WO2021157110A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2021157110A1
WO2021157110A1 PCT/JP2020/032087 JP2020032087W WO2021157110A1 WO 2021157110 A1 WO2021157110 A1 WO 2021157110A1 JP 2020032087 W JP2020032087 W JP 2020032087W WO 2021157110 A1 WO2021157110 A1 WO 2021157110A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooler
refrigerating
temperature
storage chamber
room
Prior art date
Application number
PCT/JP2020/032087
Other languages
French (fr)
Japanese (ja)
Inventor
祐理 石▲崎▼
遵自 鈴木
圭介 服部
Original Assignee
日立グローバルライフソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立グローバルライフソリューションズ株式会社 filed Critical 日立グローバルライフソリューションズ株式会社
Publication of WO2021157110A1 publication Critical patent/WO2021157110A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to a refrigerator.
  • Patent Document 1 closes the damper when the value obtained by subtracting the temperature inside the refrigerator detected by the temperature sensor 12 from the set temperature Ts is 1 deg or more during the rapid refrigeration operation (steps S504 and 505). It is disclosed that the damper is opened (step S511,512) when the value obtained by subtracting the set temperature Ts from the temperature is 1 deg or more (lower right column on page 3 of the specification, FIG. 6).
  • the cold air supply is interrupted by opening and closing the damper as in Patent Document 1, the cold air supply is stopped while the damper is closed, so that the cooling of food is stopped.
  • the agitation of the air in the storage chamber is also stopped, the heat heats the food around the hot food, especially when the hot food is stored in the storage room, and the hot food is hardly cooled. ..
  • the present invention made in view of the above circumstances A cooler that supplies cold air and A storage room in the refrigerated temperature range and An air passage connecting the cooler and the storage chamber, With a storage room fan, A refrigerator in which the temperature of the cooler decreases, then increases, and then decreases, during which the storage chamber fan substantially continues to drive.
  • the second invention made in view of the above circumstances is A cooler that supplies cold air and A storage room in the refrigerated temperature range and An air passage connecting the cooler and the storage chamber, With a storage room fan, A refrigerator that shows a process of changing the location or direction of the cold air blown out from the air passage and then returning to the original state, during which the storage chamber fan substantially continues to drive.
  • FIG. BB Front view of the refrigerator of the embodiment.
  • the schematic diagram which shows the air passage composition of the refrigerator of an Example.
  • FIG. 1 is a front view of the refrigerator 1 of the embodiment.
  • the heat insulating box body 10 of the refrigerator 1 is open to the front and has a plurality of storage chambers. From the top, the storage chambers are the refrigerating room 2 (first refrigerating temperature zone room), the ice making chambers 3 and the upper freezing chamber 4 arranged side by side, the lower freezing chamber 5, and the vegetable compartment 6 (second refrigerating temperature zone room). To be equipped.
  • the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are collectively referred to as a freezing chamber 7 (freezing temperature zone chamber).
  • the front opening of the refrigerating chamber 2 is opened and closed by the rotary refrigerating chamber doors 2a and 2b divided into left and right, and the front opening of the ice making chamber 3, the upper freezing chamber 4, the lower freezing chamber 5, and the vegetable compartment 6 is opened. It is opened and closed by a pull-out type ice making room door 3a, an upper freezing room door 4a, a lower freezing room door 5a, and a vegetable room door 6a, respectively.
  • the refrigerator compartment door 2a is provided with an operation unit 99 capable of receiving a command from the user and notifying the user.
  • the operation unit 99 has a rapid cooling button as a reception unit for receiving a rapid cooling command from the user.
  • a display unit for notifying the fact for example, an LED or a light transmitting unit that emits and outputs "rapid cooling" in a character shape is provided.
  • a known rotary partition 98 is provided on the refrigerator compartment door 2a, and a rotary partition heater 61 is provided in the rotary partition 98. Since the cooling air blown upward from the refrigerator chamber discharge port 11a, which will be described later, flows upward on the inner surface of the rotary partition 98 to cool the cooling air, dew condensation may occur on the outer surface of the rotary partition 98. In particular, there is a great risk that rapid cooling, which will be described later, is performed. Therefore, at the time of rapid cooling, it is preferable to increase the output of the rotary partition heater 61 as compared with the normal time.
  • FIG. 2 is a schematic view showing the air passage configuration of the refrigerator 1 of the embodiment.
  • the air that has become cold due to heat exchange with the refrigerating cooler 14a is blown to the refrigerating chamber 2 through the refrigerating chamber air passage 11 by driving the refrigerating fan 9a to cool the inside of the refrigerating chamber 2.
