • the infrared detector can be an uncooled infrared focal plane detector, which can detect the thermal radiation of a target object or multiple objects in the target scene, for example, it receives the infrared light generated by the thermal radiation through the pixel unit, and The infrared light is converted into an electrical signal, so as to obtain a thermal radiation distribution map of the target object or multiple objects in the target scene based on the electrical signal, wherein the thermal radiation distribution map is also used to characterize the temperature distribution of the detection target.
  • an uncooled infrared focal plane detector which can detect the thermal radiation of a target object or multiple objects in the target scene, for example, it receives the infrared light generated by the thermal radiation through the pixel unit, and The infrared light is converted into an electrical signal, so as to obtain a thermal radiation distribution map of the target object or multiple objects in the target scene based on the electrical signal, wherein the thermal radiation distribution map is also used to characterize the temperature distribution of the detection target.
  • the first group of pixel units is used to measure the first heat radiation radiated by the target to be measured, and the target to be measured may be a human body, an animal, etc., or other objects, buildings, or geographic environments.
  • the first group of pixel units and the second group of pixel units are respectively used to receive infrared signals generated by thermal radiation of different objects, such as infrared light, etc., wherein the first group of pixel units and the second group of pixel units are located in the infrared detector 210
  • the position and proportion of the pixel unit can be reasonably set according to actual needs.
  • the number of the second group of pixel units can be reasonably set according to needs, for example, the second group of pixel units can include pixel units of a predetermined number of rows and/or pixel units of a predetermined number of columns located in the edge area, wherein the predetermined The number of rows and the predetermined number of columns can be reasonably set according to actual needs.
  • the predetermined number of rows is between 0 and 30 rows
  • the predetermined number of columns is between 0 and 30 columns.
  • the infrared temperature measuring device 200 may include the following structures: a housing with an accommodation space for accommodating the processor 240, an infrared detector and other components of the infrared temperature measuring device 200, including but not limited to an infrared detector, a bridge Basic structure such as board, middle frame, signal board and heat sink. Wherein, the infrared detector is fixed on the bridge plate.
  • the infrared temperature measuring device 200 also includes a lens assembly, which is arranged in front of the infrared detector, which may refer to the side facing the light-receiving surface of the infrared detector, for example, the side of the housing facing the light-receiving surface of the infrared detector A light-transmitting area is provided, and the light-transmitting area may be an opening or may be an area composed of light-transmitting materials.
  • the lens assembly is arranged outside the housing and opposite to the light-transmitting area.
  • the lens assembly may be fixed on the housing , configured to shape the outgoing light of the target to be received by the first group of pixel units.
  • the lens assembly may consist of one or more lenses.
  • the infrared temperature measuring device 200 of the present application further includes a shielding member, which is used to shield the second group of pixel units, so as to prevent infrared light generated by thermal radiation outside the shielding member from entering the second group of pixel units, that is, The second group of pixel units is generally only used to receive the infrared light signal generated by the second thermal radiation radiated by the shielding member.
  • the shielding member can be used as a simulated blackbody to perform real-time calibration of the temperature measured by the infrared temperature measuring device 200 .
  • the second group of pixel units can be a part of the effective pixel units of the entire pixel unit of the infrared detector.
  • the blocking member can be arranged in front of the infrared detector, at a position opposite to the second group of pixel units.
  • the area of the pixel unit may be greater than or equal to the area of the second group of pixel units, optionally, when the area of the pixel unit blocked by the blocking member is greater than the area of the second group of pixel units, and the pixel unit blocked by the blocking member
  • Other pixel units except the second group of pixel units may also receive other thermal radiation except the second heat radiation radiated by the shielding member, so here only the second group of pixel units is used for the second heat radiation radiated by the shielding member. 2. Measurement of thermal radiation.
  • the blocking member is arranged between the lens assembly and the light-receiving surface of the infrared detector.
  • the shielding structure can be integrally formed with the casing, which can be regarded as a part of the casing, or the shielding structure can also be fixedly connected to the casing through any suitable connection method, such as connecting the inner side wall of the casing, etc., and the connection method includes but not It is limited to screw connection or welding, etc. or a combination of multiple connection methods.
  • the shielding structure may be a shielding plate or other suitable structure, which always shields the pixel units of the second group during the temperature measurement process.
  • the temperature difference of the entire shielding member in each area during the entire working process should be as small as possible.
  • the difference of the shielding member The temperature difference between the zones is lower than a first threshold temperature, wherein the first threshold temperature is lower than or equal to 0.1° C., or other threshold temperature ranges meeting requirements.
  • the shielding member can be made of a material with a thermal conductivity higher than or equal to the threshold thermal conductivity, and the shielding member is opaque, such as infrared light, to prevent The second group of pixel units shielded by the shielding member receive other heat radiation.
  • the threshold thermal conductivity can be reasonably selected according to actual needs.
  • the threshold thermal conductivity corresponds to the thermal conductivity of aluminum material, which is roughly 237W/mK.
  • the material of the shielding member includes a metal material whose thermal conductivity is higher than or equal to the threshold thermal conductivity.
  • the metal material may include one or more of the following materials: aluminum, copper, silver, gold, or, An alloy material made of multiple metallic materials that has a thermal conductivity greater than or equal to a threshold thermal conductivity.
  • the shielding member In order to enable the shielding member to more realistically simulate the real temperature of the lens and the housing, it is necessary to ensure that the temperature of the shielding structure is as consistent as possible with the temperature of the inner lens and the housing of the infrared temperature measuring device 200, especially, the temperature of the shielding member and the housing
  • the temperature difference of the front part also known as the front housing
  • the temperature difference between the shielding member and the lens assembly is lower than the second threshold temperature, and at least part of the housing on the side of the shielding member and the light-receiving surface of the sensor
  • the body temperature difference is lower than a third threshold temperature, wherein the second threshold temperature is lower than or equal to 0.1°C, or other temperatures that meet requirements, and the third threshold temperature is lower than or equal to 0.1°C or other temperatures that meet requirements.
  • the material of the housing includes a metal material
  • the metal material includes one or more of the following materials: aluminum, copper, silver, gold, the housing, or other suitable materials, the housing and shielding of the present application
  • the structure is connected, and the housing is made of a material with high thermal conductivity, so that heat can be quickly conducted between the housing and the shielding member, so as to ensure that the temperature of the shielding structure is as consistent as possible with the temperature of the inner lens of the infrared temperature measuring device 200 and the housing,
  • the temperature difference between the shielding member and the front part of the casing (also known as the front casing) is as small as possible, so that the shielding member can more accurately simulate the real temperature of the lens and the casing, thereby offsetting the temperature caused by the lens and the casing, etc.
  • the influence of thermal radiation on the temperature of the target to be measured thereby improving the accuracy of the temperature measurement of the target to be measured.
  • the infrared temperature measuring device 200 of the present application further includes a temperature sensor for measuring the temperature of the shielding member as a reference temperature.
  • the temperature sensor can measure the temperature of the shielding member in real time while the infrared temperature measuring device 200 is measuring the temperature of the object to be measured, so as to use the temperature of the shielding member as a reference temperature.
  • the infrared temperature measuring device 200 includes a processor, which can be used to determine the target temperature of the target to be measured corresponding to the first thermal radiation based on the correspondence between the reference temperature and the second thermal radiation.
  • the temperature of the shielding member measured by the sensor is used as the reference temperature, and then through a series of calculations, the accurate temperature of the actual target is obtained, thereby realizing high-precision temperature measurement.
  • the processor of the infrared temperature measuring device 200 determines the target temperature of the target to be measured corresponding to the first thermal radiation based on the correspondence between the reference temperature and the second thermal radiation, including: acquiring the first output of the infrared detector
  • the measurement data of thermal radiation for example, the measurement data of the first thermal radiation may be an electrical signal obtained by converting the infrared light generated by the first thermal radiation received by the first group of pixel units of the infrared detector, and the electrical signal may be It is a signal after a series of processing such as amplification and conversion by the first processing circuit.
  • the first processing circuit can be a part of the processor, or it can be a circuit independent of the processor but connected to the processor, and based on the first
  • the measurement data of thermal radiation generate the first thermal radiation distribution diagram related to the intensity of the first thermal radiation; obtain the measurement data of the second thermal radiation output by the infrared detector, for example, the measurement data of the second thermal radiation can be obtained by
  • the second processing circuit can be a part of the processor, or it can be a circuit independent of the processor but connected to the processor, wherein the second processing circuit can be the same circuit as the first processing circuit, or it can also be a different circuit.
  • the circuit and based on the second thermal radiation, generates a second thermal radiation distribution map related to the intensity of the second thermal radiation; and based on the correspondence between the reference temperature and the pixel value (eg gray value) of the second thermal radiation distribution map , determine the target temperature corresponding to the pixel value (for example, the gray value) of each pixel in the first thermal radiation distribution diagram.
  • a second thermal radiation distribution map related to the intensity of the second thermal radiation
  • the movable platform may include: a movable platform body 500, an infrared temperature measuring device 200, a communication interface (also referred to as a communication system herein, when the movable platform is an aircraft, the communication interface may correspond to the aforementioned communication system 110 ), memory 502, one or more processors 501, the infrared temperature measuring device 200 is arranged on the movable platform body 500 for infrared imaging and temperature measurement, etc., the communication interface 503 is at least used for communicating with the control device, and the memory 502 is used It is used to store executable program instructions; the movable platform can return a power mechanism, and the power mechanism is used to move the movable platform.
  • the steps performed by the processor of the infrared temperature measuring device 200 can also be performed by the processor of the mobile platform, and the same can be achieved. Function.
