WO2021157887A1 - 서브 모듈 - Google Patents

서브 모듈 Download PDF

Info

Publication number
WO2021157887A1
WO2021157887A1 PCT/KR2021/000464 KR2021000464W WO2021157887A1 WO 2021157887 A1 WO2021157887 A1 WO 2021157887A1 KR 2021000464 W KR2021000464 W KR 2021000464W WO 2021157887 A1 WO2021157887 A1 WO 2021157887A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
rail
cart
extension
sub
Prior art date
Application number
PCT/KR2021/000464
Other languages
English (en)
French (fr)
Inventor
양승필
강대철
Original Assignee
엘에스일렉트릭 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200012775A external-priority patent/KR102356820B1/ko
Priority claimed from KR1020200012778A external-priority patent/KR102345252B1/ko
Application filed by 엘에스일렉트릭 (주) filed Critical 엘에스일렉트릭 (주)
Priority to CN202180011806.9A priority Critical patent/CN115039330A/zh
Publication of WO2021157887A1 publication Critical patent/WO2021157887A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/639Additional means for holding or locking coupling parts together, after engagement, e.g. separate keylock, retainer strap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R25/00Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits
    • H01R25/14Rails or bus-bars constructed so that the counterparts can be connected thereto at any point along their length
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output

Definitions

  • the present invention relates to a sub-module, and more particularly, to a sub-module having a structure in which a coupling state between a cart on which a capacitor assembly or a valve assembly is seated and a rail assembly can be stably maintained.
  • a flexible transmission system or a new power transmission system is an operating technology that increases the flexibility of the power system by introducing power electronic control technology to the AC power system.
  • the flexible power transmission system may control transmission power by using a power semiconductor switching device.
  • a flexible transmission system can maximize the facility utilization of the transmission line, increase the transmission capacity, and minimize voltage fluctuations.
  • a capacitor element In a flexible power transmission system, storage and input/output of power are achieved by a capacitor element.
  • the capacitor element may be controlled by a switching element. Specifically, the switching element may control input and output of current to and from the capacitor element.
  • a configuration for controlling the capacitor element and the switching element may be configured in a module manner.
  • each component When the components are configured in a modular manner, each component may be electrically connected to each other in such a way that it is inserted into or withdrawn from a large frame. Accordingly, the transmission and storage capacity of the entire flexible power transmission system may be changed.
  • the construction is generally high in weight. This is due to the mounting of a capacitor element, a switching element, and various elements for controlling them in the element.
  • the method of inserting or withdrawing the configuration into the frame is preferably performed in a sliding manner.
  • the sliding method must be provided with a rail for supporting the configuration due to its structure.
  • the above configuration assumes that the rail is coupled to move only in the longitudinal direction of the rail. However, there is a risk that the configuration may be arbitrarily detached from the rail due to abrasion, etc. occurring as the insertion and extraction of the configuration are repeated.
  • Korean Patent Laid-Open Publication No. 10-2011-0064226 discloses a rail-departure prevention device. Specifically, a separate rail-departure prevention device is provided on the outside of the wheel of the cart seated on the rail, and the rail-displacement prevention device for preventing the wheel from being separated in the width direction of the rail is disclosed.
  • this type of rail-departure prevention device has a limitation in that it does not provide a method for preventing the cart from being separated from the rail upwards in the vertical direction.
  • Korean Utility Model Document No. 20-0406915 discloses a device for preventing separation of a slide rail. Specifically, when opening and closing the storage box, a separation prevention device for preventing the departure of the rail generated by the impact according to the sliding of the moving rail is disclosed.
  • this type of separation prevention device is based on the premise of supporting a lightweight object, and there is a limitation in that it is difficult to apply to a rail provided in a flexible power transmission system.
  • the prior literature assumes that the slide rail is provided on the side of the frame. Therefore, it is difficult to secure the reliability of whether the high-weight structure can be stably supported from the side in the same manner as in the prior literature.
  • Korean Unexamined Utility Model Document No. 20-1998-0049317 discloses a device for preventing separation of a slide door. Specifically, a stopper bracket is fastened to a lower portion of a support bracket for supporting a lower roller, and an auxiliary stopper is provided in a vertical portion of the stopper bracket.
  • this type of separation prevention device assumes that the lower roller is provided on the rail to which the slide door is fastened. That is, it is difficult to apply when the rail and the slide door are fastened without a separate member.
  • the prior art relates to a structure for supporting a slide door of relatively low weight. That is, there is a limit in that only a method for allowing components that are light enough to be supported by the lower roller to be separated from the rail is limited.
  • An object of the present invention is to provide a sub-module having a structure that can solve the above problems.
  • an object of the present invention is to provide a sub-module having a structure in which a high-weight module can be easily coupled to a rail.
  • Another object of the present invention is to provide a sub-module having a structure in which a high-weight module can be easily slidably moved while being coupled to a rail.
  • an object of the present invention is to provide a sub-module having a structure in which a high-weight module is not arbitrarily separated inward in the width direction of the rail in a state in which it is coupled to the rail.
  • an object of the present invention is to provide a sub-module having a structure in which a high-weight module is not arbitrarily separated outward in the width direction of the rail while it is coupled to the rail.
  • an object of the present invention is to provide a sub-module having a structure in which a high-weight module is not arbitrarily separated to the upper side of the rail in a state in which it is coupled to the rail.
  • Another object of the present invention is to provide a sub-module having a structure that is not damaged by the weight of the module on a rail supporting a high-weight module.
  • an object of the present invention is to provide a sub-module having a structure in which a high-weight module is easily coupled to a rail without adding a separate member, thereby stably maintaining the coupled state.
  • an object of the present invention is to provide a sub-module having a structure capable of limiting the distance that a high-weight module coupled to the rail slides along the rail.
  • an object of the present invention is to provide a sub-module having a structure that does not require excessive structural change in order to limit the distance that the heavy-duty module slides along the rail.
  • an object of the present invention is to provide a sub-module having a structure in which a high-weight module can be smoothly slid in the longitudinal direction of the rail up to a specific position.
  • an object of the present invention is to provide a sub-module having a structure that is no longer moved in the longitudinal direction of the rail when the high-weight module reaches the specific position.
  • an object of the present invention is to provide a sub-module having a structure in which a high-weight module can smoothly slide in a direction away from the end at the specific position.
  • an object of the present invention is to provide a sub-module having a structure in which a user can easily manipulate the high-weight module to further move the high-weight module in the direction of the end when the high-weight module reaches the specific position.
  • an object of the present invention is to provide a sub-module having a structure in which a high-weight module is integrally coupled with a rail and cannot be arbitrarily slidably moved.
  • a sub-module includes a capacitor assembly accommodating a capacitor element therein; a valve assembly energably coupled to the capacitor assembly; a cart unit on which the capacitor assembly or the valve assembly is seated; and a rail unit slidably coupled to the cart unit and extending in one direction, wherein the cart unit includes: an extension extending toward the rail unit; and a wheel part rotatably coupled to one side of the extension part and rotatably contacting the rail unit, wherein the rail unit is formed to extend toward the cart unit and faces the other side of the extension part rail curvature.
  • the cart unit of the sub-module may include a round part protruding roundly toward the rail curved part from the other side of the extension part, and the rail curved part may be curved to surround the round part.
  • the curved rail portion of the sub-module may be formed to be rounded in a direction away from the round portion.
  • the cart unit of the sub-module includes a cart body on which the capacitor assembly or the valve assembly is seated, and the extension part extends from one side opposite to the seated capacitor assembly or the valve assembly, and the rail curved part
  • The, one end facing the cart unit may be formed to extend so as to be positioned between the round portion and the cart body portion.
  • the rail unit of the sub-module is located on one side of the cart unit opposite to the capacitor assembly or the valve assembly, and includes a rail body part from which the rail curved part extends, and the rail curved part is the round part. in a direction away from the first rail curved portion extending roundly from the rail body; a second rail curved portion extending in a round manner from the first rail curved portion in a direction away from the round portion; And in a direction away from the round portion, it may include a third rail curved portion extending from the second rail curved portion to be round.
  • a side limiting portion formed to be rounded to form a predetermined angle with the surface of the round portion may be protruded from one side of the second rail curved portion facing the round portion of the sub-module.
  • the side limiting part of the sub-module may have one side facing the round part concave in a direction away from the round part, and the round part may be convex toward the side limiting part.
  • an upper surface limiting part protruding toward the round part may be provided on one side of the third rail curved part facing the round part of the sub-module.
  • the upper surface limiting part of the sub-module may have one side facing the round part concave in a direction away from the round part, and the round part may be convex toward the upper surface limiting part.
  • the rail unit of the sub-module may include: a rail body in which the rail curved portion extends; a rail extension portion extending toward the wheel portion in the rail curved portion; and a support part continuous with the rail extension part and positioned in a direction away from the rail extension part, wherein the wheel part may be rotatably seated on the support part.
  • a step part which is continuous with the rail extension part and the support part, respectively, and has one side facing the wheel part recessed, may be formed.
  • the shortest distance between the one side surface of the step part of the sub-module and the capacitor assembly or the valve assembly is formed to be longer than the shortest distance between the capacitor assembly or the valve assembly and the one side surface of the support part facing the wheel part.
  • the shortest distance between the one side of the step portion of the sub-module and the capacitor assembly or the valve assembly is between one side of the rail extension facing the capacitor assembly or the valve assembly and the capacitor assembly or the valve assembly It may be formed longer than the shortest distance.
  • the shortest distance between one side of the supporting part facing the wheel part of the sub-module and the capacitor assembly or the valve assembly is the one side of the rail extension facing the capacitor assembly or the valve assembly and the capacitor assembly or the valve It may be formed longer than the shortest distance between the assemblies.
  • the wheel part of the sub-module may include a wheel body part rotatably seated on the support part; and a disk portion positioned on one side of the wheel body portion facing the extension portion and formed to have a larger diameter than the wheel body portion, wherein the wheel body portion is rotatably seated on the support portion, and the disk portion is the rail extension portion , may be accommodated in a space surrounded by the step portion and the support portion.
  • the disk portion of the sub-module is formed to have a predetermined thickness in a direction toward the rail extension portion and the support portion, and the length of the step portion extending between the rail extension portion and the support portion is determined by the thickness of the disk portion It may be formed longer.
  • the outer periphery of the disk portion of the sub-module may be spaced apart from the one surface of the step portion by a predetermined distance.
  • a cart coupling part rotatably coupled to the extension part may be provided on one side of the disk part facing the extension part of the sub-module.
  • the sub-module according to another embodiment of the present invention, a cart unit on which the valve assembly is seated; a rail unit to which the cart unit is slidably coupled and formed to extend in one direction; and a departure prevention part provided on the cart unit and the rail unit to prevent the cart unit from being arbitrarily separated from the rail unit, wherein the departure prevention part is rotatably coupled to the cart unit, a stopper member extending in the direction; and a stop groove which is recessed in one side of the rail unit and into which one side of the stopper member is inserted or discharged.
  • the cart unit of the sub-module may include a cart body extending in the one direction in which the rail unit is extended; and an extension formed extending from the cart body toward the rail unit, wherein the stopper member may be coupled to one side of the extension.
  • the stopper member of the separation preventing part of the sub-module may include: a stopper body extending in the one direction in which the stopper member is extended; and a locking plate bent at a predetermined angle from one side of the stopper body in the extension direction toward the extension, wherein when the stopper member is inserted into the stop groove, the locking plate closes the stop groove It may be in contact with any one of the surrounding surfaces.
  • the separation preventing unit of the sub-module includes an elastic member coupled to the stopper member and the cart unit, respectively, and configured to elastically support the stopper member, wherein the stopper member includes one side on which the locking plate is located. and an elastic member coupling hole formed through the other side opposite to the one, and one side of the elastic member may be coupled to the elastic member coupling hole.
  • the stopper member of the separation preventing part of the sub-module includes a wheel coupling part positioned between the locking plate and the elastic member coupling hole and rotatably coupled to the extension part, the elastic member, One side of the stopper member on which the elastic member coupling hole is formed may be configured to apply an elastic force in a direction toward the cart body.
  • the rail unit of the sub-module may include a support part on which a wheel part rotatably coupled to the extension part is seated, and the locking plate may be in contact with one side of the support part facing the cart body part.
  • the cart unit of the sub-module an extension formed extending toward the rail unit; and a wheel part rotatably coupled to the extension part, wherein the rail unit includes a support part on which the wheel part is seated, and the stop groove may be formed in the support part.
  • the stop groove of the separation preventing part of the sub-module is positioned adjacent to one end of the one direction in which the rail unit is extended and formed to extend at a predetermined angle with the one side of the rail unit first side; and a second surface continuous with the first surface, extending in a direction away from the one end of the rail unit, and extending from the first surface toward the one surface of the rail unit, the first The surface may be formed to be more inclined than the second surface with respect to the one surface of the rail unit.
  • the cart unit of the sub-module may be moved toward the stop groove by a distance in which the stopper member contacts the first surface.
  • the stop groove of the separation prevention part of the sub-module is located adjacent to one end of the one direction in which the rail unit is extended, and the stopper member is provided along the rail unit together with the cart unit. Moves in a direction toward the one end of the rail unit or in a direction away from the one end of the rail unit, and when the stopper member is inserted into the stop groove, the one side of the stopper member is, the one side of the rail unit c It may come into contact with the first surface surrounding the stop groove at a position adjacent to the bare part.
  • a configured blocking plate may be provided at one end of the rail unit adjacent to the stop groove of the separation preventing portion of the sub-module.
  • the cart unit of the sub-module includes: a cart body on which the valve assembly is seated; an extension formed extending from the cart body by a predetermined distance; and a round part protruding from the extension part to a round shape in a direction opposite to the separation preventing part, wherein the inside of the round part is formed penetratingly in the one direction in which the rail unit is extended, and the blocking plate is connected to the blocking plate.
  • a cart hollow portion to which a blocking fastening member fastened to the cart unit is fastened may be provided.
  • the rail unit of the sub-module may include: a rail body extending from a lower side of the cart unit in the one direction in which the rail unit is extended; and a rail extension portion extending from the rail body portion toward the stopper member, wherein the rail extension portion is formed penetrating in the one direction in which the rail unit extends, and the blocking plate is fastened to the rail unit A fastening hole to which the blocking fastening member is fastened may be provided.
  • the cart unit is coupled to the rail unit along the longitudinal direction of the rail unit.
  • a heavy-duty capacitor assembly or valve assembly is seated in a cart unit.
  • the heavy-duty capacitor assembly or valve assembly can be easily coupled to the rail unit via the cart unit.
  • the cart unit is slidably coupled to the rail unit.
  • the cart unit is provided with an extension portion extending toward the rail unit and a round portion protruding from the extension portion.
  • the rail unit is provided with a rail curved portion extending toward the cart unit and formed to surround the round portion.
  • the cart unit may be slidably moved in the longitudinal direction of the rail unit by being guided by the rail curvature.
  • the cart unit can slide along the rail unit even in a state where the heavy-duty capacitor assembly or the valve assembly is seated on the rail unit. Accordingly, the capacitor assembly or the valve assembly can be easily slid along the rail unit.
  • the rail curved portion is formed to be convex inside the rail unit, that is, in a direction away from the round portion.
  • the rail curved portion is formed to surround the round portion.
  • a side limiting portion is formed to protrude from one side of the rail curved portion facing the round portion. When the cart unit is moved by a predetermined distance in the left and right direction toward the rail curved portion, the side limiting portion is in contact with the round portion.
  • the distance that the cart unit moves inwardly in the left-right direction of the rail unit can be limited. Accordingly, the cart unit is not arbitrarily separated inward in the width direction of the rail unit.
  • the rail unit includes a rail extension portion, a step portion, and a support portion that are sequentially formed extending outward in the width direction from the rail body portion.
  • the step portion is formed to have a lower height than the rail extension portion and the support portion. Accordingly, a guide space, which is a space surrounded by the rail extension portion, the step portion, and the support portion, is formed.
  • the wheel portion of the cart unit is supported by the support.
  • a disk portion having a larger diameter than the wheel portion is formed inside the wheel portion.
  • the disk part is accommodated in the guide space part.
  • the width direction of the guide space is surrounded by the rail extension and the support.
  • the distance that the cart unit moves outwardly in the left-right direction of the rail unit can be limited. Accordingly, the cart unit is not arbitrarily separated outward in the width direction of the rail unit.
  • the rail curved portion is formed to be convex inside the rail unit, that is, in a direction away from the round portion.
  • the rail curved portion is formed to cover the round portion, and one end of the rail curved portion is formed to cover the upper side of the round portion.
  • An upper limiting portion is formed to protrude from one side of the curved rail toward the round portion.
  • a top face limiter is located at the one end of the rail bend. That is, the upper surface limiting portion is formed to protrude from the upper side of the round portion toward the round portion.
  • the upper surface limiting part is in contact with the round part.
  • the distance the cart unit moves upwards of the rail unit may be limited. Accordingly, the cart unit is not arbitrarily separated to the upper side of the rail unit.
  • the cart unit is slidably seated on the rail unit by the wheel part.
  • the wheel part is rotatably seated on the support part of the rail unit, the wheel body part having a wide surface. That is, the load of the cart unit and the capacitor assembly or the valve assembly seated thereon is supported by the wheel body part and the support part having a large surface area.
  • the rail unit may not be damaged by the weight of the assemblies.
  • the above-described effects can be achieved by the rail unit and the cart unit slidably coupled to the rail unit. That is, a separate additional member for achieving the above effects is not required.
  • valve assembly or capacitor assembly is seated in the cart unit.
  • the cart unit is slidably coupled to the rail unit.
  • the cart unit and the rail unit are provided with separation prevention parts, respectively. When the separation prevention unit provided in the cart unit and the separation prevention unit provided in the rail unit contact each other at a specific position, the cart unit does not move toward the end of the rail unit.
  • the distance at which the cart unit on which the valve assembly or the capacitor assembly is seated slides along the rail unit may be limited.
  • the separation prevention unit provided in the cart unit includes a stopper member and an elastic member.
  • the stopper member and the elastic member are respectively coupled to the cart unit.
  • the separation prevention part provided in the rail unit is provided as a stop groove recessed in the upper surface of the support part.
  • the separation preventing unit provided in the cart unit may be provided only by coupling the stopper member and the elastic member to the cart unit.
  • the separation prevention part provided in the rail unit may be provided only by forming a stop groove in the support part. Therefore, in order to limit the distance over which the cart unit slides, an excessive structural change is not required.
  • the stop groove includes a first face and a second face.
  • the first face is located closer to the longitudinal end of the rail unit than the second face.
  • the first surface is formed with a greater inclination with the upper surface of the rail unit than the second surface.
  • the stopper member provided in the cart unit is moved while one side is in contact with the rail unit. As the cart unit moves along the longitudinal end of the rail unit, the stopper member first passes through the second face.
  • the cart unit can be smoothly slid toward the longitudinal end of the rail unit until the stopper member comes into contact with the first surface.
  • first face is located closer to the end in the longitudinal direction of the rail unit than the second face.
  • the first surface is formed with a greater inclination with the upper surface of the rail unit than the second surface.
  • the cart unit does not slide toward the longitudinal end of the rail unit without a separate operation.
  • the second face is located farther from the end in the longitudinal direction of the rail unit than the first face.
  • the second surface is formed to have a smaller inclination with the upper surface of the rail unit than the first surface.
  • the stopper member may be moved along the second surface while in contact with the second surface.
  • the stopper member is elastically connected to the cart unit through the elastic member. With the stopper member in contact with the first surface, the user may rotate the stopper member in a direction in which the elastic member is tensioned. Accordingly, the portion in contact with the first surface of the stopper member is rotationally moved to the upper side of the rail unit.
  • the cart unit may be further moved toward the longitudinal end of the rail unit by the remaining distance after the user rotates the stopper member.
  • the blocking plate may be fastened to the cart unit and the rail unit.
  • the blocking plate is respectively fastened to the longitudinal ends of the cart unit and the rail unit. That is, the blocking plate is fastened to the cart unit and the rail unit at the same time.
  • the cart unit and the rail unit each remain fastened together at their longitudinal ends. Accordingly, the cart unit may not arbitrarily slide along the rail unit.
  • FIG. 1 is a perspective view illustrating a modular multi-level converter including a sub-module according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a sub-module according to an embodiment of the present invention.
  • FIG. 3 is a partially enlarged perspective view illustrating a connection relationship between the capacitor assembly and the valve assembly of the sub-module of FIG. 2 .
  • FIG. 4 is a perspective view illustrating the sub-module of FIG. 2 from another angle
  • FIG. 5 is a partially enlarged perspective view illustrating a ground portion coupled to the capacitor assembly of the sub-module of FIG. 2 .
  • FIG. 6 is a cross-sectional view showing an internal configuration of a ground rod unit connected to the ground of FIG. 5 so as to be energized.
  • FIG. 7 is a perspective view illustrating a valve assembly provided in the sub-module of FIG. 2 .
  • FIG. 8 is a partially transparent perspective view illustrating electrical equipment and insulating members provided in the valve assembly of FIG. 7 .
  • FIG. 9 is a partially enlarged perspective view illustrating a conductive wire for conducting electricity between a member for insulation of FIG. 8 and a rail assembly;
  • FIG. 10 is a partially exploded perspective view illustrating a coupling relationship of an explosion-proof frame part provided in the valve assembly of FIG. 7 .
  • FIG. 11 is an exploded perspective view from another angle illustrating a coupling relationship of an explosion-proof frame part provided in the valve assembly of FIG. 7 .
  • FIGS. 10 and 11 are perspective views illustrating the case unit provided in FIGS. 10 and 11 .
  • FIG. 13 is a front view illustrating a rail assembly provided in the sub-module of FIG. 2 .
  • FIG. 14 is a perspective view illustrating the rail assembly and the separation preventing unit of FIG. 13 .
  • FIG. 15 is a side view showing a state in which the separation preventing unit of FIG. 14 is inserted into the stop groove;
  • FIG. 16 is a side view illustrating a state in which the separation preventing unit of FIG. 14 is seated on a support.
  • FIG. 17 is a perspective view illustrating a process in which the cart unit is drawn out using an installation/separation unit provided in the sub-module of FIG. 2 .
  • FIG. 18 is a perspective view illustrating a process in which the cart unit is coupled using an installation/separation unit provided in the sub-module of FIG. 2 .
  • FIG. 19 is a rear perspective view illustrating a short circuit adjusting unit provided in the modular multi-level converter of FIG. 1 .
  • 20A is a perspective view illustrating a state before each sub-module is short-circuited with each other by the short circuit adjusting unit of FIG. 19 .
  • 20B is a perspective view illustrating a state in which each sub-module is short-circuited with each other by the short circuit adjusting unit of FIG. 19 .
  • 21 is a schematic diagram illustrating a process in which the short circuit adjusting lever of the indicator member provided in the short circuit adjusting unit of FIG. 19 is rotated.
  • FIG. 22 is a perspective view illustrating a cooling flow path provided in the sub-module of FIG. 2 .
  • FIG. 23 is a partially enlarged perspective view showing the main piping unit of the cooling passage part of FIG. 22 from another angle;
  • Fig. 24 is a partially enlarged perspective view showing the main piping unit of Fig. 23 from another angle;
  • FIG. 25 is a partially enlarged perspective view illustrating a coupling relationship between the pipe connecting unit and the valve connecting pipe of the cooling flow passage of FIG. 22 .
  • energized used in the following description refers to a state in which an electrical signal such as a current is transmitted between one or more members.
  • the energized state may be formed by a conductive wire or the like.
  • the term “communication” used in the following description means a state in which one or more members are fluidly connected to each other.
  • the communication state may be achieved by a pipe or the like.
  • cooling fluid used in the following description means any fluid that can exchange heat with another member.
  • the cooling fluid may be provided with water (water).
  • the modular multi-level converter 1 may function as a STATCOM (Static Synchronous Compensator).
  • the modular multi-level converter 1 is a kind of stationary reactive power compensator, and functions to improve stability by supplementing the voltage lost during transmission and distribution of electricity or power.
  • the multi-level converter 1 includes a plurality of sub-modules 10 and a frame 20 .
  • the sub-module 10 substantially performs the function of the above-described modular multi-level converter 1 .
  • a plurality of sub-modules 10 may be provided. According to the number of sub-modules 10 provided, the capacity of the modular multi-level converter 1 may be increased.
  • Each sub-module 10 is electrically connected to each other. In an embodiment, each sub-module 10 may be connected in series.
  • a total of six sub-modules 10 are provided, and are arranged to be spaced apart from each other by a predetermined distance in the left and right directions.
  • the number of provided sub-modules 10 may be changed.
  • the sub-module 10 is supported by the frame 20 .
  • the sub-module 10 is supported by a frame 20 forming one layer.
  • the frame 20 forms the framework of the modular multi-level converter 1 .
  • the frame 20 supports the sub-module 10 from an upper side or a lower side.
  • the frame 20 may be formed of a material having high rigidity.
  • the frame 20 may be formed of a steel material.
  • the shape of the frame 20 is provided in the form of an H-beam, so that the rigidity in the axial direction of the frame 20 can be further reinforced.
  • a plurality of frames 20 may be provided.
  • the plurality of frames 20 may be stacked on each other.
  • the sub-modules 10 supported by the frame 20 may also be arranged in a plurality of layers. Accordingly, the capacity of the modular multi-level converter 1 can be increased.
  • the frame 20 includes a vertical frame 21 , a horizontal frame 22 and a support 23 .
  • the frame 20 further includes an insulating member 24
  • the frame 20 further includes a fixing frame 25 .
  • the vertical frame 21 forms a skeleton of the frame 20 in the vertical direction.
  • the vertical frame 21 is formed to extend in the vertical direction.
  • a coupling plate is provided at the upper and lower ends of the vertical frame 21 .
  • the coupling plate is provided in a rectangular plate shape.
  • the coupling plate is coupled to the ground, or coupled to the coupling plate of another frame (20) stacked vertically.
  • the vertical frame 21 is provided on the left and right sides of the front and the left and right sides of the rear, respectively. Accordingly, a total of four vertical frames 21 are provided. The number of vertical frames 21 may be changed.
  • the vertical frame 21 is coupled to the horizontal frame 22 .
  • the vertical frame 21 may maintain a preset angle.
  • the horizontal frame 22 forms a skeleton of the frame 20 in the front-rear direction.
  • the horizontal frame 22 is formed to extend in the front-rear direction.
  • the front side end of the horizontal frame 22 is coupled to a vertical frame 21 disposed on the front side.
  • the rear side end of the horizontal frame 22 is coupled to a vertical frame 21 disposed on the rear side.
  • deformation in the front-rear direction of the vertical frame 21 and deformation in the vertical direction of the horizontal frame 22 may be minimized.
  • the horizontal frame 22 is provided on the left and right sides, respectively. Further, on the left and right sides, the horizontal frames 22 are disposed to be spaced apart from each other in the vertical direction. Accordingly, a total of four horizontal frames 22 are provided, but the number may be changed.
  • a support 23 is coupled to the horizontal frame 22 .
  • the horizontal frame 22 supports the left and right ends of the support 23 .
  • the support part 23 supports the sub-module 10 from the lower side.
  • the support 23 is coupled to the horizontal frame 22 .
  • the left end of the support 23 is coupled to the horizontal frame 22 provided on the left.
  • the right end of the support 23 is coupled to the horizontal frame 22 provided on the right.
  • the support 23 includes a plurality of beam members.
  • Each beam member may be provided in the form of an H-Beam.
  • a plurality of beam members are spaced apart from each other by a predetermined distance, and are continuously arranged in the front-rear direction.
  • the sub-module 10 is seated on the upper side of the support part 23 .
  • the rail unit 540 of the rail assembly 500 is fixedly coupled to the upper side of the support 23 .
  • the cart unit 510 of the sub-module 10 is slidably coupled to the rail unit 540 .
  • a short-circuit adjusting unit 800 may be provided in a beam member positioned at the rearmost side. A detailed description thereof will be provided later.
  • the fixed frame 25 extends at a predetermined angle with the horizontal frame 22 .
  • the fixed frame 25 may extend from the left horizontal frame 22 to the right horizontal frame 22 . Also, in one embodiment, the fixed frame 25 may extend vertically with respect to the horizontal frame 22 .
  • a modular multi-level converter 1 includes a sub-module 10 .
  • the sub-module 10 is provided in a modular form, and may be added to or excluded from the modular multi-level converter 1 .
  • the number of sub-modules 10 included in the modular multi-level converter 1 may be changed. Accordingly, the capacity of the modular multi-level converter 1 may be varied.
  • the sub-module 10 includes a capacitor assembly 100 and a valve assembly 200 .
  • the grounding part 300 the explosion-proof frame part 400 , the rail assembly 500 , the departure prevention part 600 , the installation separation part 700 , the short circuit adjustment part 800 . and a cooling passage part 900 .
  • the capacitor assembly 100 includes a capacitor element (not shown) therein.
  • the capacitor assembly 100 is electrically connected to the valve assembly 200 .
  • a capacitor element (not shown) inside the capacitor assembly 100 may be charged or discharged by a switching operation of the valve assembly 200 .
  • the capacitor element may store power energy input to the sub-module 10 .
  • Power energy stored in the capacitor element (not shown) may be used as a power source for driving each component of the sub-module 10 .
  • the power energy may be supplied as reactive power to an external power system to which the sub-module 10 is energably connected.
  • the capacitor assembly 100 is connected to the rear side of the valve assembly 200 . This is due to the frequent occurrence of a situation in which the valve assembly 200 needs to be maintained rather than the capacitor assembly 100 . That is, as will be described later, this is to easily separate only the valve assembly 200 toward the front side.
  • Capacitor assembly 100 is supported by rail assembly 500 . Specifically, the capacitor assembly 100 is seated on the capacitor cart unit 510a of the rail assembly 500 . In one embodiment, the capacitor assembly 100 may be fixedly coupled to the capacitor cart unit 510a.
  • the capacitor cart unit 510a may be slid to the front side or the rear side along the rail unit 540 . Accordingly, the capacitor assembly 100 may also slide to the front side or the rear side together with the capacitor cart unit 510a.
  • the capacitor assembly 100 is formed to have a larger size than the valve assembly 200 . This is due to the size of the capacitor element (not shown) mounted inside the capacitor assembly 100 . That is, the size of the capacitor assembly 100 may be changed according to the size of the capacitor element (not shown).
  • the capacitor assembly 100 includes a capacitor housing 110 and a capacitor connector 120 .
  • the capacitor housing 110 forms the outer shape of the capacitor assembly 100 .
  • a predetermined space is formed inside the capacitor housing 110 .
  • a capacitor element (not shown) may be mounted in the space.
  • the mounted capacitor element (not shown) is electrically connected to the valve assembly 200 by the capacitor connector 120 .
  • the capacitor housing 110 may be formed of a material having rigidity. This is in order not to affect the adjacent sub-module 10 and the valve assembly 200, etc. even when the capacitor element (not shown) accommodated therein explodes due to an unexpected cause.
  • a residual water collecting unit 960 of a cooling flow passage 900 to be described later is coupled to the upper side of the capacitor housing 110 .
  • the lower side of the capacitor housing 110 is coupled to the capacitor cart unit (510a).
  • the front side of the capacitor housing 110 is electrically connected to the valve assembly 200 by the capacitor connector 120 .
  • the capacitor connector 120 electrically connects the capacitor assembly 100 and the valve assembly 200 .
  • the capacitor connector 120 is electrically connected to the capacitor element (not shown) and the valve connector 220 of the valve assembly 200 .
  • the capacitor connector 120 When the capacitor assembly 100 or the valve assembly 200 slides toward each other, the capacitor connector 120 may be slid to the valve connector 220 to be inserted and coupled. Accordingly, an energized state between the capacitor connector 120 and the valve connector 220 is formed.
  • an energized state between the capacitor assembly 100 and the valve assembly 200 may be easily formed or released.
  • the capacitor connector 120 is formed on one side of the capacitor assembly 100 facing the valve assembly 200 , that is, the front side.
  • the capacitor connector 120 is provided in a plate shape protruding from the front side of the capacitor housing 110 by a predetermined distance.
  • the shape of the capacitor connector 120 may be any shape capable of being electrically coupled to the valve connector 220 .
  • a plurality of capacitor connectors 120 may be provided.
  • the capacitor connector 120 includes a first capacitor connector 121 provided on the left side and a second capacitor connector 122 provided on the right side.
  • the first capacitor connector 121 is energably coupled to the valve connector 220 provided on the left side by sliding.
  • the second capacitor connector 122 is slidably coupled to the valve connector 220 provided on the right side to be energized.
  • the valve assembly 200 is a part in which the sub-module 10 is electrically connected to an external power source or load. In addition, the valve assembly 200 is electrically connected to the capacitor assembly 100 , so that power energy may be input or output.
  • the valve assembly 200 may include a plurality of switching modules therein.
  • the switching module may be provided as an insulated gate bipolar transistor (IGBT) 440 .
  • IGBT insulated gate bipolar transistor
  • valve assembly 200 may include a control board for controlling the switching module therein.
  • control board may be provided as a printed circuit board (PCB, Printed Circuit Board) (280).
  • the sub-module 10 can prevent other IGBTs 440 and other components of the sub-module 10 from being damaged by the explosion of one IGBT 440 .
  • the IGBT 440 and a configuration for achieving the above object will be described as a separate clause in the "explosion-proof frame part 400".
  • valve assembly 200 is located on the front side of the capacitor assembly 100 . This is due to the fact that the maintenance of the valve assembly 200 is performed more frequently than the maintenance of the capacitor assembly 100 .
  • the valve assembly 200 may be easily coupled to or separated from the capacitor assembly 100 by the installation and separation unit 700 . A detailed description thereof will be provided later.
  • the valve assembly 200 is supported by a rail assembly 500 . Specifically, the valve assembly 200 is seated on the valve cart unit 510b of the rail assembly 500 . In one embodiment, the valve assembly 200 may be fixedly coupled to the valve cart unit (510b).
  • valve cart unit 510b may be slid to the front side or the rear side along the rail unit 540 . Accordingly, the valve assembly 200 may also be slid to the front side or the rear side together with the valve cart unit (510b).
  • the valve assembly 200 includes a valve cover part 210 , a valve connector 220 , an input busbar 230 , a bypass switch 240 , an output busbar 250 , and an insulating housing 260 . ), an insulating layer 270 and a printed circuit board 280 .
  • the valve cover portion 210 forms part of the outer shape of the valve assembly 200 . Specifically, the valve cover part 210 forms the left and right outer surfaces of the valve assembly 200 .
  • the valve cover part 210 is configured to cover the insulating housing 260 .
  • the printed circuit board 280 mounted inside the insulating housing 260 is not arbitrarily exposed to the outside.
  • the valve cover part 210 may be fixedly coupled to the insulating housing 260 through a fastening member such as a screw member.
  • the valve cover part 210 is configured to shield an electromagnetic noise component generated from the printed circuit board 280 or the IGBT 440 .
  • the valve cover part 210 may be formed of an aluminum (Al) material.
  • a plurality of through-holes are formed in the valve cover part 210 .
  • the through hole may communicate with the inner space of the insulating housing 260 and the outside. Air may be introduced through the through hole to cool the printed circuit board 280 or the IGBT 440 .
  • the valve cover part 210 is electrically connected to the cart unit 510 of the rail assembly 500 .
  • the connection may be achieved by the ground conductor 340 . Accordingly, the valve cover part 210 may be grounded so that unnecessary energization may not occur.
  • a direction from the valve cover unit 210 toward the explosion-proof frame unit 400 may be defined as an “inward direction”. Also, a direction from the explosion-proof frame 400 toward the valve cover 210 may be defined as an “outer direction”.
  • An insulating housing 260 is positioned in the inner direction of the valve cover part 210 .
  • the valve connector 220 electrically connects the valve assembly 200 and the capacitor assembly 100 .
  • the valve connector 220 is located on one side of the valve assembly 200 facing the capacitor assembly 100 , the rear side in the illustrated embodiment.
  • the valve connector 220 is formed to extend in one direction, the front-rear direction in the illustrated embodiment.
  • One side of the valve connector 220 is energably connected to the output busbar 250 .
  • the one side of the valve connector 220 is screwed to the output busbar 250 .
  • valve connector 220 The other side of the valve connector 220 , the rear side in the illustrated embodiment, is energably connected to the capacitor connector 120 .
  • the valve connector 220 may include a pair of plate members spaced apart from each other by a predetermined distance. That is, in the illustrated embodiment, each valve connector 220 is provided in the outward direction and the inward direction, respectively, and disposed to face each other.
  • the capacitor connector 120 may be slid into or ejected from the space formed by the pair of plate members being spaced apart from each other by the predetermined distance.
  • One end of the pair of plate members facing the capacitor assembly 100, in the illustrated embodiment, the rear end is formed to be rounded outward. Accordingly, the slide coupling and discharging can be easily performed.
  • Each of the pair of plate members may include a plurality of bar members.
  • the pair of plate members includes four bar members stacked in the vertical direction. The number may be changed.
  • a plurality of valve connectors 220 may be provided.
  • two valve connectors 220 are spaced apart from each other by a predetermined distance in the vertical direction.
  • each of the two valve connectors 220 is provided on each of the output busbars 250 provided with two, and a total of four are provided.
  • the number of valve connectors 220 may be changed to any number capable of forming an energized state of the valve assembly 200 and the capacitor assembly 100 .
  • the input busbar 230 connects the sub-module 10 to an external power source or load so as to be energized.
  • the input bus bar 230 is formed to protrude by a predetermined distance toward the front side of the explosion-proof frame portion 400 .
  • the front side of the input bus bar 230 is electrically connected to an external power source or load.
  • the front side of the input bus bar 230 is electrically connected to a bypass switch 240 .
  • the rear side of the input bus bar 230 is connected to the energized bus bar 420 to be energized.
  • a plurality of input busbars 230 may be provided.
  • the input bus bar 230 includes a first input bus bar 231 positioned at the upper side and a second input bus bar 232 positioned at the lower side.
  • the first input busbar 231 is electrically connected to the first energized busbar 421 . Accordingly, the first input busbar 231 may be electrically connected to the first IGBT 441 .
  • the second input busbar 232 is electrically connected to the second energizing busbar 422 . Accordingly, the second input busbar 232 may be electrically connected to the second IGBT 442 .
  • the first input busbar 231 and the second input busbar 232 are respectively connected to an external power source or a load to be energized.
  • the first input bus bar 231 and the second input bus bar 232 are electrically connected to the bypass switch 240 .
  • the bypass switch 240 is configured to exclude the sub-module 10 from the modular multi-level converter 1 when a problem occurs in any component of the sub-module 10 .
  • bypass switch 240 may electrically short-circuit the first input busbar 231 and the second input busbar 232 of the corresponding sub-module 10 . Accordingly, the current flowing into one of the first input busbar 231 and the second input busbar 232 of the corresponding sub-module 10 flows out through the other.
  • the sub-module 10 may function as a wire and may be electrically excluded from the modular multi-level converter 1 .
  • the bypass switch 240 is positioned between the first input busbar 231 and the second input busbar 232 on the front side of the explosion-proof frame part 400 .
  • the bypass switch 240 is electrically connected to the first input busbar 231 and the second input busbar 232 .
  • the output busbar 250 electrically connects the IGBT 440 and the capacitor assembly 100 .
  • the output busbar 250 is formed to protrude a predetermined distance in the direction toward the capacitor assembly 100 , that is, to the rear side.
  • a valve connector 220 is energably coupled to the rear side of the output busbar 250 . In one embodiment, the valve connector 220 may be screwed to the output busbar 250 .
  • the front side of the output busbar 250 may be energically connected to the energized busbar 420 , which is energably connected to the IGBT 440 .
  • a plurality of output busbars 250 may be provided.
  • two output busbars 250 are provided and disposed to be spaced apart from each other by a predetermined distance.
  • the predetermined distance may be the same as a distance between the first capacitor connector 121 and the second capacitor connector 122 .
  • the output busbar 250 may be coupled to the case unit 410 to cover the IGBT accommodating part 413 together with the energized busbar 420 .
  • the output busbar 250 and the energizing busbar 420 are connected to be energized.
  • the output busbar 250 is located on the rear side of the energized busbar 420 . Accordingly, the output busbar 250 is configured to cover the rear side of the IGBT receiving portion 413 .
  • the output busbar 250 is a first part covering the IGBT accommodating part 413, bent at a predetermined angle in the first part, and covers one side (the rear side in the illustrated embodiment) of the case unit 410 . and a third portion extending from the second portion and the second portion to which the valve connector 220 is coupled.
  • the insulating housing 260 accommodates the printed circuit board 280 therein.
  • the insulating housing 260 is in energized contact with the energizing bus bar 420 to energize the printed circuit board 280 and the IGBT 440 .
  • the IGBT 440 may be operated according to the control signal calculated by the printed circuit board 280 .
  • a plurality of insulating housings 260 are provided.
  • two insulating housings 260 are provided, respectively, on the left and right sides of the explosion-proof frame part 400 .
  • the outer direction of the insulating housing 260 that is, a direction away from the explosion-proof frame part 400 , that is, one side of the direction opposite to the explosion-proof frame part 400 may be shielded by the valve cover part 210 .
  • the valve cover part 210 is provided on the left side of the insulating housing 260 positioned on the left and on the right side of the insulating housing 260 positioned on the right side, respectively.
  • the insulating housing 260 may shield electromagnetic noise generated from the printed circuit board 280 or the IGBT 440 .
  • the insulating housing 260 may be formed of an aluminum material.
  • a predetermined space is formed inside the insulating housing 260 .
  • An insulating layer 270 and a printed circuit board 280 are positioned in the space.
  • the insulating housing 260 includes a first wall 261 , a second wall 262 , a third wall 263 , and a fourth wall 264 .
  • the first wall 261 forms a front side wall of the insulating housing 260 .
  • the second wall 262 forms a rear side wall of the insulating housing 260 .
  • the first wall 261 and the second wall 262 are disposed to face each other.
  • the third wall 263 forms an upper wall of the insulating housing 260 .
  • the fourth wall 264 forms the lower wall of the insulating housing 260 .
  • the third wall 263 and the fourth wall 264 are disposed to face each other.
  • the inner side of the first to fourth walls 261 , 262 , 263 , and 264 may be formed of a material capable of blocking electromagnetic noise.
  • the first to fourth walls 261 , 262 , 263 , and 264 may be formed of an aluminum material.
  • the bottom surface covered by the insulating layer 270 that is, one side of the insulating housing 260 facing the valve cover part 210 may also be formed of an aluminum material.
  • the inner space of the insulating housing 260 may be electrically shielded by the valve cover part 210 and each surface of the insulating housing 260 .
  • the electromagnetic noise generated from the printed circuit board 280 or the IGBT 440 is not arbitrarily leaked to the outside.
  • the insulating layer 270 and the printed circuit board 280 are accommodated in the space surrounded by the first to fourth walls 261 , 262 , 263 , and 264 .
  • the insulating layer 270 is configured to block electromagnetic noise generated from the IGBT 440 from flowing into the inner space of the insulating housing 260 . Also, the insulating layer 270 may block electromagnetic noise generated from the printed circuit board 280 from moving toward the IGBT 440 .
  • the insulating layer 270 is configured to cover the one side surface of the insulating housing 260 . That is, the insulating layer 270 is positioned between the one side of the insulating housing 260 facing the valve cover part 210 and the printed circuit board 280 .
  • one side of the space formed inside the insulating housing 260 toward the explosion-proof frame part 400 is surrounded by the insulating layer 270 .
  • the shape of the insulating layer 270 may be changed to correspond to the shape of the one side surface of the insulating housing 260 .
  • the insulating layer 270 may be formed of any material capable of blocking electromagnetic noise.
  • the insulating layer 270 may be formed of a polyimide material.
  • a printed circuit board 280 is positioned on one side of the insulating layer 270 facing the valve cover part 210 , that is, in an outer direction.
  • the printed circuit board 280 calculates a control signal for controlling the IGBT 440 . Also, the printed circuit board 280 may transmit the calculated control signal to the IGBT 440 to control the driving of the sub-module 10 .
  • the printed circuit board 280 is electrically connected to the IGBT 440 .
  • the printed circuit board 280 is electrically connected to the energized bus bar 420 . Accordingly, external power and control signals may be transmitted to the printed circuit board 280 .
  • the printed circuit board 280 is accommodated in the inner space of the insulating housing 260 .
  • the insulating layer 270 is positioned between the printed circuit board 280 and the one surface of the insulating housing 260 .
  • the printed circuit board 280 may pass through the insulating layer 270 and the one side of the insulating housing 260 to be electrically connected to the energized bus bar 420 .
  • a plurality of printed circuit boards 280 may be provided. In the illustrated embodiment, five printed circuit boards 280 are provided, but the number may be changed.
  • the sub-module 10 includes a grounding unit 300 .
  • the ground part 300 may be electrically connected to a capacitor element (not shown) provided in the capacitor assembly 100 . Accordingly, the power energy stored in the capacitor element (not shown) may be grounded and discharged.
  • the sub-module 10 needs to be moved for the purpose of maintenance or movement. At this time, if power energy remains in the capacitor element (not shown), there is a risk of explosion.
  • the sub-module 10 can easily discharge the power energy stored in the capacitor element (not shown) through the ground unit 300 .
  • the grounding unit 300 includes a grounding rod unit 310 , a grounding connector 320 , a grounding protrusion 330 , and a grounding conductor 340 .
  • the ground rod unit 310 forms the body of the ground unit 300 .
  • the ground rod unit 310 is formed to extend in one direction, in the illustrated embodiment, in the front-rear direction.
  • the ground rod unit 310 may be inserted and coupled to the ground protrusion 330 connected to the capacitor connector 120 to be energized. Also, the ground rod unit 310 may be electrically connected to the ground protrusion 330 .
  • the power energy stored in the capacitor element may be grounded through the capacitor connector 120 and the ground rod unit 310 .
  • the ground rod unit 310 may be detachably inserted and coupled to the ground protrusion 330 .
  • the ground rod unit 310 may move away from the capacitor assembly 100 , that is, in a direction opposite to the capacitor assembly 100 . Accordingly, the ground rod unit 310 may be separated from the ground protrusion 330 .
  • the ground rod unit 310 may be through-coupled to the ground rod through hole 412 of the explosion-proof frame part 400 .
  • the ground rod unit 310 may be guided toward the ground protrusion 330 by the ground rod through hole 412 .
  • the ground rod unit 310 has a cylindrical shape with a hollow portion formed therein.
  • the ground rod unit 310 may have any shape capable of being electrically coupled to the ground protrusion 330 .
  • the shape of the ground rod unit 310 is preferably determined to correspond to the shape of the ground rod through hole 412 .
  • a plurality of ground rod units 310 may be provided.
  • the ground rod unit 310 includes a first ground rod unit 310a and a second ground rod unit 310b.
  • the first ground rod unit 310a is energably inserted and coupled to the first ground protrusion 331 .
  • the second ground rod unit 310b is energably inserted and coupled to the second ground protrusion 332 .
  • the ground rod unit 310 includes a body part 311 , a coupling part 312 , a ground conductor part 313 , a ground conductor part 314 , a sealing part 315 , and a resistance part 316 .
  • the body portion 311 forms the body of the ground rod unit 310 .
  • the body portion 311 is formed to extend in the longitudinal direction, in the illustrated embodiment, in the front-rear direction.
  • the body portion 311 has a cylindrical shape having a circular cross section, and a hollow portion is formed therein.
  • Various components for grounding are mounted in the hollow part.
  • the coupling part 312 is a part where the ground rod unit 310 is coupled to the ground protrusion 330 .
  • the coupling part 312 is formed to extend a predetermined distance from one side facing the ground protrusion 330 to the front side from the rear side end in the illustrated embodiment.
  • the coupling part 312 is located in a hollow formed inside the body part 311 .
  • the outer surface of the coupling portion 312 may be in contact with the inner surface of the body portion 311 surrounding the hollow portion.
  • a hollow part is formed inside the coupling part 312 .
  • the diameter of the hollow part may be formed to be less than or equal to the diameter of the ground protrusion 330 .
  • the coupling part 312 may be formed of an elastically deformable material. Accordingly, when the ground protrusion 330 is inserted into the hollow part of the coupling part 312 , the coupling part 312 is deformed in shape and can store restoring force. By the restoring force, the coupling part 312 may stably hold the ground protrusion 330 .
  • the coupling part 312 may be formed of a rubber material.
  • the ground protrusion 330 is fitted to the coupling part 312 , so that the coupling state between the ground rod unit 310 and the ground protrusion 330 may be stably maintained.
  • the ground conductor part 313 is electrically connected to the ground protrusion part 330 . Power energy stored in the capacitor element (not shown) may be transferred to the resistor unit 316 through the ground conductor unit 313 .
  • the ground conductor part 313 is formed to surround the coupling part 312 from the outside. That is, one side of the ground conductor portion 313 facing the ground protrusion 330 , in the illustrated embodiment, the rear end portion forms the rear end portion of the body portion 311 .
  • a hollow part is formed inside the ground conductor part 313 .
  • a portion of the hollow portion, in the illustrated embodiment, the coupling portion 312 is accommodated on the rear side.
  • a portion in contact with the end of the ground protrusion 330 is formed on the remaining part of the hollow portion, in the illustrated embodiment, on the front side.
  • the shape of the part may be determined to correspond to the shape of the ground protrusion 330 .
  • the ground conductor part 313 is formed to extend in a direction away from the coupling part 312 , that is, in a direction opposite to the coupling part 312 .
  • the other side of the ground conductor part 313, the front end in the illustrated embodiment, is electrically connected to the rear end of the ground conductor part 314 .
  • the front side of the ground conductor part 313 and the rear side of the ground conductor part 314 may be fastened by a screw member.
  • the ground conductor part 314 connects the ground conductor part 313 and the resistor part 316 to be energized.
  • the ground conductor part 314 is electrically connected to the ground conductor part 313 and the resistor part 316 , respectively.
  • the ground conductor 314 extends in the longitudinal direction, in the illustrated embodiment, in the front-rear direction.
  • the rear end of the ground conductor part 314 is electrically connected to the ground conductor part 313 .
  • the front end of the grounding conductor 314 is electrically connected to the resistor 316 .
  • the sealing part 315 is provided at one side of the body part 311 to which the grounding conductor part 314 is exposed to the outside, and at the front end in the illustrated embodiment.
  • the sealing part 315 grips the ground conductive wire part 314 .
  • the sealing part 315 seals the space so that foreign substances such as dust do not flow into the space inside the body part 311 .
  • the sealing part 315 is configured to surround the ground conductive wire part 314 . Accordingly, the ground conductor 314 may move in the longitudinal direction or may not move in the radial direction.
  • the resistor unit 316 receives power energy stored in the capacitor element (not shown) and serves to discharge the capacitor element (not shown).
  • the resistor unit 316 is electrically connected to the ground conductor unit 314 .
  • the resistor 316 may be provided in any form capable of receiving power energy and consuming it.
  • the ground connector 320 electrically connects the capacitor connector 120 and the ground protrusion 330 .
  • the ground connector 320 is electrically connected to the capacitor connector 120 . Accordingly, the ground connector 320 and the capacitor element (not shown) may be electrically connected.
  • the ground connector 320 is electrically connected to the ground protrusion 330 . Accordingly, the capacitor element (not shown) and the ground protrusion 330 may be electrically connected.
  • a plate member forming a predetermined angle with the front-rear direction may be provided on one side of the ground connector 320 facing the valve assembly 200 , that is, on the front side.
  • the ground protrusion 330 may protrude from the plate member toward the front side in a direction toward the valve assembly 200 .
  • the predetermined angle may be a right angle.
  • the ground connector 320 is located above the capacitor connector 120 .
  • the ground connector 320 is formed to extend upward from the capacitor connector 120 by a predetermined distance. In one embodiment, the ground connector 320 may be screwed to the capacitor connector 120 .
  • a residual water collecting unit 960 of the cooling passage 900 may be provided above the ground connector 320 .
  • the ground connector 320 may be configured to support the residual water collection unit 960 .
  • a plurality of ground connectors 320 may be provided.
  • the ground connector 320 includes a first ground connector 321 and a second ground connector 322 .
  • the first ground connector 321 is electrically connected to the first capacitor connector 121 .
  • the second ground connector 322 is electrically connected to the second capacitor connector 122 .
  • a ground rod unit 310 is inserted and coupled to the ground protrusion 330 .
  • the ground protrusion 330 is formed to protrude by a predetermined distance toward the valve assembly 200 in the direction toward the front side in the illustrated embodiment.
  • the protrusion length of the grounding protrusion 330 is preferably determined to correspond to the length of the hollow formed in the grounding conductor 313 .
  • ground protrusion 330 One side of the ground protrusion 330 facing the ground connector 320 , in the illustrated embodiment, the rear side is connected to the ground connector 320 so as to be energized.
  • the ground protrusion 330 may protrude from the plate member of the ground connector 320 .
  • the capacitor element (not shown), the capacitor connector 120 , the ground connector 320 , the ground protrusion 330 , and the ground rod unit 310 are energized. possible to connect
  • Ground lead 340 ground each electrical device accommodated inside valve assembly 200 (best shown in FIGS. 7 and 8).
  • the grounding wire part 340 electrically connects the respective electrical devices and the valve cart unit 510b of the rail assembly 500 to be energized.
  • the ground lead part 340 includes a PCB ground wire 341 , a housing ground wire 342 , and a busbar ground wire 343 .
  • the PCB ground lead 341 connects the printed circuit board 280 and the valve cart unit 510b to be energized.
  • the housing grounding wire 342 electrically connects the insulating housing 260 and the valve cart unit 510b.
  • the busbar grounding wire 343 electrically connects the output busbar 250 and the valve cart unit 510b.
  • each electrical device accommodated in the valve assembly 200 can be stably operated.
  • the direction in which the ground rod unit 310 faces the capacitor assembly 100 is the rear side
  • the direction in which the ground rod unit 310 moves away from the capacitor assembly 100 that is, the direction opposite to the capacitor assembly 100 is the front side. It is assumed to be side by side.
  • the ground rod unit 310 is moved to the front side, and passes through the ground rod through hole 412 of the explosion-proof frame part 400 .
  • the ground rod through-holes 412 may be respectively formed on the front side and the rear side, and may be disposed to have the same central axis.
  • the coupling unit 312 is inserted and coupled to the ground protrusion 330 .
  • the ground protrusion 330 may be disposed to have the same central axis as the ground rod through hole 412 .
  • the shape of the ground rod unit 310 may be stably coupled to the ground protrusion 330 while maintaining a straight shape.
  • the coupling part 312 When the ground protrusion 330 is inserted, the coupling part 312 is deformed in shape and the stored restoring force is applied to the ground protrusion 330 . Accordingly, the coupling state of the ground protrusion 330 and the ground rod unit 310 may be stably maintained.
  • the front end of the ground protrusion 330 comes into contact with the ground conductor 313 . Accordingly, a energized state is formed between the capacitor element (not shown) and the resistor unit 316 , and power energy stored in the capacitor element (not shown) may be released.
  • the sub-module 10 includes an explosion-proof frame unit 400 .
  • the explosion-proof frame unit 400 may accommodate a switching element such as the IGBT 440 therein.
  • the explosion-proof frame part 400 according to the embodiment of the present invention can prevent damage to the adjacent IGBT 440 when the accommodated IGBT 440 explodes. Furthermore, the explosion-proof frame 400 according to an embodiment of the present invention is formed so that the gas generated by the explosion can be easily discharged.
  • the explosion-proof frame part 400 may be provided in the valve assembly 200 . This is due to the IGBT 440 functioning as a switching element being provided in the valve assembly 200 .
  • the explosion-proof frame part 400 is included in the valve assembly 200 .
  • the explosion-proof frame unit 400 includes a case unit 410 , a energized busbar 420 , a cooling plate 430 , and an IGBT 440 .
  • the case unit 410 forms the outer shape of the explosion-proof frame part 400 .
  • a energized bus bar 420 and a cooling plate 430 are coupled to the case unit 410 .
  • a predetermined space is formed inside the case unit 410 .
  • the IGBT 440 may be accommodated in the space.
  • the insulating housing 260 may be coupled to one side of the case unit 410 in a direction away from the cooling plate 430 , that is, in a direction opposite to the cooling plate 430 .
  • a plurality of case units 410 may be provided. In the illustrated embodiment, two case units 410 are provided. Each case unit 410 may be formed in a shape symmetrical to each other. Hereinafter, one case unit 410 will be described, but it will be understood that the other case unit 410 also has the same structure.
  • Each case unit 410 is coupled to form a predetermined space therebetween.
  • the cooling plate 430 and the IGBT 440 are positioned in the predetermined space.
  • the output busbar 250 and the energizing busbar 420 are coupled to the outside of the case unit 410 , that is, toward the valve cover 210 .
  • the output busbar 250 and the energizing busbar 420 are positioned between the case unit 410 and the insulating housing 260 .
  • the cooling plate 430 is coupled to the inner direction of the case unit 410 , that is, the direction in which each case unit 410 faces each other. That is, the cooling plate 430 is positioned between each case unit 410 .
  • the IGBT 440 is positioned in the inner direction of the case unit 410 , that is, in the direction toward the cooling plate 430 . That is, the IGBT 440 is positioned between the case unit 410 and the cooling plate 430 .
  • a fastening member (not shown) may be provided for coupling the case unit 410 with the energized busbar 420 , the cooling plate 430 , and the IGBT 440 .
  • case unit 410 the insulating housing 260, and the valve cover part 210 may also be coupled by a fastening member (not shown).
  • the fastening member (not shown) may be provided as a screw member.
  • the case unit 410 may be formed of an insulating material.
  • the case unit 410 may be formed of a material having heat resistance, pressure resistance, and wear resistance.
  • the case unit 410 may be formed of a synthetic resin material.
  • the case unit 410 is formed to extend in the vertical direction. This is because, as will be described later, a plurality of IGBTs 440 are provided and disposed in the vertical direction.
  • the case unit 410 includes a protrusion 411 , a ground rod through hole 412 , an IGBT receiving portion 413 , an inner wall portion 414 , an outer wall portion 415 , an internal communication groove 416 , an external communication groove 417 ). , including a buffer space portion 418 and a corner portion 419 .
  • the protrusion 411 is formed to protrude from the upper side of the case unit 410 .
