WO2019140662A1 - 无线通信方法、终端设备和网络设备 - Google Patents

无线通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2019140662A1
WO2019140662A1 PCT/CN2018/073515 CN2018073515W WO2019140662A1 WO 2019140662 A1 WO2019140662 A1 WO 2019140662A1 CN 2018073515 W CN2018073515 W CN 2018073515W WO 2019140662 A1 WO2019140662 A1 WO 2019140662A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch format
uci
terminal device
coding rate
transmitted
Prior art date
Application number
PCT/CN2018/073515
Other languages
English (en)
French (fr)
Inventor
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES22169299T priority Critical patent/ES2965225T3/es
Priority to HUE18901090A priority patent/HUE059329T2/hu
Priority to EP18901090.3A priority patent/EP3742650B1/en
Priority to PT189010903T priority patent/PT3742650T/pt
Priority to EP22169299.9A priority patent/EP4054110B1/en
Priority to ES18901090T priority patent/ES2924719T3/es
Priority to KR1020207023809A priority patent/KR102427695B1/ko
Priority to RU2020127284A priority patent/RU2751553C1/ru
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to AU2018403272A priority patent/AU2018403272B2/en
Priority to PCT/CN2018/073515 priority patent/WO2019140662A1/zh
Publication of WO2019140662A1 publication Critical patent/WO2019140662A1/zh
Priority to US16/997,336 priority patent/US11197280B2/en
Priority to US17/453,358 priority patent/US11917625B2/en
Priority to US18/407,280 priority patent/US20240147479A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/001Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0079Formats for control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission

Definitions

  • the present application relates to the field of communications, and more particularly, to a wireless communication method, a terminal device, and a network device.
  • PUCCH physical uplink control channels
  • 5G NR fifth generation of mobile communication technology
  • PUCCH format 0 to 4 where PUCCH format The orthogonal spreading coefficient of 2 and PUCCH format 3 is 1, and the orthogonal spreading coefficient of PUCCH format 4 is 2 or 4.
  • PRBs physical resource blocks
  • the terminal device calculates the number of physical resource blocks (PRBs) used for transmitting the uplink control information (UCI)
  • the impact of the spread spectrum is not considered, and the calculated number of PRBs may be Unable to carry all UCI, which in turn causes UCI transmission to be abnormal.
  • PRBs physical resource blocks
  • the embodiment of the present application provides a wireless communication method, a terminal device, and a network device.
  • the terminal device When calculating the number of PRBs used for transmitting UCI, the terminal device considers the influence of spreading coefficients of different PUCCH formats, and thus calculates the transmitted UCI.
  • the number of PRBs used can carry all UCIs, thereby ensuring reliable transmission of UCI.
  • an embodiment of the present application provides a wireless communication method, including:
  • control signaling sent by the network device, where the control signaling is used to indicate a target coding rate for transmitting the UCI using the first PUCCH format, where the value of the target coding rate does not exceed the coding Rate range;
  • the terminal device determines the target coding rate according to the control signaling.
  • the terminal device may determine the value range of the coding rate according to the spreading coefficient used by the first PUCCH format, so that the terminal device determines the transmission in the value range of the coding rate.
  • UCI's target encoding rate in turn, guarantees reliable transmission of UCI.
  • the terminal device determines, according to a spreading factor used by the first PUCCH format, a value range of the coding rate, including:
  • the terminal device Determining, by the terminal device, that the value of the coding rate is less than or equal to a first parameter, where the first parameter is equal to 1 divided by N, N is a spreading coefficient used by the first PUCCH format; and/or ,
  • the terminal device determines that the value of the coding rate is greater than zero.
  • the determining, by the terminal device, the target coding rate according to the control signaling includes:
  • the terminal device does not expect the target coding rate to be greater than or equal to the first parameter.
  • the determining, by the terminal device, the target coding rate according to the control signaling includes:
  • the terminal device determines that the target coding rate is a maximum coding rate used to transmit UCI using the first PUCCH format.
  • an embodiment of the present application provides a wireless communication method, including:
  • the network device sends a control signaling to the terminal device, where the control signaling is used to indicate that the terminal device transmits the target coding rate of the UCI in the first PUCCH format, where the value of the target coding rate does not exceed the value of the coding rate.
  • the range of the coding rate is determined according to a spreading coefficient used by the first PUCCH format.
  • the network device sends, to the terminal device, control signaling indicating that the terminal device uses the first PUCCH format to transmit the target coding rate of the UCI, so that the terminal device can take the value range of the coding rate.
  • the target coding rate of the transmitted UCI is determined, and further, the reliable transmission of the UCI is ensured.
  • an embodiment of the present application provides a wireless communication method, including:
  • the terminal device determines the number of physical resource blocks PRB for transmitting the UCI to be transmitted according to the number of bits of the UCI to be transmitted and the spreading coefficient of the first PUCCH format.
  • the terminal device considers the influence of the spreading coefficient of the first PUCCH format when determining the number of PRBs used for transmitting the UCI, and thus determines the number of PRBs used for transmitting the UCI. It can carry all UCI and, in turn, ensure reliable transmission of UCI.
  • the terminal device determines, according to the number of bits of the UCI to be transmitted and the spreading coefficient of the first PUCCH format, the number of PRBs for transmitting the UCI to be transmitted, including:
  • the first parameter includes a number of subcarriers used by the first PUCCH format to transmit UCI in one resource block, a number of time domain symbols used to transmit UCI in the first PUCCH format, a modulation order, and the first At least one of a maximum coding rate corresponding to the PUCCH format and a maximum number of PRBs corresponding to the first PUCCH format.
  • O UCI is the number of bits of the UCI
  • O CRC is the number of bits of the cyclic redundancy check code CRC.
  • the number of subcarriers used to transmit UCI information in one resource block for the first PUCCH format For the first PUCCH format, the number of time domain symbols used for transmitting UCI information, Q m is a modulation order, and r is a maximum coding rate corresponding to the first PUCCH format, Is a spreading factor of the first PUCCH format.
  • O UCI is the number of bits of UCI
  • O CRC is the number of bits of CRC.
  • the UCI to be transmitted includes: Acknowledgement (ACK)/Negative ACK (NACK) feedback information, and/or scheduling request information (Scheduling Request) , SR), and/or, Channel State Information (CSI).
  • ACK Acknowledgement
  • NACK Negative ACK
  • SR scheduling request information
  • CSI Channel State Information
  • a terminal device which can perform the operations of the terminal device in the foregoing first aspect or any optional implementation manner of the first aspect.
  • the terminal device may comprise a modular unit for performing the operations of the terminal device in any of the possible implementations of the first aspect or the first aspect described above.
  • a network device which can perform the operations of the network device in the implementation manner of the foregoing second aspect.
  • the network device may comprise a modular unit for performing the operations of the network device in the implementation of the second aspect described above.
  • a terminal device which can perform the operations of the terminal device in any of the foregoing optional implementations of the third aspect or the third aspect.
  • the terminal device may comprise a modular unit for performing the operations of the terminal device in any of the possible implementations of the third aspect or the third aspect described above.
  • a terminal device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the terminal device to perform the method in the first aspect or any possible implementation manner of the first aspect, or the execution causes the terminal device to implement the terminal provided by the fourth aspect device.
  • a network device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the terminal device to perform the method in any of the possible implementations of the second aspect or the second aspect, or the execution causes the network device to implement the terminal provided by the fifth aspect device.
  • a terminal device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver, and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing instructions stored by the memory.
  • the processor executes the instruction stored by the memory, the executing causes the terminal device to perform the method in any of the possible implementations of the third aspect or the third aspect, or the execution causes the terminal device to implement the terminal provided by the sixth aspect device.
  • a system chip includes an input interface, an output interface, a processor, and a memory, where the processor is configured to execute an instruction stored by the memory, and when the instruction is executed, the processor can implement the foregoing The method described in each aspect.
  • a computer storage medium having stored therein program code for instructing a computer to execute instructions of the methods described in the above aspects.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method described in the above aspects.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for wireless communication according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another wireless communication method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of still another method of wireless communication according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of another terminal device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an apparatus for wireless communication provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UPD Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 shows a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 can include a network device 110.
  • Network device 100 can be a device that communicates with a terminal device.
  • Network device 100 may provide communication coverage for a particular geographic area and may communicate with terminal devices (e.g., UEs) located within the coverage area.
  • the network device 100 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB, NB) in a WCDMA system, or may be an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device can be a relay station, an access point, an in-vehicle device, a wearable device, A network side device in a future 5G network or a network device in a publicly available Public Land Mobile Network (PLMN) in the future.
  • PLMN Public Land Mobile Network
  • the wireless communication system 100 also includes at least one terminal device 120 located within the coverage of the network device 110.
  • Terminal device 120 can be mobile or fixed.
  • the terminal device 120 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • D2D device to device communication
  • D2D device to device
  • the 5G system or network may also be referred to as a New Radio (NR) system or network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device. The application embodiment does not limit this.
  • the wireless communication system 100 may further include an Access and Mobility Management Function (AMF), a Session Management Function (SMF), and a Unified Data Management (UDM).
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UDM Unified Data Management
  • Other network entities such as an authentication server function (AUSF), are not limited in this embodiment of the present application.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (Digital Versatile Disc, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, a variety of media capable of storing, containing, and/or carrying instructions and/or data.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • FIG. 2 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application.
  • the method 200 is optionally applicable to the system shown in FIG. 1, but is not limited thereto.
  • the method 200 includes at least some of the following.
  • the terminal device determines a value range of the coding rate according to the spreading coefficient used by the first PUCCH format.
  • the first PUCCH format may be PUCCH format 2, or may be PUCCH format 3, or may be PUCCH format 4.
  • PUCCH format 2 and PUCCH format 3 have a spreading factor of 1
  • PUCCH format 4 has a spreading factor of 2 or 4.
  • the orthogonal sequence w n (m) when the spreading coefficient of PUCCH format 4 is 2.
  • the maximum coding rate r corresponding to PUCCH format 2/PUCCH format 3/PUCCH format 4 is shown.
  • the terminal device may determine that the value of the coding rate is less than or equal to the first parameter, where the first parameter is equal to 1 divided by N, where N is a spreading coefficient used by the first PUCCH format; The device can also determine that the encoding rate has a value greater than zero.
  • the terminal receives control signaling sent by the network device, where the control signaling is used to indicate a target coding rate of the UCI transmitted by using the first PUCCH format, where the target coding rate does not exceed the value.
  • the encoding rate ranges.
  • the UCI includes: ACK/NACK feedback information, and/or, SR, and/or CSI.
  • the terminal device determines the target coding rate according to the control signaling.
  • the terminal device does not expect the target coding rate to be greater than or equal to the first parameter.
  • the terminal device determines that the target coding rate is a maximum coding rate used for transmitting UCI using the first PUCCH format.
  • the terminal device may determine the value range of the coding rate according to the spreading coefficient used by the first PUCCH format, so that the terminal device determines the transmission in the value range of the coding rate.
  • UCI's target encoding rate in turn, guarantees reliable transmission of UCI.
  • FIG. 3 is a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application.
  • the method 300 can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the method 300 includes at least a portion of the following.
  • the network device sends control signaling to the terminal device, where the control signaling is used to indicate that the terminal device transmits the target coding rate of the UCI in the first PUCCH format, where the target coding rate does not exceed the coding rate. And a value range, where the coding rate ranges from the spreading coefficient used by the first PUCCH format.