  • the infrared temperature measuring device 200 may not have a display device, but the movable platform includes a display device, and the first thermal radiation distribution diagram, the second thermal radiation distribution diagram and the first thermal radiation distribution diagram can be displayed by the display device of the movable platform. target temperature etc.
  • the first group of pixel units and the second group of pixel units are arranged adjacently, therefore, the first thermal radiation distribution diagram and the second thermal radiation distribution diagram can be regarded as two different regions in the same thermal radiation distribution diagram
  • the second thermal radiation distribution diagram may be an image area part of the edge of the entire thermal radiation distribution diagram displayed by the display device, or the display device may simultaneously display the first thermal radiation distribution diagram and the first thermal radiation distribution diagram in different display areas on the same display interface.
  • the second heat radiation distribution map may be an image area part of the edge of the entire thermal radiation distribution diagram displayed by the display device, or the display device may simultaneously display the first thermal radiation distribution diagram and the first thermal radiation distribution diagram in different display areas on the same display interface.
  • the display device of the movable platform is also used to display the target temperature, for example, the target temperature can be displayed at the position of the target to be measured on the first thermal radiation distribution map;
  • the outer area of the distribution displays an indication bar of the corresponding relationship between temperature and pixel values (eg, color values or grayscale values) of the thermal radiation distribution map.
  • the display device can also be used to display a reference temperature.
  • the infrared temperature measuring device 200 may not have a display device, and when the movable platform such as a drone and the control device are connected in communication, the display device of the control device may display the first thermal radiation distribution map, the second At least one of a heat radiation profile, a target temperature and a reference temperature.
  • the movable platform of the present application includes the aforementioned infrared temperature measuring device 200, it also has the same advantages as the aforementioned infrared temperature measuring device.
  • the shielding member of the infrared temperature measuring device of the present application is equivalent to a stable simulated black body placed inside the infrared temperature measuring device, it can be used as a real-time Calibration, so that even if the high-speed rotation of the aircraft blades will generate a large wind speed around the infrared temperature measurement device, it will not affect the accuracy of the temperature measurement results of the infrared temperature measurement device, thus effectively solving the temperature rise of the infrared temperature measurement device change problem.
  • the embodiment of the present application also provides a control device for a movable platform, which may be an external device independent of the movable platform, such as a control device for a movable platform, and the control device may include, for example Mobile phones, remote controllers, tablet computers, notebooks, etc., the control device can also be a part or all of the control system of the mobile platform, or can realize the control method of the mobile platform through software, hardware or a combination of software and hardware. Part or all of computer equipment.
  • the control device 600 of the movable platform includes one or more memories 601, one or more processors 602, a communication interface 603 (which may correspond to the communication system 114 in FIG. 1 ), a display 604, etc., These components are interconnected by a bus system and/or other form of connection mechanism (not shown). It should be noted that the components and structure of the device 600 shown in FIG. 6 are only exemplary rather than limiting, and the control device 600 may also have other components and structures as required.
  • the memory 601 is used to store various data and executable program instructions generated during the movement of the relevant movable platform, for example, used to store various application programs or algorithms for realizing various specific functions.
  • One or more computer program products may be included, and computer program products may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory.
  • the volatile memory may include random access memory (RAM) and/or cache memory (cache), etc., for example.
  • Non-volatile memory may include, for example, read-only memory (ROM), hard disk, flash memory, and the like.
  • the processor 602 may be a central processing unit (CPU), a graphics processing unit (GPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other forms of processing with data processing capabilities and/or instruction execution capabilities. unit, and can control other components in apparatus 600 to perform desired functions.
  • a processor can include one or more embedded processors, processor cores, microprocessors, logic circuits, hardware finite state machines (FSMs), digital signal processors (DSPs), graphics processing units (GPUs), or The combination.
  • the processor 602 of the present application can also obtain the data information collected and processed by the infrared temperature measuring device 200 through the communication interface 603, and the processor 602 of the present application can also execute the program instructions in the memory 601, so that the processor 602 can execute the above-mentioned All or part of the functions that the processor of the infrared temperature measuring device 200 can realize.
  • the display 604 is used to display various visual information, for example, the visual information includes but is not limited to the image data sent back by the movable platform, various operation pages, the thermal radiation distribution map captured by the infrared temperature measuring device 200 and the like.
  • the processor 602 can also be used to: obtain data information output by the movable platform through the communication interface, and the data information includes: at least one of the first thermal radiation distribution diagram, the second thermal radiation distribution diagram, the target temperature, and the reference temperature; 604 is used to display at least one of the first thermal radiation distribution diagram, the second thermal radiation distribution diagram, the target temperature and the reference temperature.
  • details about the first thermal radiation distribution diagram, the second thermal radiation distribution diagram, the target temperature and the reference temperature can be referred to above, and will not be repeated here.
  • control device 600 further includes an output device that can output various information (such as images or sounds) to the outside (such as a user), and may include one or more of a display, a speaker, and the like.
  • an output device that can output various information (such as images or sounds) to the outside (such as a user), and may include one or more of a display, a speaker, and the like.
  • control device 600 further includes a communication interface 603, which is used for communication between various components in the control device 600 and between various components of the control device 600 and other devices outside the system, for example, when the device is an external When the device is installed, it can communicate with the mobile platform through the communication interface, so that information can be exchanged between the two.
  • a communication interface 603 which is used for communication between various components in the control device 600 and between various components of the control device 600 and other devices outside the system, for example, when the device is an external When the device is installed, it can communicate with the mobile platform through the communication interface, so that information can be exchanged between the two.
  • the communication interface 603 can be an interface of any currently known communication protocol, such as a wired interface or a wireless interface, wherein the communication interface can include one or more serial ports, USB interfaces, Ethernet ports, WiFi, wired networks, DVI interfaces,
  • the device integrates interconnection modules or other suitable various ports, interfaces, or connections.
  • the device 600 can also access wireless networks based on communication standards, such as WiFi, 2G, 3G, 4G, 6G or combinations thereof.
  • the communication interface receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication interface further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • the device 600 also includes an input device (not shown), which may be a device used by the user to input instructions, and may include one or more of a keyboard, a trackball, a mouse, a microphone, a touch screen, etc., or other controls An input device consisting of buttons.
  • an input device may be a device used by the user to input instructions, and may include one or more of a keyboard, a trackball, a mouse, a microphone, a touch screen, etc., or other controls An input device consisting of buttons.
  • the control device of the present application can obtain and display the data information output by the movable platform, such as the first thermal radiation distribution diagram, the second thermal radiation distribution diagram, target temperature, reference temperature, etc., so as to present more intuitive and accurate temperature measurement data for users .
  • the present application also provides a handheld infrared temperature measurement device, which includes a handheld pan-tilt 700 and the infrared temperature measurement device 200 described above.
  • a handheld infrared temperature measurement device 200 for the detailed description of the infrared temperature measurement device 200, please refer to the foregoing, I won't repeat them one by one here.
  • the handheld pan/tilt 700 may be a supporting device for installing and fixing the infrared temperature measuring device 200 .
  • the handheld pan/tilt 700 includes at least one rotating shaft mechanism (not shown), and the rotating shaft mechanism may include a motor (for example, a brushless motor, or a brushed motor) and a shaft arm.
  • the rotation axis mechanism may include a pitch axis (pitch) mechanism, a roll axis (roll) mechanism and a yaw axis (yaw) mechanism.
  • the plurality of rotating shaft mechanisms may be connected in series.
  • the pitch axis mechanism may include a pitch axis motor and a pitch axis arm
  • the roll axis mechanism may include a roll axis motor and a roll axis arm
  • the yaw axis mechanism may include a yaw axis motor and a yaw axis arm.
  • the platform body of the handheld pan/tilt may also include a base, and the base can move with the movement of the user's hand.
  • the pan/tilt can also include an inertial measurement unit (Inertial Measurement Unit, IMU) 16, which has no relative motion with the shooting device and can be used to measure the attitude of the camera.
  • IMU Inertial Measurement Unit
  • the IMU can be rigidly attached to the camera's mounting mechanism.
  • an IMU (not shown) may also be arranged on the base of the pan-tilt, and the IMU and the base have no relative movement.
  • the IMU can be rigidly affixed to a base.
  • the handheld pan-tilt can also include a hand-held stick or a hand-held ring, which can be connected with the base, and the user can control the motion of the pan-tilt through the hand-held stick or the hand-held loop.
  • the handheld pan/tilt also includes at least one operation key, which is arranged on the pan/tilt body 501.
  • the operation key includes at least one of a rocker and a button.
  • the user can control the handheld pan/tilt to realize the required functions by operating the joystick and/or buttons.
  • the rocker can also control the movement of the rotating shaft mechanism, for example, by turning the rocking rod, the rotating shaft mechanism of the handheld pan/tilt can rotate in a corresponding direction.
  • the infrared temperature measuring device 200 can be installed on the base of the handheld pan/tilt, for example, by clamping, clipping or any other suitable way.
  • the handheld infrared temperature measuring device of the present application has the aforementioned infrared temperature measuring device 200, it has substantially the same advantages as the aforementioned infrared temperature measuring device 200, and the handheld infrared temperature measuring device of the present application is more portable and can be applied to In various scenarios that require temperature measurement.
  • each part of the present application may be realized by hardware, software, firmware or a combination thereof.
  • various steps or methods may be implemented by software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware as in another embodiment, it can be implemented by any one or a combination of the following techniques known in the art: a discrete Logic circuits, ASICs with suitable combinational logic gates, Programmable Gate Array (hereinafter referred to as: PGA), Field Programmable Gate Array (Field Programmable Gate Array; referred to as: FPGA), etc.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division.
  • there may be other division methods for example, multiple units or components can be combined or integrated. to another device, or some features may be ignored, or not implemented.
  • the various component embodiments of the present application may be realized in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some modules according to the embodiments of the present application.