  • a plurality of protrusions 411 may be formed.
  • the plurality of protrusions 411 may be formed to be spaced apart from each other by a predetermined distance.
  • the protrusion 411 is formed to protrude upward from the front and rear of the upper side of the case unit 410 .
  • Each of the protrusions 411 may be positioned on the same line in the front-rear direction.
  • a ground rod through hole 412 is formed through the protrusion 411 .
  • the ground rod through hole 412 is coupled through the ground rod unit 310 .
  • the ground rod through hole 412 is formed through the protrusion 411 .
  • the ground rod through hole 412 is formed through the front and rear directions.
  • the ground rod through hole 412 may be formed to correspond to the shape of the ground rod unit 310 .
  • the ground rod through hole 412 may be formed to have a circular cross section.
  • the protrusion 411 may be formed on the front side and the rear side, respectively.
  • the ground rod through hole 412 may be formed through each of the plurality of protrusions 411 .
  • each protrusion 411 may be formed to have the same central axis. Also, the ground rod through hole 412 may be formed to have the same central axis as the ground protrusion 330 .
  • the IGBT accommodating unit 413 accommodates the IGBT 440 .
  • the IGBT accommodating part 413 may be defined by a predetermined space formed inside the case unit 410 .
  • the IGBT accommodating part 413 is recessed by a predetermined distance from one side of the case unit 410 facing the cooling plate 430 .
  • the IGBT accommodating part 413 may be covered by the output busbar 250 and the energizing busbar 420 . Specifically, the opening of one side of the IGBT accommodating part 413 facing the insulating housing 260 may be covered by the output busbar 250 and the energizing busbar 420 .
  • the IGBT accommodating part 413 is a first IGBT accommodating part 413a formed on one side facing the protrusion 411 and away from the protrusion 411 (that is, the first IGBT accommodating part 413a and and a second IGBT accommodating portion 413b formed on the other side (opposite to the protrusion 411 ).
  • the first IGBT 441 is accommodated in the first IGBT accommodating part 413a
  • the second IGBT 442 is accommodated in the second IGBT accommodating part 413b.
  • two case units 410 are provided and coupled to each other. It will be understood that two IGBT accommodating units 413 are formed in one case unit 410 , and a total of four IGBTs 440 are accommodated in each explosion-proof frame unit 400 .
  • each IGBT accommodating part 413a, 413b may be determined to correspond to the shape of each IGBT 441 and 442 accommodated therein.
  • the first IGBT accommodating part 413a and the second IGBT accommodating part 413b may be formed in shapes corresponding to each other.
  • a partition wall part 413c is formed between the first IGBT accommodating part 413a and the second IGBT accommodating part 413b.
  • the partition wall part 413c physically partitions the first IGBT accommodating part 413a and the second IGBT accommodating part 413b from one side facing the cooling plate 430 . Accordingly, even if any one of the first IGBT 413a and the second IGBT 413b explodes, the other one is not affected.
  • One side of the IGBT accommodating part 413 away from the cooling plate 430 (ie, opposite to the cooling plate 430 ), that is, one side of the IGBT accommodating part 413 facing the energized busbar 420 is formed open.
  • the IGBT 440 is exposed to the outside of the IGBT accommodating part 413 through the one side.
  • the exposed portion of the IGBT 440 is in contact with the energized bus bar 420 .
  • the IGBT accommodating part 413 may be defined as a space surrounded by the partition wall part 413c , the inner wall part 414 , and the corner part 419 .
  • the first IGBT receiving portion 413a is a first inner wall portion 414a forming the front and rear side walls, a partition wall portion 413c forming a lower wall, and a corner portion 419 forming an upper wall. It can be defined as an enclosed space.
  • the second IGBT receiving portion 413b includes a second inner wall portion 414b forming the front side and rear side walls, a partition wall portion 413c forming the upper wall, and a corner portion 419 forming the lower wall. It can be defined as a space surrounded by
  • the inner wall portion 414 partially surrounds the IGBT receiving portion 413 .
  • the inner wall portion 414 is formed to surround the front side and the rear side of the IGBT receiving portion (413).
  • the inner wall portion 414 may be continuous with the partition wall portion 413c.
  • the inner wall portion 414 may be surrounded by the outer wall portion 415 .
  • the inner wall portion 414 is spaced apart from the outer wall portion 415 by a predetermined distance.
  • a space formed between the inner wall portion 414 and the outer wall portion 415 by the separation is defined as a buffer space portion 418 .
  • An internal communication groove 416 is formed in the inner wall portion 414 . Gas generated by the explosion of the IGBT 440 may be introduced into the buffer space 418 through the internal communication groove 416 .
  • the inner wall portion 414 includes a first inner wall portion 414a and a second inner wall portion 414b.
  • the first inner wall portion 414a partially surrounds the first IGBT receiving portion 413a.
  • the first inner wall portion 414a is located on one side facing the protrusion 411 , in the illustrated embodiment, on the upper side.
  • the second inner wall portion 414b partially surrounds the second IGBT receiving portion 413b.
  • the second inner wall portion 414b is located on the other side away from the protrusion 411 (ie, as opposed to the protrusion 411 ), below in the illustrated embodiment.
  • the outer wall portion 415 partially surrounds the inner wall portion 414 .
  • the outer wall portion 415 is formed to surround the front side and the rear side of the inner wall portion 414 .
  • the outer wall portion 415 may be continuous with the corner portion 419 .
  • the outer wall portion 415 is spaced apart from the inner wall portion 414 by a predetermined distance.
  • a space formed between the outer wall portion 415 and the inner wall portion 414 by the separation is defined as a buffer space portion 418 .
  • An external communication groove 417 is formed in the outer wall portion 415 .
  • the gas generated by the explosion of the IGBT 440 may pass through the buffer space 418 and be discharged to the outside of the explosion-proof frame 400 through the external communication groove 417 .
  • the outer wall portion 415 includes a first outer wall portion 415a and a second outer wall portion 415b.
  • the first outer wall portion 415a partially surrounds the first inner wall portion 414a and the first buffer space portion 418a.
  • the first outer wall portion 415a is located on one side facing the protrusion 411 , and is located on the upper side in the illustrated embodiment.
  • the second outer wall portion 415b partially surrounds the second inner wall portion 414b and the second buffer space portion 418b.
  • the second outer wall portion 415b is located on the other side away from the protrusion 411 (ie, as opposed to the protrusion 411 ) and, in the illustrated embodiment, on the lower side.
  • the internal communication groove 416 communicates with the IGBT accommodating part 413 and the buffer space part 418 .
  • Gas generated by the explosion of the IGBT 440 may flow from the IGBT accommodating part 413 to the buffer space 418 through the internal communication groove 416 .
  • the inner communication groove 416 is formed in the inner wall portion 414 . Specifically, the internal communication groove 416 is recessed by a predetermined distance from one side of the inner wall portion 414 facing the cooling plate 430 .
  • the explosion-proof frame portion 400 when the explosion-proof frame portion 400 is coupled, one side of the inner wall portion 414 facing the cooling plate 430 is in contact with the cooling plate 430 . Accordingly, the IGBT accommodating portion 413 may communicate with the buffer space portion 418 only through the internal communication groove 416 .
  • the internal communication groove 416 is formed as a groove having a rectangular cross section extending in the vertical direction, but the shape is deformable.
  • a plurality of internal communication grooves 416 may be formed.
  • the plurality of internal communication grooves 416 are formed to be spaced apart from each other by a predetermined distance.
  • three internal communication grooves 416 are formed for each inner wall portion 414, and are disposed to be spaced apart from each other by a predetermined distance.
  • the predetermined distance may be the same as an extension length of the external communication groove 417 . Also, the number of internal communication grooves 416 may be changed.
  • the inner communication grooves 416 are disposed to cross the outer communication grooves 417 . That is, the imaginary surfaces extending from the inner communication groove 416 and the outer communication groove 417 do not overlap each other. Accordingly, the arc generated by the explosion of the IGBT 440 or the debris generated during the explosion is not discharged to the outside.
  • the generated gas does not pass through the internal communication groove 416 and the external communication groove 417 at once.
  • the internal communication groove 416 includes a first internal communication groove 416a and a second internal communication groove 416b.
  • the first inner communication groove 416a is formed in the first inner wall portion 414a.
  • the first inner wall portion 414a is formed to surround the first IGBT receiving portion 413a from the front side and the rear side. Accordingly, the first internal communication groove 416a is also formed on the front side and the rear side of the first IGBT receiving portion 413a, respectively.
  • the second inner communication groove 416b is formed in the second inner wall portion 414b.
  • the second inner wall portion 414b is formed to surround the second IGBT receiving portion 413b from the front side and the rear side. Accordingly, the second internal communication groove 416b is also formed on the front side and the rear side of the second IGBT receiving portion 413b, respectively.
  • the external communication groove 417 communicates with the buffer space 418 and the external space.
  • the gas generated by the explosion of the IGBT 440 may flow from the buffer space 418 to the external space through the external communication groove 417 .
  • the external communication groove 417 is formed in the outer wall portion 415 . Specifically, the external communication groove 417 is recessed by a predetermined distance from one side of the outer wall portion 415 facing the cooling plate 430 .
  • the buffer space 418 may communicate with the external space only through the external communication groove 417 .
  • the external communication groove 417 is formed as a groove having a rectangular cross-section extending in the vertical direction, but the shape thereof is changeable.
  • a plurality of external communication grooves 417 may be formed.
  • a plurality of external communication grooves 417 are formed to be spaced apart from each other by a predetermined distance.
  • four external communication grooves 417 are formed for each outer wall portion 415, and are arranged to be spaced apart from each other by a predetermined distance.
  • the predetermined distance may be equal to the extension length of the internal communication groove 416 . Also, the number of external communication grooves 417 may be changed.
  • the outer communication grooves 417 are disposed to cross the inner communication grooves 416 . That is, imaginary surfaces extending from the external communication groove 417 and the internal communication groove 416 do not overlap each other. Accordingly, the arc generated by the explosion of the IGBT 440 or the debris generated during the explosion is not discharged to the outside.
  • the generated gas does not pass through the internal communication groove 416 and the external communication groove 417 at once.
  • the external communication groove 417 includes a first external communication groove 417a and a second external communication groove 417b.
  • the first external communication groove 417a is formed in the first external wall portion 415a.
  • the first outer wall portion 415a is formed to surround the first inner wall portion 414a and the first buffer space portion 418a from the front side and the rear side. Accordingly, the first external communication groove 417a is also formed on the front side and the rear side of the first buffer space portion 418a, respectively.
  • the second outer communication groove 417b is formed in the second outer wall portion 415b.
  • the second outer wall portion 415b is formed to surround the second inner wall portion 414b and the second buffer space portion 418b from the front side and the rear side. Accordingly, the second external communication groove 417b is also formed on the front side and the rear side of the first buffer space portion 418b, respectively.
  • the buffer space 418 is a space for accommodating an arc or debris generated as the IGBT 440 explodes. Accordingly, the arc or debris is not discharged to the external space through the external communication groove (417).
  • the buffer space 418 is a space in which the gas introduced from the IGBT accommodating part 413 stays before being discharged to the outside. Accordingly, the gas can be discharged after the temperature and pressure are reduced.
  • the buffer space portion 418 is formed so that the inner wall portion 414 and the outer wall portion 415 are spaced apart from each other by a predetermined distance.
  • the buffer space portion 418 is positioned between the inner wall portion 414 and the outer wall portion 415 .
  • the buffer space 418 is recessed by a predetermined distance from one side of the case unit 410 facing the cooling plate 430 .
  • the inner wall portion 414 and the outer wall portion 415 are respectively formed on the front side and the rear side of the IGBT receiving portion (413). Accordingly, the buffer space portion 418 is also formed on the front side and the rear side of the IGBT receiving portion 413, respectively.
  • the front side and rear side of the buffer space portion 418 are surrounded by the inner wall portion 414 and the outer wall portion 415 .
  • the upper and lower sides of the buffer space portion 418 are respectively surrounded by the fastening member coupling portion.
  • each one side of the inner wall portion 414 and the outer wall portion 415 facing the cooling plate 430 is in contact with the cooling plate 430 .
  • one side of each of the fastening member coupling portions facing the cooling plate 430 is also in contact with the cooling plate 430 .
  • the buffer space 418 is blocked from communicating with the outside, except for the internal communication groove 416 and the external communication groove 417 .
  • the buffer space portion 418 is surrounded by the case unit 410 , the partition wall portion 413c , the inner wall portion 414 , the outer wall portion 415 , and the cooling plate 430 .
  • the buffer space 418 communicates with the IGBT accommodating part 413 .
  • the communication is achieved by an internal communication groove 416 .
  • the buffer space 418 communicates with the external space.
  • the communication is achieved by an external communication groove 417 .
  • the gas generated in the IGBT accommodating part 413 may be discharged to the external space after the temperature and pressure are reduced in the buffer space part 418 .
  • the buffer space 418 includes a first buffer space 418a and a second buffer space 418b.
  • the first buffer space portion 418a is formed between the first inner wall portion 414a and the first outer wall portion 415a.
  • the first buffer space portion 418a is formed on the front side and the rear side of the first inner wall portion 414a, respectively.
  • the second buffer space portion 418b is formed between the second inner wall portion 414b and the second outer wall portion 415b.
  • the second buffer space portion 418b is formed on the front side and the rear side of the second inner wall portion 414b, respectively.
  • the corner portion 419 is configured to partially surround the IGBT receiving portion 413 .
  • one side facing the protrusion 411 that is, the corner portion 419 formed on the upper side surrounds the upper side of the first IGBT receiving portion (413a).
  • the other side away from the protrusion 411 ie, the other side opposite to the protrusion 411
  • the corner part 419 formed on the lower side surrounds the lower side of the second IGBT receiving part 413b.
  • the corner portion 419 is formed to protrude from one side of the case unit 410 facing the cooling plate 430 .
  • the IGBT accommodating part 413 may be sealed except for the above-described internal communication groove 416 .
  • a plurality of grooves recessed by a predetermined distance may be formed in the corner portion 419 .
  • the weight of the entire case unit 410 may be reduced.
  • the rigidity of the case unit 410 may be reinforced by the groove portion.
  • a plurality of fastening holes are formed through the corner portion 419 .
  • a fastening member (not shown) may be through-coupled to the fastening hole. Accordingly, each case unit 410 and the cooling plate 430 may be fastened.
  • the energized busbar 420 transfers the current transmitted to the valve assembly 200 to the capacitor assembly 100 .
  • the energized bus bar 420 connects the printed circuit board 280 and the IGBT 440 to be energized.
  • the energizing bus bar 420 is connected to the input bus bar 230 to be energized. Power energy transferred to the input busbar 230 may be transferred to the energized busbar 420 .
  • the energizing bus bar 420 is connected to the output bus bar 250 to be energized. Power energy transferred to the energized busbar 420 is transferred to the output busbar 250 .
  • the energized bus bar 420 is electrically connected to the printed circuit board 280 and the IGBT 440 , respectively.
  • the control signal calculated by the printed circuit board 280 or the IGBT 440 may be transmitted to other components.
  • the energized busbar 420 may be coupled to the case unit 410 to cover the IGBT receiving part 413 together with the output busbar 250 .
  • the energizing bus bar 420 and the output bus bar 250 are connected to be energized.
  • the energized busbar 420 is located on the front side of the output busbar 250 . Accordingly, the energized busbar 420 is configured to cover the front side of the IGBT accommodating portion 413 .
  • the energized bus bar 420 includes a first energized bus bar 421 and a second energized bus bar 422 .
  • the first energized busbar 421 is located above the second energized busbar 422 , and is energably connected to the first input busbar 231 and the output busbar 250 .
  • the second energized busbar 422 is located below the first energized busbar 421 , and is energably connected to the second input busbar 232 and the output busbar 250 .
  • the energized busbar 420 is positioned between the case unit 410 and the insulating housing 260 .
  • the energizing bus bar 420 is formed to extend in one direction, in the front-rear direction in the illustrated embodiment. Both ends of the energized bus bar 420 in one direction, that is, a front end and a rear end are bent at a predetermined angle toward the case unit 410 . In an embodiment, the predetermined angle may be a right angle.
  • the energized bus bar 420 when the energized bus bar 420 is coupled to the case unit 410 , the energized bus bar 420 surrounds the front side, left or right side and rear side of the case unit 410 .
  • the conducting bus bar 420 may be formed of a conducting material.
  • the energized bus bar 420 may be formed of a material having high rigidity.
  • the energized bus bar 420 may be formed of a material including iron.
  • case unit 410 the energized busbar 420 , the cooling plate 430 and the insulating housing 260 may be screwed together.
  • the cooling plate 430 is configured to cool the heat generated as the IGBT 440 is operated. That is, the cooling plate 430 cools the IGBT 440 by heat exchange with the IGBT 440 .
  • the cooling plate 430 is provided in a rectangular plate shape extending in the vertical direction.
  • the shape of the cooling plate 430 may be any shape that can exchange heat with the IGBT 440 .
  • the cooling plate 430 is positioned between the two case units 410 . Also, the cooling plate 430 is positioned between the IGBTs 440 accommodated in each case unit 410 .
  • the case unit 410 when viewed from the front side, the case unit 410 , the IGBT 440 , the cooling plate 430 , the IGBT 440 and the case unit 410 in the left or right direction or the opposite direction. are placed sequentially.
  • the cooling plate 430 is in contact with the IGBTs 440 respectively located on the left and right sides, respectively.
  • the cooling plate 430 and each IGBT 440 may be in surface contact.
  • the cooling plate 430 communicates with the outside. Specifically, the cooling plate 430 communicates with a cooling flow passage 900 to be described later.
  • a predetermined space is formed inside the cooling plate 430 .
  • the cooling fluid supplied from the outside circulates in the space inside the cooling plate 430 and may receive heat from the IGBT 440 . Also, the cooling fluid to which the heat has been transferred may be discharged to the outside again.
  • the cooling plate 430 includes an inlet 431 and an outlet 432 .
  • the inlet 431 communicates with the valve inlet pipe 951 of the cooling passage 900 .
  • the low-temperature cooling fluid may be introduced into the inner space of the cooling plate 430 through the inlet 431 .
  • the outlet 432 communicates with the valve outlet pipe 952 of the cooling flow passage 900 .
  • the cooling fluid heat-exchanged with the IGBT 440 may be discharged from the internal space of the cooling plate 430 through the outlet 432 .
  • the inlet 431 and the outlet 432 are formed through the upper side of the cooling plate 430 . Also, the inlet 431 is located on the rear side of the outlet 432 . The position may be changed.
  • the IGBT 440 controls the current flowing into or out of the sub-module 10 .
  • the IGBT 440 may function as a switching element.
  • the IGBT 440 is accommodated in the IGBT accommodating unit 413 .
  • the IGBT 440 accommodated in the IGBT accommodating portion 413 is sealed by the partition wall portion 413c , the inner wall portion 414 , the corner portion 419 , and the cooling plate 430 .
  • the IGBT 440 may be in surface contact with the cooling plate 430 . Specifically, the respective surfaces of the cooling plate 430 and the IGBT 440 facing each other may be in contact with each other. Accordingly, heat generated in the IGBT 440 may be transferred to the cooling plate 430 to cool the IGBT 440 .
  • the IGBT 440 is electrically connected to the energized bus bar 420 . Power energy for operating the IGBT 440 may be transmitted through the energized busbar 420 .
  • the IGBT 440 is electrically connected to the printed circuit board 280 .
  • the control signal calculated by the printed circuit board 280 may be transmitted to a capacitor element (not shown) or the like through the IGBT 440 .
  • the IGBT 440 is a switching operation, so that electricity between the printed circuit board 280 and a device such as a capacitor element (not shown) may be allowed or blocked.
  • a plurality of IGBTs 440 may be provided.
  • the IGBT 440 is a first IGBT 440 disposed on the upper side in a direction toward the protrusion 411 and a direction away from the protrusion 411 (ie, the first IGBT 440 and the protrusion 411 ). ) and a second IGBT 440 disposed on the lower side).
  • two case units 410 may be provided. Accordingly, in the illustrated embodiment, two IGBTs 440 are provided in each case unit 410 on the left and right sides, respectively, and a total of four IGBTs 440 are provided.
  • the buffer space portion 418 is formed in the case unit 410 .
  • an arc, gas, and debris generated when the IGBT 440 explodes are introduced into the buffer space 418 through the internal communication groove 416 .
  • the high-temperature and high-pressure arc and gas may be discharged to the external space after the temperature and pressure are lowered.
  • the external communication groove 417 which communicates the buffer space 418 with the external space is disposed to cross the internal communication groove 416 .
  • the path from the IGBT accommodating portion 413 to the external space through the internal communication groove 416 , the buffer space 418 , and the external communication groove 417 becomes longer. Accordingly, the arc and gas of high temperature and high pressure are not discharged to the external space immediately after the explosion.
  • the sub-module 10 includes a rail assembly 500 .
  • the rail assembly 500 slidably supports the valve assembly 200 and the capacitor assembly 100 .
  • the rail assembly 500 according to the embodiment of the present invention is configured to prevent the valve assembly 200 and the capacitor assembly 100 from being arbitrarily separated.
  • the rail unit 540 of the rail assembly 500 is coupled to the support 23 . Accordingly, the rail unit 540 may be viewed as a part of the frame 20 .
  • the rail assembly 500 includes a cart unit 510 , a bracket unit 520 , a fastening unit 530 , and a rail unit 540 .
  • the cart unit 510 slidably supports the capacitor assembly 100 and the valve assembly 200 .
  • the cart unit 510 supports the capacitor assembly 100 and the valve assembly 200 from the lower side.
  • the capacitor assembly 100 and the valve assembly 200 may slide forward or rearward together with the cart unit 510 while seated on the cart unit 510 .
  • the capacitor assembly 100 and the valve assembly 200 may be respectively coupled to the cart unit 510 by a bracket unit 520 and a separate fastening member (not shown). In an embodiment, the capacitor assembly 100 and the valve assembly 200 may be screwed to the bracket unit 520 .
  • a plurality of cart units 510 may be provided.
  • a cart unit 510 on which the capacitor assembly 100 is seated among the plurality of cart units 510 may be referred to as a capacitor cart unit 510a.
  • the cart unit 510 on which the valve assembly 200 is seated may be referred to as a valve cart unit 510b.
  • the capacitor cart unit 510a and the valve cart unit 510b have similar overall structures and functions. Accordingly, in the following description, the capacitor cart unit 510a and the valve cart unit 510b will be collectively referred to as the cart unit 510 .
  • the cart unit 510 is slidably coupled to the rail unit 540 .
  • the cart unit 510 may slide to the front side or the rear side along the rail unit 540 .
  • the cart unit 510 is formed to extend in the direction in which the capacitor assembly 100 and the valve assembly 200 are connected, that is, in the front-rear direction in the illustrated embodiment.
  • the extended length of the capacitor cart unit 510a may be determined according to the length of the capacitor assembly 100 in the front-rear direction.
  • the extended length of the valve cart unit 510b may be determined according to the front-rear direction length of the valve assembly 200 . Accordingly, the extension lengths of the capacitor cart unit 510a and the valve cart unit 510b may be different from each other.
  • the cart unit 510 includes a cart body portion 511 , an extension portion 512 , a round portion 513 , and a wheel portion 514 .
  • the cart body 511 forms the body of the cart unit 510 .
  • the cart unit 510 is formed to extend by a predetermined length in the front-rear direction.
  • the cart unit 510 is formed to extend to have a predetermined width in the left and right direction.
  • the cart body 511 is a rectangular plate shape extending in the front-rear direction.
  • the shape of the cart body 511 may be any shape capable of supporting the capacitor assembly 100 or the valve assembly 200 .
  • the right side of the cart body portion 511 is provided with an elastic member coupling portion (511a).
  • the elastic member coupling portion (511a) is formed to protrude by a predetermined distance from the lower surface of the cart body (511).
  • the cart connection part 631 of the elastic member 630 of the separation prevention part 600 is coupled to the elastic member coupling part 511a.
  • the elastic member coupling portion 511a may be provided as a screw member.
  • One side of the cart body portion 511 facing the rail unit 540, the lower side in the illustrated embodiment is provided with an extension (512).
  • the extension 512 is configured to maintain a distance between the rail unit 540 and the cart body 511 .
  • a round portion 513 coupled to the rail unit 540 from the extension portion 512 is formed to protrude.
  • the extension 512 is formed to protrude by a predetermined distance from one side of the cart body 511 facing the rail unit 540 .
  • the extension 512 is formed to extend in the longitudinal direction of the cart body 511, in the illustrated embodiment, in the front-rear direction.
  • the extension 512 may be formed to extend to the same length as the cart body 511 .
  • a plurality of extension parts 512 are provided.
  • the extension 512 is provided on the left and right sides, respectively.
  • Each of the extension parts 512 is disposed to be spaced apart from each other by a predetermined distance.
  • the predetermined distance may be formed to be longer than the distance between each end of the rail curved portion 542 of the rail unit 540 .
  • a round part 513 is formed to protrude from the extension part 512 .
  • a wheel part 514 is rotatably coupled to the extension part 512 .
  • the round portion 513 is a portion in which the cart unit 510 is coupled to the rail unit 540 . Specifically, the round portion 513 is inserted and coupled to the space surrounded by the rail curved portion 542 of the rail unit 540 . By the round part 513, the cart unit 510 and the rail unit 540 are not randomly separated.
  • the round part 513 is formed to protrude by a predetermined distance from one end of the extension 512 toward the rail unit 540, and the lower end in the illustrated embodiment.
  • the round portion 513 is formed to protrude by a predetermined distance in the direction toward the inner, curved rail 542 in the illustrated embodiment.
  • the round part 513 is formed to protrude a predetermined distance in a direction away from the wheel part 514 (ie, a direction opposite to the wheel part 514 ).
  • the round part 513 is formed to have a circular cross section as a whole. That is, except for a portion where the round portion 513 is connected to the extension portion 512 , the outer surface of the round portion 513 is formed to be rounded toward the rail curved portion 542 .
  • a plurality of round parts 513 may be formed.
  • the round part 513 is provided on the left and right sides, respectively.
  • Each round portion 513 is formed to protrude from each extension portion 512 toward the rail curved portion 542 .
  • One side of the round part 513 facing the rail curved part 542 in the horizontal direction may contact the third rail curved part 542c of the rail curved part 524 .
  • the distance between each one side of each round part 513 may be formed to be longer than the length between the ends of each rail curved part 542 .
  • the round portion 513 is formed to extend in the longitudinal direction of the cart body portion 511, in the illustrated embodiment, in the front-rear direction.
  • the round part 513 may be formed to have the same length as the cart body part 511 and the extension part 512 .
  • Cart hollow portion (513a) is formed to penetrate in the longitudinal direction in which the round portion (513) is formed.
  • the blocking fastening member 641 of the separation prevention part 600 to be described later is inserted and fastened to the cart hollow part 513a.
  • the wheel part 514 is rotated as the cart unit 510 moves, so that the cart unit 510 slides along the rail unit 540 .
  • the wheel part 514 is rotatably coupled to the extension part 512 . Irrespective of rotation of the wheel portion 514 , the extension portion 512 may remain stationary.
  • a bearing member (not shown) may be provided for the coupling.
  • a plurality of wheel parts 514 may be provided.
  • the two wheel parts 514 are positioned to be spaced apart from each other by a predetermined distance on the left and right sides.
  • a plurality of wheel parts 514 may be provided in the left and right directions of the lower end of the cart unit 510 .
  • the capacitor cart unit 510a is provided with three wheel parts 514 spaced apart from each other at a predetermined distance in the front and rear directions, respectively, in the left and right directions.
  • the valve cart unit 510b is provided with two wheel parts 514 spaced apart from each other at a predetermined distance in the front-rear direction, respectively, in the left-right direction.
  • the number of wheel parts 514 provided in the capacitor cart unit 510a and the valve cart unit 510b may be changed.
  • the wheel part 514 has a shape in which a plurality of cylinders having different diameters are continuously coupled.
  • a hollow part is formed through the inside of the wheel part 514 .
  • a wheel fastening member 532 may be coupled through the hollow portion.
  • the wheel part 514 includes a wheel body part 514a, a disk part 514b and a cart coupling part 514c.
  • the wheel body portion 514a forms the body of the wheel portion 514 .
  • the outer peripheral surface of the wheel body portion 514a is seated on the support portion 545 of the rail unit 540 .
  • Rotation of the wheel portion 514 is achieved by relative rotation between the wheel body portion 514a and the support portion 545 .
  • the wheel body portion 514a has a circular cross section and has a cylindrical shape having a predetermined height.
  • the height of the wheel body portion 514a that is, the length in the left-right direction, is preferably formed to be longer than the width length of the support portion 545, that is, the length in the left-right direction.
  • a part of the outside of the wheel body part 514a that is, a direction away from the extension part 512 (ie, a direction opposite to the extension part 512 ) may be exposed to the outside of the rail unit 540 .
  • the wheel part 514 may be stably seated on the rail unit 540 .
  • a wheel fastening member 532 is coupled through the outside of the wheel body 514a, that is, on one side of the direction away from the extension 512 (ie, in a direction opposite to the extension 512 ). Accordingly, the wheel part 514 may be coupled to the extension part 512 .
  • a rotation bearing member 620 is provided on the one side of the wheel body 514a located on the right side.
  • the rotation bearing member 620 allows the stopper member 610 to be rotated, which will be described later, regardless of the rotation of the wheel part 514 . A detailed description thereof will be provided later.
  • a disk portion 514b is formed on the inner side of the wheel body portion 514a, that is, one side facing the extension portion 512 .
  • the disk portion 514b is formed to protrude from the wheel body portion 514a toward the extension portion 512 by a predetermined length.
  • the disk portion 514b has a circular cross section and is shaped like a disk having a predetermined height.
  • the disk portion 514b is formed to have a larger diameter than the wheel body portion 514a.
  • the disk portion 514b may be accommodated in the guide space portion 544a positioned below the upper end of the support portion 545 .
  • the disk portion 514b is formed to have a predetermined thickness in the width direction of the step portion 544 , that is, between the rail extension portion 543 and the support portion 545 .
  • the thickness of the disk portion 514b may be smaller than the length of the width of the step portion 544 , that is, the distance between the respective surfaces of the rail extension portion 543 and the support portion 545 facing each other.
  • the movement of the wheel part 514 in the left-right direction that is, in a direction away from the extension part 512 (ie, in a direction opposite to the extension part 512), is due to the contact between the disk part 514b and the support part 545.
  • the wheel part 514 is not separated from the rail unit 540 in a direction away from the extension part 512 (ie, in a direction opposite to the extension part 512 ).
  • the outer peripheral surface of the disk portion 514b may be spaced apart from the upper end of the step portion 544 by a predetermined distance.
  • a cart coupling portion 514c is formed on the inner side of the disk portion 514b, that is, one side facing the extension portion 512 .
  • the cart coupling portion 514c is formed to protrude from the disk portion 514b toward the extension portion 512 by a predetermined length.
  • the cart coupling portion 514c has a circular cross section and has a disk shape having a predetermined height.
  • the cart coupling portion 514c is formed to have a smaller diameter than the wheel body portion 514a.
  • One side of the cart coupling portion 514c facing the extension portion 512 may be in contact with the extension portion 512 .
  • the bracket unit 520 couples the capacitor assembly 100 and the valve assembly 200 to the cart unit 510 .
  • the bracket unit 520 is coupled to the upper side of the cart body 511 .
  • a bracket coupling portion extending in the longitudinal direction of the cart body 511 is recessed in the center of the left and right directions on the upper side of the cart body 511 .
  • the bracket unit 520 is coupled to the cart body 511 through the bracket coupling part.
  • the coupling may be a screw coupling or the like.
  • the bracket unit 520 includes a horizontal portion 521 and a vertical portion 522 .
  • the horizontal part 521 forms a predetermined angle with the cart body part 511 and is formed to extend in the longitudinal direction of the cart body part 511 .
  • the horizontal portion 521 may be parallel to the cart body portion (511).
  • the vertical portion 522 forms a predetermined angle with the horizontal portion 521 , and is formed to protrude from the horizontal portion 521 .
  • the predetermined angle may be a right angle.
  • a plurality of through holes are formed in the vertical portion 522 (see FIG. 11 ).
  • a fastening member (not shown) for fastening the case unit 410 is inserted and coupled to the through hole. Accordingly, the valve assembly 200 may be coupled to the valve cart unit 510b.
  • a fastening member (not shown) for fastening the capacitor housing 110 of the capacitor assembly 100 to the vertical part 522 may be provided. Accordingly, the capacitor assembly 100 may be coupled to the capacitor cart unit 510a.
  • the fastening unit 530 fastens each component of the cart unit 510 to the cart body 511 .
  • the fastening unit 530 may be provided with a screw member.
  • the fastening unit 530 includes a lever fastening member 531 and a wheel fastening member 532 .
  • the lever fastening member 531 fastens the lever coupling member 720 of the installation separation unit 700 to the cart body 511 .
  • the lever fastening member 531 fastens the lever coupling member 720 positioned on the front side of the cart body 511 .
  • a plurality of lever fastening members 531 may be provided.
  • the lever coupling members 531 may be disposed to be spaced apart from each other by a predetermined distance in the width direction of the lever coupling member 720 , that is, in the left and right directions.
  • the wheel fastening member 532 rotatably fastens the wheel part 514 to the extension part 512 .
  • the wheel fastening member 532 engages the extension 512 in an outward direction of the wheel portion 514 , that is, in a direction away from the extension 512 (ie, in a direction opposite to the extension 512 ). It is through-coupled to the wheel part 514 in the direction it faces.
  • An inner side of the wheel fastening member 532 that is, one end facing the extension 512 may be rotatably fastened to the extension 512 .
  • a plurality of wheel fastening members 532 may be provided. This is due to the plurality of wheel parts 514 being provided as described above.
  • the rail unit 540 is configured to guide the front-rear direction of the cart unit 510 .
  • the cart unit 510 is slidably coupled to the rail unit 540 .
  • the rail unit 540 is formed to extend in one direction, the front-rear direction in the illustrated embodiment. This may correspond to the extension direction of the cart unit 510 .
  • the rail unit 540 is preferably formed of a material having sufficient rigidity to support the high-weight capacitor assembly 100 and the valve assembly 200 .
  • a plurality of rail units 540 may be provided. Referring back to FIG. 1 , six rail units 540 are provided on the support 23 . The plurality of rail units 540 are disposed to be spaced apart from each other by a predetermined distance in the left and right directions. The number of rail units 540 may be changed.
  • the blocking plate 640 of the separation preventing part 600 may be coupled to both ends of the rail unit 540 in the longitudinal direction.
  • the departure prevention unit 600 may limit the movement of the front side and the rear side of the cart unit 510 coupled to the rail unit 540 . Accordingly, a situation in which the cart unit 510 is arbitrarily separated from the rail unit 540 and is dropped can be prevented.
  • the rail unit 540 includes a rail body portion 541 , a rail curved portion 542 , a rail extension portion 543 , a step portion 544 , and a support portion 545 .
  • the rail body portion 541 forms the body of the rail unit 540 .
  • the rail body 541 is disposed to face the cart body 511 .
  • the rail body 541 may be disposed to form a predetermined angle with the cart body 511 .
  • the rail body portion 541 may be disposed parallel to the cart body portion (511).
  • the rail body 541 is formed to extend in one direction, in the front-rear direction in the illustrated embodiment. It is preferable that the extension length of the rail body 541 is longer than the sum of the extension lengths of the capacitor cart unit 510a and the valve cart unit 510b.
  • a lever insertion groove 730 is recessed in the front side in the illustrated embodiment.
  • the rail curved portion 542 is formed to protrude toward the cart body portion 511 at each end in the left and right direction in the illustrated embodiment.
  • the rail curved portion 542 is a portion to which the round portion 513 is slidably coupled.
  • the rail curved portion 542 is formed such that the round portion 513 partially covers one side facing the cart body portion 511 , that is, the upper side. Accordingly, the round portion 513 coupled to the rail curved portion 542 is not removed in the upward direction.
  • the cart unit 510 must be slid from the front side or the rear side to be coupled to the rail unit 540 .
  • the cart unit 510 and the rail unit 540 are not arbitrarily separated.
  • Rail curved portion 542 is formed to extend in one direction, the front-rear direction in the illustrated embodiment.
  • the extension length of the rail curved portion 542 may be the same as the extension length of the rail body portion 541 .
  • a plurality of rail curved portions 542 may be formed.
  • the plurality of rail curved portions 542 are disposed to be spaced apart from each other by a predetermined distance.
  • Each rail bend 542 is positioned adjacent to each round portion 513 .
  • Each rail curved portion 542 is located inside each round portion 513, in the illustrated embodiment, in a direction toward the center portion of the rail body portion 541 in which the lever insertion groove 730 is formed.
  • Each rail curved portion 542 is formed to be convex in the direction toward each other.
  • each rail curved portion 542 is formed to be rounded in a direction away from the round portion 513 (ie, in a direction opposite to the round portion 513 ).
  • the rail curved portion 542 may have a “C” shape with cross-sections convex toward each other.
  • the shape of the rail curved portion 542 corresponds to the shape of the round portion 513 .
  • the rail curved portion 542 is formed to surround the lower side, the inner side (ie, each side of the round portion 513 facing each other) and the upper side of the round portion 513 .
  • Rail curve 542 includes a first rail curve 542a, a second rail curve 542b, a third rail curve 542c, a side limiter 542d, and a top surface limiter 542e.
  • the first rail curved portion 542a is formed to protrude from one end of the rail body 541 toward the cart body 511 . Specifically, the first rail curved portion 542a is formed to protrude from the end at which the rail body portion 541 and the rail extension portion 543 are connected.
  • the first rail curved portion 542a is formed to be convex toward the other first rail curved portion 542a.
  • the first rail curved portion 542a is formed to be rounded in a direction away from the round portion 513 (ie, in a direction opposite to the round portion 513 ).
  • One end of the first rail curved portion 542a facing the cart body portion 511, the second rail curved portion 524b is formed to protrude from the upper end in the illustrated embodiment.
  • the second rail curved portion 542b is formed to be convex toward the other second rail curved portion 542b.
  • the second rail curved portion 542b is formed to be rounded in a direction away from the round portion 513 (ie, in a direction opposite to the round portion 513 ).
  • a degree to which the second rail curved portion 542b is curved may be determined according to a degree to which the first rail curved portion 542a is curved.
  • the second rail curved portion 542b may be curved with the same curvature as the first rail curved portion 542a.
  • a third rail curved portion 542c is formed protruding from one end of the second rail curved portion 542b facing the cart body 511, and an upper end in the illustrated embodiment.
  • the third rail curved portion 542c is formed to be convex toward the cart body portion 511 .
  • the third rail curved portion 542c is formed to be rounded in a direction away from the round portion 513 (ie, in a direction opposite to the round portion 513 ).
  • the third rail curved portion 542c may be formed to be convex toward the central portion of the cart body portion 511 in the left-right direction. In the above embodiment, the third rail curved portion 542c is convex toward the inner direction of the upper side (ie, the direction in which the different rail curved portions 542 face each other).
  • the third rail curved portion 542c may be formed to partially cover the upper side of the round portion 513 .
  • the third rail curved portion 542c may extend toward the extension portion 512 . That is, the end of the third rail curved portion 542c is positioned between the round portion 513 and the cart body portion 511 .
  • a side limiting portion 542d is formed to protrude in an outer direction of the second rail curved portion 542b, that is, in a direction toward the round portion 513 .
  • the side limiting portion 542d is formed to be rounded in an outward direction, in a direction toward the round portion 513 in the illustrated embodiment. That is, the side limiting portion 542d is formed to be convex in the opposite direction to the first or second rail curved portions 542a and 542b.
  • the side limiting portion 542d is a first portion extending toward the round portion 513, and is continuous with the first portion and is in contact with or spaced apart from the round portion 513, and forms a predetermined angle with the surface of the round portion 513, and a second portion that extends and a third portion that is continuous with the second portion and extends away from the round portion 513 (ie, opposite to the round portion 513 ).
  • the second portion of the side limiting portion 542d may extend parallel to one side of the round portion 513 facing the rail curved portion 542 .
  • the second part of the side limiting part 542d that is, one side of the side limiting part 542d facing the round part 513 is in the direction away from the round part 513 (ie, the round part). (direction opposite to 513) may be formed concavely.
  • the round portion 513 may be formed to be convex toward the second portion of the side limiting portion 542d.
  • the second portion of the side limiting portion 542d may be formed to be rounded in the same direction as the round portion 513 .
  • the second portion of the side limiting portion 542d may be in contact with one side of the round portion 513 facing the rail curved portion 542 . Accordingly, the distance at which the wheel part 514 moves toward the rail curved part 542 may be limited.
  • the upper surface limiting portion 542e is formed to protrude in an outer direction of the third rail curved portion 542c, that is, in a direction toward the round portion 513 .
  • the upper surface limiting portion 542e is formed to be rounded in the outward direction.
  • the upper surface limiting portion 542e is convex in a direction different from that of the third rail curved portion 542c.
  • one side of the upper surface limiting part 542e facing the round part 513 is concave in a direction away from the round part 513 (ie, in a direction opposite to the round part 513).
  • the round portion 513 may be formed to be convex toward the one side of the upper surface limiting portion 542e.
  • the one side of the upper surface limiting part 542e may be formed to be rounded in the same direction as the round part 513 .
  • the upper surface limiting portion 542e may be in contact with or spaced apart from one side of the extended portion 512 or the round portion 513 facing the rail curved portion 542 . Accordingly, the distance at which the wheel part 514 moves upward in the rail unit 540 may be limited.
  • the rail extension portion 543 is formed to extend from both ends in the horizontal direction of each rail body portion 541, left or right end in the illustrated embodiment.
  • the rail extension portion 543 is formed to extend at a predetermined angle with the rail body portion 541 .
  • the rail extension portion 543 may extend parallel to the rail body portion 541 .
  • the rail extension portion 543 is extended so that an end in an outward direction, that is, a direction away from the rail body portion 541 (ie, a direction opposite to the rail body portion 541) is located directly below the extension portion 512 .
  • the end of the rail extension 543 in the outward direction may be positioned more outward than the end of the third rail curved portion 542c.
  • the rail extension 543 is formed to have a predetermined thickness. It is preferable that the upper surface of the rail extension 543 , that is, one side facing the round portion 513 do not contact the round portion 513 . This is to prevent the rail extension 543 from being damaged by the movement of the cart unit 510 .
  • a fastening hole 543a is formed through the inside of the rail extension 543 .
  • the fastening hole 543a is formed penetrating in one direction in which the rail unit 540 extends, in the illustrated embodiment, in the front-rear direction.
  • the blocking fastening member 641 of the separation preventing part 600 is fastened to the fastening hole 543a.
  • the blocking fastening member 641 may be screwed to the fastening hole 543a.
  • the step portion 544 is formed to extend from one end of the outer end of the rail extension 543 , that is, in a direction away from the rail body 541 (ie, in a direction opposite to the rail body 541 ).
  • the step portion 544 is formed to extend at a predetermined angle with the rail extension portion 543 .
  • the stepped portion 544 may extend parallel to the rail extension portion 543 .
  • the step portion 544 may extend to be positioned directly below the disk portion 514b of the wheel portion 514 .
  • One side of the stepped portion 544 facing the disk portion 514b, in the illustrated embodiment, the upper surface is spaced apart from the outer peripheral surface of the disk portion 514b by a predetermined distance.
  • the upper surface of the step part 544 does not come into contact with the disk part 514b. Accordingly, even when the wheel part 514 is rotated, the step part 544 is not damaged.
  • the end of the step portion 544 in the outward direction that is, the end in the direction away from the rail extension portion 543 (ie, the direction opposite to the rail extension portion 543 ) extends to be located below the wheel body portion 514a.
  • the end of the stepped portion 544 is positioned further outward than the disk portion 514b, ie, further away from the rail extension 543 (ie, farther away from the rail extension 543 ).
  • the step portion 544 is formed to have a lower height than the rail extension portion 543 . That is, the shortest distance between the upper surface of the step 544 and the cart body 511 is longer than the shortest distance between the upper surface of the rail extension 543 and the cart body 511 .
  • the shortest distance between the upper surface of the stepped portion 544 and the capacitor assembly 100 or the valve assembly 200 is the upper surface of the rail extension 543 and the capacitor assembly 100 or the valve assembly 200 . longer than the shortest distance between
  • the step portion 544 is formed to have a lower height than the support portion (545). That is, the shortest distance between the upper surface of the step 544 and the cart body 511 is longer than the shortest distance between the upper surface of the support 545 and the cart body 511 .
  • the shortest distance between the upper surface of the stepped portion 544 and the capacitor assembly 100 or the valve assembly 200 is between the upper surface of the support portion 545 and the capacitor assembly 100 or the valve assembly 200 . longer than the shortest distance.
  • a space is formed on the upper side of the step portion 544 in which the rail extension portion 543 and the support portion 545 are surrounded by surfaces facing each other.
  • the space is defined as a guide space 544a.
  • the guide space portion 544a is a space into which the disk portion 514b of the wheel portion 514 is inserted.
  • the guide space portion 544a limits the movement distance in the left and right directions of the disk portion 514b so that the wheel portion 514 can be rotated while seated on the support portion 545 .
  • the length of the guide space portion 544a in the width direction is formed to be greater than the thickness of the disk portion 514b.
  • the length at which the step portion 544 extends between the rail extension portion 543 and the support portion 545 is formed to be longer than the width of the disk portion 514b.
  • the disk portion 514b may be moved in a direction toward the rail extension portion 543 or the support portion 545 while being inserted into the guide space portion 544a.
  • the guide space portion 544a is defined surrounded by the upper surface of the step portion 544 and the surface where the rail extension portion 543 and the support portion 545 face each other.
  • the inner direction of the guide space portion 544a that is, the space in the direction toward the rail curved portion 542 is partitioned by the surface of the rail extension portion 543 in the outer direction, that is, the surface in the direction toward the step portion 544 .
  • the outer direction of the guide space portion 544a that is, the space in the direction toward the support portion 545 is divided by the inner direction of the support portion 545, that is, the surface in the direction toward the step portion 544.
  • the moving distance in the inward direction of the disk portion 514b inserted into the guide space 544a is limited by the outward surface of the rail extension 543 .
  • the moving distance in the outward direction of the disk part 514b is limited by the inward surface of the support part 545 .
  • the wheel portion 514 does not deviate in the inner or outer direction of the rail unit 540 , that is, in the left and right direction in the illustrated embodiment.
  • the support portion 545 supports the wheel body portion 514a of the wheel portion 514 .
  • the wheel body part 514a is seated on the support part 545 .
  • the upper surface of the support part 545 may be in contact with the outer peripheral surface of the wheel body part 514a.
  • the support portion 545 is formed to extend from an end of the step portion 544 in an outer direction, that is, an end in a direction away from the rail extension portion 543 (ie, a direction opposite to the rail extension portion 543 ).
  • the support part 545 may extend so that the end in the outward direction is positioned directly below the wheel body part 514a.
  • the upper surface of the support portion 545 that is, the surface in contact with the wheel body portion 514a may be formed as a flat surface.
  • the support 545 can stably support the load of the cart unit 510 and the capacitor assembly 100 and the valve assembly 200 seated thereon.
  • the wheel part 514 rolls on the upper surface of the support part 545 and moves, it can move stably.
  • the support portion 545 is formed to have a higher height than the step portion 544 . That is, the shortest distance between the upper surface of the support 545 and the cart body 511 is shorter than the shortest distance between the upper surface of the step 544 and the cart body 511 .
  • the shortest distance between the upper surface of the stepped portion 544 and the capacitor assembly 100 or the valve assembly 200 is between the upper surface of the support portion 545 and the capacitor assembly 100 or the valve assembly 200 . longer than the shortest distance.
  • the difference between the height of the support part 545 and the height of the step part 544 may be determined according to the difference between the diameter of the wheel body part 514a and the diameter of the disk part 514b. That is, the difference between the height of the support part 545 and the height of the step part 544 may be determined to be greater than the difference between the diameter of the wheel body part 514a and the diameter of the disk part 514b.
  • the disk portion 514b does not come into contact with the step portion 544 .
  • the support 545 is formed to have a lower height than the rail extension 543 . That is, the shortest distance between the upper surface of the support 545 and the cart body 511 is longer than the shortest distance between the upper surface of the rail extension 543 and the cart body 511 .
  • the shortest distance between the upper surface of the support 545 and the capacitor assembly 100 or the valve assembly 200 is between the upper surface of the rail extension 543 and the capacitor assembly 100 or the valve assembly 200 . longer than the shortest distance of
  • the cart unit 510 has a round portion 513 is formed.
  • the round part 513 has its lower side, the inner side (each round unit 513 facing each other) and the upper side of the rail unit 540. It is arranged to be wrapped around the rail curved portion 542 of the.
  • the cart unit 510 is not separated from the rail unit 540 in the upward direction.
  • the rail unit 540 is formed with a guide space portion 544a that is a space surrounded by the rail extension portion 543 , the step portion 544 , and the support portion 545 .
  • the disk portion 514b of the wheel portion 514 is inserted into the guide space portion 544a.
  • a movement distance of the wheel portion 514 in a direction away from the rail curved portion 542 (ie, a direction opposite to the rail curved portion 542 ) or toward the rail curved portion 542 is limited. Accordingly, the cart unit 510 is not separated from the rail unit 540 in the left or right direction.
  • the sub-module 10 includes a departure prevention unit 600 .
  • the separation prevention unit 600 prevents the cart unit 510 slidably coupled to the rail unit 540 from being arbitrarily separated.
  • the separation preventing unit 600 includes a stopper member 610 , a rotation bearing member 620 , an elastic member 630 , a blocking plate 640 , and a stop groove 650 .
  • the stopper member 610 limits the distance the cart unit 510 is moved to the front side. By the stopper member 610 , the cart unit 510 is not arbitrarily separated from the rail unit 540 through the front side of the rail unit 540 .
  • the stopper member 610 may be provided on any one or more of the left and right wheel parts 514 of the cart unit 510 . In the illustrated embodiment, the stopper member 610 is provided on the left wheel portion 514 of the cart unit 510 . Alternatively, the stopper member 610 may be provided on the right wheel portion 514 of the cart unit 510 .
  • a plurality of stopper members 610 may be provided, respectively, to the left and right wheel parts 514 .
  • the stopper member 610 is rotatably coupled to the wheel part 514 .
  • the stopper member 610 may not rotate regardless of the rotation of the wheel part 514 .
  • the stopper member 610 may be rotated regardless of the stationary state of the wheel part 514 .
  • the stopper member 610 is inserted into the stop groove 650 formed in the rail unit 540 .
  • One side of the inserted stopper member 610 is in contact with the first surface 651 of the stop groove 650 . Accordingly, the stopper member 610 and the cart unit 510 to which the stopper member 610 is connected is no longer moved to the front side.
  • the stopper member 610 may be moved above the support 545 . Specifically, one side of the stopper member 610 facing the front side may be moved together with the cart unit 510 while in contact with the upper surface of the support 545 .
  • the stopper member 610 is connected to the elastic member 630 .
  • the elastic member 630 provides an elastic force so that the one side of the stopper member 610 can be maintained in contact with the support part 545 .
  • the stopper member 610 may be formed of a material having high rigidity. In an embodiment, the stopper member 610 may be formed of an iron (Fe) material.
  • the stopper member 610 includes a stopper body part 611 , a locking plate 612 , a wheel coupling part 613 , and an elastic member coupling hole 614 .
  • the stopper body 611 is formed to extend in one direction. In one embodiment, the stopper body portion 611 may be formed to extend in the same direction as the support portion (545).
  • a locking plate 612 is formed on the front end in the illustrated embodiment.
  • a wheel coupling portion 613 is formed through the center portion of the stopper body portion 611 .
  • the elastic member coupling hole 614 is formed through the other side of the stopper body 611, the rear side in the illustrated embodiment.
  • the stopper body portion 611 is disposed such that the front end faces downward and the rear end faces upward. This is due to the direction in which the elastic member 630 coupled to the elastic member coupling hole 614 pulls the rear end of the stopper body 611, counterclockwise in the embodiment shown in FIG. 15 .
  • the front end of the stopper body 611 may be maintained in contact with the upper surface of the support 545 .
  • a locking plate 612 is provided at the front end of the stopper body 611 .
  • the locking plate 612 is a portion in which the stopper member 610 is in contact with each surface of the stop groove 650 .
  • the cart unit 510 is no longer moved to the front side.
  • the locking plate 612 is formed to extend from the front end of the stopper body 611 .
  • the locking plate 612 may be formed to extend at a predetermined angle with the stopper body 611 .
  • the locking plate 612 may extend vertically with respect to the stopper body 611 .
  • the locking plate 612 is formed to protrude from the front end of the stopper body 611 in an inward direction, that is, a direction toward the round portion 513 by a predetermined distance.
  • the locking plate 612 may be formed to extend so that one end of the locking plate 612 facing in the inward direction is positioned above the stepped portion 544 .
  • the locking plate 612 comes into contact with the first surface 651 or the second surface 652 . Accordingly, the cart unit 510 to which the stopper member 610 is rotatably coupled is no longer moved to the front side.
  • a wheel fastening member 532 is fastened to the wheel coupling part 613 .
  • the stopper member 610 is rotatably coupled to the cart unit 510 by the wheel fastening member 532 .
  • the wheel coupling part 613 may be formed through the stopper body part 611 .
  • the center of the wheel coupling part 613 may be formed coaxially with the center of the wheel part 514 .
  • the elastic member coupling hole 614 is located on one side of the rear side of the stopper body 611, a direction away from the stop groove 650 in the illustrated embodiment (ie, the direction opposite to the stop groove 650). .
  • the elastic member coupling hole 614 may be biased toward the upper side of the stopper body 611 .
  • One end of the elastic member 630 is coupled to the elastic member coupling hole 614 .
  • the one end of the elastic member 630 may be rotated while being inserted into the elastic member coupling hole 614 .
  • the rotation bearing member 620 couples the stopper member 610 to the wheel part 514 to maintain a stationary state or to be rotatable regardless of the rotation of the wheel part 514 .
  • the rotating bearing member 620 is positioned between the stopper member 610 and the wheel portion 514 .
  • the elastic member 630 applies an elastic force to the stopper member 610 .
  • the elastic member 630 applies an elastic force in a direction toward the cart body 511 to the rear end of the stopper member 610 .
  • the elastic member 630 applies a counterclockwise elastic force to the stopper member 610 .
  • the rear end of the stopper member 610 can be maintained in a direction toward the cart body portion 511, pulled upward in the illustrated embodiment.
  • the elastic member 630 is deformed in shape and may be provided in any shape capable of storing restoring force.
  • the elastic member 630 may be provided as a coil spring.
  • the elastic member 630 includes a cart connection part 631 and a stopper connection part 632 .
  • the cart connection portion 631 and the stopper connection portion 632 may be provided in the form of a hook (hook).
  • the cart connection part 631 is located at the front side end of the elastic member 630 .
  • the cart connection part 631 is connected to the elastic member coupling part 511a.
  • the stopper connection part 632 is located at the rear side end of the elastic member 630 .
  • the stopper connection part 632 is rotatably coupled to the elastic member coupling hole 614 .
  • the elastic member 630 may be stretched or contracted between the elastic member coupling portion 511a and the elastic member coupling hole 614 .
  • the stopper member 610 may be maintained in a state in which the front end is inclined downward and the rear end is inclined upward.
  • the elastic member 630 applies a counterclockwise restoring force to the stopper member 610 . Accordingly, when the stopper member 610 is spaced apart from the stop groove 650 , the front end of the stopper member 610 may return to a state in contact with the upper surface of the support part 545 .
  • the blocking plate 640 closes the front side of the rail unit 540 . Also, the blocking plate 640 may close the rear side of the rail unit 540 (see FIGS. 20A and 20B ). The blocking plate 640 may be provided to prevent the cart unit 510 from being arbitrarily separated from the rail unit 540 when the sub-module 10 needs to be moved.
  • the blocking plate 640 may be coupled to the rail unit 540 to cover a portion of the rail body portion 541 , the rail extension portion 543 , and the step portion 544 .
  • the blocking plate 640 may be coupled to the cart unit 510 to cover a portion of the round portion 513 .
  • the blocking plate 640 may be coupled to the cart unit 510 and the rail unit 540 by a blocking fastening member 641 .
  • the blocking fastening member 641 may be provided as a screw member.
  • a plurality of blocking fastening members 641 may be provided. In the illustrated embodiment, four blocking fastening members 641 are provided. The blocking fastening member 641 may be fastened to the cart hollow part 513a and the fastening hole 543a.
  • the front end of the stopper member 610 is inserted into the stop groove 650 .
  • the locking plate 612 and the front end of the stopper body 611 to which the locking plate 612 is connected are inserted into the stop groove 650 .
  • the stop groove 650 is formed in the support 545 . Specifically, the stop groove 650 is formed on the front side of the support 545 .
  • the position of the stop groove 650 is preferably formed at a position where the cart unit 510 may not be arbitrarily separated from the rail unit 540 when the front end of the stopper member 610 is inserted.
  • the stop groove 650 is the locking plate 612 and the first surface 651 of the stop groove 650 when in contact, the front end of the cart unit 510 and the rail unit 540 of The front side end may be formed at a position positioned on the same vertical line.
  • a plurality of stop grooves 650 may be formed.
  • the plurality of stop grooves 650 are disposed to be spaced apart from each other by a predetermined distance in the front-rear direction, that is, along the direction in which the rail unit 540 is extended.
  • a stop groove 650 formed on the front side of the plurality of stop grooves 650 may limit the moving distance of the valve cart unit 510b.
  • the stop groove 650 formed on the rear side of the plurality of stop grooves 650 may limit the moving distance of the capacitor cart unit (510a).
  • the stop groove 650 is recessed by a predetermined length from the upper surface of the support part 545 .
  • the degree of depression of the stop groove 650 may be formed differently along the longitudinal direction of the support part 545 .
  • the stop groove 650 is formed with a more gentle rear side slope than the front side slope. Accordingly, the stopper member 610 moving together with the cart unit 510 may enter the stop groove 650 along the rear side inclination. In addition, the entered stopper member 610 can no longer be moved to the front side by the front side.
  • the stop groove 650 includes a first face 651 and a second face 652 .
  • the first surface 651 is a portion in contact with the locking plate 612 of the stopper member 610 inserted into the stop groove 650 .
  • the first surface 651 may be defined as a front side surface of the stop groove 650 which is recessed in the upper surface of the support part 545 .
  • the first surface 651 is located adjacent to one side of the extending direction of the rail unit 540, the front end in the illustrated embodiment.
  • the first surface 651 is formed to surround the one side of the stop groove 650 , the front side in the illustrated embodiment.
  • the first surface 651 is formed to extend at a predetermined angle with the upper surface of the support part 545 .
  • the predetermined angle may be greater than an angle between the second surface 652 and the upper surface of the support part 545 .
  • the predetermined angle may be a right angle.
  • the rear side end of the first side 651 is continuous with the front side end of the second side 652 .
  • the second surface 652 is a portion through which the locking plate 612 of the stopper member 610 moves toward the first surface 651 .
  • the locking plate 612 may be moved toward the first surface 651 while its lower end is in contact with the second surface 652 .
  • the second surface 652 may be defined as a rear side surface of the stop groove 650 which is recessed in the upper surface of the support part 545 .
  • the first surface 651 and the second surface 652 are continuous.
  • the second surface 652 extends in one side of the direction in which the rail unit 540 extends, in a direction away from the front end in the illustrated embodiment (ie, in a direction opposite to the front end). That is, the second surface 652 is disposed to be farther from the end of the one side (ie, the front side) of the rail unit 540 than the first surface 651 . That is, the second surface 652 is located on the rear side of the first surface 651 .
