WO2021159507A1 - 用于确定传输块大小的方法和通信装置 - Google Patents

用于确定传输块大小的方法和通信装置 Download PDF

Info

Publication number
WO2021159507A1
WO2021159507A1 PCT/CN2020/075364 CN2020075364W WO2021159507A1 WO 2021159507 A1 WO2021159507 A1 WO 2021159507A1 CN 2020075364 W CN2020075364 W CN 2020075364W WO 2021159507 A1 WO2021159507 A1 WO 2021159507A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment factor
indication information
communication device
coded symbols
terminal device
Prior art date
Application number
PCT/CN2020/075364
Other languages
English (en)
French (fr)
Inventor
郭文婷
苏宏家
向铮铮
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112022016048A priority Critical patent/BR112022016048A2/pt
Priority to PCT/CN2020/075364 priority patent/WO2021159507A1/zh
Priority to CN202011634472.4A priority patent/CN112866949B/zh
Priority to EP20919310.1A priority patent/EP4106444A4/en
Priority to JP2022549057A priority patent/JP7313569B2/ja
Priority to CN202080003196.3A priority patent/CN113545149A/zh
Priority to AU2020428979A priority patent/AU2020428979B2/en
Priority to KR1020227031854A priority patent/KR20220136438A/ko
Publication of WO2021159507A1 publication Critical patent/WO2021159507A1/zh
Priority to US17/819,425 priority patent/US20220385436A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to the field of communications, and more specifically, to a method and communication device for determining the size of a transport block (TB).
  • TB transport block
  • This application provides a method and communication device for determining the size of a transmission block, which can be applied to the Internet of Vehicles, such as V2X communication, long term evolution-vehicle (LTE-V) technology, and vehicles and vehicles.
  • V2X communication such as V2X communication, long term evolution-vehicle (LTE-V) technology
  • LTE-V long term evolution-vehicle
  • vehicles and vehicles To vehicle, V2V) communication, etc., or can be used in fields such as intelligent driving, intelligent networked vehicles, etc., which can avoid the restriction on the selection of transmission resources and the transmission delay caused by this.
  • a method for determining the size of a transmission block includes: a first terminal device determines an encoding symbol according to a symbol length and an adjustment factor used for sidelink (SL) communication in a time unit Number; the first terminal device determines the transmission block size of the data channel according to the number of coded symbols.
  • SL sidelink
  • a method for determining the size of a transmission block includes: a second terminal device determines an encoding symbol according to a symbol length and an adjustment factor used for sidelink (SL) communication in a time unit Number; the second terminal device determines the transmission block size of the data channel according to the number of coded symbols.
  • SL sidelink
  • the method of this application can be applied to a device-to-device (D2D) scenario, and optionally, can be applied to a V2X scenario.
  • D2D device-to-device
  • V2X V2X
  • the first terminal device communicates with the second terminal device in a D2D manner, the first terminal device is the transmitting end, and the second terminal device is the receiving end.
  • the symbol length can be configured by the system. Also, for time slots used for side-link communication (ie, time slots in which symbols include symbols for side-link communication), the length of the symbols used for side-link communication in each time slot is the same .
  • the method of this application is used to determine the number of coded symbols and the size of the transmission block.
  • the adjustment factors used for the initial transmission and the retransmission are the same, or the number of coding symbols is the same.
  • the symbol may be an orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • the adjustment factor can be pre-configured, and the pre-configuration includes network device configuration or protocol provisions.
  • the pre-configured adjustment factor can be multiple or one.
  • the adjustment factor may also be determined by the first terminal device.
  • the number of coded symbols is used to determine the number of available resource elements (RE) of a data channel on a physical resource block (resource block, RB).
  • RE resource elements
  • the data channel may be a physical sidelink share channel (PSSCH).
  • PSSCH physical sidelink share channel
  • the number of coded symbols is determined according to the symbol length and adjustment factor used for side-link communication in a time unit, so that for each time slot used for side-link communication, the determined The number of coded symbols is the same, and the determined transport block size is also the same.
  • each time slot used for side-link communication can perform the initial transmission or retransmission of the transmission block, avoiding the limitation on the selection of transmission resources in the prior art and the transmission delay caused by this.
  • the number of coded symbols satisfies:
  • the first terminal device can determine the number of coded symbols only according to the symbol length and the adjustment factor.
  • the number of coded symbols satisfies:
  • the method may further include: the first terminal device sends first indication information to the second terminal device, where the first indication information is used to indicate the selection of the adjustment factor. Value or index indicating the adjustment factor.
  • the method may further include: the second terminal device receives first indication information from the first terminal device, where the first indication information is used to indicate the value of the adjustment factor Value or index indicating the adjustment factor.
  • the first indication information may be carried by control information.
  • the control information may be, for example, sidelink control information (SCI).
  • the number of coded symbols satisfies:
  • l ⁇ represents the adjustment factor
  • k is equal to 0 or 1.
  • the number of coded symbols satisfies:
  • the method may further include: the first terminal device sends second indication information to the second terminal device, where the second indication information is used to indicate the value of k.
  • the method may further include: the second terminal device receives second indication information from the first terminal device, where the second indication information is used to indicate the value of k.
  • the value of k used is the same.
  • the second indication information may be carried by control information.
  • the control information may be SCI, for example.
  • the adjustment factor corresponds to a configuration period of a physical sidelink feedback channel (PSFCH).
  • PSFCH physical sidelink feedback channel
  • the first terminal device and/or the second terminal device can determine the adjustment factor according to the PSFCH configuration period.
  • l ⁇ is 3 or 5; or,
  • l ⁇ is 1, 2, or 3, or, l ⁇ is 3, 4, or 5; or,
  • l ⁇ is 1, 2, or 3, or, l ⁇ is 3, 4, or 5; or,
  • l ⁇ is 3/N or N ⁇ 0.
  • a method for determining the size of a transmission block including: a network device sends instruction information to a first terminal device and a second terminal device, the instruction information is used to indicate an adjustment factor, or the instruction The information is used to indicate the correspondence between the adjustment factor and the PSFCH, and the adjustment factor is used to determine the number of coded symbols.
  • the first terminal device and/or the second terminal device can determine the number of code symbols according to the adjustment factor, so that the determined code can be determined for each time slot used for sidelink communication.
  • the number of symbols is the same, and further the determined transport block size is also the same.
  • each time slot used for side-link communication can perform the initial transmission or retransmission of the transmission block, avoiding the limitation on the selection of transmission resources in the prior art and the transmission delay caused by this.
  • a communication device which includes modules or units for executing the method in any one of the foregoing first aspect or the first aspect, or includes modules or units for executing the foregoing second aspect or the first aspect.
  • Each module or unit of the method in any one of the possible implementation manners in the two aspects.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory, so that the device executes the method in any one of the foregoing first aspect or the first aspect, or executes the foregoing second aspect or the second aspect Any one of the possible implementation methods.
  • the device further includes a memory.
  • the device further includes an interface circuit, and the processor is coupled with the interface circuit.
  • a communication device which includes various modules or units for executing the method in the third aspect or any one of the possible implementation manners of the third aspect.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory, so that the device executes the foregoing third aspect or the method in any one of the possible implementation manners of the third aspect.
  • the device further includes a memory.
  • the device further includes an interface circuit, and the processor is coupled with the interface circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is used to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in the first aspect or any one of the possible implementations of the first aspect, or executes the second aspect or the foregoing second aspect or The method in any possible implementation manner of the second aspect, or execute the method in the third aspect or any one of the possible implementation manners of the third aspect.
  • the above-mentioned processor may be a chip, the input circuit may be an input pin, the output circuit may be an output pin, and the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, and the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter, and the input circuit and output
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a communication device including a processor and a memory.
  • the processor is configured to read instructions stored in the memory, and can receive signals through a receiver, and transmit signals through a transmitter, so as to execute the method in the first aspect or any one of the possible implementation manners of the first aspect. Or execute the method in the foregoing second aspect or any one of the possible implementation manners of the second aspect, or execute the method in the foregoing third aspect or any one of the possible implementation manners of the third aspect.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • the processing device in the above-mentioned ninth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • an embodiment of the present application provides a communication device that includes a processor and an interface circuit, the interface circuit is configured to receive code instructions and transmit them to the processor, and the processor is configured to run the code instructions to enable the
  • the apparatus executes the first aspect or the method in any one of the possible implementation manners of the first aspect. Or execute the method in the foregoing second aspect or any one of the possible implementation manners of the second aspect, or execute the method in the foregoing third aspect or any one of the possible implementation manners of the third aspect.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes the computer to execute the first aspect or the first aspect
  • a computer program also called code, or instruction
  • the method in any one of the possible implementation manners, or the method in any one of the foregoing second aspect or the second aspect, or the implementation of the foregoing third aspect or any of the third aspect Methods.
  • a readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the first aspect or the first aspect.
  • a computer program also called code, or instruction
  • the method in any possible implementation manner, or the method in any one of the above-mentioned second aspect or the second aspect, or the method in any one of the above-mentioned third aspect or the third aspect method.
  • a communication system including the aforementioned first terminal device and second terminal device.
  • the communication system may also include the aforementioned network equipment.
  • Fig. 1 is a schematic diagram of a V2X communication architecture provided by the present application.
  • Fig. 2 is a schematic flowchart of a method for determining the size of a transmission block provided by the present application.
  • Fig. 3 is a schematic diagram of a time slot structure provided by the present application.
  • Fig. 4 is a schematic structural diagram of a communication device provided by the present application.
  • Fig. 5 is a schematic structural diagram of a network device provided by the present application.
  • Fig. 6 is a schematic structural diagram of a terminal device provided by the present application.
  • V2X vehicle to everything
  • the V2X scenario may specifically be any of the following systems: vehicle-to-vehicle (V2V), vehicle-to-pedestrian (V2P), vehicle-to-network (V2N) business Communication with vehicles and infrastructure (V2I), etc.
  • V2V vehicle-to-vehicle
  • V2P vehicle-to-pedestrian
  • V2N vehicle-to-network
  • V2I business Communication with vehicles and infrastructure
  • D2D may be long term evolution (LTE) D2D, new radio (NR) D2D, and may also be D2D in other communication systems that may appear with the development of technology.
  • V2X can be LTE V2X, NR V2X, and can also be V2X in other communication systems that may emerge with the development of technology.
  • the terminal equipment in the embodiments of this application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile network (PLMN) Terminal equipment, etc., this embodiment of the present application is not limited thereto.
  • the network equipment in the embodiments of this application is a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (TRP), and the next generation NodeB in a 5G mobile communication system.
  • base station an evolved base station
  • eNodeB evolved NodeB
  • TRP transmission reception point
  • gNB evolved base station
  • it can also be a module or unit that completes part of the functions of the base station, for example, it can be a centralized unit (CU) or a distributed unit.