  • DSP digital signal processor
  • the present application can also be implemented as an apparatus program (for example, a computer program and a computer program product) for performing a part or all of the methods described herein.
  • Such a program implementing the present application may be stored on a computer-readable medium, or may be in the form of one or more signals.
  • Such a signal may be downloaded from an Internet site, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

一种红外测温装置(200)、可移动平台、控制装置和手持式红外测温设备,该红外测温装置(200)包括:红外探测器(210),红外探测器(210)包括多个像素单元,多个像素单元包括第一组像素单元(211)和第二组像素单元(212);遮挡构件(220)用于遮挡第二组像素单元(212),以阻挡遮挡构件(220)外侧的热辐射产生的红外光入射至第二组像素单元(212);第一组像素单元(211)用于测量待测目标所辐射的第一热辐射;第二组像素单元(212)用于测量遮挡构件(220)所辐射的第二热辐射;温度传感器(230)用于测量遮挡构件(220)的温度作为参考温度;处理器(240)用于基于参考温度和第二热辐射的对应关系,确定与第一热辐射对应的待测目标的目标温度。

Description

红外测温装置、可移动平台、控制装置和手持式红外测温设备
说明书
技术领域
本发明总地涉及红外测温技术领域,更具体地涉及一种红外测温装置、可移动平台、控制装置和手持式红外测温设备。
背景技术
红外热成像技术运用光电技术可以检测到物体热辐射的红外线特定波段信号,并且,可以将该信号转换成可供人类视觉分辨的图像和图形,利用该图像和图形可以进一步计算出物体本体的温度值。由于红外热成像技术可以使得人们“看到”物体表面的温度分布情况,清晰直观,便于进行分析和判断,并且无需接触物体,测温距离较远,因此,红外热成像技术逐渐应用于各种需要测量温度的应用场景中。
目前基于红外热成像技术的红外测温设备的测温精度受设备本身的温升影响比较大,实际使用时,需要等设备达到热平衡状态,测温精度才能达到标称值,一般需要0.5到1小时才能完全热平衡,对于多数应用场景来说无法接受该时间长度;另外,目前的红外测温设备的测温精度受工作环境影响比较大,导致实际测温精度和实验室验证精度(一般标称±2℃)差距较大。相关技术中,为了实现高精度的测温,通过在红外视场中目标位置放置一个恒温黑体来实时标定红外测温设备,这种情况测温精度一般能满足测温要求,但这需要每个红外测温设备配备一个黑体作为参考,而黑体具有体积大质量重,成本很高的缺点。
发明内容
为了解决上述问题中的至少一个而提出了本申请。具体地,本申请一方面提供一种红外测温装置,所述装置包括:
红外探测器,所述红外探测器包括多个像素单元,所述多个像素单元包括第一组像素单元和第二组像素单元;
遮挡构件,用于遮挡所述第二组像素单元,以阻挡所述遮挡构件外侧的热辐射产生的红外光入射至所述第二组像素单元;
所述第一组像素单元,用于测量待测目标所辐射的第一热辐射;
所述第二组像素单元,用于测量所述遮挡构件所辐射的第二热辐射;
温度传感器,用于测量所述遮挡构件的温度作为参考温度;
处理器,用于:基于所述参考温度和所述第二热辐射的对应关系,确定与所述第一热辐射对应的所述待测目标的目标温度。
在一个示例中,所述处理器基于所述参考温度和所述第二热辐射的对应关系,确定与所述第一热辐射对应的所述待测目标的目标温度,包括:
获取所述红外探测器输出的所述第一热辐射的测量数据,并基于所述第一热辐射的测量数据,生成与所述第一热辐射的强度相关的第一热辐射分布图;
获取述红外探测器输出的所述第二热辐射的测量数据,并基于所述第二热辐射的测量数据,生成与所述第二热辐射的强度相关的第二热辐射分布图;以及基于所述参考温度和所述第二热辐射分布图的像素值的对应关系,确定所述第一热辐射分布图中各个像素的像素值所对应的目标温度。
在一个示例中,所述遮挡构件的不同区域之间的温度差低于第一阈值温度。
在一个示例中,所述第一阈值温度低于或等于0.1℃。
在一个示例中,所述装置还包括:
壳体,所述红外探测器设置于所述壳体内,所述壳体的朝向所述红外探测器的受光面的一侧设置有透光区域;
镜头组件,所述镜头组件设置于所述壳体外侧并与所述透光区域相对;其中,所述遮挡构件设置于所述镜头组件和所述红外探测器的受光面之间。
在一个示例中,所述遮挡构件和所述壳体一体成型,或者,所述遮挡构件固定连接所述壳体。
在一个示例中,所述遮挡构件和所述镜头组件之间的温度差低于第二阈值温度,所述遮挡构件和朝向所述传感器的受光面一侧的至少部分壳体的温度差低于第三阈值温度。
在一个示例中,所述第二阈值温度低于或等于0.1℃,所述第三阈值温度低于或等于0.1℃。
在一个示例中,所述多个像素单元呈阵列排布,所述第二组像素单元位于所述多个像素单元所在区域的边缘区域。
在一个示例中,所述第二组像素单元包括位于所述边缘区域的预定行数的像素单元和/或预定列数的像素单元。
在一个示例中,所述预定行数介于0行至30行之间,所述预定列数介于0列至30列之间。
在一个示例中,所述遮挡构件由导热率高于或等于阈值导热率的材料制成,且所述遮挡构件不透光。
在一个示例中,所述阈值导热率对应铝材料的导热率。
在一个示例中,所述遮挡构件的材料包括导热率高于或等于阈值导热率的金属材料。
在一个示例中,所述金属材料包括以下材料中的一种或多种:铝、铜、银、金。
在一个示例中,所述壳体的材料包括金属材料,所述金属材料包括以下材料中的一种或多种:铝、铜、银、金。
在一个示例中,还包括:
显示装置,所述显示装置用于显示以下至少一种:所述第一热辐射分布图、所述第二热辐射分布图和所述目标温度。
本申请再一方面还提供一种可移动平台,所述可移动平台包括:
可移动平台本体;
前述的红外测温装置,其设置于所述可移动平台本体。
在一个示例中,所述可移动平台包括:飞行器、车、船、机器人。
本申请又一方面还提供一种可移动平台的控制装置,所述控制装置与所述可移动平台通信连接,所述可移动平台的本体设置有前述的红外测温装置,所述控制装置包括:
通信接口,用于和所述可移动平台通信连接;
处理器还用于:通过所述通信接口获取可移动平台输出的数据信息,所述数据信息包括:第一热辐射分布图、第二热辐射分布图、目标温度、参考温度中的至少一种;
显示器,所述显示器用于显示以下至少一种:所述第一热辐射分布图、所述第二热辐射分布图、所述目标温度和所述参考温度。
本申请又一方面还提供一种手持式红外测温设备,包括:
手持云台;
前述的红外测温装置,其设置于所述手持云台。
本申请实施例中的红外测温装置其包括遮挡构件,该遮挡构件遮挡所述第二组像素单元,以阻挡所述遮挡构件外侧的热辐射产生的红外光入射至所述第二组像素单元,从而使得该第二组像素单元大体只接收遮挡构件所辐射的第二热辐射, 进而排除外界环境的热辐射以及红外测温装置自身产生的热辐射对第二组像素单元的成像的干扰,以便使遮挡构件起到与黑体基本相同的作用,并通过温度传感器来测量遮挡构件的温度作为参考温度,从而基于该参考温度来确定待测目标的目标温度,进而抵消红外测温装置的时漂、温漂以及装置自身热辐射带来的影响,提高测温精度和准确性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一个实施例中的飞行器的示意图;
图2示出了本申请一个实施例中的红外测温装置的示意性框图;
图3A示出了本申请一个实施例中的红外探测器和遮挡构件的示意图;
图3B示出了本申请另一个实施例中的红外探测器和遮挡构件的示意图;
图3C示出了本申请再一个实施例中的红外探测器和遮挡构件的示意图;
图4示出了本申请一个实施例中的红外测温装置的示意图;
图5示出了本申请一个实施例中的可移动平台的示意性框图;
图6示出了本申请一个实施例中的可移动平台的控制装置的示意性框图;
图7示出了本申请一个实施例中的手持式红外测温设备的示意性框图。
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。
在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提 出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的结构,以便阐释本申请提出的技术方案。本申请的可选实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
下面结合附图,对本申请的红外测温装置、控制装置、可移动平台和手持式红外测温设备进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
需要说明的是,本申请实施例提供的红外测温装置,可以应用于可移动平台以及其他任意涉及红外成像以及测温的应用场景中,例如,可移动平台可以包括飞行器(例如无人机)、机器人、车、船等,本申请实施例对具体的应用场景不做限制。
本申请实施例中主要以可移动平台为飞行器的情况为例,对本申请的方案进行描述,但可以理解的是,这并不意欲对本申请的应用场景构成限制。
在一个示例中,图1示出了本申请一个实施例中的飞行器100的示意图。该飞行器100包括承载体(也即机架)102及负载104。本领域技术人员应该了解,本文所描述的关于飞行器的任何实施例适用于任何飞行器(如无人飞行器,也称无人机)。在某些实施例中,负载104可以直接位于飞行器100上,而不需要承载体102。飞行器100可以包括处理器101、存储器102、动力机构106,传感系统108、以及通讯系统110。这些组件通过总线系统和/或其它形式的连接机构(未示出)互连。负载104可以包括红外测温装置等。