  • the network device sends, to the terminal device, control signaling indicating that the terminal device uses the first PUCCH format to transmit the target coding rate of the UCI, so that the terminal device can take the value range of the coding rate.
  • the target coding rate of the transmitted UCI is determined, and further, the reliable transmission of the UCI is ensured.
  • FIG. 4 is a schematic flowchart of a wireless communication method 400 according to an embodiment of the present application.
  • the method 400 can optionally be applied to the system shown in FIG. 1, but is not limited thereto.
  • the method 400 includes at least a portion of the following.
  • the terminal device determines, according to the number of bits of the UCI to be transmitted and the spreading coefficient of the first PUCCH format, the number of PRBs that transmit the UCI to be transmitted.
  • the UCI to be transmitted includes: ACK/NACK feedback information, and/or, SR, and/or CSI.
  • the first PUCCH format may be PUCCH format 2, or may be PUCCH format 3, or may be PUCCH format 4.
  • PUCCH format 2 and PUCCH format 3 have a spreading factor of 1
  • PUCCH format 4 has a spreading factor of 2 or 4.
  • the terminal device determines, according to the number of bits of the UCI to be transmitted, the spreading coefficient of the first PUCCH format, and the first parameter, the number of PRBs that transmit the UCI to be transmitted, where the first The parameter includes a number of subcarriers used by the first PUCCH format to transmit UCI in one resource block, a number of time domain symbols used to transmit UCI in the first PUCCH format, a modulation order, and a corresponding one of the first PUCCH formats. At least one of a maximum coding rate and a maximum number of PRBs corresponding to the first PUCCH format.
  • the number of PRBs transmitted by the terminal device for transmitting UCI to be transmitted Can satisfy formula 1:
  • O UCI is the number of bits of UCI
  • O CRC is the number of bits of Cyclic Redundancy Check (CRC).
  • the number of subcarriers used to transmit UCI information in one resource block for the first PUCCH format For the first PUCCH format, the number of time domain symbols used for transmitting UCI information, Q m is a modulation order, and r is a maximum coding rate corresponding to the first PUCCH format, Is a spreading factor of the first PUCCH format.
  • the number of PRBs transmitted by the terminal device for transmitting UCI to be transmitted Can satisfy formula 2:
  • O UCI is the number of bits of UCI
  • O CRC is the number of bits of CRC.
  • the number of subcarriers used to transmit UCI information in one resource block for the first PUCCH format For the first PUCCH format, the number of time domain symbols used for transmitting UCI information, Q m is a modulation order, and r is a maximum coding rate corresponding to the first PUCCH format, Is a spreading factor of the first PUCCH format.
  • the maximum configuration rate r of the PUCCH format 4 can be 0 to 4, specifically As shown in Table 3, the corresponding encoding rate (Code rate r) is 0 to 4.
  • the maximum configuration rate r of the PUCCH format 4 is 0 to 1.
  • the corresponding encoding rate (Code rate r) is 0 to 1.
  • the number of PRBs transmitted by the terminal device for transmitting UCI to be transmitted Can satisfy formula 3:
  • O UCI is the number of bits of UCI
  • O CRC is the number of bits of CRC.
  • Q m is a modulation order
  • r is a maximum coding rate corresponding to the first PUCCH format.
  • the number of PRBs transmitted by the terminal device for transmitting UCI to be transmitted Can satisfy formula 4:
  • O UCI is the number of bits of UCI
  • O CRC is the number of bits of CRC.
  • the number of subcarriers used to transmit UCI information in one resource block for the first PUCCH format Dividing the number of time domain symbols used to transmit UCI information for the first PUCCH format
  • Q m is a modulation order
  • r is a maximum coding rate corresponding to the first PUCCH format.
  • the number of PRBs transmitted by the terminal device for transmitting UCI to be transmitted Can satisfy formula 5:
  • O UCI is the number of bits of UCI
  • O CRC is the number of bits of CRC.
  • Q m is the modulation order divided by
  • r is a maximum coding rate corresponding to the first PUCCH format.
  • the number of PRBs transmitted by the terminal device for transmitting UCI to be transmitted Can satisfy formula 6:
  • the O UCI is the number of bits of the UCI
  • the O CRC is the number of bits of the CRC
  • the Q m is the modulation order
  • r is the maximum coding rate corresponding to the first PUCCH format.
  • the number of subcarriers used to transmit UCI information in one resource block for the first PUCCH format specifically,
  • the number of time domain symbols used for transmitting the UCI information for the first PUCCH format specifically,
  • PUCCH format 4 The number of symbols except the DMRS symbol in the symbols included in the PUCCH format 4 of the high layer signaling configuration
  • the number of PRBs transmitted by the terminal device for transmitting UCI to be transmitted Can satisfy formula 7:
  • the O UCI is the number of bits of the UCI
  • the O CRC is the number of bits of the CRC
  • the Q m is the modulation order
  • r is the maximum coding rate corresponding to the first PUCCH format.
  • the number of subcarriers used to transmit UCI information in one resource block for the first PUCCH format specifically,
  • PUCCH format 4 Is the number of subcarriers within a resource block, a spreading factor of the first PUCCH format
  • the number of time domain symbols used for transmitting the UCI information for the first PUCCH format specifically,
  • the number of symbols except the DMRS symbol is included in the symbols included in the PUCCH format 4 of the high layer signaling configuration.
  • the terminal device considers the influence of the spreading coefficient of the first PUCCH format when determining the number of PRBs used for transmitting the UCI, and thus determines the number of PRBs used for transmitting the UCI. It can carry all UCI and, in turn, ensure reliable transmission of UCI.
  • FIG. 5 is a schematic block diagram of a terminal device 500 according to an embodiment of the present application.
  • the terminal device 500 includes:
  • the processing unit 510 is configured to determine a value range of the coding rate according to the spreading coefficient used by the PUCCH format of the first physical uplink control channel;
  • the communication unit 520 is configured to receive control signaling sent by the network device, where the control signaling is used to indicate a target coding rate for transmitting the uplink control information UCI using the first PUCCH format, where the target coding rate is a value Not exceeding the range of the coding rate;
  • the processing unit 510 is further configured to determine the target coding rate according to the control signaling.
  • processing unit 510 is specifically configured to:
  • N is a spreading coefficient used by the first PUCCH format
  • processing unit 510 is specifically configured to:
  • the target encoding rate is not expected to be greater than or equal to the first parameter.
  • processing unit 510 is specifically configured to:
  • the target encoding rate is determined to be the maximum encoding rate used to transmit UCI using the first PUCCH format.
  • terminal device 500 may correspond to the terminal device in the method 200, and the corresponding operations implemented by the terminal device in the method 200 may be implemented. For brevity, details are not described herein again.
  • FIG. 6 is a schematic block diagram of a network device 600 in accordance with an embodiment of the present application.
  • the network device 600 includes:
  • the communication unit 610 is configured to send control signaling to the terminal device, where the control signaling is used to instruct the terminal device to transmit a target coding rate of the uplink control information UCI using a first physical uplink control channel PUCCH format, where the target The value of the coding rate does not exceed the value range of the coding rate, and the value of the coding rate is determined according to the spreading coefficient used by the first PUCCH format.
  • the network device 600 may correspond to the network device in the method 300, and the corresponding operations implemented by the network device in the method 300 may be implemented. For brevity, no further details are provided herein.
  • FIG. 7 is a schematic block diagram of a terminal device 700 according to an embodiment of the present application.
  • the terminal device 700 includes:
  • the processing unit 710 is configured to determine, according to the number of bits of the uplink control information UCI to be transmitted and the spreading coefficient of the first physical uplink control channel PUCCH format, the number of physical resource blocks PRB that transmit the UCI to be transmitted.
  • processing unit 810 is specifically configured to:
  • the first parameter includes a number of subcarriers used by the first PUCCH format to transmit UCI in one resource block, a number of time domain symbols used to transmit UCI in the first PUCCH format, a modulation order, and the first At least one of a maximum coding rate corresponding to the PUCCH format and a maximum number of PRBs corresponding to the first PUCCH format.
  • the number of physical resource blocks PRB that transmit the UCI to be transmitted Satisfy is the number of physical resource blocks PRB that transmit the UCI to be transmitted Satisfy:
  • O UCI is the number of bits of the UCI
  • O CRC is the number of bits of the cyclic redundancy check code CRC.
  • the number of subcarriers used to transmit UCI information in one resource block for the first PUCCH format For the first PUCCH format, the number of time domain symbols used for transmitting UCI information, Q m is a modulation order, and r is a maximum coding rate corresponding to the first PUCCH format, Is a spreading factor of the first PUCCH format.
  • the number of physical resource blocks PRB that transmit the UCI to be transmitted Satisfy is the number of physical resource blocks PRB that transmit the UCI to be transmitted Satisfy:
  • O UCI is the number of bits of UCI
  • O CRC is the number of bits of CRC.
  • the UCI to be transmitted includes: acknowledge ACK/non-acknowledgement NACK feedback information, and/or scheduling request information SR, and/or channel state information CSI.
  • terminal device 700 may correspond to the terminal device in the method 400, and the corresponding operations implemented by the terminal device in the method 400 may be implemented. For brevity, details are not described herein again.
  • FIG. 8 is a schematic block diagram of a device 800 for wireless communication provided by an embodiment of the present application.
  • the device 800 includes:
  • a memory 810 configured to store a program, where the program includes a code
  • transceiver 820 configured to communicate with other devices
  • the processor 830 is configured to execute program code in the memory 810.
  • the transceiver 820 is configured to perform specific signal transceiving under the driving of the processor 830.
  • the processor 830 can also implement various operations performed by the terminal device in the method 200 of FIG. 2 and/or the method 400 in FIG. 4, and details are not described herein for brevity.
  • the device 800 can be a terminal device, such as a mobile phone.
  • the processor 830 can implement various operations performed by the network device in the method 300 in FIG. 3, and details are not described herein for brevity.
  • the device 800 can be a network device, such as a base station.
  • the processor 830 may be a central processing unit (CPU), and the processor 830 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 810 can include read only memory and random access memory and provides instructions and data to the processor 830. A portion of the memory 810 may also include a non-volatile random access memory. For example, the memory 810 can also store information of the device type.
  • the transceiver 820 can be used to implement signal transmission and reception functions, such as frequency modulation and demodulation functions or up-conversion and down-conversion functions.
  • the device 800 for wireless communication can be a chip or chipset.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor 830 reads the information in the memory and performs the steps of the above method in combination with the hardware thereof. To avoid repetition, it will not be described in detail here.
  • FIG. 9 is a schematic structural diagram of a system chip 900 according to an embodiment of the present application.
  • the system chip 900 of FIG. 9 includes an input interface 901, an output interface 902, a processor 903, and a memory 904 that can be connected by an internal communication connection line.
  • the processor 903 is configured to execute code in the memory 904.
  • the processor 903 implements a method performed by the terminal device in the method embodiment. For the sake of brevity, it will not be repeated here.
  • the processor 903 when the code is executed, the processor 903 implements a method performed by a network device in a method embodiment. For the sake of brevity, it will not be repeated here.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be wired from a website site, computer, server or data center (for example, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线通信方法、终端设备和网络设备,终端设备在计算传输UCI所使用的PRB数量时,考虑不同PUCCH format的扩频系数的影响,从而,计算出来的传输UCI所使用的PRB数量能够承载全部UCI,进而,保证UCI的可靠传输。该方法包括:终端设备根据待传输UCI的比特数和第一PUCCH格式的扩频系数,确定传输所述待传输UCI的物理资源块PRB数量。