  • Distributed unit (DU) The embodiment of the present application does not limit the specific technology and specific device form adopted by the RAN device.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 shows a schematic diagram of the V2X communication architecture.
  • the architecture includes two communication interfaces, PC5 interface and Uu interface.
  • the PC5 interface is a direct communication interface between V2X UEs (such as V2X UE 1 and V2X UE 2 shown in the figure), and the direct communication link between V2X UEs is also defined as a side link or side chain ( sidelink, SL).
  • Uu interface communication is when the sender V2X UE (for example, V2X UE 1) sends V2X data to the base station through the Uu interface, sends it to the V2X application server through the base station for processing, and then sends it to the base station by the V2X application server and sends it through the base station
  • the communication method for the receiver V2X UE (for example, V2X UE 2).
  • the base station that forwards the uplink data of the sender's V2XUE to the application server and the base station that forwards the downlink data that the application server delivers to the receiver's V2XUE can be the same base station or different base stations.
  • Application server decision It should be understood that the transmission of the sender V2X UE to the base station is called uplink (UL) transmission, and the transmission of the base station to the receiver V2X UE is called downlink (DL) transmission.
  • the number of available symbols in time slot n+3 is different from the number of available symbols in time slot n, n+1, n+2, n+4, it can only be selected in time slot n+1 , N+2, retransmission within n+4, which limits the selection of retransmission time slots.
  • the third retransmission cannot be performed in the time slot n+3, but the third retransmission can only be performed in the time slot n+4, the data transmission delay will also be caused.
  • this application provides a method for determining the size of the transmission block. The following describes the solution provided by this application.
  • Fig. 2 is a schematic flowchart of a method for determining the size of a transmission block provided by the present application.
  • the method 200 can be used on the sending end and can also be used on the receiving end.
  • the sending end and the receiving end are two terminal devices that communicate in a D2D manner.
  • the sending end may be called a first terminal device, and the receiving end may be called a second terminal device.
  • the steps in the method 200 are described below.
  • S210 Determine the number of coded symbols according to the symbol length and adjustment factor used for sidelink communication in a time unit.
  • the time unit may be a slot, and the symbol length is the number of symbols used only for sidelink communication in a slot. For example, if only 6 symbols are used for side link communication in a time slot, the symbol length is 6.
  • the time unit may be a time unit composed of symbols used for side-link communication in a time slot, and the length of the symbol is the length of the time unit. For example, if only 6 symbols are used for side-link communication in a time slot, the symbol length is 6, and the time unit is a time unit formed by these 6 symbols.
  • time slot 0 the symbols used for side link communication in time slot 0 are symbol 2 to symbol 11, and the symbol length is 10.
  • Time slot 0 may be referred to as a time unit, or symbol 2 to symbol 11 may be referred to as a time unit, and the length of the time unit is 10 symbols.
  • the symbol length can be configured by the system. Also, for time slots used for side-link communication (ie, time slots in which symbols include symbols for side-link communication), the length of the symbols used for side-link communication in each time slot is the same .
  • time slots 0, 1, 2 and 3 all include symbols for side link communication
  • each of time slots 0, 1, 2 and 3 is used for side link communication.
  • the symbol length of road communication is 10.
  • time slots 0, 1, and 3 all include symbols for side link communication
  • the length of the symbols used for side link communication in each of time slots 0, 1, and 3 is 10. .
  • the symbols in this application may be OFDM symbols, but this application does not limit this.
  • the adjustment factors used in the initial transmission and the retransmission are the same, or the number of coding symbols used in the initial transmission and the retransmission is the same.
  • the following describes how to determine the number of coded symbols according to the symbol length and the adjustment factor.
  • the sender or receiver only needs to know the symbol length and the adjustment factor to determine the number of coded symbols.
  • Example 1 The number of coding symbols satisfies the following formula (1):
  • N syml represents the length of the symbol.
  • the symbols used for sidelink communication in one time unit include the first symbol used for AGC and the last GAP symbol.
  • the first symbol used for AGC may be an AGC symbol used for a control channel and/or a data channel.
  • the data channel may be PSSCH
  • the control channel may be PSCCH.
  • the first symbol used for AGC may be the first symbol among the symbols used for side link communication in a time unit, or it may not be the first symbol.
  • the last GAP symbol may be the last symbol among the symbols used for side link communication in a time unit, or it may not be the last symbol.
  • the symbols used for sidelink communication in a time unit may also include AGC symbols other than the first symbol used for AGC, and/or GAP symbols other than the last GAP symbol.
  • AGC symbols other than the first symbol used for AGC
  • GAP symbols other than the last GAP symbol.
  • the symbols used for side-link communication in time slot 0 are symbols 2 to 11, and symbol 2 is the first A symbol used for AGC, symbol 11 is the last symbol used for GAP, and symbol 8 is also a GAP symbol.
  • symbols 9 and 10 may be symbols used to transmit PSFCH.
  • Example 2 The number of coding symbols satisfies the following formula (2):
  • method 1 can be applied to multiple scenarios.
  • Scenario 1 Both the sending end and the receiving end are pre-configured with an adjustment factor, that is, there is only one value for l ⁇ .
  • Scenario 2 Multiple adjustment factors are pre-configured on both the sending end and the receiving end, that is, l ⁇ has multiple values.
  • the sending end may first determine the value of l ⁇ , and then notify the receiving end of the determined value of l ⁇ .
  • the sending end may indicate the value of l ⁇ by sending the first indication information to the receiving end.
  • the first indication information may be a particular value of l ⁇ l ⁇ or the value of the corresponding index.
  • l ⁇ has multiple values, such as 1, 2 and 3, and each value corresponds to an index.
  • the first indication information may be sent through control information.
  • the control information may be SCI.
  • Scenario 3 Neither the sender nor the receiver has a pre-configured adjustment factor, and the sender independently determines l ⁇ and then informs the receiver.
  • the sending end may also indicate the value of l ⁇ by sending the first indication information to the receiving end.
  • the values of l ⁇ used for the initial transmission and retransmission are both indicated by the sender.
  • the sender indicates that the value of l ⁇ used for initial transmission is the same as the value of l ⁇ used for retransmission. For example, if the value of l ⁇ used for the initial transmission is indicated by the first indication information, the value of l ⁇ used for the retransmission is indicated by the first indication information.
  • the pre-configuration may refer to protocol provisions, or may refer to the pre-configuration of network equipment.
  • the adjustment factor may correspond to the PSFCH configuration period.
  • Table 1 and Table 2 respectively show a correspondence between the adjustment factor and the PSFCH configuration period.
  • the corresponding relationship shown in Table 1 can be applied to formula (1), and the corresponding relationship shown in Table 2 can be applied to formula (2).
  • the unit of the PSFCH configuration period is a time slot.
  • the PSFCH configuration period is 0, it means that every time slot used for side link communication is not configured with symbols for PSFCH transmission.
  • the configuration period of the PSFCH is 1 means that each time slot used for sidelink communication includes symbols for transmitting the PSFCH.
  • the PSFCH configuration period of 2 means that, for the time slots used for sidelink communication, the symbols used to transmit the PSFCH are configured every other time slot. For example, assume that time slots 0, 1, 3, 4, and 6 are time slots used for side link communication. If the PSFCH configuration period is 2, then time slots 0, 3, and 6 all include time slots for transmission The symbol of PSFCH.
  • the time-frequency resource corresponding to the PSFCH is used for the receiving end to feedback whether the transmission block sent by the transmitting end is correctly received.
  • the PSFCH configuration period can be configured by the network device.
  • the adjustment factor corresponds to the PSFCH configuration period, it can be defined that the value of l ⁇ is unique within a period of time when the PSFCH configuration period is fixed.
  • the network device may be configured correspondence relationship shown in Table 3. In this way, both the sending end and the receiving end can determine the value of l ⁇ according to the PSFCH configuration period and Table 3. In another time period, the network device can be configured with the corresponding relationship shown in Table 4 or Table 5. Similarly, both the sender and the receiver can determine the value of l ⁇ according to the PSFCH configuration period and Table 4 or Table 5. . Alternatively, the agreement may specify the corresponding relationship as shown in Table 3 or Table 4 or Table 5. In this way, the sending end and the receiving end can determine the value of l ⁇ according to the PSFCH configuration period.
  • the network device may be configured correspondence relationship shown in Table 6. In this way, both the sending end and the receiving end can determine the value of l ⁇ according to the PSFCH configuration period and Table 6. In another time period, the network device can be configured with the corresponding relationship shown in Table 7 or Table 8. Similarly, both the sender and the receiver can determine the value of l ⁇ according to the PSFCH configuration period and Table 7 or Table 8. . Alternatively, the agreement may specify the corresponding relationship as shown in Table 6 or Table 7 or Table 8. In this way, the sending end and the receiving end can determine the value of l ⁇ according to the PSFCH configuration period.
  • the adjustment factor corresponds to the configuration period of the PSFCH, it can be defined that under the condition that the configuration period of the PSFCH is constant, the value of l ⁇ can be one or more within a period of time.
  • l ⁇ may be pre-configured correspondence relationship shown in Table 1.
  • the sending end and the receiving end can determine the value of l ⁇ according to Table 1.
  • the sender can determine a value from 1, 2, and 3, and inform the receiver of the determined value.
  • l ⁇ may be pre-configured correspondence relationship shown in Table 2.
  • the sending end and the receiving end can determine the value of l ⁇ according to Table 1.
  • the sender can determine a value from 3, 4, and 5, and inform the receiver of the determined value.
  • the adjustment factor corresponds to the configuration period of the PSFCH, it can be defined that under the condition that the configuration period of the PSFCH is fixed, the value of l ⁇ can be one or more, or the value of l ⁇ is unique.
  • the corresponding relationship shown in Table 1 or Table 3 can be pre-configured. After the sending end determines the value of l ⁇ according to the PSFCH configuration period, it notifies the receiving end.
  • the sending end and the receiving end can determine the number of coded symbols according to the symbol length, adjustment factor and adjustment coefficient.
  • the sending end and the receiving end may first determine whether to use the adjustment factor, if it is used, the number of coding symbols is determined according to the symbol length, if not used, the number of coding symbols is determined according to the symbol length and the adjustment factor.
  • Example 1 The number of coding symbols satisfies the following formula (3):
  • Formula (3) can also be equivalent to: Among them, if the adjustment factor is used, the formula Otherwise use the formula
  • Example 2 The number of coding symbols satisfies the following formula (4):
  • Formula (4) can also be equivalent to: Among them, if the adjustment factor is used, the formula Otherwise use the formula
  • the value of k can be determined by the sender, and can be notified to the receiver by the sender.
  • the sending end may send second indication information to the receiving end, where the second indication information indicates the value of k.
  • the second indication information may be sent through control information.
  • the control information may be SCI.
  • the same value of k is used for initial transmission and retransmission to determine the number of coded symbols.
  • the value of k used for initial transmission and retransmission is both indicated by the sender.
  • the sender indicates that the value of k used for initial transmission is the same as the value of k used for retransmission. For example, if the value of k used for initial transmission is indicated by the second indication information, the value of k used for retransmission is indicated by the second indication information.
  • Method 2 can be applied to the above scenario one and scenario three.
  • the sending end can notify the receiving end of the value of l ⁇ .
  • l ⁇ may correspond to the PSFCH configuration period.
  • the correspondence between l ⁇ and the PSFCH configuration period can be as shown in any one of Tables 3 to 8. For example, if the formula is l ⁇ configuration cycle (3) l ⁇ , l ⁇ and the correspondence may PSFCH the above Table 3 or Table 4 or Table 5 below. If the formula is l ⁇ configuration cycle (4) l ⁇ , l ⁇ and the correspondence may PSFCH above Table 6 or Table 7 or Table 8 below.
  • S220 Determine the transmission block size of the data channel according to the number of coded symbols.