动力机构106可以包括一个或者多个旋转体、螺旋桨、桨叶、引擎、电机、轮子、轴承、磁铁、喷嘴。例如,所述动力机构的旋转体可以是自紧固(self-tightening)旋转体、旋转体组件、或者其它的旋转体动力单元。飞行器可以有一个或多个动力机构。所有的动力机构可以是相同的类型。可选的,一个或者 多个动力机构可以是不同的类型。动力机构106可以通过合适的手段安装在飞行器上,如通过支撑元件(如驱动轴)。动力机构106可以安装在飞行器100任何合适的位置,如顶端、下端、前端、后端、侧面或者其中的任意结合。
在某些实施例中,动力机构106能够使飞行器垂直地从表面起飞,或者垂直地降落在表面上,而不需要飞行器100任何水平运动(如不需要在跑道上滑行)。可选的,动力机构106可以允许飞行器100在空中预设位置和/或方向盘旋。一个或者多个动力机构106在受到控制时可以独立于其它的动力机构。
传感系统108可以包括一个或者多个传感器,以感测飞行器100的空间方位、速度及/或加速度(如相对于多达三个自由度的旋转及平移)。所述一个或者多个传感器包括前述描述的任何传感器,包括GPS传感器、运动传感器、惯性传感器、近程传感器或者影像传感器。传感系统108提供的感测数据可以用于追踪目标100的空间方位、速度及/或加速度(如下所述,利用适合的处理单元及/或控制单元)。可选的,传感系统108可以用于采集飞行器的环境的数据,如气候条件、要接近的潜在的障碍、地理特征的位置、人造结构的位置、图像信息等。
通讯系统110能够实现与具有通讯系统114的控制装置112通过无线信号116进行通讯。通讯系统110、114可以包括任何数量的用于无线通讯的发送器、接收器、及/或收发器。所述通讯可以是单向通讯,这样数据可以从一个方向发送。
在某些实施例中,控制装置112可以向飞行器100、承载体102及负载104中的一个或者多个提供控制数据,并且从飞行器100、承载体102及负载104中的一个或者多个中接收信息(如飞行器、承载体或者负载的位置及/或运动信息,负载感测的数据,如红外测温装置获得的热辐射数据等)。在某些实施例中,控制装置的控制数据可以包括关于位置、运动、致动的指令,或者对飞行器、承载体及/或负载的控制。
在某些实施例中,飞行器的运动、承载体的运动及负载相对固定参照物(如外部环境)的运动,及/或者彼此间的运动,都可以由控制装置所控制。控制装置可以是远程控制终端,位于远离飞行器、承载体及/或负载的地方。控制装置可以位于或者粘贴于支撑平台上。可选的,控制装置可以是手持的或者穿戴式的。例如,控制装置可以包括智能手机、平板电脑、桌上型电脑、计算机、眼镜、手套、头盔、麦克风或者其中任意的结合。控制装置可以包括用户界面,如键盘、鼠标、操纵杆、触摸屏或者显示装置。任何适合的用户输入可以与控制装置交互, 如手动输入指令、声音控制、手势控制或者位置控制(如通过控制装置的运动、位置或者倾斜)。
飞行器100可以包括一个或者多个存储器102,存储器102上存储有由所述处理器运行的计算机程序。可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。
飞行器100可以包括一个或者多个处理器101,处理器101可以是中央处理单元(CPU)、图像处理单元(GPU)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者具有数据处理能力和/或指令执行能力的其它形式的处理单元,并且可以控制飞行器100中的其它组件以执行期望的功能。所述处理器能够执行存储器中存储的程序指令。例如,处理器能够包括一个或多个嵌入式处理器、处理器核心、微型处理器、逻辑电路、硬件有限状态机(FSM)、数字信号处理器(DSP)或它们的组合。在本实施例中,所述处理器包括现场可编程门阵列(FPGA),或者一个或者多个ARM处理器。
当无人机携带负载104为红外测温装置时,红外测温装置可以是面阵式的非制冷热像仪,其采用多晶硅、氧化钒等类型探测器,可以实时显示热成像,测温距离较远,但红外测温装置都存在时漂和温漂等问题,热像仪(也即红外测温装置)内部需要对探测器进行实时校准,但校准效果受环境影响,精度较低,无法实现高精度测温的要求。
除了时漂和温漂问题,常规的红外测温装置还具有以下问题:
第一个问题是:常规的用于测温的红外测温装置的测温精度受设备本身的温升影响比较大,实际使用时,需要等设备达到热平衡状态,测温精度才能达到标称值,一般需要0.5到1小时才能完全热平衡,对于无人机负载来说,无法接受如此长时间的热平衡;
第二个问题是:常规的用于测温的红外测温装置的测温精度受工作环境影响比较大,尤其是无人机负载,多在户外使用,使用环境复杂,这很容易导致实际测温精度和实验室验证精度(一般标称±2℃)差距较大;
相关技术中,为了实现高精度的测温,通过在红外视场中目标位置放置一个恒温黑体作为实时温度参考来实时标定红外测温设备,以抵消探测器时漂、温漂 及自身热辐射带来的影响。但无人机处于飞行移动测温,没法在视场内固定位置放置黑体,而且黑体具有体积大质量重,成本很高的缺点。
另外,对于飞机上应用红外热像仪来说,还有很大一个挑战便是飞机起飞后,由飞机桨叶高速旋转会在热像仪周围产生很大的风速,这会影响热像仪的温升过程和温升结果,最终导致热像仪内部的修正算法失效,影响测温结果。
鉴于上述问题的存在,本申请实施例中提供一种红外测温装置,该装置包括:红外探测器,红外探测器包括多个像素单元,多个像素单元包括第一组像素单元和第二组像素单元;遮挡构件,用于遮挡第二组像素单元,以阻挡遮挡构件外侧的热辐射产生的红外光入射至第二组像素单元;第一组像素单元,用于测量待测目标所辐射的第一热辐射;第二组像素单元,用于测量遮挡构件所辐射的第二热辐射;测温装置,用于测量遮挡构件的温度作为参考温度;处理器,用于:基于参考温度和第二热辐射的对应关系,确定与第一热辐射对应的待测目标的目标温度。
本申请实施例中的红外测温装置其包括遮挡构件,该遮挡构件遮挡第二组像素单元,以阻挡遮挡构件外侧的热辐射产生的红外光入射至第二组像素单元,从而使得该第二组像素单元大体只接收遮挡构件所辐射的第二热辐射,进而排除外界环境的热辐射以及红外测温装置自身产生的热辐射对第二组像素单元的成像的干扰,以便使遮挡构件起到与黑体基本相同的作用,并通过测温装置来测量遮挡构件的温度作为参考温度,从而基于该参考温度来确定待测目标的目标温度,进而抵消红外测温装置的时漂、温漂以及装置自身热辐射带来的影响,提高测温精度和准确性。
值得一提的是,本申请的红外测温装置可以除了可以应用于无人机以外,还可以应用于任意的需要红外测温的可移动平台,例如车、船、机器人等,还可以应用于手持式的红外测温设备,或者还可以应用于固定式的红外测温设备,其测量温度的目标对象可以是人体、动物等,也可以是其他物体、建筑、地理环境。实际应用场景可以是用于机场、车站(包括但不限于火车站、地铁站或客运站等)、建筑门口安全检查时检测人体的温度,也可以是用于动物瘟疫发生时检测动物的温度,还可以用于电力巡检,或者探测机械设备、电气设备等是否发生短路故障,还可以是用于侦测建筑、山林等地方是否发生火灾,以及可以用于在火灾发生时探测火势蔓延的范围,等等。
下面,参考附图对本申请实施例提供的红外测温装置、可移动平台、控制装 置和手持红外测温设备进行描述,在不冲突的前提下,本申请各个实施例的特征可以相互结合。
作为示例,本申请的红外测温装置200包括红外探测器210,红外探测器210包括多个像素单元,多个像素单元包括第一组像素单元211和第二组像素单元212。
可选地,红外探测器210可以是非制冷红外焦平面探测器,其可以探测一个目标物体或目标场景中的多个物体的热辐射,例如,其通过像素单元接收热辐射产生的红外光,并将红外光转换为电信号,从而基于电信号获取目标物体或目标场景中的多个物体的热辐射分布图,其中,热辐射分布图也用于表征探测目标的温度分布。
第一组像素单元211用于测量待测目标所辐射的第一热辐射,该待测目标可以是人体、动物等,也可以是其他物体、建筑、地理环境。实际应用场景可以是用于机场、车站(包括但不限于火车站、地铁站或客运站等)、建筑门口安全检查时检测人体的温度,也可以是用于动物瘟疫发生时检测动物的温度,还可以用于电力巡检,或者探测机械设备、电气设备等是否发生短路故障,还可以是用于侦测建筑、山林等地方是否发生火灾,以及可以用于在火灾发生时探测火势蔓延的范围,等等。
第一组像素单元211和第二组像素单元212分别用于接收不同物体的热辐射所产生的红外信号,例如红外光等,其中,第一组像素单元211和第二组像素单元212在红外探测器210的像素单元中的位置和所占的比例可以根据实际需要合理设定,例如,如图3A至图3C所示,红外探测器210的多个像素单元呈阵列排布,第二组像素单元212位于多个像素单元所在区域的边缘区域,其中,该边缘区域可以是多个像素单元所在区域的任意一侧或者多侧的边缘区域,或者,该边缘区域还可以为多个像素单元所在区域的边角区域。
可选地,第二组像素单元212的数量可以根据需要合理设定,例如,第二组像素单元212可以包括位于边缘区域的预定行数的像素单元和/或预定列数的像素单元,其中,预定行数和预定列数可以根据实际需要合理设定,可选地,
预定行数介于0行至30行之间,预定列数介于0列至30列之间。在一个具体示例,如图3A所示,第二组像素单元212可以是位于多个像素单元所在区域的第一侧的边缘区域的预定行数和预定列数(该预定列数可以是全部列数或者部分列数)的像素,例如预定行数大体为20行,该第一侧可以是上侧或下侧;或 者,在另一个示例中,如图3B所示,第二组像素单元212可以是位于多个像素单元所在区域的第二侧的边缘区域的预定列数和预定行数(该预定行数可以是全部行数或者部分行数)的像素,例如,如图3C所示,预定列数大体为20列,该第二侧可以是左侧或右侧;或者,在其他示例中,第二组像素单元212还可以包括位于多个像素单元所在区域的第一侧的边缘区域的部分行的像素和位于多个像素单元所在区域的第二侧的边缘区域的部分列的像素,例如若像素单元为100行*100列的阵列,则其可以是第二组像素单元212还可以包括位于多个像素单元所在区域的第一侧的边缘区域的大体20行的像素和位于多个像素单元所在区域的第二侧的边缘区域的大体20列的像素,或者,第二组像素单元212还可以包括位于第一侧的边缘区域的大体20行*50列的像素和位于第二侧的边缘区域的大体20列*50行的像素。