  • the second surface 652 is formed to extend at a predetermined angle with the upper surface of the support part 545 .
  • the predetermined angle may be formed to be smaller than an angle between the first surface 651 and the upper surface of the support part 545 .
  • the predetermined angle may be an acute angle.
  • the rear end of the second surface 652 is formed to extend with the upper surface of the support 545 .
  • the locking plate 612 may be moved to the front side or the rear side along the second surface 652 .
  • the locking plate 612 is in contact with the first surface 651, the locking plate 612 is no longer moved to the front side.
  • the stopper member 610 and the stopper member 610 may be limited to the front side movement distance of the cart unit 510 is connected rotatably.
  • the front end of the stopper member 610 is moved to the front side or the rear side together with the cart unit 510 in a state in contact with the upper surface of the support portion (545).
  • the front end of the stopper member 610 reaches the stop groove 650 , the front end of the stopper member 610 is rotated and moved downward along the second surface 652 .
  • the stopper member 610 When the front end of the stopper member 610 comes into contact with the first surface 651 , the stopper member 610 is no longer moved to the front side due to the shape of the first surface 651 . Accordingly, the cart unit 510 connected to the stopper member 610 is also not moved to the front side. Accordingly, the moving distance of the front side of the cart unit 510 may be limited.
  • the sub-module 10 needs to be withdrawn from the frame 20 for the purpose of maintenance or the like.
  • the capacitor assembly 100 and the valve assembly 200 constituting the sub-module 10 are mounted on the cart unit 510 . Therefore, the process in which the cart unit 510 is separated from the rail unit 540 should be preceded.
  • the stopper member 610 when the front end of the stopper member 610 comes into contact with the first surface 651 of the stop groove 650 , the stopper member 610 is no longer moved to the front side.
  • the stopper member 610 is rotated by being pressed and discharged from the stop groove 650 .
  • one of the ends of the stopper member 610 that is not in contact with the first surface 651, and the rear end in the illustrated embodiment, is pressed. Accordingly, the end of the stopper member 610 in contact with the first surface 651, that is, the front side end is in the direction away from the first surface 651 (ie, the direction opposite to the first surface 651), shown In the illustrated embodiment, it is rotated clockwise and discharged from the stop groove 650 .
  • the cart unit 510 is slid toward one end of the rail unit 540 by an external force, the front end in the illustrated embodiment.
  • the end of the rail unit 540 is closed by the blocking plate (640). Accordingly, when the blocking fastening member 641 is released, the blocking plate 640 is separated from the rail unit 540 .
  • the installation separation unit 700 to be described later may be utilized to separate the cart unit 510 from the rail unit 540 .
  • the stopper member 610 when the stopper member 610 is moved to the rear side, the front end of the stopper member 610 is moved to the rear side while in contact with the second surface 652 .
  • the second surface 652 may form an acute angle with the upper surface of the support part 545 .
  • the rear side end of the second surface 652 is continuous with the upper surface of the support portion 545 .
  • the stopper member 610 when the stopper member 610 is moved to the rear side, it can be moved easily unlike when it is moved to the front side.
  • a blocking plate 640 may be provided at the front side end and the rear side end of the rail unit 540 .
  • the blocking plate 640 is fastened to the cart unit 510 and the rail unit 540 , respectively. Accordingly, the front side and the rear side of the cart unit 510 are blocked by the blocking plate (640).
  • the cart unit 510 by the blocking plate 640 is not arbitrarily separated from the rail unit (540). This may be utilized in a situation in which the sub-module 10 is moved or the movement of the cart unit 510 is to be restricted.
  • the sub-module 10 includes an installation and separation unit 700 .
  • the installation and separation unit 700 the cart unit 510 on which the capacitor assembly 100 or the valve assembly 200 is seated can be easily coupled to or removed from the rail unit 540 .
  • the installation separation unit 700 includes a lever member 710 , a lever coupling member 720 , and a lever insertion groove 730 .
  • the lever member 710 is inserted and coupled to the lever coupling member 720 and the lever insertion groove 730 .
  • a user can easily couple the cart unit 510 to the rail unit 540 using the lever member 710 .
  • the user can easily remove the cart unit 510 from the rail unit 540 using the lever member 710 .
  • the lever member 710 may function as a lever. That is, the lever member 710 may pull the lever coupling member 720 toward the front side or push it toward the rear side using the lever insertion groove 730 as an axis.
  • the lever member 710 may be provided together with the sub-module 10 .
  • the frame 20 may be provided with a member (not shown) for mounting the lever member 710 .
  • the lever member 710 may be provided separately from the sub-module 10 .
  • the user can separate the sub-module 10 by bringing the lever member 710 .
  • the lever member 710 includes an extension 711 and a handle 712 .
  • the extension 711 is a portion coupled to the lever coupling member 720 and the lever insertion groove 730 .
  • the extension portion 711 is formed to extend from one end of the handle portion 712 .
  • the extension 711 may be formed of a material having high rigidity. In an embodiment, the extension 711 may be formed of an iron material.
  • the extension 711 includes a first extension 711a and a second extension 711b.
  • the first extension portion 711a is a portion directly coupled to the lever coupling member 720 and the lever insertion groove 730 . One end of the first extension 711a is connected to the second extension 711b.
  • the second extension portion 711b is positioned between the first extension portion 711a and the handle portion 712 .
  • the second extension portion 711b is respectively connected to the first extension portion 711a and the handle portion 712 .
  • the second extension portion 711b is formed to extend at a predetermined angle with the first extension portion 711a.
  • the predetermined angle may be a right angle.
  • the second extension portion 711b is formed to extend at a predetermined angle with the handle portion 712 .
  • the second extension portion 711b may extend parallel to the handle portion 712 .
  • a central axis in a direction in which the second extension portion 711b extends may be the same as a central axis in a direction in which the handle portion 712 extends.
  • the handle portion 712 is a portion where the user grips the lever member 710 .
  • the handle portion 712 is formed to extend from one side of the second extension portion 711b in a direction away from the first extension portion 711a (ie, in a direction opposite to the first extension portion 711a).
  • the handle portion 712 is continuous with the second extension portion 711b.
  • the handle portion 712 extends a predetermined distance in a direction away from the second extension portion 711b (ie, in a direction opposite to the second extension portion 711b).
  • the extension length of the handle portion 712 and the extension length of the second extension portion 711b may be the same.
  • a grip member may be provided on the outer circumferential surface of the handle portion 712 to facilitate the user.
  • the grip member is configured to increase the frictional force between the handle portion 712 and the palm gripping the handle portion 712 .
  • the grip member may be formed of a rubber material.
  • a lever member 710 is coupled to the lever coupling member 720 .
  • the user may move the cart unit 510 to which the lever coupling member 720 and the lever coupling member 720 are coupled to the front side or the rear side.
  • the lever coupling member 720 is coupled to the cart unit 510 . Specifically, the lever engaging member 720 is located on the lower side of the front side of the cart body (511). The lever coupling member 720 may be coupled to the cart body 511 by the lever coupling member 531 (see FIG. 13 ).
  • the lever coupling member 720 is formed to protrude in a direction away from the cart unit 510 (ie, in a direction opposite to the cart unit 510) by a predetermined distance toward the front side in the illustrated embodiment. By the protrusion, the user can easily identify the lever engaging member 720 .
  • the lever coupling member 720 may be formed of a material having high rigidity.
  • the lever coupling member 720 may be formed of an iron material. Accordingly, even when pressure is applied by the lever member 710 formed of a material having rigidity, the shape deformation of the lever coupling member 720 may be minimized.
  • the lever coupling member 720 includes a lever insertion hole 721 .
  • the lever insertion hole 721 is formed through the inside of the lever coupling member 720 .
  • the first extension 711a of the lever member 710 is inserted through the lever insertion hole 721 .
  • the first extension 711a may pass through the lever insertion hole 721 and extend to the lever insertion groove 730 .
  • the lever insertion hole 721 is formed to have a rectangular cross section. This is because the area in which the first extension 711a contacts the lever coupling member 720 is flat. The shape of the lever insertion hole 721 may be changed to correspond to the shape of the first extension 711a.
  • the length of the lever insertion hole 721 in the front-rear direction is longer than the thickness of the first extension part 711a. Accordingly, the first extension portion 711a may be inserted into the first lever insertion groove 731 or the second lever insertion groove 732 while being penetrated through the lever insertion hole 721 .
  • the center of the lever insertion hole 721 may be located on the same plane or on the same line as the centers of the first lever insertion groove 731 and the second lever insertion groove 732 .
  • the lever insertion groove 730 is a space into which the end of the first extension 711a passing through the lever insertion hole 721 is inserted.
  • the cart unit 510 may be moved to the front side or the rear side.
  • the lever insertion groove 730 is formed in the rail body portion 541 . Specifically, the lever insertion groove 730 is recessed by a predetermined distance from the front side of the upper surface of the rail body 541 .
  • a plurality of lever insertion grooves 730 may be formed.
  • two lever insertion grooves 730 are formed.
  • the lever insertion groove 730 formed on the front side is the first lever insertion groove 731
  • the lever insertion groove 730 located on the rear side is the second lever insertion groove ( 732), respectively.
  • the first lever insertion groove 731 is located on the front side of the rail body 541 . Specifically, the first lever insertion groove 731 is located at the front end of the rail body 541 . That is, the first lever insertion groove 731 is formed by being depressed by a predetermined distance on the upper and front side surfaces of the rail body 541 .
  • first extension portion 711a An end of the first extension portion 711a is inserted and coupled to the first lever insertion groove 731 .
  • the end of the inserted first extension portion 711a is directed away from the rear side of the first lever insertion groove 731 , that is, the open side of the rail body 541 (ie, the direction opposite to the open side) ) is in contact with the
  • the lever member 710 may function as a lever by using the above surfaces as “full points”.
  • the lever member 710 is inserted into the first lever insertion groove 731 in a counterclockwise direction, that is, the handle 712 moves away from the cart unit 510 (ie, the direction opposite to the cart unit 510). ) can be rotated. Accordingly, the first extension 711a is in contact with the end of the lever coupling member 720 located on the rear side of the front side end of the cart unit 510 or the lever insertion hole (721).
  • the end of the cart unit 510 or the end of the lever engagement member 720 may serve as a “point of action”. That is, it is a point at which the force applied to the lever member 710 is applied. It will be appreciated that the handle portion 712 functions as a “force point”.
  • a second lever insertion groove 732 is formed on the rear side of the first lever insertion groove 731 .
  • the second lever insertion groove 732 is located on the front side of the rail body 541 . Specifically, the second lever insertion groove 732 is formed to be spaced apart from the first lever insertion groove 731 formed at the front end of the rail body 541 by a predetermined distance to the rear side. The second lever insertion groove 732 is formed by being depressed by a predetermined distance from the upper surface of the rail body 541 .
  • first extension 711a is inserted into the second lever insertion groove 732 .
  • the end of the inserted first extension portion 711a is on the rear side of the second lever insertion groove 732 , that is, in a direction away from the first lever insertion groove 731 (ie, opposite to the first lever insertion groove 731 ). direction) is in contact.
  • the lever member 710 may function as a lever by using the above surfaces as “full points”.
  • the lever member 710 may press the cart unit 510 in a state respectively coupled to the lever coupling member 720 and the lever insertion groove 730 . That is, the lever member 710 presses the cart unit 510 toward one of the directions in which the rail unit 540 extends, that is, the other direction among the front side or the direction in which the rail unit 540 extends, that is, the rear side. can do.
  • the lever member 710 may be rotated in a clockwise direction, that is, in a direction in which the handle portion 712 approaches the cart unit 510 in a state inserted into the second lever insertion groove 732 . Accordingly, the second extension portion 711b is in contact with the end of the lever coupling member 720 disposed on the rear side of the front side end of the cart unit 510 or the lever insertion hole (721).
  • the end of the cart unit 510 or the end of the lever engagement member 720 may serve as a “point of action”. That is, it is a point at which the force applied to the lever member 710 is applied. It will be appreciated that the handle portion 712 functions as a “force point”.
  • the extension 711 of the lever member 710 may be through-coupled to the lever insertion hole 721 of the lever coupling member 720 . Also, an end of the first extension 711a may be inserted into the first lever insertion groove 731 or the second lever insertion groove 732 .
  • FIG. 17 shows the cart unit 510 and the first lever insertion groove in which the lever member 710 is inserted in order to withdraw the capacitor assembly 100 or the valve assembly 200 seated in the cart unit 510 from the rail unit 540 .
  • the inserted state at 731 is shown.
  • the cart unit 510 to which the lever coupling member 720 is connected is moved to the front side, and the cart unit 510 may be slid off the rail unit 540 . It will be understood that the stopper member 610 must be discharged from the stop groove 650 before the above process is performed.
  • FIG. 18 shows the cart unit 510 and the second lever insertion groove in which the lever member 710 is inserted in order to couple the capacitor assembly 100 or the valve assembly 200 seated on the cart unit 510 to the rail unit 540 .
  • the inserted state at 732 is shown.
  • the rear side of the first extension 711a is an end positioned on the rear side of the lever insertion hole 721 pressurize
  • the cart unit 510 to which the lever coupling member 720 is connected is moved to the rear side, and the cart unit 510 may be slidably coupled to the rail unit 540 .
  • the sub-module 10 includes a short circuit adjusting unit 800 .
  • the short circuit adjusting unit 800 is configured to simultaneously short-circuit or ground each capacitor element (not shown) accommodated in the plurality of capacitor assemblies 100 by a simple operation.
  • the short circuit adjusting unit 800 according to an embodiment of the present invention will be described in detail with reference to FIGS. 19 to 21 .
  • the short-circuit adjustment unit 800 is installed on the frame 20 . Accordingly, it may be said that the short circuit adjusting unit 800 is included in the frame 20 .
  • the function of the short circuit adjusting unit 800 is to short-circuit the plurality of sub-modules 10 , the following description will be made on the assumption that the short-circuit adjusting unit 800 is included in the sub-module 10 .
  • the shorting adjustment unit 800 includes a moving member 810 , a shorting block 820 , a variable connector 830 , a link member 840 , and an indicator member 850 .
  • the moving member 810 is configured to simultaneously move the plurality of variable connectors 830 .
  • the moving member 810 is slidably coupled to the frame 20 . Specifically, the moving member 810 is slidably coupled to the rear side of the support 23 positioned at the rearmost side.
  • the moving member 810 is connected to the variable connector 830 .
  • the variable connector 830 may also slide along with the movable member 810 .
  • the moving member 810 is connected to the link member 840 .
  • the moving member 810 may slide to the left or right according to the movement of the link member 840 .
  • the moving member 810 is formed to extend in one direction. In the illustrated embodiment, the moving member 810 is formed to extend in the left and right direction like the extending direction of the support portion (23). The extended length of the moving member 810 may be shorter than the extended length of the support part 23 .
  • the moving member 810 includes an extended body portion 811 and an end insertion groove 812 .
  • the extended body portion 811 forms a body of the moving member 810 .
  • the extended body portion 811 is formed to extend in the longitudinal direction of the moving member 810 .
  • the extended body 811 may be inserted between the grooves formed in the shorting block 820 . That is, in the illustrated embodiment, the extended body portion 811 is inserted into a groove formed in the central portion of the shorting block 820 spaced apart from each other by a predetermined distance in the longitudinal direction.
  • the extended body portion 811 is positioned between the movable member support portions 822 of the shorting block 820 . Further, the extended body portion 811 is configured to cover the portion of the shorting block 820 positioned between the movable member supports 822 .
  • the extended body portion 811 may be moved in a left or right direction while being inserted into the groove.
  • the movement is achieved by the movable member support 822 provided on the upper and lower sides of the shorting block 820 .
  • An end insertion groove 812 is formed through the extended body portion 811 .
  • a fastening member is provided in the extended body portion 811 adjacent to the end of the end insertion groove 812 .
  • the fastening member fastens the variable connector 830 to the extension body portion 811 .
  • Both ends of the variable connector 830 in the longitudinal direction are inserted into the end insertion groove 812 .
  • the both ends of the variable connector 830 inserted into the end insertion groove 812 may pass through the end insertion groove 812 to contact the portion of the shorting block 820 .
  • the shorting block 820 may be in contact with or separated from the shorting block 820 .
  • the end insertion groove 812 is formed through the extended body portion 811 .
  • the extension body portion 811 is formed to extend by a predetermined length in the extending direction.
  • the predetermined length of the end insertion groove 812 may be longer than the width direction length of the shorting block 820 , that is, a length in the left and right direction. Accordingly, the end of the variable connector 830 passing through the end insertion groove 812 may contact or be spaced apart from the shorting block 820 .
  • a plurality of end insertion grooves 812 may be formed.
  • a plurality of end insertion grooves 812 are formed to be spaced apart from each other by a predetermined distance.
  • the predetermined distance may be shorter than a distance at which the short blocks 820 are spaced apart from each other.
  • a variable connector 830 is partially penetrated through the end insertion groove 812 .
  • the first connector end 831 and the second connector end 832 of the variable connector 830 are respectively formed through the end insertion groove 812 .
  • first connector end 831 and the second connector end 832 may pass through the end insertion groove 812 to contact or be spaced apart from the shorting block 820 .
  • the shorting block 820 is electrically contacted or spaced apart from the variable connector 830 .
  • each sub-module 10 When only one end of the variable connector 830 is in contact with the shorting block 820 , the voltage of each sub-module 10 may be maintained differently. When both ends of the variable connector 830 are in contact with the shorting block 820 , each sub-module 10 is short-circuited with each other, so that the voltage of each sub-module 10 may be changed in the same manner.
  • the shorting block 820 may be formed of a conductive material.
  • the shorting block 820 may be formed of an aluminum (Al) or iron (Fe) material.
  • the shorting block 820 is formed to extend in one direction.
  • the shorting block 820 is formed to extend in the vertical direction. That is, the shorting block 820 and the moving member 810 are extended to form a predetermined angle with each other.
  • a movable member support 822 is provided at upper and lower sides of the shorting block 820 .
  • a space into which the extended body part 811 is inserted is formed between the movable member support parts 822 .
  • a contact portion 823 protruding in a direction away from the support portion 23 (ie, in a direction opposite to the support portion 23) is formed in the space.
  • a plurality of shorting blocks 820 are provided.
  • the plurality of shorting blocks 820 are disposed to be spaced apart from each other by a predetermined distance.
  • the predetermined distance may be formed to be longer than the distance at which the end insertion grooves 812 are spaced apart from each other.
  • the shorting block 820 is formed to extend in one direction, in the illustrated embodiment, in the vertical direction.
  • the shorting block 820 may have a rectangular cross-section. That is, the shorting block 820 may be formed in a quadrangular prism shape.
  • the cross section of the shorting block 820 has one corner coupled to the frame 20 as the base, and the other corner facing the one corner, that is, the other corner opposite to the frame 20 as the upper side. has a trapezoidal shape.
  • the length of the moving member 810 of one surface coupled to the frame 20 among the surfaces of the shorting block 820 in the extending direction is the one surface of the shorting block 820 .
  • the length of the moving member 810 of the other surface facing the extending direction is longer than the length.
  • Each side of the shorting blocks 820 positioned adjacent to each other facing each other may be formed to be inclined. In an embodiment, each side may extend at an acute angle with respect to one side (ie, the front side) of the shorting block 820 to which each shorting block 820 is coupled to the frame 20 .
  • each side of the adjacent shorting blocks 820 facing each other is formed to be inclined in a direction away from the frame 20 .
  • the surfaces of the shorting blocks 820 adjacent to each other facing each other are inclined to move away from each other in a direction toward the moving member 810 .
  • the distance between the surfaces facing each other along the direction toward the rear side may increase as the distance from the frame 20 increases.
  • the first connector end 831 and the second connector end 832 of the variable connector 830 are in contact with the face (ie, the inclined face) of the shorting block 820 . and can easily come into contact with the shorting block 820 .
  • first connector end 831 and the second connector end 832 of the variable connector 830 are the other surface of the shorting block 820 along the side (ie, the inclined side) of the shorting block 820 . (that is, the surface that is spaced apart from the frame 20 and faces the frame 20) can be easily entered.
  • the shorting block 820 and the variable connector 830 may be in elastic contact without a separate elastic member. That is, the variable connector 830 comes into contact with the shorting block 820 while applying an elastic force in a direction toward the shorting frame 20 to the shorting block 820 . A detailed description thereof will be provided later.
  • the shorting block 820 includes a shorting conductor 821 , a moving member support 822 , and a contact 823 .
  • the shorting conductor 821 connects the blocking plate 640 and the variable connector 830 to be energized. One end of the shorting conductor 821 is electrically connected to the blocking plate 640 . The other end of the shorting conductor 821 is electrically connected to the variable connector 830 .
  • the rail unit 540 and the capacitor assembly 100 that are in energizable contact with the blocking plate 640 may be energized with the variable connector 830 .
  • variable connector 830 may be electrically connected to external electronic equipment.
  • the short circuit adjusting unit 800 may be any electronic device requiring a short circuit. It will be understood that the apparatus may be applied.
  • a plurality of shorting conductors 821 may be provided. Each of the plurality of shorting conductors 821 is electrically connected to the plurality of blocking plates 640 and the plurality of variable connectors 830 , respectively.
  • the movable member support 822 supports the movable member 810 to be slidably movable while the movable member 810 is inserted into the shorting block 820 .
  • the movable member support 822 may be rotatably coupled to the shorting block 820 . When the moving member 810 slides in the left or right direction, the moving member support 822 may also be rotated.
  • a plurality of movable member supporters 822 may be provided.
  • two movable member supporters 822 are provided, respectively, positioned above and below the shorting block 820 .
  • the movable member support 822 is continuous with the first portion 822a and the first portion 822a that are in contact with the shorting block 820 , and in a direction away from the shorting block 820 (ie, opposite to the shorting block 820 ). a second portion 822b positioned in the direction of
  • a diameter of the first portion 822a may be smaller than a diameter of the second portion 822b.
  • the first portion 822a is formed to protrude by a predetermined length from one side of the shorting block 820 in a direction away from the support 23 (ie, in a direction opposite to the support 23 ). The length may be greater than or equal to the thickness of the movable member 810 .
  • a predetermined space is formed between the one side surface of the shorting block 820 and the second portion 822b.
  • the upper and lower ends of the movable member 810 may be inserted into the predetermined spaces formed at the upper and lower sides, respectively.
  • the contact portion 823 is a portion to which the respective ends 831 and 832 of the variable connector 830 are in contact.
  • the contact portion 823 is positioned between the plurality of movable member supports 822 .
  • the contact part 823 is formed to protrude by a predetermined length in a direction away from the support part 23 (ie, in a direction opposite to the support part 23 ). Accordingly, the respective ends 831 and 832 of the variable connector 830 may easily contact the contact portion 823 .
  • Each end of the contact portion 823 in the width direction may be inclined in a direction toward the support portion 23 . That is, the respective ends of the contact portion 823 may be configured such that the protruding length in the direction toward each other is increased.
  • each of the ends 831 and 832 of the variable connector 830 may easily enter the inside of the contact portion 823 .
  • each of the ends 831 and 832 of the variable connector 830 may be easily detached to the outside of the contact portion 823 .
  • variable connector 830 establishes or releases an energized state between the different shorting blocks 820 .
  • the variable connector 830 is configured to be in contact with or spaced apart from any one or more of the plurality of shorting blocks 820 adjacent to each other.
  • the variable connector 830 may be formed of a conductive material. In an embodiment, the variable connector 830 may be formed of a copper (Cu) material.
  • variable connector 830 may be provided in an elastic form.
  • variable connector 830 may be provided in the form of a leaf spring.
  • first connector end 831 and the second connector end 832 may be elastically deformed when in contact with the contact portion 823 . Accordingly, a contact state between the first connector end 831 and the second connector end 832 and the contact portion 823 may be stably maintained.
  • first connector end 831 and the second connector end 832 are spaced apart from the contact portion 823 , they are elastically deformed and may return to their original shape by the stored restoring force.
  • first connector end 831 and the second connector end 832 store elastic force through a predetermined shape deformation when moved along the inclined surface of the shorting block 820 .
  • the shorting block 820 is formed in a trapezoidal shape. Accordingly, as each connector end (831, 832) is moved toward the side facing the frame (20) (that is, the side between the sides inclined on both sides), the elastic force stored in each connector end (831, 832) size is increased
  • each connector end (831, 832) When each connector end (831, 832) is moved along the surface (ie, inclined surface) of the shorting block 820 and enters the other surface of the shorting block 820, each connector end (831, 832) and The shortest distance between the short blocks 820 is further reduced. Accordingly, the magnitude of the elastic force stored in each of the connector ends 831 and 832 becomes the maximum.
  • variable connector 830 may be deformed in shape and contact the shorting block 820 in a state in which the elastic force is stored, and may be moved in one direction (ie, the left and right direction) in which the movable member 810 extends.
  • variable connector 830 may be improved even if a separate elastic member is not provided. Accordingly, even if a separate elastic member is not provided, contact reliability between the variable connector 830 and the shorting block 820 may be improved.
  • the variable connector 830 is coupled to the moving member 810 .
  • the variable connector 830 may slide in a left and right direction together with the moving member 810 .
  • variable connector 830 may have any one of a first position in energably contacting any one or more of the shorting blocks 820 positioned adjacent to each other and a second position spaced apart from both of the shorting blocks 820 positioned adjacent to each other. can be located in
  • variable connector 830 is in contact with all of the two shorting blocks 820 positioned adjacent to each other, only in contact with one of the shorting blocks 820 , or in contact with both of the two shorting blocks 820 . It may not be
  • variable connector 830 is electrically connected to the shorting conductor 821 . Accordingly, the variable connector 830 is electrically connected to the blocking plate 640 .
  • the variable connector 830 is formed to extend by a predetermined length in the direction in which the movable member 810 extends, and in the left-right direction in the illustrated embodiment.
  • the extended length of the variable connector 830 is preferably determined according to the distance at which the shorting blocks 820 are spaced apart.
  • variable connector 830 is preferably formed to be greater than or equal to the distance between the ends of the contact portions 823 of the shorting blocks 820 adjacent to each other facing each other.
  • the extended length of the variable connector 830 is one end of the shorting block 820 to which the first connector end 831 of the variable connector 830 is in contact, and the second connector. It is preferable that the end 832 is formed to be greater than or equal to a distance between one end of the shorting block 820 that is in contact.
  • the first connector end 831 and the second connector end 832 of the variable connector 830 may be electrically connected to different shorting blocks 820 , respectively. Accordingly, different sub-modules 10 may be short-circuited at the same time.
  • the variable connector 830 includes a first connector end 831 and a second connector end 832 .
  • the first connector end 831 is defined as one end of the variable connector 830 in the longitudinal direction. In the illustrated embodiment, the first connector end 831 is located on the left side of the variable connector 830 . The first connector end 831 is bent toward the contact portion 823 .
  • the second connector end 832 is defined as the other end in the longitudinal direction of the variable connector 830 .
  • the second connector end 832 is located on the right side of the variable connector 830 .
  • the second connector end 832 is located opposite the first connector end 831 .
  • the second connector end 832 is bent toward the contact portion 823 .
  • the first connector end 831 and the second connector end 832 are positioned therebetween and are respectively continuous with portions extending in the one direction (ie, the left-right direction).
  • the first connector end 831 and the second connector end 832 may extend toward the frame 20 at an angle with respect to the portion. In an embodiment, the first connector end 831 and the second connector end 832 may extend at an obtuse angle with the portion.
  • the cross-section of the variable connector 830 when viewed from above, has the first connector end 831 and the second connector end 832 as hypotenuses, and the portion of the variable connector 830 is defined as the hypotenuse. It is the shape of the part of the trapezoid used as the base.
  • the first connector end 831 and the second connector end 832 may be spaced apart from the frame 20 . Also, the first connector end 831 and the second connector end 832 may extend to contact the shorting block 820 .
  • first connector end 831 and the second connector end 832 do not come into contact with the frame 20 , but may extend to such an extent that they can contact the shorting block 820 .
  • each connector end 831 , 832 comes into contact with the inclined surface of the shorting block 820 and elastically deforms in the one direction. can be moved
  • variable connector 830 comes into contact with the shorting block 820 , the variable connector 830 is deformed in shape and moved while storing the elastic force. That is, the variable connector 830 and the shorting block 820 are in elastic contact.
  • first connector end 831 and the second connector end 832 facing the frame 20 in the illustrated embodiment, the front side may be formed to be rounded.
  • the moving member 810 when the moving member 810 is moved in one direction (ie, the left-right direction), the first connector end 831 and the second connector end 832 are easily attached to the inclined surface of the shorting block 820 . will be able to enter.
  • variable connector 830 and the shorting block 820 may be secured between the variable connector 830 and the shorting block 820 . Accordingly, the reliability of the contact between the variable connector 830 and the shorting block 820 may be guaranteed.
  • the first connector end 831 and the second connector end 832 may be respectively inserted through the end insertion groove 812 .
  • the first connector end 831 is inserted through any one of the end insertion grooves 812 , and is in contact with the contact portion 823 of any one shorting block 820 .
  • the second connector end 832 is inserted through the other end insertion groove 812 to be in contact with the contact portion 823 of the other shorting block 820 .
  • the one end insertion groove 812 and the other end insertion groove 812 into which the first connector end 831 and the second connector end 832 are respectively inserted are disposed adjacent to each other. will be.
  • the one shorting block 820 and the other shorting block 820 to which the first connector end 831 and the second connector end 832 are respectively in energably contact are also disposed adjacent to each other.
  • variable connector 830 may be slidably moved between the shorting blocks 820 adjacent to each other, and may simultaneously energize at least one of the adjacent shorting blocks 820 .
  • variable connector 830 is in energized contact with only one of the shorting blocks 820 adjacent to each other. That is, the second connector end 832 contacts any one shorting block 820 , and the first connector end 831 does not contact the shorting block 820 .
  • the plurality of sub-modules 10 are not short-circuited with each other. Accordingly, the capacitor elements (not shown) provided in the plurality of sub-modules 10 may maintain different voltages.
  • variable connectors 830 are electrically in contact with each of the shorting blocks 820 adjacent to each other. That is, the second connector end 832 maintains contact with any one of the shorting blocks 820 , and the first connector end 831 is in contact with the other of the adjacent shorting blocks 820 . do.
  • variable connector 830 may be spaced apart from all of the shorting blocks 820 adjacent to each other as described above.
  • each shorting block 820 is energized through the variable connector 830 .
  • a capacitor element (not shown) of each sub-module 10 that is respectively energably connected to each shorting block 820 is also energized.
  • the plurality of sub-modules 10 and the plurality of sub-modules 10 are short-circuited to each other. Accordingly, the capacitor elements (not shown) provided in the plurality of sub-modules 10 may be changed to the same voltage.
  • the state may be a ground state.
  • the link member 840 is connected to the moving member 810 to convert the rotational motion of the short-circuit adjusting lever 854 into a linear motion of the moving member 810 .
  • the link member 840 is respectively connected to the moving member 810 and the short circuit adjusting lever 854 .
  • the link member 840 may be provided in any form capable of converting a rotational motion into a linear motion or converting a linear motion into a rotational motion.
  • the link member 840 may be provided as a 2-section link or a 3-section link.
  • the link member 840 includes a rotation shaft portion 841 , a first link 842 , and a second link 843 .
  • the rotation shaft portion 841 transmits the rotational motion of the short-circuit adjustment lever 854 to the first link 842 .
  • the rotating shaft portion 841 is connected to the short-circuit adjustment lever 854 and the first link 842 .
  • the rotation shaft portion 841 may be rotated together with the short-circuit adjustment lever 854 and the first link 842 .
  • the rotation shaft portion 841 is disposed to be spaced apart from the vertical frame 21 by a predetermined distance. In one embodiment, the rotation shaft portion 841 may be formed to extend in the vertical direction, that is, perpendicular to the ground.
  • the rotation shaft portion 841 may be maintained perpendicular to the ground while being spaced apart from the vertical frame 21 by a predetermined distance by a supporting member.
  • An insulating member 24 may be provided below the rotation shaft portion 841 .
  • the insulating member 24 may be configured to surround the outside of the rotation shaft portion 841 adjacent to the indicator member 850 . Accordingly, a safety accident due to high pressure that may occur when the user manipulates the indicator member 850 may be prevented.
  • the first link 842 transmits the rotational motion of the rotating shaft portion 841 to the second link 843 .
  • the first link 842 is formed to extend in one direction. One side of the first link 842 in the extending direction is connected to the rotation shaft portion 841 . In one embodiment, the first link 842 may be coupled through the rotation shaft portion (841). The first link 842 may be rotated together with the rotation shaft portion 841 .
  • the other side of the first link 842 is rotatably coupled to the second link 843 .
  • the second link 843 may be linearly moved.
  • the second link 843 converts the rotational motion of the first link 842 into a linear motion and transmits it to the moving member 810 .
  • the second link 843 is formed to extend in one direction. In the illustrated embodiment, the second link 843 is formed to extend in the left-right direction.
  • One side of the second link 843 in the extending direction is rotatably coupled to the first link 842 .
  • the second link 843 linearly moves in a direction toward the moving member 810 or away from the moving member 810 (ie, in a direction opposite to the moving member 810 ).
  • the other side in the extending direction of the second link 843 is coupled to the moving member 810 .
  • the moving member 810 also moves away from the second link 843 (ie, in a direction opposite to the second link 843 ) or in a direction toward the second link 843 . can be moved in a straight line.
  • the indicator member 850 is operated by a user.
  • the user may operate the short-circuit adjustment lever 854 to short-circuit the plurality of sub-modules 10 to the same voltage or release the short-circuit state.
  • the indicator member 850 is positioned adjacent to the insulating member 24 provided below the rotation shaft portion 841 . Accordingly, an accident in which a user approaching the indicator member 850 is electrocuted may be prevented.
  • the indicator member 850 includes an indicator housing 851 , a first display unit 852 , a second display unit 853 , a short-circuit adjustment lever 854 , and a pin member 855 .
  • the indicator housing 851 forms the body of the indicator member 850 .
  • the indicator housing 851 has a central portion in the width direction recessed. That is, when viewed from the top, the indicator housing 851 may have a “C” shape.
  • the indicator housing 851 may be disposed to be spaced apart from the sub-module 10 . Accordingly, even if the user does not approach the sub-module 10, the short-circuit adjustment lever 854 can be operated. Accordingly, a safety accident due to contact with the sub-module 10 may be prevented.
  • a first display unit 852 , a second display unit 853 , a short circuit adjusting lever 854 , and a pin member 855 are provided on the upper surface of the indicator housing 851 .
  • the first display unit 852 and the second display unit 853 display whether the plurality of sub-modules 10 are in a short-circuited state. A user may visually recognize whether a short circuit is present through the first display unit 852 and the second display unit 853 .
  • the first display unit 852 and the second display unit 853 are disposed to be spaced apart from each other by a predetermined distance.
  • the predetermined distance may be determined according to the rotation radius and rotation angle of the short-circuit adjustment lever 854 .
  • the first display portion 852 may be positioned so as to be covered by the short-circuit adjustment lever 854 when the short-circuit adjustment lever 854 is rotated toward the first display portion 852 .
  • the first indicator 852 may be completely covered by the short-circuit adjustment lever 854 when the short-circuit adjustment lever 854 is rotated to the maximum.
  • the second display portion 853 may be positioned to be obscured by the short-circuit adjustment lever 854 when the short-circuit adjustment lever 854 is rotated toward the second display portion 853 .
  • the second display portion 853 may be completely covered by the short-circuit adjustment lever 854 when the short-circuit adjustment lever 854 is rotated to the maximum.
  • the first display unit 852 may be covered when the plurality of sub-modules 10 are in any one of a short-circuited state and a non-shorted state. Also, the second display unit 853 may be covered when the plurality of sub-modules 10 are in the other one of a short-circuited state and a non-shorted state.
  • the first display unit 852 and the second display unit 853 may display a state different from the state formed by rotating the short-circuit adjustment lever 854 .
  • the state displayed on the second display unit 853 may be a energized state formed by the rotation of the short circuit adjustment lever 854 .
  • the state displayed on the first display portion 852 may be an energized state formed by the rotation of the short circuit adjustment lever 854 .
  • the first display unit 852 and the second display unit 853 are alternately covered or exposed in each state. Accordingly, the user can determine whether each sub-module 10 is in a short-circuited state by using whether the first display unit 852 and the second display unit 853 are exposed.
  • the short-circuit adjustment lever 854 is operated to short-circuit the plurality of sub-modules 10 at the same time or release the short-circuit state.
  • the short adjustment lever 854 can be rotated automatically or manually.
  • the shorting adjustment lever 854 is rotatably coupled to the indicator housing 851 .
  • the coupling is accomplished by a pin member 855 .
  • the short-circuit adjustment lever 854 is connected to the rotating shaft portion 841 .
  • the rotating shaft portion 841 may also be rotated. As described above, the rotation is transmitted to the moving member 810 through the first and second links 842 and 843 .
  • the short-circuit adjustment lever 854 is formed to extend to a predetermined length. In an embodiment, the short control lever 854 may extend longer than a distance between the pin member 855 and the first and second display units 852 and 853 .
  • the short circuit adjusting lever 854 is rotatably coupled to the indicator housing 851 by the pin member 855 to cover either the first display unit 852 or the second display unit 853 . can be rotated.
  • the pin member 855 rotatably couples the shorting adjustment lever 854 to the indicator housing 851 .
  • the pin member 855 functions as a rotation shaft of the short-circuit adjustment lever 854 .
  • the pin member 855 may be located at one end in the direction in which the short-circuit adjustment lever 854 extends. In one embodiment, the pin member 855 may be located at one end of the short-circuit adjustment lever 854 in a direction away from the first and second display units 852 and 853 , that is, in an opposite direction.
  • the rotating shaft portion 841 is also rotated.
  • the rotation is transmitted to the moving member 810 through the first and second links 842 and 843, so that the moving member 810 slides left or right.
  • variable connector 830 is in conductive contact with any one or more of the shorting blocks 820 adjacent to each other.
  • each sub-module 10 When the variable connector 830 is in contact with any one of the shorting blocks 820 , the respective sub-modules 10 may be maintained at different voltages. When the variable connectors 830 are in contact with all of the shorting blocks 820 adjacent to each other, each sub-module 10 may be short-circuited and change to the same voltage.
  • Movement of the variable connector 830 is achieved by a moving member 810 .
  • the moving member 810 is slidably coupled to the support 23 .
  • the variable connector 830 is coupled to the movable member 810 and slides together with the movable member 810 .
  • the movement of the moving member 810 is achieved by the rotational operation of the short-circuit adjusting lever 854 and the link member 840 .
  • the rotational motion of the short control lever 854 is converted into a linear motion through the link member 840 to slide the moving member 810 .
  • the rotation operation of the short-circuit adjustment lever 854 is indicated by the first display portion 852 and the second display portion 853 .
  • a state according to the rotation operation of the short-circuit adjustment lever 854 can be displayed.
  • the plurality of sub-modules 10 can be easily short-circuited, and the user can easily recognize the short-circuit state.
  • the sub-module 10 includes a cooling passage unit 900 .
  • the cooling passage part 900 communicates with the cooling plate 430 of the explosion-proof frame part 400 .
  • the cooling passage 900 transfers a low-temperature cooling fluid to the cooling plate 430 .
  • the cooling passage 900 flows inside the cooling plate 430 and receives the cooling fluid heat-exchanged with the IGBT 440 .
  • the cooling passage 900 is installed in the sub-module 10 and the frame 20 . Accordingly, the cooling passage 900 may be viewed as a configuration included in the frame 20 . In the following description, for convenience of description, it is assumed that the cooling flow path part 900 is a configuration of the sub-module 10 .
  • low-temperature cooling fluid used in the following description refers to a cooling fluid that is supplied from the outside and is not heat-exchanged with the IGBT 440 .
  • high temperature cooling fluid used in the following description refers to a cooling fluid that has exchanged heat with the IGBT 440 .
  • cooling passage part 900 according to an embodiment of the present invention will be described in detail with reference to FIGS. 22 to 25 .
  • Each of the pipes 911 , 912 , 921 , 922 , 931 , 932 , and 950 to be described below may be provided in any shape capable of forming a flow path therein.
  • the main piping unit 910 may be provided as a pipe member.
  • the cooling passage unit 900 includes a main piping unit 910 , a sub piping unit 920 , a branch piping unit 930 , a piping connection unit 940 , a valve connection piping 950 , and residual water collection. unit 960 .
  • the main piping unit 910 communicates with an external cooling fluid circulation device (not shown).
  • a low-temperature cooling fluid may flow from the cooling fluid circulation device (not shown) to the main piping unit 910 .
  • a high-temperature cooling fluid from the main piping unit 910 may flow to the cooling fluid circulation device (not shown).
  • the main piping unit 910 communicates with the sub piping unit 920 .
  • the low-temperature cooling fluid flowing to the main piping unit 910 may flow to the sub piping unit 920 .
  • the high-temperature cooling fluid flowing to the sub piping unit 920 may flow to the main piping unit 910 .
  • the main piping unit 910 communicates with the branch piping unit 930 .
  • the branch piping unit 930 communicates with the sub piping unit 920 . Accordingly, the main piping unit 910 and the sub piping unit 920 may communicate.
  • the main pipe unit 910 is formed to extend in one direction, left and right in the illustrated embodiment. Each end of the main pipe unit 910 in the extending direction is seated on the horizontal frame 22 .
  • a single main pipe unit 910 may be provided for each frame 20 . That is, as described above, a plurality of frames 20 may be provided and stacked. In this case, a single number of the main pipe unit 910 may be provided for each stacked frame 20 .
  • the main pipe unit 910 includes a main inlet pipe 911 , a main outlet pipe 912 , a main pipe fixing member 913 , a fastening member 914 , and a clearance space portion 915 .
  • a low-temperature cooling fluid is introduced into the main inlet pipe 911 from a cooling fluid circulation device (not shown).
  • the main inlet pipe 911 communicates with a cooling fluid circulation device (not shown).
  • the low-temperature cooling fluid flowing into the main inlet pipe 911 flows to the sub inlet pipe 921 through the branch inlet pipe 931 .
  • the main inlet pipe 911 communicates with the branch inlet pipe 931 and the sub inlet pipe 921 .
  • a main outlet pipe 912 is located adjacent to the main inlet pipe 911 .
  • a high-temperature cooling fluid flows into the main outlet pipe 912 from the sub outlet pipe 922 and the branch outlet pipe 932 .
  • the main outlet pipe 912 communicates with the branch outlet pipe 932 and the sub outlet pipe 922 .
  • the high-temperature cooling fluid introduced into the main outlet pipe 912 flows to a cooling fluid circulation device (not shown).
  • the main outlet pipe 912 communicates with a cooling fluid circulation device (not shown).
  • the main pipe fixing member 913 supports the main inlet pipe 911 and the main outlet pipe 912 to the horizontal frame 22 .
  • the main pipe fixing member 913 is seated on the upper surface of the horizontal frame 22 .
  • a plurality of main pipe fixing members 913 may be provided.
  • the plurality of main pipe fixing members 913 may be provided in the left horizontal frame 22 and the right horizontal frame 22 , respectively.
  • the main pipe fixing member 913 is formed to extend in one direction, in the front-rear direction in the illustrated embodiment.
  • the width direction of the main pipe fixing member 913 in the illustrated embodiment, the length in the left and right direction may be formed to be less than or equal to the width direction length of the horizontal frame 22 .
  • a through hole is formed in the main pipe fixing member 913 .
  • One side of the main inlet pipe 911 and the main outlet pipe 912 in the longitudinal direction is through-coupled to the through hole, respectively.
  • the main pipe fixing member 913 includes a first portion directly coupled to the horizontal frame 22 and a second portion coupled to the first portion and positioned above the first portion. That is, the first portion is positioned between the second portion and the horizontal frame 22 .
  • the main pipe fixing member 913 includes a fastening through portion 913a.
  • the fastening through portion 913a is positioned adjacent to both ends of the first part and the second part in the longitudinal direction.
  • the fastening through portion 913a is formed to penetrate in the vertical direction at the above position.
  • a fastening member (not shown) is fastened to the fastening through portion 913a. Accordingly, the first part and the second part may be coupled.
  • the first part is coupled to the horizontal frame 22 by the fastening member 914 , and the main inlet pipe 911 and the main outlet pipe 912 are through-coupled to the through hole.
  • a fastening member (not shown) may be fastened to the fastening through part 913a.
  • a portion of the through hole is formed in the first portion, and the other portion of the through hole is formed in the second portion.
  • the fastening member 914 fixes the main pipe fixing member 913 to the horizontal frame 22 . Specifically, the fastening member 914 is through-coupled to a fastening hole (not shown) formed through the first portion of the main pipe fixing member 913 .
  • a plurality of fastening members 914 may be provided.
  • two fastening members 914 are formed on the front side and rear side of the main pipe fixing member 913, respectively, and a total of four are provided.
  • the clearance space part 915 is a space formed between the first part and the second part of the main pipe fixing member 913 .
  • the clearance space part 915 is formed so that the surfaces of the first part and the second part facing each other are spaced apart by a predetermined distance.
  • a fastening member (not shown) is through-coupled to the fastening through-portion 913a.
  • the clearance space part 915 may compensate for an increase in volume that may be generated as the cooling fluid flows through the main inlet pipe 911 or the main outlet pipe 912 .
  • the clearance space part 915 can prevent the main inlet pipe 911 or the main outlet pipe 912 from being damaged by the vibration by buffering vibrations generated when the sub-module 10 is operated. .
  • the sub piping unit 920 communicates with the main piping unit 910 and the piping connection unit 940 .
  • the low-temperature cooling fluid introduced into the main piping unit 910 may flow through the sub piping unit 920 to the piping connection unit 940 .
  • the high-temperature cooling fluid transferred from the pipe connection unit 940 may pass through the sub pipe unit 920 and flow to the main pipe unit 910 .
  • the sub piping unit 920 communicates with the main piping unit 910 .
  • the communication is achieved by the branch piping unit 930 communicating with the main piping unit 910 and the sub piping unit 920, respectively.
  • the sub pipe unit 920 communicates with the pipe connection unit 940 .
  • the sub-pipe unit 920 is formed to extend in one direction, the front-rear direction in the illustrated embodiment.
  • One side of the sub piping unit 920, the rear end in the illustrated embodiment is connected to the end of the branch piping unit (930).
  • the other side of the sub-pipe unit 920 , in the illustrated embodiment, the front end is connected to the pipe connection unit 940 .
  • a plurality of sub piping units 920 may be provided.
  • a plurality of sub-pipe units 920 may be provided for each sub-module 10 .
  • the sub pipe unit 920 includes a sub inlet pipe 921 and a sub outlet pipe 922 .
  • the sub inlet pipe 921 is a passage through which the low-temperature cooling fluid introduced from the main inlet pipe 911 passes.
  • the low-temperature cooling fluid may flow through the sub-inlet pipe 921 to the pipe connection unit 940 .
  • the sub outlet pipe 922 is a passage through which the high-temperature cooling fluid introduced from the pipe connection unit 940 passes.
  • the high-temperature cooling fluid may flow through the sub outlet pipe 922 to the main outlet pipe 912 .
  • a branch piping unit 930 is provided at a portion where the sub piping unit 920 and the main piping unit 910 communicate.
  • the branch piping unit 930 communicates with the main piping unit 910 and the sub piping unit 920 .
  • the branch piping unit 930 communicates with the main piping unit 910 and the sub piping unit 920 , respectively.
  • the branch piping unit 930 may be formed in a joint structure. That is, the angle between the one end at which the branch pipe unit 930 is connected to the main pipe unit 910 and the other end at which the branch pipe unit 930 is connected to the sub pipe unit 920 may be changed.
  • the angle between the one end and the other end of the branch pipe unit 930 may be a right angle.
  • main piping unit 910 and the sub piping unit 920 may communicate with each other without deforming their respective shapes.
  • a plurality of branch pipe units 930 may be provided.
  • a plurality of branch pipe units 930 may be provided for each sub-module 10 .
  • the branch pipe unit 930 includes a branch inlet pipe 931 and a branch outlet pipe 932 .
  • the branch inlet pipe 931 is a passage through which the low-temperature cooling fluid introduced into the main inlet pipe 911 flows to the sub inlet pipe 921 .
  • the branch inlet pipe 931 communicates with the main inlet pipe 911 and the sub inlet pipe 921 , respectively.
  • the branch outlet pipe 932 is a passage through which the high-temperature cooling fluid flowing into the sub outlet pipe 922 flows to the main outlet pipe 912 .
  • the branch outlet pipe 932 communicates with the main outlet pipe 912 and the sub outlet pipe 922 , respectively.
  • the pipe connection unit 940 communicates with the sub piping unit 920 and the valve connection pipe 950 .
  • the pipe connection unit 940 communicates with the sub pipe unit 920 and the valve connection pipe 950 , respectively.
  • the pipe connection unit 940 supports the sub pipe unit 920 and the valve connection pipe 950 . Accordingly, the coupling state between the sub-pipe unit 920 and the valve connection pipe 950 may be stably maintained.
  • a plurality of pipe connection units 940 may be provided.
  • a plurality of pipe connection units 940 may be provided for each sub-module 10 .
  • the pipe connecting unit 940 includes an end connecting member 941 , a pipe supporting member 942 , and a pipe fixing member 943 .
  • the end connection member 941 couples the sub piping unit 920 and the valve connection pipe 950 such that the respective ends of the sub piping unit 920 and the valve connection pipe 950 facing each other communicate with each other.
  • the end connection member 941 is positioned between the sub piping unit 920 and the valve connection pipe 950 .
  • the end connection member 941 communicates with the sub piping unit 920 and the valve connection pipe 950 , respectively.
  • the cooling fluid may flow from the sub piping unit 920 toward the valve connection piping 950 through the end connection member 941 , or vice versa.
  • the end connecting member 941 includes a first end connecting member 941a and a second end connecting member 941b.
  • the first end connecting member 941a is connected to the end of the sub piping unit 920 .
  • the first end connection member 941a communicates with the sub piping unit 920 .
  • a plurality of first end connection members 941a may be provided.
  • the plurality of first end connecting members 941a are respectively coupled to respective ends of the sub inlet pipe 921 and the sub outlet pipe 922 facing the valve connecting pipe 950 .
  • the second end connecting member 941b is connected to an end of the valve connecting pipe 950 .
  • the second end connecting member 941b communicates with the valve connecting pipe 950 .
  • a plurality of second end connection members 941b may be provided.
  • the plurality of second end connection members 941b are respectively coupled to respective ends of the valve inlet pipe 951 and the valve outlet pipe 952 facing the sub pipe unit 920 .
  • Ends of the first end connecting member 941a and the second end connecting member 941b facing each other may be coupled to each other.
  • the first end connecting member 941a and the second end connecting member 941b communicate with each other.
  • the pipe support member 942 is configured to support the sub pipe unit 920 and the valve connection pipe 950 .
  • the pipe support member 942 is coupled to the sub pipe unit 920 and the valve connection pipe 950 , respectively.
  • the sub-pipe unit 920 may be fixed by a pipe fixing member 943 coupled to the fixing frame 25 .
  • the pipe support member 942 simultaneously supports the stably fixed sub pipe unit 920 and the valve connection pipe 950 .
  • valve connecting pipe 950 is also stably supported, and the connection state between the sub pipe unit 920 and the valve connecting pipe 950 may be stably maintained.
  • the pipe support member 942 is located below the sub pipe unit 920 and the valve connection pipe 950 .
  • the position of the pipe support member 942 may be changed.
  • the pipe support member 942 is formed to extend in the direction in which the sub pipe unit 920 is formed, in the illustrated embodiment, in the front-rear direction.
  • the pipe support member 942 may be formed of a material capable of a predetermined shape deformation.
  • the pipe support member 942 may be formed of a synthetic resin material. Accordingly, even if vibration is generated as the sub-module 10 is operated, the shape of the pipe support member 942 is deformed and the vibration may be buffered.
  • the front side extends to the sub pipe unit 920 .
  • the front end of the pipe support member 942 is bent toward the sub pipe unit 920 .
  • a first clip portion 942a is provided at the bent portion.
  • the first clip portion 942a includes a pair of curved surfaces facing each other.
  • a predetermined space is formed between the curved surfaces.
  • One side of the sub piping unit 920 facing the end connection member 941 is detachably inserted and coupled to the predetermined space.
  • the rear end of the pipe support member 942 is bent toward the valve connecting pipe 950 .
  • a second clip portion 942b is provided at the bent portion.
  • the second clip portion 942b includes a pair of curved surfaces facing each other.
  • a predetermined space is formed between the curved surfaces.
  • One side of the valve connection pipe 950 facing the end connection member 941 is detachably inserted and coupled to the predetermined space.
  • the pipe fixing member 943 fixes the sub pipe unit 920 .
  • the pipe fixing member 943 is coupled to the sub pipe unit 920 .
  • the pipe fixing member 943 may be formed of a material capable of a predetermined shape deformation.
  • the pipe fixing member 943 may be formed of a synthetic resin material. Accordingly, even if vibration is generated as the sub-module 10 is operated, the shape of the pipe fixing member 943 is deformed and the vibration may be buffered.
  • the pipe fixing member 943 is coupled to the fixing frame 25 . Specifically, one side of the pipe fixing member 943 facing the capacitor assembly 100 is fastened to the fixing frame 25 .
  • the pipe fixing member 943 is formed to extend toward the sub pipe unit 920 from the one side.
  • the pipe fixing member 943 may include a vertical portion and an inclined portion.
  • the vertical portion is a portion in which the pipe fixing member 943 is in contact with and coupled to the fixing frame 25 .
  • the vertical portion may be formed extending along one side of the fixing frame 25, the rear side in the illustrated embodiment.
  • the inclined portion is formed to extend toward the sub piping unit 920 from the upper end of the vertical portion.
  • the inclined portion is formed to extend and form a predetermined angle with the vertical portion.
  • the predetermined angle may be an obtuse angle.
  • a first fixing part 943a is formed on one side of the upper end of the inclined part.
  • the first fixing part 943a includes a pair of curved surfaces facing each other.
  • a predetermined space is formed between the curved surfaces.
  • One side of the sub inlet pipe 921 facing the end connection member 941 is detachably inserted and coupled to the predetermined space.
  • a second fixing part 943b is formed on the other side of the upper end of the inclined part.
  • the second fixing part 943b includes a pair of curved surfaces facing each other.
  • a predetermined space is formed between the curved surfaces.
  • One side of the sub outlet pipe 922 facing the end connection member 941 is detachably coupled to the predetermined space.
  • the sub pipe unit 920 and the valve connection pipe 950 are fixed and supported by the pipe connection unit 940 . Accordingly, the coupling state between the sub-pipe unit 920 and the valve connection pipe 950 may be stably maintained.
  • the valve connection pipe 950 communicates with the pipe connection unit 940 and the cooling plate 430 .
  • the valve connection pipe 950 communicates with the pipe connection unit 940 and the cooling plate 430 , respectively.
  • a plurality of valve connection pipes 950 may be provided.
  • the plurality of valve connecting pipes 950 communicate with the inlet 431 and the pipe connecting unit 940 , and the outlet 432 and the pipe connecting unit 940 , respectively.
  • the valve connecting pipe 950 extends between the cooling plates 430 in the pipe connecting unit 940 .
  • a plurality of valve connection pipes 950 may be provided.
  • a plurality of valve connection pipes 950 may be provided for each sub-module 10 .
  • the valve connecting pipe 950 includes a valve inlet pipe 951 and a valve outlet pipe 952 .
  • the low-temperature refrigerant fluid introduced through the sub-inlet pipe 921 flows into the valve inlet pipe 951 .
  • the valve inlet pipe 951 communicates with the inner space of the cooling plate 430 through the inlet 431 .
  • the introduced low-temperature cooling fluid flows into the inner space of the cooling plate 430 through the inlet 431 .
  • a valve outlet pipe 952 is located adjacent to the valve inlet pipe 951 .
  • a high-temperature cooling fluid that flows through the cooling plate 430 and heat-exchanged with the IGBT 440 is introduced into the valve outlet pipe 952 .
  • the valve outlet pipe 952 communicates with the inner space of the cooling plate 430 through the outlet 432 .
  • the introduced high-temperature cooling fluid flows to the main outlet pipe 912 through the valve outlet pipe 952 .
  • the residual water collection unit 960 collects the residual water discharged from the pipe connection unit 940 .
  • the residual water collecting unit 960 may be located below a point where the first end connecting member 941a and the second end connecting member 941b are coupled.
  • the residual water collection unit 960 is coupled to the capacitor assembly 100 . Specifically, the residual water collection unit 960 is coupled to a bracket member provided on the upper surface of the capacitor assembly 100 .
  • the residual water collection unit 960 may be detachably coupled to the capacitor assembly 100 .
  • the user may remove the residual water collecting unit 960 to discharge the collected residual water.
  • a plurality of residual water collecting units 960 may be provided.
  • a plurality of residual water collecting units 960 may be provided for each sub-module 10 .
  • the residual water collection unit 960 is formed to extend upwardly from the capacitor assembly 100 .
  • the residual water collection unit 960 includes a first portion extending parallel to the upper surface of the capacitor assembly 100 , a second portion extending upwardly at a predetermined angle from the first portion to the first portion, and a second portion extending upward from the first portion. and a third portion extending horizontally from the second portion.
  • the residual water collecting unit 960 includes a residual water collecting space 961 .
  • the residual water collection space 961 is a space in which the residual water dropped from the pipe connection unit 940 is collected.
  • the residual water collecting space 961 is recessed by a predetermined distance from the third part.
  • the cooling passage 900 circulates a cooling fluid for cooling the IGBT 440 .
  • the low-temperature cooling fluid passes through the main inlet pipe 911, the branch inlet pipe 931, the sub inlet pipe 921, the pipe connection unit 940, and the valve inlet pipe 951 in the cooling fluid circulation device (not shown). to flow into the cooling plate 430 .
  • the low-temperature cooling fluid introduced into the cooling plate 430 flows through the inner space of the cooling plate 430 and exchanges heat with the IGBT 440 .
  • the heat generated in the IGBT 440 is transferred to a low-temperature cooling fluid. Accordingly, the low-temperature cooling fluid is changed into a high-temperature cooling fluid.
  • the hot cooling fluid is discharged from the cooling plate 430 .
  • the discharged high-temperature cooling fluid passes through the valve outlet pipe 952 , the pipe connection unit 940 , the sub outlet pipe 922 , the branch outlet pipe 932 , and the main outlet pipe 912 to a cooling fluid circulation device (not shown). ) to flow.
  • the heat generated in the IGBT 440 may be discharged by the cooling fluid. Accordingly, the IGBT 440 is maintained at an appropriate temperature, so that the operation reliability of the sub-module 10 may be improved.
  • the sub piping unit 920 and the valve connection pipe 950 are supported by the pipe support member 942 . Furthermore, the sub pipe unit 920 is fixed by the pipe fixing member 943 .
  • a residual water collection unit 960 is provided below the pipe connection unit 940 .
  • the residual water collection unit 960 collects the residual water dropped from the pipe connection unit 940 . Accordingly, the dropped residual water does not flow into the capacitor assembly 100 or the valve assembly 200 .
  • the cooling fluid is not randomly leaked and the components of the sub-module 10 are not damaged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Handcart (AREA)