  • the number of coded symbols in this application is used to determine the number of available REs of a data channel on an RB.
  • N′ RE represents the number of REs available for PDSCH on an RB, Indicates that an RB has 12 subcarriers, Indicates the number of symbols allocated to the PDSCH in a time slot, Represents the demodulation reference signal (DMRS) overhead during the PDSCH duration of the RB, Can be configured by higher layers.
  • DMRS demodulation reference signal
  • N′ RE represents the number of REs available for a data channel on an RB, Indicates that a PRB has 12 sub-carriers, Indicates the number of REs of the DMRS in the coded symbol on the RB, Can be configured by higher layers.
  • the transport block size may be determined according to the prior art, specific reference may be made to TS38.214 5.1.3.2.
  • the method may further include: the sending end sends the transmission block according to the size of the transmission block.
  • the receiving end receives the transmission block according to the size of the transmission block, that is, the receiving end performs channel decoding on the transmission block.
  • the number of coded symbols is determined according to the symbol length and adjustment factor used for side-link communication in a time unit, so that the number of coded symbols can be determined for each time slot used for side-link communication.
  • the determined number of coded symbols is the same, and further the determined transport block size is also the same. In this way, each time slot used for side-link communication can perform the initial transmission or retransmission of the transmission block, avoiding the limitation on the selection of transmission resources in the prior art and the transmission delay caused by this.
  • Fig. 4 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include a processing unit 1200.
  • the communication device may further include a transceiving unit 1100.
  • the transceiver unit 1100 may be used to send information to or receive information from other devices. For example, sending or receiving the first indication information.
  • the processing unit 1200 may be used to perform internal processing of the device and determine the number of coded symbols.
  • the communication device 1000 may correspond to the sending end (ie, the first terminal device).
  • the communication device 1000 may be a terminal device or a chip configured in the terminal device, and it may include a unit for performing operations performed by the terminal device, and each unit in the communication device 1000 is used to implement the method described above. The operation performed by the end.
  • the processing unit 1200 is configured to determine the number of coding symbols according to the symbol length and adjustment factor used for sidelink communication in a time unit; and to determine the transmission block size of the data channel according to the number of coding symbols.
  • the number of coding symbols satisfies:
  • the transceiver unit 1100 is configured to send first indication information to the receiving end, where the first indication information is used to indicate the value of the adjustment factor or the index of the adjustment factor.
  • the first indication information is carried by control information.
  • the number of coding symbols satisfies:
  • l ⁇ represents the adjustment factor
  • k is equal to 0 or 1.
  • the transceiver unit 1100 is configured to send second indication information to the receiving end, where the second indication information is used to indicate the value of k.
  • the second indication information is carried by control information.
  • the adjustment factor is pre-configured.
  • the adjustment factor corresponds to the configuration period of the PSFCH.
  • the communication device 1000 may correspond to the receiving end (ie, the second terminal device).
  • the communication device 1000 may be a terminal device or a chip configured in the terminal device, and it may include a unit for performing operations performed by the terminal device, and each unit in the communication device 1000 is used to implement the method described above. The operation performed by the end.
  • the processing unit 1200 is configured to determine the number of coding symbols according to the symbol length and the adjustment factor used for side uplink communication in a time unit; and to determine the transmission block size of the data channel according to the number of coding symbols.
  • the number of coding symbols satisfies:
  • the transceiver unit 1100 is configured to receive first indication information from the receiving end, where the first indication information is used to indicate the value of the adjustment factor or the index of the adjustment factor.
  • the first indication information is carried by control information.
  • the number of coding symbols satisfies:
  • l ⁇ represents the adjustment factor
  • k is equal to 0 or 1.
  • the transceiver unit 1100 is configured to receive second indication information from the receiving end, where the second indication information is used to indicate the value of k.
  • the second indication information is carried by control information.
  • the adjustment factor is pre-configured.
  • the adjustment factor corresponds to the configuration period of the PSFCH.
  • the communication device 1000 may correspond to the network device in the foregoing method embodiment.
  • the communication device 1000 may be a network device or a chip configured in the network device, and it may include a unit for performing operations performed by the network device, and each unit in the communication device 1000 is used to implement the above-mentioned method by the network The operation performed by the device.
  • the transceiver unit 1100 is configured to send indication information to the receiving end and the sending end, where the indication information is used to indicate the adjustment factor.
  • the transceiver unit 1100 is configured to send indication information to the receiving end and the sending end, where the indication information is used to indicate the correspondence between the adjustment factor and the PSFCH.
  • the transceiver unit 1100 in the communication device 1000 may correspond to the RRU 2100 in the network device 2000 shown in FIG. 5, and the processing unit 1200 in the communication device 1000 may correspond to The BBU 2200 in the network device 2000 shown in FIG. 5.
  • the transceiver unit 1100 in the communication device 1000 may be an input/output interface.
  • the transceiver unit 1100 in the communication device 1000 may correspond to the transceiver 3002 in the terminal device 3000 shown in FIG. 6, and the processing unit 1200 in the communication device 1000 may It corresponds to the processor 3001 in the terminal device 3000 shown in FIG. 6.
  • Fig. 5 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station.
  • the base station 2000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 2000 may include one or more radio frequency units, such as a remote radio unit (RRU) 2100 and one or more baseband units (BBU) (also known as distributed unit (DU) )) 2200.
  • RRU 2100 may be referred to as a transceiving unit or a communication unit, and corresponds to the transceiving unit 1100 in FIG. 4.
  • the transceiver unit 2100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 2101 and a radio frequency unit 2102.
  • the transceiver unit 2100 may include a receiving unit and a transmitting unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter or transmitting circuit).
  • the RRU 2100 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals.
  • the 2200 part of the BBU is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 2100 and the BBU 2200 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 2200 is the control center of the base station, and may also be called a processing unit, which may correspond to the processing unit 1200 in FIG. 4, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 2200 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) with a single access standard, or can support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 2200 further includes a memory 2201 and a processor 2202.
  • the memory 2201 is used to store necessary instructions and data.
  • the processor 2202 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 2201 and the processor 2202 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the base station 2000 shown in FIG. 5 can implement various processes involving network devices in the foregoing method embodiments.
  • the operation or function of each module in the base station 2000 is to implement the corresponding process in the foregoing method embodiment.
  • the above-mentioned BBU 2200 can be used to perform the actions described in the previous method embodiments implemented by the network device, and the RRU 2100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 2100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • FIG. 6 is a schematic structural diagram of a terminal device 3000 provided in an embodiment of the present application.
  • the terminal device 3000 includes a processor 3001 and a transceiver 3002.
  • the terminal device 3000 may further include a memory 3003.
  • the processor 3001, the transceiver 3002, and the memory 3003 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the memory 3003 is used to store computer programs, and the processor 3001 is used to download from the memory 3003 Call and run the computer program to control the transceiver 3002 to send and receive signals.
  • the foregoing processor 3001 and memory 3003 may be combined into a processing device 3004, and the processor 3001 is configured to execute program codes stored in the memory 3003 to implement the foregoing functions. It should be understood that the processing device 3004 shown in the figure is only an example. In specific implementation, the memory 3003 may also be integrated in the processor 3001 or independent of the processor 3001. This application does not limit this.
  • the above-mentioned terminal device 3000 may also include an antenna 3010 for transmitting uplink data or uplink control signaling output by the transceiver 3002 through a wireless signal.
  • terminal device 3000 shown in FIG. 6 can implement various processes involving the terminal device in the foregoing method embodiments.
  • the operation or function of each module in the terminal device 3000 is to implement the corresponding process in the foregoing method embodiment.
  • details please refer to the description in the foregoing method embodiment, and to avoid repetition, detailed description is omitted here as appropriate.
  • the aforementioned terminal device 3000 may further include a power supply 3005 for providing power to various devices or circuits in the terminal device.
  • the terminal device 3000 may also include one or more of the input unit 3006, the display unit 3007, the audio circuit 3008, the camera 3009, and the sensor 3008.
  • the audio circuit may also include a speaker 30081, a microphone 30082, and so on.
  • the processing device 3004 or the processor 3001 may be a chip.
  • the processing device 3004 or the processor 3001 may be a field programmable gate array (FPGA), a general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (application specific integrated circuit).
  • FPGA field programmable gate array
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • microcontroller microcontroller
  • the controller unit, MCU may also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory 3003 may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • memories of the systems and methods described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, causes the computer to execute the foregoing method embodiment by the terminal device (transmitting end or receiving end) Or the method performed by the network device.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the method executed by the network device or the terminal device in the foregoing method embodiment .
  • This application also provides a system, which includes a terminal device and a network device.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute a method executed by a terminal device or a network device involved in any of the foregoing method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc), SSD)) etc.
  • a component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, or a computer running on the processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components can reside in a process or thread of execution, and the components can be located on one computer or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • a component can pass a local signal based on a signal having one or more data packets (for example, data from two components that interact with another component in a local system, a distributed system, or a network, such as the Internet that interacts with other systems through a signal). Or remote process to communicate.
  • a signal having one or more data packets for example, data from two components that interact with another component in a local system, a distributed system, or a network, such as the Internet that interacts with other systems through a signal.
  • remote process to communicate for example, data from two components that interact with another component in a local system, a distributed system, or a network, such as the Internet that interacts with other systems through a signal.
  • a corresponding to B means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • the terminal device and/or the network device can perform some or all of the steps in the embodiments of the present application. These steps or operations are only examples, and the embodiments of the present application may also perform other operations or various operations. Deformation of the operation. In addition, each step may be executed in a different order presented in the embodiments of the present application, and it may not be necessary to perform all the operations in the embodiments of the present application.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read only memory ROM, random access memory RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Sorting Of Articles (AREA)
  • Communication Control (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请提供了一种用于确定传输块大小的方法和通信装置,可以应用于车联网、V2X、V2V等系统中,接收端终端设备和发送端终端设备可以根据一个时间单元中用于侧行链路通信的符号长度和调整因子,确定编码符号数,进一步可以根据编码符号数,确定数据信道的传输块大小。从而可以使得对于每个用于侧行链路通信的时隙,所确定出的编码符号数相同,进一步地所确定的传输块大小也相同。这样,每个用于侧行链路通信的时隙都可以进行传输块的初传或重传,避免对传输资源的选择的限制以及由此带来的传输时延。