值得一提的是,红外探测器210的多个像素单元除了第二组像素单元212以外的其他像素单元可以为第一组像素单元211。
如图4所示,本申请的红外测温装置200可以包括以下结构:壳体,壳体内具有容纳空间,容纳空间用于容纳处理器240、红外探测器210以及红外测温装置200的其他部件。
具体的,壳体围成容纳空间,以容纳红外测温装置200的其他部件,包括但不限于红外探测器210、桥板、中框、信号板以及散热片等基本结构。在本申请的一实施例中,在红外探测器210接收方向上,由前向后依次设置红外探测器210、中框、信号板以及散热片。其中,红外探测器210固定于桥板上。
红外测温装置200还包括镜头组件202,其设置于红外探测器210的前方,该前方可是指的红外探测器210的受光面所朝向的一侧,例如壳体的朝向红外探测器210的受光面的一侧设置有透光区域,该透光区域可以是开口或者可以是由透光材料组成的区域,镜头组件设置于壳体外侧并与透光区域相对,可选地,镜头组件202可以固定于壳体上,配置为对待测目标的出射光进行整形,以被第一组像素单元211接收。可选地,镜头组件202可以由一个或多个透镜所组成。
在一个示例中,如图2所示,本申请的红外测温装置200还包括遮挡构件220,该用于遮挡第二组像素单元212,以阻挡遮挡构件外侧的热辐射产生的红外光入射至第二组像素单元212,也即第二组像素单元212大体仅用于接收遮挡构件辐射的第二热辐射所产生的红外光信号,该遮挡构件220可以作为模拟黑体,起到对红外测温装置200所测温度的实时校准的作用。
第二组像素单元212可以为红外探测器210的整个像素单元的有效像素单元的一部分,比如,遮挡构件220可以设置在红外探测器210前方,与第二组像素单元212相对的位置,例如,该遮挡构件220所遮挡的像素单元的面积可能大于或等于第二组像素单元212的面积,可选地,当遮挡构件220所遮挡的像素单元的面积大于第二组像素单元212的面积时,而遮挡构件220所遮挡的像素单元中除了第二组像素单元212以外的其他像素单元还可能接收到除了遮挡构件220所辐射的第二热辐射以外的其他热辐射,所以在此仅将第二组像素单元212用于对遮挡构件220所辐射的第二热辐射的测量。
值得一提的是,红外探测器210前方是指的红外测温装置200的镜头所在一侧。
可选地,遮挡构件220设置于镜头组件和红外探测器210的受光面之间。遮挡结构可以和壳体一体成型,其可以看作为壳体的一部分,或者,遮挡结构还可以通过任意适合的连接方式固定连接壳体,例如连接壳体的内侧壁等,其连接方式包括但不限于螺接或焊接等或多种连接方式的组合。
遮挡结构可以为遮挡板或者其他适合的结构,其在测温的过程中始终对第二组像素单元212的进行遮挡。
为了使得遮挡构件220在工作过程中产生的第二热辐射的辐射量是一个相对稳定的值,整个遮挡构件220的温度在整个工作过程中各区域温差越小越好,可选地,遮挡构件220的不同区域之间的温度差低于第一阈值温度,其中,第一阈值温度低于或等于0.1℃,或者其他满足要求的阈值温度范围。
为了使遮挡构件220的温度在整个工作过程中各区域温差更小,遮挡构件220可以由导热率高于或等于阈值导热率的材料制成,且遮挡构件220不透光,例如不透红外光,以防止遮挡构件220所遮挡的第二组像素单元212接收到其他的热辐射。阈值导热率可以根据实际需要合理选择,例如阈值导热率对应铝材料的导热率,大体为237W/mK。示例性地,遮挡构件220的材料包括导热率高于或等于阈值导热率的金属材料,例如金属材料可以包括以下材料中的一种或多种:铝、铜、银、金,或者,还可以是由多种金属材料制成的合金材料,该合金材料的导热率大于或等于阈值导热率。
为了使得遮挡构件220能够更加真实的模拟镜头和壳体的真实温度,需要保证遮挡结构的温度和红外测温装置200的内部镜头以及壳体的温度尽可能一致,特别是,遮挡构件220和壳体的前侧部分(也称前壳)温度温差尽可能小,可选 地,遮挡构件220和镜头组件之间的温度差低于第二阈值温度,遮挡构件220和朝向传感器的受光面一侧的至少部分壳体的温度差低于第三阈值温度,其中,第二阈值温度低于或等于0.1℃,或者其他能够满足要求的温度,第三阈值温度低于或等于0.1℃或者其他能够满足要求的温度。
在一个示例中,壳体的材料包括金属材料,金属材料包括以下材料中的一种或多种:铝、铜、银、金,壳体,或者其他适合的材料,本申请的壳体和遮挡结构连接,并且壳体采用高导热的材料,以使壳体和遮挡构件220之间能够快速的导热,从而保证遮挡结构的温度和红外测温装置200的内部镜头以及壳体的温度尽可能一致,特别是,遮挡构件220和壳体的前侧部分(也称前壳)温度温差尽可能小,以使得遮挡构件220能够更加准确的模拟镜头和壳体的真实温度,从而能够抵消由于镜头和壳体等的热辐射对待测目标的温度的影响,进而提高待测目标的温度测量的准确性。
遮挡构件220还可以贴近红外探测器210的第二组像素单元212设置,从而能够对第二组像素单元212起到更好的遮挡作用。
继续参考图2,本申请的红外测温装置200还包括温度传感器230,用于测量遮挡构件220的温度作为参考温度。该温度传感器230可以在红外测温装置200对待测目标测温的同时实时的测量遮挡构件220的温度,以便起到使遮挡构件220的温度作为参考温度的作用。
温度传感器230可以是任意类型的,例如双金属温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。
本申请的红外测温装置200还可以包括存储器(未示出),存储器用于存储处理器240可执行的程序指令,可以包括一个或多个计算机程序产品,计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。存储器还可以用于存储红外测温装置200测温过程中所产生的各种数据等。
继续参考图2,本申请的装置还包括处理器240,该处理器240可以是中央处理单元(CPU)、图像处理单元(GPU)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者具有数据处理能力和/或指令执行能力的其它形式的处理单元。例如,处理器240能够包括一个或多个嵌入式处理器、处理器核心、微型处 理器、逻辑电路、硬件有限状态机(FSM)、数字信号处理器(DSP)或它们的组合。在本实施例中,处理器包括现场可编程门阵列(FPGA),或者一个或者多个ARM处理器。
该处理器240可以连接到红外探测器210和温度传感器230,从而能够对从两者获得的信号进行进一步的处理。
本申请中,处理器240可以用于基于参考温度和第二热辐射的对应关系,确定与第一热辐射对应的待测目标的目标温度,通过获取到温度传感器230测量的遮挡构件220的温度作为参考温度,再通过一系列的计算,获取实际目标的准确温度,从而实现高精度测温。
在一个示例中,处理器240基于参考温度和第二热辐射的对应关系,确定与第一热辐射对应的待测目标的目标温度,包括:获取红外探测器210输出的第一热辐射的测量数据,例如,第一热辐射的测量数据可以是由红外探测器210的第一组像素单元211所接收到的第一热辐射产生的红外光所转换获得的电信号,该电信号可以是经由第一处理电路进行了放大、转换等一系列处理后的信号,该第一处理电路可以是处理器240的一部分,或者也可以是独立于处理器240的电路但连接处理器240,并基于第一热辐射的测量数据,生成与第一热辐射的强度相关的第一热辐射分布图;获取述红外探测器210输出的第二热辐射的测量数据,例如,第二热辐射的测量数据可以是由红外探测器210的第二组像素单元212所接收到的第二热辐射产生的红外光所转换获得的电信号,该电信号可以是经由第二处理电路进行了放大、转换等一系列处理后的信号,该第二处理电路可以是处理器240的一部分,或者也可以是独立于处理器240的电路但连接处理器240,其中,第二处理电路可以和第一处理电路是同一个电路,或者也可以是不同的电路,并基于第二热辐射,生成与第二热辐射的强度相关的第二热辐射分布图;以及基于参考温度和第二热辐射分布图的像素值的对应关系,确定第一热辐射分布图中各个像素的像素值所对应的目标温度。
本申请中,热辐射分布图(包括但不限于第一热辐射分布图和第二热辐射分布图)可以是处理器240通过获取到的红外探测器采集的用于表征被测温物体的热辐射的红外信号(也即红外光),并基于该红外信号经过一些列转换获得的伪彩色热图,在热辐射分布图中采用不同的颜色来表示物体不同程度的热辐射,示例性地,例如热辐射分布图可以是经过灰度处理的红外图像,则热辐射分布图的像素值可以包括热辐射分布图的灰度值,不同的灰度值来表征物体不同程度的热 辐射,因此,处理器240基于参考温度和第二热辐射分布图的像素值的对应关系,确定第一热辐射分布图中各个像素的像素值所对应的目标温度,包括处理器240基于参考温度和第二热辐射分布图的灰度值的对应关系,确定第一热辐射分布图中各个像素的灰度值所对应的目标温度。
可选地,本申请的红外测温装置200还可以包括显示装置,该显示装置用于显示第一热辐射分布图和第二热辐射分布图,示例性地,第一组像素单元211和第二组像素单元212相邻设置,因此,第一热辐射分布图和第二热辐射分布图可以看作是同一个热辐射分布图中的两个不同区域,例如,第二热辐射分布图可以是显示装置显示的整个热辐射分布图的边缘的图像区域部分,或者,显示装置可以在同一显示界面上的不同显示区域同时显示第一热辐射分布图和第二热辐射分布图。
在一个示例中,显示装置还用于显示目标温度,例如可以在第一热辐射分布图上的待测目标所在的位置显示该目标温度;再例如,还可以在第一热辐射分布的外侧区域显示温度与热辐射分布图的像素值例如灰度值或颜色值的对应关系的指示条。在其他示例中,显示装置还可以用于显示参考温度。