Abstract

서브 모듈이 개시된다. 본 발명의 실시 예에 따른 서브 모듈은 레일 조립체에 슬라이드 이동 가능하게 결합된다. 서브 모듈이 안착되는 카트 유닛 및 레일 유닛은 라운드진 면을 통해 서로 맞물리도록 결합되고, 각각 이탈 방지부가 구비되어 카트 유닛이 레일 유닛을 따라 슬라이드 이동중 임의 이탈되는 것을 방지한다. 따라서, 카트 유닛에 안착된 서브 모듈이 카트 유닛과 함께 레일 유닛을 따라 슬라이드 이동되되, 레일 유닛의 좌우 방향으로 임의 분리되지 않게 된다. 이에 따라, 서브 모듈과 레일 유닛 간의 결합 상태가 안정적으로 유지될 수 있다.

Description

서브 모듈
본 발명은 서브 모듈에 관한 것으로, 보다 구체적으로, 커패시터 조립체 또는 밸브 조립체가 안착되는 카트와 레일 조립체와의 결합 상태가 안정적으로 유지될 수 있는 구조의 서브 모듈에 관한 것이다.
유연 송전 시스템 또는 신전력 송전 시스템(FACTS, Flexible AC Transmission System)은 교류 전력 계통에 전력 전자 제어 기술을 도입하여, 전력 계통의 유연성을 증대시키는 운영 기술이다.
구체적으로, 유연 송전 시스템은 전력용 반도체 스위칭 소자를 이용하여 송전 전력을 제어할 수 있다. 이러한 유연 송전 시스템은 송전 선로의 설비 이용률을 극대화하고, 송전 용량을 증대시키며, 전압 변동을 최소화할 수 있다.
유연 송전 시스템에서, 전력의 저장 및 입출력은 커패시터 소자에 의해 달성된다. 상기 커패시터 소자는 스위칭 소자에 의해 제어될 수 있다. 구체적으로, 스위칭 소자는 커패시터 소자에의 전류의 입, 출력 등을 제어할 수 있다.
유연 송전 시스템에서는 커패시터 소자 및 이를 제어하는 스위칭 소자의 개수를 다변화하여, 송전 및 저장 용량을 변경할 수 있다. 이를 위해, 커패시터 소자 및 스위칭 소자를 제어하기 위한 구성은 모듈(module) 방식으로 구성될 수 있다.
상기 구성이 모듈 방식으로 구성될 경우, 각 구성은 대형의 프레임에 삽입되거나 인출되는 방식으로 서로 통전 가능하게 연결될 수 있다. 이에 따라, 유연 송전 시스템 전체의 송전 및 저장 용량이 변경될 수 있다.
상기 구성은 일반적으로 고중량이다. 이는, 상기 구성 내부에 커패시터 소자, 스위칭 소자 및 이들을 제어하기 위한 다양한 구성들이 실장됨에 기인한다.
따라서, 상기 구성을 프레임에 삽입 또는 인출하는 방법은 슬라이딩 방식으로 수행되는 것이 바람직하다. 또한, 슬라이딩 방식은 그 구조로 인해 상기 구성을 지지하기 위한 레일이 구비되어야 한다.
상기 구성은 레일이 결합되어 레일의 길이 방향으로만 이동될 것을 전제한다. 그러나, 상기 구성의 삽입 및 인출이 반복됨에 따라 발생되는 마모 등에 의해, 상기 구성이 레일에서 임의 이탈될 위험이 있다.
또한, 슬라이딩 방식으로 상기 구성을 지지할 경우, 슬라이딩 방향의 이동을 제한할 필요가 있다. 즉, 상기 구성이 슬라이드되어 이동되는 거리가 제한되지 않을 경우, 레일을 따라 임의로 이동되어 배출될 염려가 있다.
이러한 경우, 유연 송전 시스템의 작동 신뢰성이 보장되기 어렵다. 더 나아가, 유지 보수 등의 목적으로 상기 구성을 레일에서 분리하고자 할 경우, 작업장의 안전이 위협될 우려가 있다.
한국공개특허문헌 제10-2011-0064226호는 레일-이탈 방지 장치를 개시한다. 구체적으로, 레일에 안착된 카트의 바퀴 외측에 별도의 레일-이탈 방지 장치를 구비하여, 바퀴가 레일의 폭 방향으로 이탈되는 것을 방지하기 위한 레일-이탈 방지 장치를 개시한다.
그런데, 이러한 유형의 레일-이탈 방지 장치는 상하 방향, 즉 카트가 레일에서 상측으로 이탈되는 것을 방지하기 위한 방안을 제시하지 못한다는 한계가 있다.
또한, 상기 선행문헌은 별도의 장치가 구비되어야만 구현될 수 있다. 따라서, 레일 및 프레임 전체의 부피가 필연적으로 증가되어야만 한다.
한국등록실용신안문헌 제20-0406915호는 슬라이드 레일의 이탈방지장치를 개시한다. 구체적으로, 수납함을 개폐하는 경우 이동레일의 슬라이딩에 따른 충격으로 발생되는 레일의 이탈을 방지하기 위한 이탈방지장치를 개시한다.
그런데, 이러한 유형의 이탈방지장치는 경량의 물건을 지지함을 전제하는 것으로, 유연 송전 시스템에 구비되는 레일에는 적용되기 어렵다는 한계가 있다.
또한, 상기 선행문헌은 슬라이드 레일이 프레임의 측면에 구비됨을 전제하는 것이다. 따라서, 고중량의 상기 구성이 상기 선행문헌과 같은 방식으로 측면에서 안정적으로 지지될 수 있는지 여부에 대한 신뢰성이 확보되기 어렵다.
한국공개실용신안문헌 제20-1998-0049317호는 슬라이드 도어의 이탈방지장치를 개시한다. 구체적으로, 로어 롤러를 지지하는 지지 브라켓의 하부에 스토퍼 브라켓이 체결되고, 스토퍼 브라켓의 수직부에 보조 스토퍼를 구비한 이탈방지장치를 개시한다.
그런데, 이러한 유형의 이탈방지장치는 슬라이드 도어가 체결되는 레일에 로어 롤러가 구비됨을 전제한다. 즉, 레일과 슬라이드 도어가 별도 부재 없이 체결되는 경우에는 적용되기 어렵다.
더욱이, 상기 선행문헌은 비교적 저중량의 슬라이드 도어를 지지하기 위한 구조에 관한 것이다. 즉, 로어 롤러에 의해 지지될 수 있을 정도의 경량의 구성요소가 레일에서 이탈되기 위한 방안만을 제시한다는 한계가 있다.
본 발명은, 상술한 문제점을 해결할 수 있는 구조의 서브 모듈을 제공함을 목적으로 한다.
먼저, 고중량의 모듈이 레일에 용이하게 결합될 수 있는 구조의 서브 모듈을 제공함을 일 목적으로 한다.
또한, 고중량의 모듈이 레일에 결합된 상태에서 용이하게 슬라이드 이동될 수 있는 구조의 서브 모듈을 제공함을 일 목적으로 한다.
또한, 고중량의 모듈이 레일에 결합된 상태에서 레일의 폭 방향의 내측으로 임의 이탈되지 않는 구조의 서브 모듈을 제공함을 일 목적으로 한다.
또한, 고중량의 모듈이 레일에 결합된 상태에서 레일의 폭 방향의 외측으로 임의 이탈되지 않는 구조의 서브 모듈을 제공함을 일 목적으로 한다.
또한, 고중량의 모듈이 레일에 결합된 상태에서 레일의 상측으로 임의 이탈되지 않는 구조의 서브 모듈을 제공함을 일 목적으로 한다.
또한, 고중량의 모듈을 지지하는 레일에, 모듈의 중량에 의해 손상되지 않는 구조의 서브 모듈을 제공함을 일 목적으로 한다.
또한, 별도의 부재를 추가하지 않고도, 고중량의 모듈이 레일에 용이하게 결합되어, 결합 상태를 안정적으로 유지할 수 있는 구조의 서브 모듈을 제공함을 일 목적으로 한다.
또한, 레일에 결합된 고중량의 모듈이 레일을 따라 슬라이드 이동되는 거리를 제한할 수 있는 구조의 서브 모듈을 제공함을 일 목적으로 한다.
또한, 고중량의 모듈이 레일을 따라 슬라이드 이동되는 거리를 제한하기 위해, 과다한 구조 변경이 요구되지 않는 구조의 서브 모듈을 제공함을 일 목적으로 한다.
또한, 고중량의 모듈이 특정 위치까지는 레일의 길이 방향의 단부 방향으로 원활하게 슬라이드 이동될 수 있는 구조의 서브 모듈을 제공함을 일 목적으로 한다.
또한, 고중량의 모듈이 상기 특정 위치에 도달한 경우, 레일의 길이 방향의 단부 방향으로 더 이상 이동되지 않는 구조의 서브 모듈을 제공함을 일 목적으로 한다.
또한, 고중량의 모듈이 상기 특정 위치에서, 상기 단부에서 멀어지는 방향으로 원활하게 슬라이드 이동될 수 있는 구조의 서브 모듈을 제공함을 일 목적으로 한다.
또한, 고중량의 모듈이 상기 특정 위치에 도달한 경우, 사용자가 용이하게 조작하여 고중량의 모듈을 상기 단부 방향으로 추가 이동시킬 수 있는 구조의 서브 모듈을 제공함을 일 목적으로 한다.
또한, 고중량의 모듈이 레일과 일체로 결합되어 임의로 슬라이드 이동되지 않을 수 있는 구조의 서브 모듈을 제공함을 일 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명의 일 실시 예에 따른 서브 모듈은, 내부에 커패시터 소자를 수용하는 커패시터 조립체; 상기 커패시터 조립체와 통전 가능하게 결합되는 밸브 조립체; 상기 커패시터 조립체 또는 상기 밸브 조립체가 안착되는 카트(cart) 유닛; 및 상기 카트 유닛이 슬라이드 가능하게 결합되며, 일 방향으로 연장 형성되는 레일 유닛을 포함하며, 상기 카트 유닛은, 상기 레일 유닛을 향해 연장 형성되는 연장부; 및 상기 연장부의 일측에 회전 가능하게 결합되며, 상기 레일 유닛에 회전 가능하게 접촉되는 휠(wheel)부를 포함하고, 상기 레일 유닛은, 상기 카트 유닛을 향해 연장 형성되어, 상기 연장부의 타측을 마주하는 레일 만곡부를 포함한다.
또한, 상기 서브 모듈의 상기 카트 유닛은, 상기 연장부의 상기 타측에서 상기 레일 만곡부를 향해 라운드지게 돌출 형성되는 라운드부를 포함하고, 상기 레일 만곡부는, 상기 라운드부를 감싸도록 만곡 형성될 수 있다.
또한, 상기 서브 모듈의 상기 레일 만곡부는, 상기 라운드부에서 멀어지는 방향으로 라운드지게 형성될 수 있다.
또한, 상기 서브 모듈의 상기 카트 유닛은, 상기 커패시터 조립체 또는 상기 밸브 조립체가 안착되며, 안착된 상기 커패시터 조립체 또는 상기 밸브 조립체에 대향하는 일측에서 상기 연장부가 연장되는 카트 몸체부를 포함하고, 상기 레일 만곡부는, 상기 카트 유닛을 향하는 일측 단부가 상기 라운드부와 상기 카트 몸체부 사이에 위치되도록 연장 형성될 수 있다.
또한, 상기 서브 모듈의 상기 레일 유닛은, 상기 커패시터 조립체 또는 상기 밸브 조립체에 대향하는 상기 카트 유닛의 일측에 위치되며, 상기 레일 만곡부가 연장되는 레일 몸체부를 포함하고, 상기 레일 만곡부는, 상기 라운드부에서 멀어지는 방향으로, 상기 레일 몸체부에서 라운드지게 연장 형성되는 제1 레일 만곡부; 상기 라운드부에서 멀어지는 방향으로, 상기 제1 레일 만곡부에서 라운드지게 연장 형성되는 제2 레일 만곡부; 및 상기 라운드부에서 멀어지는 방향으로, 상기 제2 레일 만곡부에서 라운드지게 연장 형성되는 제3 레일 만곡부를 포함할 수 있다.
또한, 상기 서브 모듈의 상기 라운드부를 향하는 상기 제2 레일 만곡부의 일측에는, 상기 라운드부의 표면과 소정의 각도를 이루도록 라운드지게 형성되는 측면 제한부가 돌출 형성될 수 있다.
또한, 상기 서브 모듈의 상기 측면 제한부는, 상기 라운드부와 마주하는 일측 면이 상기 라운드부에서 멀어지는 방향으로 오목하게 형성되고, 상기 라운드부는, 상기 측면 제한부를 향해 볼록하게 형성될 수 있다.
또한, 상기 서브 모듈의 상기 라운드부를 향하는 상기 제3 레일 만곡부의 일측에는, 상기 라운드부를 향해 돌출 형성되는 상부면 제한부가 구비될 수 있다.
또한, 상기 서브 모듈의 상기 상부면 제한부는, 상기 라운드부와 마주하는 일측 면이 상기 라운드부에서 멀어지는 방향으로 오목하게 형성되고, 상기 라운드부는, 상기 상부면 제한부를 향해 볼록하게 형성될 수 있다.
또한, 상기 서브 모듈의 상기 레일 유닛은, 상기 레일 만곡부가 연장 형성되는 레일 몸체부; 상기 레일 만곡부에서, 상기 휠부를 향해 연장 형성되는 레일 연장부; 및 상기 레일 연장부와 연속되며, 상기 레일 연장부에서 멀어지는 방향에 위치되는 지지부를 포함하며, 상기 휠부는, 상기 지지부에 회전 가능하게 안착될 수 있다.
또한, 상기 서브 모듈의 상기 레일 연장부와 상기 지지부 사이에는, 상기 레일 연장부 및 상기 지지부와 각각 연속되며, 상기 휠부를 향하는 일측 면이 함몰 형성되는 단차부가 형성될 수 있다.
또한, 상기 서브 모듈의 상기 단차부의 상기 일측 면과 상기 커패시터 조립체 또는 상기 밸브 조립체 사이의 최단 거리는, 상기 휠부를 향하는 상기 지지부의 일측 면과 상기 커패시터 조립체 또는 상기 밸브 조립체 사이의 최단 거리보다 길게 형성될 수 있다.
또한, 상기 서브 모듈의 상기 단차부의 상기 일측 면과 상기 커패시터 조립체 또는 상기 밸브 조립체 사이의 최단 거리는, 상기 커패시터 조립체 또는 상기 밸브 조립체를 향하는 상기 레일 연장부의 일측 면과 상기 커패시터 조립체 또는 상기 밸브 조립체 사이의 최단 거리보다 길게 형성될 수 있다.
또한, 상기 서브 모듈의 상기 휠부를 향하는 상기 지지부의 일측 면과 상기 커패시터 조립체 또는 상기 밸브 조립체 사이의 최단 거리는, 상기 커패시터 조립체 또는 상기 밸브 조립체를 향하는 상기 레일 연장부의 일측 면과 상기 커패시터 조립체 또는 상기 밸브 조립체 사이의 최단 거리보다 길게 형성될 수 있다.
또한, 상기 서브 모듈의 상기 휠부는, 상기 지지부에 회전 가능하게 안착되는 휠 몸체부; 및 상기 연장부를 향하는 상기 휠 몸체부의 일측에 위치되며, 상기 휠 몸체부보다 큰 직경을 갖도록 형성되는 디스크부를 포함하며, 상기 휠 몸체부는 상기 지지부에 회전 가능하게 안착되고, 상기 디스크부는 상기 레일 연장부, 상기 단차부 및 상기 지지부에 둘러싸인 공간에 수용될 수 있다.
또한, 상기 서브 모듈의 상기 디스크부는, 상기 레일 연장부 및 상기 지지부를 향하는 방향으로 소정의 두께를 갖도록 형성되고, 상기 단차부가 상기 레일 연장부 및 상기 지지부 사이에서 연장되는 길이는, 상기 디스크부의 두께보다 길게 형성될 수 있다.
또한, 상기 서브 모듈의 상기 디스크부의 외주는, 상기 단차부의 상기 일측 면과 소정 거리 이격될 수 있다.
또한, 상기 서브 모듈의 상기 연장부를 향하는 상기 디스크부의 일측에는, 상기 연장부에 회전 가능하게 결합되는 카트 결합부가 구비될 수 있다.
또한, 본 발명의 다른 실시 예에 따른 서브 모듈은, 밸브 조립체가 안착되는 카트 유닛; 상기 카트 유닛이 슬라이드 이동 가능하게 결합되며, 일 방향으로 연장 형성되는 레일 유닛; 및 상기 카트 유닛 및 상기 레일 유닛에 구비되어, 상기 카트 유닛이 상기 레일 유닛에서 임의 이탈되는 것을 방지하도록 구성되는 이탈 방지부를 포함하며, 상기 이탈 방지부는, 상기 카트 유닛에 회전 가능하게 결합되며, 일 방향으로 연장 형성되는 스토퍼(stopper) 부재; 및 상기 레일 유닛의 일측 면에 함몰 형성되어, 상기 스토퍼 부재의 일측이 삽입되거나 배출되는 정지 홈을 포함한다.
또한, 상기 서브 모듈의 상기 카트 유닛은, 상기 레일 유닛이 연장 형성되는 상기 일 방향으로 연장 형성되는 카트 몸체부; 및 상기 카트 몸체부에서 상기 레일 유닛을 향해 연장 형성되는 연장부를 포함하며, 상기 스토퍼 부재는, 상기 연장부의 일측에 결합될 수 있다.
또한, 상기 서브 모듈의 상기 이탈 방지부의 상기 스토퍼 부재는, 상기 스토퍼 부재가 연장 형성되는 상기 일 방향으로 연장 형성되는 스토퍼 몸체부; 및 상기 스토퍼 몸체부의 연장 방향의 일측에서 상기 연장부를 향해 소정의 각도로 절곡 형성되는 락킹 플레이트(locking plate)를 포함하며, 상기 스토퍼 부재가 상기 정지 홈에 삽입되면, 상기 락킹 플레이트는 상기 정지 홈을 감싸는 어느 하나의 면에 접촉될 수 있다.
또한, 상기 서브 모듈의 상기 이탈 방지부는, 상기 스토퍼 부재와 상기 카트 유닛에 각각 결합되어, 상기 스토퍼 부재를 탄성 지지하도록 구성되는 탄성 부재를 포함하고, 상기 스토퍼 부재는, 상기 락킹 플레이트가 위치되는 일측과 반대되는 타측에 관통 형성되는 탄성 부재 결합공을 포함하며, 상기 탄성 부재의 일측은 상기 탄성 부재 결합공에 결합될 수 있다.
또한, 상기 서브 모듈의 상기 이탈 방지부의 상기 스토퍼 부재는, 상기 락킹 플레이트와 상기 탄성 부재 결합공 사이에 위치되며, 상기 연장부에 회전 가능하게 결합되는 휠 결합부를 포함하고, 상기 탄성 부재는, 상기 탄성 부재 결합공이 형성된 상기 스토퍼 부재의 일측이 상기 카트 몸체부를 향하는 방향의 탄성력을 인가하도록 구성될 수 있다.
또한, 상기 서브 모듈의 상기 레일 유닛은, 상기 연장부에 회전 가능하게 결합되는 휠부가 안착되는 지지부를 포함하고, 상기 락킹 플레이트는, 상기 카트 몸체부를 향하는 상기 지지부의 일측 면에 접촉될 수 있다.
또한, 상기 서브 모듈의 상기 카트 유닛은, 상기 레일 유닛을 향해 연장 형성되는 연장부; 및 상기 연장부에 회전 가능하게 결합되는 휠(wheel)부를 포함하며, 상기 레일 유닛은, 상기 휠부가 안착되는 지지부를 포함하고, 상기 정지 홈은, 상기 지지부에 형성될 수 있다.
또한, 상기 서브 모듈의 상기 이탈 방지부의 상기 정지 홈은, 상기 레일 유닛이 연장 형성되는 상기 일 방향의 일측 단부에 인접하게 위치되며, 상기 레일 유닛의 상기 일측 면과 소정의 각도를 이루며 연장 형성되는 제1 면; 및 상기 제1 면과 연속되며, 상기 레일 유닛의 상기 일측 단부에서 멀어지는 방향으로 연장되고, 상기 제1 면에서 상기 레일 유닛의 상기 일측 면을 향해 연장 형성되는 제2 면을 포함하며, 상기 제1 면은, 상기 레일 유닛의 상기 일측 면에 대해 상기 제2 면보다 더 경사지게 형성될 수 있다.
또한, 상기 서브 모듈의 상기 카트 유닛은, 상기 스토퍼 부재가 상기 제1 면에 접촉되는 거리만큼 상기 정지 홈을 향해 이동될 수 있다.
또한, 상기 서브 모듈의 상기 이탈 방지부의 상기 정지 홈은, 상기 레일 유닛이 연장 형성되는 상기 일 방향의 일측 단부에 인접하게 위치되고, 상기 스토퍼 부재는, 상기 카트 유닛과 함께 상기 레일 유닛을 따라 상기 레일 유닛의 상기 일측 단부를 향하는 방향 또는 상기 레일 유닛의 상기 일측 단부에서 멀어지는 방향으로 이동되며, 상기 스토퍼 부재가 상기 정지 홈에 삽입되면, 상기 스토퍼 부재의 상기 일측이, 상기 레일 유닛의 상기 일측 ㄷ나부에 인접한 위치에서 상기 정지 홈을 감싸는 제1 면과 접촉될 수 있다.
또한, 상기 서브 모듈의 상기 이탈 방지부의 상기 정지 홈에 인접한 상기 레일 유닛의 일측 단부에는, 상기 레일 유닛의 상기 일측 단부 및 상기 카트 유닛의 일측 단부에 각각 결합되어, 상기 카트 유닛의 이동을 제한하도록 구성되는 차단 플레이트가 구비될 수 있다.
또한, 상기 서브 모듈의 상기 카트 유닛은, 상기 밸브 조립체가 안착되는 카트 몸체부; 상기 카트 몸체부에서 소정 거리만큼 연장 형성되는 연장부; 및 상기 연장부에서 상기 이탈 방지부에 반대되는 방향으로 라운드지게 돌출 형성되는 라운드부를 포함하며, 상기 라운드부의 내부에는, 상기 레일 유닛이 연장 형성되는 상기 일 방향으로 관통 형성되어, 상기 차단 플레이트를 상기 카트 유닛에 체결하는 차단 체결 부재가 체결되는 카트 중공부가 구비될 수 있다.
또한, 상기 서브 모듈의 상기 레일 유닛은, 상기 카트 유닛의 하측에서, 상기 레일 유닛이 연장 형성되는 상기 일 방향으로 연장 형성되는 레일 몸체부; 및 상기 레일 몸체부에서 상기 스토퍼 부재를 향해 연장되는 레일 연장부를 포함하며, 상기 레일 연장부의 내부에는, 상기 레일 유닛이 연장 형성되는 상기 일 방향으로 관통 형성되어, 상기 차단 플레이트를 상기 레일 유닛에 체결하는 차단 체결 부재가 체결되는 체결공이 구비될 수 있다.
본 발명에 따르면, 다음과 같은 효과가 달성될 수 있다.
먼저, 카트 유닛은 레일 유닛의 길이 방향을 따라 레일 유닛에 결합된다. 고중량의 커패시터 조립체 또는 밸브 조립체는 카트 유닛에 안착된다.
따라서, 고중량의 커패시터 조립체 또는 밸브 조립체는 카트 유닛을 통해 레일 유닛에 용이하게 결합될 수 있다.
또한, 카트 유닛은 레일 유닛에 슬라이드 이동 가능하게 결합된다. 카트 유닛에는 레일 유닛을 향해 연장 형성되는 연장부 및 연장부에서 돌출 형성되는 라운드부가 구비된다.
레일 유닛에는 카트 유닛을 향해 연장되며, 라운드부를 감싸도록 형성되는 레일 만곡부가 구비된다. 카트 유닛은 레일 만곡부에 의해 가이드되어 레일 유닛의 길이 방향으로 슬라이드 이동될 수 있다.
따라서, 고중량의 커패시터 조립체 또는 밸브 조립체가 레일 유닛에 안착된 상태에서도, 카트 유닛이 레일 유닛을 따라 슬라이드 이동될 수 있다. 이에 따라, 커패시터 조립체 또는 밸브 조립체가 레일 유닛을 따라 용이하게 슬라이드 이동될 수 있다.
또한, 레일 만곡부는 레일 유닛의 내측, 즉 라운드부에서 멀어지는 방향으로 볼록하게 형성된다. 레일 만곡부는 라운드부를 감싸도록 형성된다. 라운드부를 향하는 레일 만곡부의 일측에는 측면 제한부가 돌출 형성된다. 카트 유닛이 레일 만곡부를 향해 좌우 방향으로 소정 거리만큼 이동되면 측면 제한부가 라운드부와 접촉된다.
따라서, 카트 유닛이 레일 유닛의 좌우 방향의 내측으로 이동되는 거리가 제한될 수 있다. 이에 따라, 카트 유닛이 레일 유닛의 폭 방향에서 내측으로 임의 이탈되지 않게 된다.
또한, 레일 유닛은 레일 몸체부에서 폭 방향의 외측으로 차례로 연장 형성되는 레일 연장부, 단차부 및 지지부를 포함한다. 단차부는 레일 연장부 및 지지부보다 낮은 높이를 갖도록 형성된다. 따라서, 레일 연장부, 단차부 및 지지부에 둘러싸인 공간인 가이드 공간부가 형성된다.
카트 유닛의 휠부는 지지부에 의해 지지된다. 휠부의 내측에는 휠부보다 큰 직경을 갖는 디스크부가 형성된다. 디스크부는 상기 가이드 공간부에 수용된다. 가이드 공간부의 폭 방향은 레일 연장부 및 지지부에 둘러싸인다.
따라서, 카트 유닛이 레일 유닛의 좌우 방향의 외측으로 이동되는 거리가 제한될 수 있다. 이에 따라, 카트 유닛이 레일 유닛의 폭 방향에서 외측으로 임의 이탈되지 않게 된다.
또한, 레일 만곡부는 레일 유닛의 내측, 즉 라운드부에서 멀어지는 방향으로 볼록하게 형성된다. 레일 만곡부는 라운드부를 감싸도록 형성되며, 레일 만곡부의 일측 단부는 라운드부의 상측을 덮도록 형성된다.
라운드부를 향하는 레일 만곡부의 일측에는 상부면 제한부가 돌출 형성된다. 상부면 제한부는 레일 만곡부의 상기 일측 단부에 위치된다. 즉, 상부면 제한부는 라운드부의 상측에서 라운드부를 향해 돌출 형성된다.
카트 유닛이 레일 유닛에서 멀어지도록 상측으로 소정 거리만큼 이동되면 상부면 제한부는 라운드부와 접촉된다.
따라서, 카트 유닛이 레일 유닛의 상측으로 이동되는 거리가 제한될 수 있다. 이에 따라, 카트 유닛이 레일 유닛의 상측으로 임의 이탈되지 않게 된다.
또한, 카트 유닛은 휠부에 의해 레일 유닛에 슬라이드 이동 가능하게 안착된다. 휠부는 넓은 면을 갖는 휠 몸체부가 레일 유닛의 지지부에 회전 가능하게 안착된다. 즉, 카트 유닛 및 이에 안착된 커패시터 조립체 또는 밸브 조립체의 하중은 넓은 표면적을 갖는 휠 몸체부와 지지부에 의해 지지된다.
따라서, 고중량의 커패시터 조립체 또는 밸브 조립체가 안착되더라도, 레일 유닛이 상기 조립체들의 중량에 의해 손상되지 않을 수 있다.
또한, 상술한 효과들은 레일 유닛 및 레일 유닛에 슬라이드 이동 가능하게 결합되는 카트 유닛에 의해 달성될 수 있다. 즉, 상기 효과들을 달성하기 위한 별도의 추가 부재가 요구되지 않는다.
따라서, 서브 모듈의 각 구성의 구조를 변경하는 것만으로도 상기 효과들이 달성될 수 있다.
또한, 밸브 조립체 또는 커패시터 조립체는 카트 유닛에 안착된다. 카트 유닛은 레일 유닛에 슬라이드 이동 가능하게 결합된다. 카트 유닛 및 레일 유닛에는 이탈 방지부가 각각 구비된다. 카트 유닛에 구비된 이탈 방지부와 레일 유닛에 구비된 이탈 방지부가 특정 위치에서 접촉되면, 카트 유닛은 레일 유닛의 단부 방향으로 이동되지 않는다.
따라서, 밸브 조립체 또는 커패시터 조립체가 안착된 카트 유닛이 레일 유닛을 따라 슬라이드 이동되는 거리가 제한될 수 있다.
또한, 카트 유닛에 구비되는 이탈 방지부는 스토퍼 부재 및 탄성 부재를 포함한다. 스토퍼 부재와 탄성 부재는 카트 유닛에 각각 결합된다. 또한, 레일 유닛에 구비되는 이탈 방지부는 지지부의 상측 면에서 함몰 형성된 정지 홈으로 구비된다.
따라서, 카트 유닛에 구비되는 이탈 방지부는 스토퍼 부재와 탄성 부재를 카트 유닛에 결합하는 것만으로도 구비될 수 있다. 또한, 레일 유닛에 구비되는 이탈 방지부는 지지부에 정지 홈을 형성하는 것만으로도 구비될 수 있다. 그러므로, 카트 유닛이 슬라이드 이동되는 거리를 제한하기 위해, 과다한 구조 변경이 요구되지 않는다.
또한, 정지 홈은 제1 면 및 제2 면을 포함한다. 제1 면은 제2 면보다 레일 유닛의 길이 방향의 단부에 인접하게 위치된다. 제1 면은 제2 면보다 레일 유닛의 상측 면과 이루는 경사가 크게 형성된다.
카트 유닛에 구비되는 스토퍼 부재는 일측이 레일 유닛과 접촉되며 이동된다. 카트 유닛이 레일 유닛의 길이 방향의 단부를 따라 이동됨에 따라, 스토퍼 부재는 제2 면을 먼저 통과하게 된다.
따라서, 카트 유닛은 스토퍼 부재가 제1 면에 접촉될 때까지 레일 유닛의 길이 방향의 단부를 향해 원활하게 슬라이드 이동될 수 있다.
또한, 제1 면은 제2 면보다 레일 유닛의 길이 방향의 상기 단부에 더 인접하게 위치된다. 제1 면은 제2 면보다 레일 유닛의 상측 면과 이루는 경사가 크게 형성된다.
따라서, 스토퍼 부재가 제1 면에 접촉되면, 카트 유닛은 별도 조작 없이는 레일 유닛의 길이 방향의 단부를 향해 슬라이드 이동되지 않게 된다.
또한, 제2 면은 제1 면보다 레일 유닛의 길이 방향의 상기 단부에서 더 멀도록 위치된다. 제2 면은 제1 면보다 레일 유닛의 상측 면과 이루는 경사가 작게 형성된다.
따라서, 카트 유닛이 레일 유닛의 길이 방향의 단부에서 멀어지는 방향으로 이동되면, 스토퍼 부재는 제2 면과 접촉된 상태에서 제2 면을 따라 이동될 수 있다.
또한, 스토퍼 부재는 탄성 부재를 통해 카트 유닛과 탄성 연결된다. 스토퍼 부재가 제1 면과 접촉된 상태에서, 사용자는 탄성 부재가 인장되는 방향으로 스토퍼 부재를 회전시킬 수 있다. 이에 따라, 스토퍼 부재가 제1 면과 접촉된 부분은 레일 유닛의 상측으로 회전 이동된다.
따라서, 스토퍼 부재가 제1 면과 접촉된 상태에서, 사용자가 스토퍼 부재를 회전시킨 후 잔여 거리만큼 카트 유닛을 레일 유닛의 길이 방향의 단부를 향해 추가 이동시킬 수 있다.
또한, 카트 유닛과 레일 유닛에는 차단 플레이트가 체결될 수 있다. 차단 플레이트는 카트 유닛과 레일 유닛의 길이 방향의 단부에 각각 체결된다. 즉, 차단 플레이트는 카트 유닛과 레일 유닛에 동시에 체결된다.
따라서, 카트 유닛과 레일 유닛은 각각 길이 방향의 단부에서 함께 체결된 상태로 유지된다. 이에 따라, 카트 유닛이 레일 유닛을 따라 임의로 슬라이드 이동되지 않을 수 있다.
도 1은 본 발명의 실시 예에 따른 서브 모듈을 포함하는 모듈형 멀티 레벨 컨버터를 도시하는 사시도이다.
도 2는 본 발명의 실시 예에 따른 서브 모듈을 도시하는 사시도이다.
도 3은 도 2의 서브 모듈의 커패시터 조립체 및 밸브 조립체 사이의 연결 관계를 도시하는 부분 확대 사시도이다.
도 4는 도 2의 서브 모듈을 다른 각도에서 도시하는 사시도이다.
도 5는 도 2의 서브 모듈의 커패시터 조립체에 결합되는 접지부를 도시하는 부분 확대 사시도이다.
도 6은 도 5의 접지부에 통전 가능하게 연결되는 접지봉 유닛의 내부 구성을 도시하는 단면도이다.
도 7은 도 2의 서브 모듈에 구비되는 밸브 조립체를 도시하는 사시도이다.
도 8은 도 7의 밸브 조립체에 구비되는 전기 장비 및 절연을 위한 부재들을 도시하는 부분 투명 사시도이다.
도 9는 도 8의 절연을 위한 부재와 레일 조립체 간의 통전을 위한 도선을 도시하는 부분 확대 사시도이다.
도 10은 도 7의 밸브 조립체에 구비되는 방폭 프레임부의 결합 관계를 도시하는 부분 분해 사시도이다.
도 11은 도 7의 밸브 조립체에 구비되는 방폭 프레임부의 결합 관계를 도시하는 다른 각도에서의 분해 사시도이다.
도 12는 도 10 및 도 11에 구비되는 케이스 유닛을 도시하는 사시도이다.
도 13은 도 2의 서브 모듈에 구비되는 레일 조립체를 도시하는 정면도이다.
도 14는 도 13의 레일 조립체 및 이탈 방지부를 도시하는 사시도이다.
도 15는 도 14의 이탈 방지부가 정지 홈에 삽입된 상태를 도시하는 측면도이다.
도 16은 도 14의 이탈 방지부가 지지부에 안착된 상태를 도시하는 측면도이다.
도 17은 도 2의 서브 모듈에 구비되는 설치 분리부를 이용하여 카트 유닛이 인출되는 과정을 도시하는 사시도이다.
도 18은 도 2의 서브 모듈에 구비되는 설치 분리부를 이용하여 카트 유닛이 결합되는 과정을 도시하는 사시도이다.
도 19는 도 1의 모듈형 멀티 레벨 컨버터에 구비되는 단락 조정부를 도시하는 후방 사시도이다.
도 20a은 도 19의 단락 조정부에 의해 각 서브 모듈이 서로 단락되기 전의 상태를 도시하는 사시도이다.
도 20b는 도 19의 단락 조정부에 의해 각 서브 모듈이 서로 단락된 상태를 도시하는 사시도이다.
도 21은 도 19의 단락 조정부에 구비되는 인디케이터 부재의 단락 조정 레버가 회전되는 과정을 도시하는 개략도이다.
도 22는 도 2의 서브 모듈에 구비되는 냉각 유로부를 도시하는 사시도이다.
도 23은 도 22의 냉각 유로부의 메인 배관 유닛을 다른 각도에서 도시하는 부분 확대 사시도이다.
도 24는 도 23의 메인 배관 유닛을 다른 각도에서 도시하는 부분 확대 사시도이다.
도 25는 도 22의 냉각 유로부의 배관 연결 유닛과 밸브 연결 배관 사이의 결합 관계를 도시하는 부분 확대 사시도이다.
이하, 첨부한 도면들을 참조하여 본 발명의 실시 예에 따른 서브 모듈을 상세하게 설명한다.
이하의 설명에서는 본 발명의 특징을 명확하게 하기 위해, 일부 구성 요소들에 대한 설명이 생략될 수 있다.
1. 용어의 정의
이하의 설명에서 사용되는 "통전"이라는 용어는 하나 이상의 부재 사이에 전류 등의 전기적 신호가 전달되는 상태를 의미한다. 일 실시 예에서, 상기 통전 상태는 도선 등에 의해 형성될 수 있다.
이하의 설명에서 사용되는 "연통"이라는 용어는 하나 이상의 부재가 유체가 소통 가능하게 연결되는 상태를 의미한다. 일 실시 예에서, 상기 연통 상태는 배관 등에 의해 달성될 수 있다.
이하의 설명에서 사용되는 "냉각 유체"라는 용어는 다른 부재와 열교환될 수 있는 임의의 유체를 의미한다. 일 실시 예에서, 냉각 유체는 물(water)로 구비될 수 있다.
이하의 설명에서 사용되는 "전방 측", "후방 측", "좌측", "우측", "상측" 및 "하측"이라는 용어는 도 1에 도시된 좌표계를 참조하여 이해될 것이다. 즉, 이하의 설명에서는 밸브 조립체(200)가 커패시터 조립체(100)의 전방 측에 위치한 것으로 전제하여 설명한다.
2. 본 발명의 실시 예에 따른 모듈형 멀티 레벨 컨버터(Modular Multilevel Converter)(1)의 구성의 설명
도 1을 참조하면, 본 발명의 실시 예에 따른 모듈형 멀티 레벨 컨버터(1)가 도시된다. 모듈형 멀티 레벨 컨버터(1)는 STATCOM(Static Synchronous Compensator)로 기능될 수 있다.
즉, 모듈형 멀티 레벨 컨버터(1)는 일종의 정지형 무효전력 보상장치로, 전기 또는 전력의 송배전시 손실전압을 보충해 안정성을 높이는 기능을 수행한다.
본 발명의 실시 예에 따른 멀티 레벨 컨버터(1)는 복수 개의 서브 모듈(Sub Module)(10) 및 프레임(20)을 포함한다.
서브 모듈(10)은 상술한 모듈형 멀티 레벨 컨버터(1)의 기능을 실질적으로 수행한다. 서브 모듈(10)은 복수 개 구비될 수 있다. 서브 모듈(10)이 구비되는 개수에 따라, 모듈형 멀티 레벨 컨버터(1)의 용량이 증가될 수 있다.
각 서브 모듈(10)은 서로 통전 가능하게 연결된다. 일 실시 예에서, 각 서브 모듈(10)은 직렬로 연결될 수 있다.
도시된 실시 예에서, 서브 모듈(10)은 총 여섯 개 구비되어, 좌우 방향으로 서로 소정 거리 이격되어 배치된다. 구비되는 서브 모듈(10)의 개수는 변경될 수 있다.
서브 모듈(10)은 프레임(20)에 의해 지지된다. 도시된 실시 예에서, 서브 모듈(10)은 한 개의 층을 형성하는 프레임(20)에 의해 지지된다.
프레임(20)은 모듈형 멀티 레벨 컨버터(1)의 골격을 형성한다. 프레임(20)은 서브 모듈(10)을 상측 또는 하측에서 지지한다.
서브 모듈(10)에 대한 상세한 설명은 후술하기로 한다.
프레임(20)은 높은 강성을 갖는 소재로 형성될 수 있다. 일 실시 예에서, 프레임(20)은 강철 소재로 형성될 수 있다. 또한, 프레임(20)의 형상은 H-Beam의 형태로 구비되어, 프레임(20)의 축 방향의 강성이 더욱 보강될 수 있다.
프레임(20)은 복수 개 구비될 수 있다. 복수 개의 프레임(20)은 서로 적층될 수 있다. 프레임(20)에 의해 지지되는 서브 모듈(10) 또한 복수 개의 층으로 배치될 수 있다. 이에 따라, 모듈형 멀티 레벨 컨버터(1)의 용량이 증가될 수 있다.
도시된 실시 예에서, 프레임(20)은 수직 프레임(21), 수평 프레임(22) 및 지지부(23)를 포함한다. 또한, 도 19를 더 참조하면, 프레임(20)은 절연 부재(24)를 더 포함하며, 도 22를 더 참조하면, 프레임(20)은 고정 프레임(25)을 더 포함한다.
수직 프레임(21)은 프레임(20)의 상하 방향의 골격을 형성한다. 수직 프레임(21)은 상하 방향으로 연장 형성된다. 수직 프레임(21)의 상측 단부 및 하측 단부에는 결합판이 구비된다. 상기 결합판은 사각의 판형으로 구비된다. 상기 결합판은 지면과 결합되거나, 수직 적층된 다른 프레임(20)의 결합판과 결합된다.
도시된 실시 예에서, 수직 프레임(21)은 전방의 좌측 및 우측, 그리고 후방의 좌측 및 우측에 각각 구비된다. 이에 따라, 수직 프레임(21)은 총 네 개 구비된다. 수직 프레임(21)의 개수는 변경될 수 있다.
수직 프레임(21)은 수평 프레임(22)과 결합된다. 수평 프레임(22)에 의해, 수직 프레임(21)은 기 설정된 각도를 유지할 수 있다.
수평 프레임(22)은 프레임(20)의 전후 방향의 골격을 형성한다. 수평 프레임(22)은 전후 방향으로 연장 형성된다. 수평 프레임(22)의 전방 측 단부는 전방 측에 배치되는 수직 프레임(21)에 결합된다. 수평 프레임(22)의 후방 측 단부는 후방 측에 배치되는 수직 프레임(21)에 결합된다.
이에 따라, 수직 프레임(21)의 전후 방향의 변형 및 수평 프레임(22)의 상하 방향의 변형이 최소화될 수 있다.
도시된 실시 예에서, 수평 프레임(22)은 좌측 및 우측에 각각 구비된다. 또한, 좌측 및 우측에, 수평 프레임(22)은 상하 방향으로 서로 이격되어 배치된다. 이에 따라, 수평 프레임(22)은 총 네 개 구비되나, 그 개수는 변경될 수 있다.
수평 프레임(22)에는 지지부(23)가 결합된다. 수평 프레임(22)은 지지부(23)의 좌측 및 우측 단부를 지지한다.
지지부(23)는 서브 모듈(10)을 하측에서 지지한다. 지지부(23)는 수평 프레임(22)에 결합된다. 구체적으로, 지지부(23)의 좌측 단부는 좌측에 구비되는 수평 프레임(22)에 결합된다. 지지부(23)의 우측 단부는 우측에 구비되는 수평 프레임(22)과 결합된다.
지지부(23)는 복수 개의 빔(beam) 부재를 포함한다. 각 빔 부재는 H-Beam의 형태로 구비될 수 있다. 복수 개의 빔 부재는 서로 소정 거리만큼 이격되어, 전후 방향으로 연속 배치된다.
지지부(23)의 상측에는 서브 모듈(10)이 안착된다. 후술될 바와 같이, 지지부(23)의 상측에는 레일 조립체(500)의 레일 유닛(540)이 고정 결합된다. 또한, 레일 유닛(540)에는 서브 모듈(10)의 카트 유닛(510)이 슬라이드 이동 가능하게 결합된다.
도 19를 더 참조하면, 지지부(23)에 포함되는 복수 개의 빔 부재 중, 최후방 측에 위치되는 빔 부재에는 단락 조정부(800)가 구비될 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
고정 프레임(25)은 수평 프레임(22)과 소정의 각도를 이루며 연장된다.
일 실시 예에서, 고정 프레임(25)은 좌측의 수평 프레임(22)에서 우측의 수평 프레임(22)까지 연장될 수 있다. 또한, 일 실시 예에서, 고정 프레임(25)은 수평 프레임(22)에 대해 수직하게 연장될 수 있다.
3. 본 발명의 실시 예에 따른 서브 모듈(10)의 구성의 설명
도 1을 참조하면, 본 발명의 실시 예에 따른 모듈형 멀티 레벨 컨버터(1)는 서브 모듈(10)을 포함한다. 서브 모듈(10)은 모듈형으로 구비되어, 모듈형 멀티 레벨 컨버터(1)에 추가되거나 제외될 수 있다.
즉, 모듈형 멀티 레벨 컨버터(1)에 구비되는 서브 모듈(10)의 개수는 변경될 수 있다. 이에 따라, 모듈형 멀티 레벨 컨버터(1)의 용량이 가변될 수 있다.
도 2 내지 도 9를 참조하면, 도시된 실시 예에 따른 서브 모듈(10)은 커패시터 조립체(100) 및 밸브 조립체(200)를 포함한다. 또한, 도 19 및 도 22를 더 참조하면, 접지부(300), 방폭 프레임부(400), 레일 조립체(500), 이탈 방지부(600), 설치 분리부(700), 단락 조정부(800) 및 냉각 유로부(900)를 더 포함한다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 서브 모듈(10)의 각 구성을 상세하게 설명하되, 접지부(300), 방폭 프레임부(400), 레일 조립체(500), 이탈 방지부(600), 설치 분리부(700), 단락 조정부(800) 및 냉각 유로부(900)는 별항으로 설명한다.
(1) 커패시터(capacitor) 조립체(100)의 설명
커패시터 조립체(100)는 내부에 커패시터 소자(미도시)를 포함한다. 커패시터 조립체(100)는 밸브 조립체(200)와 통전 가능하게 연결된다. 커패시터 조립체(100) 내부의 커패시터 소자(미도시)는 밸브 조립체(200)의 스위칭(switching) 동작에 의해 충전되거나 방전될 수 있다.
이에 따라, 커패시터 소자(미도시)는 서브 모듈(10)에 입력되는 전력 에너지를 저장할 수 있다. 커패시터 소자(미도시)에 저장된 전력 에너지는 서브 모듈(10)의 각 구성이 구동되기 위한 전원으로 사용될 수 있다. 또한, 상기 전력 에너지는 서브 모듈(10)이 통전 가능하게 연결되는 외부의 전력계통에 무효전력으로 공급될 수 있다.
도시된 실시 예에서, 커패시터 조립체(100)는 밸브 조립체(200)의 후방 측에 연결된다. 이는 커패시터 조립체(100)보다 밸브 조립체(200)를 유지 보수해야 하는 상황이 자주 발생됨에 기인한다. 즉, 후술될 바와 같이, 밸브 조립체(200)만을 전방 측으로 용이하게 분리하기 위함이다.
커패시터 조립체(100)는 레일 조립체(500)에 의해 지지된다. 구체적으로, 커패시터 조립체(100)는 레일 조립체(500)의 커패시터 카트 유닛(510a)에 안착된다. 일 실시 예에서, 커패시터 조립체(100)는 커패시터 카트 유닛(510a)에 고정 결합될 수 있다.
후술될 바와 같이, 커패시터 카트 유닛(510a)은 레일 유닛(540)을 따라 전방 측 또는 후방 측으로 슬라이드 이동될 수 있다. 이에 따라, 커패시터 조립체(100) 또한 커패시터 카트 유닛(510a)과 함께 전방 측 또는 후방 측으로 슬라이드 이동될 수 있다.
도시된 실시 예에서, 커패시터 조립체(100)는 밸브 조립체(200)보다 큰 크기를 갖도록 형성된다. 이는, 커패시터 조립체(100)의 내부에 실장되는 커패시터 소자(미도시)의 크기에 기인한다. 즉, 커패시터 조립체(100)의 크기는 커패시터 소자(미도시)의 크기에 따라 변경될 수 있다.
커패시터 조립체(100)는 커패시터 하우징(110) 및 커패시터 커넥터(120)를 포함한다.
커패시터 하우징(110)은 커패시터 조립체(100)의 외형을 형성한다. 커패시터 하우징(110)의 내부에는 소정의 공간이 형성된다. 상기 공간에는 커패시터 소자(미도시)가 실장될 수 있다. 실장된 커패시터 소자(미도시)는 커패시터 커넥터(120)에 의해 밸브 조립체(200)와 통전 가능하게 연결된다.
커패시터 하우징(110)은 강성을 갖는 소재로 형성될 수 있다. 불측의 원인으로 내부에 수용된 커패시터 소자(미도시)가 폭발하는 경우에도, 인접한 서브 모듈(10) 및 밸브 조립체(200) 등에 영향을 주지 않기 위함이다.
커패시터 하우징(110)의 상측에는 후술될 냉각 유로부(900)의 잔수 포집 유닛(960)이 결합된다. 또한, 커패시터 하우징(110)의 하측은 커패시터 카트 유닛(510a)과 결합된다.
커패시터 하우징(110)의 전방 측은 커패시터 커넥터(120)에 의해 밸브 조립체(200)와 통전 가능하게 연결된다.
커패시터 커넥터(120)는 커패시터 조립체(100)와 밸브 조립체(200)를 통전 가능하게 연결한다. 커패시터 커넥터(120)는 커패시터 소자(미도시) 및 밸브 조립체(200)의 밸브 커넥터(220)와 통전 가능하게 연결된다.
커패시터 조립체(100) 또는 밸브 조립체(200)가 서로를 향해 슬라이드 이동되면, 커패시터 커넥터(120)는 밸브 커넥터(220)에 슬라이드되어 삽입 결합될 수 있다. 이에 따라, 커패시터 커넥터(120)와 밸브 커넥터(220) 간의 통전 상태가 형성된다.
상기 결합 방식에 의해, 커패시터 조립체(100)와 밸브 조립체(200) 간의 통전 상태가 용이하게 형성 또는 해제될 수 있다.
도시된 실시 예에서, 커패시터 커넥터(120)는 밸브 조립체(200)를 향하는 커패시터 조립체(100)의 일측, 즉 전방 측에 형성된다. 커패시터 커넥터(120)는 커패시터 하우징(110)의 전방 측에서 소정 거리만큼 돌출 형성된 판 형으로 구비된다.
커패시터 커넥터(120)의 형상은 밸브 커넥터(220)와 통전 가능하게 결합될 수 있는 임의의 형상일 수 있다.
커패시터 커넥터(120)는 복수 개 구비될 수 있다. 도시된 실시 예에서, 커패시터 커넥터(120)는 좌측에 구비되는 제1 커패시터 커넥터(121) 및 우측에 구비되는 제2 커패시터 커넥터(122)를 포함한다.
제1 커패시터 커넥터(121)는 좌측에 구비되는 밸브 커넥터(220)에 슬라이드되어 통전 가능하게 결합된다. 또한, 제2 커패시터 커넥터(122)는 우측에 구비되는 밸브 커넥터(220)에 슬라이드되어 통전 가능하게 결합된다.
(2) 밸브(valve) 조립체(200)의 설명
밸브 조립체(200)는 서브 모듈(10)이 외부의 전원 또는 부하와 통전 가능하게 연결되는 부분이다. 또한, 밸브 조립체(200)는 커패시터 조립체(100)와 통전 가능하게 연결되어, 전력 에너지가 입력 또는 출력될 수 있다.
밸브 조립체(200)는 내부에 복수 개의 스위칭 모듈(switching module)을 구비할 수 있다. 일 실시 예에서, 상기 스위칭 모듈은 IGBT(Insulated Gate Bipolar Transistor)(440)로 구비될 수 있다.
또한, 밸브 조립체(200)는 내부에 상기 스위칭 모듈을 제어하기 위한 제어 보드(Control Board)를 구비할 수 있다. 일 실시 예에서, 상기 제어 보드는 인쇄회로기판(PCB, Printed Circuit Board)(280)으로 구비될 수 있다.
본 발명의 실시 예에 따른 서브 모듈(10)은 어느 IGBT(440)의 폭발 등에 의해 다른 IGBT(440) 및 서브 모듈(10)의 기타 구성이 손상되는 것을 방지할 수 있다. IGBT(440) 및 상기 목적을 달성하기 위한 구성은 "방폭 프레임부(400)"에서 별항으로 설명될 것이다.
도시된 실시 예에서, 밸브 조립체(200)는 커패시터 조립체(100)의 전방 측에 위치된다. 이는, 밸브 조립체(200)의 유지 보수가 커패시터 조립체(100)의 유지 보수에 비해 더욱 빈번하게 수행됨에 기인한다.
밸브 조립체(200)는 설치 분리부(700)에 의해 용이하게 커패시터 조립체(100)와 결합되거나 분리될 수 있다. 이에 대한 상세한 설명은 후술하기로 한다.
밸브 조립체(200)는 레일 조립체(500)에 의해 지지된다. 구체적으로, 밸브 조립체(200)는 레일 조립체(500)의 밸브 카트 유닛(510b)에 안착된다. 일 실시 예에서, 밸브 조립체(200)는 밸브 카트 유닛(510b)에 고정 결합될 수 있다.
후술될 바와 같이, 밸브 카트 유닛(510b)은 레일 유닛(540)을 따라 전방 측 또는 후방 측으로 슬라이드 이동될 수 있다. 이에 따라, 밸브 조립체(200) 또한 밸브 카트 유닛(510b)과 함께 전방 측 또는 후방 측으로 슬라이드 이동될 수 있다.
도시된 실시 예에서, 밸브 조립체(200)는 밸브 커버부(210), 밸브 커넥터(220), 입력 부스바(230), 바이패스 스위치(240), 출력 부스바(250), 절연 하우징(260), 절연 레이어(270) 및 인쇄회로기판(280)을 포함한다.
밸브 커버부(210)는 밸브 조립체(200)의 외형의 일부를 형성한다. 구체적으로, 밸브 커버부(210)는 밸브 조립체(200)의 좌측 및 우측의 외면을 형성한다.
밸브 커버부(210)는 절연 하우징(260)을 덮도록 구성된다. 밸브 커버부(210)에 의해, 절연 하우징(260)의 내부에 실장되는 인쇄회로기판(280) 등은 외부로 임의 노출되지 않는다.
밸브 커버부(210)는 나사 부재 등의 체결 부재를 통해 절연 하우징(260)에 고정 결합될 수 있다.
밸브 커버부(210)는 인쇄회로기판(280) 또는 IGBT(440)에서 발생되는 전자기적 노이즈(noise) 성분을 차폐하도록 구성된다. 일 실시 예에서, 밸브 커버부(210)는 알루미늄(Al) 소재로 형성될 수 있다.
밸브 커버부(210)에서는 복수 개의 관통공이 형성된다. 상기 관통공은 절연 하우징(260)의 내부 공간과 외부를 연통할 수 있다. 상기 관통공을 통해 공기가 유입되어, 인쇄회로기판(280) 또는 IGBT(440)를 냉각할 수 있다.
밸브 커버부(210)는 레일 조립체(500)의 카트 유닛(510)과 통전 가능하게 연결된다. 상기 연결은 접지 도선부(340)에 의해 달성될 수 있다. 이에 따라, 밸브 커버부(210)는 접지(grounding)되어 불필요한 통전이 발생되지 않을 수 있다.
밸브 커버부(210)에서 방폭 프레임부(400)를 향하는 방향을 "내측 방향"으로 정의할 수 있다. 또한, 방폭 프레임부(400)에서 밸브 커버부(210)를 향하는 방향을 "외측 방향"으로 정의할 수 있다.
밸브 커버부(210)의 내측 방향에는 절연 하우징(260)이 위치된다.
밸브 커넥터(220)는 밸브 조립체(200)와 커패시터 조립체(100)를 통전 가능하게 연결한다. 밸브 커넥터(220)는 커패시터 조립체(100)를 향하는 밸브 조립체(200)의 일측, 도시된 실시 예에서 후방 측에 위치된다.
밸브 커넥터(220)는 일 방향, 도시된 실시 예에서 전후 방향으로 연장 형성된다.
밸브 커넥터(220)의 일측, 도시된 실시 예에서 전방 측은 출력 부스바(250)에 통전 가능하게 연결된다. 도시된 실시 예에서, 밸브 커넥터(220)의 상기 일측은 출력 부스바(250)에 나사 결합된다.
밸브 커넥터(220)의 타측, 도시된 실시 예에서 후방 측은 커패시터 커넥터(120)에 통전 가능하게 연결된다.
밸브 커넥터(220)는 서로 소정 거리만큼 이격 배치되는 한 쌍의 판 부재로 구성될 수 있다. 즉, 도시된 실시 예에서, 각 밸브 커넥터(220)는 외측 방향 및 내측 방향에 각각 구비되어, 서로 마주하도록 배치된다.
한 쌍의 판 부재가 상기 소정 거리만큼 서로 이격 배치되어 형성되는 공간에는 커패시터 커넥터(120)가 슬라이드되어 삽입되거나 배출될 수 있다.
커패시터 조립체(100)를 향하는 한 쌍의 판 부재의 일측 단부, 도시된 실시 예에서 후방 측 단부는 외측 방향으로 라운드지게 형성된다. 이에 따라, 상기 슬라이드 결합 및 배출이 용이하게 수행될 수 있다.
한 쌍의 판 부재는 각각 복수 개의 바(bar) 부재를 포함할 수 있다. 도시된 실시 예에서, 한 쌍의 판 부재는 상하 방향으로 적층 형성된 네 개의 바 부재를 포함한다. 상기 개수는 변경될 수 있다.
밸브 커넥터(220)는 복수 개 구비될 수 있다. 도시된 실시 예에서, 밸브 커넥터(220)는 상하 방향으로 서로 소정 거리만큼 이격되어 두 개 배치된다. 또한, 밸브 커넥터(220)는 두 개 구비되는 각 출력 부스바(250)에 각각 구비되어, 총 네 개 구비된다.
밸브 커넥터(220)의 개수는 밸브 조립체(200)와 커패시터 조립체(100)의 통전 상태를 형성할 수 있는 임의의 개수로 변경될 수 있다.
입력 부스바(busbar)(230)는 서브 모듈(10)을 외부의 전원 또는 부하와 통전 가능하게 연결한다.
도시된 실시 예에서, 입력 부스바(230)는 방폭 프레임부(400)의 전방 측으로 소정 거리만큼 돌출 형성된다. 입력 부스바(230)의 상기 전방 측은 외부의 전원 또는 부하와 통전 가능하게 연결된다. 입력 부스바(230)의 상기 전방 측은 바이패스 스위치(bypass switch)(240)와 통전 가능하게 연결된다.
또한, 입력 부스바(230)의 후방 측은 통전 부스바(420)와 통전 가능하게 연결된다.
입력 부스바(230)는 복수 개 구비될 수 있다. 도시된 실시 예에서, 입력 부스바(230)는 상측에 위치되는 제1 입력 부스바(231) 및 하측에 위치되는 제2 입력 부스바(232)를 포함한다.
제1 입력 부스바(231)는 제1 통전 부스바(421)와 통전 가능하게 연결된다. 이에 따라, 제1 입력 부스바(231)는 제1 IGBT(441)와 통전 가능하게 연결될 수 있다.
제2 입력 부스바(232)는 제2 통전 부스바(422)와 통전 가능하게 연결된다. 이에 따라, 제2 입력 부스바(232)는 제2 IGBT(442)와 통전 가능하게 연결될 수 있다.
제1 입력 부스바(231) 및 제2 입력 부스바(232)는 각각 외부의 전원 또는 부하와 통전 가능하게 연결된다. 또한, 제1 입력 부스바(231) 및 제2 입력 부스바(232)는 바이패스 스위치(240)와 통전 가능하게 연결된다.
바이패스 스위치(240)는 임의의 서브 모듈(10)의 구성 요소에 문제가 발생하는 경우, 모듈형 멀티 레벨 컨버터(1)에서 해당 서브 모듈(10)을 제외하도록 구성된다.
구체적으로, 바이패스 스위치(240)는 해당 서브 모듈(10)의 제1 입력 부스바(231) 및 제2 입력 부스바(232)를 전기적으로 단락시킬 수 있다. 이에 따라, 해당 서브 모듈(10)의 제1 입력 부스바(231) 및 제2 입력 부스바(232) 어느 하나로 유입된 전류는 다른 하나를 통해 유출된다.
따라서, 해당 서브 모듈(10)은 도선(wire)으로 기능되어, 모듈형 멀티 레벨 컨버터(1)에서 전기적으로 제외될 수 있다.
바이패스 스위치(240)는 방폭 프레임부(400)의 전방 측에서, 제1 입력 부스바(231) 및 제2 입력 부스바(232) 사이에 위치된다. 바이패스 스위치(240)는 제1 입력 부스바(231) 및 제2 입력 부스바(232)와 통전 가능하게 연결된다.
출력 부스바(250)는 IGBT(440)와 커패시터 조립체(100)를 통전 가능하게 연결한다.
도시된 실시 예에서, 출력 부스바(250)는 커패시터 조립체(100)를 향하는 방향, 즉 후방 측으로 소정 거리만큼 돌출 형성된다. 출력 부스바(250)의 상기 후방 측에는 밸브 커넥터(220)가 통전 가능하게 결합된다. 일 실시 예에서, 밸브 커넥터(220)는 출력 부스바(250)에 나사 결합될 수 있다.
출력 부스바(250)의 전방 측은 IGBT(440)와 통전 가능하게 연결되는 통전 부스바(420)와 통전 가능하게 연결될 수 있다.
출력 부스바(250)는 복수 개 구비될 수 있다. 도시된 실시 예에서, 출력 부스바(250)는 두 개 구비되어, 서로 소정 거리만큼 이격되어 배치된다. 상기 소정 거리는, 제1 커패시터 커넥터(121) 및 제2 커패시터 커넥터(122)가 이격된 거리와 같을 수 있다.
출력 부스바(250)는 통전 부스바(420)와 함께, IGBT 수용부(413)를 덮도록 케이스 유닛(410)에 결합될 수 있다. 출력 부스바(250)와 통전 부스바(420)는 통전 가능하게 연결된다.
도시된 실시 예에서, 출력 부스바(250)는 통전 부스바(420)의 후방 측에 위치된다. 이에 따라, 출력 부스바(250)는 IGBT 수용부(413)의 후방 측을 덮도록 구성된다.
출력 부스바(250)는 IGBT 수용부(413)를 덮는 제1 부분, 제1 부분에서 소정의 각도로 절곡 형성되어, 케이스 유닛(410)의 일측(도시된 실시 예에서 후방 측)을 덮는 제2 부분 및 제2 부분에서 연장되어, 밸브 커넥터(220)가 결합되는 제3 부분을 포함한다.
절연 하우징(260)은 내부에 인쇄회로기판(280)을 수용한다. 또한, 절연 하우징(260)은 통전 부스바(420)와 통전 가능하게 접촉되어, 인쇄회로기판(280)과 IGBT(440)를 통전 가능하게 연결한다. 이에 따라, 인쇄회로기판(280)에서 연산된 제어 신호에 따라 IGBT(440)가 작동될 수 있다.
절연 하우징(260)은 복수 개 구비된다. 도시된 실시 예에서, 절연 하우징(260)은 두 개 구비되어, 방폭 프레임부(400)의 좌측 및 우측에 각각 구비된다.
절연 하우징(260)의 외측 방향, 즉 방폭 프레임부(400)에서 멀어지는 방향, 즉 방폭 프레임부(400)에 반대되는 방향의 일측은 밸브 커버부(210)에 의해 차폐될 수 있다. 도시된 실시 예에서, 밸브 커버부(210)는 좌측에 위치되는 절연 하우징(260)의 좌측 및 우측에 위치되는 절연 하우징(260)의 우측에 각각 구비된다.
절연 하우징(260)은 인쇄회로기판(280) 또는 IGBT(440)에서 발생된 전자기적 노이즈를 차폐할 수 있다. 절연 하우징(260)은 알루미늄 소재로 형성될 수 있다.
따라서, 밸브 커버부(210) 및 절연 하우징(260)에 의해, 인쇄회로기판(280) 또는 IGBT(440)에서 발생된 전자기적 노이즈는 외부로 임의 유출되지 않게 된다.
절연 하우징(260)의 내부에는 소정의 공간이 형성된다. 상기 공간에는 절연 레이어(270) 및 인쇄회로기판(280)이 위치된다.
절연 하우징(260)은 제1 벽(261), 제2 벽(262), 제3 벽(263) 및 제4 벽(264)을 포함한다.
제1 벽(261)은 절연 하우징(260)의 전방 측 벽을 형성한다. 제2 벽(262)은 절연 하우징(260)의 후방 측 벽을 형성한다. 제1 벽(261)과 제2 벽(262)은 서로 마주하도록 배치된다.
제3 벽(263)은 절연 하우징(260)의 상측 벽을 형성한다. 제4 벽(264)은 절연 하우징(260)의 하측 벽을 형성한다. 제3 벽(263)과 제4 벽(264)은 서로 마주하도록 배치된다.
제1 내지 제4 벽(261, 262, 263, 264)의 내측은 전자기적 노이즈를 차단할 수 있는 소재로 형성될 수 있다. 일 실시 예에서, 제1 내지 제4 벽(261, 262, 263, 264)은 알루미늄 소재로 형성될 수 있다.
또한, 절연 레이어(270)에 의해 덮이는 바닥 면, 즉 밸브 커버부(210)와 마주하는 절연 하우징(260)의 일측 면 또한 알루미늄 소재로 형성될 수 있다.
이에 따라, 절연 하우징(260)의 내부 공간은, 밸브 커버부(210) 및 절연 하우징(260)의 각 면에 의해 전기적으로 차폐될 수 있다. 결과적으로, 인쇄회로기판(280) 또는 IGBT(440)에서 발생된 전자기적 노이즈는 외부로 임의 유출되지 않게 된다.
제1 내지 제4 벽(261, 262, 263, 264)에 둘러싸인 공간에 절연 레이어(270) 및 인쇄회로기판(280)이 수용된다.
절연 레이어(270)는 IGBT(440)에서 발생된 전자기적 노이즈가 절연 하우징(260)의 내부 공간으로 유입되는 것을 차단하도록 구성된다. 또한, 절연 레이어(270)는 인쇄회로기판(280)에서 발생된 전자기적 노이즈가 IGBT(440)를 향해 이동되는 것을 차단할 수도 있다.
절연 레이어(270)는 절연 하우징(260)의 상기 일측 면을 덮도록 구성된다. 즉, 절연 레이어(270)는 밸브 커버부(210)와 마주하는 절연 하우징(260)의 상기 일측 면과, 인쇄회로기판(280) 사이에 위치된다.
따라서, 절연 하우징(260)의 내부에 형성된 공간 중 방폭 프레임부(400)를 향하는 일측은 절연 레이어(270)에 둘러싸이게 된다.
절연 레이어(270)의 형상은 절연 하우징(260)의 상기 일측 면의 형상에 상응하게 변경될 수 있다.
절연 레이어(270)는 전자기적 노이즈를 차단할 수 있는 임의의 소재로 형성될 수 있다. 일 실시 예에서, 절연 레이어(270)는 폴리이미드(Polyimide) 소재로 형성될 수 있다.
밸브 커버부(210)를 향하는 절연 레이어(270)의 일측, 즉 외측 방향에는 인쇄회로기판(280)이 위치된다.