Description

用于确定传输块大小的方法和通信装置 技术领域
本申请涉及通信领域,并且更具体地,涉及一种用于确定传输块(transport block,TB)大小(size)的方法和通信装置。
背景技术
在新无线(new radio,NR)-车与万物通信(vehicle to everything,V2X)系统中,需要根据一个侧行链路(sidelink,SL)时隙中所有可用符号来计算传输块大小。另外,为初传和重传的传输块可以合并在一起,以获得合并增益,需要保证初传和重传的传输块大小(transport block size,TBS)相同。那么,为保证初传和重传的传输块大小相同,就必需保证用于初传和重传的时隙内可用符号数相同。然而,实际的通信系统中,不同时隙内可用符号数并不完全相同,这就对传输资源的选择造成限制,并且由于传输资源的限制,也会带来相应的传输时延。
发明内容
本申请提供了一种用于确定传输块大小的方法和通信装置,可以应用于车联网,例如V2X通信、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车辆与车辆(vehicle to vehicle,V2V)通信等,或可以用于智能驾驶,智能网联车等领域,能够避免对传输资源的选择的限制以及由此带来的传输时延。
第一方面,提供了一种确定传输块大小的方法,该方法包括:第一终端设备根据一个时间单元中用于侧行链路(sidelink,SL)通信的符号长度和调整因子,确定编码符号数;第一终端设备根据编码符号数,确定数据信道的传输块大小。
第二方面,提供了一种确定传输块大小的方法,该方法包括:第二终端设备根据一个时间单元中用于侧行链路(sidelink,SL)通信的符号长度和调整因子,确定编码符号数;第二终端设备根据编码符号数,确定数据信道的传输块大小。
本申请的方法可以应用于设备到设备(device to device,D2D)场景,可选地,可以应用于V2X场景中。其中,第一终端设备与第二终端设备通过D2D方式通信,第一终端设备为发送端,第二终端设备为接收端。
本申请中,所述符号长度可以由系统配置。并且,对于用于侧行链路通信的时隙(即,符号中包括用于侧行链路通信的符号的时隙),每个时隙中用于侧行链路通信的符号的长度相同。
另外,在进行初传和重传时,都采用本申请的方法确定编码符号数以及传输块大小。或者说,本申请中,初传和重传采用的调整因子相同,或者编码符号数相同。
可选地,所述符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
可选地,调整因子可以预配置,预配置包括网络设备配置或者协议规定。预配置的调整因子可以是多个,也可以是一个。
可选地,调整因子也可以由第一终端设备确定。
本申请中,所述编码符号数用于确定一个物理资源块(resource block,RB)上数据信道的可用资源粒子(resource element,RE)数。
所述数据信道可以是物理侧行链路共享信道(physical sidelinkshare channel,PSSCH)。
根据本申请提供的方法,通过根据时间单元内用于侧行链路通信的符号长度和调整因子,确定编码符号数,从而可以使得对于每个用于侧行链路通信的时隙,所确定出的编码符号数相同,进一步地所确定的传输块大小也相同。这样,每个用于侧行链路通信的时隙都可以进行传输块的初传或重传,避免现有技术中对传输资源的选择的限制以及由此带来的传输时延。
结合第一方面和第二方面,在第一方面和第二方面的某些实现方式中,编码符号数满足:
Figure PCTCN2020075364-appb-000001
其中,
Figure PCTCN2020075364-appb-000002
表示所述编码符号数,
Figure PCTCN2020075364-appb-000003
表示所述符号长度,l α表示所述调整因子。
基于该方案,第一终端设备仅根据所述符号长度和调整因子,就可以确定编码符号数。
结合第一方面和第二方面,在第一方面和第二方面的某些实现方式中,编码符号数满足:
Figure PCTCN2020075364-appb-000004
其中,
Figure PCTCN2020075364-appb-000005
表示编码符号数,
Figure PCTCN2020075364-appb-000006
表示一个时间单元中用于侧行链路通信的符号中除第一个用于自动增益控制(automatic gain control,AGC)的符号和最后一个间隔(GAP)符号以外的符号数,l α表示调整因子。
结合第一方面,在第一方面的某些实现方式中,该方法还可以包括:第一终端设备向第二终端设备发送第一指示信息,第一指示信息用于指示所述调整因子的取值或者指示所述调整因子的索引。
结合第二方面,在第二方面的某些实现方式中,该方法还可以包括:第二终端设备接收来自第一终端设备的第一指示信息,第一指示信息用于指示所述调整因子的取值或者指示所述调整因子的索引。
可选地,所述第一指示信息可以通过控制信息承载。控制信息例如可以是侧行链路控制信息(sidelink control information,SCI)。
结合第一方面和第二方面,在第一方面和第二方面的某些实现方式中,编码符号数满足:
Figure PCTCN2020075364-appb-000007
其中,
Figure PCTCN2020075364-appb-000008
表示所述编码符号数,
Figure PCTCN2020075364-appb-000009
表示所述符号长度,l α表示所述调整因子,k等于0或者1。
结合第一方面和第二方面,在第一方面和第二方面的某些实现方式中,编码符号数满足:
Figure PCTCN2020075364-appb-000010
其中,
Figure PCTCN2020075364-appb-000011
表示编码符号数,
Figure PCTCN2020075364-appb-000012
表示一个时间单元中用于侧行链路通信的符号中除第一个用于自动增益控制(automatic gain control,AGC)的符号和最后一个间隔(GAP)符号以外的符号数,l α表示调整因子,k等于0或者1。
结合第一方面,在第一方面的某些实现方式中,该方法还可以包括:第一终端设备向第二终端设备发送第二指示信息,第二指示信息用于指示k的取值。
结合第二方面,在第二方面的某些实现方式中,该方法还可以包括:第二终端设备接收来自第一终端设备的第二指示信息,第二指示信息用于指示k的取值。
本申请中,在确定初传和重传的编码符号数时,采用的k的取值相同。
可选地,第二指示信息可以通过控制信息承载。控制信息例如可以是SCI。
结合第一方面和第二方面,在第一方面和第二方面的某些实现方式中,所述调整因子与物理侧行链路反馈信道(physical sidelinkfeedback channel,PSFCH)的配置周期对应。
基于该方案,第一终端设备和/或第二终端设备可以根据PSFCH的配置周期确定调整因子。
可选地,若PSFCH的配置周期为1,则l α为3或者5;或者,
若PSFCH的配置周期为2,则l α为1、2或3,或者,l α为3、4或5;或者,
若PSFCH的配置周期为4,则l α为1、2或3,或者,l α为3、4或5;或者,
若PSFCH的配置周期为N,则l α为3/N或者
Figure PCTCN2020075364-appb-000013
N≠0。
可选地,若所述时间单元中没有配置PSFCH,则l α=0。
第三方面,提供了一种用于确定传输块大小的方法,包括:网络设备向第一终端设备和第二终端设备发送指示信息,所述指示信息用于指示调整因子,或者,所述指示信息用于指示调整因子与PSFCH的对应关系,所述调整因子用于确定编码符号数。
根据本申请提供的方法,第一终端设备和/或第二终端设备可以根据调整因子,确定编码符号数,从而可以使得对于每个用于侧行链路通信的时隙,所确定出的编码符号数相同,进一步地所确定的传输块大小也相同。这样,每个用于侧行链路通信的时隙都可以进行传输块的初传或重传,避免现有技术中对传输资源的选择的限制以及由此带来的传输时延。
第四方面,提供了一种通信装置,包括用于执行上述第一方面或第一方面中任一种可能实现方式中的方法的各个模块或单元,或包括用于执行上述第二方面或第二方面中任一种可能实现方式中的方法的各个模块或单元。
第五方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以使得该装置执行上述第一方面或第一方面中任一种可能实现方式中的方法,或执行上述第二方面或第二方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括接口电路,处理器与接口电路耦合。
第六方面,提供了一种通信装置,包括用于执行上述第三方面或第三方面中任一种可能实现方式中的方法的各个模块或单元。
第七方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以使得该装置执行上述第三方面或第三方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括接口电路,处理器与接口电路耦合。
第八方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行第一方面或第一方面中任一种可能实现方式中的方法,或执行上述第二方面或第二方面中任一种可能实现方式中的方法,或执行上述第三方面或第三方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可 以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第九方面,提供了一种通信装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面或第一方面中任一种可能实现方式中的方法。或执行上述第二方面或第二方面中任一种可能实现方式中的方法,或执行上述第三方面或第三方面中任一种可能实现方式中的方法。
可选地,该处理器为一个或多个,该存储器为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
上述第九方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行第一方面或第一方面中任一种可能实现方式中的方法。或执行上述第二方面或第二方面中任一种可能实现方式中的方法,或执行上述第三方面或第三方面中任一种可能实现方式中的方法。
第十一方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行第一方面或第一方面中任一种可能实现方式中的方法,或执行上述第二方面或第二方面中任一种可能实现方式中的方法,或执行上述第三方面或第三方面中任一种可能实现方式中的方法。
第十二方面,提供了一种可读介质,该可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行第一方面或第一方面中任一种可能实现方式中的方法,或者执行上述第二方面或第二方面中任一种可能实现方式中的方法,或执行上述第三方面或第三方面中任一种可能实现方式中的方法。
第十三方面,提供了一种通信系统,包括前述的第一终端设备和第二终端设备。可选地,该通信系统还可以包括前述网络设备。
附图说明
图1是本申请提供的一种V2X通信架构的一个示意图。
图2是本申请提供的用于确定传输块大小的方法的示意性流程图。
图3是本申请提供的一种时隙结构示意图。
图4是是本申请提供的通信装置的示意性结构图。
图5是是本申请提供的网络设备的示意性结构图。
图6是本申请提供的终端设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的技术方案可以应用于设备到设备(device to device,D2D)场景中,可选地,可以应用于车联网(vehicle to everything,V2X)场景中。示例性的,V2X场景可具体为以下系统中的任一种:车车通信(vehicle to vehicle,V2V)、车人通信(vehicle to pedestrian,V2P)、车-网络(vehicle to network,V2N)业务和车与基础设施通信(vehicle to infrastructure,V2I)等。
示例性的,D2D可以是长期演进(long term evolution,LTE)D2D,新无线(new radio,NR)D2D,还可以是随着技术的发展可能出现的其他通信系统中的D2D。类似地,V2X可以是LTE V2X、NR V2X,还可以是随着技术的发展可能出现的其他通信系统中的V2X。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对RAN设备所采用的具体技术和具体设备形态不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问 的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1示出了V2X通信架构的一个示意图。如图1所示,该架构中包括两种通信接口,即PC5接口和Uu接口。其中,PC5接口是V2X UE(例如图中所示V2X UE 1和V2X UE 2)之间直连通信接口,V2X UE之间的直连通信链路也被定义为侧行链路或侧链(sidelink,SL)。Uu接口通信是发送方V2X UE(例如,V2X UE 1)将V2X数据通过Uu接口发送至基站,通过基站发送至V2X应用服务器进行处理后,再由V2X应用服务器下发至基站,并通过基站发送给接收方V2X UE(例如,V2X UE 2)的通信方式。在Uu接口通信方式下,转发发送方V2XUE的上行数据至应用服务器的基站和转发应用服务器下发至接收方V2XUE的下行数据的基站可以是同一个基站,也可以是不同的基站,具体可以由应用服务器决定。应理解,发送方V2X UE向基站的发送称为上行(uplink,UL)传输,基站向接收方V2X UE的发送称为下行(downlink,DL)传输。