综上,本申请实施例中的红外测温装置200其包括遮挡构件220,该遮挡构件220遮挡第二组像素单元212,以阻挡遮挡构件220外侧的热辐射产生的红外光入射至第二组像素单元,从而使得该第二组像素单元大体只接收遮挡构件220所辐射的第二热辐射,进而排除外界环境的热辐射以及红外测温装置自身产生的热辐射对第二组像素单元的成像的干扰,以便使遮挡构件220起到与黑体基本相同的作用,并通过温度传感器230来测量遮挡构件220的温度作为参考温度,从而基于该参考温度来确定待测目标的目标温度,进而抵消红外测温装置的时漂、温漂以及装置自身热辐射带来的影响,提高测温精度和准确性。
本申请实施例还提供的一种可移动平台,可移动平台可以包括飞行器(例如无人机)、机器人、车、船、云台等。
作为示例,本申请的可移动平台包括可移动平台本体和前文所述的红外测温装置200,该红外测温装置200可以设置在可移动平台本体。
当红外测温装置200应用于无人飞行器时,可移动平台本体为无人飞行器的机身。当红外测温装置200应用于车辆时,可移动平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当红外测温装置 200应用于机器人时,可移动平台本体为机器人的机身,当红外测温装置200应用于船时,可移动平台本体为船的船身。对于红外测温装置200的一些细节描述可以参考前文的相关描述。
红外测温装置200包括红外探测器,红外探测器包括多个像素单元,多个像素单元包括第一组像素单元和第二组像素单元。
可选地,红外探测器可以是非制冷红外焦平面探测器,其可以探测一个目标物体或目标场景中的多个物体的热辐射,例如,其通过像素单元接收热辐射产生的红外光,并将红外光转换为电信号,从而基于电信号获取目标物体或目标场景中的多个物体的热辐射分布图,其中,热辐射分布图也用于表征探测目标的温度分布。
第一组像素单元用于测量待测目标所辐射的第一热辐射,该待测目标可以是人体、动物等,也可以是其他物体、建筑、地理环境。第一组像素单元和第二组像素单元分别用于接收不同物体的热辐射所产生的红外信号,例如红外光等,其中,第一组像素单元和第二组像素单元在红外探测器210的像素单元中的位置和所占的比例可以根据实际需要合理设定。
可选地,第二组像素单元的数量可以根据需要合理设定,例如,第二组像素单元可以包括位于边缘区域的预定行数的像素单元和/或预定列数的像素单元,其中,预定行数和预定列数可以根据实际需要合理设定,可选地,预定行数介于0行至30行之间,预定列数介于0列至30列之间。
红外测温装置200可以包括以下结构:壳体,壳体内具有容纳空间,容纳空间用于容纳处理器240、红外探测器以及红外测温装置200的其他部件,包括但不限于红外探测器、桥板、中框、信号板以及散热片等基本结构。其中,红外探测器固定于桥板上。
红外测温装置200还包括镜头组件,其设置于红外探测器的前方,该前方可是指的红外探测器的受光面所朝向的一侧,例如壳体的朝向红外探测器的受光面的一侧设置有透光区域,该透光区域可以是开口或者可以是由透光材料组成的区域,镜头组件设置于壳体外侧并与透光区域相对,可选地,镜头组件可以固定于壳体上,配置为对待测目标的出射光进行整形,以被第一组像素单元接收。可选地,镜头组件可以由一个或多个透镜所组成。
在一个示例中,本申请的红外测温装置200还包括遮挡构件,该用于遮挡第二组像素单元,以阻挡遮挡构件外侧的热辐射产生的红外光入射至第二组像素单 元,也即第二组像素单元大体仅用于接收遮挡构件辐射的第二热辐射所产生的红外光信号,该遮挡构件可以作为模拟黑体,起到对红外测温装置200所测温度的实时校准的作用。
第二组像素单元可以为红外探测器的整个像素单元的有效像素单元的一部分,比如,遮挡构件可以设置在红外探测器前方,与第二组像素单元相对的位置,例如,该遮挡构件所遮挡的像素单元的面积可能大于或等于第二组像素单元的面积,可选地,当遮挡构件所遮挡的像素单元的面积大于第二组像素单元的面积时,而遮挡构件所遮挡的像素单元中除了第二组像素单元以外的其他像素单元还可能接收到除了遮挡构件所辐射的第二热辐射以外的其他热辐射,所以在此仅将第二组像素单元用于对遮挡构件所辐射的第二热辐射的测量。
可选地,遮挡构件设置于镜头组件和红外探测器的受光面之间。遮挡结构可以和壳体一体成型,其可以看作为壳体的一部分,或者,遮挡结构还可以通过任意适合的连接方式固定连接壳体,例如连接壳体的内侧壁等,其连接方式包括但不限于螺接或焊接等或多种连接方式的组合。
遮挡结构可以为遮挡板或者其他适合的结构,其在测温的过程中始终对第二组像素单元的进行遮挡。
为了使得遮挡构件在工作过程中产生的第二热辐射的辐射量是一个相对稳定的值,整个遮挡构件的温度在整个工作过程中各区域温差越小越好,可选地,遮挡构件的不同区域之间的温度差低于第一阈值温度,其中,第一阈值温度低于或等于0.1℃,或者其他满足要求的阈值温度范围。
为了使遮挡构件的温度在整个工作过程中各区域温差更小,遮挡构件可以由导热率高于或等于阈值导热率的材料制成,且遮挡构件不透光,例如不透红外光,以防止遮挡构件所遮挡的第二组像素单元接收到其他的热辐射。阈值导热率可以根据实际需要合理选择,例如阈值导热率对应铝材料的导热率,大体为237W/mK。示例性地,遮挡构件的材料包括导热率高于或等于阈值导热率的金属材料,例如金属材料可以包括以下材料中的一种或多种:铝、铜、银、金,或者,还可以是由多种金属材料制成的合金材料,该合金材料的导热率大于或等于阈值导热率。
为了使得遮挡构件能够更加真实的模拟镜头和壳体的真实温度,需要保证遮挡结构的温度和红外测温装置200的内部镜头以及壳体的温度尽可能一致,特别是,遮挡构件和壳体的前侧部分(也称前壳)温度温差尽可能小,可选地,遮挡构件和镜头组件之间的温度差低于第二阈值温度,遮挡构件和朝向传感器的受光 面一侧的至少部分壳体的温度差低于第三阈值温度,其中,第二阈值温度低于或等于0.1℃,或者其他能够满足要求的温度,第三阈值温度低于或等于0.1℃或者其他能够满足要求的温度。
在一个示例中,壳体的材料包括金属材料,金属材料包括以下材料中的一种或多种:铝、铜、银、金,壳体,或者其他适合的材料,本申请的壳体和遮挡结构连接,并且壳体采用高导热的材料,以使壳体和遮挡构件之间能够快速的导热,从而保证遮挡结构的温度和红外测温装置200的内部镜头以及壳体的温度尽可能一致,特别是,遮挡构件和壳体的前侧部分(也称前壳)温度温差尽可能小,以使得遮挡构件能够更加准确的模拟镜头和壳体的真实温度,从而能够抵消由于镜头和壳体等的热辐射对待测目标的温度的影响,进而提高待测目标的温度测量的准确性。
本申请的红外测温装置200还包括温度传感器,用于测量遮挡构件的温度作为参考温度。该温度传感器可以在红外测温装置200对待测目标测温的同时实时的测量遮挡构件的温度,以便起到使遮挡构件的温度作为参考温度的作用。
本申请中,红外测温装置200包括处理器,其处理器可以用于基于参考温度和第二热辐射的对应关系,确定与第一热辐射对应的待测目标的目标温度,通过获取到温度传感器测量的遮挡构件的温度作为参考温度,再通过一系列的计算,获取实际目标的准确温度,从而实现高精度测温。
在一个示例中,红外测温装置200的处理器基于参考温度和第二热辐射的对应关系,确定与第一热辐射对应的待测目标的目标温度,包括:获取红外探测器输出的第一热辐射的测量数据,例如,第一热辐射的测量数据可以是由红外探测器的第一组像素单元所接收到的第一热辐射产生的红外光所转换获得的电信号,该电信号可以是经由第一处理电路进行了放大、转换等一系列处理后的信号,该第一处理电路可以是处理器的一部分,或者也可以是独立于处理器的电路但连接处理器,并基于第一热辐射的测量数据,生成与第一热辐射的强度相关的第一热辐射分布图;获取述红外探测器输出的第二热辐射的测量数据,例如,第二热辐射的测量数据可以是由红外探测器的第二组像素单元所接收到的第二热辐射产生的红外光所转换获得的电信号,该电信号可以是经由第二处理电路进行了放大、转换等一系列处理后的信号,该第二处理电路可以是处理器的一部分,或者也可以是独立于处理器的电路但连接处理器,其中,第二处理电路可以和第一处理电路是同一个电路,或者也可以是不同的电路,并基于第二热辐射,生成与第二热 辐射的强度相关的第二热辐射分布图;以及基于参考温度和第二热辐射分布图的像素值(例如灰度值)的对应关系,确定第一热辐射分布图中各个像素的像素值(例如灰度值)所对应的目标温度。
如图5所示,可移动平台可以包括:可移动平台本体500、红外测温装置200、通信接口(本文也称通讯系统,当可移动平台为飞行器时,通信接口可以对应前文的通讯系统110)、存储器502、一个或多个处理器501,红外测温装置200设置于可移动平台本体500,用于红外成像及测温等,通信接口503至少用于和控制装置通信连接,存储器502用于存储可执行的程序指令;可移动平台可以还动力机构,动力机构用于使可移动平台移动。
值得一提的是,当红外测温装置200应用于可移动平台时,由红外测温装置200的处理器所执行的步骤,还可以由可移动平台的处理器来执行,也能实现同样的功能。
在另一个示例中,红外测温装置200还可以不具有显示装置,而可移动平台包括显示装置,可以由可移动平台的显示装置来显示第一热辐射分布图、第二热辐射分布图以及目标温度等。示例性地,第一组像素单元和第二组像素单元相邻设置,因此,第一热辐射分布图和第二热辐射分布图可以看作是同一个热辐射分布图中的两个不同区域,例如,第二热辐射分布图可以是显示装置显示的整个热辐射分布图的边缘的图像区域部分,或者,显示装置可以在同一显示界面上的不同显示区域同时显示第一热辐射分布图和第二热辐射分布图。
在一个示例中,可移动平台的显示装置还用于显示目标温度,例如可以在第一热辐射分布图上的待测目标所在的位置显示该目标温度;再例如,还可以在第一热辐射分布的外侧区域显示温度与热辐射分布图的像素值(例如颜色值或者灰度值)的对应关系的指示条。在其他示例中,显示装置还可以用于显示参考温度。
在其他示例中,红外测温装置200还可以不具有显示装置,而当可移动平台例如无人机和控制装置通信连接时,可以由控制装置的显示装置显示第一热辐射分布图、第二热辐射分布图、目标温度和参考温度中的至少一种。
由于本申请的可移动平台包括前文的红外测温装置200,因此其也具有和前文的红外测温装置相同的优点。