Description

无线通信方法、终端设备和网络设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种无线通信方法、终端设备和网络设备。
背景技术
在第五代移动通信技术新空口(5-Generation New Radio,5G NR)中支持五种物理上行控制信道(Physical Uplink Control Channel,PUCCH)格式(format),即PUCCH format0~4,其中,PUCCH format 2和PUCCH format 3的正交扩频系数为1,PUCCH format 4的正交扩频系数为2或4。现阶段,终端设备计算传输上行控制信息(Uplink Control Information,UCI)所使用的物理资源块(physical resource block,PRB)数量时,并未考虑扩频所造成的影响,导致计算出来的PRB数量可能无法承载全部UCI,进而,造成UCI传输异常。
发明内容
本申请实施例提供了一种无线通信方法、终端设备和网络设备,终端设备在计算传输UCI所使用的PRB数量时,考虑不同PUCCH format的扩频系数的影响,从而,计算出来的传输UCI所使用的PRB数量能够承载全部UCI,进而,保证UCI的可靠传输。
第一方面,本申请实施例提供了一种无线通信方法,包括:
终端设备根据第一PUCCH格式所使用的扩频系数,确定编码速率的取值范围;
所述终端设备接收网络设备发送的控制信令,所述控制信令用于指示使用所述第一PUCCH格式传输UCI的目标编码速率,其中,所述目标编码速率的取值不超出所述编码速率取值范围;
所述终端设备根据所述控制信令,确定所述目标编码速率。
因此,在本申请实施例的无线通信方法中,终端设备可以根据第一PUCCH格式所使用的扩频系数,确定编码速率的取值范围,从而,终端设备在编码速率的取值范围中确定传输UCI的目标编码速率,进而,保证UCI的可靠传输。
可选地,在第一方面的一种实现方式中,所述终端设备根据第一PUCCH格式所使用的扩频系数,确定编码速率的取值范围,包括:
所述终端设备确定所述编码速率的取值小于或等于第一参数,其中,所述第一参数 等于1除以N,N为所述第一PUCCH格式所使用的扩频系数;和/或,
所述终端设备确定所述编码速率的取值大于零。
可选地,在第一方面的一种实现方式中,所述终端设备根据所述控制信令,确定所述目标编码速率,包括:
所述终端设备不期待所述目标编码速率大于或等于所述第一参数。
可选地,在第一方面的一种实现方式中,所述终端设备根据所述控制信令,确定所述目标编码速率,包括:
所述终端设备确定所述目标编码速率为使用所述第一PUCCH格式传输UCI所使用的最大编码速率。
第二方面,本申请实施例提供了一种无线通信方法,包括:
网络设备向终端设备发送控制信令,所述控制信令用于指示所述终端设备使用第一PUCCH格式传输UCI的目标编码速率,其中,所述目标编码速率的取值不超出编码速率取值范围,所述编码速率的取值范围为根据所述第一PUCCH格式所使用的扩频系数确定的。
因此,在本申请实施例的无线通信方法中,网络设备向终端设备发送指示终端设备使用第一PUCCH格式传输UCI的目标编码速率的控制信令,从而,终端设备可以在编码速率的取值范围中确定传输UCI的目标编码速率,进而,保证UCI的可靠传输。
第三方面,本申请实施例提供了一种无线通信方法,包括:
终端设备根据待传输UCI的比特数和第一PUCCH格式的扩频系数,确定传输所述待传输UCI的物理资源块PRB数量。
因此,在本申请实施例的无线通信方法中,终端设备在确定传输UCI所使用的PRB数量时,考虑第一PUCCH格式的扩频系数的影响,从而,所确定的传输UCI所使用的PRB数量能够承载全部UCI,进而,保证UCI的可靠传输。
可选地,在第三方面的一种实现方式中,所述终端设备根据待传输UCI的比特数和第一PUCCH格式的扩频系数,确定传输所述待传输UCI的PRB数量,包括:
所述终端设备根据所述待传输UCI的比特数、所述第一PUCCH格式的扩频系数,以及第一参数,确定传输所述待传输UCI的PRB数量,其中,
所述第一参数包括所述第一PUCCH格式在一个资源块内用于传输UCI的子载波数量、所述第一PUCCH格式用于传输UCI的时域符号数量、调制阶数、所述第一PUCCH格式对应的最大编码速率、所述第一PUCCH格式对应的最大PRB数量中的至少一种。
可选地,在第三方面的一种实现方式中,所述传输所述待传输UCI的物理资源块PRB 数量
Figure PCTCN2018073515-appb-000001
满足:
Figure PCTCN2018073515-appb-000002
且当所述第一PUCCH格式对应的最大PRB数量大于1时,
Figure PCTCN2018073515-appb-000003
或,
Figure PCTCN2018073515-appb-000004
其中,O UCI为UCI的比特数目,O CRC为循环冗余校验码CRC的比特数量,
Figure PCTCN2018073515-appb-000005
为所述第一PUCCH格式在一个资源块内用于传输UCI信息的子载波数量,
Figure PCTCN2018073515-appb-000006
为所述第一PUCCH格式用于传输UCI信息的时域符号数量,Q m为调制阶数,r为所述第一PUCCH格式对应的最大编码速率,
Figure PCTCN2018073515-appb-000007
为所述第一PUCCH格式的扩频系数。
可选地,在第三方面的一种实现方式中,所述传输所述待传输UCI的物理资源块PRB数量
Figure PCTCN2018073515-appb-000008
满足:
Figure PCTCN2018073515-appb-000009
且当所述第一PUCCH格式对应的最大PRB数量大于1时,
Figure PCTCN2018073515-appb-000010
或,
Figure PCTCN2018073515-appb-000011
其中,O UCI为UCI的比特数目,O CRC为CRC的比特数量,
Figure PCTCN2018073515-appb-000012
为所述第一PUCCH格式在一个资源块内用于传输UCI信息的子载波数量除以
Figure PCTCN2018073515-appb-000013
为所述第一PUCCH格式的扩频系数,
Figure PCTCN2018073515-appb-000014
为所述第一PUCCH格式用于传输UCI信息的时域符号数量,Q m为调制阶数,r为所述第一PUCCH格式对应的最大编码速率。
可选地,在第三方面的一种实现方式中,所述待传输UCI包括:确认(Acknowledgement,ACK)/非确认(Negative ACK,NACK)反馈信息,和/或,调度请求信息(Scheduling Request,SR),和/或,信道状态信息(Channel State Information,CSI)。
第四方面,提供了一种终端设备,该终端设备可以执行上述第一方面或第一方面的任意可选的实现方式中的终端设备的操作。具体地,该终端设备可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的终端设备的操作的模块单元。
第五方面,提供了一种网络设备,该网络设备可以执行上述第二方面的实现方式中的网络设备的操作。具体地,该网络设备可以包括用于执行上述第二方面的实现方式中的网络设备的操作的模块单元。
第六方面,提供了一种终端设备,该终端设备可以执行上述第三方面或第三方面的 任意可选的实现方式中的终端设备的操作。具体地,该终端设备可以包括用于执行上述第三方面或第三方面的任意可能的实现方式中的终端设备的操作的模块单元。
第七方面,提供了一种终端设备,该终端设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该终端设备执行第一方面或第一方面的任意可能的实现方式中的方法,或者该执行使得该终端设备实现第四方面提供的终端设备。
第八方面,提供了一种网络设备,该网络设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该终端设备执行第二方面或第二方面的任意可能的实现方式中的方法,或者该执行使得该网络设备实现第五方面提供的终端设备。
第九方面,提供了一种终端设备,该终端设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该终端设备执行第三方面或第三方面的任意可能的实现方式中的方法,或者该执行使得该终端设备实现第六方面提供的终端设备。
第十方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器用于执行该存储器存储的指令,当该指令被执行时,该处理器可以实现上述各方面所述的方法。
第十一方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示计算机执行上述各方面所述的方法的指令。
第十二方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1是本申请实施例的应用场景的示意图。
图2是根据本申请实施例的一种无线通信方法的示意性流程图。
图3是根据本申请实施例的另一种无线通信方法的示意性流程图。
图4是根据本申请实施例的再一种无线通信方法的示意性流程图。
图5是根据本申请实施例的一种终端设备的示意性框图。
图6是根据本申请实施例的一种网络设备的示意性框图。
图7是根据本申请实施例的另一种终端设备的示意性框图。
图8示出了本申请实施例提供的无线通信的设备的示意性框图。
图9是根据本申请实施例的系统芯片的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统或未来的5G系统等。
图1示出了本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110。网络设备100可以是与终端设备通信的设备。网络设备100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备(例如UE)进行通信。可选地,该网络设备100可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。终端设备120可以是移动的或固定的。可选地,终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环 路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或网络还可以称为新无线(New Radio,NR)系统或网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括接入与移动性管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、统一数据管理(Unified Data Management,UDM),认证服务器功能(Authentication Server Function,AUSF)等其他网络实体,本申请实施例对此不作限定。