当前技术中,为保证初传和重传的TBS相同,需要保证用于初传和重传的时隙内可用符号数相同。然而,实际的通信系统中,不同时隙内可用符号数并不完全相同,这就对传输资源的选择造成限制,并且由于传输资源的限制,也会带来相应的传输时延。例如,假设时隙n,n+1,n+2,n+4内可用符号数为12,时隙n+3内可用符号数为10,时隙n可以用于传输块的初传,若还需要进行3次重传,由于时隙n+3内可用符号数与时隙n,n+1,n+2,n+4内可用符号数不同,因此只能选择在时隙n+1,n+2,n+4内进行重传,从而对重传时隙的选择造成限制。另外,由于不能在时隙n+3内进行第三次重传,而只能在时隙n+4内进行第三次重传,因此也会导致数据传输时延。
为解决上述问题,本申请提供了一种用于确定传输块大小的方法。下面对本申请提供的方案进行说明。
图2是本申请提供的一种用于确定传输块大小的方法的示意性流程图。该方法200可以用于发送端,也可以用于接收端。发送端和接收端为通过D2D方式通信的两个终端设备,例如发送端可以称为第一终端设备,接收端可以称为第二终端设备。下面对该方法200中各步骤进行说明。
S210,根据一个时间单元中用于侧行链路通信的符号长度和调整因子,确定编码符号数。
所述时间单元可以是时隙(slot),所述符号长度为一个时隙中仅用于侧行链路通信的符号数。比如,一个时隙中仅有6个符号用于侧行链路通信,则所述符号长度为6。
或者,所述时间单元可以是一个时隙中由用于侧行链路通信的符号构成的时间单元,那么,所述符号长度为该时间单元的长度。比如,一个时隙中仅有6个符号用于侧行链路通信,则所述符号长度为6,所述时间单元为这6个符号构成的时间单元。
例如,参见图3,以图3中的一个时隙,如时隙0为例,时隙0中用于侧行链路通信的符号为符号2至符号11,则所述符号长度为10。时隙0可以称为一个时间单元,或者, 符号2至符号11可以称为一个时间单元,该时间单元的长度为10个符号。
本申请中,所述符号长度可以由系统配置。并且,对于用于侧行链路通信的时隙(即,符号中包括用于侧行链路通信的符号的时隙),每个时隙中用于侧行链路通信的符号的长度相同。
同样参见图3,比如,时隙0、1、2和3中均包括用于侧行链路通信的符号,则时隙0、1、2和3中每个时隙中用于侧行链路通信的符号长度均为10。又如,时隙0、1和3中均包括用于侧行链路通信的符号,则时隙0、1和3中每个时隙中用于侧行链路通信的符号长度均为10。
本申请中的符号可以是OFDM符号,但本申请对此不作限定。
另外,本申请中,初传和重传采用的调整因子相同,或者说初传和重传采用的编码符号数相同。
下面对如何根据符号长度和调整因子,确定编码符号数进行说明。
方式1
发送端或者接收端仅需获知符号长度和调整因子,就可以确定编码符号数。
示例一:编码符号数满足下述公式(1):
Figure PCTCN2020075364-appb-000014
其中,
Figure PCTCN2020075364-appb-000015
表示编码符号数,
Figure PCTCN2020075364-appb-000016
表示一个时间单元中用于侧行链路通信的符号中除第一个用于AGC的符号和最后一个GAP符号以外的符号数,l α表示调整因子。
也就是说,
Figure PCTCN2020075364-appb-000017
并且,
Figure PCTCN2020075364-appb-000018
或者,
Figure PCTCN2020075364-appb-000019
其中,N syml表示所述符号长度。
应理解,在示例一中,一个时间单元中用于侧行链路通信的符号包括第一个用于AGC的符号和最后一个GAP符号。示例性的,所述第一个用于AGC的符号可以是用于控制信道和/或数据信道的AGC符号。本申请中,数据信道可以是PSSCH,控制信道可以是PSCCH。
另外,所述第一个用于AGC的符号可能是一个时间单元中用于侧行链路通信的符号中的第一个符号,也可能不是第一个符号。类似地,所述最后一个GAP符号可能是一个时间单元中用于侧行链路通信的符号中的最后一个符号,也可能不是最后一个符号。
还应理解,一个时间单元中用于侧行链路通信的符号可能还包括除第一个用于AGC的符号以外的AGC符号,和/或,除最后一个GAP符号以外的GAP符号。例如,以一个时间单元为一个时隙,并以图3所示的时隙0为例,时隙0中用于侧行链路通信的符号为符号2至符号11,符号2为所述第一个用于AGC的符号,符号11为所述最后一个用于GAP符号,符号8和也是GAP符号。另外,符号9和10可以是用于传输PSFCH的符号。
本领域技术人员可以理解,考虑D2D系统中每个时隙上发送用户的个数是不确定的,即接收端无法提前预知每个时隙上能接收到多少个用户发送的信息,因此在每个时隙上的接收功率都不同,即接收端需要在每个时隙上接收数据的时候调整射频的放大系数,以获得最优的模拟(Analog,A)/数字(Digital,D)转换效果。这个功能即AGC功能。
示例二:编码符号数满足下述公式(2):
Figure PCTCN2020075364-appb-000020
其中,
Figure PCTCN2020075364-appb-000021
表示编码符号数,
Figure PCTCN2020075364-appb-000022
表示所述符号长度,l α表示调整因子。
示例性的,方式1可以应用于多种场景。
场景一:发送端和接收端均预配置了一个调整因子,也就是说,l α仅有一个取值。
在此场景下,发送端和接收端根据
Figure PCTCN2020075364-appb-000023
和l α的唯一取值,就可以确定
Figure PCTCN2020075364-appb-000024
场景二:发送端和接收端均预配置了多个调整因子,也就是说,l α有多个取值。
在此场景下,发送端可以首先确定l α的取值,然后再将所确定的l α的取值通知给接收端。
例如,发送端可以通过向接收端发送第一指示信息,指示l α的取值。
比如,第一指示信息具体可以是l α的取值或者是l α的取值对应的索引。如,l α有多个取值,比如1、2和3,每个取值对应一个索引,例如1、2和3对应的索引分别为0,、1和2,那么若第一指示信息表示索引0,则可以确定l α=1。
可选地,第一指示信息可以通过控制信息发送。例如,控制信息可以是SCI。
场景三:发送端和接收端均没有预配置调整因子,发送端自主确定l α后,通知给接收端。
类似地,发送端也可以通过向接收端发送第一指示信息,指示l α的取值。
针对场景二和场景三,初传和重传所使用的l α的取值都由发送端指示。并且,发送端指示初传所使用的l α的取值和重传所使用的l α的取值相同。比如,若初传所使用的l α的取值采用第一指示信息指示,则重传所使用的l α的取值采用第一指示信息指示。
本申请中,所述预配置可以是指协议规定,也可以是指网络设备预先配置。
应理解,上述场景可以分开使用,也可以结合使用。
可选地,本申请中,调整因子可以与PSFCH的配置周期对应。
例如,表1和表2分别示出了调整因子与PSFCH的配置周期一种对应关系。表1所示的对应关系可以应用于公式(1),表2所示的对应关系可以应用于公式(2)。
表1
PSFCH的配置周期 调整因子(l α)
0 0
1 3
2 {1,2,3}
4 {1,2,3}
表2
PSFCH的配置周期 调整因子(l α)
0 2
1 5
2 {3,4,5}
4 {3,4,5}
本申请中,PSFCH的配置周期的单位为时隙。例如,PSFCH的配置周期为0是指,每个用于侧行链路通信的时隙都没有配置用于传输PSFCH的符号。PSFCH的配置周期为1是指,每个用于侧行链路通信的时隙都包括用于传输PSFCH的符号。PSFCH的配置周期为2是指,.对于用于侧行链路通信的时隙,每隔一个时隙就配置用于传输PSFCH的符号。举例来说,假设时隙0、1、3、4、6为用于侧行链路通信的时隙,若PSFCH的配置周期为2,则时隙0、3、6中都包括用于传输PSFCH的符号。
应理解,PSFCH所对应的时频资源用于接收端对是否正确接收发送端发送的传输块进行反馈。PSFCH的配置周期可以由网络设备配置。
结合表1、表2和上述三种场景进行一些举例说明。
例如,针对场景1,若调整因子与PSFCH的配置周期对应,可以定义在PSFCH的配置周期一定的情况下,在一段时间内,l α的取值唯一。
比如,若l α为公式(1)中的l α,在某一时间段,网络设备可以配置如表3所示的对应 关系。这样,发送端和接收端都可以根据PSFCH的配置周期和表3,确定l α的取值。在另一时间段,网络设备可以配置如表4或者表5所示的对应关系,类似地,发送端和接收端都可以根据PSFCH的配置周期和表4或者表5,确定l α的取值。或者,协议可以规定如表3或表4或表5所示的对应关系。这样,发送端和接收端可以根据PSFCH的配置周期,确定l α的取值。
表3
PSFCH的配置周期 调整因子(l α)
0 0
1 3
2 2
4 2
表4
PSFCH的配置周期 调整因子(l α)
0 0
1 3
2 3
4 2
表5
PSFCH的配置周期 调整因子(l α)
0 0
1 3
2 2
4 1
又如,若l α为公式(2)中的l α,在某一时间段,网络设备可以配置如表6所示的对应关系。这样,发送端和接收端都可以根据PSFCH的配置周期和表6,确定l α的取值。在另一时间段,网络设备可以配置如表7或者表8所示的对应关系,类似地,发送端和接收端都可以根据PSFCH的配置周期和表7或者表8,确定l α的取值。或者,协议可以规定如表6或表7或表8所示的对应关系。这样,发送端和接收端可以根据PSFCH的配置周期,确定l α的取值。
表6
PSFCH的配置周期 调整因子(l α)
0 2
1 5
2 4
4 4
表7
PSFCH的配置周期 调整因子(l α)
0 2
1 5
2 5
4 4
表8
PSFCH的配置周期 调整因子(l α)
0 2
1 5
2 4
4 3
应理解,表1至表8所示的对应关系仅是一种示例,该示例并不应对本申请构成任何限定。
针对场景2,若调整因子与PSFCH的配置周期对应,可以定义PSFCH的配置周期一定的情况下,在一段时间内,l α的取值可以是一个或多个。
例如,若l α为公式(1)中的l α,可以预配置如表1所示的对应关系。这样,若PSFCH配置周期为0或1,则发送端和接收端可以根据表1确定l α的取值。若PSFCH配置周期为2或4,则发送端可以从1、2和3中确定一个值,并将所确定的值告知接收端。
又如,若l α为公式(2)中的l α,可以预配置如表2所示的对应关系。这样,若PSFCH配置周期为0或1,则发送端和接收端可以根据表1确定l α的取值。若PSFCH配置周期为2或4,则发送端可以从3、4和5中确定一个值,并将所确定的值告知接收端。
针对场景3,若调整因子与PSFCH的配置周期对应,可以定义PSFCH的配置周期一定的情况下,l α的取值可以是一个或多个,或者l α的取值唯一。
例如,可以预配置如表1或表3所示的对应关系。发送端根据PSFCH的配置周期确定l α的取值后,通知给接收端。
可选地,调整因子与PSFCH的配置周期的对应关系满足:l α=3/N,或者,调整因子与PSFCH的配置周期的对应关系满足:
Figure PCTCN2020075364-appb-000025
其中,N为PSFCH的配置周期,N≠0。
可选地,若N=0,则l α=0或2。
比如,若l α为公式(1)中的l α,则l α=3/N。若l α为公式(2)中的l α,则
Figure PCTCN2020075364-appb-000026
比如,若l α为公式(1)中的l α,则l α=0,若l α为公式(2)中的l α,则l α=2。
该方案可以适用于场景一和场景三。
方式2
发送端和接收端可以根据符号长度、调整因子和调整系数,确定编码符号数。
或者说,发送端和接收端可以首先确定是否使用调整因子,若使用,则根据符号长度确定编码符号数,若不使用,则根据符号长度和调整因子,确定编码符号数。
示例一:编码符号数满足下述公式(3):
Figure PCTCN2020075364-appb-000027
其中,
Figure PCTCN2020075364-appb-000028
表示编码符号数,
Figure PCTCN2020075364-appb-000029
表示一个时间单元中用于侧行链路通信的符号中除第一个用于AGC的符号和最后一个GAP符号以外的符号数,l α表示调整因子,k等于0或者1。k也可以称为调整系数。
可以理解,公式(3)中,除k以外的参数的含义均与公式(1)中对应的参数的含义相同。
公式(3)也可以等价为:
Figure PCTCN2020075364-appb-000030
其中,若使用调整因子,则采用公式
Figure PCTCN2020075364-appb-000031
否则采用公式
Figure PCTCN2020075364-appb-000032
示例二:编码符号数满足下述公式(4):
Figure PCTCN2020075364-appb-000033
其中,
Figure PCTCN2020075364-appb-000034
表示编码符号数,
Figure PCTCN2020075364-appb-000035
表示符号长度,l α表示所述调整因子,k等于0或者1。k也可以称为调整系数。
可以理解,公式(4)中,除k以外的参数的含义均与公式(2)中对应的参数的含义相同。
公式(4)也可以等价为:
Figure PCTCN2020075364-appb-000036
其中,若使用调整因子,则采用公式
Figure PCTCN2020075364-appb-000037
否则采用公式
Figure PCTCN2020075364-appb-000038
方式2中,k的取值可以由发送端确定,并且可以由发送端通知给接收端。例如,发送端可以向接收端发送第二指示信息,第二指示信息指示k的取值。