并且,当本申请的可移动平台为飞行器例如无人机时,由于本申请的红外测温装置的遮挡构件相当于为一个稳定的置于红外测温装置内部的模拟黑体,因此可以用作实时校准,从而即使飞机桨叶高速旋转会在红外测温装置周围产生很大 的风速,也不会影响红外测温装置的测温结果的准确性,从而有效的解决了红外测温装置的温升变化问题。
如图6所示,本申请实施例还提供一种可移动平台的控制装置,该控制装置可以是独立于可移动平台的外部设备,例如可移动平台的控制控制装置,控制控制装置可以包括例如手机、遥控器、平板电脑、笔记本等,该控制装置还可以是可移动平台的控制系统的一部分或者全部,还可以是可以通过软件、硬件或者软硬件结合的方式实现可移动平台的控制方法的计算机设备的部分或者全部。
如图6所示,可移动平台的控制装置600,包括一个或多个存储器601、一个或多个处理器602、通信接口603(可以和图1中的通信系统114对应)、显示器604等,这些组件通过总线系统和/或其它形式的连接机构(未示出)互连。应当注意,图6所示的装置600的组件和结构只是示例性的,而非限制性的,根据需要,控制装置600也可以具有其他组件和结构。
存储器601用于存储相关可移动平台移动过程中产生的各种数据和可执行程序指令,例如用于存储各种应用程序或实现各种具体功能的算法。可以包括一个或多个计算机程序产品,计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。
处理器602可以是中央处理单元(CPU)、图像处理单元(GPU)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者具有数据处理能力和/或指令执行能力的其它形式的处理单元,并且可以控制装置600中的其它组件以执行期望的功能。例如,处理器能够包括一个或多个嵌入式处理器、处理器核心、微型处理器、逻辑电路、硬件有限状态机(FSM)、数字信号处理器(DSP)、图像处理单元(GPU)或它们的组合。
本申请的处理器602还可以通过通信接口603获取红外测温装置200采集并处理的数据信息,本申请的处理器602还可以执行存储器601中的程序指令,以使处理器602能够执行前文中红外测温装置200的处理器所能实现的全部或部分功能。
显示器604用于显示各种可视化信息,例如可视化信息包括但不限于可移动平台传回的图像数据、各种操作页面、红外测温装置200拍摄的热辐射分布图等。
处理器602还可以用于:通过通信接口获取可移动平台输出的数据信息,数据信息包括:第一热辐射分布图、第二热辐射分布图、目标温度、参考温度中的至少一种;显示器604用于显示第一热辐射分布图、第二热辐射分布图、目标温度和参考温度中的至少一种。其中,有关第一热辐射分布图、第二热辐射分布图、目标温度和参考温度的细节可以参考前文,在此不再重复。
在一个示例中,控制装置600还包括输出装置可以向外部(例如用户)输出各种信息(例如图像或声音),并且可以包括显示器、扬声器等中的一个或多个。
在一个示例中,控制装置600还包括通信接口603,用于控制装置600中各个组件之间以及控制装置600的各个组件和该系统之外的其他装置之间进行通信,例如,当装置为外部设备时,可以通过通信接口和可移动平台进行通信,从而使两者之间能进行信息交互。
通信接口603是可以是目前已知的任意通信协议的接口,例如有线接口或无线接口,其中,通信接口可以包括一个或者多个串口、USB接口、以太网端口、WiFi、有线网络、DVI接口,设备集成互联模块或其他适合的各种端口、接口,或者连接。装置600还可以接入基于通信标准的无线网络,如WiFi、2G、3G、4G、6G或它们的组合。在一个示例性实施例中,通信接口经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信接口还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在一个示例中,装置600还包括输入装置(未示出)可以是用户用来输入指令的装置,并且可以包括键盘、轨迹球、鼠标、麦克风和触摸屏等中的一个或多个,或其它控制按钮构成的输入装置。
本申请的控制装置可以获取并显示可移动平台输出的数据信息例如第一热辐射分布图、第二热辐射分布图、目标温度、参考温度等,从而能够为用户呈现更加直观准确的测温数据。
如图7所示,本申请还提供一种手持式红外测温设备,该设备包括手持云台700和前文所述的红外测温装置200,有关红外测温装置200的细节描述可以参考前文,在此不再一一重复。
手持云台700可以是安装、固定红外测温装置200的支撑设备。手持云台 700包括至少一个转轴机构(未示出),转轴机构可以包括电机(例如,无刷电机,或有刷电机)和轴臂。例如,该转轴机构可以包括俯仰轴(pitch)机构、横滚轴(roll)机构和偏航轴(yaw)机构。该多个转轴机构可以串联连接。俯仰轴机构可以包括俯仰轴电机和俯仰轴轴臂,横滚轴机构可以包括横滚轴电机和横滚轴轴臂,以及偏航轴机构可以包括偏航轴电机和偏航轴轴臂。
可选地,手持云台的平台本体还可以包括基座,基座可以随着用户手上的运动而运动。
可选地,云台还可以包括惯性测量单元(Inertial Measurement Unit,IMU)16,该IMU16与拍摄装置无相对运动,可以用于测量相机的姿态。例如,该IMU可以刚性固定在相机的固定机构上。可选地,云台上的基座上也可以设置IMU(未示出),该IMU与基座无相对运动。例如,该IMU可以刚性固定在基座上。
手持云台还可以包括手持棍或手持环,手持棍或手持环可以与基座连接,用户可以通过手持棍或手持环控制云台的运动。
手持云台还包括至少一个操作键,设置在云台本体501上,在一个实施例中,操作键包括摇杆和按键中的至少一种。用户可以通过对摇杆和/或按键的操作来控制手持云台实现需要的功能。可选地,摇杆还可以控制转轴机构的运动,例如,通过拨动摇杆,实现手持云台的转轴机构在对应方向的转动。
红外测温装置200可以安装于手持云台的基座上,例如通过夹持、卡接或者其他任意适合的方式安装于手持云台的基座。
本申请的手持红外测温设备由于具有前述的红外测温装置200,因此具有和前述的红外测温装置200大体相同的优点,并且,本申请的手持式红外测温设备更加便携,可以应用于多种需要测温的场景中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(Programmable Gate Array;以下简称:PGA),现场可编程门阵列(Field Programmable Gate Array;简称:FPGA)等。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本申请的范围限制于此。本领域普通技术人员可以在其中 进行各种改变和修改,而不偏离本申请的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本申请的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本申请的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护 的实施例的任意之一都可以以任意的组合方式来使用。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的一些模块的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。

Claims (21)

  1. 一种红外测温装置,其特征在于,装置包括:
    红外探测器,红外探测器包括多个像素单元,多个像素单元包括第一组像素单元和第二组像素单元;
    遮挡构件,用于遮挡第二组像素单元,以阻挡遮挡构件外侧的热辐射产生的红外光入射至第二组像素单元;
    第一组像素单元,用于测量待测目标所辐射的第一热辐射;
    第二组像素单元,用于测量遮挡构件所辐射的第二热辐射;
    温度传感器,用于测量遮挡构件的温度作为参考温度;
    处理器,用于:基于参考温度和第二热辐射的对应关系,确定与第一热辐射对应的待测目标的目标温度。
  2. 如权利要求1的红外测温装置,其特征在于,处理器基于参考温度和第二热辐射的对应关系,确定与第一热辐射对应的待测目标的目标温度,包括:
    获取红外探测器输出的第一热辐射的测量数据,并基于第一热辐射的测量数据,生成与第一热辐射的强度相关的第一热辐射分布图;
    获取述红外探测器输出的第二热辐射的测量数据,并基于第二热辐射的测量数据,生成与第二热辐射的强度相关的第二热辐射分布图;以及
    基于参考温度和第二热辐射分布图的像素值的对应关系,确定第一热辐射分布图中各个像素的像素值所对应的目标温度。
  3. 如权利要求1或2的红外测温装置,其特征在于,遮挡构件的不同区域之间的温度差低于第一阈值温度。
  4. 如权利要求3的红外测温装置,其特征在于,第一阈值温度低于或等于0.1℃。
  5. 如权利要求1至4任一项的红外测温装置,其特征在于,装置还包括:
    壳体,红外探测器设置于壳体内,壳体的朝向红外探测器的受光面的一侧设置有透光区域;
    镜头组件,镜头组件设置于壳体外侧并与透光区域相对;其中,遮挡构件设置于镜头组件和红外探测器的受光面之间。
  6. 如权利要求5的红外测温装置,其特征在于,遮挡构件和壳体一体成型,或者,遮挡构件固定连接壳体。
  7. 如权利要求5的红外测温装置,其特征在于,遮挡构件和镜头组件之间的 温度差低于第二阈值温度,遮挡构件和朝向传感器的受光面一侧的至少部分壳体的温度差低于第三阈值温度。
  8. 如权利要求7的红外测温装置,其特征在于,第二阈值温度低于或等于0.1℃,第三阈值温度低于或等于0.1℃。
  9. 如权利要求1至8任一项的红外测温装置,其特征在于,多个像素单元呈阵列排布,第二组像素单元位于多个像素单元所在区域的边缘区域。
  10. 如权利要求9的红外测温装置,其特征在于,第二组像素单元包括位于边缘区域的预定行数的像素单元和/或预定列数的像素单元。