此外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,能够存储、包含和/或承载指令和/或数据的各种介质。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图2是根据本申请实施例的无线通信方法200的示意性流程图。该方法200可选地可以应用于图1所示的系统,但并不限于此。该方法200包括以下内容中的至少部分内容。
S210,终端设备根据第一PUCCH格式所使用的扩频系数,确定编码速率的取值范围。
可选地,该第一PUCCH格式可以是PUCCH format 2,也可以是PUCCH format 3, 还可以是PUCCH format 4。
例如,PUCCH format 2和PUCCH format 3的扩频系数为1,PUCCH format 4的扩频系数为2或4。
例如,如表1所示为PUCCH format 4的扩频系数为2时的正交序列w n(m)。
表1
Figure PCTCN2018073515-appb-000015
又例如,如表2所示为PUCCH format 4的扩频系数为4时的正交序列w n(m)。
表2
Figure PCTCN2018073515-appb-000016
例如,如表3所示为PUCCH format 2/PUCCH format 3/PUCCH format 4所对应的最大编码速率r。
表3
n Code rate r
0 0.08
1 0.15
2 0.25
3 0.35
4 0.45
5 0.60
6 0.80
7 预留
可选地,该终端设备可以确定该编码速率的取值小于或等于第一参数,其中,该第一参数等于1除以N,N为该第一PUCCH格式所使用的扩频系数;该终端设备还可以确定该编码速率的取值大于零。
S220,所述终端接收网络设备发送的控制信令,所述控制信令用于指示使用所述第一PUCCH格式传输UCI的目标编码速率,其中,所述目标编码速率的取值不超出所述 编码速率取值范围。
可选地,该UCI包括:ACK/NACK反馈信息,和/或,SR,和/或,CSI。
S230,所述终端设备根据所述控制信令,确定所述目标编码速率。
可选地,所述终端设备不期待所述目标编码速率大于或等于所述第一参数。
可选地,所述终端设备确定所述目标编码速率为使用所述第一PUCCH格式传输UCI所使用的最大编码速率。
因此,在本申请实施例的无线通信方法中,终端设备可以根据第一PUCCH格式所使用的扩频系数,确定编码速率的取值范围,从而,终端设备在编码速率的取值范围中确定传输UCI的目标编码速率,进而,保证UCI的可靠传输。
图3是根据本申请实施例的无线通信方法300的示意性流程图。该方法300可选地可以应用于图1所示的系统,但并不限于此。该方法300包括以下内容中的至少部分内容。
S310,网络设备向终端设备发送控制信令,所述控制信令用于指示所述终端设备使用第一PUCCH格式传输UCI的目标编码速率,其中,所述目标编码速率的取值不超出编码速率取值范围,所述编码速率的取值范围为根据所述第一PUCCH格式所使用的扩频系数确定的。
应理解,上述无线通信方法300对应方法200中的相应步骤,以及上述无线通信方法300中的步骤可以参考无线通信方法200中的相应步骤的描述,为了简洁,在此不再赘述。
因此,在本申请实施例的无线通信方法中,网络设备向终端设备发送指示终端设备使用第一PUCCH格式传输UCI的目标编码速率的控制信令,从而,终端设备可以在编码速率的取值范围中确定传输UCI的目标编码速率,进而,保证UCI的可靠传输。
图4是根据本申请实施例的无线通信方法400的示意性流程图。该方法400可选地可以应用于图1所示的系统,但并不限于此。该方法400包括以下内容中的至少部分内容。
S410,终端设备根据待传输UCI的比特数和第一PUCCH格式的扩频系数,确定传输所述待传输UCI的PRB数量。
可选地,该待传输UCI包括:ACK/NACK反馈信息,和/或,SR,和/或,CSI。
可选地,该第一PUCCH格式可以是PUCCH format 2,也可以是PUCCH format 3,还可以是PUCCH format 4。
例如,PUCCH format 2和PUCCH format 3的扩频系数为1,PUCCH format 4的扩频 系数为2或4。
具体地,所述终端设备根据所述待传输UCI的比特数、所述第一PUCCH格式的扩频系数,以及第一参数,确定传输所述待传输UCI的PRB数量,其中,所述第一参数包括所述第一PUCCH格式在一个资源块内用于传输UCI的子载波数量、所述第一PUCCH格式用于传输UCI的时域符号数量、调制阶数、所述第一PUCCH格式对应的最大编码速率、所述第一PUCCH格式对应的最大PRB数量中的至少一种。
可选地,该终端设备所确定的传输待传输UCI的PRB数量
Figure PCTCN2018073515-appb-000017
可以满足公式1:
Figure PCTCN2018073515-appb-000018
其中,O UCI为UCI的比特数目,O CRC为循环冗余校验码(Cyclic Redundancy Check,CRC)的比特数量,
Figure PCTCN2018073515-appb-000019
为所述第一PUCCH格式在一个资源块内用于传输UCI信息的子载波数量,
Figure PCTCN2018073515-appb-000020
为所述第一PUCCH格式用于传输UCI信息的时域符号数量,Q m为调制阶数,r为所述第一PUCCH格式对应的最大编码速率,
Figure PCTCN2018073515-appb-000021
为所述第一PUCCH格式的扩频系数。
可选地,该终端设备所确定的传输待传输UCI的PRB数量
Figure PCTCN2018073515-appb-000022
可以满足公式2:
Figure PCTCN2018073515-appb-000023
且当所述第一PUCCH格式对应的最大PRB数量大于1时,
Figure PCTCN2018073515-appb-000024
其中,O UCI为UCI的比特数目,O CRC为CRC的比特数量,
Figure PCTCN2018073515-appb-000025
为所述第一PUCCH格式在一个资源块内用于传输UCI信息的子载波数量,
Figure PCTCN2018073515-appb-000026
为所述第一PUCCH格式用于传输UCI信息的时域符号数量,Q m为调制阶数,r为所述第一PUCCH格式对应的最大编码速率,
Figure PCTCN2018073515-appb-000027
为所述第一PUCCH格式的扩频系数。
在上述公式2中,若所述第一PUCCH格式为PUCCH format 4,且PUCCH format 4的扩频系数为2时,PUCCH format 4对应的最大编码速率r的可选配置范围为0~4,具体如表3中n取值为0~4时对应的编码速率(Code rate r)。
在上述公式2中,若所述第一PUCCH格式为PUCCH format 4,且PUCCH format 4的扩频系数为4时,PUCCH format 4对应的最大编码速率r的可选配置范围为0~1,具体如表3中n取值为0~1时对应的编码速率(Code rate r)。
可选地,该终端设备所确定的传输待传输UCI的PRB数量
Figure PCTCN2018073515-appb-000028
可以满足公式3:
Figure PCTCN2018073515-appb-000029
且当所述第一PUCCH格式对应的最大PRB数量大于1时,
Figure PCTCN2018073515-appb-000030
其中,O UCI为UCI的比特数目,O CRC为CRC的比特数量,
Figure PCTCN2018073515-appb-000031
为所述第一PUCCH 格式在一个资源块内用于传输UCI信息的子载波数量除以
Figure PCTCN2018073515-appb-000032
为所述第一PUCCH格式的扩频系数,
Figure PCTCN2018073515-appb-000033
为所述第一PUCCH格式用于传输UCI信息的时域符号数量,Q m为调制阶数,r为所述第一PUCCH格式对应的最大编码速率。
可选地,该终端设备所确定的传输待传输UCI的PRB数量
Figure PCTCN2018073515-appb-000034
可以满足公式4:
Figure PCTCN2018073515-appb-000035
且当所述第一PUCCH格式对应的最大PRB数量大于1时,
Figure PCTCN2018073515-appb-000036
其中,O UCI为UCI的比特数目,O CRC为CRC的比特数量,
Figure PCTCN2018073515-appb-000037
为所述第一PUCCH格式在一个资源块内用于传输UCI信息的子载波数量,
Figure PCTCN2018073515-appb-000038
为所述第一PUCCH格式用于传输UCI信息的时域符号数量除以
Figure PCTCN2018073515-appb-000039
为所述第一PUCCH格式的扩频系数,Q m为调制阶数,r为所述第一PUCCH格式对应的最大编码速率。
可选地,该终端设备所确定的传输待传输UCI的PRB数量
Figure PCTCN2018073515-appb-000040
可以满足公式5:
Figure PCTCN2018073515-appb-000041
且当所述第一PUCCH格式对应的最大PRB数量大于1时,
Figure PCTCN2018073515-appb-000042
其中,O UCI为UCI的比特数目,O CRC为CRC的比特数量,
Figure PCTCN2018073515-appb-000043
为所述第一PUCCH格式在一个资源块内用于传输UCI信息的子载波数量,
Figure PCTCN2018073515-appb-000044
为所述第一PUCCH格式用于传输UCI信息的时域符号数量,Q m为调制阶数除以
Figure PCTCN2018073515-appb-000045
为所述第一PUCCH格式的扩频系数,r为所述第一PUCCH格式对应的最大编码速率。
可选地,该终端设备所确定的传输待传输UCI的PRB数量
Figure PCTCN2018073515-appb-000046
可以满足公式6:
Figure PCTCN2018073515-appb-000047
且当所述第一PUCCH格式对应的最大PRB数量大于1时,
Figure PCTCN2018073515-appb-000048
其中,O UCI为UCI的比特数目,O CRC为CRC的比特数量,Q m为调制阶数,r为所述第一PUCCH格式对应的最大编码速率,
Figure PCTCN2018073515-appb-000049
为所述第一PUCCH格式在一个资源块内用于传输UCI信息的子载波数量,具体地,
对于PUCCH format 2,
Figure PCTCN2018073515-appb-000050
对于PUCCH format 3和4,
Figure PCTCN2018073515-appb-000051
Figure PCTCN2018073515-appb-000052
为一个资源块(Resource Block,RB)内的子载波数量;
Figure PCTCN2018073515-appb-000053
为所述第一PUCCH格式用于传输UCI信息的时域符号数量,具体地,
对于PUCCH format 2,
Figure PCTCN2018073515-appb-000054
是高层信令配置的PUCCH format 2包括的符号数,
对于PUCCH format 3,
Figure PCTCN2018073515-appb-000055
是高层信令配置的PUCCH format 3包括的符号中除去DMRS符号之外的符号数量,
对于PUCCH format 4,
Figure PCTCN2018073515-appb-000056
是高层信令配置的PUCCH format 4包括的符号中除去DMRS符号之外的符号数量;
Figure PCTCN2018073515-appb-000057
为所述第一PUCCH格式的扩频系数,具体地,
对于PUCCH format 2和3,
Figure PCTCN2018073515-appb-000058
对于PUCCH format 4,
Figure PCTCN2018073515-appb-000059
为PUCCH format 4的扩频系数。
可选地,该终端设备所确定的传输待传输UCI的PRB数量
Figure PCTCN2018073515-appb-000060
可以满足公式7:
Figure PCTCN2018073515-appb-000061
Figure PCTCN2018073515-appb-000062
Figure PCTCN2018073515-appb-000063
其中,O UCI为UCI的比特数目,O CRC为CRC的比特数量,Q m为调制阶数,r为所述第一PUCCH格式对应的最大编码速率,
Figure PCTCN2018073515-appb-000064
为所述第一PUCCH格式在一个资源块内用于传输UCI信息的子载波数量,具体地,
对于PUCCH format 2,
Figure PCTCN2018073515-appb-000065
对于PUCCH format 3,
Figure PCTCN2018073515-appb-000066
对于PUCCH format 4,
Figure PCTCN2018073515-appb-000067
Figure PCTCN2018073515-appb-000068
为一个资源块内的子载波数量,
Figure PCTCN2018073515-appb-000069
为所述第一PUCCH格式的扩频系数;
Figure PCTCN2018073515-appb-000070
为所述第一PUCCH格式用于传输UCI信息的时域符号数量,具体地,
对于PUCCH format 2,
Figure PCTCN2018073515-appb-000071
是高层信令配置的PUCCH format 2包括的符号数,
对于PUCCH format 3,
Figure PCTCN2018073515-appb-000072
是高层信令配置的PUCCH format 3包括的符号中除去DMRS符号之外的符号数量,
对于PUCCH format 4,
Figure PCTCN2018073515-appb-000073
是高层信令配置的PUCCH format 4包括的符号中除去DMRS符号之外的符号数量。
应理解,上述无线通信方法400对应方法200中的相应步骤,以及上述无线通信方法400中的步骤可以参考无线通信方法200中的相应步骤的描述,为了简洁,在此不再赘述。
因此,在本申请实施例的无线通信方法中,终端设备在确定传输UCI所使用的PRB数量时,考虑第一PUCCH格式的扩频系数的影响,从而,所确定的传输UCI所使用的PRB数量能够承载全部UCI,进而,保证UCI的可靠传输。
图5是根据本申请实施例的终端设备500的示意性框图。该终端设备500包括:
处理单元510,用于根据第一物理上行控制信道PUCCH格式所使用的扩频系数,确定编码速率的取值范围;
通信单元520,用于接收网络设备发送的控制信令,所述控制信令用于指示使用所述第一PUCCH格式传输上行控制信息UCI的目标编码速率,其中,所述目标编码速率的取值不超出所述编码速率取值范围;
所述处理单元510,还用于根据所述控制信令,确定所述目标编码速率。
可选地,所述处理单元510具体用于:
确定所述编码速率的取值小于或等于第一参数,其中,所述第一参数等于1除以N,N为所述第一PUCCH格式所使用的扩频系数;和/或,
确定所述编码速率的取值大于零。
可选地,所述处理单元510具体用于:
不期待所述目标编码速率大于或等于所述第一参数。
可选地,所述处理单元510具体用于:
确定所述目标编码速率为使用所述第一PUCCH格式传输UCI所使用的最大编码速率。
应理解,该终端设备500可以对应于方法200中的终端设备,可以实现方法200中终端设备实现的相应操作,为了简洁,在此不再赘述。
图6是根据本申请实施例的网络设备600的示意性框图。该网络设备600包括:
通信单元610,用于向终端设备发送控制信令,所述控制信令用于指示所述终端设备使用第一物理上行控制信道PUCCH格式传输上行控制信息UCI的目标编码速率,其中,所述目标编码速率的取值不超出编码速率取值范围,所述编码速率的取值范围为根据所述第一PUCCH格式所使用的扩频系数确定的。
应理解,该网络设备600可以对应于方法300中的网络设备,可以实现方法300中网络设备实现的相应操作,为了简洁,在此不再赘述。
图7是根据本申请实施例的终端设备700的示意性框图。该终端设备700包括:
处理单元710,用于根据待传输上行控制信息UCI的比特数和第一物理上行控制信道PUCCH格式的扩频系数,确定传输所述待传输UCI的物理资源块PRB数量。
可选地,所述处理单元810具体用于:
根据所述待传输UCI的比特数、所述第一PUCCH格式的扩频系数,以及第一参数,确定传输所述待传输UCI的PRB数量,其中,
所述第一参数包括所述第一PUCCH格式在一个资源块内用于传输UCI的子载波数量、所述第一PUCCH格式用于传输UCI的时域符号数量、调制阶数、所述第一PUCCH格式对应的最大编码速率、所述第一PUCCH格式对应的最大PRB数量中的至少一种。
可选地,所述传输所述待传输UCI的物理资源块PRB数量
Figure PCTCN2018073515-appb-000074
满足:
Figure PCTCN2018073515-appb-000075
且当所述第一PUCCH格式对应的最大PRB数量大于1时,
Figure PCTCN2018073515-appb-000076
或,
Figure PCTCN2018073515-appb-000077
其中,O UCI为UCI的比特数目,O CRC为循环冗余校验码CRC的比特数量,
Figure PCTCN2018073515-appb-000078
为所述第一PUCCH格式在一个资源块内用于传输UCI信息的子载波数量,
Figure PCTCN2018073515-appb-000079
为所述第一PUCCH格式用于传输UCI信息的时域符号数量,Q m为调制阶数,r为所述第一PUCCH格式对应的最大编码速率,
Figure PCTCN2018073515-appb-000080
为所述第一PUCCH格式的扩频系数。
可选地,所述传输所述待传输UCI的物理资源块PRB数量
Figure PCTCN2018073515-appb-000081
满足:
Figure PCTCN2018073515-appb-000082
且当所述第一PUCCH格式对应的最大PRB数量大于1时,
Figure PCTCN2018073515-appb-000083
或,
Figure PCTCN2018073515-appb-000084
其中,O UCI为UCI的比特数目,O CRC为CRC的比特数量,
Figure PCTCN2018073515-appb-000085
为所述第一PUCCH格式在一个资源块内用于传输UCI信息的子载波数量除以
Figure PCTCN2018073515-appb-000086
为所述第一PUCCH格式的扩频系数,
Figure PCTCN2018073515-appb-000087
为所述第一PUCCH格式用于传输UCI信息的时域符号数量,Q m为调制阶数,r为所述第一PUCCH格式对应的最大编码速率。
可选地,所述待传输UCI包括:确认ACK/非确认NACK反馈信息,和/或,调度请求信息SR,和/或,信道状态信息CSI。
应理解,该终端设备700可以对应于方法400中的终端设备,可以实现方法400中终端设备实现的相应操作,为了简洁,在此不再赘述。
图8示出了本申请实施例提供的无线通信的设备800的示意性框图,该设备800包括:
存储器810,用于存储程序,该程序包括代码;
收发器820,用于和其他设备进行通信;
处理器830,用于执行存储器810中的程序代码。
可选地,收发器820用于在处理器830的驱动下执行具体的信号收发。
可选地,当该代码被执行时,该处理器830还可以实现图2中的方法200和/或图4中的方法400中终端设备执行的各个操作,为了简洁,在此不再赘述。此时,该设备800 可以为终端设备,例如,手机。
可选地,当该代码被执行时,该处理器830可以实现图3中的方法300中网络设备执行的各个操作,为了简洁,在此不再赘述。此时,该设备800可以为网络设备,例如,基站。
应理解,在本申请实施例中,该处理器830可以是中央处理单元(Central Processing Unit,CPU),该处理器830还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器810可以包括只读存储器和随机存取存储器,并向处理器830提供指令和数据。存储器810的一部分还可以包括非易失性随机存取存储器。例如,存储器810还可以存储设备类型的信息。
收发器820可以是用于实现信号发送和接收功能,例如频率调制和解调功能或叫上变频和下变频功能。
在实现过程中,上述方法的至少一个步骤可以通过处理器830中的硬件的集成逻辑电路完成,或该集成逻辑电路可在软件形式的指令驱动下完成该至少一个步骤。因此,无线通信的设备800可以是个芯片或者芯片组。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器830读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
图9是根据本申请实施例的系统芯片900的示意性结构图。图9的系统芯片900包括输入接口901、输出接口902、处理器903以及存储器904之间可以通过内部通信连接线路相连,该处理器903用于执行该存储器904中的代码。
可选地,当该代码被执行时,该处理器903实现方法实施例中由终端设备执行的方法。为了简洁,在此不再赘述。
可选地,当该代码被执行时,该处理器903实现方法实施例中由网络设备执行的方法。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产 品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (20)

  1. 一种无线通信方法,其特征在于,包括:
    终端设备根据第一物理上行控制信道PUCCH格式所使用的扩频系数,确定编码速率的取值范围;
    所述终端设备接收网络设备发送的控制信令,所述控制信令用于指示使用所述第一PUCCH格式传输上行控制信息UCI的目标编码速率,其中,所述目标编码速率的取值不超出所述编码速率取值范围;
    所述终端设备根据所述控制信令,确定所述目标编码速率。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据第一PUCCH格式所使用的扩频系数,确定编码速率的取值范围,包括:
    所述终端设备确定所述编码速率的取值小于或等于第一参数,其中,所述第一参数等于1除以N,N为所述第一PUCCH格式所使用的扩频系数;和/或,
    所述终端设备确定所述编码速率的取值大于零。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备根据所述控制信令,确定所述目标编码速率,包括:
    所述终端设备不期待所述目标编码速率大于或等于所述第一参数。
  4. 根据权利要求1所述方法,其特征在于,所述终端设备根据所述控制信令,确定所述目标编码速率,包括:
    所述终端设备确定所述目标编码速率为使用所述第一PUCCH格式传输UCI所使用的最大编码速率。
  5. 一种无线通信方法,其特征在于,包括:
    网络设备向终端设备发送控制信令,所述控制信令用于指示所述终端设备使用第一物理上行控制信道PUCCH格式传输上行控制信息UCI的目标编码速率,其中,所述目标编码速率的取值不超出编码速率取值范围,所述编码速率的取值范围为根据所述第一PUCCH格式所使用的扩频系数确定的。
  6. 一种无线通信方法,其特征在于,包括:
    终端设备根据待传输上行控制信息UCI的比特数和第一物理上行控制信道PUCCH格式的扩频系数,确定传输所述待传输UCI的物理资源块PRB数量。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备根据待传输UCI的比特数和第一PUCCH格式的扩频系数,确定传输所述待传输UCI的PRB数量,包括:
    所述终端设备根据所述待传输UCI的比特数、所述第一PUCCH格式的扩频系数, 以及第一参数,确定传输所述待传输UCI的PRB数量,其中,
    所述第一参数包括所述第一PUCCH格式在一个资源块内用于传输UCI的子载波数量、所述第一PUCCH格式用于传输UCI的时域符号数量、调制阶数、所述第一PUCCH格式对应的最大编码速率、所述第一PUCCH格式对应的最大PRB数量中的至少一种。
  8. 根据权利要求7所述的方法,其特征在于,所述传输所述待传输UCI的物理资源块PRB数量
    Figure PCTCN2018073515-appb-100001
    满足:
    Figure PCTCN2018073515-appb-100002
    且当所述第一PUCCH格式对应的最大PRB数量大于1时,
    Figure PCTCN2018073515-appb-100003
    或,
    Figure PCTCN2018073515-appb-100004
    其中,O UCI为UCI的比特数目,O CRC为循环冗余校验码CRC的比特数量,
    Figure PCTCN2018073515-appb-100005
    为所述第一PUCCH格式在一个资源块内用于传输UCI信息的子载波数量,
    Figure PCTCN2018073515-appb-100006
    为所述第一PUCCH格式用于传输UCI信息的时域符号数量,Q m为调制阶数,r为所述第一PUCCH格式对应的最大编码速率,
    Figure PCTCN2018073515-appb-100007
    为所述第一PUCCH格式的扩频系数。
  9. 根据权利要求7所述的方法,其特征在于,所述传输所述待传输UCI的物理资源块PRB数量
    Figure PCTCN2018073515-appb-100008
    满足:
    Figure PCTCN2018073515-appb-100009
    且当所述第一PUCCH格式对应的最大PRB数量大于1时,
    Figure PCTCN2018073515-appb-100010
    或,
    Figure PCTCN2018073515-appb-100011
    其中,O UCI为UCI的比特数目,O CRC为CRC的比特数量,
    Figure PCTCN2018073515-appb-100012
    为所述第一PUCCH格式在一个资源块内用于传输UCI信息的子载波数量除以
    Figure PCTCN2018073515-appb-100013
    为所述第一PUCCH格式的扩频系数,
    Figure PCTCN2018073515-appb-100014
    为所述第一PUCCH格式用于传输UCI信息的时域符号数量,Q m为调制阶数,r为所述第一PUCCH格式对应的最大编码速率。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述待传输UCI包括:确认ACK/非确认NACK反馈信息,和/或,调度请求信息SR,和/或,信道状态信息CSI。
  11. 一种终端设备,其特征在于,包括:
    处理单元,用于根据第一物理上行控制信道PUCCH格式所使用的扩频系数,确定编码速率的取值范围;
    通信单元,用于接收网络设备发送的控制信令,所述控制信令用于指示使用所述第 一PUCCH格式传输上行控制信息UCI的目标编码速率,其中,所述目标编码速率的取值不超出所述编码速率取值范围;
    所述处理单元,还用于根据所述控制信令,确定所述目标编码速率。
  12. 根据权利要求11所述的终端设备,其特征在于,所述处理单元具体用于:
    确定所述编码速率的取值小于或等于第一参数,其中,所述第一参数等于1除以N,N为所述第一PUCCH格式所使用的扩频系数;和/或,
    确定所述编码速率的取值大于零。
  13. 根据权利要求12所述的终端设备,其特征在于,所述处理单元具体用于:
    不期待所述目标编码速率大于或等于所述第一参数。
  14. 根据权利要求11所述终端设备,其特征在于,所述处理单元具体用于:
    确定所述目标编码速率为使用所述第一PUCCH格式传输UCI所使用的最大编码速率。
  15. 一种网络设备,其特征在于,包括:
    通信单元,用于向终端设备发送控制信令,所述控制信令用于指示所述终端设备使用第一物理上行控制信道PUCCH格式传输上行控制信息UCI的目标编码速率,其中,所述目标编码速率的取值不超出编码速率取值范围,所述编码速率的取值范围为根据所述第一PUCCH格式所使用的扩频系数确定的。
  16. 一种终端设备,其特征在于,包括:
    处理单元,用于根据待传输上行控制信息UCI的比特数和第一物理上行控制信道PUCCH格式的扩频系数,确定传输所述待传输UCI的物理资源块PRB数量。
  17. 根据权利要求16所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述待传输UCI的比特数、所述第一PUCCH格式的扩频系数,以及第一参数,确定传输所述待传输UCI的PRB数量,其中,
    所述第一参数包括所述第一PUCCH格式在一个资源块内用于传输UCI的子载波数量、所述第一PUCCH格式用于传输UCI的时域符号数量、调制阶数、所述第一PUCCH格式对应的最大编码速率、所述第一PUCCH格式对应的最大PRB数量中的至少一种。
  18. 根据权利要求17所述的终端设备,其特征在于,所述传输所述待传输UCI的物理资源块PRB数量
    Figure PCTCN2018073515-appb-100015
    满足:
    Figure PCTCN2018073515-appb-100016
    且当所述第一PUCCH格式对应的最大PRB数量大于1时,
    Figure PCTCN2018073515-appb-100017
    或,
    Figure PCTCN2018073515-appb-100018
    其中,O UCI为UCI的比特数目,O CRC为循环冗余校验码CRC的比特数量,
    Figure PCTCN2018073515-appb-100019
    为所述第一PUCCH格式在一个资源块内用于传输UCI信息的子载波数量,
    Figure PCTCN2018073515-appb-100020
    为所述第一PUCCH格式用于传输UCI信息的时域符号数量,Q m为调制阶数,r为所述第一PUCCH格式对应的最大编码速率,
    Figure PCTCN2018073515-appb-100021
    为所述第一PUCCH格式的扩频系数。
  19. 根据权利要求17所述的终端设备,其特征在于,所述传输所述待传输UCI的物理资源块PRB数量
    Figure PCTCN2018073515-appb-100022
    满足:
    Figure PCTCN2018073515-appb-100023
    且当所述第一PUCCH格式对应的最大PRB数量大于1时,
    Figure PCTCN2018073515-appb-100024
    或,
    Figure PCTCN2018073515-appb-100025
    其中,O UCI为UCI的比特数目,O CRC为CRC的比特数量,
    Figure PCTCN2018073515-appb-100026
    为所述第一PUCCH格式在一个资源块内用于传输UCI信息的子载波数量除以
    Figure PCTCN2018073515-appb-100027
    为所述第一PUCCH格式的扩频系数,
    Figure PCTCN2018073515-appb-100028
    为所述第一PUCCH格式用于传输UCI信息的时域符号数量,Q m为调制阶数,r为所述第一PUCCH格式对应的最大编码速率。
  20. 根据权利要求16至19中任一项所述的终端设备,其特征在于,所述待传输UCI包括:确认ACK/非确认NACK反馈信息,和/或,调度请求信息SR,和/或,信道状态信息CSI。
PCT/CN2018/073515 2018-01-19 2018-01-19 无线通信方法、终端设备和网络设备 WO2019140662A1 (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
KR1020207023809A KR102427695B1 (ko) 2018-01-19 2018-01-19 무선 통신 방법, 단말 기기 및 네트워크 기기
EP18901090.3A EP3742650B1 (en) 2018-01-19 2018-01-19 Wireless communication method, terminal device, and network device
PT189010903T PT3742650T (pt) 2018-01-19 2018-01-19 Método de comunicação sem fios, dispositivo de terminal e dispositivo de rede
EP22169299.9A EP4054110B1 (en) 2018-01-19 2018-01-19 Wireless communications method, terminal device, and network device
ES18901090T ES2924719T3 (es) 2018-01-19 2018-01-19 Método de comunicación inalámbrica, dispositivo terminal y dispositivo de red
ES22169299T ES2965225T3 (es) 2018-01-19 2018-01-19 Método de comunicaciones inalámbricas, dispositivo terminal y dispositivo de red
RU2020127284A RU2751553C1 (ru) 2018-01-19 2018-01-19 Способ осуществления беспроводной связи, терминальное устройство и сетевое устройство
HUE18901090A HUE059329T2 (hu) 2018-01-19 2018-01-19 Vezeték nélküli kommunikációs eljárás, végberendezés és hálózati eszköz
AU2018403272A AU2018403272B2 (en) 2018-01-19 2018-01-19 Wireless communication method, terminal device, and network device
PCT/CN2018/073515 WO2019140662A1 (zh) 2018-01-19 2018-01-19 无线通信方法、终端设备和网络设备
US16/997,336 US11197280B2 (en) 2018-01-19 2020-08-19 Wireless communications method, terminal device, and network device
US17/453,358 US11917625B2 (en) 2018-01-19 2021-11-03 Wireless communications method, terminal device, and network device
US18/407,280 US20240147479A1 (en) 2018-01-19 2024-01-08 Wireless communications method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/073515 WO2019140662A1 (zh) 2018-01-19 2018-01-19 无线通信方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/997,336 Continuation US11197280B2 (en) 2018-01-19 2020-08-19 Wireless communications method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2019140662A1 true WO2019140662A1 (zh) 2019-07-25