可选地,第二指示信息可以通过控制信息发送。例如,控制信息可以是SCI。
本申请中,初传和重传采用相同的k的取值确定编码符号数。
可以理解,初传和重传所使用的k的取值都由发送端指示。并且,发送端指示初传所使用的k的取值和重传所使用的k的取值相同。比如,若初传所使用的k的取值采用第二指示信息指示,则重传所使用的k的取值采用第二指示信息指示。
方式2可以应用于上述场景一和场景三中。在应用于场景三时,发送端可以向接收端通知l α的取值。
示例性的,在方式2中,l α可以与PSFCH的配置周期对应。
比如,l α与PSFCH的配置周期的对应关系可以如表3至表8中任一表格所示。例如,若l α为公式(3)中的l α,l α与PSFCH的配置周期的对应关系可以如上述表3或表4或表5所示。若l α为公式(4)中的l α,l α与PSFCH的配置周期的对应关系可以如上述表6或表7或表8所示。
又如,l α与PSFCH的配置周期的对应关系可以满足:l α=3/N。其中,N为PSFCH的配置周期,N≠0。
再如,若N=0,则l α=0。
S220,根据编码符号数,确定数据信道的传输块大小。
示例性的,本申请中的编码符号数用于确定一个RB上数据信道的可用RE数。
现有技术中,一个RB上物理下行共享信道(physical downlink share channel,PDSCH)的可用RE数满足公式(5):
Figure PCTCN2020075364-appb-000039
其中,N′ RE表示一个RB上PDSCH的可用RE数,
Figure PCTCN2020075364-appb-000040
表示一个RB有12个子载波,
Figure PCTCN2020075364-appb-000041
表示PDSCH在一个时隙内分配到的符号个数,
Figure PCTCN2020075364-appb-000042
表示在该RB上PDSCH存续期内的解调参考信号(demodulation reference signal,DMRS)开销,
Figure PCTCN2020075364-appb-000043
可以由高层配置。获得N RE后,可以根据N RE确定传输块大小,具体可以参加现有技术。
本申请中的可用编码符号数
Figure PCTCN2020075364-appb-000044
的功能与公式(5)中的
Figure PCTCN2020075364-appb-000045
的功能相同,在本申请中,一个RB上数据信道的可用RE数满足公式(6):
Figure PCTCN2020075364-appb-000046
其中,N′ RE表示一个RB上数据信道的可用RE数,
Figure PCTCN2020075364-appb-000047
表示一个PRB有12个子载波,
Figure PCTCN2020075364-appb-000048
表示在该RB上编码符号内的DMRS的RE数,
Figure PCTCN2020075364-appb-000049
可以由高层配置。
在获得N′ RE后,可以根据现有技术确定传输块大小,具体可以参见TS38.214的5.1.3.2。
可选地,该方法还可以包括:发送端根据传输块大小,发送该传输块。相应地,接收端根据该传输块大小,接收该传输块,即接收端对该传输块进行信道译码。
综上,根据本申请提供的方法,通过根据时间单元内用于侧行链路通信的符号长度和 调整因子,确定编码符号数,从而可以使得对于每个用于侧行链路通信的时隙,所确定出的编码符号数相同,进一步地所确定的传输块大小也相同。这样,每个用于侧行链路通信的时隙都可以进行传输块的初传或重传,避免现有技术中对传输资源的选择的限制以及由此带来的传输时延。
以上,结合图2和图3详细说明了本申请实施例提供的方法。以下,结合图4至图6详细说明本申请实施例提供的装置。
图4是本申请实施例提供的通信装置的示意性框图。如图4所示,该通信装置1000可以包括处理单元1200。可选地,该通信装置还可以包括收发单元1100。
其中,收发单元1100可以用于向其他装置发送信息或从其他装置接收信息。比如,发送或接收第一指示信息。处理单元1200可以用于进行装置的内部处理,确定编码符号数。
在一种实现方式中,该通信装置1000可对应于发送端(即,第一终端设备)。该通信装置1000可以为终端设备或配置于终端设备中的芯片,其可以包括用于执行终端设备所执行的操作的单元,并且,该通信装置1000中的各单元分别为了实现上述方法中由发送端所执行的操作。
具体地,处理单元1200用于,用于根据一个时间单元中用于侧行链路通信的符号长度和调整因子,确定编码符号数;根据所述编码符号数,确定数据信道的传输块大小。
可选地,所述编码符号数满足:
Figure PCTCN2020075364-appb-000050
其中,
Figure PCTCN2020075364-appb-000051
表示所述编码符号数,
Figure PCTCN2020075364-appb-000052
表示所述符号长度,l α表示所述调整因子。
可选地,收发单元1100用于,向接收端发送第一指示信息,所述第一指示信息用于指示所述调整因子的取值或者指示所述调整因子的索引。
可选地,所述第一指示信息通过控制信息承载。
可选地,所述编码符号数满足:
Figure PCTCN2020075364-appb-000053
其中,
Figure PCTCN2020075364-appb-000054
表示所述编码符号数,
Figure PCTCN2020075364-appb-000055
表示所述符号长度,l α表示所述调整因子,k等于0或者1。
可选地,收发单元1100用于,向接收端发送第二指示信息,所述第二指示信息用于指示k的取值。
可选地,所述第二指示信息通过控制信息承载。
可选地,所述调整因子为预配置的。
可选地,所述调整因子与PSFCH的配置周期对应。
在另一种实现方式中,该通信装置1000可对应于接收端(即,第二终端设备)。该通信装置1000可以为终端设备或配置于终端设备中的芯片,其可以包括用于执行终端设备所执行的操作的单元,并且,该通信装置1000中的各单元分别为了实现上述方法中由接收端所执行的操作。
具体地,处理单元1200用于,用于根据一个时间单元中用于侧行链路通信的符号长度和调整因子,确定编码符号数;根据所述编码符号数,确定数据信道的传输块大小。
可选地,所述编码符号数满足:
Figure PCTCN2020075364-appb-000056
其中,
Figure PCTCN2020075364-appb-000057
表示所述编码符号数,
Figure PCTCN2020075364-appb-000058
表示所述符号长度,l α表示所述调整因子。
可选地,收发单元1100用于,接收来自接收端的第一指示信息,所述第一指示信息用于指示所述调整因子的取值或者指示所述调整因子的索引。
可选地,所述第一指示信息通过控制信息承载。
可选地,所述编码符号数满足:
Figure PCTCN2020075364-appb-000059
其中,
Figure PCTCN2020075364-appb-000060
表示所述编码符号数,
Figure PCTCN2020075364-appb-000061
表示所述符号长度,l α表示所述调整因子,k等于0或者1。
可选地,收发单元1100用于,接收来自接收端的第二指示信息,所述第二指示信息用于指示k的取值。
可选地,所述第二指示信息通过控制信息承载。
可选地,所述调整因子为预配置的。
可选地,所述调整因子与PSFCH的配置周期对应。
在又一种实现方式中,该通信装置1000可对应于上述方法实施例中的网络设备。该通信装置1000可以为网络设备或配置于网络设备中的芯片,其可以包括用于执行网络设备所执行的操作的单元,并且,该通信装置1000中的各单元分别为了实现上述方法中由网络设备所执行的操作。
在一个实施例中,收发单元1100用于,向接收端和发送端发送指示信息,所述指示信息用于指示调整因子。
在另一个实施例中,收发单元1100用于,向接收端和发送端发送指示信息,所述指示信息用于指示调整因子与PSFCH的对应关系。
应理解,各单元执行相应网元的上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的收发单元1100可对应于图5中示出的网络设备2000中的RRU 2100,该通信装置1000中的处理单元1200可对应于图5中示出的网络设备2000中的BBU 2200。通信装置1000为配置于网络设备中的芯片时,该通信装置1000中的收发单元1100可以为输入/输出接口。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的收发单元1100可对应于图6中示出的终端设备3000中的收发器3002,该通信装置1000中的处理单元1200可对应于图6中示出的终端设备3000中的处理器3001。
图5是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站2000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站2000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)2100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))2200。所述RRU 2100可以称为收发单元或通信单元,与图4中的收发单元1100对应。可选地,该收发单元2100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线2101和射频单元2102。可选地,收发单元2100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 2100部分主要用于射频信号的收发以及射频信号与基带信号的转换。所述BBU 2200部分主要用于进行基带处理,对基站进行控制等。所述RRU 2100与 BBU 2200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 2200为基站的控制中心,也可以称为处理单元,可以与图4中的处理单元1200对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 2200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 2200还包括存储器2201和处理器2202。所述存储器2201用以存储必要的指令和数据。所述处理器2202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器2201和处理器2202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图5所示的基站2000能够实现前述方法实施例中涉及网络设备的各个过程。基站2000中的各个模块的操作或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 2200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 2100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
图6是本申请实施例提供的终端设备3000的结构示意图。如图所示,该终端设备3000包括处理器3001和收发器3002。可选地,该终端设备3000还可以包括存储器3003。其中,处理器3001、收发器3002和存储器3003之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器3003用于存储计算机程序,该处理器3001用于从该存储器3003中调用并运行该计算机程序,以控制该收发器3002收发信号。
上述处理器3001和存储器3003可以合成一个处理装置3004,处理器3001用于执行存储器3003中存储的程序代码来实现上述功能。应理解,图中所示的处理装置3004仅为示例。在具体实现时,该存储器3003也可以集成在处理器3001中,或者独立于处理器3001。本申请对此不做限定。
上述终端设备3000还可以包括天线3010,用于将收发器3002输出的上行数据或上行控制信令通过无线信号发送出去。
应理解,图6所示的终端设备3000能够实现前述方法实施例中涉及终端设备的各个过程。终端设备3000中的各个模块的操作或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
可选地,上述终端设备3000还可以包括电源3005,用于向终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备3000还可以包括输入单元3006、显示单元3007、音频电路3008、摄像头3009和传感器3008等中的一个或多个,所述音频电路还可以包括扬声器30081、麦克风30082等。
应理解,所述处理装置3004或处理器3001可以是一个芯片。例如,该处理装置3004或处理器3001可以是现场可编程门阵列(field programmable gate array,FPGA),可以是 通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
所述存储器3003可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述方法实施例中由终端设备(发送端或接收端)或网络设备所执行的方法。
本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行前述方法实施例中由网络设备或终端设备所执行的方法。