  11. 如权利要求10的红外测温装置,其特征在于,预定行数介于0行至30行之间,预定列数介于0列至30列之间。
  12. 如权利要求1至11任一项的红外测温装置,其特征在于,遮挡构件由导热率高于或等于阈值导热率的材料制成,且遮挡构件不透光。
  13. 如权利要求12的红外测温装置,其特征在于,阈值导热率对应铝材料的导热率。
  14. 如权利要求12的红外测温装置,其特征在于,遮挡构件的材料包括导热率高于或等于阈值导热率的金属材料。
  15. 如权利要求14的红外测温装置,其特征在于,金属材料包括以下材料中的一种或多种:铝、铜、银、金。
  16. 如权利要求5的红外测温装置,其特征在于,壳体的材料包括金属材料,金属材料包括以下材料中的一种或多种:铝、铜、银、金。
  17. 如权利要求2至16任一项的红外测温装置,其特征在于,还包括:
    显示装置,显示装置用于显示以下至少一种:第一热辐射分布图、第二热辐射分布图和目标温度。
  18. 一种可移动平台,其特征在于,可移动平台包括:
    可移动平台本体;
    如权利要求1至17任一项的红外测温装置,其设置于可移动平台本体。
  19. 如权利要求18的可移动平台,其特征在于,可移动平台包括:飞行器、车、船、机器人。
  20. 一种可移动平台的控制装置,其特征在于,控制装置与可移动平台通信连接,可移动平台的本体设置有如权利要求1至17任一项的红外测温装置,控制装置包括:
    通信接口,用于和可移动平台通信连接;
    处理器还用于:通过通信接口获取可移动平台输出的数据信息,数据信息包括:第一热辐射分布图、第二热辐射分布图、目标温度、参考温度中的至少一种;
    显示器,显示器用于显示以下至少一种:第一热辐射分布图、第二热辐射分布图、目标温度和参考温度。
  21. 一种手持式红外测温设备,其特征在于,包括:
    手持云台;
    如权利要求1至17任一项的红外测温装置,其设置于手持云台。
PCT/CN2021/119079 2021-09-17 2021-09-17 红外测温装置、可移动平台、控制装置和手持式红外测温设备 WO2023039835A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/119079 WO2023039835A1 (zh) 2021-09-17 2021-09-17 红外测温装置、可移动平台、控制装置和手持式红外测温设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/119079 WO2023039835A1 (zh) 2021-09-17 2021-09-17 红外测温装置、可移动平台、控制装置和手持式红外测温设备

Publications (1)

Publication Number Publication Date
WO2023039835A1 true WO2023039835A1 (zh) 2023-03-23

Family

ID=85602300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119079 WO2023039835A1 (zh) 2021-09-17 2021-09-17 红外测温装置、可移动平台、控制装置和手持式红外测温设备

Country Status (1)

Country Link
WO (1) WO2023039835A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116380251A (zh) * 2023-06-06 2023-07-04 山东金帝精密机械科技股份有限公司 一种基于温升的轴承保持器状态检测方法、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603790A (zh) * 2015-12-09 2018-09-28 菲力尔系统公司 基于无人机系统的热成像系统和方法
CN110108364A (zh) * 2019-05-08 2019-08-09 武汉高德智感科技有限公司 一种基于黑体定时补偿的可移动人体温度筛选方法及系统
CN111307299A (zh) * 2020-04-17 2020-06-19 烟台艾睿光电科技有限公司 一种红外测温方法及红外测温热像仪
CN112161711A (zh) * 2020-09-28 2021-01-01 深圳市商汤科技有限公司 温度校正方法、装置、黑体、红外测温设备及系统
CN112513595A (zh) * 2020-02-14 2021-03-16 深圳市大疆创新科技有限公司 可移动装置、控制终端、利用可移动装置中的红外热像仪测温的方法以及可移动系统
CN112673241A (zh) * 2020-03-18 2021-04-16 深圳市大疆创新科技有限公司 红外热成像测温方法、电子设备、无人机及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603790A (zh) * 2015-12-09 2018-09-28 菲力尔系统公司 基于无人机系统的热成像系统和方法
CN110108364A (zh) * 2019-05-08 2019-08-09 武汉高德智感科技有限公司 一种基于黑体定时补偿的可移动人体温度筛选方法及系统
CN112513595A (zh) * 2020-02-14 2021-03-16 深圳市大疆创新科技有限公司 可移动装置、控制终端、利用可移动装置中的红外热像仪测温的方法以及可移动系统
CN112673241A (zh) * 2020-03-18 2021-04-16 深圳市大疆创新科技有限公司 红外热成像测温方法、电子设备、无人机及存储介质
CN111307299A (zh) * 2020-04-17 2020-06-19 烟台艾睿光电科技有限公司 一种红外测温方法及红外测温热像仪
CN112161711A (zh) * 2020-09-28 2021-01-01 深圳市商汤科技有限公司 温度校正方法、装置、黑体、红外测温设备及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116380251A (zh) * 2023-06-06 2023-07-04 山东金帝精密机械科技股份有限公司 一种基于温升的轴承保持器状态检测方法、设备及介质
CN116380251B (zh) * 2023-06-06 2023-08-04 山东金帝精密机械科技股份有限公司 一种基于温升的轴承保持器状态检测方法、设备及介质

Similar Documents

Publication Publication Date Title
US11029211B2 (en) Unmanned aerial system based thermal imaging systems and methods
US20230365129A1 (en) Apparatus and methods for obstacle detection
US20210065400A1 (en) Selective processing of sensor data
JP6637068B2 (ja) モジュール式lidarシステム
US20170123425A1 (en) Salient feature based vehicle positioning
WO2021184254A1 (zh) 红外热成像测温方法、电子设备、无人机及存储介质
CN106124517A (zh) 检测结构件表面裂缝的多旋翼无人机检测平台系统及其用于检测结构件表面裂缝的方法
CN108351574A (zh) 用于设置相机参数的系统、方法和装置
KR20170033625A (ko) 드론
JP6852851B2 (ja) 画像処理方法及び移動体を制御するシステム
WO2023039835A1 (zh) 红外测温装置、可移动平台、控制装置和手持式红外测温设备
JP2019050007A (ja) 移動体の位置を判断する方法および装置、ならびにコンピュータ可読媒体
JP2021162572A (ja) 位置算出方法及び情報処理システム
JPWO2020136969A1 (ja) 測定システム、測定装置、測定方法、及びプログラム
KR20190123095A (ko) 드론 기반의 전방위 열화상 이미지 처리 방법 및 이를 위한 열화상 이미지 처리 시스템
Li et al. Design and implementation of a remote UAV-based mobile health monitoring system
CN108474848A (zh) 用于移动平台操作的系统和方法
WO2021258282A1 (zh) 目标检测设备及方法、成像装置和可移动平台
KR20180092674A (ko) Swir 대역에서의 표적 신호 측정 장치 및 방법
WO2021049508A1 (ja) 寸法表示システムおよび寸法表示方法
KR20180090663A (ko) 고정밀 3차원 복합 열해석 방법
Brzozowski et al. Project of a miniature 3D LIDAR for VTOL UAVs
US20240022806A1 (en) Information processing apparatus, mobile machine, image capturing system, image capturing control method, and program
JP6909751B2 (ja) 無人飛行機及び相対反射率の算出方法
Sani et al. Small Scale Aerial Monitoring for Human Body Temperature Measurement Using Rotary Wing Drone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE