WO2021157567A1 - 宇宙機液体推進システムの故障診断システム、及び宇宙機液体推進システムの故障診断方法 - Google Patents

宇宙機液体推進システムの故障診断システム、及び宇宙機液体推進システムの故障診断方法 Download PDF

Info

Publication number
WO2021157567A1
WO2021157567A1 PCT/JP2021/003722 JP2021003722W WO2021157567A1 WO 2021157567 A1 WO2021157567 A1 WO 2021157567A1 JP 2021003722 W JP2021003722 W JP 2021003722W WO 2021157567 A1 WO2021157567 A1 WO 2021157567A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
failure diagnosis
frequency spectrum
spacecraft
propulsion system
Prior art date
Application number
PCT/JP2021/003722
Other languages
English (en)
French (fr)
Inventor
要 河津
亜衣 能美
直樹 石濱
長田 泰一
Original Assignee
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構 filed Critical 国立研究開発法人宇宙航空研究開発機構
Priority to US17/753,709 priority Critical patent/US20220341375A1/en
Publication of WO2021157567A1 publication Critical patent/WO2021157567A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/401Liquid propellant rocket engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/66Arrangements or adaptations of apparatus or instruments, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/96Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by specially adapted arrangements for testing or measuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics

Definitions

  • the present invention relates to a spacecraft liquid propulsion system and a method for diagnosing a failure of a spacecraft liquid propulsion system.
  • the liquid propulsion system used for attitude control of spacecraft such as artificial satellites and H-II Transfer Vehicle is one of the important systems responsible for mission success and spacecraft reliability. Due to its importance, this spacecraft liquid propulsion system generally has multiple redundant configurations.
  • a redundant configuration As a redundant configuration, a redundant configuration is known in which a plurality of systems having the same or similar functions / configurations are provided in the propulsion system.
  • a redundant configuration in which systems having different functions and configurations are combined is also known. In the latter case, even if a failure occurs in one of the redundant systems, the other system operates so as to compensate for the excess or deficiency of the attitude control amount due to the failure. For this reason, waste due to redundancy is suppressed, but there is a problem that it becomes difficult to determine the presence or absence of a failure and the location of the failure from the attitude information.
  • the present invention provides a failure diagnosis system capable of accurately diagnosing equipment failure in a spacecraft liquid propulsion system, and a failure diagnosis method.
  • the failure diagnosis system of the spacecraft liquid propulsion system is a failure diagnosis system of the spacecraft liquid propulsion system including a plurality of thrusters and a supply pipe connected to the thrusters.
  • This system tests a pressure sensor that detects the pressure inside the supply pipe as time-series data, a frequency spectrum converter that converts the time-series data into frequency spectrum data, and an analysis model or test device by computer simulation.
  • a storage unit that stores frequency spectrum data generated based on the results as a data set, a comparison unit that compares the data set with the frequency spectrum data generated by the frequency spectrum conversion unit, and a comparison result of the comparison unit. According to this, a determination unit for determining a failure in any of the plurality of thrusters is provided.
  • the failure diagnosis method of the spacecraft liquid propulsion system is the failure diagnosis method of the spacecraft liquid propulsion system, wherein the spacecraft liquid propulsion system includes a plurality of thrusters and a supply pipe connected to the plurality of thrusters. Based on the steps of acquiring the pressure inside the supply pipe as time-series data, converting the time-series data into frequency spectrum data, and the test results of an analysis model or test apparatus by computer simulation. A step of acquiring a frequency spectrum data set for failure diagnosis in advance and a step of diagnosing the presence or absence of a thruster failure and a failure location based on the similarity between the frequency spectrum data and the data set. Be prepared.
  • this time series data is converted into frequency spectrum data.
  • the data of this frequency spectrum is compared with the data set acquired in advance, and the presence or absence of failure of the propulsion system and the location of failure are diagnosed.
  • FIG. 1 It is an external view which shows the schematic structure of the spacecraft 1 to which the spacecraft liquid propulsion system which concerns on 1st Embodiment is applied. It is the schematic explaining the structure of the propulsion control module (spacecraft liquid propulsion system) included in the service module 100. It is a waveform diagram which shows an example of the fuel injection pulse signal of each thruster 101A to C, and the time-series detection signal of a pressure sensor 106. This is an example of a graph (b) when the time-series pressure data (a) of the signal measured by the pressure sensor 106 is converted into the time-series frequency data. It is an example of the graph of the frequency spectrum generated based on the graph of FIGS. 4A and 4B.
  • FIG. 1 shows a schematic configuration of a spacecraft 1 to which the spacecraft liquid propulsion system according to the first embodiment is applied.
  • the spacecraft 1 illustrated in FIG. 1 is a space station replenisher for supplying supplies to the International Space Station.
  • the spacecraft 1 (space station replenisher) is composed of a service module 100, a pressurization module 200, an exposure cargo mounting unit 300, and a solar cell module 400.
  • the service module 100 is a module that controls various controls of the spacecraft 1, and includes a communication module, a power supply module, a data processing module, a solar cell paddle system, a propulsion control module, and the like inside.
  • the pressurization module 200 is a module that has a coupling portion to the International Space Station and carries a pressurization supply.
  • the exposed cargo loading portion 300 is a portion for loading outboard supplies and constitutes a part of the service module 100.
  • This propulsion control module has a redundant configuration including a plurality of thrusters 101 (here, three thrusters 101A to C).
  • the thrusters 101A to 101C are propulsion devices attached to the housing of the spacecraft 1 to give propulsive force to the spacecraft 1 and control its position and attitude.
  • the three thrusters 101A to 101C have different configurations, and operate at the same time under normal conditions, and when one of the thrusters fails, the remaining thrusters compensate for the operation of the failed thruster. Is controlled to work.
  • this propulsion control module includes a fuel tank 102, an oxidant tank 103, a first supply pipe 104, a second supply pipe 105, a pressure sensor 106, and a control unit 107.
  • the control unit 107 further includes an A / D converter 121, a sample hold circuit 122, a frequency spectrum conversion unit 123, a comparison unit 124, a determination unit 125, and a failure diagnosis data set storage unit 126.
  • the fuel tank 102 is a tank for storing the fuel supplied to the thrusters 101A to 101C.
  • the oxidant tank 103 is a tank for storing the oxidants supplied to the thrusters 101A to C.
  • the oxidizer, together with the fuel, constitutes the propellant.
  • first supply pipe 104 includes a main pipe and first branch pipes 104A to C branching from the main pipe toward the three thrusters 101A to C.
  • second supply pipe 105 includes a main pipe and second branch pipes 105A to C branching from the main pipe toward the three thrusters 101A to C.
  • Fuel is supplied from the fuel tank 102 to each of the thrusters 101A to C via the first supply pipe 104, and the oxidant is supplied from the oxidant tank 103 via the second supply pipe 105.