Family

ID=67301911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073515 WO2019140662A1 (zh) 2018-01-19 2018-01-19 无线通信方法、终端设备和网络设备

Country Status (9)

Country Link
US (3) US11197280B2 (zh)
EP (2) EP4054110B1 (zh)
KR (1) KR102427695B1 (zh)
AU (1) AU2018403272B2 (zh)
ES (2) ES2965225T3 (zh)
HU (1) HUE059329T2 (zh)
PT (1) PT3742650T (zh)
RU (1) RU2751553C1 (zh)
WO (1) WO2019140662A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474707B (zh) * 2018-05-11 2022-05-20 中兴通讯股份有限公司 一种传输方法、装置和系统
CN116094679A (zh) * 2018-07-24 2023-05-09 大唐移动通信设备有限公司 一种信息传输方法、终端及基站
EP4255073A4 (en) * 2021-01-22 2024-01-10 Guangdong Oppo Mobile Telecommunications Corp Ltd WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN117378250A (zh) * 2021-07-22 2024-01-09 Oppo广东移动通信有限公司 功率校准量的确定方法、终端、介质、芯片、产品及程序

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103098398A (zh) * 2010-07-22 2013-05-08 Lg电子株式会社 在多载波系统中发送上行链路控制信息的设备和方法
CN104937875A (zh) * 2012-10-05 2015-09-23 司亚乐无线通讯股份有限公司 Lte通信系统的增强
US20170150501A1 (en) * 2014-08-08 2017-05-25 Innovative Technology Lab Co., Ltd. Method and apparatus for wireless communication in wireless communication system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665277B1 (en) * 1998-10-16 2003-12-16 Texas Instruments Incorporated Comma free codes for fast cell search using tertiary synchronization channel
KR101553097B1 (ko) * 2009-03-12 2015-09-14 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 단말, 기지국, 제어 채널 수신 방법, 제어 채널 형성 방법 및 집적 회로
TWI628933B (zh) * 2009-10-01 2018-07-01 內數位專利控股公司 傳輸上鏈控制資訊的方法及系統
JP2011259242A (ja) 2010-06-09 2011-12-22 Ntt Docomo Inc 移動端末装置、無線基地局装置及び無線通信方法
US9060360B2 (en) * 2010-07-26 2015-06-16 Lg Electronics Inc. Method and device for transmitting control information
CN107113147B (zh) * 2014-12-31 2020-11-06 Lg电子株式会社 在无线通信系统中分配资源的方法和设备
CN113438060A (zh) * 2015-04-09 2021-09-24 北京三星通信技术研究有限公司 一种增强载波聚合系统的harq-ack传输方法和设备
JP2017034450A (ja) * 2015-07-31 2017-02-09 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN107210839B (zh) 2015-09-11 2021-07-20 华为技术有限公司 一种控制信息发送、接收方法、用户设备及网络设备
CN106559198B (zh) * 2015-09-25 2019-09-17 电信科学技术研究院 一种基于pucch的上行控制信息传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103098398A (zh) * 2010-07-22 2013-05-08 Lg电子株式会社 在多载波系统中发送上行链路控制信息的设备和方法
CN104937875A (zh) * 2012-10-05 2015-09-23 司亚乐无线通讯股份有限公司 Lte通信系统的增强
US20170150501A1 (en) * 2014-08-08 2017-05-25 Innovative Technology Lab Co., Ltd. Method and apparatus for wireless communication in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3GPP Technical Specification Group Radio Access Network; NR; Physical layer procedures for control (Release 15)", 3GPP TS 38.213 V15.0.0, no. V15.0.0, 3 January 2018 (2018-01-03), XP051392263 *

Also Published As

Publication number Publication date
KR20200122322A (ko) 2020-10-27
EP3742650A4 (en) 2021-01-06
AU2018403272B2 (en) 2023-10-26
EP4054110B1 (en) 2023-10-11
US11917625B2 (en) 2024-02-27
RU2751553C1 (ru) 2021-07-14
US20240147479A1 (en) 2024-05-02
US20220061045A1 (en) 2022-02-24
PT3742650T (pt) 2022-08-01
KR102427695B1 (ko) 2022-07-29
HUE059329T2 (hu) 2022-11-28
US20210058920A1 (en) 2021-02-25
EP3742650B1 (en) 2022-06-08
ES2924719T3 (es) 2022-10-10
EP3742650A1 (en) 2020-11-25
EP4054110A1 (en) 2022-09-07
US11197280B2 (en) 2021-12-07
AU2018403272A1 (en) 2020-09-03
ES2965225T3 (es) 2024-04-11

Similar Documents

Publication Publication Date Title
WO2022068836A1 (zh) 定位参考信号的传输方法及装置、存储介质、终端
WO2016155305A1 (zh) 用户设备、网络设备和确定物理上行控制信道资源的方法
WO2019140662A1 (zh) 无线通信方法、终端设备和网络设备
WO2019157733A1 (zh) 物理上行共享信道传输方法和终端设备
WO2018152790A1 (zh) 传输反馈信息的方法、终端设备和网络设备
RU2737171C1 (ru) Способ передачи информации, оконечное устройство и сетевое устройство
US11849436B2 (en) Radio communication method and device
US20240090006A1 (en) Wireless communication method and network device
US20200178265A1 (en) Method for data storage, terminal device and base station
US20210320758A1 (en) Wireless communication method and apparatus in wireless communication device
TWI741089B (zh) 傳輸信息的方法、終端設備和網絡設備
WO2019028904A1 (zh) 无线通信的方法、网络设备和终端设备
CN111711993A (zh) 一种传输信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018901090

Country of ref document: EP

Effective date: 20200819

ENP Entry into the national phase

Ref document number: 2018403272

Country of ref document: AU

Date of ref document: 20180119

Kind code of ref document: A