인쇄회로기판(280)은 IGBT(440)를 제어하기 위한 제어 신호를 연산한다. 또한, 인쇄회로기판(280)은 연산된 제어 신호를 IGBT(440)에 전달하여, 서브 모듈(10)의 구동을 제어할 수 있다.
인쇄회로기판(280)은 IGBT(440)와 통전 가능하게 연결된다. 또한, 인쇄회로기판(280)은 통전 부스바(420)와 통전 가능하게 연결된다. 이에 따라, 외부의 전원 및 제어 신호가 인쇄회로기판(280)에 전달될 수 있다.
인쇄회로기판(280)은 절연 하우징(260)의 내부 공간에 수용된다. 상술한 바와 같이, 인쇄회로기판(280)과 절연 하우징(260)의 상기 일측 면 사이에는 절연 레이어(270)가 위치된다.
따라서, 인쇄회로기판(280)은 절연 레이어(270) 및 절연 하우징(260)의 상기 일측 면을 관통하여 통전 부스바(420)와 통전 가능하게 연결될 수 있다.
인쇄회로기판(280)은 복수 개 구비될 수 있다. 도시된 실시 예에서, 인쇄회로기판(280)은 다섯 개 구비되나, 그 개수는 변경될 수 있다.
4. 본 발명의 실시 예에 따른 접지부(300)의 설명
본 발명의 실시 예에 따른 서브 모듈(10)은 접지부(300)를 포함한다. 접지부(300)는 커패시터 조립체(100)에 구비되는 커패시터 소자(미도시)와 통전 가능하게 연결될 수 있다. 이에 따라, 커패시터 소자(미도시)에 저장된 전력 에너지가 접지되어 방전될 수 있다.
구체적으로, 유지 보수 또는 이동의 목적으로 서브 모듈(10)이 이동되어야 할 경우가 발생될 수 있다. 이때, 커패시터 소자(미도시)에 전력 에너지가 잔류하면 폭발 등의 위험이 있다.
이에, 본 발명의 실시 예에 따른 서브 모듈(10)은 접지부(300)를 통해 커패시터 소자(미도시)에 저장된 전력 에너지를 용이하게 방출할 수 있다.
도시된 실시 예에서, 접지부(300)는 접지봉 유닛(310), 접지 커넥터(320), 접지 돌출부(330) 및 접지 도선부(340)를 포함한다.
접지봉 유닛(310)은 접지부(300)의 몸체를 형성한다. 접지봉 유닛(310)은 일 방향, 도시된 실시 예에서 전후 방향으로 연장 형성된다.
접지봉 유닛(310)은 커패시터 커넥터(120)와 통전 가능하게 연결된 접지 돌출부(330)에 삽입 결합될 수 있다. 또한, 접지봉 유닛(310)은 접지 돌출부(330)와 통전 가능하게 연결될 수 있다.
이에 따라, 커패시터 소자(미도시)에 저장된 전력 에너지는 커패시터 커넥터(120)를 거쳐 접지봉 유닛(310)을 통해 접지될 수 있다.
접지봉 유닛(310)은 접지 돌출부(330)에 탈착 가능하게 삽입 결합될 수 있다. 커패시터 소자(미도시)의 접지가 요구되지 않는 경우, 접지봉 유닛(310)은 커패시터 조립체(100)에서 멀어지는 방향, 즉 커패시터 조립체(100)에 반대되는 방향으로 이동될 수 있다. 이에 따라, 접지봉 유닛(310)이 접지 돌출부(330)와 분리될 수 있다.
접지봉 유닛(310)은 방폭 프레임부(400)의 접지봉 관통홀(412)에 관통 결합될 수 있다. 접지봉 유닛(310)은 접지봉 관통홀(412)에 의해 접지 돌출부(330)를 향해 진행되도록 안내될 수 있다.
도시된 실시 예에서, 접지봉 유닛(310)은 내부에 중공부가 형성된 원기둥 형상이다. 접지봉 유닛(310)은 접지 돌출부(330)와 통전 가능하게 결합될 수 있는 임의의 형상일 수 있다. 이때, 접지봉 유닛(310)의 형상은 접지봉 관통홀(412)의 형상에 상응하게 결정되는 것이 바람직하다.
접지봉 유닛(310)은 복수 개 구비될 수 있다. 도시된 실시 예에서, 접지봉 유닛(310)은 제1 접지봉 유닛(310a) 및 제2 접지봉 유닛(310b)을 포함한다.
제1 접지봉 유닛(310a)은 제1 접지 돌출부(331)에 통전 가능하게 삽입 결합된다. 또한, 제2 접지봉 유닛(310b)은 제2 접지 돌출부(332)에 통전 가능하게 삽입 결합된다.
접지봉 유닛(310)은 몸체부(311), 결합부(312), 접지 도체부(313), 접지 도선부(314), 씰링(sealing)부(315) 및 저항부(316)를 포함한다.
몸체부(311)는 접지봉 유닛(310)의 몸체를 형성한다. 몸체부(311)는 길이 방향, 도시된 실시 예에서 전후 방향으로 연장 형성된다. 몸체부(311)는 원형의 단면을 갖는 원기둥 형상이되, 내부에 중공부가 형성된다. 상기 중공부에는 접지를 위한 여러 구성 요소들이 실장된다.
결합부(312)는 접지봉 유닛(310)이 접지 돌출부(330)와 결합되는 부분이다. 결합부(312)는 접지 돌출부(330)를 향하는 일측, 도시된 실시 예에서 후방 측 단부에서 전방 측으로 소정 거리만큼 연장 형성된다.
결합부(312)는 몸체부(311)의 내부에 형성된 중공부에 위치된다. 결합부(312)의 외면은 상기 중공부를 둘러싸는 몸체부(311)의 내면에 접촉될 수 있다.
결합부(312)의 내부에는 중공부가 형성된다. 상기 중공부의 직경은 접지 돌출부(330)의 직경 이하로 형성될 수 있다.
결합부(312)는 탄성 변형이 가능한 소재로 형성될 수 있다. 이에 따라, 접지 돌출부(330)가 결합부(312)의 중공부에 삽입될 때, 결합부(312)는 형상 변형되며 복원력을 저장할 수 있다. 상기 복원력에 의해, 결합부(312)가 접지 돌출부(330)를 안정적으로 잡고 있을 수 있다.
일 실시 예에서, 결합부(312)는 고무(rubber) 소재로 형성될 수 있다.
이에 따라, 접지 돌출부(330)는 결합부(312)에 끼움 결합되어, 접지봉 유닛(310)과 접지 돌출부(330) 사이의 결합 상태가 안정적으로 유지될 수 있다.
접지 도체부(313)는 접지 돌출부(330)와 통전 가능하게 연결된다. 커패시터 소자(미도시)에 저장된 전력 에너지는 접지 도체부(313)를 통해 저항부(316)로 이동될 수 있다.
접지 도체부(313)는 결합부(312)를 외측에서 감싸도록 형성된다. 즉, 접지 돌출부(330)를 향하는 접지 도체부(313)의 일측, 도시된 실시 예에서 후방 측 단부는 몸체부(311)의 후방 측 단부를 형성한다.
접지 도체부(313)의 내부에는 중공부가 형성된다. 상기 중공부의 일부, 도시된 실시 예에서 후방 측에는 결합부(312)가 수용된다. 상기 중공부의 나머지 일부, 도시된 실시 예에서 전방 측에는 접지 돌출부(330)의 단부와 접촉되는 부분이 형성된다. 상기 부분의 형상은 접지 돌출부(330)의 형상에 상응하게 결정될 수 있다.
접지 도체부(313)는 결합부(312)에서 멀어지는 방향, 즉 결합부(312)에 반대되는 방향으로 연장 형성된다. 접지 도체부(313)의 타측, 도시된 실시 예에서 전방 측 단부는 접지 도선부(314)의 후방 측 단부와 통전 가능하게 연결된다. 일 실시 예에서, 접지 도체부(313)의 전방 측과 접지 도선부(314)의 후방 측은 나사 부재에 의해 체결될 수 있다.
접지 도선부(314)는 접지 도체부(313) 및 저항부(316)를 통전 가능하게 연결한다. 접지 도선부(314)는 접지 도체부(313) 및 저항부(316)와 각각 통전 가능하게 연결된다.
접지 도선부(314)는 길이 방향, 도시된 실시 예에서 전후 방향으로 연장된다. 접지 도선부(314)의 후방 측 단부는 접지 도체부(313)와 통전 가능하게 연결된다. 접지 도선부(314)의 전방 측 단부는 저항부(316)와 통전 가능하게 연결된다.
씰링부(315)는 접지 도선부(314)가 외부로 노출되는 몸체부(311)의 일측, 도시된 실시 예에서 전방 측 단부에 구비된다. 씰링부(315)는 접지 도선부(314)를 파지한다. 또한, 씰링부(315)는 먼지 등의 이물질이 몸체부(311) 내부의 공간으로 유입되지 않도록 상기 공간을 밀폐한다.
씰링부(315)는 접지 도선부(314)를 감싸도록 구성된다. 이에 따라, 접지 도선부(314)는 길이 방향으로 이동되거나, 반경 방향으로 이동되지 않을 수 있다.
저항부(316)는 커패시터 소자(미도시)에 저장된 전력 에너지를 공급받아, 커패시터 소자(미도시)를 방전시키는 역할을 수행한다. 저항부(316)는 접지 도선부(314)에 통전 가능하게 연결된다.
저항부(316)는 전력 에너지를 공급받고, 이를 소모할 수 있는 임의의 형태로 구비될 수 있다.
접지 커넥터(320)는 커패시터 커넥터(120)와 접지 돌출부(330)를 통전 가능하게 연결한다.
접지 커넥터(320)는 커패시터 커넥터(120)와 통전 가능하게 연결된다. 이에 따라, 접지 커넥터(320)와 커패시터 소자(미도시)가 통전 가능하게 연결될 수 있다.
접지 커넥터(320)는 접지 돌출부(330)와 통전 가능하게 연결된다. 이에 따라, 커패시터 소자(미도시)와 접지 돌출부(330)가 통전 가능하게 연결될 수 있다.
밸브 조립체(200)를 향하는 접지 커넥터(320)의 일측, 즉 전방 측에는, 전후 방향과 소정의 각도를 이루는 판 부재가 구비될 수 있다. 접지 돌출부(330)는 상기 판 부재에서 밸브 조립체(200)를 향하는 방향인 전방 측으로 돌출 형성될 수 있다. 일 실시 예에서, 상기 소정의 각도는 직각일 수 있다.
도시된 실시 예에서, 접지 커넥터(320)는 커패시터 커넥터(120)의 상측에 위치된다. 접지 커넥터(320)는 커패시터 커넥터(120)에서 상측으로 소정 거리만큼 연장 형성된다. 일 실시 예에서, 접지 커넥터(320)는 커패시터 커넥터(120)와 나사 결합될 수 있다.
접지 커넥터(320)의 상측에는 냉각 유로부(900)의 잔수 포집 유닛(960)이 구비될 수 있다. 접지 커넥터(320)는 잔수 포집 유닛(960)을 지지하도록 구성될 수 있다.
접지 커넥터(320)는 복수 개 구비될 수 있다. 도시된 실시 예에서, 접지 커넥터(320)는 제1 접지 커넥터(321) 및 제2 접지 커넥터(322)를 포함한다. 제1 접지 커넥터(321)는 제1 커패시터 커넥터(121)와 통전 가능하게 연결된다. 제2 접지 커넥터(322)는 제2 커패시터 커넥터(122)와 통전 가능하게 연결된다.
접지 돌출부(330)에는 접지봉 유닛(310)이 삽입 결합된다. 접지 돌출부(330)는 밸브 조립체(200)를 향하는 방향, 도시된 실시 예에서 전방 측으로 소정 거리만큼 돌출 형성된다.
접지 돌출부(330)의 돌출 길이는 접지 도체부(313)의 내부에 형성된 중공부의 길이에 상응하게 결정되는 것이 바람직하다.
접지 커넥터(320)를 향하는 접지 돌출부(330)의 일측, 도시된 실시 예에서 후방 측은 접지 커넥터(320)와 통전 가능하게 연결된다. 일 실시 예에서, 접지 돌출부(330)는 접지 커넥터(320)의 상기 판 부재에서 돌출 형성될 수 있다.
따라서, 접지봉 유닛(310)이 접지 돌출부(330)에 삽입 결합되면, 커패시터 소자(미도시), 커패시터 커넥터(120), 접지 커넥터(320), 접지 돌출부(330) 및 접지봉 유닛(310)이 통전 가능하게 연결된다.
접지 도선부(340)는 밸브 조립체(200)의 내부에 수용된 각 전기적 장치를 접지한다(도 7 및 도 8에 가장 잘 도시됨). 접지 도선부(340)는 상기 각 전기적 장치와 레일 조립체(500)의 밸브 카트 유닛(510b)을 통전 가능하게 연결한다.
접지 도선부(340)는 PCB 접지 도선(341), 하우징 접지 도선(342) 및 부스바 접지 도선(343)을 포함한다.
PCB 접지 도선(341)은 인쇄회로기판(280)과 밸브 카트 유닛(510b)을 통전 가능하게 연결한다. 하우징 접지 도선(342)은 절연 하우징(260)과 밸브 카트 유닛(510b)을 통전 가능하게 연결한다. 부스바 접지 도선(343)은 출력 부스바(250)와 밸브 카트 유닛(510b)을 통전 가능하게 연결한다.
이에 따라, 밸브 조립체(200)의 내부에 수용된 각 전기적 장치가 안정적으로 작동될 수 있다.
이하, 다시 도 4를 참조하여 접지부(300)에 의해 커패시터 소자(미도시)가 방전되는 과정을 설명하면 다음과 같다.
이하의 설명에서는, 접지봉 유닛(310)이 커패시터 조립체(100)를 향하는 방향을 후방 측, 접지봉 유닛(310)이 커패시터 조립체(100)에서 멀어지는 방향, 즉 커패시터 조립체(100)에 반대되는 방향을 전방 측으로 가정하여 설명한다.
먼저, 접지봉 유닛(310)은 전방 측으로 이동되며, 방폭 프레임부(400)의 접지봉 관통홀(412)을 통과한다. 이때, 접지봉 관통홀(412)은 전방 측 및 후방 측에 각각 형성되되, 같은 중심축을 갖도록 배치될 수 있다.
전방 측 및 후방 측의 접지봉 관통홀(412)을 각각 통과한 접지봉 유닛(310)이 계속 전방 측으로 이동되면, 결합부(312)부터 접지 돌출부(330)에 삽입 결합된다. 이때, 접지 돌출부(330)는 접지봉 관통홀(412)과 같은 중심축을 갖도록 배치될 수 있다.
따라서, 접지봉 유닛(310)의 형상은 직선 형태를 유지하면서, 접지 돌출부(330)와 안정적으로 결합될 수 있다.
접지 돌출부(330)가 삽입되면, 결합부(312)는 형상 변형되며 저장한 복원력을 접지 돌출부(330)에 가하게 된다. 이에 따라, 접지 돌출부(330)와 접지봉 유닛(310)의 결합 상태가 안정적으로 유지될 수 있다.
접지 돌출부(330)의 삽입이 진행됨에 따라, 접지 돌출부(330)의 전방 측 단부는 접지 도체부(313)와 접촉된다. 이에 따라, 커패시터 소자(미도시)와 저항부(316) 사이에 통전 상태가 형성되어, 커패시터 소자(미도시)에 저장된 전력 에너지가 방출될 수 있다.
5. 본 발명의 실시 예에 따른 방폭 프레임부(400)의 설명
본 발명의 실시 예에 따른 서브 모듈(10)은 방폭 프레임부(400)를 포함한다. 방폭 프레임부(400)는 내부에 IGBT(440) 등의 스위칭 소자를 수용할 수 있다.
또한, 본 발명의 실시 예에 다른 방폭 프레임부(400)는 수용된 IGBT(440)가 폭발된 경우, 인접한 IGBT(440)의 손상을 방지할 수 있다. 더 나아가, 본 발명의 실시 예에 따른 방폭 프레임부(400)는 상기 폭발에 의해 발생되는 가스 등이 용이하게 배출될 수 있도록 형성된다.
도 2 내지 도 4 및 도 7 내지 도 9에 도시된 바와 같이, 방폭 프레임부(400)는 밸브 조립체(200)에 구비될 수 있다. 이는, 스위칭 소자로 기능되는 IGBT(440)가 밸브 조립체(200)에 구비됨에 기인한다.
이에, 방폭 프레임부(400)는 밸브 조립체(200)에 포함되는 것으로도 이해될 수 있을 것이다.
이하, 도 10 내지 도 12를 참조하여, 본 발명의 실시 예에 따른 방폭 프레임부(400)를 상세하게 설명한다.
도시된 실시 예에서, 방폭 프레임부(400)는 케이스 유닛(410), 통전 부스바(420), 냉각 플레이트(430), 및 IGBT(440)를 포함한다.
케이스 유닛(410)은 방폭 프레임부(400)의 외형을 형성한다. 케이스 유닛(410)에는 통전 부스바(420) 및 냉각 플레이트(430)가 결합된다.
케이스 유닛(410)의 내부에는 소정의 공간이 형성된다. 상기 공간에는 IGBT(440)가 수용될 수 있다.
케이스 유닛(410)의 외측 방향, 즉 냉각 플레이트(430)에서 멀어지는 방향, 즉 냉각 플레이트(430)에 반대되는 방향의 일측에는 절연 하우징(260)이 결합될 수 있다.
케이스 유닛(410)은 복수 개 구비될 수 있다. 도시된 실시 예에서, 케이스 유닛(410)은 두 개 구비된다. 각 케이스 유닛(410)은 서로 대칭되는 형상으로 형성될 수 있다. 이하에서는 하나의 케이스 유닛(410)에 대해 설명될 것이나, 다른 케이스 유닛(410) 또한 같은 구조임이 이해될 것이다.
각 케이스 유닛(410)은 그 사이에 소정의 공간을 형성하며 결합된다. 상기 소정의 공간에는 냉각 플레이트(430) 및 IGBT(440)가 위치된다.
케이스 유닛(410)의 외측 방향, 즉 밸브 커버부(210)를 향하는 방향에는 출력 부스바(250) 및 통전 부스바(420)가 결합된다. 출력 부스바(250) 및 통전 부스바(420)는 케이스 유닛(410)과 절연 하우징(260) 사이에 위치된다.
케이스 유닛(410)의 내측 방향, 즉 각 케이스 유닛(410)이 서로 마주하는 방향에는 냉각 플레이트(430)가 결합된다. 즉, 냉각 플레이트(430)는 각 케이스 유닛(410) 사이에 위치된다.
케이스 유닛(410)의 내측 방향, 즉 냉각 플레이트(430)를 향하는 방향에는 IGBT(440)가 위치된다. 즉, IGBT(440)는 케이스 유닛(410)과 냉각 플레이트(430) 사이에 위치된다.
케이스 유닛(410)과 통전 부스바(420), 냉각 플레이트(430) 및 IGBT(440)와의 결합을 위해 체결 부재(미도시)가 구비될 수 있다.
또한, 케이스 유닛(410)과 절연 하우징(260) 및 밸브 커버부(210) 또한 체결 부재(미도시)에 의해 결합될 수 있다.
일 실시 예에서, 체결 부재(미도시)는 나사 부재로 구비될 수 있다.
케이스 유닛(410)은 절연성 소재로 형성될 수 있다. 또한, 케이스 유닛(410)은 내열성, 내압성 및 내마모성을 갖는 소재로 형성될 수 있다. 일 실시 예에서, 케이스 유닛(410)은 합성 수지 소재로 형성될 수 있다.
도시된 실시 예에서, 케이스 유닛(410)은 상하 방향으로 연장 형성된다. 이는, 후술될 바와 같이, IGBT(440)가 복수 개 구비되어 상하 방향으로 배치됨에 기인한다.
케이스 유닛(410)은 돌출부(411), 접지봉 관통홀(412), IGBT 수용부(413), 내벽부(414), 외벽부(415), 내부 연통 홈(416), 외부 연통 홈(417), 완충 공간부(418) 및 모서리부(419)를 포함한다.
돌출부(411)는 케이스 유닛(410)의 상측에서 돌출 형성된다. 돌출부(411)는 복수 개 형성될 수 있다. 복수 개의 돌출부(411)는 서로 소정 거리 이격되어 형성될 수 있다.
도시된 실시 예에서, 돌출부(411)는 케이스 유닛(410)의 상측의 전방 및 후방에서 상측으로 돌출 형성된다. 각 돌출부(411)는 전후 방향으로 동일 선상에 위치될 수 있다.
돌출부(411)에는 접지봉 관통홀(412)이 관통 형성된다.
접지봉 관통홀(412)은 접지봉 유닛(310)이 관통 결합된다. 접지봉 관통홀(412)은 돌출부(411)에 관통 형성된다. 도시된 실시 예에서, 접지봉 관통홀(412)은 전후 방향으로 관통 형성된다.
접지봉 관통홀(412)은 접지봉 유닛(310)의 형상에 상응하도록 형성될 수 있다. 도시된 실시 예에서, 접지봉 유닛(310)이 원통 형상인 바, 접지봉 관통홀(412)은 원형의 단면을 갖도록 형성될 수 있다.
상술한 바와 같이, 돌출부(411)는 전방 측 및 후방 측에 각각 형성될 수 있다. 접지봉 관통홀(412)은 복수 개의 돌출부(411) 각각에 관통 형성될 수 있다.
각 돌출부(411)에 형성된 접지봉 관통홀(412)은 서로 같은 중심축을 갖도록 형성될 수 있다. 또한, 접지봉 관통홀(412)은 접지 돌출부(330)와 같은 중심축을 갖도록 형성될 수 있다.
IGBT 수용부(413)는 IGBT(440)를 수용한다. IGBT 수용부(413)는 케이스 유닛(410)의 내부에 형성된 소정의 공간에 의해 정의될 수 있다. IGBT 수용부(413)는 냉각 플레이트(430)를 향하는 케이스 유닛(410)의 일측에서 소정 거리만큼 함몰 형성된다.
IGBT 수용부(413)는 출력 부스바(250) 및 통전 부스바(420)에 의해 덮일 수 있다. 구체적으로, IGBT 수용부(413)가 절연 하우징(260)을 향하는 일측의 개구부는, 출력 부스바(250) 및 통전 부스바(420)에 의해 덮일 수 있다.
IGBT 수용부(413)는 복수 개 형성될 수 있다. 도시된 실시 예에서, IGBT 수용부(413)는 돌출부(411)를 향하는 일측에 형성되는 제1 IGBT 수용부(413a) 및 돌출부(411)에서 멀어지는(즉, 제1 IGBT 수용부(413a) 및 돌출부(411)에 반대되는) 타측에 형성되는 제2 IGBT 수용부(413b)를 포함한다.
이는 IGBT(440)가 제1 IGBT(441) 및 제2 IGBT(442)를 포함하여, 두 개 구비됨에 기인한다. 즉, 제1 IGBT 수용부(413a)에는 제1 IGBT(441)가 수용되고, 제2 IGBT 수용부(413b)에는 제2 IGBT(442)가 수용된다.
상술한 바와 같이, 케이스 유닛(410)은 두 개 구비되어 서로 결합된다. 한 개의 케이스 유닛(410)에 두 개의 IGBT 수용부(413)가 형성되는 바, 각 방폭 프레임부(400)에는 총 네 개의 IGBT(440)가 수용됨이 이해될 것이다.
각 IGBT 수용부(413a, 413b)의 형상은 그에 수용되는 각 IGBT(441, 442)의 형상에 상응하게 결정될 수 있다. 또한, 제1 IGBT 수용부(413a) 및 제2 IGBT 수용부(413b)는 서로 상응하는 형상으로 형성될 수 있다.
제1 IGBT 수용부(413a) 및 제2 IGBT 수용부(413b) 사이에는 격벽부(413c)가 형성된다. 케이스 유닛(410)과 냉각 플레이트(430)가 결합되면, 냉각 플레이트(430)를 향하는 격벽부(413c)의 일측 면은 냉각 플레이트(430)와 접촉된다.
결과적으로, 격벽부(413c)는 냉각 플레이트(430)를 향하는 일측에서 제1 IGBT 수용부(413a) 및 제2 IGBT 수용부(413b)를 물리적으로 구획한다. 이에 따라, 제1 IGBT(413a) 및 제2 IGBT(413b) 중 어느 하나가 폭발하더라도, 다른 하나에 영향을 주지 않게 된다.
냉각 플레이트(430)에서 멀어지는(즉, 냉각 플레이트(430)에 반대되는) IGBT 수용부(413)의 일측, 즉 통전 부스바(420)를 향하는 IGBT 수용부(413)의 일측은 개방 형성된다. IGBT(440)는 상기 일측을 통해 IGBT 수용부(413)의 외측으로 노출된다. IGBT(440)가 노출된 상기 부분은 통전 부스바(420)와 통전 가능하게 접촉된다.
한편, IGBT 수용부(413)는 격벽부(413c), 내벽부(414) 및 모서리부(419)에 둘러싸인 공간으로 정의될 수 있다.
즉, 제1 IGBT 수용부(413a)는 전방 측 및 후방 측 벽을 형성하는 제1 내벽부(414a), 하측 벽을 형성하는 격벽부(413c) 및 상측 벽을 형성하는 모서리부(419)에 둘러싸인 공간으로 정의될 수 있다.
유사하게, 제2 IGBT 수용부(413b)는 전방 측 및 후방 측 벽을 형성하는 제2 내벽부(414b), 상측 벽을 형성하는 격벽부(413c) 및 하측 벽을 형성하는 모서리부(419)에 둘러싸인 공간으로 정의될 수 있다.
내벽부(414)는 IGBT 수용부(413)를 부분적으로 둘러싼다. 도시된 실시 예에서, 내벽부(414)는 IGBT 수용부(413)의 전방 측 및 후방 측을 둘러싸도록 형성된다. 내벽부(414)는 격벽부(413c)와 연속될 수 있다.
내벽부(414)는 외벽부(415)에 둘러싸일 수 있다. 내벽부(414)는 외벽부(415)와 소정 거리만큼 이격된다. 상기 이격에 의해 내벽부(414)와 외벽부(415) 사이에 형성되는 공간은 완충 공간부(418)로 정의된다.
케이스 유닛(410)과 냉각 플레이트(430)가 결합되면, 냉각 플레이트(430)를 향하는 내벽부(414)의 일측 면은 냉각 플레이트(430)와 접촉된다.
내벽부(414)에는 내부 연통 홈(416)이 형성된다. IGBT(440)가 폭발하여 발생된 가스는, 내부 연통 홈(416)을 통과하여 완충 공간부(418)로 유입될 수 있다.
내벽부(414)는 제1 내벽부(414a) 및 제2 내벽부(414b)를 포함한다.
제1 내벽부(414a)는 제1 IGBT 수용부(413a)를 부분적으로 둘러싼다. 제1 내벽부(414a)는 돌출부(411)를 향하는 일측, 도시된 실시 예에서 상측에 위치된다.
제2 내벽부(414b)는 제2 IGBT 수용부(413b)를 부분적으로 둘러싼다. 제2 내벽부(414b)는 돌출부(411)에서 멀어지는(즉, 돌출부(411)에 반대되는) 타측, 도시된 실시 예에서 하측에 위치된다.
외벽부(415)는 내벽부(414)를 부분적으로 둘러싼다. 도시된 실시 예에서, 외벽부(415)는 내벽부(414)의 전방 측 및 후방 측을 둘러싸도록 형성된다. 외벽부(415)는 모서리부(419)와 연속될 수 있다.
외벽부(415)는 내벽부(414)와 소정 거리만큼 이격된다. 상기 이격에 의해 외벽부(415)와 내벽부(414) 사이에 형성되는 공간은 완충 공간부(418)로 정의된다.
케이스 유닛(410)과 냉각 플레이트(430)가 결합되면, 냉각 플레이트(430)를 향하는 외벽부(415)의 일측 면은 냉각 플레이트(430)와 접촉된다.
외벽부(415)에는 외부 연통 홈(417)이 형성된다. IGBT(440)가 폭발하여 발생된 가스는, 완충 공간부(418)를 통과하여 외부 연통 홈(417)을 통해 방폭 프레임부(400)의 외부로 배출될 수 있다.
외벽부(415)는 제1 외벽부(415a) 및 제2 외벽부(415b)를 포함한다.
제1 외벽부(415a)는 제1 내벽부(414a) 및 제1 완충 공간부(418a)를 부분적으로 둘러싼다. 제1 외벽부(415a)는 돌출부(411)를 향하는 일측, 도시된 실시 예에서 상측에 위치된다.
제2 외벽부(415b)는 제2 내벽부(414b) 및 제2 완충 공간부(418b)를 부분적으로 둘러싼다. 제2 외벽부(415b)는 돌출부(411)에서 멀어지는(즉, 돌출부(411)에 반대되는) 타측, 도시된 실시 예에서 하측에 위치된다.
내부 연통 홈(416)은 IGBT 수용부(413)와 완충 공간부(418)를 연통한다. IGBT(440)가 폭발하여 발생된 가스는, 내부 연통 홈(416)을 통해 IGBT 수용부(413)에서 완충 공간부(418)로 유동될 수 있다.
내부 연통 홈(416)은 내벽부(414)에 형성된다. 구체적으로, 내부 연통 홈(416)은 냉각 플레이트(430)를 향하는 내벽부(414)의 일측 면에서 소정 거리만큼 함몰 형성된다.
상술한 바와 같이, 방폭 프레임부(400)가 결합되면 냉각 플레이트(430)를 향하는 내벽부(414)의 일측 면은 냉각 플레이트(430)와 접촉된다. 이에 따라, IGBT 수용부(413)는 내부 연통 홈(416)을 통해서만 완충 공간부(418)와 연통될 수 있다.
도시된 실시 예에서, 내부 연통 홈(416)은 상하 방향으로 연장 형성된 사각형의 단면을 갖는 홈으로 형성되나, 그 형상은 변형 가능하다.
내부 연통 홈(416)은 복수 개 형성될 수 있다. 복수 개의 내부 연통 홈(416)은 서로 소정 거리만큼 이격되어 형성된다. 도시된 실시 예에서, 내부 연통 홈(416)은 각 내벽부(414)마다 세 개 형성되어, 서로 소정 거리 이격되어 배치된다.
일 실시 예에서, 상기 소정 거리는 외부 연통 홈(417)의 연장 길이와 같을 수 있다. 또한, 내부 연통 홈(416)의 개수는 변경될 수 있다.
내부 연통 홈(416)은 외부 연통 홈(417)과 엇갈리도록 배치된다. 즉, 내부 연통 홈(416)과 외부 연통 홈(417)을 각각 연장한 가상의 면은 서로 겹쳐지지 않는다. 이에 따라, IGBT(440)가 폭발하여 발생되는 아크(arc) 또는 폭발시 발생된 잔해물이 외부로 배출되지 않게 된다.
또한, 상기 배치에 의해, 발생된 가스가 내부 연통 홈(416)과 외부 연통 홈(417)을 한번에 통과하지 않게 된다.
내부 연통 홈(416)은 제1 내부 연통 홈(416a) 및 제2 내부 연통 홈(416b)을 포함한다.
제1 내부 연통 홈(416a)은 제1 내벽부(414a)에 형성된다. 도시된 실시 예에서, 제1 내벽부(414a)는 제1 IGBT 수용부(413a)를 전방 측 및 후방 측에서 감싸도록 형성된다. 이에 따라, 제1 내부 연통 홈(416a) 또한 제1 IGBT 수용부(413a)의 전방 측 및 후방 측에 각각 형성된다.
제2 내부 연통 홈(416b)은 제2 내벽부(414b)에 형성된다. 도시된 실시 예에서, 제2 내벽부(414b)는 제2 IGBT 수용부(413b)를 전방 측 및 후방 측에서 감싸도록 형성된다. 이에 따라, 제2 내부 연통 홈(416b) 또한 제2 IGBT 수용부(413b)의 전방 측 및 후방 측에 각각 형성된다.
외부 연통 홈(417)은 완충 공간부(418)와 외부 공간을 연통한다. IGBT(440)가 폭발하여 발생된 가스는, 외부 연통 홈(417)을 통해 완충 공간부(418)에서 외부 공간으로 유동될 수 있다.
외부 연통 홈(417)은 외벽부(415)에 형성된다. 구체적으로, 외부 연통 홈(417)은 냉각 플레이트(430)를 향하는 외벽부(415)의 일측 면에서 소정 거리만큼 함몰 형성된다.
상술한 바와 같이, 방폭 프레임부(400)가 결합되면 냉각 플레이트(430)를 향하는 외벽부(415)의 일측 면은 냉각 플레이트(430)와 접촉된다. 이에 따라, 완충 공간부(418)는 외부 연통 홈(417)을 통해서만 외부 공간과 연통될 수 있다.
도시된 실시 예에서, 외부 연통 홈(417)은 상하 방향으로 연장 형성된 사각형의 단면을 갖는 홈으로 형성되나, 그 형상은 변경 가능하다.
외부 연통 홈(417)은 복수 개 형성될 수 있다. 복수 개의 외부 연통 홈(417)은 서로 소정 거리만큼 이격되어 형성된다. 도시된 실시 예에서, 외부 연통 홈(417)은 각 외벽부(415)마다 네 개 형성되어, 서로 소정 거리 이격되어 배치된다.
일 실시 예에서, 상기 소정 거리는 내부 연통 홈(416)의 연장 길이와 같을 수 있다. 또한, 외부 연통 홈(417)의 개수는 변경될 수 있다.
외부 연통 홈(417)은 내부 연통 홈(416)과 엇갈리도록 배치된다. 즉, 외부 연통 홈(417)과 내부 연통 홈(416)을 각각 연장한 가상의 면은 서로 겹쳐지지 않는다. 이에 따라, IGBT(440)가 폭발하여 발생되는 아크(arc) 또는 폭발시 발생된 잔해물이 외부로 배출되지 않게 된다.
또한, 상기 배치에 의해, 발생된 가스가 내부 연통 홈(416)과 외부 연통 홈(417)을 한번에 통과하지 않게 된다.
외부 연통 홈(417)은 제1 외부 연통 홈(417a) 및 제2 외부 연통 홈(417b)을 포함한다.
제1 외부 연통 홈(417a)은 제1 외벽부(415a)에 형성된다. 도시된 실시 예에서, 제1 외벽부(415a)는 제1 내벽부(414a) 및 제1 완충 공간부(418a)를 전방 측 및 후방 측에서 감싸도록 형성된다. 이에 따라, 제1 외부 연통 홈(417a) 또한 제1 완충 공간부(418a)의 전방 측 및 후방 측에 각각 형성된다.
제2 외부 연통 홈(417b)은 제2 외벽부(415b)에 형성된다. 도시된 실시 예에서, 제2 외벽부(415b)는 제2 내벽부(414b) 및 제2 완충 공간부(418b)를 전방 측 및 후방 측에서 감싸도록 형성된다. 이에 따라, 제2 외부 연통 홈(417b) 또한 제1 완충 공간부(418b)의 전방 측 및 후방 측에 각각 형성된다.
완충 공간부(418)는 IGBT(440)가 폭발함에 따라 발생된 아크나 잔해물을 수용하는 공간이다. 이에 따라, 상기 아크나 잔해물은 외부 연통 홈(417)을 통해 외부 공간으로 배출되지 않게 된다.
또한, 완충 공간부(418)는 IGBT 수용부(413)에서 유입된 가스가 외부로 배출되기 전 체류하는 공간이다. 이에 따라, 상기 가스는 온도 및 압력이 감소된 후 배출될 수 있다.
완충 공간부(418)는 내벽부(414)와 외벽부(415)가 서로 소정 거리만큼 이격되어 형성된다. 완충 공간부(418)는 내벽부(414)와 외벽부(415) 사이에 위치된다. 완충 공간부(418)는 냉각 플레이트(430)를 향하는 케이스 유닛(410)의 일측에서 소정 거리만큼 함몰 형성된다.
도시된 실시 예에서, 내벽부(414) 및 외벽부(415)는 IGBT 수용부(413)의 전방 측 및 후방 측에 각각 형성된다. 이에 따라, 완충 공간부(418) 또한 IGBT 수용부(413)의 전방 측 및 후방 측에 각각 형성된다.
완충 공간부(418)의 전방 측 및 후방 측은 내벽부(414) 및 외벽부(415)에 둘러싸인다. 또한, 완충 공간부(418)의 상측 및 하측은 각각 체결 부재 결합부에 둘러싸인다.
상술한 바와 같이, 방폭 프레임부(400)가 결합되면 냉각 플레이트(430)를 향하는 내벽부(414) 및 외벽부(415)의 각 일측 면은 냉각 플레이트(430)와 접촉된다. 또한, 냉각 플레이트(430)를 향하는 상기 각 체결 부재 결합부의 각 일측 면 또한 냉각 플레이트(430)와 접촉된다.
따라서, 완충 공간부(418)는 내부 연통 홈(416) 및 외부 연통 홈(417)을 제외하면, 외부와의 연통이 차단된다.
즉, 완충 공간부(418)는 케이스 유닛(410), 격벽부(413c), 내벽부(414), 외벽부(415) 및 냉각 플레이트(430)에 둘러싸인다.
완충 공간부(418)는 IGBT 수용부(413)와 연통된다. 상기 연통은 내부 연통 홈(416)에 의해 달성된다. 완충 공간부(418)는 외부 공간과 연통된다. 상기 연통은 외부 연통 홈(417)에 의해 달성된다.
이에 따라, IGBT 수용부(413)에서 발생된 가스는 완충 공간부(418)에서 온도 및 압력이 감소된 후, 외부 공간으로 배출될 수 있다.
완충 공간부(418)는 제1 완충 공간부(418a) 및 제2 완충 공간부(418b)를 포함한다.
제1 완충 공간부(418a)는 제1 내벽부(414a) 및 제1 외벽부(415a) 사이에 형성된다. 제1 완충 공간부(418a)는 제1 내벽부(414a)의 전방 측 및 후방 측에 각각 형성된다.
제2 완충 공간부(418b)는 제2 내벽부(414b) 및 제2 외벽부(415b) 사이에 형성된다. 제2 완충 공간부(418b)는 제2 내벽부(414b)의 전방 측 및 후방 측에 각각 형성된다.
모서리부(419)는 IGBT 수용부(413)를 부분적으로 둘러싸도록 구성된다.
구체적으로, 돌출부(411)를 향하는 일측, 즉 상측에 형성된 모서리부(419)는 제1 IGBT 수용부(413a)의 상측을 둘러싼다. 또한, 돌출부(411)에서 멀어지는 타측(즉, 돌출부(411)에 반대되는 타측), 즉 하측에 형성된 모서리부(419)는 제2 IGBT 수용부(413b)의 하측을 둘러싼다.
모서리부(419)는 냉각 플레이트(430)를 향하는 케이스 유닛(410)의 일측에서 돌출 형성된다.
케이스 유닛(410)이 냉각 플레이트(430)와 결합되면, 냉각 플레이트(430)를 향하는 모서리부(419)의 일측 면은 냉각 플레이트(430)에 접촉된다. 이에 따라, IGBT 수용부(413)는 상술한 내부 연통 홈(416)을 제외하면, 밀폐될 수 있다.
모서리부(419)에는 소정 거리만큼 함몰 형성된 복수 개의 홈부가 형성될 수 있다. 상기 홈부에 의해, 케이스 유닛(410) 전체의 중량이 감소될 수 있다. 또한, 상기 홈부에 의해, 케이스 유닛(410)의 강성이 보강될 수 있다.
모서리부(419)에는 복수 개의 체결공이 관통 형성된다. 상기 체결공에는 체결 부재(미도시)가 관통 결합될 수 있다. 이에 의해, 각 케이스 유닛(410) 및 냉각 플레이트(430)가 체결될 수 있다.
통전 부스바(420)는 밸브 조립체(200)에 전달된 전류를 커패시터 조립체(100)에 전달한다. 또한, 통전 부스바(420)는 인쇄회로기판(280) 및 IGBT(440)를 통전 가능하게 연결한다.
통전 부스바(420)는 입력 부스바(230)와 통전 가능하게 연결된다. 입력 부스바(230)에 전달된 전력 에너지는 통전 부스바(420)에 전달될 수 있다.
통전 부스바(420)는 출력 부스바(250)와 통전 가능하게 연결된다. 통전 부스바(420)에 전달된 전력 에너지는 출력 부스바(250)에 전달된다.
통전 부스바(420)는 인쇄회로기판(280) 및 IGBT(440)와 각각 통전 가능하게 연결된다. 인쇄회로기판(280) 또는 IGBT(440)에서 연산된 제어 신호는 다른 구성 요소에 전달될 수 있다.
통전 부스바(420)는 출력 부스바(250)와 함께, IGBT 수용부(413)를 덮도록 케이스 유닛(410)에 결합될 수 있다. 통전 부스바(420)와 출력 부스바(250)는 통전 가능하게 연결된다.
도시된 실시 예에서, 통전 부스바(420)는 출력 부스바(250)의 전방 측에 위치된다. 이에 따라, 통전 부스바(420)는 IGBT 수용부(413)의 전방 측을 덮도록 구성된다.
통전 부스바(420)는 제1 통전 부스바(421) 및 제2 통전 부스바(422)를 포함한다.
제1 통전 부스바(421)는 제2 통전 부스바(422)의 상측에 위치되어, 제1 입력 부스바(231) 및 출력 부스바(250)와 통전 가능하게 연결된다. 제2 통전 부스바(422)는 제1 통전 부스바(421)의 하측에 위치되어, 제2 입력 부스바(232) 및 출력 부스바(250)와 통전 가능하게 연결된다.
도시된 실시 예에서, 통전 부스바(420)는 케이스 유닛(410)과 절연 하우징(260) 사이에 위치된다.
통전 부스바(420)는 일 방향, 도시된 실시 예에서 전후 방향으로 연장 형성된다. 통전 부스바(420)의 상기 일 방향의 양측 단부, 즉 전방 측 단부 및 후방 측 단부는 케이스 유닛(410)을 향해 소정의 각도로 절곡 형성된다. 일 실시 예에서, 상기 소정의 각도는 직각일 수 있다.
따라서, 통전 부스바(420)가 케이스 유닛(410)에 결합되면, 통전 부스바(420)는 케이스 유닛(410)의 전방 측, 좌측 또는 우측 및 후방 측을 감싸게 된다.
통전 부스바(420)는 통전 가능한 소재로 형성될 수 있다. 또한, 통전 부스바(420)는 높은 강성을 갖는 소재로 형성될 수 있다. 일 실시 예에서, 통전 부스바(420)는 철을 포함하는 소재로 형성될 수 있다.
따라서, IGBT 수용부(413)에 수용된 IGBT(440)가 폭발하는 경우에도, 케이스 유닛(410)을 감싸는 통전 부스바(420)에 의해 케이스 유닛(410)의 손상 또는 형상 변형이 최소화될 수 있다.
일 실시 예에서, 케이스 유닛(410), 통전 부스바(420), 냉각 플레이트(430) 및 절연 하우징(260)은 나사 결합될 수 있다.
냉각 플레이트(430)는 IGBT(440)가 작동됨에 따라 발생되는 열을 냉각하도록 구성된다. 즉, 냉각 플레이트(430)는 IGBT(440)와 열교환하여 IGBT(440)를 냉각한다.
도시된 실시 예에서, 냉각 플레이트(430)는 상하 방향으로 연장된 사각 판형으로 구비된다. 냉각 플레이트(430)의 형상은 IGBT(440)와 열교환될 수 있는 임의의 형상일 수 있다.
냉각 플레이트(430)는 두 개의 케이스 유닛(410) 사이에 위치된다. 또한, 냉각 플레이트(430)는 각 케이스 유닛(410)에 수용된 IGBT(440) 사이에 위치된다.
다시 말하면, 전방 측에서 바라보았을 때, 좌측 또는 우측을 향하는 방향 또는 그 반대 방향으로, 케이스 유닛(410), IGBT(440), 냉각 플레이트(430), IGBT(440) 및 케이스 유닛(410)이 차례로 배치된다.
냉각 플레이트(430)는 좌측 및 우측에 각각 위치되는 IGBT(440)과 각각 접촉된다. 일 실시 예에서, 냉각 플레이트(430)와 각 IGBT(440)는 면 접촉될 수 있다.
냉각 플레이트(430)는 외부와 연통된다. 구체적으로, 냉각 플레이트(430)는 후술될 냉각 유로부(900)와 연통된다.
또한, 냉각 플레이트(430)의 내부에는 소정의 공간이 형성된다. 외부에서 공급된 냉각 유체는 냉각 플레이트(430) 내부의 공간을 순환하며 IGBT(440)에서 열을 전달받을 수 있다. 또한, 열을 전달받은 냉각 유체는 다시 외부로 배출될 수 있다.
냉각 플레이트(430)는 유입구(431) 및 유출구(432)를 포함한다.
유입구(431)는 냉각 유로부(900)의 밸브 유입 배관(951)과 연통된다. 저온의 냉각 유체는 유입구(431)를 통해 냉각 플레이트(430)의 내부 공간으로 유입될 수 있다.
유출구(432)는 냉각 유로부(900)의 밸브 유출 배관(952)과 연통된다. IGBT(440)와 열교환된 냉각 유체는 유출구(432)를 통해 냉각 플레이트(430)의 내부 공간에서 배출될 수 있다.
도시된 실시 예에서, 유입구(431) 및 유출구(432)는 냉각 플레이트(430)의 상측에 관통 형성된다. 또한, 유입구(431)는 유출구(432)의 후방 측에 위치된다. 상기 위치는 변경될 수 있다.
IGBT(440)는 서브 모듈(10)에 유입되거나 유출되는 전류를 제어한다. 일 실시 예에서, IGBT(440)는 스위칭 소자로 기능될 수 있다.
IGBT(440)는 IGBT 수용부(413)에 수용된다. IGBT 수용부(413)에 수용된 IGBT(440)는 격벽부(413c), 내벽부(414), 모서리부(419) 및 냉각 플레이트(430)에 의해 밀폐된다.
IGBT(440)는 냉각 플레이트(430)와 면 접촉될 수 있다. 구체적으로, 냉각 플레이트(430)와 IGBT(440)가 서로를 향하는 각 면은 서로 접촉될 수 있다. 이에 따라, IGBT(440)에서 발생된 열이 냉각 플레이트(430)로 전달되어 IGBT(440)가 냉각될 수 있다.
IGBT(440)는 통전 부스바(420)와 통전 가능하게 연결된다. 통전 부스바(420)를 통해, IGBT(440)가 작동되기 위한 전력 에너지가 전달될 수 있다.
IGBT(440)는 인쇄회로기판(280)과 통전 가능하게 연결된다. 인쇄회로기판(280)에서 연산된 제어 신호는 IGBT(440)를 통해 커패시터 소자(미도시) 등에 전달될 수 있다.
또한, IGBT(440)는 스위칭 동작되어, 인쇄회로기판(280)과 커패시터 소자(미도시) 등의 장치 사이의 통전이 허용되거나 차단될 수 있다.
IGBT(440)는 복수 개 구비될 수 있다. 도시된 실시 예에서, IGBT(440)는 돌출부(411)를 향하는 방향인 상측에 배치되는 제1 IGBT(440) 및 돌출부(411)에서 멀어지는 방향(즉, 제1 IGBT(440) 및 돌출부(411)에 반대되는 방향)인 하측에 배치되는 제2 IGBT(440)를 포함한다.
상술한 바와 같이, 케이스 유닛(410)은 두 개 구비될 수 있다. 이에 따라, 도시된 실시 예에서, IGBT(440)는 좌측 및 우측의 각 케이스 유닛(410)에 각각 두 개 구비되어, 총 네 개 구비된다.
상술한 바와 같이, 케이스 유닛(410)에는 완충 공간부(418)가 형성된다. IGBT(440)가 폭발한 경우 발생되는 아크, 가스 및 잔해물 등은 내부 연통 홈(416)을 통해 완충 공간부(418)로 유입된다.
따라서, 고온 고압의 아크 및 가스는 온도 및 압력이 저하된 후 외부 공간으로 배출될 수 있다.
완충 공간부(418)를 외부 공간과 연통하는 외부 연통 홈(417)은 내부 연통 홈(416)과 엇갈리도록 배치된다.
따라서, IGBT 수용부(413)에서 내부 연통 홈(416), 완충 공간부(418) 및 외부 연통 홈(417)을 거쳐 외부 공간을 향하는 경로가 길어진다. 이에 따라, 고온 고압의 아크 및 가스는 폭발 직후 바로 외부 공간으로 배출되지 않게 된다.
또한, 내부 연통 홈(416)을 통과한 잔해물 등은 완충 공간부(418)를 둘러싸는 외벽부(415)에 가로막히게 된다. 이에 따라, 폭발 직후, 방폭 프레임부(400)의 외부 공간으로 배출되는 잔해물의 양이 최소화될 수 있다.
6. 본 발명의 실시 예에 따른 레일 조립체(500)의 설명
본 발명의 실시 예에 따른 서브 모듈(10)은 레일 조립체(500)를 포함한다. 레일 조립체(500)는 밸브 조립체(200) 및 커패시터 조립체(100)를 슬라이드 이동 가능하게 지지한다.
또한, 본 발명의 실시 예에 따른 레일 조립체(500)는 밸브 조립체(200) 및 커패시터 조립체(100)가 임의 이탈되는 것을 방지하도록 구성된다.
도 19에 도시된 바와 같이, 레일 조립체(500)의 레일 유닛(540)은 지지부(23)에 결합된다. 따라서 레일 유닛(540)은 프레임(20)의 일부라고 볼 수도 있을 것이다.
이하, 도 13 내지 도 16을 참조하여, 본 발명의 실시 예에 따른 레일 조립체(500)를 상세하게 설명한다.
도시된 실시 예에서, 레일 조립체(500)는 카트 유닛(510), 브라켓 유닛(520), 체결 유닛(530) 및 레일 유닛(540)을 포함한다.
카트 유닛(510)은 커패시터 조립체(100) 및 밸브 조립체(200)를 슬라이드 이동 가능하게 지지한다. 카트 유닛(510)은 커패시터 조립체(100) 및 밸브 조립체(200)를 하측에서 지지한다.
커패시터 조립체(100) 및 밸브 조립체(200)는 카트 유닛(510)에 안착된 상태에서, 카트 유닛(510)과 함께 전방 측 또는 후방 측으로 슬라이드 이동될 수 있다.
커패시터 조립체(100) 및 밸브 조립체(200)는 브라켓 유닛(520) 및 별도의 체결 부재(미도시)에 의해 카트 유닛(510)과 각각 결합될 수 있다. 일 실시 예에서, 커패시터 조립체(100) 및 밸브 조립체(200)는 브라켓 유닛(520)과 나사 결합될 수 있다.
카트 유닛(510)은 복수 개 구비될 수 있다. 복수 개의 카트 유닛(510) 중 커패시터 조립체(100)가 안착되는 카트 유닛(510)은 커패시터 카트 유닛(510a)으로 지칭될 수 있다. 또한, 밸브 조립체(200)가 안착되는 카트 유닛(510)은 밸브 카트 유닛(510b)으로 지칭될 수 있다.
커패시터 카트 유닛(510a)과 밸브 카트 유닛(510b)은 전반적인 구조 및 기능이 유사하다. 이에, 이하의 설명에서는 커패시터 카트 유닛(510a)과 밸브 카트 유닛(510b)을 카트 유닛(510)으로 통칭하여 설명한다.
카트 유닛(510)은 레일 유닛(540)에 슬라이드 이동 가능하게 결합된다. 카트 유닛(510)은 레일 유닛(540)을 따라 전방 측 또는 후방 측으로 슬라이드 이동될 수 있다.
카트 유닛(510)은 커패시터 조립체(100) 및 밸브 조립체(200)가 연결되는 방향, 즉, 도시된 실시 예에서 전후 방향으로 연장 형성된다.
커패시터 카트 유닛(510a)의 연장 길이는 커패시터 조립체(100)의 전후 방향 길이에 따라 결정될 수 있다. 마찬가지로, 밸브 카트 유닛(510b)의 연장 길이는 밸브 조립체(200)의 전후 방향 길이에 따라 결정될 수 있다. 따라서, 커패시터 카트 유닛(510a) 및 밸브 카트 유닛(510b)의 연장 길이는 서로 상이할 수 있다.
카트 유닛(510)은 카트 몸체부(511), 연장부(512), 라운드부(513) 및 휠(wheel)부(514)를 포함한다.
카트 몸체부(511)는 카트 유닛(510)의 몸체를 형성한다. 카트 유닛(510)은 전후 방향으로 소정 길이만큼 연장 형성된다. 또한, 카트 유닛(510)은 좌우 방향으로 소정의 폭을 갖도록 연장 형성된다.
도시된 실시 예에서, 카트 몸체부(511)는 전후 방향으로 연장 형성된 사각 판형이다. 카트 몸체부(511)의 형상은 커패시터 조립체(100) 또는 밸브 조립체(200)를 지지할 수 있는 임의의 형상일 수 있다.
도 13에서 바라보았을 때, 카트 몸체부(511)의 우측에는 탄성 부재 결합부(511a)가 구비된다. 탄성 부재 결합부(511a)는 카트 몸체부(511)의 하측 면에서 소정 거리만큼 돌출 형성된다.
탄성 부재 결합부(511a)에는 이탈 방지부(600)의 탄성 부재(630)의 카트 연결부(631)가 결합된다. 일 실시 예에서, 탄성 부재 결합부(511a)는 나사 부재로 구비될 수 있다.
레일 유닛(540)을 향하는 카트 몸체부(511)의 일측, 도시된 실시 예에서 하측에는 연장부(512)가 구비된다.
연장부(512)는 레일 유닛(540)과 카트 몸체부(511) 사이의 거리를 유지하도록 구성된다. 또한, 연장부(512)에서 레일 유닛(540)에 결합되는 라운드부(513)가 돌출 형성된다.
연장부(512)는 레일 유닛(540)을 향하는 카트 몸체부(511)의 일측에서 소정 거리만큼 돌출 형성된다. 연장부(512)는 카트 몸체부(511)의 길이 방향, 도시된 실시 예에서 전후 방향으로 연장 형성된다. 연장부(512)는 카트 몸체부(511)와 같은 길이로 연장 형성될 수 있다.
연장부(512)는 복수 개 구비된다. 도시된 실시 예에서, 연장부(512)는 좌측 및 우측에 각각 구비된다. 각 연장부(512)는 서로 소정 거리만큼 이격되어 배치된다. 상기 소정 거리는 레일 유닛(540)의 레일 만곡부(542)의 각 단부 사이의 거리보다 길게 형성될 수 있다.
연장부(512)에는 라운드부(513)가 돌출 형성된다. 또한, 연장부(512)에는 휠부(514)가 회전 가능하게 결합된다.
라운드부(513)는 카트 유닛(510)이 레일 유닛(540)과 결합되는 부분이다. 구체적으로, 라운드부(513)는 레일 유닛(540)의 레일 만곡부(542)에 둘러싸인 공간에 삽입 결합된다. 라운드부(513)에 의해, 카트 유닛(510)과 레일 유닛(540)은 임의 분리되지 않는다.
라운드부(513)는 레일 유닛(540)을 향하는 연장부(512)의 일측 단부, 도시된 실시 예에서 하측 단부에서 소정 거리만큼 돌출 형성된다. 라운드부(513)는 내측, 도시된 실시 예에서 레일 만곡부(542)를 향하는 방향으로 소정 거리만큼 돌출 형성된다. 달리 표현하면, 라운드부(513)는 휠부(514)에서 멀어지는 방향(즉, 휠부(514)에 반대되는 방향)으로 소정 거리만큼 돌출 형성된다.
라운드부(513)는 전체적으로 원형의 단면을 갖도록 형성된다. 즉, 라운드부(513)가 연장부(512)와 연결되는 부분을 제외하면, 라운드부(513)의 외면은 레일 만곡부(542)를 향해 라운드지게 형성된다.
라운드부(513)는 복수 개 형성될 수 있다. 도시된 실시 예에서, 라운드부(513)는 좌측 및 우측에 각각 구비된다. 각 라운드부(513)는 각 연장부(512)에서 레일 만곡부(542)를 향해 라운드지게 돌출 형성된다.
수평 방향에서 레일 만곡부(542)를 향하는 라운드부(513)의 일측은 레일 만곡부(524)의 제3 레일 만곡부(542c)와 접촉될 수 있다. 각 라운드부(513)의 각 일측 사이의 거리는 각 레일 만곡부(542)의 단부 사이의 길이보다 길게 형성될 수 있다.
라운드부(513)는 카트 몸체부(511)의 길이 방향, 도시된 실시 예에서 전후 방향으로 연장 형성된다. 라운드부(513)는 카트 몸체부(511) 및 연장부(512)와 같은 길이로 연장 형성될 수 있다.
라운드부(513)의 내부에는 카트 중공부(513a)가 형성된다. 카트 중공부(513a)는 라운드부(513)가 연장 형성되는 길이 방향으로 관통 형성된다. 카트 중공부(513a)에는 후술될 이탈 방지부(600)의 차단 체결 부재(641)가 삽입 체결된다.
휠부(514)는 카트 유닛(510)이 이동됨에 따라 회전되어, 카트 유닛(510)이 레일 유닛(540)을 따라 슬라이드 이동되도록 한다.
휠부(514)는 연장부(512)에 회전 가능하게 결합된다. 휠부(514)의 회전과 무관하게, 연장부(512)는 정지 상태를 유지할 수 있다. 상기 결합을 위해, 베어링 부재(미도시)가 구비될 수 있다.
휠부(514)는 복수 개 구비될 수 있다. 도시된 실시 예에서, 두 개의 휠부(514)가 좌측 및 우측에 서로 소정 거리 이격되어 위치된다.
또한, 휠부(514)는 카트 유닛(510)의 하단의 좌우 방향에 각각 복수 개 구비될 수 있다.
다시 도 2 및 도 4를 참조하면, 커패시터 카트 유닛(510a)에는 전후 방향으로 서로 소정 간격으로 이격된 휠부(514)가 좌우 방향에 각각 세 개씩 구비된다. 또한, 밸브 카트 유닛(510b)에는 전후 방향으로 서로 소정 간격으로 이격된 휠부(514)가 좌우 방향에 각각 두 개씩 구비된다.
커패시터 카트 유닛(510a) 및 밸브 카트 유닛(510b)에 구비되는 휠부(514)의 개수는 변경될 수 있다.
도시된 실시 예에서, 휠부(514)는 서로 다른 직경을 갖는 복수 개의 원통이 연속적으로 결합된 형상이다. 또한, 휠부(514)의 내부에는 중공부가 관통 형성된다. 상기 중공부에는 휠 체결 부재(532)가 관통 결합될 수 있다.
휠부(514)는 휠 몸체부(514a), 디스크부(514b) 및 카트 결합부(514c)를 포함한다.
휠 몸체부(514a)는 휠부(514)의 몸체를 형성한다. 휠 몸체부(514a)의 외주면은 레일 유닛(540)의 지지부(545)에 안착된다. 휠부(514)의 회전은 휠 몸체부(514a)와 지지부(545) 사이의 상대적인 회전에 의해 달성된다.
도시된 실시 예에서, 휠 몸체부(514a)는 원형의 단면을 갖고, 소정의 높이를 갖는 원통 형상이다. 휠 몸체부(514a)의 높이, 즉 좌우 방향의 길이는 지지부(545)의 폭 길이, 즉 좌우 방향의 길이보다 길게 형성되는 것이 바람직하다.
즉, 휠 몸체부(514a)가 지지부(545)에 안착되면, 휠 몸체부(514a)의 외측, 즉 연장부(512)에서 멀어지는 방향(즉, 연장부(512)에 반대되는 방향)의 일부는 레일 유닛(540)의 외측으로 노출될 수 있다.
이에 따라, 휠부(514)가 레일 유닛(540)에 안정적으로 안착될 수 있다.
휠 몸체부(514a)의 외측, 즉 연장부(512)에서 멀어지는 방향(즉, 연장부(512)에 반대되는 방향)의 일측에는 휠 체결 부재(532)가 관통 결합된다. 이에 따라, 휠부(514)가 연장부(512)와 결합될 수 있다.
도시된 실시 예에서, 우측에 위치되는 휠 몸체부(514a)의 상기 일측에는 회전 베어링 부재(620)가 구비된다. 회전 베어링 부재(620)는 휠부(514)의 회전과 무관하게 후술될 스토퍼 부재(610)가 회전될 수 있게 한다. 이에 대한 상세한 설명은 후술하기로 한다.
휠 몸체부(514a)의 내측, 즉 연장부(512)를 향하는 일측에는 디스크부(514b)가 형성된다. 디스크부(514b)는 휠 몸체부(514a)에서 연장부(512)를 향해 소정 길이만큼 돌출 형성된다.
디스크부(514b)는 원형의 단면을 갖고, 소정의 높이를 갖는 원판 형상이다. 디스크부(514b)는 휠 몸체부(514a)보다 큰 직경을 갖도록 형성된다. 디스크부(514b)는 지지부(545)의 상측 단부보다 하측에 위치되는 가이드 공간부(544a)에 수용될 수 있다.
디스크부(514b)는 단차부(544)의 폭 방향, 즉 레일 연장부(543)와 지지부(545) 사이에서 소정의 두께를 갖도록 형성된다. 디스크부(514b)의 두께는 단차부(544)의 폭의 길이, 즉 레일 연장부(543)와 지지부(545)가 서로 마주하는 각 면 사이의 거리보다 작게 형성될 수 있다.
이에 따라, 휠부(514)의 좌우 방향, 즉 연장부(512)에서 멀어지는 방향(즉, 연장부(512)에 반대되는 방향)으로의 이동은 디스크부(514b)와 지지부(545)의 접촉에 의해 제한될 수 있다. 이에 따라, 휠부(514)가 연장부(512)에서 멀어지는 방향(즉, 연장부(512)에 반대되는 방향)으로 레일 유닛(540)에서 이탈되지 않게 된다.
디스크부(514b)의 외주면은 단차부(544)의 상측 단부와 소정 거리 이격될 수 있다.
디스크부(514b)의 내측, 즉, 연장부(512)를 향하는 일측에는 카트 결합부(514c)가 형성된다. 카트 결합부(514c)는 디스크부(514b)에서 연장부(512)를 향해 소정 길이만큼 돌출 형성된다.
카트 결합부(514c)는 원형의 단면을 갖고, 소정의 높이를 갖는 원판 형상이다. 카트 결합부(514c)는 휠 몸체부(514a)보다 작은 직경을 갖도록 형성된다. 연장부(512)를 향하는 카트 결합부(514c)의 일측 면은 연장부(512)와 접촉될 수 있다.
브라켓 유닛(520)은 커패시터 조립체(100) 및 밸브 조립체(200)를 카트 유닛(510)에 결합시킨다. 브라켓 유닛(520)은 카트 몸체부(511)의 상측에 결합된다. 구체적으로, 카트 몸체부(511)의 상측에는 좌우 방향의 중심에, 카트 몸체부(511)의 길이 방향으로 연장 형성되는 브라켓 결합부가 함몰 형성된다.
브라켓 유닛(520)은 상기 브라켓 결합부를 통해 카트 몸체부(511)에 결합된다. 상기 결합은 나사 결합 등일 수 있다.
브라켓 유닛(520)은 수평부(521) 및 수직부(522)를 포함한다. 수평부(521)는 카트 몸체부(511)와 소정의 각도를 이루며 카트 몸체부(511)의 길이 방향으로 연장 형성된다. 일 실시 예에서, 수평부(521)는 카트 몸체부(511)와 평행할 수 있다.
수직부(522)는 수평부(521)와 소정의 각도를 이루며, 수평부(521)에서 돌출 형성된다. 일 실시 예에서, 상기 소정의 각도는 직각일 수 있다.
수직부(522)에는 복수 개의 관통공이 형성된다(도 11 참조). 상기 관통공에는 케이스 유닛(410)을 체결하기 위한 체결 부재(미도시)가 삽입 결합된다. 이에 따라, 밸브 조립체(200)가 밸브 카트 유닛(510b)에 결합될 수 있다.