  • the first supply pipe 104 and the second supply pipe 105 form a supply pipe for supplying the propellant (fuel and oxidant) to the thrusters 101A to C.
  • the first supply pipe 104 is branched into the first branch pipes 104A to C. Since the thrusters 101A to 101C are installed at different positions in the housing of the spacecraft 1, the first branch pipes 104A to C have different lengths L1 to L3.
  • the first branch pipes 104A to C may have different inner diameters, outer shapes, shapes, materials, and the like in addition to their lengths.
  • the second supply pipe 105 is also branched into the second branch pipes 105A to C. Since the thrusters 101A to 101C are installed at different positions in the housing of the spacecraft 1, the lengths L1'to L3' of the second branch pipes 105A to C are different from each other.
  • the second branch pipes 105A to 105C may have different inner diameters, outer shapes, shapes, materials, and the like in addition to their lengths.
  • the first supply pipe 104 is provided with a valve V1 at a position upstream of the branch point, and the first branch pipes 104A to C are provided with valves V1a to c. Further, the second supply pipe 105 is provided with a valve V2 at a position upstream of the branch point, and the second branch pipes 105A to C are provided with valves V2a to c.
  • the pressure sensor 106 detects the pressure at the position of the main pipe of the second supply pipe 105, that is, at a position upstream of the branch point of the second branch pipes 105A to C.
  • the pressure sensor 106 may detect the pressure of the first supply pipe 104 instead of (and in addition to) the second supply pipe 105.
  • the presence or absence of failure of a plurality of thrusters can be diagnosed by detecting the pressure at a position upstream of the branch point with one pressure sensor by the method described later. Mounting a plurality of pressure sensors on a spacecraft has the disadvantage that the weight of the spacecraft becomes large and the onboard supplies are reduced accordingly.
  • the A / D converter 121 converts the detection signal of the pressure sensor 106 into a time-series digital signal.
  • the time-series digital signal is temporarily held in the sample hold circuit 122.
  • the frequency spectrum conversion unit 123 converts the time-series digital signal temporarily held in the sample hold circuit 122 into frequency spectrum data.
  • the conversion to frequency spectrum data can be performed using a well-known Fast Fourier Transform (FFT). This frequency spectrum data is compared with the data set stored in the failure diagnosis data set storage unit 126 in the comparison unit 124.
  • FFT Fast Fourier Transform
  • the data set stored in the failure diagnosis data set storage unit 126 is a set of signal data of the pressure sensor 106 that is assumed when a failure occurs in any of the thrusters 101A to C.
  • the second branch pipes 105A to C (and / or the first branch pipes 104A to C) connected to the thrusters 101A to C have lengths (and / or inner diameters, outer diameters, shapes, materials, etc.), respectively. ) Is different. Therefore, the signal of the pressure sensor 106 assumed when any of the thrusters 101A to C fails is different from the signal of the pressure sensor 106 assumed when the other thrusters fail.
  • the frequency spectrum data of the signal of the pressure sensor 106 assumed when any of the thrusters 101A to C fails is used as the analysis model and / or the operation of the tester (test result) obtained by simulation. ), And stored as a data set in the failure diagnosis data set storage unit 126.
  • the comparison unit 124 compares the frequency spectrum data of the signal obtained from the pressure sensor 106 of the spacecraft 1 with the data set stored in the failure diagnosis data set storage unit 126, calculates the similarity, and calculates the closest degree. Identify the data that you want (high similarity). Based on this specific result, the determination unit 125 can determine which of the thrusters 101A to C has failed in the determination unit 125.
  • the determination in the comparison unit 124 can be performed by using well-known pattern matching, clustering, or the like.
  • FIG. 3 shows an example of the fuel injection pulse signals of the thrusters 101A to C and the time-series detection signals of the pressure sensor 106.
  • the waveform Wo is an example of a waveform obtained by simulating the case where all the thrusters 101A to C are operating normally
  • the waveform Wa is obtained by simulating the case where a failure occurs in the thruster 101A.
  • the waveform Wb is an example of a waveform obtained by simulating the case where a failure occurs in the thruster 101B
  • the waveform Wc is an example of a waveform obtained by simulating the case where a failure occurs in the thruster 101C.
  • the shape of the detection signal of the pressure sensor 106 differs depending on which of the thrusters 101A to C fails.
  • the detection signal of the pressure sensor in this time series is converted into a signal of the frequency spectrum.
  • the failure diagnosis data set storage unit 126 also stores the time-series signals as a data set after being converted into frequency spectrum data.
  • the data set stored in the failure diagnosis data set storage unit 126 is generated based on an analysis model in which a normal / failure state is simulated on a computer, as will be described later.
  • the data obtained based on the analysis model is verified based on the frequency spectrum data obtained using the testing machine.
  • the verified data is stored as a data set in the failure diagnosis data set storage unit 126.
  • FIG. 4 is an example of a graph (b) when the time-series pressure data (a) of the signal measured by the pressure sensor 106 is converted into the time-series frequency data.
  • FIG. 5 is an example of a frequency spectrum graph generated based on the graphs of FIGS. 4A and 4B. 5 (a) to 5 (d) show a transition from a state in which fuel is injected into the thrusters 101A to C at a predetermined pulse cycle (first state) to a state in which the pulse is stopped (second state). The frequency spectrum data corresponding to the time-series transient response data of the detection signal of the pressure sensor 106 later is shown.
  • FIG. 5 is an example of a graph (b) when the time-series pressure data (a) of the signal measured by the pressure sensor 106 is converted into the time-series frequency data.
  • FIG. 5 is an example of a frequency spectrum graph generated based on the graphs of FIGS. 4A and 4B. 5 (a) to 5 (d) show a transition from
  • the procedure for generating a data set to be stored in the failure diagnosis data set storage unit 126 will be described with reference to FIGS. 6A to 6C.
  • the data set for failure diagnosis can be acquired by using an analysis model by computer simulation. Further, for example, the test results obtained by using the test apparatus as shown in FIG. 6A (graphs on the left side of FIGS. 6B and 6C) are compared with the analysis results obtained based on the analysis model (graph on the right side). , The validity of the analysis model can be confirmed.
  • the test devices illustrated in FIG. 6A include a tank 103C, a supply pipe 105X, a supply adjustment device 108, pressure sensors P0, P1, Pc, PIU, PID, a solenoid valve SV1, a flow rate adjustment valve FCV2, and an orifice OF.
  • the supply adjusting device 108 includes valves RV, MVs 1 to 3, a pressure sensor PT, and a flow rate adjusting valve FCV1.
  • the tank 103C corresponds to the fuel tank 102 and / or the oxidant tank 103 of the spacecraft 1
  • the supply pipe 105X corresponds to the first supply pipe 104 and the second supply pipe 105 of the spacecraft 1.
  • the solenoid valve SV1 corresponds to the valves V1, V2, V1a to V1c, and V2a to V2c of the spacecraft 1.
  • the pressure sensors P0 and P1 are pressure sensors corresponding to the pressure sensor 106 in FIG. 2 and measure the pressure of the liquid flowing through the supply pipe 105X. Further, the pressure sensors PIU, Pc, and PID are pressure sensors for measuring the pressure loss in the solenoid valve SV1.
  • FIG. 6A is a test device simulating one branch pipe and one thruster in the spacecraft 1, but as shown in FIG. 7, three pieces more similar to the structure of the spacecraft 1 in FIG. Needless to say, a test device simulating a branch pipe and three thrusters can be used.
  • a data set for fault diagnosis of the thruster is generated in advance, and this data set and the frequency spectrum data of the signal detected by the pressure sensor 106 installed in the spacecraft 1 are combined. By comparison, the presence or absence of a thruster failure and the location are determined.
  • the procedure for generating the data set for failure diagnosis is executed in steps S201 to 205 of FIG. 8, and the determination of the failure of the thruster in the spacecraft 1 is performed in steps S301 to 305.
  • step S201 an analysis model simulating the normal state / failure state of the spacecraft 1 is created by computer simulation.
  • step S202 a ground test simulating the normal state / failure state of the spacecraft 1 is executed using, for example, a test device as shown in FIG. 6A or FIG. 7, and time-series data of the pressure inside the supply pipe is obtained. , And frequency spectrum data are acquired.
  • step S203 the validity of the analysis model created in step S201 is verified based on the test results obtained by the test apparatus in step S202.
  • step S204 the frequency spectrum data of the pressure in the supply pipe is acquired by using the analysis model whose validity was verified in step S203.
  • the acquired data is stored in the above-mentioned failure diagnosis data set storage unit 126 as a prior information group (data set) for determining the normal state / failure state of the spacecraft 1.
  • step S301 the pressure sensor 106 of the spacecraft 1 acquires time-series data of the pressure inside the supply pipe 105. Then, in step S302, the frequency spectrum conversion unit 123 converts the acquired pressure time series data into frequency spectrum data.
  • step S303 the acquired information obtained based on the pressure sensor 106 is compared with the data set stored in the failure diagnosis data set storage unit 126, and the data in the data set is similar to the acquired information. Judge the degree. When data showing a high degree of similarity is identified in the dataset, the presence or absence of a thruster failure and the location of the failure are identified based on the data. If it is determined that there is no failure (“normal” in step S304), the process returns to step S301 and the above procedure is repeated. When it is determined that there is a failure (“failure” in step S304), the presence / absence of a failure and the specific result of the location of the failure are output in step S305.
  • the time series data detected by the pressure sensor 106 is converted into frequency spectrum data, which is compared with the failure diagnosis data set acquired in advance. And a failure diagnosis is made. Therefore, even in a spacecraft having a redundant configuration in which systems having different functions and configurations are combined, it is possible to accurately determine the presence or absence of a failure and the location of the failure regardless of the attitude information. Further, by arranging the pressure sensor upstream of the branch portion of the supply pipe, it becomes possible to determine the failure of a plurality of thrusters with a small number of sensors.
  • a failure diagnosis system and a failure diagnosis method for the spacecraft liquid propulsion system according to the second embodiment will be described with reference to FIG.
  • the overall configuration of the failure diagnosis system of the spacecraft liquid propulsion system of the second embodiment may be the same as that of the first embodiment (FIG. 2).
  • the sound velocity of the fluid in the pipe is calculated based on the response frequency of the detected pressure and the known pipe length. do. Then, based on the calculated sound velocity, the data set to be stored in the failure diagnosis data set storage unit 126 is corrected.
  • the change in the speed of sound due to the gas being dissolved in the propellant filling the pipe can be grasped. be able to.
  • a data set for fault diagnosis of the thruster is generated in advance, and this data set and the pressure sensor 106 installed in the spacecraft 1 are generated.
  • the procedure for generating the data set for failure diagnosis is executed in steps S201 to 207, and the determination of the failure of the thruster in the spacecraft 1 is performed in steps S301 to 305 and S306.
  • step S306 prior to step S301, the sound velocity of the propellant in the pipe of the supply pipe 105 is calculated according to the detection information of the pressure sensor 106 in the test mode. Based on this sound velocity information, the data set is corrected in step S206. In step S207, this data set is stored in the failure diagnosis data set storage unit 126, and is used for failure diagnosis in the same manner as in the first embodiment.
  • a failure diagnosis system and a failure diagnosis method for the spacecraft liquid propulsion system according to the third embodiment will be described with reference to FIG.
  • the overall configuration of the failure diagnosis system of the spacecraft liquid propulsion system of the third embodiment may be the same as that of the first embodiment (FIG. 2).
  • the execution procedure of the failure diagnosis may be the same as that of the first embodiment.
  • the length of the second supply pipe 105 (and / or the first supply pipe 104) (particularly the length of each branch pipe) is set, and the length is set. It includes a procedure for evaluating the possibility of failure diagnosis in length, which is different from the first embodiment.
  • the method of the first and second embodiments utilizes the fact that the waveform of the frequency spectrum changes due to the difference in the length of the supply pipes to the plurality of thrusters, and the presence or absence of failure of the plurality of thrusters. And identify the location of the failure.
  • the third embodiment includes a procedure for appropriately setting the length of the supply pipe.
  • step S501 a ground test simulating the normal state / failure state of the spacecraft 1 is executed using a test device as shown in FIG. 6A or FIG. 7, and time-series data of the pressure inside the supply pipe is obtained. And acquire frequency spectrum data.
  • step S502 an analysis model simulating the normal state / failure state of the spacecraft 1 is created by computer simulation. Then, in step S503, the validity of the analysis model is verified according to the result of the ground test in step S501.
  • step S601 the length of the supply pipe (branch pipe) is set in step S601.
  • step S602 on the premise of the length of the set supply pipe (branch pipe), the normal state / failure state (all of the plurality of thrusters are normal or one of them fails) using the verified analysis model.
  • the data of the frequency spectrum of the pressure in the supply pipe in (is it done) is acquired.
  • step S603 the waveforms of a large number of obtained frequency spectra are analyzed to determine whether or not normal / fault diagnosis is possible. If it is determined that the diagnosis is difficult, the process returns to step S601, the length of the supply pipe is set to a different length, and the same operation is repeated.
  • the present invention is not limited to the above-mentioned examples, but includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • the analysis model based on the computer simulation is verified by using the test result obtained by the test apparatus, but the reliability of the analysis model obtained as the result of the computer simulation is high. If is certified, it is possible to omit the verification based on the test result by the test device. On the contrary, when it is recognized that the test device accurately reproduces the actual machine, it is possible to generate the data set only according to the test result of the test device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

宇宙機の故障を的確に診断することができる宇宙機液体推進システムの故障診断システム、及び宇宙機液体推進システムの故障診断方法を提供する。この宇宙機液体推進システムは、複数のスラスタと、スラスタに接続される供給管とを備える。このシステムは、供給管の内部の圧力を時系列データとして検出する圧力センサと、時系列データを周波数スペクトルのデータに変換する周波数スペクトル変換部と、コンピュータシミュレーションによる解析モデル又は試験装置の試験結果に基づいて生成された周波数スペクトルのデータをデータセットとして記憶する記憶部と、データセットを周波数スペクトル変換部が生成した周波数スペクトルのデータと比較する比較部と、比較部の比較結果に従い、複数のスラスタのいずれかにおける故障を判定する判定部とを備える。

Description

宇宙機液体推進システムの故障診断システム、及び宇宙機液体推進システムの故障診断方法
 本発明は、宇宙機液体推進システム、及び宇宙機液体推進システムの故障診断方法に関する。
 人工衛星や宇宙ステーション補給機等の宇宙機の姿勢制御に用いられる液体推進システムは、ミッション成功及び宇宙機の信頼性を担う重要なシステムの1つである。この宇宙機液体推進システムは、その重要性から複数の冗長構成を持つことが一般的である。
 冗長構成として、複数個の同一又は同種の機能・構成のシステムを推進システム中に設ける冗長構成が知られている。これに対し、冗長化による無駄を極力抑制するため、異なる機能・構成のシステムを組み合わせた冗長構成も知られている。後者の場合は、冗長系のうち1つの系で故障が発生したとしても、その他の系がその故障に伴う姿勢制御量の過不足を補うよう動作する。このため、冗長化による無駄は抑制されるが、故障の有無や故障個所を姿勢情報から判断することが困難になるという問題がある。
 また、宇宙機の場合、その重量及び電力等のリソースの制約から、搭載することが出来る状態モニタリング用のセンサの数を最小化することが求められる。そのため、故障診断に用いる液体推進システムの状態量モニタに用いるセンサ数も、できるだけ少なくするのが望ましい。
特開昭60-60399号公報 特開2002-161800号公報
 本発明は、宇宙機液体推進システムにおける機器故障を的確に診断することができる故障診断システム、及び故障診断方法を提供するものである。
 本発明に係る宇宙機液体推進システムの故障診断システムは、複数のスラスタと、前記スラスタに接続される供給管とを備える宇宙機液体推進システムの故障診断システムである。このシステムは、前記供給管の内部の圧力を時系列データとして検出する圧力センサと、前記時系列データを周波数スペクトルのデータに変換する周波数スペクトル変換部と、コンピュータシミュレーションによる解析モデル又は試験装置の試験結果に基づいて生成された周波数スペクトルのデータをデータセットとして記憶する記憶部と、前記データセットを前記周波数スペクトル変換部が生成した周波数スペクトルのデータと比較する比較部と、前記比較部の比較結果に従い、前記複数のスラスタのいずれかにおける故障を判定する判定部とを備える。
 本発明に係る宇宙機液体推進システムの故障診断方法は、宇宙機液体推進システムの故障診断方法において、前記宇宙機液体推進システムは、複数のスラスタと、前記複数のスラスタに接続される供給管とを備え、前記供給管の内部の圧力を時系列データとして取得するステップと、前記時系列データを周波数スペクトルのデータに変換するステップと、コンピュータシミュレーションによる解析モデル又は試験装置の試験結果に基づいて、故障診断のための周波数スペクトルのデータセットを予め取得するステップと、前記周波数スペクトルのデータと、前記データセットとの間の類似度に基づき、スラスタの故障の有無及び故障個所を診断するステップとを備える。
 本発明によれば、供給管の内部の圧力を時系列データとして取得した後、この時系列データが周波数スペクトルのデータに変換される。この周波数スペクトルのデータが、予め取得されたデータセットと比較され、推進システムの故障の有無及び故障個所が診断される。これにより、宇宙機の故障を的確に診断することができる宇宙機液体推進システムの故障診断システム、及び宇宙機液体推進システムの故障診断方法を提供することができる。
第1の実施の形態に係る宇宙機液体推進システムが適用される宇宙機1の概略構成を示す外観図である。 サービスモジュール100に含まれる推進制御モジュール(宇宙機液体推進システム)の構成を説明する概略図である。 各スラスタ101A~Cの燃料噴射パルス信号と、圧力センサ106の時系列の検出信号の一例を示す波形図である。 圧力センサ106で計測された信号の時系列の圧力のデータ(a)を、時系列の周波数データに変換した場合のグラフ(b)の一例である。 図4(a)、(b)のグラフに基づいて生成された、周波数スペクトルのグラフの一例である。 故障診断用データセット記憶部126に記憶させるデータセットを生成するのに用いられる試験装置の一例である。 試験装置により得られる試験結果、及び解析モデルにより得られる解析結果の一例を示すグラフである。 試験装置により得られる試験結果、及び解析モデルにより得られる解析結果の一例を示すグラフである。 故障診断用データセット記憶部126に記憶させるデータセットを生成するのに用いられる試験装置の別の例である。 第1の実施の形態に係る故障診断システムの動作(故障診断方法)を説明するフローチャートである。 第2の実施の形態に係る故障診断システムの動作(故障診断方法)を説明するフローチャートである。 第3の実施の形態に係る故障診断システムの動作(故障診断方法)を説明するフローチャートである。
 以下、添付図面を参照して本実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本開示の原理に則った実施形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味においても限定するものではない。
 本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
[第1の実施の形態]
 図1~図8を参照して、第1の実施の形態に係る宇宙機液体推進システムの故障診断システムを及び故障診断方法を説明する。図1の外観図は、第1の実施の形態に係る宇宙機液体推進システムが適用される宇宙機1の概略構成を示している。図1に例示される宇宙機1は、国際宇宙ステーションに物資を供給するための宇宙ステーション補給機である。この宇宙機1(宇宙ステーション補給機)は、一例として、サービスモジュール100と、与圧モジュール200と、曝露カーゴ搭載部300と、太陽電池モジュール400とから構成される。
 サービスモジュール100は、宇宙機1の各種制御を司るモジュールであり、通信モジュール、電力供給モジュール、データ処理モジュール、太陽電池パドル系、推進制御モジュール等を内部に含んでいる。与圧モジュール200は、国際宇宙ステーションへの結合部分を有しており、与圧補給物資を搭載するモジュールである。曝露カーゴ搭載部300は、船外物資を搭載する部分であり、サービスモジュール100の一部を構成する。
 図2の概略図を参照して、サービスモジュール100に含まれる推進制御モジュール(宇宙機液体推進システム)の構成を説明する。この推進制御モジュールは、複数のスラスタ101(ここでは3個のスラスタ101A~C)を備えた冗長構成を有している。スラスタ101A~Cは、宇宙機1の筐体に取り付けられ、宇宙機1に推進力を与えると共にその位置や姿勢を制御する推進装置である。3個のスラスタ101A~Cは、互いに異なる構成を有しており、正常時は同時に動作するとともに、いずれかのスラスタが故障した場合に、残余のスラスタが、その故障したスラスタの動作を補うように動作するよう制御される。
 これに加えて、この推進制御モジュールは、燃料タンク102、酸化剤タンク103、第1供給管104、第2供給管105、圧力センサ106、及び制御部107を備えている。制御部107は更に、A/D変換器121、サンプルホールド回路122、周波数スペクトル変換部123、比較部124、判定部125、及び故障診断用データセット記憶部126を備える。燃料タンク102は、スラスタ101A~Cに供給される燃料を格納するタンクである。また、酸化剤タンク103は、スラスタ101A~Cに供給される酸化剤を格納するタンクである。酸化剤は、燃料と共に推進剤を構成する。
 また、第1供給管104は、主配管と、主配管から3つのスラスタ101A~Cに向けて分岐する第1分岐管104A~Cを備えている。また、第2供給管105は、主配管と、主配管から3つのスラスタ101A~Cに向けて分岐する第2分岐管105A~Cを備えている。
 各スラスタ101A~Cには、燃料タンク102から第1供給管104を介して燃料が供給されるとともに、酸化剤タンク103から第2供給管105を介して酸化剤が供給される。第1供給管104と第2供給管105とにより、スラスタ101A~Cに推進剤(燃料及び酸化剤)を供給する供給管が構成される。
 第1供給管104は、前述のように、第1分岐管104A~Cに分岐されている。スラスタ101A~Cは、宇宙機1の筐体の異なる位置に設置されているため、第1分岐管104A~Cは、その長さL1~L3が互いに異なっている。第1分岐管104A~Cは、その長さの他、内径、外形、形状、材質などが異なっていてもよい。
 第2供給管105も同様に、第2分岐管105A~Cに分岐されている。スラスタ101A~Cは、宇宙機1の筐体の異なる位置に設置されているため、第2分岐管105A~Cは、その長さL1´~L3´が互いに異なっている。第2分岐管105A~Cは、その長さの他、内径、外形、形状、材質などが異なっていてもよい。
 第1供給管104は、分岐点よりも上流の位置にバルブV1を備えているとともに、第1分岐管104A~Cにおいて、バルブV1a~cを備えている。また、第2供給管105は、分岐点よりも上流の位置にバルブV2を備えているとともに、第2分岐管105A~Cにおいて、バルブV2a~cを備えている。
 圧力センサ106は、第2供給管105の、主配管の位置、すなわち、第2分岐管105A~Cの分岐点よりも上流の位置における圧力を検知する。圧力センサ106は、第2供給管105に代えて(またこれに加えて)、第1供給管104の圧力を検知するようにしてもよい。この実施の形態では、後述する方法により、分岐点よりも上流の位置の圧力を1つの圧力センサで検知することで、複数のスラスタの故障の有無を診断することができる。複数の圧力センサを宇宙機に搭載することは、宇宙機の重量が大きくなり、その分搭載物資が少なくなってしまうという不利益がある。また、複数の圧力センサの信号を解析するためには、計算機の負荷も大きくなり、データ処理モジュールも大型化するという不利益がある。本実施の形態は、1つのセンサで複数のスラスタの異常を検知できるようにされていることにより、搭載物資を多くすることができるとともに、データ処理モジュールの負荷も軽減することができる。
 A/D変換器121は、圧力センサ106の検出信号を時系列のデジタル信号に変換する。その時系列のデジタル信号は、サンプルホールド回路122に一時的に保持される。周波数スペクトル変換部123は、このサンプルホールド回路122に一時的に保持された時系列のデジタル信号を、周波数スペクトルデータに変換する。周波数スペクトルデータへの変換は、周知の高速フーリエ変換(FFT)を用いて実行することができる。この周波数スペクトルデータが、故障診断用データセット記憶部126に記憶されたデータセットと比較部124において比較される。
 故障診断用データセット記憶部126に記憶されるデータセットは、スラスタ101A~Cのいずれかに故障が発生した場合に想定される圧力センサ106の信号のデータの集合である。
 前述のように、スラスタ101A~Cに接続される第2分岐管105A~C(及び/又は第1分岐管104A~C)は、それぞれ長さ(及び/又は内径、外径、形状、材質等)が異なっている。このため、スラスタ101A~Cのいずれかが故障した場合に想定される圧力センサ106の信号は、他のスラスタが故障した場合に想定される圧力センサ106の信号とは異なる。
 そこで本実施の形態では、スラスタ101A~Cのいずれかが故障した場合に想定される圧力センサ106の信号の周波数スペクトルデータを、シミュレーションにより得られた解析モデル及び/又は試験機の動作(試験結果)に基づいて予め取得し、データセットとして故障診断用データセット記憶部126に記憶させる。比較部124は、宇宙機1の圧力センサ106から得られた信号の周波数スペクトルのデータを、故障診断用データセット記憶部126に記憶されたデータセットと比較して類似度を算出し、最も近似する(類似度が高い)データを特定する。この特定の結果に基づいて、判定部125はスラスタ101A~Cのいずれに故障が発生したのかを判定部125において判定することができる。比較部124における判定は、周知のパターンマッチングやクラスタリング等を用いて行うことができる。
 図3は、各スラスタ101A~Cの燃料噴射パルス信号と、圧力センサ106の時系列の検出信号の一例を示している。図3において、波形Woは、全てのスラスタ101A~Cが正常に動作している場合を模擬して得られる波形の一例であり、波形Waはスラスタ101Aに故障が発生した場合を模擬して得られる波形の一例であり、波形Wbはスラスタ101Bに故障が発生した場合を模擬して得られる波形の一例であり、波形Wcはスラスタ101Cに故障が発生した場合を模擬して得られる波形の一例である。圧力センサ106の検出信号の形状は、スラスタ101A~Cのいずれが故障するかによって異なる。これは、スラスタ101A~Cの構造が互いに異なることに加え、分岐管105A~Cの長さ等が異なることに基づく。ただし、図1及び2のような宇宙機1及び推進システムでは、複数の系の応答が複合することから、時系列のデータに基づく診断は、データ量が多く計算が複雑である。
 そこで本実施の形態では、この時系列の圧力センサの検出信号を、周波数スペクトルの信号に変換する。一方、故障診断用データセット記憶部126においても、時系列の信号が周波数スペクトルデータに変換された後、データセットとして記憶される。故障診断用データセット記憶部126に記憶されるデータセットは、後述するように、正常/故障状態をコンピュータ上で模擬(シミュレーション)した解析モデルに基づいて生成される。これに加えて、試験機を用いて得られた周波数スペクトルデータに基づいて、解析モデルに基づいて得られたデータの検証が行われる。その検証後のデータが、データセットとして故障診断用データセット記憶部126に記憶される。
 図4は、圧力センサ106で計測された信号の時系列の圧力のデータ(a)を、時系列の周波数データに変換した場合のグラフ(b)の一例である。図5は、図4(a)、(b)のグラフに基づいて生成された、周波数スペクトルのグラフの一例である。図5(a)~(d)は、スラスタ101A~Cに所定のパルス周期で燃料が噴射される状態(第1の状態)から、パルスが停止される状態(第2の状態)へ移行した後における圧力センサ106の検出信号の時系列の過渡応答データに対応する周波数スペクトルのデータを示している。図5において、(a)はスラスタ101A~Cがすべて正常に動作している場合の周波数スペクトルの一例であり、(b)はスラスタ101Aに故障が発生した場合の周波数スペクトルの一例であり、(c)はスラスタ101Bに故障が発生した場合の周波数スペクトルの一例であり、(d)はスラスタ101Cに故障が発生した場合の周波数スペクトルの一例である。
 図5(b)~(d)から明らかなように、故障したスラスタが異なると、周波数スペクトルのグラフのピークが現れる周波数、振幅値、ピークの数(所定の閾値以上の振幅を有するピークの数)等が異なる。このように、周波数スペクトル(図5)では、時系列の信号(図4)に比べ、信号の形状に明確な差が表れる。従って、故障診断用データセット記憶部126に記憶された周波数スペクトルのデータセットと、圧力センサ106の検出信号から得られた周波数スペクトルとを比較することで、どのスラスタに故障が発生したのかを正確に且つ少ないデータに基づいて判定することができる。
 図6A~Cを参照して、故障診断用データセット記憶部126に記憶させるデータセットの生成手順を説明する。故障診断用のデータセットは、コンピュータシミュレーションによる解析モデルを用いて取得することができる。更に、例えば図6Aのような試験装置を用いて得られた試験結果(図6B及び図6Cの左側のグラフ)と、解析モデルに基づいて得られた解析結果(右側のグラフ)とを照合し、解析モデルの妥当性を確認することができる。
 図6Aに例示する試験装置は、タンク103Cと、供給管105Xと、供給調整装置108と、圧力センサP0、P1、Pc、PIU、PIDと、ソレノイドバルブSV1と、流量調整バルブFCV2と、オリフィスOFを備える。供給調整装置108は、バルブRV、MV1~3、圧力センサPT、及び流量調整バルブFCV1を備えている。タンク103Cは、宇宙機1の燃料タンク102及び/又は酸化剤タンク103に相当し、供給管105Xは宇宙機1の第1供給管104及び第2供給管105に相当する。また、ソレノイドバルブSV1は、宇宙機1のバルブV1、V2、V1a~V1c、V2a~V2cに相当する。
 圧力センサP0及びP1は、図2の圧力センサ106に相当する圧力センサであり、供給管105Xを流れる液体の圧力を計測する。また、圧力センサPIU、Pc、PIDは、ソレノイドバルブSV1における圧力損失を計測するための圧力センサである。
 図6Aは、宇宙機1における1本の分岐管、及び1個のスラスタを模擬した試験装置であるが、図7に示すように、より図2の宇宙機1の構造に近似した3本の分岐管及び3個のスラスタを模擬した試験装置を用いることが出来るのは言うまでもない。
 図8のフローチャートを参照して、第1の実施の形態に係る故障診断システムの動作(故障診断方法)を説明する。この第1の実施の形態のシステムでは、スラスタの故障診断のためのデータセットを予め生成し、このデータセットと、宇宙機1に設置された圧力センサ106が検出した信号の周波数スペクトルデータとを比較して、スラスタの故障の有無及び個所を判断する。故障診断のためのデータセットの生成の手順が、図8のステップS201~205で実行され、宇宙機1におけるスラスタの故障の判断がステップS301~305で行われる。
 ステップS201において、コンピュータシミュレーションにより、宇宙機1の正常状態/故障状態を模擬した解析モデルを作成する。
 一方、ステップS202では、例えば図6A又は図7に示すような試験装置を用いて、宇宙機1の正常状態/故障状態を模擬した地上試験を実行し、供給管の内部の圧力の時系列データ、及び周波数スペクトルのデータを取得する。
 ステップS203では、ステップS202で取得された、試験装置による試験結果に基づき、ステップS201で作成した解析モデルの妥当性を検証する。
 続くステップS204では、ステップS203で妥当性を検証された解析モデルを用いて、供給管の管内の圧力の周波数スペクトルのデータを取得する。取得されたデータは、宇宙機1の正常状態/故障状態を判定するための事前情報群(データセット)として、前述の故障診断用データセット記憶部126に記憶される。以上により、宇宙機1におけるスラスタの故障診断の準備が完了する。
 ステップS301では、宇宙機1の圧力センサ106において、供給管105の管内の圧力の時系列データを取得する。そして、ステップS302では、周波数スペクトル変換部123において、取得された圧力の時系列データを周波数スペクトルのデータに変換する。
 ステップS303では、圧力センサ106に基づいて得られた取得情報と、故障診断用データセット記憶部126に記憶されたデータセットとを比較し、データセット中のデータと、取得情報との間の類似度を判断する。高い類似度を示すデータがデータセット中において特定された場合には、そのデータに基づいて、スラスタの故障の有無、及び故障個所を特定する。故障が無いと判断される場合には(ステップS304の「正常」)、ステップS301に戻り、上記の手順を繰り返す。故障があると判断される場合には(ステップS304の「故障」)、ステップS305において故障の有無及び故障の個所の特定結果を出力する。
 以上説明したように、第1の実施の形態のシステム及び方法によれば、圧力センサ106により検知された時系列データが周波数スペクトルデータに変換され、これが事前に取得した故障診断用データセットと比較され、故障診断がなされる。従って、異なる機能・構成のシステムを組み合わせた冗長構成を有する宇宙機においても、姿勢情報によらず、故障の有無や故障個所を的確に判断することが可能になる。また、圧力センサを供給管の分岐部の上流に配置することで、少ない数のセンサで複数のスラスタの故障を判定することが可能になる。
[第2の実施の形態]
 図9を参照して、第2の実施の形態に係る宇宙機液体推進システムの故障診断システム及び故障診断方法を説明する。この第2の実施の形態の宇宙機液体推進システムの故障診断システムの全体構成は、第1の実施の形態(図2)と同様で良い。ただし、この第2の実施の形態のシステム及び方法では、圧力センサ106により圧力を検出することに加え、検出された圧力の応答周波数と既知の配管長さに基づき、管内の流体の音速を算出する。そして、算出された音速に基づき、故障診断用データセット記憶部126に記憶させるデータセットに対し補正を行う。
 第2供給管105(及び/又は第1供給管104)の管内の流体の音速を測定することにより、管内を満たしている推進薬の中にガスが溶け込んでいることによる音速の変化を把握することができる。この音速の変化に基づき、データセットに対し補正を行うことで、故障診断の精度を高めることが可能になる。
 図9のフローチャートを参照して、第2の実施の形態に係る故障診断システムの動作(故障診断方法)を説明する。この第2の実施の形態のシステムでは、第1の実施の形態と同様に、スラスタの故障診断のためのデータセットを予め生成し、このデータセットと、宇宙機1に設置された圧力センサ106が検出した信号の周波数スペクトルデータとを比較して、スラスタの故障の有無及び個所を判断する。故障診断のためのデータセットの生成の手順が、ステップS201~207で実行され、宇宙機1におけるスラスタの故障の判断がステップS301~305、S306で行われる。
 ステップS301~305は第1の実施の形態と同一であるので、重複する説明は省略する。また、ステップS201~205のデータセットの生成の手順も第1の実施の形態と同様であるので、重複する説明は省略する。この第2の実施の形態では、ステップS301に先立つステップS306において、テストモードにより、供給管105の管内の推進剤の音速を圧力センサ106の検出情報に従って算出する。この音速の情報に基づき、ステップS206においてデータセットの補正がなされる。ステップS207では、このデータセットが故障診断用データセット記憶部126に記憶され、第1の実施の形態と同様に故障診断に供される。
[第3の実施の形態]
 図10を参照して、第3の実施の形態に係る宇宙機液体推進システムの故障診断システム及び故障診断方法を説明する。この第3の実施の形態の宇宙機液体推進システムの故障診断システムの全体構成は、第1の実施の形態(図2)と同様で良い。故障診断の実行手順も、第1の実施の形態と同様でよい。ただし、この第3の実施の形態のシステム及び方法では、第2供給管105(及び/又は第1供給管104)の長さ(特に各分岐管の長さ)を設定し、その設定された長さにおける故障診断の可能性を評価する手順を含んでおり、この点において第1の実施の形態とは異なっている。
 第1及び第2の実施の形態の方法は、複数のスラスタへの供給管の長さが異なることに起因して周波数スペクトルの波形が変化することを利用して、複数のスラスタの故障の有無及び故障個所の特定を行う。しかし、複数の分岐管の長さがいわゆる倍音関係になる場合、周波数スペクトルの波形に相違が生じない可能性がある。そこで、第3の実施の形態は、供給管の長さを適切に設定するための手順を含む。
 図10のフローチャートを参照して、第3の実施の形態における正常/故障の診断可能性の判断方法について説明する。まず、ステップS501では、図6A又は図7に示すような試験装置を用いて、宇宙機1の正常状態/故障状態を模擬した地上試験を実行し、供給管の内部の圧力の時系列データ、及び周波数スペクトルのデータを取得する。続くステップS502では、コンピュータシミュレーションにより、宇宙機1の正常状態/故障状態を模擬した解析モデルを作成する。そして、ステップS503では、ステップS501の地上試験の結果に従い、解析モデルの妥当性が検証される。
 ステップS501~503により、解析モデルが検証されると、ステップS601では、供給管(分岐管)の長さの設定がなされる。ステップS602では、この設定された供給管(分岐管)の長さを前提として、検証された解析モデルを用いて、正常状態/故障状態(複数のスラスタの全てが正常か、またはいずれかが故障しているか)における供給管の管内の圧力の周波数スペクトルのデータが取得される。
 供給管の長さが適切に設定されていれば、複数のスラスタのうちの一スラスタが故障した場合の周波数スペクトルの波形(ピーク位置、振幅、ピークの数等)は、他のスラスタが故障した場合の周波数スペクトルの波形とは異なる。しかし、波形に差が生じない場合、供給管の長さの設定が不適切であり、本実施形態の方法では、適切な故障診断ができない可能性があることになる。このため、ステップS603では、得られた多数の周波数スペクトルの波形を解析し、正常/故障の診断が可能な否かを判断する。診断が困難と判断された場合には、ステップS601に戻り、供給管の長さを異なる長さに設定し、同様の動作を繰り返す。
 本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 例えば、上記の実施の形態では、コンピュータシミュレーションに基づく解析モデルを試験装置で得られた試験結果を用いて検証することを行っているが、コンピュータシミュレーションの結果得られる解析モデルの信頼性が高いことが認定される場合、試験装置による試験結果に基づく検証を省略することも可能である。逆に、試験装置が正確に実機を再現していることが認識される場合、試験装置の試験結果のみに従ってデータセットを生成することも可能である。
1…宇宙機、 100…サービスモジュール、 200…与圧モジュール、 300…曝露カーゴ搭載部、 400…太陽電池モジュール、 101A~C…スラスタ、 102…燃料タンク、 103…酸化剤タンク、 103C…タンク、 104…第1供給管、 104A~C…第1分岐管、 105…第2供給管、 105A~C…第2分岐管、 105X…供給管、 106…圧力センサ、 107…制御部、 108…供給調整装置、 121…A/D変換器、 122…サンプルホールド回路、 123…周波数スペクトル変換部、 124…比較部、 125…判定部、 126…故障診断用データセット記憶部、 FCV1~2…流量調整バルブ、 MV1…バルブ、 P0、P1、Pc、PID、PIU、PT、…圧力センサ。

Claims (12)

  1.  複数のスラスタと、前記スラスタに接続される供給管とを備える宇宙機液体推進システムの故障診断システムであって、
     前記供給管の内部の圧力を時系列データとして検出する圧力センサと、
     前記時系列データを周波数スペクトルのデータに変換する周波数スペクトル変換部と、 コンピュータシミュレーションによる解析モデル又は試験装置の試験結果に基づいて生成された周波数スペクトルのデータをデータセットとして記憶する記憶部と、
     前記データセットを前記周波数スペクトル変換部が生成した周波数スペクトルのデータと比較する比較部と、
     前記比較部の比較結果に従い、前記複数のスラスタのいずれかにおける故障を判定する判定部と
     を備えたことを特徴とする、宇宙機液体推進システムの故障診断システム。
  2.  前記比較部は、前記スラスタへの動作が第1の状態から第2の状態に移行した後における前記圧力センサの検出信号の時系列の過渡応答データに対応する周波数スペクトルのデータを、前記データセットと比較する、請求項1に記載の宇宙機液体推進システムの故障診断システム。
  3.  前記供給管は、主配管と、前記主配管から前記複数のスラスタに向けて分岐する分岐管とを備え、前記圧力センサは、前記主配管に配置される、請求項1に記載の宇宙機液体推進システムの故障診断システム。
  4.  前記比較部は、前記スラスタへの動作が第1の状態から第2の状態に移行した後における前記圧力センサの検出信号の時系列の過渡応答データに対応する周波数スペクトルのデータを、前記データセットと比較する、請求項3に記載の宇宙機液体推進システムの故障診断システム。
  5.  前記記憶部は、前記解析モデルに基づいて生成されたデータを、試験装置を用いて得られたデータに基づいて検証して得られるデータを前記データセットとして記憶する、請求項1に記載の宇宙機液体推進システムの故障診断システム。
  6.  前記記憶部は、前記解析モデルに基づいて生成されたデータを、前記供給管の管内の推進剤の音速に基づいて補正したデータを前記データセットとして記憶する、請求項1に記載の宇宙機液体推進システムの故障診断システム。
  7.  宇宙機液体推進システムの故障診断方法において、
     前記宇宙機液体推進システムは、複数のスラスタと、前記複数のスラスタに接続される供給管とを備え、
     前記供給管の内部の圧力を時系列データとして取得するステップと、
     前記時系列データを周波数スペクトルのデータに変換するステップと、
     コンピュータシミュレーションによる解析モデル又は試験装置の試験結果に基づいて、故障診断のための周波数スペクトルのデータセットを予め取得するステップと、
     前記周波数スペクトルのデータと、前記データセットとの間の類似度に基づき、前記スラスタの故障の有無及び故障個所を診断するステップと
     を備えたことを特徴とする、宇宙機液体推進システムの故障診断方法。
  8.  前記スラスタへの動作が第1の状態から第2の状態に移行した後における圧力センサの検出信号の時系列の過渡応答データに対応する周波数スペクトルのデータを、前記データセットと比較することにより、前記類似度を判断する、請求項7に記載の故障診断方法。
  9.  前記供給管は、主配管と、前記主配管から前記複数のスラスタに向けて分岐する分岐管とを備え、
     前記主配管の内部の圧力を時系列データとして取得する、請求項7に記載の故障診断方法。
  10.  前記スラスタへの動作が第1の状態から第2の状態に移行した後における圧力センサの検出信号の時系列の過渡応答データに対応する周波数スペクトルのデータを、前記データセットと比較することにより、前記類似度を判断する、請求項9に記載の故障診断方法。
  11.  前記解析モデルに基づいて生成されたデータを、試験装置を用いて得られたデータに基づいて検証して得られるデータを前記データセットとして取得する、請求項7に記載の故障診断方法。
  12.  前記解析モデルに基づいて生成されたデータを、前記供給管の管内の推進剤の音速に基づいて補正したデータを前記データセットとして取得する、請求項7に記載の故障診断方法。
PCT/JP2021/003722 2020-02-04 2021-02-02 宇宙機液体推進システムの故障診断システム、及び宇宙機液体推進システムの故障診断方法 WO2021157567A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/753,709 US20220341375A1 (en) 2020-02-04 2021-02-02 Failure diagnostic system for spacecraft liquid propulsion system and failure diagnostic method for spacecraft liquid propulsion system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020017039A JP7417256B2 (ja) 2020-02-04 2020-02-04 宇宙機液体推進システムの故障診断システム、及び宇宙機液体推進システムの故障診断方法
JP2020-017039 2020-02-04

Publications (1)

Publication Number Publication Date
WO2021157567A1 true WO2021157567A1 (ja) 2021-08-12

Family

ID=77200178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003722 WO2021157567A1 (ja) 2020-02-04 2021-02-02 宇宙機液体推進システムの故障診断システム、及び宇宙機液体推進システムの故障診断方法

Country Status (3)

Country Link
US (1) US20220341375A1 (ja)
JP (1) JP7417256B2 (ja)
WO (1) WO2021157567A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023019376A (ja) 2021-07-29 2023-02-09 住友金属鉱山株式会社 近赤外線硬化型インク組成物、近赤外線硬化膜、近赤外線硬化物の製造方法
CN116243683B (zh) * 2023-03-15 2024-02-13 青岛澎湃海洋探索技术有限公司 基于转矩和多头自编码器的推进系统故障诊断方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090097U (ja) * 1983-11-28 1985-06-20 三菱電機株式会社 人工衛星の制御トルク発生装置
JPH07159231A (ja) * 1993-11-05 1995-06-23 Kawasaki Steel Corp ポンプ劣化診断システム
JPH09166483A (ja) * 1995-12-19 1997-06-24 Hitachi Ltd 機器監視方法及びその装置
JP2003074851A (ja) * 2001-08-30 2003-03-12 Mitsubishi Heavy Ind Ltd 燃焼器における固有値の予測方法と測定器間の応答倍率評価方法
JP2008033532A (ja) * 2006-07-27 2008-02-14 Denso Corp 可動部を備えた設備の異常を検出する方法及び異常検出装置
JP2009210338A (ja) * 2008-03-03 2009-09-17 Ihi Corp バルブ自動点検装置、バルブ自動点検方法及びバルブ自動点検プログラム
JP2013545081A (ja) * 2010-10-08 2013-12-19 ロールス−ロイス・コーポレーション 駆動列内の故障状態を、トルク振動データを用いて検出するシステムおよび方法
JP2016151909A (ja) * 2015-02-18 2016-08-22 株式会社Ihi 異常診断方法及び異常診断システム
WO2017078004A1 (ja) * 2015-11-04 2017-05-11 日本電気株式会社 配管状態検知装置、配管状態検知方法、コンピュータ読み取り可能記録媒体および配管状態検知システム
JP2017524851A (ja) * 2014-04-03 2017-08-31 サフラン・エアクラフト・エンジンズ ロケットエンジンのパラメータを監視するための方法および装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090097U (ja) * 1983-11-28 1985-06-20 三菱電機株式会社 人工衛星の制御トルク発生装置
JPH07159231A (ja) * 1993-11-05 1995-06-23 Kawasaki Steel Corp ポンプ劣化診断システム
JPH09166483A (ja) * 1995-12-19 1997-06-24 Hitachi Ltd 機器監視方法及びその装置
JP2003074851A (ja) * 2001-08-30 2003-03-12 Mitsubishi Heavy Ind Ltd 燃焼器における固有値の予測方法と測定器間の応答倍率評価方法
JP2008033532A (ja) * 2006-07-27 2008-02-14 Denso Corp 可動部を備えた設備の異常を検出する方法及び異常検出装置
JP2009210338A (ja) * 2008-03-03 2009-09-17 Ihi Corp バルブ自動点検装置、バルブ自動点検方法及びバルブ自動点検プログラム
JP2013545081A (ja) * 2010-10-08 2013-12-19 ロールス−ロイス・コーポレーション 駆動列内の故障状態を、トルク振動データを用いて検出するシステムおよび方法
JP2017524851A (ja) * 2014-04-03 2017-08-31 サフラン・エアクラフト・エンジンズ ロケットエンジンのパラメータを監視するための方法および装置
JP2016151909A (ja) * 2015-02-18 2016-08-22 株式会社Ihi 異常診断方法及び異常診断システム
WO2017078004A1 (ja) * 2015-11-04 2017-05-11 日本電気株式会社 配管状態検知装置、配管状態検知方法、コンピュータ読み取り可能記録媒体および配管状態検知システム

Also Published As

Publication number Publication date
US20220341375A1 (en) 2022-10-27
JP2021124045A (ja) 2021-08-30
JP7417256B2 (ja) 2024-01-18

Similar Documents

Publication Publication Date Title
WO2021157567A1 (ja) 宇宙機液体推進システムの故障診断システム、及び宇宙機液体推進システムの故障診断方法
US5396422A (en) Method for detecting malfunctions in a motor vehicle
RU2393450C1 (ru) Способ контроля и диагностирования жидкостного ракетного двигателя
CN113551856B (zh) 燃油车管路泄漏下线检测方法
US6831466B2 (en) Method and system for sensor fault detection
Roemer et al. A probabilistic approach to the diagnosis of gas turbine engine faults
CN110375598B (zh) 一种针对火工品产品测试系统的可靠性分析方法
US10317244B2 (en) System for acquisition of at least one physical variable, in particular for a critical on-board avionics system, and associated acquisition method
Hjelmgren et al. Reliability analysis of a single-engine aircraft FADEC
US20140053635A1 (en) Device and method for measuring the leakage rate from reference pressure lines onboard an aircraft
CN111044826A (zh) 检测方法及检测系统
RU2133952C1 (ru) Способ контроля и диагностирования состояния пневмогидравлического объекта
KR101584717B1 (ko) 항공기용 임베디드 시스템 탑재 소프트웨어 고장 처리 모듈 시험 방법 및 장치
KR101857217B1 (ko) 선박의 동적 위치설정 제어시스템에 대한 검증시스템 및 방법
Maul et al. Sensor Data Qualification for Autonomous Operation of Space Systems.
RU2327128C2 (ru) Способ контроля потери герметичности разделителя бака вытеснительной системы подачи топлива двигательной установки космических аппаратов
CN117687379A (zh) 基于未知输入观测器的航空发动机控制系统执行机构故障检测方法
Patterson-Hine et al. Automated system checkout to support predictive maintenance for the reusable launch vehicle
Panov et al. Model-based compensation of sensor failure in industrial gas turbine
Arkov et al. Development of a Condition Monitoring Module for Aircraft Engines and it's Experimental Investigation
KR20230165402A (ko) 수소 자동차 부품의 평가 방법
Reitzell Saturn S-4B-509 narrative end item report, supplement
Orr Sensor Analysis, Modeling, and Test for Robust Propulsion System Autonomy
KR20160118456A (ko) 아날로그신호 시뮬레이터를 갖는 선박의 동적 위치설정 제어시스템에 대한 검증시스템 및 방법
Feng et al. Hybrid Fault Diagnosis and Isolation for Component and Sensor of APU in a Distributed Control System.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21750923

Country of ref document: EP

Kind code of ref document: A1