本申请还提供一种系统,其包括终端设备和网络设备。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例所涉及的终端设备或网络设备所执行的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中, 或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程或执行线程中,部件可位于一个计算机上或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地或远程进程来通信。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的网络设备,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下网元会做出相应的处理,并非是限定时间,且也不要求网元实现时一定要有判断的动作,也不意味着存在其它限定。
还应理解,在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。
还应理解,在本申请各实施例中,“A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适 用的条目也可以按照前述规则获得。
可以理解的,本申请实施例中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种用于确定传输块大小的方法,其特征在于,包括:
    第一终端设备根据一个时间单元中用于侧行链路通信的符号长度和调整因子,确定编码符号数;
    所述第一终端设备根据所述编码符号数,确定数据信道的传输块大小。
  2. 如权利要求1所述的方法,其特征在于,所述编码符号数满足:
    Figure PCTCN2020075364-appb-100001
    其中,
    Figure PCTCN2020075364-appb-100002
    表示所述编码符号数,
    Figure PCTCN2020075364-appb-100003
    表示所述符号长度,l α表示所述调整因子。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向第二终端设备发送第一指示信息,所述第一指示信息用于指示所述调整因子的取值或者指示所述调整因子的索引。
  4. 如权利要求3所述的方法,其特征在于,所述第一指示信息通过控制信息承载。
  5. 如权利要求1所述的方法,其特征在于,所述编码符号数满足:
    Figure PCTCN2020075364-appb-100004
    其中,
    Figure PCTCN2020075364-appb-100005
    表示所述编码符号数,
    Figure PCTCN2020075364-appb-100006
    表示所述符号长度,l α表示所述调整因子,k等于0或者1。
  6. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向第二终端设备发送第二指示信息,所述第二指示信息用于指示k的取值。
  7. 如权利要求6所述的方法,其特征在于,所述第二指示信息通过控制信息承载。
  8. 如权利要求1至5中任一项所述的方法,其特征在于,所述调整因子为预配置的。
  9. 如权利要求8所述的方法,其特征在于,所述调整因子与物理侧行链路反馈信道PSFCH的配置周期对应。
  10. 一种用于确定传输块大小的方法,其特征在于,包括:
    第二终端设备根据一个时间单元中用于侧行链路通信的符号长度和调整因子,确定编码符号数;
    所述第二终端设备根据所述编码符号数,确定数据信道的传输块大小。
  11. 如权利要求10所述的方法,其特征在于,所述编码符号数满足:
    Figure PCTCN2020075364-appb-100007
    其中,
    Figure PCTCN2020075364-appb-100008
    表示所述编码符号数,
    Figure PCTCN2020075364-appb-100009
    表示所述符号长度,l α表示所述调整因子。
  12. 如权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备接收来自第一终端设备的第一指示信息,所述第一指示信息用于指示所述调整因子的取值或者指示所述调整因子的索引。
  13. 如权利要求12所述的方法,其特征在于,所述第一指示信息通过控制信息承载。
  14. 如权利要求10所述的方法,其特征在于,所述编码符号数满足:
    Figure PCTCN2020075364-appb-100010
    其中,
    Figure PCTCN2020075364-appb-100011
    表示所述编码符号数,
    Figure PCTCN2020075364-appb-100012
    表示所述符号长度,l α表示所述调整因子,k等于0或者1。
  15. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备接收来自第一终端设备的第二指示信息,所述第二指示信息用于指 示k的取值。
  16. 如权利要求15所述的方法,其特征在于,所述第二指示信息通过控制信息承载。
  17. 如权利要求10至14中任一项所述的方法,其特征在于,所述调整因子为预配置的。
  18. 如权利要求17所述的方法,其特征在于,所述调整因子与物理侧行链路反馈信道PSFCH的配置周期对应。
  19. 一种通信装置,其特征在于,包括:
    处理单元,用于根据一个时间单元中用于侧行链路通信的符号长度和调整因子,确定编码符号数;
    所述处理单元还用于,根据所述编码符号数,确定数据信道的传输块大小。
  20. 如权利要求19所述的通信装置,其特征在于,所述编码符号数满足:
    Figure PCTCN2020075364-appb-100013
    其中,
    Figure PCTCN2020075364-appb-100014
    表示所述编码符号数,
    Figure PCTCN2020075364-appb-100015
    表示所述符号长度,l α表示所述调整因子。
  21. 如权利要求19或20所述的通信装置,其特征在于,所述通信装置还包括:
    收发单元,用于向第二终端设备发送第一指示信息,所述第一指示信息用于指示所述调整因子的取值或者指示所述调整因子的索引。
  22. 如权利要求21所述的通信装置,其特征在于,所述第一指示信息通过控制信息承载。
  23. 如权利要求19所述的通信装置,其特征在于,所述编码符号数满足:
    Figure PCTCN2020075364-appb-100016
    其中,
    Figure PCTCN2020075364-appb-100017
    表示所述编码符号数,
    Figure PCTCN2020075364-appb-100018
    表示所述符号长度,l α表示所述调整因子,k等于0或者1。
  24. 如权利要求23所述的通信装置,其特征在于,所述通信装置还包括:
    收发单元,用于向第二终端设备发送第二指示信息,所述第二指示信息用于指示k的取值。
  25. 如权利要求24所述的通信装置,其特征在于,所述第二指示信息通过控制信息承载。
  26. 如权利要求19至23中任一项所述的通信装置,其特征在于,所述调整因子为预配置的。
  27. 如权利要求26所述的通信装置,其特征在于,所述调整因子与物理侧行链路反馈信道PSFCH的配置周期对应。
  28. 一种用于确定传输块大小的通信装置,其特征在于,包括:
    处理单元,用于根据一个时间单元中用于侧行链路通信的符号长度和调整因子,确定编码符号数;
    所述处理单元还用于,根据所述编码符号数,确定数据信道的传输块大小。
  29. 如权利要求28所述的通信装置,其特征在于,所述编码符号数满足:
    Figure PCTCN2020075364-appb-100019
    其中,
    Figure PCTCN2020075364-appb-100020
    表示所述编码符号数,
    Figure PCTCN2020075364-appb-100021
    表示所述符号长度,l α表示所述调整因子。
  30. 如权利要求28或29所述的通信装置,其特征在于,所述通信装置还包括:
    收发单元,用于接收来自第一终端设备的第一指示信息,所述第一指示信息用于指示所述调整因子的取值或者指示所述调整因子的索引。
  31. 如权利要求30所述的通信装置,其特征在于,所述第一指示信息通过控制信息 承载。
  32. 如权利要求28所述的通信装置,其特征在于,所述编码符号数满足:
    Figure PCTCN2020075364-appb-100022
    其中,
    Figure PCTCN2020075364-appb-100023
    表示所述编码符号数,
    Figure PCTCN2020075364-appb-100024
    表示所述符号长度,l α表示所述调整因子,k等于0或者1。
  33. 如权利要求32所述的通信装置,其特征在于,所述通信装置还包括:
    收发单元,用于接收来自第一终端设备的第二指示信息,所述第二指示信息用于指示k的取值。
  34. 如权利要求33所述的通信装置,其特征在于,所述第二指示信息通过控制信息承载。
  35. 如权利要求28至32中任一项所述的通信装置,其特征在于,所述调整因子为预配置的。
  36. 如权利要求35所述的通信装置,其特征在于,所述调整因子与物理侧行链路反馈信道PSFCH的配置周期对应。
  37. 一种通信装置,包括存储器和处理器,其中,所述存储器存储在所述处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现权利要求1至9中任一项所述的通信方法。
  38. 一种通信装置,包括存储器和处理器,其中,所述存储器存储在所述处理器上运行的程序,其特征在于,所述处理器执行所述程序时实现权利要求10至18中任一项所述的通信方法。
  39. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求1至9中任一项所述的方法。
  40. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求10至18中任一项所述的方法。
  41. 一种可读存储介质,其特征在于,所述可读存储介质用于存储指令,当所述指令被执行时,实现如权利要求1至18中任一项所述的通信方法。
PCT/CN2020/075364 2020-02-14 2020-02-14 用于确定传输块大小的方法和通信装置 WO2021159507A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112022016048A BR112022016048A2 (pt) 2020-02-14 2020-02-14 Método para determinação de tamanho de bloco de transporte e aparelho de comunicação
PCT/CN2020/075364 WO2021159507A1 (zh) 2020-02-14 2020-02-14 用于确定传输块大小的方法和通信装置
CN202011634472.4A CN112866949B (zh) 2020-02-14 2020-02-14 用于确定传输块大小的方法和通信装置
EP20919310.1A EP4106444A4 (en) 2020-02-14 2020-02-14 TRANSPORT BLOCK SIZING METHOD AND COMMUNICATION APPARATUS
JP2022549057A JP7313569B2 (ja) 2020-02-14 2020-02-14 トランスポートブロックサイズを決定する方法、及び通信機器
CN202080003196.3A CN113545149A (zh) 2020-02-14 2020-02-14 用于确定传输块大小的方法和通信装置
AU2020428979A AU2020428979B2 (en) 2020-02-14 2020-02-14 Method for determining transport block size and communication apparatus
KR1020227031854A KR20220136438A (ko) 2020-02-14 2020-02-14 전송 블록 크기를 결정하는 방법 및 통신 장치
US17/819,425 US20220385436A1 (en) 2020-02-14 2022-08-12 Method for Determining Transport Block Size and Communication Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075364 WO2021159507A1 (zh) 2020-02-14 2020-02-14 用于确定传输块大小的方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/819,425 Continuation US20220385436A1 (en) 2020-02-14 2022-08-12 Method for Determining Transport Block Size and Communication Apparatus

Publications (1)

Publication Number Publication Date
WO2021159507A1 true WO2021159507A1 (zh) 2021-08-19

Family

ID=77292705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075364 WO2021159507A1 (zh) 2020-02-14 2020-02-14 用于确定传输块大小的方法和通信装置

Country Status (8)

Country Link
US (1) US20220385436A1 (zh)
EP (1) EP4106444A4 (zh)
JP (1) JP7313569B2 (zh)
KR (1) KR20220136438A (zh)
CN (1) CN113545149A (zh)
AU (1) AU2020428979B2 (zh)
BR (1) BR112022016048A2 (zh)
WO (1) WO2021159507A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117914393B (zh) * 2024-03-20 2024-05-31 银河航天(西安)科技有限公司 一种基于分段层的自适应分包遥控调度方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190045390A1 (en) * 2017-09-11 2019-02-07 Intel IP Corporation Power boosting and transport block size (tbs) design in a new radio (nr) system
WO2019151915A1 (en) * 2018-02-02 2019-08-08 Telefonaktiebolaget Lm Ericsson (Publ) Wireless node for receiving a wireless signal and method thereof
CN110291833A (zh) * 2017-01-06 2019-09-27 松下电器(美国)知识产权公司 控制信息的传输
CN110392431A (zh) * 2018-04-19 2019-10-29 中兴通讯股份有限公司 一种实现边链路资源配置的方法、装置及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3570480B1 (en) * 2013-08-07 2020-12-23 Huawei Technologies Co., Ltd. Information sending and receiving methods and devices
CN108462556B (zh) * 2017-02-22 2021-04-09 华为技术有限公司 传输数据的方法和装置
JP7071500B2 (ja) * 2017-11-17 2022-05-19 中▲興▼通▲訊▼股▲ふぇん▼有限公司 無線通信におけるトランスポートブロックサイズを決定する方法、装置、およびシステム
CN109803426B (zh) * 2017-11-17 2023-04-07 华为技术有限公司 传输数据的方法和装置
CN116170124A (zh) * 2018-04-04 2023-05-26 瑞典爱立信有限公司 下行链路共享信道性能增强的方法和装置
US11589336B2 (en) * 2019-05-03 2023-02-21 Qualcomm Incorporated Two-stage physical sidelink control channel resource reservation
US11533729B2 (en) * 2020-09-16 2022-12-20 Qualcomm Incorporated Transport block size determination for downlink transmissions including multiplexed downlink control information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291833A (zh) * 2017-01-06 2019-09-27 松下电器(美国)知识产权公司 控制信息的传输
US20190045390A1 (en) * 2017-09-11 2019-02-07 Intel IP Corporation Power boosting and transport block size (tbs) design in a new radio (nr) system
WO2019151915A1 (en) * 2018-02-02 2019-08-08 Telefonaktiebolaget Lm Ericsson (Publ) Wireless node for receiving a wireless signal and method thereof
CN110392431A (zh) * 2018-04-19 2019-10-29 中兴通讯股份有限公司 一种实现边链路资源配置的方法、装置及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On TBS Determination and DL/UL Resource Allocation", 3GPP DRAFT; R1-1719596 ON TBS DETERMINATION AND DL_UL RESOURCE ALLOCATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 18 November 2017 (2017-11-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051369410 *
See also references of EP4106444A4 *

Also Published As

Publication number Publication date
JP7313569B2 (ja) 2023-07-24
BR112022016048A2 (pt) 2022-10-04
EP4106444A1 (en) 2022-12-21
AU2020428979A1 (en) 2022-09-15
KR20220136438A (ko) 2022-10-07
AU2020428979B2 (en) 2023-11-30
JP2023514263A (ja) 2023-04-05
EP4106444A4 (en) 2023-05-10
CN113545149A (zh) 2021-10-22
US20220385436A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
WO2022068836A1 (zh) 定位参考信号的传输方法及装置、存储介质、终端
TWI713403B (zh) 業務傳輸的方法和裝置
WO2020221021A1 (zh) 通信方法和通信装置
TWI718240B (zh) 用於傳輸業務的方法、移動台和網絡設備
WO2021031820A1 (zh) 侧行链路反馈信息传输的方法和通信装置
WO2021147214A1 (zh) 通信方法和通信装置
WO2020029927A1 (zh) 信息传输的方法和装置
WO2019157733A1 (zh) 物理上行共享信道传输方法和终端设备
WO2020200035A1 (zh) 传输上行控制信息的方法及装置
WO2021212483A1 (zh) 用于确定侧行资源的方法和通信装置
WO2021072909A1 (zh) 一种信息处理方法和终端设备以及网络设备
CN112866949B (zh) 用于确定传输块大小的方法和通信装置
WO2021017765A1 (zh) 通信方法和通信装置
WO2020199854A1 (zh) 确定传输资源的方法及装置
CN111294940B (zh) 发射功率的分配方法及装置、存储介质、终端
WO2020063838A1 (zh) 传输数据的方法及装置
WO2018121227A1 (zh) 发送控制信息的方法和装置及接收控制信息的方法和装置
WO2019140662A1 (zh) 无线通信方法、终端设备和网络设备
WO2021159507A1 (zh) 用于确定传输块大小的方法和通信装置
CN111525984B (zh) 上行控制信息的传输方法及相关产品
WO2021062834A1 (zh) 一种信息处理方法和终端设备以及网络设备
WO2020108259A1 (zh) 数据传输的方法和装置
WO2021056579A1 (zh) 一种dmrs样式指示信息的传输方法和通信装置
WO2021062665A1 (zh) 系统信息的传输方法和通信装置
RU2803424C1 (ru) Способ связи и аппаратный компонент связи

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022549057

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020428979

Country of ref document: AU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022016048

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227031854

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020428979

Country of ref document: AU

Date of ref document: 20200214

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020919310

Country of ref document: EP

Effective date: 20220914

ENP Entry into the national phase

Ref document number: 112022016048

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220812