도시되지는 않았으나, 커패시터 조립체(100)의 커패시터 하우징(110)을 수직부(522)에 체결하기 위한 체결 부재(미도시)가 구비될 수 있다. 이에 따라, 커패시터 조립체(100)가 커패시터 카트 유닛(510a)에 결합될 수 있다.
체결 유닛(530)은 카트 유닛(510)의 각 구성 요소를 카트 몸체부(511)에 체결한다. 일 실시 예에서, 체결 유닛(530)은 나사 부재로 구비될 수 있다.
체결 유닛(530)은 레버 체결 부재(531) 및 휠 체결 부재(532)를 포함한다.
레버 체결 부재(531)는 설치 분리부(700)의 레버 결합 부재(720)를 카트 몸체부(511)에 체결한다. 도시된 실시 예에서, 레버 체결 부재(531)는 카트 몸체부(511)의 전방 측에 위치되는 레버 결합 부재(720)를 체결한다.
레버 체결 부재(531)는 복수 개 구비될 수 있다. 레버 체결 부재(531)는 레버 결합 부재(720)의 폭 방향, 즉 좌우 방향으로 서로 소정 거리 이격 배치될 수 있다.
휠 체결 부재(532)는 휠부(514)를 연장부(512)에 회전 가능하게 체결한다. 도시된 실시 예에서, 휠 체결 부재(532)는 휠부(514)의 외측 방향, 즉 연장부(512)에서 멀어지는 방향(즉, 연장부(512)에 반대되는 방향)에서 연장부(512)를 향하는 방향으로 휠부(514)에 관통 결합된다. 휠 체결 부재(532)의 내측, 즉 연장부(512)를 향하는 일측 단부는 연장부(512)에 회전 가능하게 체결될 수 있다.
휠 체결 부재(532)는 복수 개 구비될 수 있다. 이는, 상술한 바와 같이 휠부(514)가 복수 개 구비됨에 기인한다.
레일 유닛(540)은 카트 유닛(510)의 전후 방향을 가이드하도록 구성된다. 카트 유닛(510)은 레일 유닛(540)에 슬라이드 이동 가능하게 결합된다.
레일 유닛(540)은 일 방향, 도시된 실시 예에서 전후 방향으로 연장 형성된다. 이는, 카트 유닛(510)의 연장 방향에 대응될 수 있다.
레일 유닛(540)은 고중량의 커패시터 조립체(100) 및 밸브 조립체(200)를 지지하도록, 충분한 강성을 갖는 소재로 형성되는 것이 바람직하다.
레일 유닛(540)은 복수 개 구비될 수 있다. 다시 도 1을 참조하면, 레일 유닛(540)은 지지부(23) 상에 여섯 개 구비된다. 복수 개의 레일 유닛(540)은 좌우 방향으로 서로 소정 거리 이격되어 배치된다. 레일 유닛(540)의 개수는 변경될 수 있다.
레일 유닛(540)의 길이 방향의 양측 단부에는 이탈 방지부(600)의 차단 플레이트(640)가 결합될 수 있다. 이탈 방지부(600)는 레일 유닛(540)에 결합된 카트 유닛(510)의 전방 측 및 후방 측 이동을 제한할 수 있다. 이에 따라, 카트 유닛(510)이 레일 유닛(540)에서 임의로 이탈되어 탈락되는 상황이 방지될 수 있다.
도시된 실시 예에서, 레일 유닛(540)은 레일 몸체부(541), 레일 만곡부(542), 레일 연장부(543), 단차부(544) 및 지지부(545)를 포함한다.
레일 몸체부(541)는 레일 유닛(540)의 몸체를 형성한다. 레일 몸체부(541)는 카트 몸체부(511)를 마주하도록 배치된다.
레일 몸체부(541)는 카트 몸체부(511)와 소정의 각도를 이루도록 배치될 수 있다. 일 실시 예에서, 레일 몸체부(541)는 카트 몸체부(511)에 대해 평행하게 배치될 수 있다.
레일 몸체부(541)는 일 방향, 도시된 실시 예에서 전후 방향으로 연장 형성된다. 레일 몸체부(541)의 연장 길이는 커패시터 카트 유닛(510a) 및 밸브 카트 유닛(510b)의 연장 길이의 합보다 길게 형성되는 것이 바람직하다.
레일 몸체부(541)의 일측, 도시된 실시 예에서 전방 측에는 레버 삽입 홈(730)이 함몰 형성된다.
레일 몸체부(541)의 외측, 도시된 실시 예에서 좌우 방향의 각 단부에서 레일 만곡부(542)가 카트 몸체부(511)를 향해 돌출 형성된다.
레일 만곡부(542)는 라운드부(513)가 슬라이드 이동 가능하게 결합되는 부분이다. 레일 만곡부(542)는 라운드부(513)가 카트 몸체부(511)를 향하는 일측, 즉 상측을 부분적으로 덮도록 형성된다. 이에 따라, 레일 만곡부(542)와 결합된 라운드부(513)는 상측 방향으로 탈거되지 않게 된다.
즉, 레일 만곡부(542)와 라운드부(513)의 형상으로 인해, 카트 유닛(510)은 전방 측 또는 후방 측에서 슬라이드되어야 레일 유닛(540)에 결합될 수 있다. 마찬가지로, 레일 만곡부(542)와 라운드부(513)의 형상으로 인해, 카트 유닛(510)과 레일 유닛(540)이 임의로 분리되지 않게 된다.
레일 만곡부(542)는 일 방향, 도시된 실시 예에서 전후 방향으로 연장 형성된다. 레일 만곡부(542)의 연장 길이는 레일 몸체부(541)의 연장 길이와 같을 수 있다.
레일 만곡부(542)는 복수 개 형성될 수 있다. 복수 개의 레일 만곡부(542)는 서로 소정 거리 이격되어 배치된다. 각 레일 만곡부(542)는 각 라운드부(513)에 인접하게 위치된다.
각 레일 만곡부(542)는 각 라운드부(513)의 내측, 도시된 실시 예에서, 레버 삽입 홈(730)이 형성된 레일 몸체부(541)의 중심 부분을 향하는 방향에 위치된다.
각 레일 만곡부(542)는 서로를 향하는 방향으로 볼록하게 형성된다. 달리 표현하면, 각 레일 만곡부(542)는 라운드부(513)에서 멀어지는 방향(즉, 라운드부(513)에 반대되는 방향)으로 라운드지게 형성된다. 일 실시 예에서, 레일 만곡부(542)는 그 단면이 서로를 향해 볼록하게 형성된 "C"자 형상일 수 있다.
레일 만곡부(542)의 상기 형상이 라운드부(513)의 형상에 상응함이 이해될 것이다.
이에 따라, 레일 만곡부(542)는 라운드부(513)의 하측, 내측(즉, 라운드부(513)가 서로 마주하는 각 일측) 및 상측을 감싸도록 형성된다.
레일 만곡부(542)는 제1 레일 만곡부(542a), 제2 레일 만곡부(542b), 제3 레일 만곡부(542c), 측면 제한부(542d) 및 상부면 제한부(542e)를 포함한다.
제1 레일 만곡부(542a)는 레일 몸체부(541)의 일측 단부에서 카트 몸체부(511)를 향해 돌출 형성된다. 구체적으로, 제1 레일 만곡부(542a)는 레일 몸체부(541)와 레일 연장부(543)가 연결되는 단부에서 돌출 형성된다.
제1 레일 만곡부(542a)는 다른 제1 레일 만곡부(542a)를 향해 볼록하게 형성된다. 다시 말하면, 제1 레일 만곡부(542a)는 라운드부(513)에서 멀어지는 방향(즉, 라운드부(513)에 반대되는 방향)으로 라운드지게 형성된다.
카트 몸체부(511)를 향하는 제1 레일 만곡부(542a)의 일측 단부, 도시된 실시 예에서 상측 단부에는 제2 레일 만곡부(524b)가 돌출 형성된다.
제2 레일 만곡부(542b)는 다른 제2 레일 만곡부(542b)를 향해 볼록하게 형성된다. 다시 말하면, 제2 레일 만곡부(542b)는 라운드부(513)에서 멀어지는 방향(즉, 라운드부(513)에 반대되는 방향)으로 라운드지게 형성된다. 제2 레일 만곡부(542b)가 만곡되는 정도는 제1 레일 만곡부(542a)가 만곡되는 정도에 따라 결정될 수 있다. 일 실시 예에서, 제2 레일 만곡부(542b)는 제1 레일 만곡부(542a)와 같은 곡률로 만곡될 수 있다.
카트 몸체부(511)를 향하는 제2 레일 만곡부(542b)의 일측 단부, 도시된 실시 예에서 상측 단부에는 제3 레일 만곡부(542c)가 돌출 형성된다.
제3 레일 만곡부(542c)는 카트 몸체부(511)를 향해 볼록하게 형성된다. 다시 말하면, 제3 레일 만곡부(542c)는 라운드부(513)에서 멀어지는 방향(즉, 라운드부(513)에 반대되는 방향)으로 라운드지게 형성된다.
일 실시 예에서, 제3 레일 만곡부(542c)는 카트 몸체부(511)의 좌우 방향의 중앙 부분을 향해 볼록하게 형성될 수 있다. 상기 실시 예에서, 제3 레일 만곡부(542c)는 상측의 내측 방향(즉, 서로 다른 레일 만곡부(542)가 서로 마주하는 방향)을 향해 볼록하게 형성된다.
제3 레일 만곡부(542c)는 라운드부(513)의 상측을 부분적으로 덮도록 형성될 수 있다. 일 실시 예에서, 제3 레일 만곡부(542c)는 연장부(512)를 향해 연장될 수 있다. 즉, 제3 레일 만곡부(542c)의 단부는 라운드부(513)와 카트 몸체부(511) 사이에 위치된다.
제2 레일 만곡부(542b)의 외측 방향, 즉 라운드부(513)를 향하는 방향에는 측면 제한부(542d)가 돌출 형성된다.
측면 제한부(542d)는 외측 방향, 도시된 실시 예에서 라운드부(513)를 향하는 방향으로 라운드지게 형성된다. 즉, 측면 제한부(542d)는 제1 또는 제2 레일 만곡부(542a, 542b)와 반대 방향으로 볼록하게 형성된다.
측면 제한부(542d)는 라운드부(513)를 향해 연장되는 제1 부분, 제1 부분과 연속되며 라운드부(513)와 접촉 또는 이격되고, 라운드부(513)의 표면과 소정의 각도를 이루며 연장되는 제2 부분 및 제2 부분과 연속되며 라운드부(513)에서 멀어지도록(즉, 라운드부(513)에 반대되도록) 연장되는 제3 부분을 포함한다.
일 실시 예에서, 측면 제한부(542d)의 제2 부분은 레일 만곡부(542)를 향하는 라운드부(513)의 일측 면에 대해 평행하게 연장될 수 있다.
다른 실시 예에서, 측면 제한부(542d)의 상기 제2 부분, 즉 라운드부(513)를 마주하는 측면 제한부(542d)의 일측 면은, 라운드부(513)에서 멀어지는 방향(즉, 라운드부(513)에 반대되는 방향)으로 오목하게 형성될 수 있다. 또한, 라운드부(513)는 측면 제한부(542d)의 상기 제2 부분을 향해 볼록하게 형성될 수 있다.
즉, 측면 제한부(542d)의 상기 제2 부분은 라운드부(513)와 같은 방향으로 라운드지게 형성될 수 있다.
측면 제한부(542d)의 상기 제2 부분은 레일 만곡부(542)를 향하는 라운드부(513)의 일측 면과 접촉될 수 있다. 이에 따라, 휠부(514)가 레일 만곡부(542)를 향해 이동되는 거리가 제한될 수 있다.
상부면 제한부(542e)는 제3 레일 만곡부(542c)의 외측 방향, 즉 라운드부(513)를 향하는 방향에서 돌출 형성된다. 상부면 제한부(542e)는 상기 외측 방향으로 라운드지게 형성된다.
즉, 상부면 제한부(542e)는 제3 레일 만곡부(542c)와 다른 방향으로 볼록하게 형성된다.
일 실시 예에서, 라운드부(513)를 마주하는 상부면 제한부(542e)의 일측 면은, 라운드부(513)에서 멀어지는 방향(즉, 라운드부(513)에 반대되는 방향)으로 오목하게 형성될 수 있다. 또한, 라운드부(513)는 상부면 제한부(542e)의 상기 일측 면을 향해 볼록하게 형성될 수 있다.
즉, 상부면 제한부(542e)의 상기 일측 면은 라운드부(513)와 같은 방향으로 라운드지게 형성될 수 있다.
상부면 제한부(542e)는 레일 만곡부(542)를 향하는 연장부(512) 또는 라운드부(513)의 일측 면과 접촉 또는 이격될 수 있다. 이에 따라, 휠부(514)가 레일 유닛(540)에서 상측으로 이동되는 거리가 제한될 수 있다.
레일 연장부(543)는 각 레일 몸체부(541)의 수평 방향의 양측 단부, 도시된 실시 예에서 좌측 또는 우측 단부에서 연장 형성된다. 레일 연장부(543)는 레일 몸체부(541)와 소정의 각도를 이루며 연장 형성된다. 일 실시 예에서, 레일 연장부(543)는 레일 몸체부(541)와 평행하게 연장될 수 있다.
레일 연장부(543)는 외측 방향, 즉 레일 몸체부(541)에서 멀어지는 방향(즉, 레일 몸체부(541)에 반대되는 방향)의 단부가 연장부(512)의 직하방에 위치되도록 연장될 수 있다. 즉, 레일 연장부(543)의 상기 외측 방향의 단부는 제3 레일 만곡부(542c)의 단부보다 더 외측 방향에 위치될 수 있다.
레일 연장부(543)는 소정의 두께를 갖도록 형성된다. 레일 연장부(543)의 상측 면, 즉 라운드부(513)를 향하는 일측 면은 라운드부(513)와 접촉되지 않는 것이 바람직하다. 카트 유닛(510)의 이동에 의해 레일 연장부(543)가 손상되는 것을 방지하기 위함이다.
레일 연장부(543)의 내부에는 체결공(543a)이 관통 형성된다. 체결공(543a)은 레일 유닛(540)이 연장되는 일 방향, 도시된 실시 예에서 전후 방향으로 관통 형성된다.
체결공(543a)에는 이탈 방지부(600)의 차단 체결 부재(641)가 체결된다. 일 실시 예에서, 차단 체결 부재(641)는 체결공(543a)에 나사 결합될 수 있다.
단차부(544)는 레일 연장부(543)의 외측 단부, 즉 레일 몸체부(541)에서 멀어지는 방향(즉, 레일 몸체부(541)에 반대되는 방향)의 일측 단부에서 연장 형성된다. 단차부(544)는 레일 연장부(543)와 소정의 각도를 이루며 연장 형성된다. 일 실시 예에서, 단차부(544)는 레일 연장부(543)와 평행하게 연장될 수 있다.
단차부(544)는 휠부(514)의 디스크부(514b)의 직하방에 위치되도록 연장될 수 있다. 디스크부(514b)를 향하는 단차부(544)의 일측 면, 도시된 실시 예에서 상측 면은 디스크부(514b)의 외주면과 소정 거리만큼 이격된다.
즉, 휠부(514)가 회전될 때, 단차부(544)의 상측 면은 디스크부(514b)와 접촉되지 않는다. 이에 따라, 휠부(514)가 회전되더라도, 단차부(544)가 손상되지 않게 된다.
단차부(544)의 외측 방향의 단부, 즉 레일 연장부(543)에서 멀어지는 방향(즉, 레일 연장부(543)에 반대되는 방향)의 단부는 휠 몸체부(514a)의 하측에 위치되도록 연장될 수 있다. 즉, 단차부(544)의 상기 단부는 디스크부(514b)보다 더 외측에, 즉 레일 연장부(543)에서 더 멀어지도록(즉, 레일 연장부(543)에서 더 반대되도록) 위치된다.
단차부(544)는 레일 연장부(543)보다 낮은 높이로 형성된다. 즉, 단차부(544)의 상측 면과 카트 몸체부(511) 사이의 최단 거리는, 레일 연장부(543)의 상측 면과 카트 몸체부(511) 사이의 최단 거리보다 길다.
달리 표현하면, 단차부(544)의 상측 면과 커패시터 조립체(100) 또는 밸브 조립체(200) 사이의 최단 거리는, 레일 연장부(543)의 상측 면과 커패시터 조립체(100) 또는 밸브 조립체(200) 사이의 최단 거리보다 길다.
또한, 단차부(544)는 지지부(545)보다 낮은 높이로 형성된다. 즉, 단차부(544)의 상측 면과 카트 몸체부(511) 사이의 최단 거리는, 지지부(545)의 상측 면과 카트 몸체부(511) 사이의 최단 거리보다 길다.
달리 표현하면, 단차부(544)의 상측 면과 커패시터 조립체(100) 또는 밸브 조립체(200) 사이의 최단 거리는, 지지부(545)의 상측 면과 커패시터 조립체(100) 또는 밸브 조립체(200) 사이의 최단 거리보다 길다.
따라서, 단차부(544)의 상측에는 레일 연장부(543)와 지지부(545)가 서로 마주하는 면에 의해 둘러싸이는 공간이 형성된다. 상기 공간은 가이드 공간부(544a)로 정의된다.
가이드 공간부(544a)는 휠부(514)의 디스크부(514b)가 삽입되는 공간이다. 가이드 공간부(544a)는 디스크부(514b)의 좌우 방향의 이동 거리를 제한하여, 휠부(514)가 지지부(545)에 안착된 상태에서 회전될 수 있게 한다.
이때, 가이드 공간부(544a)의 폭 방향의 길이(도시된 실시 예에서 좌우 방향 길이)는 디스크부(514b)의 두께보다 크게 형성된다. 달리 표현하면, 단차부(544)가 레일 연장부(543) 및 지지부(545) 사이에서 연장되는 길이는, 디스크부(514b)의 폭보다 길게 형성된다.
따라서, 디스크부(514b)는 가이드 공간부(544a)에 삽입된 상태에서 레일 연장부(543) 또는 지지부(545)를 향하는 방향으로 이동될 수 있다.
이때, 상술한 바와 같이, 가이드 공간부(544a)는 단차부(544)의 상측 면 및 레일 연장부(543)와 지지부(545)가 서로 마주하는 면에 의해 둘러싸여 정의된다.
즉, 가이드 공간부(544a)의 내측 방향, 즉 레일 만곡부(542)를 향하는 방향의 공간은 레일 연장부(543)의 외측 방향, 즉 단차부(544)를 향하는 방향의 면에 의해 구획된다.
또한, 가이드 공간부(544a)의 외측 방향, 즉 지지부(545)를 향하는 방향의 공간은 지지부(545)의 내측 방향, 즉 단차부(544)를 향하는 방향의 면에 의해 구획된다.
따라서, 가이드 공간부(544a)에 삽입된 디스크부(514b)의 상기 내측 방향의 이동 거리는 레일 연장부(543)의 상기 외측 방향의 면에 의해 제한된다. 또한, 상기 디스크부(514b)의 상기 외측 방향의 이동 거리는 지지부(545)의 상기 내측 방향의 면에 의해 제한된다.
이에 따라, 휠부(514)는 레일 유닛(540)의 내측 또는 외측 방향, 즉, 도시된 실시 예에서 좌우 방향으로 이탈되지 않게 된다.
지지부(545)는 휠부(514)의 휠 몸체부(514a)를 지지한다. 지지부(545)에는 휠 몸체부(514a)가 안착된다. 지지부(545)의 상측 면은 휠 몸체부(514a)의 외주면과 접촉될 수 있다.
지지부(545)는 단차부(544)의 외측 방향의 단부, 즉 레일 연장부(543)에서 멀어지는 방향(즉, 레일 연장부(543)에 반대되는 방향)의 단부에서 연장 형성된다. 지지부(545)는 상기 외측 방향의 단부가 휠 몸체부(514a)의 직하방에 위치되도록 연장될 수 있다.
지지부(545)의 상측 면, 즉 휠 몸체부(514a)와 접촉되는 면은 평면으로 형성될 수 있다.
이에 따라, 지지부(545)는 안정적으로 카트 유닛(510) 및 그에 안착된 커패시터 조립체(100) 및 밸브 조립체(200)의 하중을 지지할 수 있다. 또한, 휠부(514)가 지지부(545)의 상기 상측 면을 구르며 이동할 때, 안정적으로 이동할 수 있다.
지지부(545)는 단차부(544)보다 높은 높이로 형성된다. 즉, 지지부(545)의 상측 면과 카트 몸체부(511) 사이의 최단 거리는, 단차부(544)의 상측 면과 카트 몸체부(511) 사이의 최단 거리보다 짧다.
달리 표현하면, 단차부(544)의 상측 면과 커패시터 조립체(100) 또는 밸브 조립체(200) 사이의 최단 거리는, 지지부(545)의 상측 면과 커패시터 조립체(100) 또는 밸브 조립체(200) 사이의 최단 거리보다 길다.
지지부(545)의 높이와 단차부(544)의 높이의 차이는 휠 몸체부(514a)의 직경과 디스크부(514b)의 직경의 차이에 따라 결정될 수 있다. 즉, 지지부(545)의 높이와 단차부(544)의 높이의 차이는 휠 몸체부(514a)의 직경과 디스크부(514b)의 직경의 차이보다 크게 결정될 수 있다.
이에 따라, 휠 몸체부(514a)가 지지부(545)에 안착되더라도, 디스크부(514b)는 단차부(544)와 접촉되지 않게 된다.
지지부(545)는 레일 연장부(543)보다 낮은 높이로 형성된다. 즉, 지지부(545)의 상측 면과 카트 몸체부(511) 사이의 최단 거리는, 레일 연장부(543)의 상측 면과 카트 몸체부(511) 사이의 최단 거리보다 길다.
달리 표현하면, 지지부(545)의 상측 면과 커패시터 조립체(100) 또는 밸브 조립체(200) 사이의 최단 거리는, 레일 연장부(543)의 상측 면과 커패시터 조립체(100) 또는 밸브 조립체(200) 사이의 최단 거리보다 길다.
상술한 바와 같이, 카트 유닛(510)에는 라운드부(513)가 형성된다. 카트 유닛(510)이 레일 유닛(540)에 슬라이드 이동 가능하게 결합되면, 라운드부(513)는 그 하측, 내측(각 라운드부(513)가 서로 마주하는 방향) 및 상측이 레일 유닛(540)의 레일 만곡부(542)에 감싸지도록 배치된다.
따라서, 카트 유닛(510)은 레일 유닛(540)에서 상측 방향으로 이탈되지 않게 된다.
또한, 레일 유닛(540)에는 레일 연장부(543), 단차부(544) 및 지지부(545)에 의해 둘러싸인 공간인 가이드 공간부(544a)가 형성된다. 휠부(514)의 디스크부(514b)는 가이드 공간부(544a)에 삽입된다.
따라서, 휠부(514)가 레일 만곡부(542)에서 멀어지는 방향(즉, 레일 만곡부(542)에 반대되는 방향) 또는 레일 만곡부(542)를 향하는 방향으로의 이동 거리가 제한된다. 이에 따라, 카트 유닛(510)은 레일 유닛(540)에서 좌측 또는 우측 방향으로 이탈되지 않게 된다.
7. 본 발명의 실시 예에 따른 이탈 방지부(600)의 설명
본 발명의 실시 예에 따른 서브 모듈(10)은 이탈 방지부(600)를 포함한다. 이탈 방지부(600)는 레일 유닛(540)에 슬라이드 이동 가능하게 결합된 카트 유닛(510)이 임의 이탈되는 것을 방지한다.
이하, 도 13 내지 도 16을 참조하여 본 발명의 실시 예에 따른 이탈 방지부(600)를 상세하게 설명한다.
도시된 실시 예에서, 이탈 방지부(600)는 스토퍼(stopper) 부재(610), 회전 베어링 부재(620), 탄성 부재(630), 차단 플레이트(640) 및 정지 홈(650)을 포함한다.
스토퍼 부재(610)는 카트 유닛(510)이 전방 측으로 이동되는 거리를 제한한다. 스토퍼 부재(610)에 의해, 카트 유닛(510)은 레일 유닛(540)의 전방 측을 통해 레일 유닛(540)과 임의로 분리되지 않게 된다.
스토퍼 부재(610)는 카트 유닛(510)의 좌측 및 우측 휠부(514) 중 어느 하나 이상에 구비될 수 있다. 도시된 실시 예에서, 스토퍼 부재(610)는 카트 유닛(510)의 좌측 휠부(514)에 구비된다. 대안적으로, 스토퍼 부재(610)는 카트 유닛(510)의 우측 휠부(514)에 구비될 수 있다.
더 나아가, 스토퍼 부재(610)는 복수 개 구비되어, 좌측 및 우측 휠부(514)에 각각 구비될 수 있다.
스토퍼 부재(610)는 휠부(514)에 회전 가능하게 결합된다. 스토퍼 부재(610)는 휠부(514)의 회전과 무관하게 회전되지 않을 수 있다. 마찬가지로, 스토퍼 부재(610)는 휠부(514)의 정지 상태와 무관하게 회전될 수 있다.
스토퍼 부재(610)는 레일 유닛(540)에 형성된 정지 홈(650)에 삽입된다. 삽입된 스토퍼 부재(610)의 일측, 도시된 실시 예에서 전방 측은 정지 홈(650)의 제1 면(651)과 접촉된다. 이에 따라, 스토퍼 부재(610) 및 스토퍼 부재(610)가 연결된 카트 유닛(510)이 더 이상 전방 측으로 이동되지 않게 된다.
스토퍼 부재(610)는 지지부(545)의 상부에서 이동될 수 있다. 구체적으로, 전방 측을 향하는 스토퍼 부재(610)의 일측은 지지부(545)의 상측 면에 접촉된 상태에서 카트 유닛(510)과 함께 이동될 수 있다.
스토퍼 부재(610)는 탄성 부재(630)에 연결된다. 탄성 부재(630)는 스토퍼 부재(610)의 상기 일측이 지지부(545)와 접촉된 상태를 유지할 수 있도록, 탄성력을 제공한다.스토퍼 부재(610)는 높은 강성을 갖는 소재로 형성될 수 있다. 일 실시 예에서, 스토퍼 부재(610)는 철(Fe) 소재로 형성될 수 있다.
스토퍼 부재(610)는 스토퍼 몸체부(611), 락킹 플레이트(612), 휠 결합부(613) 및 탄성 부재 결합공(614)을 포함한다.
스토퍼 몸체부(611)는 일 방향으로 연장 형성된다. 일 실시 예에서, 스토퍼 몸체부(611)는 지지부(545)와 같은 방향으로 연장 형성될 수 있다.
스토퍼 몸체부(611)의 일측, 도시된 실시 예에서 전방 측 단부에는 락킹 플레이트(612)가 형성된다. 스토퍼 몸체부(611)의 중심 부분에는 휠 결합부(613)가 관통 형성된다. 또한, 스토퍼 몸체부(611)의 타측, 도시된 실시 예에서 후방 측에는 탄성 부재 결합공(614)이 관통 형성된다.
스토퍼 몸체부(611)는 전방 측 단부가 하측을 향하고, 후방 측 단부가 상측을 향하도록 배치된다. 이는, 탄성 부재 결합공(614)에 결합된 탄성 부재(630)가 스토퍼 몸체부(611)의 후방 측 단부를 당기는 방향, 도 15에 도시된 실시 예에서 반 시계 방향으로 당기고 있음에 기인한다.
이에 따라, 스토퍼 몸체부(611)의 전방 측 단부는 지지부(545)의 상측 면과 접촉된 상태로 유지될 수 있다.
스토퍼 몸체부(611)의 전방 측 단부에는 락킹 플레이트(612)가 구비된다.
락킹 플레이트(612)는 스토퍼 부재(610)가 정지 홈(650)의 각 면과 접촉되는 부분이다. 락킹 플레이트(612)가 정지 홈(650)의 제1 면(651) 또는 제2 면(652)과 접촉되면, 카트 유닛(510)은 더 이상 전방 측으로 이동되지 않게 된다.
락킹 플레이트(612)는 스토퍼 몸체부(611)의 전방 측 단부에서 연장 형성된다. 락킹 플레이트(612)는 스토퍼 몸체부(611)와 소정의 각도를 이루며 연장 형성될 수 있다. 일 실시 예에서, 락킹 플레이트(612)는 스토퍼 몸체부(611)에 대해 수직하게 연장 형성될 수 있다.
도시된 실시 예에서, 락킹 플레이트(612)는 스토퍼 몸체부(611)의 전방 측 단부에서 내측 방향, 즉 라운드부(513)를 향하는 방향을 소정 거리만큼 돌출 형성된다. 일 실시 예에서, 락킹 플레이트(612)는 상기 내측 방향을 향하는 일측 단부가 단차부(544)의 상측에 위치되도록 연장 형성될 수 있다.
스토퍼 몸체부(611)가 정지 홈(650)에 삽입되면, 락킹 플레이트(612)는 제1 면(651) 또는 제2 면(652)에 접촉된다. 이에 따라, 스토퍼 부재(610)가 회전 가능하게 결합되는 카트 유닛(510)은 더 이상 전방 측으로 이동되지 않게 된다.
휠 결합부(613)에는 휠 체결 부재(532)가 체결된다. 스토퍼 부재(610)는 휠 체결 부재(532)에 의해 카트 유닛(510)에 회전 가능하게 결합된다.
휠 결합부(613)는 스토퍼 몸체부(611)에 관통 형성될 수 있다. 휠 결합부(613)의 중심은 휠부(514)의 중심과 동축으로 형성될 수 있다.
탄성 부재 결합공(614)은 스토퍼 몸체부(611)의 후방의 일측, 도시된 실시 예에서 정지 홈(650)에서 멀어지는 방향(즉, 정지 홈(650)에 반대되는 방향)의 일측에 위치된다. 탄성 부재 결합공(614)은 스토퍼 몸체부(611)의 상측에 치우치게 위치될 수 있다.
탄성 부재 결합공(614)에는 탄성 부재(630)의 일측 단부가 결합된다. 탄성 부재(630)의 상기 일측 단부는 탄성 부재 결합공(614)에 삽입된 상태에서 회전될 수 있다.
회전 베어링 부재(620)는 스토퍼 부재(610)를 휠부(514)의 회전과 무관하게 정지 상태를 유지하거나 회전 가능하도록 휠부(514)에 결합한다. 회전 베어링 부재(620)는 스토퍼 부재(610)와 휠부(514) 사이에 위치된다.
탄성 부재(630)는 스토퍼 부재(610)에 탄성력을 인가한다. 탄성 부재(630)는 스토퍼 부재(610)의 후방 측 단부에 카트 몸체부(511)를 향하는 방향의 탄성력을 인가한다. 도시된 실시 예에서, 탄성 부재(630)는 스토퍼 부재(610)에 반 시계 방향의 탄성력을 인가한다.
이에 따라, 스토퍼 부재(610)의 후방 측 단부는 카트 몸체부(511)를 향하는 방향, 도시된 실시 예에서 상측으로 당겨진 상태를 유지할 수 있다.
탄성 부재(630)는 형상이 변형되며 복원력을 저장할 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 탄성 부재(630)는 코일 스프링(coil spring)으로 구비될 수 있다.
탄성 부재(630)는 카트 연결부(631) 및 스토퍼 연결부(632)를 포함한다. 일 실시 예에서, 카트 연결부(631) 및 스토퍼 연결부(632)는 갈고리(hook)의 형태로 구비될 수 있다.
카트 연결부(631)는 탄성 부재(630)의 전방 측 단부에 위치된다. 카트 연결부(631)는 탄성 부재 결합부(511a)에 연결된다.
스토퍼 연결부(632)는 탄성 부재(630)의 후방 측 단부에 위치된다. 스토퍼 연결부(632)는 탄성 부재 결합공(614)에 회전 가능하게 결합된다.
이에 따라, 탄성 부재(630)는 탄성 부재 결합부(511a) 및 탄성 부재 결합공(614) 사이에서 인장되거나 축소될 수 있다.
탄성 부재(630)에 의해, 스토퍼 부재(610)는 전방 측 단부가 하측으로, 후방 측 단부가 상측으로 치우쳐진 상태가 유지될 수 있다.
또한, 스토퍼 부재(610)가 정지 홈(650)에 진입되면, 탄성 부재(630)는 스토퍼 부재(610)에 반 시계 방향의 복원력을 인가하게 된다. 이에 따라, 스토퍼 부재(610)가 정지 홈(650)에서 이격되면, 스토퍼 부재(610)의 전방 측 단부는 지지부(545)의 상측 면에 접한 상태로 복귀될 수 있다.
차단 플레이트(640)는 레일 유닛(540)의 전방 측을 폐쇄한다. 또한, 차단 플레이트(640)는 레일 유닛(540)의 후방 측을 폐쇄할 수 있다(도 20a및 도 20b 참조). 차단 플레이트(640)는 서브 모듈(10)이 이동되어야 하는 경우, 카트 유닛(510)이 레일 유닛(540)에서 임의 이탈되는 것을 방지하기 위해 구비될 수 있다.
차단 플레이트(640)는 레일 몸체부(541), 레일 연장부(543) 및 단차부(544)의 일부를 가리도록 레일 유닛(540)에 결합될 수 있다. 또한, 차단 플레이트(640)는 라운드부(513)의 일부를 가리도록 카트 유닛(510)에 결합될 수 있다.
차단 플레이트(640)는 차단 체결 부재(641)에 의해 카트 유닛(510) 및 레일 유닛(540)에 결합될 수 있다. 일 실시 예에서, 차단 체결 부재(641)는 나사 부재로 구비될 수 있다.
차단 체결 부재(641)는 복수 개 구비될 수 있다. 도시된 실시 예에서, 차단 체결 부재(641)는 네 개 구비된다. 차단 체결 부재(641)는 카트 중공부(513a) 및 체결공(543a)에 체결될 수 있다.
정지 홈(650)에는 스토퍼 부재(610)의 전방 측 단부가 삽입된다. 구체적으로, 정지 홈(650)에는 락킹 플레이트(612) 및 락킹 플레이트(612)가 연결된 스토퍼 몸체부(611)의 전방 측 단부가 삽입된다.
정지 홈(650)은 지지부(545)에 형성된다. 구체적으로, 정지 홈(650)은 지지부(545)의 전방 측에 형성된다.
정지 홈(650)의 위치는 스토퍼 부재(610)의 전방 측 단부가 삽입되었을 때, 카트 유닛(510)이 레일 유닛(540)에서 임의 이탈되지 않을 수 있는 위치에 형성되는 것이 바람직하다.
일 실시 예에서, 정지 홈(650)은 락킹 플레이트(612)와 정지 홈(650)의 제1 면(651)이 접촉되었을 때, 카트 유닛(510)의 전방 측 단부와 레일 유닛(540)의 전방 측 단부가 같은 수직선 상에 위치되는 위치에 형성될 수 있다.
정지 홈(650)은 복수 개 형성될 수 있다. 복수 개의 정지 홈(650)은 전후 방향, 즉 레일 유닛(540)이 연장 형성되는 방향을 따라 서로 소정 거리 이격되어 배치된다.
복수 개의 정지 홈(650) 중 전방 측에 형성되는 정지 홈(650)은 밸브 카트 유닛(510b)의 이동 거리를 제한할 수 있다. 또한, 복수 개의 정지 홈(650) 중 후방 측에 형성되는 정지 홈(650)은 커패시터 카트 유닛(510a)의 이동 거리를 제한할 수 있다.
정지 홈(650)은 지지부(545)의 상측 면에서 소정 길이만큼 함몰 형성된다. 정지 홈(650)의 함몰 정도는, 지지부(545)의 길이 방향을 따라 상이하게 형성될 수 있다.
도시된 실시 예에서, 정지 홈(650)은 전방 측 경사에 비해 후방 측 경사가 더 완만하게 형성된다. 따라서, 카트 유닛(510)과 함께 이동되는 스토퍼 부재(610)는 후방 측 경사를 따라 정지 홈(650)에 진입될 수 있다. 또한, 진입된 스토퍼 부재(610)는 전방 측에 의해 더 이상 전방 측으로 이동될 수 없게 된다.
정지 홈(650)은 제1 면(651) 및 제2 면(652)을 포함한다.
제1 면(651)은 정지 홈(650)에 삽입된 스토퍼 부재(610)의 락킹 플레이트(612)가 접촉되는 부분이다. 제1 면(651)은 지지부(545)의 상측 면에서 함몰 형성된 정지 홈(650)의 전방 측 면으로 정의될 수 있다.
달리 표현하면, 제1 면(651)은 레일 유닛(540)이 연장되는 방향의 일측, 도시된 실시 예에서 전방 측 단부에 인접하게 위치된다. 제1 면(651)은 정지 홈(650)의 상기 일측, 도시된 실시 예에서 전방 측을 감싸도록 형성된다.
제1 면(651)은 지지부(545)의 상측 면과 소정의 각도를 이루며 연장 형성된다. 상기 소정의 각도는 제2 면(652)이 지지부(545)의 상측 면과 이루는 각도보다 크게 형성될 수 있다. 일 실시 예에서, 상기 소정의 각도는 직각일 수 있다.
제1 면(651)의 후방 측 단부는 제2 면(652)의 전방 측 단부와 연속된다.
제2 면(652)은 스토퍼 부재(610)의 락킹 플레이트(612)가 제1 면(651)을 향해 이동되며 통과하는 부분이다. 락킹 플레이트(612)는 그 하측 단부가 제2 면(652)과 접촉된 상태에서 제1 면(651)을 향해 이동될 수 있다.
제2 면(652)은 지지부(545)의 상측 면에서 함몰 형성된 정지 홈(650)의 후방 측 면으로 정의될 수 있다. 제1 면(651)과 제2 면(652)은 연속된다.
달리 표현하면, 제2 면(652)은 레일 유닛(540)이 연장되는 방향의 일측, 도시된 실시 예에서 전방 측 단부에서 멀어지는 방향(즉, 전방 측 단부에 반대되는 방향)으로 연장된다. 즉, 제2 면(652)은 제1 면(651)보다 레일 유닛(540)의 상기 일측(즉, 전방 측) 단부에서 더 멀도록 배치된다. 즉, 제2 면(652)은 제1 면(651)의 후방 측에 위치된다.
제2 면(652)은 지지부(545)의 상측 면과 소정의 각도를 이루며 연장 형성된다. 상기 소정의 각도는 제1 면(651)이 지지부(545)의 상측 면과 이루는 각도보다 작게 형성될 수 있다. 일 실시 예에서, 상기 소정의 각도는 예각일 수 있다.
제2 면(652)의 후방 측 단부는 지지부(545)의 상측 면과 연장 형성된다.
따라서, 락킹 플레이트(612)는 제2 면(652)을 따라 전방 측 또는 후방 측으로 이동될 수 있다. 반면, 락킹 플레이트(612)가 제1 면(651)과 접촉되면, 락킹 플레이트(612)는 더 이상 전방 측으로 이동되지 않는다.
이에 따라, 스토퍼 부재(610) 및 스토퍼 부재(610)가 회전 가능하게 연결되는 카트 유닛(510)의 전방 측 이동 거리가 제한될 수 있다.
상술한 바와 같이, 스토퍼 부재(610)의 전방 측 단부는 지지부(545)의 상측 면에 접촉된 상태에서 카트 유닛(510)과 함께 전방 측 또는 후방 측으로 이동된다. 스토퍼 부재(610)의 전방 측 단부가 정지 홈(650)에 도달하면, 스토퍼 부재(610)의 전방 측 단부는 제2 면(652)을 따라 하측으로 회전되며 이동된다.
스토퍼 부재(610)의 전방 측 단부가 제1 면(651)과 접촉되면, 제1 면(651)의 형상으로 인해 스토퍼 부재(610)는 더 이상 전방 측으로 이동되지 않는다. 이에 따라, 스토퍼 부재(610)와 연결된 카트 유닛(510) 또한 전방 측으로 이동되지 않게 된다. 따라서, 카트 유닛(510)의 전방 측 이동 거리가 제한될 수 있다.
이때, 유지 보수 등의 목적으로 서브 모듈(10)이 프레임(20)에서 인출되어야 하는 경우가 고려될 수 있다. 서브 모듈(10)을 구성하는 커패시터 조립체(100) 및 밸브 조립체(200)는 카트 유닛(510)에 안착된다. 따라서, 카트 유닛(510)이 레일 유닛(540)에서 분리되는 과정이 선행되어야 한다.
상술한 바와 같이, 스토퍼 부재(610)의 전방 측 단부가 정지 홈(650)의 제1 면(651)에 접촉되면, 스토퍼 부재(610)는 더 이상 전방 측으로 이동되지 않게 된다.
이에, 스토퍼 부재(610)는 누름 조작되어 회전되어 정지 홈(650)에서 배출된다.
구체적으로, 스토퍼 부재(610)의 단부 중 제1 면(651)에 접촉되지 않은 단부, 도시된 실시 예에서 후방 측 단부가 누름 조작된다. 이에 따라, 제1 면(651)에 접촉된 스토퍼 부재(610)의 단부, 즉 전방 측 단부는 제1 면(651)에서 멀어지는 방향(즉, 제1 면(651)에 반대되는 방향), 도시된 실시 예에서 시계 방향으로 회전되어 정지 홈(650)에서 배출된다.
다음으로, 카트 유닛(510)은 외력에 의해 레일 유닛(540)의 일측 단부, 도시된 실시 예에서 전방 측 단부를 향해 슬라이드 이동된다.
이때, 레일 유닛(540)의 상기 단부는 차단 플레이트(640)에 의해 폐쇄된 상태이다. 이에, 차단 체결 부재(641)가 체결 해제되면, 차단 플레이트(640)가 레일 유닛(540)에서 분리된다.
그 다음, 후술될 설치 분리부(700)가 활용되어 카트 유닛(510)이 레일 유닛(540)에서 분리될 수 있다.
따라서, 카트 유닛(510)의 레일 유닛(540)에서 임의로 분리되지 않게 된다. 이에 따라, 카트 유닛(510)의 임의 이탈에 따른 안전 사고가 방지될 수 있다.
반대로, 스토퍼 부재(610)가 후방 측으로 이동될 경우, 스토퍼 부재(610)의 전방 측 단부는 제2 면(652)에 접촉된 상태에서 후방 측으로 이동된다. 상술한 바와 같이, 제2 면(652)은 지지부(545)의 상측 면과 예각을 이룰 수 있다. 또한, 제2 면(652)의 후방 측 단부는 지지부(545)의 상측 면과 연속된다.
따라서, 스토퍼 부재(610)가 후방 측으로 이동될 때는, 전방 측으로 이동될 때와 달리 용이하게 이동될 수 있다.
또한, 레일 유닛(540)의 전방 측 단부 및 후방 측 단부에는 차단 플레이트(640)가 구비될 수 있다. 차단 플레이트(640)는 카트 유닛(510) 및 레일 유닛(540)과 각각 체결된다. 이에 따라, 카트 유닛(510)의 전방 측 및 후방 측은 차단 플레이트(640)에 의해 차단된다.
따라서, 차단 플레이트(640)에 의해 카트 유닛(510)이 레일 유닛(540)에서 임의 이탈되지 않게 된다. 이는 서브 모듈(10)이 이동되는 상황 또는 카트 유닛(510)의 이동이 제한되어야 하는 상황에서 활용될 수 있다.
8. 본 발명의 실시 예에 따른 설치 분리부(700)의 설명
본 발명의 실시 예에 따른 서브 모듈(10)은 설치 분리부(700)를 포함한다. 설치 분리부(700)에 의해, 커패시터 조립체(100) 또는 밸브 조립체(200)가 안착된 카트 유닛(510)이 레일 유닛(540)에 용이하게 결합되거나 탈거될 수 있다.
이하, 도 17 및 도 18을 참조하여 본 발명의 실시 예에 따른 설치 분리부(700)를 상세하게 설명한다.
도시된 실시 예에서, 설치 분리부(700)는 레버 부재(710), 레버 결합 부재(720) 및 레버 삽입 홈(730)을 포함한다.
레버 부재(710)는 레버 결합 부재(720) 및 레버 삽입 홈(730)에 삽입 결합된다. 사용자는 레버 부재(710)를 이용하여 카트 유닛(510)을 레일 유닛(540)에 용이하게 결합시킬 수 있다. 또한, 사용자는 레버 부재(710)를 이용하여 카트 유닛(510)을 레일 유닛(540)에서 용이하게 탈거할 수 있다.
레버 부재(710)는 지렛대(lever)로 기능될 수 있다. 즉, 레버 부재(710)는 레버 삽입 홈(730)을 축으로 하여, 레버 결합 부재(720)를 전방 측으로 당기거나 후방 측으로 밀 수 있다.
레버 부재(710)는 서브 모듈(10)과 함께 구비될 수 있다. 이를 위해, 프레임(20)에는 레버 부재(710)를 실장하기 위한 부재(미도시)가 구비될 수 있다.
레버 부재(710)는 서브 모듈(10)과 별도로 구비될 수 있다. 서브 모듈(10)을 프레임(20)에서 분리해야 할 경우, 사용자는 레버 부재(710)를 지참하여 서브 모듈(10)을 분리할 수 있다.
레버 부재(710)는 연장부(711) 및 손잡이부(712)를 포함한다.
연장부(711)는 레버 결합 부재(720) 및 레버 삽입 홈(730)과 결합되는 부분이다. 연장부(711)는 손잡이부(712)의 일측 단부에서 연장 형성된다.
연장부(711)는 높은 강성을 갖는 소재로 형성될 수 있다. 일 실시 예에서, 연장부(711)는 철 소재로 형성될 수 있다.
연장부(711)는 제1 연장부(711a) 및 제2 연장부(711b)를 포함한다.
제1 연장부(711a)는 레버 결합 부재(720) 및 레버 삽입 홈(730)에 직접 결합되는 부분이다. 제1 연장부(711a)의 일측 단부는 제2 연장부(711b)와 연결된다.
제2 연장부(711b)는 제1 연장부(711a)와 손잡이부(712) 사이에 위치된다. 제2 연장부(711b)는 제1 연장부(711a) 및 손잡이부(712)와 각각 연결된다.
제2 연장부(711b)는 제1 연장부(711a)와 소정의 각도를 이루며 연장 형성된다. 일 실시 예에서, 상기 소정의 각도는 직각일 수 있다.
제2 연장부(711b)는 손잡이부(712)와 소정의 각도를 이루며 연장 형성된다. 일 실시 예에서, 제2 연장부(711b)는 손잡이부(712)와 평행하게 연장될 수 있다. 또한, 제2 연장부(711b)가 연장되는 방향의 중심축과 손잡이부(712)가 연장되는 방향의 중심축은 같을 수 있다.
손잡이부(712)는 사용자가 레버 부재(710)를 파지하는 부분이다. 손잡이부(712)는 제1 연장부(711a)에서 멀어지는 방향(즉, 제1 연장부(711a)에 반대되는 방향)의 제2 연장부(711b)의 일측에서 연장 형성된다. 손잡이부(712)는 제2 연장부(711b)와 연속된다.
손잡이부(712)는 제2 연장부(711b)에서 멀어지는 방향(즉, 제2 연장부(711b)에 반대되는 방향)으로 소정 거리만큼 연장된다. 일 실시 예에서, 손잡이부(712)의 연장 길이와 제2 연장부(711b)의 연장 길이는 같을 수 있다.
사용자가 용이하게 손잡이부(712)의 외주면에는 그립 부재가 구비될 수 있다. 상기 그립 부재는 손잡이부(712)와 손잡이부(712)를 파지하는 손바닥 사이의 마찰력을 증가시키도록 구성된다. 일 실시 예에서, 그립 부재는 고무(rubber) 소재로 형성될 수 있다.
레버 결합 부재(720)에는 레버 부재(710)가 결합된다. 사용자는 레버 부재(710)를 밀거나 당김으로써, 레버 결합 부재(720) 및 레버 결합 부재(720)가 결합된 카트 유닛(510)을 전방 측 또는 후방 측으로 이동시킬 수 있다.
레버 결합 부재(720)는 카트 유닛(510)에 결합된다. 구체적으로, 레버 결합 부재(720)는 카트 몸체부(511)의 전방 측의 하측에 위치된다. 레버 결합 부재(720)는 레버 체결 부재(531)에 의해 카트 몸체부(511)에 체결될 수 있다(도 13 참조).
레버 결합 부재(720)는 카트 유닛(510)에서 멀어지는 방향(즉, 카트 유닛(510)에 반대되는 방향), 도시된 실시 예에서 전방 측으로 소정 거리만큼 돌출 형성된다. 상기 돌출에 의해, 사용자는 레버 결합 부재(720)를 용이하게 식별할 수 있다.
레버 결합 부재(720)는 높은 강성을 갖는 소재로 형성될 수 있다. 일 실시 예에서, 레버 결합 부재(720)는 철 소재로 형성될 수 있다. 이에 따라, 강성을 갖는 소재로 형성되는 레버 부재(710)에 의해 압력을 받더라도, 레버 결합 부재(720)의 형상 변형이 최소화될 수 있다.
레버 결합 부재(720)는 레버 삽입 홀(721)을 포함한다.
레버 삽입 홀(721)은 레버 결합 부재(720)의 내부에 관통 형성된다. 레버 삽입 홀(721)에는 레버 부재(710)의 제1 연장부(711a)가 관통 삽입된다. 제1 연장부(711a)는 레버 삽입 홀(721)을 통과하여, 레버 삽입 홈(730)까지 연장될 수 있다.
도시된 실시 예에서, 레버 삽입 홀(721)은 사각형의 단면을 갖도록 형성된다. 이는, 제1 연장부(711a)가 레버 결합 부재(720)와 접촉되는 면적이 평면임에 기인한다. 레버 삽입 홀(721)의 형상은 제1 연장부(711a)의 형상에 상응하게 변경될 수 있다.
레버 삽입 홀(721)의 전후 방향의 길이는 제1 연장부(711a)의 두께보다 길게 형성되는 것이 바람직하다. 이에 따라, 제1 연장부(711a)는 레버 삽입 홀(721)에 관통된 상태에서, 제1 레버 삽입 홈(731) 또는 제2 레버 삽입 홈(732)에 삽입될 수 있다.
레버 삽입 홀(721)의 중심은 제1 레버 삽입 홈(731) 및 제2 레버 삽입 홈(732)의 중심과 동일 면 또는 동일 선상에 위치될 수 있다.
레버 삽입 홈(730)은 레버 삽입 홀(721)을 관통한 제1 연장부(711a)의 단부가 삽입되는 공간이다. 제1 연장부(711a)의 단부가 레버 삽입 홈(730)에 삽입된 상태에서, 사용자가 손잡이부(712)를 당기거나 밀면, 카트 유닛(510)이 전방 측 또는 후방 측으로 이동될 수 있다.
레버 삽입 홈(730)은 레일 몸체부(541)에 형성된다. 구체적으로, 레버 삽입 홈(730)은 레일 몸체부(541)의 상측 면의 전방 측에서 소정 거리만큼 함몰 형성된다.
레버 삽입 홈(730)은 복수 개 형성될 수 있다. 도시된 실시 예에서, 레버 삽입 홈(730)은 두 개 형성된다. 두 개의 레버 삽입 홈(730) 중, 전방 측에 형성되는 레버 삽입 홈(730)은 제1 레버 삽입 홈(731)으로, 후방 측에 위치되는 레버 삽입 홈(730)은 제2 레버 삽입 홈(732)으로 각각 정의될 수 있다.
제1 레버 삽입 홈(731)은 레일 몸체부(541)의 전방 측에 위치된다. 구체적으로, 제1 레버 삽입 홈(731)은 레일 몸체부(541)의 전방 측 단부에 위치된다. 즉, 제1 레버 삽입 홈(731)은 레일 몸체부(541)의 상측 면 및 전방 측 면에 소정 거리만큼 함몰되어 형성된다.
제1 레버 삽입 홈(731)에는 제1 연장부(711a)의 단부가 삽입 결합된다. 삽입된 제1 연장부(711a)의 단부는, 제1 레버 삽입 홈(731)의 후방 측, 즉 레일 몸체부(541)의 개방된 일측에서 멀어지는 방향(즉, 상기 개방된 일측에 반대되는 방향)의 면에 접촉된다.
또한, 삽입된 제1 연장부(711a)의 단부는, 제1 레버 삽입 홈(731)의 하측 면에도 접촉된다. 레버 부재(710)는 상기 면들을 "받침점"으로 하여 지렛대로 기능될 수 있다.
레버 부재(710)는 제1 레버 삽입 홈(731)에 삽입된 상태에서 반 시계 방향, 즉 손잡이부(712)가 카트 유닛(510)에서 멀어지는 방향(즉, 카트 유닛(510)에 반대되는 방향)으로 회전될 수 있다. 이에 따라, 제1 연장부(711a)가 카트 유닛(510)의 전방 측 단부 또는 레버 삽입 홀(721)의 후방 측에 위치되는 레버 결합 부재(720)의 단부에 접촉된다.
카트 유닛(510)의 상기 단부 또는 레버 결합 부재(720)의 상기 단부는 "작용점"으로 기능될 수 있다. 즉, 레버 부재(710)에 가해지는 힘이 작용되는 지점인 것이다. 손잡이부(712)는 "힘점"으로 기능됨이 이해될 것이다.
제1 레버 삽입 홈(731)의 후방 측에는 제2 레버 삽입 홈(732)이 형성된다.
제2 레버 삽입 홈(732)은 레일 몸체부(541)의 전방 측에 위치된다. 구체적으로, 제2 레버 삽입 홈(732)은 레일 몸체부(541)의 전방 측 단부에 형성되는 제1 레버 삽입 홈(731)에서 후방 측으로 소정 거리만큼 이격되어 형성된다. 제2 레버 삽입 홈(732)은 레일 몸체부(541)의 상측 면에서 소정 거리만큼 함몰되어 형성된다.
제2 레버 삽입 홈(732)에는 제1 연장부(711a)의 단부가 삽입 결합된다. 삽입된 제1 연장부(711a)의 단부는, 제2 레버 삽입 홈(732)의 후방 측, 즉 제1 레버 삽입 홈(731)에서 멀어지는 방향(즉, 제1 레버 삽입 홈(731)에 반대되는 방향)의 면에 접촉된다.
또한, 삽입된 제1 연장부(711a)의 단부는, 제2 레버 삽입 홈(732)의 하측 면에도 접촉된다. 레버 부재(710)는 상기 면들을 "받침점"으로 하여 지렛대로 기능될 수 있다.
레버 부재(710)는 레버 결합 부재(720) 및 레버 삽입 홈(730)에 각각 결합된 상태에서, 카트 유닛(510)을 가압할 수 있다. 즉, 레버 부재(710)는 레일 유닛(540)이 연장되는 방향 중 일 방향, 즉 전방 측 또는 레일 유닛(540)이 연장되는 방향 중 타 방향, 즉 후방 측을 향해 카트 유닛(510)을 가압할 수 있다.
구체적으로, 레버 부재(710)는 제2 레버 삽입 홈(732)에 삽입된 상태에서, 시계 방향, 즉 손잡이부(712)가 카트 유닛(510)으로 접근하는 방향으로 회전될 수 있다. 이에 따라, 제2 연장부(711b)가 카트 유닛(510)의 전방 측 단부 또는 레버 삽입 홀(721)의 후방 측에 배치되는 레버 결합 부재(720)의 단부에 접촉된다.
카트 유닛(510)의 상기 단부 또는 레버 결합 부재(720)의 상기 단부는 "작용점"으로 기능될 수 있다. 즉, 레버 부재(710)에 가해지는 힘이 작용되는 지점인 것이다. 손잡이부(712)는 "힘점"으로 기능됨이 이해될 것이다.
상술한 바와 같이, 레버 부재(710)의 연장부(711)는 레버 결합 부재(720)의 레버 삽입 홀(721)에 관통 결합될 수 있다. 또한, 제1 연장부(711a)의 단부는 제1 레버 삽입 홈(731) 또는 제2 레버 삽입 홈(732)에 삽입될 수 있다.
도 17은 카트 유닛(510) 및 카트 유닛(510)에 안착된 커패시터 조립체(100) 또는 밸브 조립체(200)를 레일 유닛(540)에서 인출하기 위해, 레버 부재(710)가 제1 레버 삽입 홈(731)에 삽입된 상태가 도시된다.
사용자는 손잡이부(712)를 카트 유닛(510)에서 멀어지는 방향(즉, 카트 유닛(510)에 반대되는 방향), 즉, 반 시계 방향으로 회전시키면, 제1 연장부(711a)의 전방 측 면은 레버 삽입 홀(721)의 전방 측에 위치되는 단부를 가압한다.
이에 따라, 레버 결합 부재(720)가 연결된 카트 유닛(510)이 전방 측으로 이동되어, 카트 유닛(510)이 레일 유닛(540)에서 슬라이드되어 이탈될 수 있다. 상기 과정이 수행되기 전, 스토퍼 부재(610)가 정지 홈(650)에서 배출되어야 함이 이해될 것이다.
도 18은 카트 유닛(510) 및 카트 유닛(510)에 안착된 커패시터 조립체(100) 또는 밸브 조립체(200)를 레일 유닛(540)에 결합하기 위해, 레버 부재(710)가 제2 레버 삽입 홈(732)에 삽입된 상태가 도시된다.
사용자가 손잡이부(712)를 카트 유닛(510)에 접근하는 방향, 즉 시계 방향으로 회전시키면, 제1 연장부(711a)의 후방 측 면은 레버 삽입 홀(721)의 후방 측에 위치되는 단부를 가압한다.
이에 따라, 레버 결합 부재(720)가 연결된 카트 유닛(510)이 후방 측으로 이동되어, 카트 유닛(510)이 레일 유닛(540)에 슬라이드되어 결합될 수 있다.
따라서, 고중량의 카트 유닛(510)과 레일 유닛(540) 사이의 결합 및 분리 과정이 용이하게 수행될 수 있다.
9. 본 발명의 실시 예에 따른 단락 조정부(800)의 설명
본 발명의 실시 예에 따른 서브 모듈(10)은 단락 조정부(800)를 포함한다. 단락 조정부(800)는 복수 개의 커패시터 조립체(100) 내부에 수용된 각 커패시터 소자(미도시)를 간단한 조작으로 동시에 단락 또는 접지시킬 수 있도록 구성된다.
이하, 도 19 내지 도 21을 참조하여 본 발명의 실시 예에 따른 단락 조정부(800)를 상세하게 설명한다. 도시된 실시 예에서, 단락 조정부(800)는 프레임(20)에 설치된다. 이에, 단락 조정부(800)는 프레임(20)에 포함된다고 할 수도 있을 것이다.
다만, 단락 조정부(800)의 기능은 복수 개의 서브 모듈(10)을 단락 시키는데 있으므로, 이하의 설명에서는 단락 조정부(800)가 서브 모듈(10)에 포함되는 것으로 가정하여 설명한다.
도시된 실시 예에서, 단락 조정부(800)는 이동 부재(810), 단락 블록(820), 가변 커넥터(830), 링크 부재(840) 및 인디케이터 부재(850)를 포함한다.
이동 부재(810)는 복수 개의 가변 커넥터(830)를 동시에 이동시키도록 구성된다.
이동 부재(810)는 프레임(20)에 슬라이드 이동 가능하게 결합된다. 구체적으로, 이동 부재(810)는 가장 후방 측에 위치되는 지지부(23)의 후방 측 면에 슬라이드 이동 가능하게 결합된다.
이동 부재(810)는 가변 커넥터(830)와 연결된다. 이동 부재(810)가 슬라이드 이동되면, 가변 커넥터(830) 또한 이동 부재(810)와 함께 슬라이드 이동될 수 있다.
이동 부재(810)는 링크 부재(840)와 연결된다. 이동 부재(810)는 링크 부재(840)의 이동에 따라 좌측 또는 우측 방향으로 슬라이드 이동될 수 있다.
이동 부재(810)는 일 방향으로 연장 형성된다. 도시된 실시 예에서, 이동 부재(810)는 지지부(23)의 연장 방향과 같이 좌우 방향으로 연장 형성된다. 이동 부재(810)의 연장 길이는 지지부(23)의 연장 길이보다 짧게 형성될 수 있다.
이동 부재(810)는 연장 몸체부(811) 및 단부 삽입 홈(812)을 포함한다.
연장 몸체부(811)는 이동 부재(810)의 몸체를 형성한다. 연장 몸체부(811)는 이동 부재(810)의 길이 방향으로 연장 형성된다.
연장 몸체부(811)는 단락 블록(820)에 형성된 홈 사이에 삽입될 수 있다. 즉, 도시된 실시 예에서, 연장 몸체부(811)는 길이 방향으로 서로 소정 거리만큼 이격되어 배치되는 단락 블록(820)의 중앙 부분에 형성된 홈에 삽입된다.
이에 따라, 연장 몸체부(811)는 단락 블록(820)의 이동 부재 지지부(822) 사이에 위치된다. 또한, 연장 몸체부(811)는 이동 부재 지지부(822) 사이에 위치되는 단락 블록(820)의 부분을 덮도록 구성된다.
연장 몸체부(811)는 상기 홈에 삽입된 상태에서, 좌측 또는 우측 방향으로 이동될 수 있다. 상기 이동은 단락 블록(820)의 상측 및 하측에 구비되는 이동 부재 지지부(822)에 의해 달성된다.
연장 몸체부(811)에는 단부 삽입 홈(812)이 관통 형성된다. 단부 삽입 홈(812)의 단부에 인접한 연장 몸체부(811)에는 체결 부재가 구비된다. 상기 체결 부재는 가변 커넥터(830)를 연장 몸체부(811)에 체결한다.
단부 삽입 홈(812)에는 가변 커넥터(830)의 길이 방향의 양측 단부가 삽입된다. 단부 삽입 홈(812)에 삽입된 가변 커넥터(830)의 상기 양측 단부는 단부 삽입 홈(812)을 관통하여 단락 블록(820)의 상기 부분에 접촉될 수 있다.
이동 부재(810)의 슬라이드 이동에 따라 단락 블록(820)에 접촉되거나 단락 블록(820)에서 이격될 수 있다.
단부 삽입 홈(812)은 연장 몸체부(811)에 관통 형성된다. 연장 몸체부(811)가 연장되는 방향으로 소정 길이만큼 연장 형성된다.
단부 삽입 홈(812)의 상기 소정 길이는 단락 블록(820)의 폭 방향 길이, 즉 좌우 방향의 길이보다 길게 형성될 수 있다. 이에 따라, 단부 삽입 홈(812)에 관통된 가변 커넥터(830)의 단부는 단락 블록(820)에 접촉되거나 이격될 수 있다.
단부 삽입 홈(812)은 복수 개 형성될 수 있다. 복수 개의 단부 삽입 홈(812)은 서로 소정 거리만큼 이격되어 형성된다. 상기 소정 거리는 단락 블록(820)이 서로 이격되는 거리보다 짧게 형성될 수 있다.
단부 삽입 홈(812)에는 가변 커넥터(830)가 부분적으로 관통된다. 구체적으로, 단부 삽입 홈(812)에는 가변 커넥터(830)의 제1 커넥터 단부(831) 및 제2 커넥터 단부(832)가 각각 관통 형성된다.
달리 표현하면, 제1 커넥터 단부(831) 및 제2 커넥터 단부(832)는 단부 삽입 홈(812)을 관통하여 단락 블록(820)에 접촉되거나 이격될 수 있다.
단락 블록(820)은 가변 커넥터(830)와 통전 가능하게 접촉되거나 이격된다.
단락 블록(820)에 가변 커넥터(830)의 어느 일 단부만 접촉된 경우, 각 서브 모듈(10)의 전압은 서로 다르게 유지될 수 있다. 단락 블록(820)에 가변 커넥터(830)의 양측 단부가 모두 접촉된 경우, 각 서브 모듈(10)은 서로 단락되어 각 서브 모듈(10)의 전압은 동일하게 변경될 수 있다.
단락 블록(820)은 도전성 소재로 형성될 수 있다. 일 실시 예에서, 단락 블록(820)은 알루미늄(Al) 또는 철(Fe) 소재로 형성될 수 있다.
단락 블록(820)은 일 방향으로 연장 형성된다. 도시된 실시 예에서, 단락 블록(820)은 상하 방향으로 연장 형성된다. 즉, 단락 블록(820)과 이동 부재(810)는 서로 소정의 각도를 이루도록 연장 형성된다.
단락 블록(820)의 상측 및 하측에는 이동 부재 지지부(822)가 구비된다. 이동 부재 지지부(822) 사이에는 연장 몸체부(811)가 삽입되는 공간이 형성된다.
상기 공간에는 지지부(23)에서 멀어지는 방향(즉, 지지부(23)에 반대되는 방향)으로 돌출 형성된 접촉부(823)가 형성된다.
단락 블록(820)은 복수 개 구비된다. 복수 개의 단락 블록(820)은 서로 소정 거리만큼 이격되어 배치된다. 상기 소정 거리는 단부 삽입 홈(812)이 서로 이격된 거리보다 길게 형성될 수 있다.
단락 블록(820)은 일 방향, 도시된 실시 예에서 상하 방향으로 연장 형성된다. 단락 블록(820)은 그 단면이 사각형으로 형성될 수 있다. 즉, 단락 블록(820)은 사각기둥 형상으로 형성될 수 있다.
도시된 실시 예에서, 단락 블록(820)의 단면은 프레임(20)에 결합되는 일측 모서리를 밑변으로 하고, 상기 일측 모서리와 마주하는 타측 모서리, 즉 프레임(20)에 반대되는 타측 모서리를 윗변으로 하는 사다리꼴 형상이다.
달리 표현하면, 단락 블록(820)의 면 중 프레임(20)에 결합되는 일 면의 이동 부재(810)가 연장되는 방향(즉, 좌우 방향)의 길이는, 단락 블록(820)의 상기 일 면을 마주하는 타 면의 이동 부재(810)가 연장되는 방향(즉, 좌우 방향)의 길이보다 길다.
서로 인접하게 위치되는 단락 블록(820)이 서로 마주하는 각 면은 경사지게 형성될 수 있다. 일 실시 예에서, 상기 각 면은 각 단락 블록(820)이 프레임(20)에 결합되는 단락 블록(820)의 일 면(즉, 전방 측면)에 대해 예각을 이루며 연장될 수 있다.
즉, 서로 인접한 단락 블록(820)이 서로 마주하는 각 면은, 프레임(20)에서 멀어지는 방향으로 경사지게 형성된다. 달리 표현하면, 서로 인접한 단락 블록(820)이 서로 마주하는 각 면은, 이동 부재(810)를 향하는 방향으로 서로 멀어지도록 경사지게 형성된다.
즉, 도시된 실시 예에서, 후방 측을 향하는 방향을 따라 상기 서로 마주하는 면 사이의 거리는, 프레임(20)에서 멀어질수록 증가될 수 있다.
단락 블록(820)의 상기 형상에 의해, 가변 커넥터(830)의 제1 커넥터 단부(831) 및 제2 커넥터 단부(832)는 단락 블록(820)의 상기 면(즉, 경사진 면)과 접촉되며, 단락 블록(820)과 용이하게 접촉될 수 있다.
또한, 가변 커넥터(830)의 제1 커넥터 단부(831) 및 제2 커넥터 단부(832)는 단락 블록(820)의 상기 면(즉, 경사진 면)을 따라 단락 블록(820)의 상기 타 면(즉, 프레임(20)과 이격되어 프레임(20)을 마주하는 면)으로 용이하게 진입될 수 있다.
따라서, 별도의 탄성 부재가 구비되지 않고도 단락 블록(820)과 가변 커넥터(830)가 탄성 접촉될 수 있다. 즉, 가변 커넥터(830)는 단락 프레임(20)을 향하는 방향의 탄성력을 단락 블록(820)에 인가하면서 단락 블록(820)과 접촉된다. 이에 대한 상세한 설명은 후술하기로 한다.
단락 블록(820)은 단락 도선(821), 이동 부재 지지부(822) 및 접촉부(823)를 포함한다.
단락 도선(821)은 차단 플레이트(640)와 가변 커넥터(830)를 통전 가능하게 연결한다. 단락 도선(821)의 일측 단부는 차단 플레이트(640)와 통전 가능하게 연결된다. 단락 도선(821)의 타측 단부는 가변 커넥터(830)와 통전 가능하게 연결된다.
이에 따라, 차단 플레이트(640)와 통전 가능하게 접촉되는 레일 유닛(540) 및 커패시터 조립체(100)가 가변 커넥터(830)와 통전될 수 있다.
즉, 가변 커넥터(830)는 외부의 전자 기기(electronic equipment)와 통전 가능하게 연결될 수 있다.
본 명세서에서는 외부의 전자 기기가 커패시터 소자(미도시)를 내부에 수용하는 커패시터 조립체(100)임을 전제하여 설명하였으나, 본 발명의 실시 예에 따른 단락 조정부(800)는 단락이 요구되는 임의의 전자 기기에 적용될 수 있음이 이해될 것이다.
단락 도선(821)은 복수 개 구비될 수 있다. 복수 개의 각 단락 도선(821)은 복수 개의 차단 플레이트(640)와 복수 개의 가변 커넥터(830)에 각각 통전 가능하게 연결된다.
이동 부재 지지부(822)는 이동 부재(810)가 단락 블록(820)에 삽입된 상태에서 슬라이드 이동 가능하도록 이동 부재(810)를 지지한다.
이동 부재 지지부(822)는 단락 블록(820)에 회전 가능하게 결합될 수 있다. 이동 부재(810)가 좌측 또는 우측 방향으로 슬라이드 이동되면, 이동 부재 지지부(822) 또한 회전될 수 있다.
이동 부재 지지부(822)는 복수 개 구비될 수 있다. 도시된 실시 예에서, 이동 부재 지지부(822)는 두 개 구비되어, 단락 블록(820)의 상측 및 하측에 각각 위치된다.
이동 부재 지지부(822)는 단락 블록(820)에 접촉되는 제1 부분(822a) 및 제1 부분(822a)과 연속되며, 단락 블록(820)에서 멀어지는 방향(즉, 단락 블록(820)에 반대되는 방향)에 위치되는 제2 부분(822b)을 포함한다.
제1 부분(822a)의 직경은 제2 부분(822b)의 직경보다 작게 형성될 수 있다. 또한, 제1 부분(822a)은 지지부(23)에서 멀어지는 방향(즉, 지지부(23)에 반대되는 방향)의 단락 블록(820)의 일측 면에서 소정 길이만큼 돌출 형성된다. 상기 길이는, 이동 부재(810)의 두께 이상일 수 있다.
이에 따라, 단락 블록(820)의 상기 일측 면과 제2 부분(822b) 사이에는 소정의 공간이 형성된다. 이동 부재(810)의 상측 단부 및 하측 단부는 각각 상측 및 하측에 형성되는 상기 소정의 공간에 삽입될 수 있다.
접촉부(823)는 가변 커넥터(830)의 각 단부(831, 832)가 접촉되는 부분이다. 접촉부(823)는 복수 개의 이동 부재 지지부(822) 사이에 위치된다.
접촉부(823)는 지지부(23)에서 멀어지는 방향(즉, 지지부(23)에 반대되는 방향)으로 소정 길이만큼 돌출 형성된다. 이에 따라, 가변 커넥터(830)의 각 단부(831, 832)가 접촉부(823)와 용이하게 접촉될 수 있다.
접촉부(823)의 폭 방향, 즉 도시된 실시 예에서 좌우 방향의 각 단부는 지지부(23)를 향하는 방향으로 경사지게 형성될 수 있다. 즉, 접촉부(823)의 상기 각 단부는 서로를 향하는 방향으로 돌출 길이가 증가되도록 구성될 수 있다.
이에 따라, 가변 커넥터(830)의 각 단부(831, 832)는 접촉부(823)의 내측으로 용이하게 진입될 수 있다. 또한, 가변 커넥터(830)의 각 단부(831, 832)는 접촉부(823)의 외측으로 용이하게 이탈될 수 있다.
가변 커넥터(830)는 서로 다른 단락 블록(820) 사이의 통전 상태를 형성하거나 해제한다. 가변 커넥터(830)는 서로 인접한 복수 개의 단락 블록(820) 중 어느 하나 이상에 접촉되거나 이격되도록 구성된다.
가변 커넥터(830)는 도전성 소재로 형성될 수 있다. 일 실시 예에서, 가변 커넥터(830)는 구리(Cu) 소재로 형성될 수 있다.
가변 커넥터(830)는 탄성이 있는 형태로 구비될 수 있다. 일 실시 예에서, 가변 커넥터(830)는 판 스프링의 형태로 구비될 수 있다.
이에 따라, 제1 커넥터 단부(831) 및 제2 커넥터 단부(832)는 접촉부(823)와 접촉될 경우 탄성 변형될 수 있다. 이에 따라, 제1 커넥터 단부(831) 및 제2 커넥터 단부(832)와 접촉부(823) 사이의 접촉 상태가 안정적으로 유지될 수 있다.
또한, 제1 커넥터 단부(831) 및 제2 커넥터 단부(832)가 접촉부(823)에서 이격될 경우, 탄성 변형되며 저장된 복원력에 의해 원래 형상으로 복귀될 수 있다.
구체적으로, 제1 커넥터 단부(831) 및 제2 커넥터 단부(832)는 단락 블록(820)의 경사진 면을 따라 이동될 때 소정의 형상 변형을 통해 탄성력을 저장한다.
이때, 단락 블록(820)은 사다리꼴 형상으로 형성된다. 따라서, 각 커넥터 단부(831, 832)가 프레임(20)을 마주하는 면(즉, 양측이 경사진 면 사이의 면)을 향해 이동됨에 따라, 각 커넥터 단부(831, 832)에 저장되는 탄성력의 크기가 증가된다.
각 커넥터 단부(831, 832)가 단락 블록(820)의 상기 면(즉, 경사진 면)을 따라 이동되어 단락 블록(820)의 상기 타 면에 진입되면, 각 커넥터 단부(831, 832)과 단락 블록(820) 사이의 최단 거리가 더욱 감소된다. 따라서, 각 커넥터 단부(831, 832)에 저장되는 탄성력의 크기는 최대가 된다.
이에 따라, 가변 커넥터(830)는 형상 변형되며 탄성력을 저장한 상태로 단락 블록(820)에 접촉되며 이동 부재(810)가 연장되는 일 방향(즉, 좌우 방향)으로 이동될 수 있다.
이에 따라, 별도의 탄성 부재 등이 구비되지 않더라도, 가변 커넥터(830)와 단락 블록(820) 사이의 접촉 신뢰성이 향상될 수 있다.
가변 커넥터(830)는 이동 부재(810)에 결합된다. 가변 커넥터(830)는 이동 부재(810)와 함께 좌우 방향으로 슬라이드 이동될 수 있다.
가변 커넥터(830)는 서로 인접하게 위치되는 단락 블록(820) 중 어느 하나 이상과 통전 가능하게 접촉되는 제1 위치 및 서로 인접하게 위치되는 단락 블록(820) 모두와 이격되는 제2 위치 중 어느 하나에 위치될 수 있다.
달리 표현하면, 가변 커넥터(830)는 서로 인접하게 위치되는 두 개의 단락 블록(820)에 모두 접촉되거나, 어느 하나의 단락 블록(820)에만 접촉되거나, 상기 두 개의 단락 블록(820) 모두와 접촉되지 않을 수 있다.
가변 커넥터(830)는 단락 도선(821)과 통전 가능하게 연결된다. 이에 따라, 가변 커넥터(830)는 차단 플레이트(640)와 통전 가능하게 연결된다.
가변 커넥터(830)는 이동 부재(810)가 연장되는 방향, 도시된 실시 예에서 좌우 방향으로 소정 길이만큼 연장 형성된다. 가변 커넥터(830)의 연장 길이는 단락 블록(820)이 이격된 거리에 따라 결정되는 것이 바람직하다.
구체적으로, 가변 커넥터(830)의 연장 길이는 서로 인접한 단락 블록(820)의 각 접촉부(823)가 서로 마주하는 단부 사이의 거리 이상으로 형성되는 것이 바람직하다.
즉, 도 20b에 도시된 실시 예에서, 가변 커넥터(830)의 연장 길이는, 가변 커넥터(830)의 제1 커넥터 단부(831)가 접촉되는 단락 블록(820)의 일측 단부와, 제2 커넥터 단부(832)가 접촉되는 단락 블록(820)의 일측 단부 사이의 거리 이상으로 형성되는 것이 바람직하다.
따라서, 이동 부재(810)가 슬라이드 이동되면, 가변 커넥터(830)의 제1 커넥터 단부(831)와 제2 커넥터 단부(832)는 각각 서로 다른 단락 블록(820)과 통전 가능하게 연결될 수 있다. 이에 따라, 서로 다른 서브 모듈(10)이 동시에 단락될 수 있다.
가변 커넥터(830)는 제1 커넥터 단부(831)와 제2 커넥터 단부(832)를 포함한다.
제1 커넥터 단부(831)는 가변 커넥터(830)의 길이 방향의 일측 단부로 정의된다. 도시된 실시 예에서, 제1 커넥터 단부(831)는 가변 커넥터(830)의 좌측에 위치된다. 제1 커넥터 단부(831)는 접촉부(823)를 향해 절곡 형성된다.
제2 커넥터 단부(832)는 가변 커넥터(830)의 길이 방향의 타측 단부로 정의된다. 도시된 실시 예에서, 제2 커넥터 단부(832)는 가변 커넥터(830)의 우측에 위치된다. 제2 커넥터 단부(832)는 제1 커넥터 단부(831)와 반대 측에 위치된다. 제2 커넥터 단부(832)는 접촉부(823)를 향해 절곡 형성된다.
제1 커넥터 단부(831) 및 제2 커넥터 단부(832)는, 그 사이에 위치되어, 상기 일 방향(즉, 좌우 방향)으로 연장되는 부분과 각각 연속된다.
제1 커넥터 단부(831)와 제2 커넥터 단부(832)는 상기 부분에 대해 경사지게 프레임(20)을 향해 연장될 수 있다. 일 실시 예에서, 제1 커넥터 단부(831)와 제2 커넥터 단부(832)는 상기 부분과 둔각을 이루며 연장될 수 있다.
따라서, 도시된 실시 예에서 상측에서 바라보았을 때, 가변 커넥터(830)의 단면은 제1 커넥터 단부(831) 및 제2 커넥터 단부(832)를 빗변으로 하고, 가변 커넥터(830)의 상기 부분을 밑변으로 하는 사다리꼴의 부분의 형상이다.
제1 커넥터 단부(831)와 제2 커넥터 단부(832)는 프레임(20)과 이격될 수 있다. 또한, 제1 커넥터 단부(831)와 제2 커넥터 단부(832)는 단락 블록(820)과 접촉되도록 연장될 수 있다.
달리 표현하면, 제1 커넥터 단부(831) 및 제2 커넥터 단부(832)는 프레임(20)과는 접촉되지 않되, 단락 블록(820)과는 접촉될 수 있을 정도로 연장될 수 있다.
따라서, 가변 커넥터(830)가 상기 일 방향(즉, 좌우 방향)으로 이동되면, 각 커넥터 단부(831, 832)가 단락 블록(820)의 상기 경사진 면과 접촉되어 탄성 변형되며 상기 일 방향으로 이동될 수 있다.
따라서, 가변 커넥터(830)가 단락 블록(820)과 접촉되면, 가변 커넥터(830)는 형상 변형되며 탄성력을 저장한 상태에서 이동된다. 즉, 가변 커넥터(830)와 단락 블록(820)은 탄성 접촉된다.
또한, 제1 커넥터 단부(831)와 제2 커넥터 단부(832)가 프레임(20)을 향하는 일측, 도시된 실시 예에서 전방 측은 라운드지게 형성될 수 있다.
이에 따라, 이동 부재(810)가 일 방향(즉, 좌우 방향)으로 이동되면, 제1 커넥터 단부(831)와 제2 커넥터 단부(832)는 단락 블록(820)의 상기 경사진 면에 용이하게 진입할 수 있게 된다.
결과적으로, 가변 커넥터(830)와 단락 블록(820) 사이에는 일정 수준 이상의 접압력(contact pressure)가 확보될 수 있다. 이에 따라, 가변 커넥터(830)와 단락 블록(820) 사이의 접촉의 신뢰성이 보장될 수 있다.
제1 커넥터 단부(831) 및 제2 커넥터 단부(832)는 각각 단부 삽입 홈(812)에 관통 삽입될 수 있다.
제1 커넥터 단부(831)는 어느 하나의 단부 삽입 홈(812)에 관통 삽입되어, 어느 하나의 단락 블록(820)의 접촉부(823)와 통전 가능하게 접촉된다.
제2 커넥터 단부(832)는 다른 하나의 단부 삽입 홈(812)에 관통 삽입되어, 다른 하나의 단락 블록(820)의 접촉부(823)와 통전 가능하게 접촉된다.
제1 커넥터 단부(831) 및 제2 커넥터 단부(832)가 각각 관통 삽입되는 상기 어느 하나의 단부 삽입 홈(812) 및 상기 다른 하나의 단부 삽입 홈(812)은, 서로 인접하게 배치됨이 이해될 것이다.
마찬가지로, 제1 커넥터 단부(831) 및 제2 커넥터 단부(832)가 각각 통전 가능하게 접촉되는 상기 어느 하나의 단락 블록(820)과 상기 다른 하나의 단락 블록(820) 또한 서로 인접하게 배치됨이 이해될 것이다.
즉, 가변 커넥터(830)는 서로 인접한 단락 블록(820) 사이에서 슬라이드 이동되며, 상기 인접한 단락 블록(820) 중 어느 하나 이상에 동시에 통전 가능하게 접촉될 수 있다.
도 20a에 도시된 실시 예에서, 가변 커넥터(830)는 서로 인접한 단락 블록(820) 중 어느 하나에만 통전 가능하게 접촉된다. 즉, 제2 커넥터 단부(832)가 어느 하나의 단락 블록(820)에 접촉되고, 제1 커넥터 단부(831)는 단락 블록(820)에 접촉되지 않는다.
상기 상태에서, 복수 개의 서브 모듈(10)은 서로 단락되지 않는다. 이에 따라, 복수 개의 서브 모듈(10)에 구비되는 커패시터 소자(미도시)는 서로 다른 전압을 유지할 수 있다.
도 20b에 도시된 실시 예에서, 가변 커넥터(830)는 서로 인접한 단락 블록(820) 각각에 통전 가능하게 접촉된다. 즉, 제2 커넥터 단부(832)는 상기 어느 하나의 단락 블록(820)에 접촉된 상태를 유지하고, 제1 커넥터 단부(831)는 서로 인접한 단락 블록(820) 중 다른 하나에 통전 가능하게 접촉된다.
도시되지는 않았으나, 가변 커넥터(830)는 서로 인접한 단락 블록(820) 모두와 이격될 수 있음은 상술한 바와 같다.
이에 따라, 각 단락 블록(820)은 가변 커넥터(830)를 통해 통전된다. 마찬가지로, 각 단락 블록(820)과 각각 통전 가능하게 연결되는 각 서브 모듈(10)의 커패시터 소자(미도시) 또한 통전된다.
상기 상태에서, 복수 개의 서브 모듈(10) 복수 개의 서브 모듈(10)은 서로 단락된다. 이에 따라, 복수 개의 서브 모듈(10)에 구비되는 커패시터 소자(미도시)는 동일한 전압으로 변경될 수 있다. 일 실시 예에서, 상기 상태는 접지 상태일 수 있다.
링크 부재(840)는 이동 부재(810)에 연결되어, 단락 조정 레버(854)의 회전 운동을 이동 부재(810)의 직선 운동으로 변환한다. 링크 부재(840)는 이동 부재(810) 및 단락 조정 레버(854)와 각각 연결된다.
링크 부재(840)는 회전 운동을 직선 운동으로 변환하거나, 직선 운동을 회전 운동으로 변환할 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 링크 부재(840)는 2절 링크 또는 3절 링크 등으로 구비될 수 있다.
링크 부재(840)는 회전축부(841), 제1 링크(842) 및 제2 링크(843)를 포함한다.
회전축부(841)는 단락 조정 레버(854)의 회전 운동을 제1 링크(842)에 전달한다. 회전축부(841)는 단락 조정 레버(854) 및 제1 링크(842)에 연결된다. 회전축부(841)는 단락 조정 레버(854) 및 제1 링크(842)와 함께 회전될 수 있다.
도시된 실시 예에서, 회전축부(841)는 수직 프레임(21)에서 소정 거리만큼 이격되어 배치된다. 일 실시 예에서, 회전축부(841)는 상하 방향, 즉 지면에 대해 수직하게 연장 형성될 수 있다.
회전축부(841)는 지지 부재에 의해 수직 프레임(21)과 소정 거리만큼 이격된 상태에서 지면에 대해 수직한 상태가 유지될 수 있다.
회전축부(841)의 하측에는 절연 부재(24)가 구비될 수 있다. 절연 부재(24)는 인디케이터 부재(850)에 인접한 회전축부(841)의 외측을 감싸도록 구성될 수 있다. 이에 따라, 사용자가 인디케이터 부재(850)를 조작할 때 발생될 수 있는 고압에 의한 안전사고가 예방될 수 있다.
제1 링크(842)는 회전축부(841)의 회전 운동을 제2 링크(843)에 전달한다.
제1 링크(842)는 일 방향으로 연장 형성된다. 제1 링크(842)의 연장 방향의 일측은 회전축부(841)에 연결된다. 일 실시 예에서, 제1 링크(842)는 회전축부(841)에 관통 결합될 수 있다. 제1 링크(842)는 회전축부(841)와 함께 회전될 수 있다.
제1 링크(842)의 타측은 제2 링크(843)와 회전 가능하게 결합된다. 제1 링크(842)가 회전되면, 제2 링크(843)는 직선 운동될 수 있다.
제2 링크(843)는 제1 링크(842)의 회전 운동을 직선 운동으로 변환하여, 이동 부재(810)에 전달한다.
제2 링크(843)는 일 방향으로 연장 형성된다. 도시된 실시 예에서, 제2 링크(843)는 좌우 방향으로 연장 형성된다.
제2 링크(843)의 연장 방향의 일측은 제1 링크(842)에 회전 가능하게 결합된다. 제1 링크(842)가 회전되면, 제2 링크(843)는 이동 부재(810)를 향하는 방향 또는 이동 부재(810)에서 멀어지는 방향(즉, 이동 부재(810)에 반대되는 방향)으로 직선 운동될 수 있다.
제2 링크(843)의 연장 방향의 타측은 이동 부재(810)에 결합된다. 제2 링크(843)가 직선 운동되면, 이동 부재(810) 또한 제2 링크(843)에서 멀어지는 방향(즉, 제2 링크(843)에 반대되는 방향) 또는 제2 링크(843)를 향하는 방향으로 직선 운동될 수 있다.
인디케이터 부재(850)는 사용자에 의해 조작된다. 사용자는 단락 조정 레버(854)를 조작하여 복수 개의 서브 모듈(10)을 동 전압으로 단락 시키거나, 단락 상태를 해제할 수 있다.
인디케이터 부재(850)는 회전축부(841)의 하측에 구비되는 절연 부재(24)에 인접하게 위치된다. 이에 따라, 인디케이터 부재(850)에 접근한 사용자가 감전되는 사고가 방지될 수 있다.
인디케이터 부재(850)는 인디케이터 하우징(851), 제1 표시부(852), 제2 표시부(853), 단락 조정 레버(854) 및 핀 부재(855)를 포함한다.
인디케이터 하우징(851)은 인디케이터 부재(850)의 몸체를 형성한다. 도시된 실시 예에서, 인디케이터 하우징(851)은 폭 방향의 중앙부가 함몰 형성된다. 즉, 상측에서 바라보았을 때, 인디케이터 하우징(851)은 "C"자 형태일 수 있다.
인디케이터 하우징(851)은 서브 모듈(10)과 이격되어 배치될 수 있다. 이에 따라, 사용자가 서브 모듈(10)에 접근하지 않더라도, 단락 조정 레버(854)를 조작할 수 있다. 이에 따라, 서브 모듈(10)과의 접촉에 의한 안전 사고가 예방될 수 있다.
인디케이터 하우징(851)의 상측 면에는 제1 표시부(852), 제2 표시부(853), 단락 조정 레버(854) 및 핀 부재(855)가 구비된다.
제1 표시부(852) 및 제2 표시부(853)는 복수 개의 서브 모듈(10)이 단락된 상태인지 여부를 표시한다. 사용자는 제1 표시부(852) 및 제2 표시부(853)를 통해 단락 상태 여부를 시각적으로 인지할 수 있다.
제1 표시부(852) 및 제2 표시부(853)는 서로 소정 거리만큼 이격되어 배치된다. 상기 소정 거리는, 단락 조정 레버(854)의 회전 반경 및 회전 각도에 따라 결정될 수 있다.
구체적으로, 제1 표시부(852)는 단락 조정 레버(854)가 제1 표시부(852)를 향해 회전되었을 때, 단락 조정 레버(854)에 가려지도록 위치될 수 있다. 일 실시 예에서, 제1 표시부(852)는 단락 조정 레버(854)가 최대로 회전되었을 때 단락 조정 레버(854)에 완전히 가려질 수 있다.
마찬가지로, 제2 표시부(853)는 단락 조정 레버(854)가 제2 표시부(853)를 향해 회전되었을 때, 단락 조정 레버(854)에 가려지도록 위치될 수 있다. 일 실시 예에서, 제2 표시부(853)는 단락 조정 레버(854)가 최대로 회전되었을 때 단락 조정 레버(854)에 완전히 가려질 수 있다.
제1 표시부(852)는 복수 개의 서브 모듈(10)이 서로 단락된 상태 및 단락되지 않은 상태 중 어느 하나의 상태일 때 가려질 수 있다. 또한, 제2 표시부(853)는 복수 개의 서브 모듈(10)이 서로 단락된 상태 및 단락되지 않은 상태 중 다른 하나의 상태일 때 가려질 수 있다.
제1 표시부(852) 및 제2 표시부(853)는 단락 조정 레버(854)가 회전되어 형성되는 상태와 다른 상태를 표시할 수 있다.
즉, 단락 조정 레버(854)가 제1 표시부(852)를 가리도록 회전된 경우, 제2 표시부(853)에 표시된 상태가 단락 조정 레버(854)의 회전에 의해 형성된 통전 상태일 수 있다.
마찬가지로, 단락 조정 레버(854)가 제2 표시부(853)를 가리도록 회전된 경우, 제1 표시부(852)에 표시된 상태가 단락 조정 레버(854)의 회전에 의해 형성된 통전 상태일 수 있다.
즉, 제1 표시부(852) 및 제2 표시부(853)는 각 상태에서 교번적으로 가려지거나 노출된다. 이에 따라, 사용자는 제1 표시부(852) 및 제2 표시부(853)의 노출 여부를 이용하여 각 서브 모듈(10)이 단락 상태인지 여부를 파악할 수 있다.
단락 조정 레버(854)는 복수 개의 서브 모듈(10)을 동시에 단락 시키거나, 단락 상태를 해제하기 위해 조작된다. 단락 조정 레버(854)는 자동 또는 수동으로 회전될 수 있다.
단락 조정 레버(854)는 인디케이터 하우징(851)에 회전 가능하게 결합된다. 상기 결합은 핀 부재(855)에 의해 달성된다.
단락 조정 레버(854)는 회전축부(841)와 연결된다. 단락 조정 레버(854)가 회전되면, 회전축부(841) 또한 회전될 수 있다. 상기 회전이 제1 및 제2 링크(842, 843)를 통해 이동 부재(810)에 전달됨은 상술한 바와 같다.
단락 조정 레버(854)는 소정의 길이로 연장 형성된다. 일 실시 예에서, 단락 조정 레버(854)는 핀 부재(855)와 제1 및 제2 표시부(852, 853) 사이의 거리보다 길게 연장될 수 있다.
이에 따라, 단락 조정 레버(854)는 핀 부재(855)에 의해 인디케이터 하우징(851)에 회전 가능하게 결합된 상태에서, 제1 표시부(852) 또는 제2 표시부(853) 중 어느 하나를 가리도록 회전될 수 있다.
핀 부재(855)는 단락 조정 레버(854)를 인디케이터 하우징(851)에 회전 가능하게 결합한다. 핀 부재(855)는 단락 조정 레버(854)의 회전축으로 기능된다.
핀 부재(855)는 단락 조정 레버(854)가 연장되는 방향의 일측 단부에 위치될 수 있다. 일 실시 예에서, 핀 부재(855)는 제1 및 제2 표시부(852, 853)에서 멀어지는 방향, 즉 반대되는 방향의 단락 조정 레버(854)의 일측 단부에 위치될 수 있다.
도 21의 (a)를 참조하면, 단락 조정 레버(854)가 시계 방향으로 회전되어 제1 표시부(852)를 가린 상태가 도시된다. 즉, 제2 표시부(853)가 노출된다.
도 21의 (b)를 참조하면, 단락 조정 레버(854)가 반 시계 방향으로 회전되어 제2 표시부(853)를 가린 상태가 도시된다. 즉, 제1 표시부(852)가 노출된다.
도 21에 도시된 실시 예에서, 회전축부(841)의 도시가 생략되었음이 이해될 것이다.
단락 조정 레버(854)가 회전됨에 따라, 회전축부(841) 또한 회전된다. 상기 회전은 제1 및 제2 링크(842, 843)를 통해 이동 부재(810)에 전달되어, 이동 부재(810)가 좌측 또는 우측으로 슬라이드 이동된다.
상술한 바와 같이, 가변 커넥터(830)는 서로 인접한 단락 블록(820) 중 어느 하나 이상과 통전 가능하게 접촉된다.
가변 커넥터(830)가 어느 하나의 단락 블록(820)과 접촉된 경우, 각 서브 모듈(10)은 서로 다른 전압으로 유지될 수 있다. 가변 커넥터(830)가 서로 인접한 단락 블록(820) 모두와 접촉된 경우, 각 서브 모듈(10)은 단락되어 같은 전압으로 변경될 수 있다.
상기 가변 커넥터(830)의 이동은 이동 부재(810)에 의해 달성된다. 이동 부재(810)는 지지부(23)에 슬라이드 이동 가능하게 결합된다. 가변 커넥터(830)는 이동 부재(810)에 결합되어, 이동 부재(810)와 함께 슬라이드 이동된다.
상기 이동 부재(810)의 이동은 단락 조정 레버(854)의 회전 조작 및 링크 부재(840)에 의해 달성된다. 단락 조정 레버(854)의 회전 운동은 링크 부재(840)를 통해 직선 운동으로 변환되어, 이동 부재(810)를 슬라이드 이동시키게 된다.
단락 조정 레버(854)의 회전 조작은 제1 표시부(852) 및 제2 표시부(853)에 의해 표시된다. 제1 표시부(852) 및 제2 표시부(853) 중 어느 하나가 단락 조정 레버(854)에 의해 가려짐으로써, 단락 조정 레버(854)의 회전 조작에 따른 상태가 표시될 수 있다.
따라서, 복수 개의 서브 모듈(10)이 용이하게 단락될 수 있고, 사용자가 상기 단락 상태를 용이하게 파악할 수 있다.
10. 본 발명의 실시 예에 따른 냉각 유로부(900)의 설명
본 발명의 실시 예에 따른 서브 모듈(10)은 냉각 유로부(900)를 포함한다. 냉각 유로부(900)는 방폭 프레임부(400)의 냉각 플레이트(430)와 연통된다. 냉각 유로부(900)는 저온의 냉각 유체를 냉각 플레이트(430)에 전달한다.
또한, 냉각 유로부(900)는 냉각 플레이트(430) 내부를 유동하며 IGBT(440)와 열교환된 냉각 유체를 전달받는다.
냉각 유로부(900)는 서브 모듈(10) 및 프레임(20)에 설치된다. 이에, 냉각 유로부(900)는 프레임(20)에 포함되는 구성으로 볼 수도 있을 것이다. 이하의 설명에서는, 설명의 편의를 위해 냉각 유로부(900)가 서브 모듈(10)의 구성임을 전제하여 설명한다.
이하의 설명에서 사용되는 "저온의 냉각 유체"라는 용어는 외부에서 공급되어, IGBT(440)와 열교환되지 않은 냉각 유체를 의미한다.
이하의 설명에서 사용되는 "고온의 냉각 유체"라는 용어는 IGBT(440)와 열교환된 냉각 유체를 의미한다.
이하, 도 22 내지 도 25를 참조하여 본 발명의 실시 예에 따른 냉각 유로부(900)를 상세하게 설명한다.
이하에서 설명될 각 배관(911, 912, 921, 922, 931, 932, 950)은 내부에 유로를 형성할 수 있는 임의의 형태로 구비될 수 있다. 일 실시 예에서, 메인 배관 유닛(910)은 파이프(pipe) 부재로 구비될 수 있다.
도시된 실시 예에서, 냉각 유로부(900)는 메인 배관 유닛(910), 서브 배관 유닛(920), 분지 배관 유닛(930), 배관 연결 유닛(940), 밸브 연결 배관(950) 및 잔수 포집 유닛(960)을 포함한다.
메인 배관 유닛(910)은 외부의 냉각 유체 순환 장치(미도시)와 연통된다. 상기 냉각 유체 순환 장치(미도시)에서 메인 배관 유닛(910)으로 저온의 냉각 유체가 유동될 수 있다. 또한, 메인 배관 유닛(910)에서 고온의 냉각 유체가 상기 냉각 유체 순환 장치(미도시)로 유동될 수 있다.
메인 배관 유닛(910)은 서브 배관 유닛(920)과 연통된다. 메인 배관 유닛(910)으로 유동된 저온의 냉각 유체는 서브 배관 유닛(920)으로 유동될 수 있다. 서브 배관 유닛(920)으로 유동된 고온의 냉각 유체는 메인 배관 유닛(910)으로 유동될 수 있다.
메인 배관 유닛(910)은 분지 배관 유닛(930)과 연통된다. 분지 배관 유닛(930)은 서브 배관 유닛(920)과 연통된다. 이에 따라, 메인 배관 유닛(910)과 서브 배관 유닛(920)이 연통될 수 있다.
메인 배관 유닛(910)은 일 방향, 도시된 실시 예에서 좌우 방향으로 연장 형성된다. 메인 배관 유닛(910)이 연장 형성된 방향의 각 단부는 수평 프레임(22)에 안착된다.
메인 배관 유닛(910)은 각 프레임(20)마다 단수 개 구비될 수 있다. 즉, 상술한 바와 같이, 프레임(20)은 복수 개 구비되어 적층될 수 있다. 이때, 메인 배관 유닛(910)은 적층된 각 프레임(20)마다 단수 개 구비될 수 있다.
메인 배관 유닛(910)은 메인 유입 배관(911), 메인 유출 배관(912), 메인 배관 고정 부재(913), 체결 부재(914) 및 유격 공간부(915)를 포함한다.
메인 유입 배관(911)에는 냉각 유체 순환 장치(미도시)로부터 저온의 냉각 유체가 유입된다. 메인 유입 배관(911)은 냉각 유체 순환 장치(미도시)와 연통된다.
메인 유입 배관(911)에 유입된 저온의 냉각 유체는 분지 유입 배관(931)을 거쳐 서브 유입 배관(921)으로 유동된다. 메인 유입 배관(911)은 분지 유입 배관(931) 및 서브 유입 배관(921)과 연통된다.
메인 유입 배관(911)에 인접하게 메인 유출 배관(912)이 위치된다.
메인 유출 배관(912)에는 서브 유출 배관(922) 및 분지 유출 배관(932)에서 고온의 냉각 유체가 유입된다. 메인 유출 배관(912)은 분지 유출 배관(932) 및 서브 유출 배관(922)과 연통된다.
메인 유출 배관(912)에 유입된 고온의 냉각 유체는 냉각 유체 순환 장치(미도시)로 유동된다. 메인 유출 배관(912)은 냉각 유체 순환 장치(미도시)와 연통된다.
메인 배관 고정 부재(913)는 메인 유입 배관(911) 및 메인 유출 배관(912)을 수평 프레임(22)에 지지한다. 메인 배관 고정 부재(913)는 수평 프레임(22)의 상측 면에 안착된다.
메인 배관 고정 부재(913)는 복수 개 구비될 수 있다. 복수 개의 메인 배관 고정 부재(913)는 좌측의 수평 프레임(22) 및 우측의 수평 프레임(22)에 각각 구비될 수 있다.
메인 배관 고정 부재(913)는 일 방향, 도시된 실시 예에서 전후 방향으로 연장 형성된다. 또한, 메인 배관 고정 부재(913)의 폭 방향, 도시된 실시 예에서 좌우 방향의 길이는 수평 프레임(22)의 폭 방향 길이 이하로 형성될 수 있다.
메인 배관 고정 부재(913)에는 관통홀이 형성된다. 상기 관통홀에는 메인 유입 배관(911) 및 메인 유출 배관(912)의 길이 방향의 일측이 각각 관통 결합된다.
메인 배관 고정 부재(913)는 수평 프레임(22)에 직접 결합되는 제1 부분 및 제1 부분의 상측에 위치되며, 제1 부분과 결합되는 제2 부분을 포함한다. 즉, 제1 부분은 제2 부분과 수평 프레임(22) 사이에 위치된다.
메인 배관 고정 부재(913)는 체결 관통부(913a)를 포함한다. 체결 관통부(913a)는 제1 부분과 제2 부분의 길이 방향의 양측 단부에 인접하게 위치된다. 체결 관통부(913a)는 상기 위치에서 상하 방향으로 관통 형성된다.
체결 관통부(913a)에는 체결 부재(미도시)가 체결된다. 이에 따라, 상기 제1 부분과 상기 제2 부분이 결합될 수 있다.
구체적으로, 제1 부분이 체결 부재(914)에 의해 수평 프레임(22)에 결합되고, 메인 유입 배관(911) 및 메인 유출 배관(912)이 관통홀에 관통 결합된다. 다음, 제2 부분이 제1 부분, 메인 유입 배관(911) 및 메인 유출 배관(912)에 안착된 후, 체결 부재(미도시)가 체결 관통부(913a)에 체결될 수 있다.
상기 관통홀의 일부는 제1 부분에, 상기 관통홀의 나머지 일부는 제2 부분에 형성됨이 이해될 것이다.
체결 부재(914)는 메인 배관 고정 부재(913)를 수평 프레임(22)에 고정한다. 구체적으로, 체결 부재(914)는 메인 배관 고정 부재(913)의 제1 부분에 관통 형성된 체결공(미도시)에 관통 결합된다.
체결 부재(914)는 복수 개 구비될 수 있다. 도시된 실시 예에서, 체결 부재(914)는 메인 배관 고정 부재(913)의 전방 측 및 후방 측에 각각 두 개씩 형성되어 총 네 개 구비된다.
유격 공간부(915)는 메인 배관 고정 부재(913)의 제1 부분 및 제2 부분 사이에 형성된 공간이다. 유격 공간부(915)는 제1 부분과 제2 부분이 서로 마주하는 면이 소정 거리만큼 이격되어 형성된다. 유격 공간부(915)가 형성된 상태에서 체결 부재(미도시)가 체결 관통부(913a)에 관통 결합된다.
유격 공간부(915)는 메인 유입 배관(911) 또는 메인 유출 배관(912)에 냉각 유체가 유동됨에 따라 발생될 수 있는 부피의 증가분을 보상할 수 있다. 또한, 유격 공간부(915)는 서브 모듈(10)이 작동됨에 따라 발생되는 진동을 완충하여, 상기 진동에 의해 메인 유입 배관(911) 또는 메인 유출 배관(912)이 손상되는 것을 방지할 수 있다.
서브 배관 유닛(920)은 메인 배관 유닛(910)과 배관 연결 유닛(940)을 연통한다. 메인 배관 유닛(910)에 유입된 저온의 냉각 유체는 서브 배관 유닛(920)을 통과하여 배관 연결 유닛(940)으로 유동될 수 있다. 또한, 배관 연결 유닛(940)에서 전달된 고온의 냉각 유체는 서브 배관 유닛(920)을 통과하여 메인 배관 유닛(910)으로 유동될 수 있다.
서브 배관 유닛(920)은 메인 배관 유닛(910)과 연통된다. 상기 연통은 메인 배관 유닛(910) 및 서브 배관 유닛(920)과 각각 연통되는 분지 배관 유닛(930)에 의해 달성된다. 또한, 서브 배관 유닛(920)은 배관 연결 유닛(940)과 연통된다.
서브 배관 유닛(920)은 일 방향, 도시된 실시 예에서 전후 방향으로 연장 형성된다. 서브 배관 유닛(920)의 일측, 도시된 실시 예에서 후방 측 단부는 분지 배관 유닛(930)의 단부와 연결된다. 서브 배관 유닛(920)의 타측, 도시된 실시 예에서 전방 측 단부는 배관 연결 유닛(940)과 연결된다.
서브 배관 유닛(920)은 복수 개 구비될 수 있다. 복수 개의 서브 배관 유닛(920)은 각 서브 모듈(10)마다 구비될 수 있다.
서브 배관 유닛(920)은 서브 유입 배관(921) 및 서브 유출 배관(922)을 포함한다.
서브 유입 배관(921)은 메인 유입 배관(911)에서 유입된 저온의 냉각 유체가 통과되는 통로이다. 상기 저온의 냉각 유체는 서브 유입 배관(921)을 통과하여 배관 연결 유닛(940)으로 유동될 수 있다.
서브 유출 배관(922)은 배관 연결 유닛(940)에서 유입된 고온의 냉각 유체가 통과되는 통로이다. 상기 고온의 냉각 유체는 서브 유출 배관(922)을 통과하여 메인 유출 배관(912)으로 유동될 수 있다.
서브 배관 유닛(920)과 메인 배관 유닛(910)이 연통되는 부분에는 분지 배관 유닛(930)이 구비된다.
분지 배관 유닛(930)은 메인 배관 유닛(910)과 서브 배관 유닛(920)을 연통한다. 분지 배관 유닛(930)은 메인 배관 유닛(910) 및 서브 배관 유닛(920)과 각각 연통된다.
분지 배관 유닛(930)은 관절 구조로 형성될 수 있다. 즉, 분지 배관 유닛(930)이 메인 배관 유닛(910)과 연결되는 일측 단부와, 분지 배관 유닛(930)이 서브 배관 유닛(920)과 연결되는 타측 단부 사이의 각도는 변경될 수 있다.
일 실시 예에서, 분지 배관 유닛(930)의 상기 일측 단부와 상기 타측 단부 사이의 각도는 직각일 수 있다.
이에 따라, 메인 배관 유닛(910)과 서브 배관 유닛(920)은 각각의 형상이 변형되지 않고도, 서로 연통될 수 있다.
분지 배관 유닛(930)은 복수 개 구비될 수 있다. 복수 개의 분지 배관 유닛(930)은 각 서브 모듈(10)마다 구비될 수 있다.
분지 배관 유닛(930)은 분지 유입 배관(931) 및 분지 유출 배관(932)을 포함한다.
분지 유입 배관(931)은 메인 유입 배관(911)에 유입된 저온의 냉각 유체가 서브 유입 배관(921)으로 유동되는 통로이다. 분지 유입 배관(931)은 메인 유입 배관(911) 및 서브 유입 배관(921)과 각각 연통된다.
분지 유출 배관(932)은 서브 유출 배관(922)에 유입된 고온의 냉각 유체가 메인 유출 배관(912)으로 유동되는 통로이다. 분지 유출 배관(932)은 메인 유출 배관(912) 및 서브 유출 배관(922)과 각각 연통된다.
배관 연결 유닛(940)은 서브 배관 유닛(920)과 밸브 연결 배관(950)을 연통한다. 배관 연결 유닛(940)은 서브 배관 유닛(920) 및 밸브 연결 배관(950)과 각각 연통된다.
또한, 배관 연결 유닛(940)은 서브 배관 유닛(920)과 밸브 연결 배관(950)을 지지한다. 이에 따라, 서브 배관 유닛(920)과 밸브 연결 배관(950) 사이의 결합 상태가 안정적으로 유지될 수 있다.
배관 연결 유닛(940)은 복수 개 구비될 수 있다. 복수 개의 배관 연결 유닛(940)은 각 서브 모듈(10)마다 구비될 수 있다.
배관 연결 유닛(940)은 단부 연결 부재(941), 배관 지지 부재(942) 및 배관 고정 부재(943)를 포함한다.
단부 연결 부재(941)는 서브 배관 유닛(920)과 밸브 연결 배관(950)이 서로 마주하는 각 단부가 연통되도록, 서브 배관 유닛(920)과 밸브 연결 배관(950)을 결합한다. 단부 연결 부재(941)는 서브 배관 유닛(920)과 밸브 연결 배관(950) 사이에 위치된다.
단부 연결 부재(941)는 서브 배관 유닛(920) 및 밸브 연결 배관(950)과 각각 연통된다. 냉각 유체는 단부 연결 부재(941)를 통해 서브 배관 유닛(920)에서 밸브 연결 배관(950)을 향해, 또는 그 반대로 유동될 수 있다.
단부 연결 부재(941)는 제1 단부 연결 부재(941a) 및 제2 단부 연결 부재(941b)를 포함한다.
제1 단부 연결 부재(941a)는 서브 배관 유닛(920)의 단부와 연결된다. 제1 단부 연결 부재(941a)는 서브 배관 유닛(920)과 연통된다.
도 25에 도시된 바와 같이, 제1 단부 연결 부재(941a)는 복수 개 구비될 수 있다. 복수 개의 제1 단부 연결 부재(941a)는 밸브 연결 배관(950)을 향하는 서브 유입 배관(921) 및 서브 유출 배관(922)의 각 단부에 각각 결합된다.
제2 단부 연결 부재(941b)는 밸브 연결 배관(950)의 단부와 연결된다. 제2 단부 연결 부재(941b)는 밸브 연결 배관(950)과 연통된다.
도 25에 도시된 바와 같이, 제2 단부 연결 부재(941b)는 복수 개 구비될 수 있다. 복수 개의 제2 단부 연결 부재(941b)는 서브 배관 유닛(920)을 향하는 밸브 유입 배관(951) 및 밸브 유출 배관(952)의 각 단부에 각각 결합된다.
제1 단부 연결 부재(941a)와 제2 단부 연결 부재(941b)는 서로 마주하는 단부가 결합될 수 있다. 제1 단부 연결 부재(941a)와 제2 단부 연결 부재(941b)는 서로 연통된다.
배관 지지 부재(942)는 서브 배관 유닛(920)과 밸브 연결 배관(950)을 지지하도록 구성된다. 배관 지지 부재(942)는 서브 배관 유닛(920)과 밸브 연결 배관(950)과 각각 결합된다.
후술될 바와 같이, 서브 배관 유닛(920)은 고정 프레임(25)에 결합된 배관 고정 부재(943)에 의해 고정될 수 있다. 배관 지지 부재(942)는 안정적으로 고정된 서브 배관 유닛(920)과 밸브 연결 배관(950)을 동시에 지지한다.
이에 따라, 밸브 연결 배관(950) 또한 안정적으로 지지되어, 서브 배관 유닛(920)과 밸브 연결 배관(950)의 연결 상태가 안정적으로 유지될 수 있다.
도시된 실시 예에서, 배관 지지 부재(942)는 서브 배관 유닛(920) 및 밸브 연결 배관(950)의 하측에 위치된다. 배관 지지 부재(942)의 위치는 변경될 수 있다.
배관 지지 부재(942)는 서브 배관 유닛(920)이 연장 형성되는 방향, 도시된 실시 예에서 전후 방향으로 연장 형성된다.
배관 지지 부재(942)는 소정의 형상 변형이 가능한 소재로 형성될 수 있다. 일 실시 예에서, 배관 지지 부재(942)는 합성 수지 소재로 형성될 수 있다. 이에 따라, 서브 모듈(10)이 작동됨에 따라 진동이 발생되더라도, 배관 지지 부재(942)가 형상이 변형되며 상기 진동이 완충될 수 있다.
배관 지지 부재(942)가 연장 형성되는 방향의 일측, 도시된 실시 예에서 전방 측은 서브 배관 유닛(920)까지 연장된다. 배관 지지 부재(942)의 상기 전방 측 단부는 서브 배관 유닛(920)을 향해 절곡된다.
상기 절곡된 부분에는 제1 클립부(942a)가 구비된다. 제1 클립부(942a)는 서로 마주하는 한 쌍의 곡면을 포함한다. 상기 곡면 사이에는 소정의 공간이 형성된다. 단부 연결 부재(941)를 향하는 서브 배관 유닛(920)의 일측은 상기 소정의 공간에 탈착 가능하게 삽입 결합된다.
배관 지지 부재(942)가 연장 형성되는 방향의 타측, 도시된 실시 예에서 후방 측은 밸브 연결 배관(950)까지 연장된다. 배관 지지 부재(942)의 상기 후방 측 단부는 밸브 연결 배관(950)을 향해 절곡된다.
상기 절곡된 부분에는 제2 클립부(942b)가 구비된다. 제2 클립부(942b)는 서로 마주하는 한 쌍의 곡면을 포함한다. 상기 곡면 사이에는 소정의 공간이 형성된다. 단부 연결 부재(941)를 향하는 밸브 연결 배관(950)의 일측은 상기 소정의 공간에 탈착 가능하게 삽입 결합된다.
배관 고정 부재(943)는 서브 배관 유닛(920)을 고정한다. 배관 고정 부재(943)는 서브 배관 유닛(920)과 결합된다.
배관 고정 부재(943)는 소정의 형상 변형이 가능한 소재로 형성될 수 있다. 일 실시 예에서, 배관 고정 부재(943)는 합성 수지 소재로 형성될 수 있다. 이에 따라, 서브 모듈(10)이 작동됨에 따라 진동이 발생되더라도, 배관 고정 부재(943)가 형상이 변형되며 상기 진동이 완충될 수 있다.
배관 고정 부재(943)는 고정 프레임(25)에 결합된다. 구체적으로, 커패시터 조립체(100)를 향하는 배관 고정 부재(943)의 일측은 고정 프레임(25)에 체결된다.
배관 고정 부재(943)는 상기 일측에서 서브 배관 유닛(920)을 향해 연장 형성된다. 배관 고정 부재(943)는 수직부 및 경사부를 포함할 수 있다.
수직부는 배관 고정 부재(943)가 고정 프레임(25)에 접촉 및 결합되는 부분이다. 수직부는 고정 프레임(25)의 일측, 도시된 실시 예에서 후방 측 면을 따라 연장 형성될 수 있다.
경사부는 수직부의 상측 단부에서 서브 배관 유닛(920)을 향해 연장 형성된다. 경사부는 수직부와 소정의 각도를 이루며 연장 형성된다. 일 실시 예에서, 상기 소정의 각도는 둔각일 수 있다.
경사부의 상측 단부의 일측에는 제1 고정부(943a)가 형성된다. 제1 고정부(943a)는 서로 마주하는 한 쌍의 곡면을 포함한다. 상기 곡면 사이에는 소정의 공간이 형성된다. 단부 연결 부재(941)를 향하는 서브 유입 배관(921)의 일측은 상기 소정의 공간에 탈착 가능하게 삽입 결합된다.
경사부의 상측 단부의 타측에는 제2 고정부(943b)가 형성된다. 제2 고정부(943b)는 서로 마주하는 한 쌍의 곡면을 포함한다. 상기 곡면 사이에는 소정의 공간이 형성된다. 단부 연결 부재(941)를 향하는 서브 유출 배관(922)의 일측은 상기 소정의 공간에 탈착 가능하게 결합된다.
정리하면, 서브 배관 유닛(920) 및 밸브 연결 배관(950)은 배관 연결 유닛(940)에 의해 고정, 지지된다. 이에 따라, 서브 배관 유닛(920)과 밸브 연결 배관(950) 사이의 결합 상태가 안정적으로 유지될 수 있다.
밸브 연결 배관(950)은 배관 연결 유닛(940)과 냉각 플레이트(430)를 연통한다. 밸브 연결 배관(950)은 배관 연결 유닛(940) 및 냉각 플레이트(430)와 각각 연통된다.
밸브 연결 배관(950)은 복수 개 구비될 수 있다. 복수 개의 밸브 연결 배관(950)은 유입구(431)와 배관 연결 유닛(940) 및 유출구(432)와 배관 연결 유닛(940)과 각각 연통된다.
밸브 연결 배관(950)은 배관 연결 유닛(940)에서 냉각 플레이트(430) 사이에서 연장된다. 밸브 연결 배관(950)은 복수 개 구비될 수 있다. 복수 개의 밸브 연결 배관(950)은 각 서브 모듈(10)마다 구비될 수 있다.
밸브 연결 배관(950)은 밸브 유입 배관(951) 및 밸브 유출 배관(952)을 포함한다.
밸브 유입 배관(951)에는 서브 유입 배관(921)을 통해 유입된 저온의 냉매 유체가 유입된다. 밸브 유입 배관(951)은 유입구(431)를 통해 냉각 플레이트(430)의 내부 공간과 연통된다.
유입된 저온의 냉각 유체는 유입구(431)를 통해 냉각 플레이트(430)의 내부 공간으로 유동된다.
밸브 유입 배관(951)에 인접하게 밸브 유출 배관(952)이 위치된다.
밸브 유출 배관(952)에는 냉각 플레이트(430)를 유동하며 IGBT(440)와 열교환된 고온의 냉각 유체가 유입된다. 밸브 유출 배관(952)은 유출구(432)를 통해 냉각 플레이트(430)의 내부 공간과 연통된다.
유입된 고온의 냉각 유체는 밸브 유출 배관(952)을 통해 메인 유출 배관(912)으로 유동된다.
잔수 포집 유닛(960)은 배관 연결 유닛(940)에서 배출된 잔수를 포집한다. 잔수 포집 유닛(960)은 제1 단부 연결 부재(941a)및 제2 단부 연결 부재(941b)가 결합되는 지점의 하측에 위치될 수 있다.
잔수 포집 유닛(960)은 커패시터 조립체(100)에 결합된다. 구체적으로, 잔수 포집 유닛(960)은 커패시터 조립체(100)의 상측 면에 구비되는 브라켓 부재에 결합된다.
잔수 포집 유닛(960)은 커패시터 조립체(100)에 탈착 가능하게 결합될 수 있다. 잔수 포집 유닛(960)에 소정의 용량 이상의 잔수가 포집되면, 사용자는 잔수 포집 유닛(960)을 탈거하여 포집된 잔수를 배출할 수 있다.
잔수 포집 유닛(960)은 복수 개 구비될 수 있다. 복수 개의 잔수 포집 유닛(960)은 각 서브 모듈(10)마다 구비될 수 있다.
잔수 포집 유닛(960)은 커패시터 조립체(100)에서 상측으로 연장 형성된다. 구체적으로, 잔수 포집 유닛(960)은 커패시터 조립체(100)의 상측 면과 평행하게 연장되는 제1 부분, 제1 부분에서 제1 부분과 소정의 각도를 이루며 상측으로 연장 형성되는 제2 부분 및 제2 부분에서 수평하게 연장되는 제3 부분을 포함한다.
잔수 포집 유닛(960)은 잔수 포집 공간부(961)를 포함한다. 잔수 포집 공간부(961)는 배관 연결 유닛(940)에서 탈락된 잔수가 포집되는 공간이다. 잔수 포집 공간부(961)는 상기 제3 부분에서 소정 거리만큼 함몰 형성된다.
상술한 바와 같이, 냉각 유로부(900)는 IGBT(440)를 냉각하기 위한 냉각 유체를 순환시킨다. 저온의 냉각 유체는 냉각 유체 순환 장치(미도시)에서 메인 유입 배관(911), 분지 유입 배관(931), 서브 유입 배관(921), 배관 연결 유닛(940) 및 밸브 유입 배관(951)을 통과하여 냉각 플레이트(430)에 유입된다.
냉각 플레이트(430)에 유입된 저온의 냉각 유체는 냉각 플레이트(430)의 내부 공간을 유동하며 IGBT(440)와 열교환된다. IGBT(440)에서 발생된 열은 저온의 냉각 유체로 전달된다. 이에 따라, 저온의 냉각 유체는 고온의 냉각 유체로 변화된다.
고온의 냉각 유체는 냉각 플레이트(430)에서 배출된다. 배출된 고온의 냉각 유체는 밸브 유출 배관(952), 배관 연결 유닛(940), 서브 유출 배관(922), 분지 유출 배관(932) 및 메인 유출 배관(912)을 거쳐 냉각 유체 순환 장치(미도시)로 유동된다.
따라서, IGBT(440)에서 발생된 열은 냉각 유체에 의해 배출될 수 있다. 이에 따라, IGBT(440)가 적정 온도로 유지되어, 서브 모듈(10)의 작동 신뢰성이 향상될 수 있다.
또한, 서브 배관 유닛(920)과 밸브 연결 배관(950)은 배관 지지 부재(942)에 의해 지지된다. 더 나아가, 서브 배관 유닛(920)은 배관 고정 부재(943)에 의해 고정된다.
따라서, 서브 모듈(10)이 작동됨에 따라 발생되는 진동에 의해, 냉각 유로부(900)의 각 구성 요소의 결합이 해제되지 않게 된다.
배관 연결 유닛(940)의 하측에는 잔수 포집 유닛(960)이 구비된다. 잔수 포집 유닛(960)은 배관 연결 유닛(940)에서 탈락된 잔수를 포집한다. 이에 따라, 탈락된 잔수가 커패시터 조립체(100) 또는 밸브 조립체(200)로 유입되지 않게 된다.
이에 따라, 냉각 유체가 임의 유출되어 서브 모듈(10)의 구성 요소가 손상되지 않게 된다.
이상 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 당 업계에서 통상의 지식을 가진 자라면 이하의 청구범위에 기재된 본 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
1: 모듈형 멀티 레벨 컨버터(Modular Multilevel Converter)
10: 서브 모듈(Sub Module)
20: 프레임
21: 수직 프레임
22: 수평 프레임
23: 지지부
24: 절연 부재
25: 고정 프레임
100: 커패시터 조립체
110: 커패시터 하우징
120: 커패시터 커넥터
121: 제1 커패시터 커넥터
122: 제2 커패시터 커넥터
200: 밸브 조립체
210: 밸브 커버부
220: 밸브 커넥터
230: 입력 부스바
231: 제1 입력 부스바
232: 제2 입력 부스바
240: 바이패스 스위치
250: 출력 부스바
260: 절연 하우징
261: 제1 벽
262: 제2 벽
263: 제3 벽
264: 제4 벽
270: 절연 레이어
280: 인쇄회로기판
300: 접지부
310: 접지봉 유닛
310a: 제1 접지봉 유닛
310b: 제2 접지봉 유닛
311: 몸체부
312: 결합부
313: 접지 도체부
314: 접지 도선부
315: 씰링(sealing)부
316: 저항부
320: 접지 커넥터
321: 제1 접지 커넥터
322: 제2 접지 커넥터
330: 접지 돌출부
331: 제1 접지 돌출부
332: 제2 접지 돌출부
340: 접지 도선부
341: PCB 접지 도선
342: 하우징 접지 도선
343: 부스바 접지 도선
400: 방폭 프레임부
410: 케이스 유닛
411: 돌출부
412: 접지봉 관통홀
413: IGBT 수용부
413a: 제1 IGBT 수용부
413b: 제2 IGBT 수용부
413c: 격벽부
414: 내벽부
414a: 제1 내벽부
414b: 제2 내벽부
415: 외벽부
415a: 제1 외벽부
415b: 제2 외벽부
416: 내부 연통 홈
416a: 제1 내부 연통 홈
416b: 제2 내부 연통 홈
417: 외부 연통 홈
417a: 제1 외부 연통 홈
417b: 제2 외부 연통 홈
418: 완충 공간부
418a: 제1 완충 공간부
418b: 제2 완충 공간부
419: 모서리부
420: 통전 부스바
421: 제1 통전 부스바
422: 제2 통전 부스바
430: 냉각 플레이트
431: 유입구
432: 유출구
440: IGBT
441: 제1 IGBT
442: 제2 IGBT
500: 레일 조립체
510: 카트 유닛
510a: 커패시터 카트 유닛
510b: 밸브 카트 유닛
511: 카트 몸체부
511a: 탄성 부재 결합부
512: 연장부
513: 라운드부
513a: 카트 중공부
514: 휠(wheel)부
514a: 휠 몸체부
514b: 디스크부
514c: 카트 결합부
520: 브라켓 유닛
521: 수평부
522: 수직부
530: 체결 유닛
531: 레버 체결 부재
532: 휠 체결 부재
540: 레일(rail) 유닛
541: 레일 몸체부
542: 레일 만곡부
542a: 제1 레일 만곡부
542b: 제2 레일 만곡부
542c: 제3 레일 만곡부
542d: 측면 제한부
542e: 상부면 제한부
543: 레일 연장부
543a: 체결공
544: 단차부
544a: 가이드 공간부
545: 지지부
600: 이탈 방지부
610: 스토퍼(stopper) 부재
611: 스토퍼 몸체부
612: 락킹 플레이트
613: 휠 결합부
614: 탄성 부재 결합공
620: 회전 베어링 부재
630: 탄성 부재
631: 카트 연결부
632: 스토퍼 연결부
640: 차단 플레이트
641: 차단 체결 부재
650: 정지 홈
651: 제1 면
652: 제2 면
700: 설치 분리부
710: 레버 부재
711: 연장부
711a: 제1 연장부
711b: 제2 연장부
712: 손잡이부
720: 레버 결합 부재
721: 레버 삽입 홀
730: 레버 삽입 홈
731: 제1 레버 삽입 홈
732: 제2 레버 삽입 홈
800: 단락 조정부
810: 이동 부재
811: 연장 몸체부
812: 단부 삽입 홈
820: 단락 블록
821: 단락 도선
822: 이동 부재 지지부
822a: 제1 부분
822b: 제2 부분
823: 접촉부
830: 가변 커넥터
831: 제1 커넥터 단부
832: 제2 커넥터 단부
840: 링크 부재
841: 회전축부
842: 제1 링크
843: 제2 링크
850: 인디케이터 부재
851: 인디케이터 하우징
852: 제1 표시부
853: 제2 표시부
854: 단락 조정 레버
855: 핀 부재
900: 냉각 유로부
910: 메인 배관 유닛
911: 메인 유입 배관
912: 메인 유출 배관
913: 메인 배관 고정 부재
913a: 체결 관통부
914: 체결 부재
915: 유격 공간부
920: 서브 배관 유닛
921: 서브 유입 배관
922: 서브 유출 배관
930: 분지 배관 유닛
931: 분지 유입 배관
932: 분지 유출 배관
940: 배관 연결 유닛
941: 단부 연결 부재
941a: 제1 단부 연결 부재
941b: 제2 단부 연결 부재
942: 배관 지지 부재
942a: 제1 클립부
942b: 제2 클립부
943: 배관 고정 부재
943a: 제1 고정부
943b: 제2 고정부
950: 밸브 연결 배관
951: 밸브 유입 배관
952: 밸브 유출 배관
960: 잔수 포집 유닛
961: 잔수 포집 공간부

Claims (31)

  1. 내부에 커패시터 소자를 수용하는 커패시터 조립체;
    상기 커패시터 조립체와 통전 가능하게 결합되는 밸브 조립체;
    상기 커패시터 조립체 또는 상기 밸브 조립체가 안착되는 카트(cart) 유닛; 및
    상기 카트 유닛이 슬라이드 가능하게 결합되며, 일 방향으로 연장 형성되는 레일 유닛을 포함하며,
    상기 카트 유닛은,
    상기 레일 유닛을 향해 연장 형성되는 연장부; 및
    상기 연장부의 일측에 회전 가능하게 결합되며, 상기 레일 유닛에 회전 가능하게 접촉되는 휠(wheel)부를 포함하고,
    상기 레일 유닛은,
    상기 카트 유닛을 향해 연장 형성되어, 상기 연장부의 타측을 마주하는 레일 만곡부를 포함하는,
    서브 모듈.
  2. 제1항에 있어서,
    상기 카트 유닛은,
    상기 연장부의 상기 타측에서 상기 레일 만곡부를 향해 라운드지게 돌출 형성되는 라운드부를 포함하고,
    상기 레일 만곡부는,
    상기 라운드부를 감싸도록 만곡 형성되는,
    서브 모듈.
  3. 제2항에 있어서,
    상기 레일 만곡부는,
    상기 라운드부에서 멀어지는 방향으로 라운드지게 형성되는,
    서브 모듈.
  4. 제2항에 있어서,
    상기 카트 유닛은,
    상기 커패시터 조립체 또는 상기 밸브 조립체가 안착되며, 안착된 상기 커패시터 조립체 또는 상기 밸브 조립체에 대향하는 일측에서 상기 연장부가 연장되는 카트 몸체부를 포함하고,
    상기 레일 만곡부는,
    상기 카트 유닛을 향하는 일측 단부가 상기 라운드부와 상기 카트 몸체부 사이에 위치되도록 연장 형성되는,
    서브 모듈.
  5. 제2항에 있어서,
    상기 레일 유닛은,
    상기 커패시터 조립체 또는 상기 밸브 조립체에 대향하는 상기 카트 유닛의 일측에 위치되며, 상기 레일 만곡부가 연장되는 레일 몸체부를 포함하고,
    상기 레일 만곡부는,
    상기 라운드부에서 멀어지는 방향으로, 상기 레일 몸체부에서 라운드지게 연장 형성되는 제1 레일 만곡부;
    상기 라운드부에서 멀어지는 방향으로, 상기 제1 레일 만곡부에서 라운드지게 연장 형성되는 제2 레일 만곡부; 및
    상기 라운드부에서 멀어지는 방향으로, 상기 제2 레일 만곡부에서 라운드지게 연장 형성되는 제3 레일 만곡부를 포함하는,
    서브 모듈.
  6. 제5항에 있어서,
    상기 라운드부를 향하는 상기 제2 레일 만곡부의 일측에는,
    상기 라운드부의 표면과 소정의 각도를 이루도록 라운드지게 형성되는 측면 제한부가 돌출 형성되는,
    서브 모듈.
  7. 제6항에 있어서,
    상기 측면 제한부는,
    상기 라운드부와 마주하는 일측 면이 상기 라운드부에서 멀어지는 방향으로 오목하게 형성되고,
    상기 라운드부는,
    상기 측면 제한부를 향해 볼록하게 형성되는,
    서브 모듈.
  8. 제5항에 있어서,
    상기 라운드부를 향하는 상기 제3 레일 만곡부의 일측에는,
    상기 라운드부를 향해 돌출 형성되는 상부면 제한부가 구비되는,
    서브 모듈.
  9. 제8항에 있어서,
    상기 상부면 제한부는,
    상기 라운드부와 마주하는 일측 면이 상기 라운드부에서 멀어지는 방향으로 오목하게 형성되고,
    상기 라운드부는,
    상기 상부면 제한부를 향해 볼록하게 형성되는,
    ,
    서브 모듈.
  10. 제1항에 있어서,
    상기 레일 유닛은,
    상기 레일 만곡부가 연장 형성되는 레일 몸체부;
    상기 레일 만곡부에서, 상기 휠부를 향해 연장 형성되는 레일 연장부; 및
    상기 레일 연장부와 연속되며, 상기 레일 연장부에서 멀어지는 방향에 위치되는 지지부를 포함하며,
    상기 휠부는,
    상기 지지부에 회전 가능하게 안착되는,
    서브 모듈.
  11. 제10항에 있어서,
    상기 레일 연장부와 상기 지지부 사이에는,
    상기 레일 연장부 및 상기 지지부와 각각 연속되며, 상기 휠부를 향하는 일측 면이 함몰 형성되는 단차부가 형성되는,
    서브 모듈.
  12. 제11항에 있어서,
    상기 단차부의 상기 일측 면과 상기 커패시터 조립체 또는 상기 밸브 조립체 사이의 최단 거리는,
    상기 휠부를 향하는 상기 지지부의 일측 면과 상기 커패시터 조립체 또는 상기 밸브 조립체 사이의 최단 거리보다 길게 형성되는,
    서브 모듈.
  13. 제11항에 있어서,
    상기 단차부의 상기 일측 면과 상기 커패시터 조립체 또는 상기 밸브 조립체 사이의 최단 거리는,
    상기 커패시터 조립체 또는 상기 밸브 조립체를 향하는 상기 레일 연장부의 일측 면과 상기 커패시터 조립체 또는 상기 밸브 조립체 사이의 최단 거리보다 길게 형성되는,
    서브 모듈.
  14. 제11항에 있어서,
    상기 휠부를 향하는 상기 지지부의 일측 면과 상기 커패시터 조립체 또는 상기 밸브 조립체 사이의 최단 거리는,
    상기 커패시터 조립체 또는 상기 밸브 조립체를 향하는 상기 레일 연장부의 일측 면과 상기 커패시터 조립체 또는 상기 밸브 조립체 사이의 최단 거리보다 길게 형성되는,
    서브 모듈.
  15. 제11항에 있어서,
    상기 휠부는,
    상기 지지부에 회전 가능하게 안착되는 휠 몸체부; 및
    상기 연장부를 향하는 상기 휠 몸체부의 일측에 위치되며, 상기 휠 몸체부보다 큰 직경을 갖도록 형성되는 디스크부를 포함하며,
    상기 휠 몸체부는 상기 지지부에 회전 가능하게 안착되고,
    상기 디스크부는 상기 레일 연장부, 상기 단차부 및 상기 지지부에 둘러싸인 공간에 수용되는,
    서브 모듈.
  16. 제15항에 있어서,
    상기 디스크부는,
    상기 레일 연장부 및 상기 지지부를 향하는 방향으로 소정의 두께를 갖도록 형성되고,
    상기 단차부가 상기 레일 연장부 및 상기 지지부 사이에서 연장되는 길이는,
    상기 디스크부의 두께보다 길게 형성되는,
  17. 제15항에 있어서,
    상기 디스크부의 외주는,
    상기 단차부의 상기 일측 면과 소정 거리 이격되는,
    서브 모듈.
  18. 제15항에 있어서,
    상기 연장부를 향하는 상기 디스크부의 일측에는, 상기 연장부에 회전 가능하게 결합되는 카트 결합부가 구비되는,
    서브 모듈.
  19. 밸브 조립체가 안착되는 카트 유닛;
    상기 카트 유닛이 슬라이드 이동 가능하게 결합되며, 일 방향으로 연장 형성되는 레일 유닛; 및
    상기 카트 유닛 및 상기 레일 유닛에 구비되어, 상기 카트 유닛이 상기 레일 유닛에서 임의 이탈되는 것을 방지하도록 구성되는 이탈 방지부를 포함하며,
    상기 이탈 방지부는,
    상기 카트 유닛에 회전 가능하게 결합되며, 일 방향으로 연장 형성되는 스토퍼(stopper) 부재; 및
    상기 레일 유닛의 일측 면에 함몰 형성되어, 상기 스토퍼 부재의 일측이 삽입되거나 배출되는 정지 홈을 포함하는,
    서브 모듈.
  20. 제19항에 있어서,
    상기 카트 유닛은,
    상기 레일 유닛이 연장 형성되는 상기 일 방향으로 연장 형성되는 카트 몸체부; 및
    상기 카트 몸체부에서 상기 레일 유닛을 향해 연장 형성되는 연장부를 포함하며,
    상기 스토퍼 부재는,
    상기 연장부의 일측에 결합되는,
    서브 모듈.
  21. 제20항에 있어서,
    상기 스토퍼 부재는,
    상기 스토퍼 부재가 연장 형성되는 상기 일 방향으로 연장 형성되는 스토퍼 몸체부; 및
    상기 스토퍼 몸체부의 연장 방향의 일측에서 상기 연장부를 향해 소정의 각도로 절곡 형성되는 락킹 플레이트(locking plate)를 포함하며,
    상기 스토퍼 부재가 상기 정지 홈에 삽입되면,
    상기 락킹 플레이트는 상기 정지 홈을 감싸는 어느 하나의 면에 접촉되는,
    서브 모듈.
  22. 제21항에 있어서,
    상기 이탈 방지부는,
    상기 스토퍼 부재와 상기 카트 유닛에 각각 결합되어, 상기 스토퍼 부재를 탄성 지지하도록 구성되는 탄성 부재를 포함하고,
    상기 스토퍼 부재는,
    상기 락킹 플레이트가 위치되는 일측과 반대되는 타측에 관통 형성되는 탄성 부재 결합공을 포함하며,
    상기 탄성 부재의 일측은 상기 탄성 부재 결합공에 결합되는,
    서브 모듈.
  23. 제22항에 있어서,
    상기 스토퍼 부재는,
    상기 락킹 플레이트와 상기 탄성 부재 결합공 사이에 위치되며, 상기 연장부에 회전 가능하게 결합되는 휠 결합부를 포함하고,
    상기 탄성 부재는,
    상기 탄성 부재 결합공이 형성된 상기 스토퍼 부재의 일측이 상기 카트 몸체부를 향하는 방향의 탄성력을 인가하도록 구성되는,
    서브 모듈.
  24. 제23항에 있어서,
    상기 레일 유닛은,
    상기 연장부에 회전 가능하게 결합되는 휠부가 안착되는 지지부를 포함하고,
    상기 락킹 플레이트는,
    상기 카트 몸체부를 향하는 상기 지지부의 일측 면에 접촉되는,
    서브 모듈.
  25. 제19항에 있어서,
    상기 카트 유닛은,
    상기 레일 유닛을 향해 연장 형성되는 연장부; 및
    상기 연장부에 회전 가능하게 결합되는 휠(wheel)부를 포함하며,
    상기 레일 유닛은, 상기 휠부가 안착되는 지지부를 포함하고,
    상기 정지 홈은, 상기 지지부에 형성되는,
    서브 모듈.
  26. 제25항에 있어서,
    상기 정지 홈은,
    상기 레일 유닛이 연장 형성되는 상기 일 방향의 일측 단부에 인접하게 위치되며, 상기 레일 유닛의 상기 일측 면과 소정의 각도를 이루며 연장 형성되는 제1 면; 및
    상기 제1 면과 연속되며, 상기 레일 유닛의 상기 일측 단부에서 멀어지는 방향으로 연장되고, 상기 제1 면에서 상기 레일 유닛의 상기 일측 면을 향해 연장 형성되는 제2 면을 포함하며,
    상기 제1 면은,
    상기 레일 유닛의 상기 일측 면에 대해 상기 제2 면보다 더 경사지게 형성되는,
    서브 모듈.
  27. 제26항에 있어서,
    상기 카트 유닛은,
    상기 스토퍼 부재가 상기 제1 면에 접촉되는 거리만큼 상기 정지 홈을 향해 이동될 수 있는,
    서브 모듈.
  28. 제19항에 있어서,
    상기 정지 홈은,
    상기 레일 유닛이 연장 형성되는 상기 일 방향의 일측 단부에 인접하게 위치되고,
    상기 스토퍼 부재는,
    상기 카트 유닛과 함께 상기 레일 유닛을 따라 상기 레일 유닛의 상기 일측 단부을 향하는 방향 또는 상기 레일 유닛의 상기 일측 단부에서 멀어지는 방향으로 이동되며,
    상기 스토퍼 부재가 상기 정지 홈에 삽입되면,
    상기 스토퍼 부재의 상기 일측이, 상기 레일 유닛의 상기 일측 단부에 인접한 위치에서 상기 정지 홈을 감싸는 제1 면과 접촉되는,
    서브 모듈.
  29. 제19항에 있어서,
    상기 정지 홈에 인접한 상기 레일 유닛의 일측 단부에는,
    상기 레일 유닛의 상기 일측 단부 및 상기 카트 유닛의 일측 단부에 각각 결합되어, 상기 카트 유닛의 이동을 제한하도록 구성되는 차단 플레이트가 구비되는,
    서브 모듈.
  30. 제29항에 있어서,
    상기 카트 유닛은,
    상기 밸브 조립체가 안착되는 카트 몸체부;
    상기 카트 몸체부에서 소정 거리만큼 연장 형성되는 연장부; 및
    상기 연장부에서 상기 이탈 방지부에 반대되는 방향으로 라운드지게 돌출 형성되는 라운드부를 포함하며,
    상기 라운드부의 내부에는,
    상기 레일 유닛이 연장 형성되는 상기 일 방향으로 관통 형성되어, 상기 차단 플레이트를 상기 카트 유닛에 체결하는 차단 체결 부재가 체결되는 카트 중공부가 구비되는,
    서브 모듈.
  31. 제29항에 있어서,
    상기 레일 유닛은,
    상기 카트 유닛의 하측에서, 상기 레일 유닛이 연장 형성되는 상기 일 방향으로 연장 형성되는 레일 몸체부; 및
    상기 레일 몸체부에서 상기 스토퍼 부재를 향해 연장되는 레일 연장부를 포함하며,
    상기 레일 연장부의 내부에는,
    상기 레일 유닛이 연장 형성되는 상기 일 방향으로 관통 형성되어, 상기 차단 플레이트를 상기 레일 유닛에 체결하는 차단 체결 부재가 체결되는 체결공이 구비되는,
    서브 모듈.
PCT/KR2021/000464 2020-02-03 2021-01-13 서브 모듈 WO2021157887A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180011806.9A CN115039330A (zh) 2020-02-03 2021-01-13 子模块

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0012778 2020-02-03
KR10-2020-0012775 2020-02-03
KR1020200012775A KR102356820B1 (ko) 2020-02-03 2020-02-03 서브 모듈
KR1020200012778A KR102345252B1 (ko) 2020-02-03 2020-02-03 서브 모듈

Publications (1)

Publication Number Publication Date
WO2021157887A1 true WO2021157887A1 (ko) 2021-08-12

Family

ID=77200150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000464 WO2021157887A1 (ko) 2020-02-03 2021-01-13 서브 모듈

Country Status (2)

Country Link
CN (1) CN115039330A (ko)
WO (1) WO2021157887A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321464A (ja) * 1996-05-28 1997-12-12 Kel Corp 基板等のスライドガイドレール部材及びその取付ピッチ調整具
JPH1169531A (ja) * 1997-08-25 1999-03-09 Mitsubishi Electric Corp 電気設備及び電気機器の収納枠
JP2001105937A (ja) * 1999-10-13 2001-04-17 Tachi S Co Ltd シートスライド装置のレール体構造
US20170264084A1 (en) * 2016-03-11 2017-09-14 9088-5625 Quebec Inc. Circuit breaker positioning system and method for connection and disconnection thereof
KR20180120899A (ko) * 2017-04-28 2018-11-07 엘에스산전 주식회사 서브모듈 슬라이딩장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321464A (ja) * 1996-05-28 1997-12-12 Kel Corp 基板等のスライドガイドレール部材及びその取付ピッチ調整具
JPH1169531A (ja) * 1997-08-25 1999-03-09 Mitsubishi Electric Corp 電気設備及び電気機器の収納枠
JP2001105937A (ja) * 1999-10-13 2001-04-17 Tachi S Co Ltd シートスライド装置のレール体構造
US20170264084A1 (en) * 2016-03-11 2017-09-14 9088-5625 Quebec Inc. Circuit breaker positioning system and method for connection and disconnection thereof
KR20180120899A (ko) * 2017-04-28 2018-11-07 엘에스산전 주식회사 서브모듈 슬라이딩장치

Also Published As

Publication number Publication date
CN115039330A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2022085943A1 (ko) 간접 활선용 롤러 이동식 절연 리프트 암 및 이를 이용한 간접활선 무정전 공법
WO2021157874A1 (ko) 서브 모듈
WO2021182788A2 (ko) 기중 차단기
WO2020153560A1 (ko) 인버터 장치 및 이를 포함하는 인버터 패널
WO2021157873A1 (ko) 냉각 플레이트 및 이의 제조 방법
WO2021182786A1 (ko) 아크 소호부 및 이를 포함하는 기중 차단기
WO2021157875A1 (ko) 서브 모듈
WO2021040174A1 (ko) 아크 경로 형성부 및 이를 포함하는 직류 릴레이
WO2021157887A1 (ko) 서브 모듈
WO2021157876A1 (ko) 서브 모듈
WO2021182789A2 (ko) 기중 차단기
WO2023003112A1 (ko) 셔터 어셈블리, 락킹장치, 배전반 도어 및 이를 포함하는 배전반
WO2022108176A1 (ko) 차단기 및 이를 포함하는 차단기 조립체
WO2020153559A1 (ko) 인버터 장치 및 이를 포함하는 전력변환장치
WO2022098217A1 (ko) 단락 조정 장치 및 이를 포함하는 모듈형 멀티 레벨 컨버터
WO2021182787A2 (ko) 아크 소호부 및 이를 포함하는 기중 차단기
WO2022181985A1 (ko) 부하 개폐기
WO2022240032A1 (ko) 아크 소호부, 차단부 및 이를 포함하는 기중 차단기
WO2022181986A1 (ko) 아크 슈트 및 이를 포함하는 부하 개폐기
WO2021141320A1 (ko) 전자 접촉기
WO2023163410A1 (ko) 아크 슈트 및 이를 포함하는 부하 개폐기
WO2024085365A1 (ko) 아크 소호 장치
WO2022181980A1 (ko) 아크 슈트 및 이를 포함하는 부하 개폐기
WO2023204394A1 (ko) 인입출 장치
WO2022234989A1 (ko) 차단부 및 이를 포함하는 기중 차단기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21750289

Country of ref document: EP

Kind code of ref document: A1