  • the air sent to the refrigerating chamber 2 returns from the refrigerating chamber return air passage 15 to the refrigerating cooler chamber 8a.
  • the air that has become cold due to heat exchange with the freezing cooler 14b is blown to the freezing chamber 7 through the freezing chamber air passage 12 by driving the freezing fan 9b, and cools the inside of the freezing chamber 7.
  • the air sent to the freezing chamber 7 returns from the freezing chamber return air passage 17 to the freezing cooler chamber 8b.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 4 is a cross-sectional view taken along the line BB of FIG.
  • a foam heat insulating material or a vacuum heat insulating material is filled between the outer box 10a and the inner box 10b forming the outer shell of the heat insulating box body 10.
  • a chilled room temperature compensating heater 60 for suppressing overcooling of the chilled room is provided in the lower part of the chilled room 35. Since the chilled room 35 is adjacent to the ice making chamber 3 and the upper freezing chamber 4 in the freezing temperature zone via the heat insulating partition wall 28, the temperature tends to be low. When the rapid cooling operation described later is executed, the food in the chilled room 35 is likely to freeze. Therefore, it is preferable that the output of the chilled room temperature compensating heater 60 is higher than in the normal state during the rapid cooling operation.
  • a refrigerating cooler room 8a is provided substantially behind the refrigerating room 2, and a refrigerating cooler 14a, which is a fin tube type heat exchanger, is housed in the refrigerating cooler room 8a.
  • a refrigerating fan 9a is provided above the refrigerating cooler 14a.
  • a refrigerating chamber air passage 11 connecting the refrigerating cooler chamber 8a and the refrigerating chamber 2 is provided at substantially the center of the back of the refrigerating chamber 2 in the width direction.
  • a refrigerating chamber discharge port 11a provided with a directing means for directing the blown air upward is provided above the refrigerating chamber air passage 11.
  • the cooling air blown upward from the refrigerating room discharge port 11a flows along the ceiling surface of the refrigerating room 2 as shown by an arrow in FIG. 2 and reaches the area in front of the refrigerating room 2 and reaches the area in front of the refrigerating room 2 and reaches the shelf 34a. It flows down through the gap between -34c and the door pockets 33a-33c, enters the space behind the chilled room 35, and enters the refrigerating cooler room from the refrigerating room return air passage 15a provided at the lower part of the refrigerating cooler room 8a. Return to 8a.
  • a freezing cooler room 8b is provided substantially behind the freezing room 7, and a freezing cooler 14b, which is a fin tube type heat exchanger, is housed in the freezing cooler room 8b.
  • a freezing fan 9b is provided above the freezing cooler 14b.
  • the back of the freezing chamber 7 is provided with a freezing chamber air passage 12, and the freezing chamber air passage 12 in front of the freezing fan 9b is provided with a plurality of freezing chamber discharge ports 12a.
  • a freezing chamber return air passage 17 for returning the air sent to the freezing chamber 7 is provided in front of the lower part of the freezing cooler chamber 8b.
  • the vegetable compartment air passage 13 serving as an air passage to the vegetable chamber 6 is branched from the lower right of the freezing chamber air passage 12 and passes through the heat insulating partition wall 29.
  • the vegetable compartment air passage 13 includes a vegetable compartment damper 19.
  • a vegetable compartment return inlet 18a is provided in front of the lower part of the heat insulating partition wall 29 between the vegetable compartment 6 and the freezing chamber 7, and for freezing via the vegetable compartment return air passage 18 passing through the heat insulating partition wall 29.
  • a flow path leading to the return outlet 18b of the vegetable chamber provided in front of the lower part of the cooler chamber 8b is formed.
  • the refrigerating room 2, the freezing room 7, and the vegetable room 6 are provided with a refrigerating room temperature sensor 41, a freezing room temperature sensor 42, and a vegetable room temperature sensor 43 on the back side of the refrigerator, and the refrigerating room 2, the freezing room 7, and vegetables are provided, respectively.
  • the temperature of the room 6 is detected.
  • a refrigerating room upper temperature sensor 44 is provided on the ceiling of the refrigerating room 2 to detect the temperature of the upper part of the refrigerating room 2.
  • a refrigerating cooler temperature sensor 40a is provided above the refrigerating cooler 14a
  • a refrigerating cooler temperature sensor 40b is provided above the refrigerating cooler 14b
  • the refrigerating cooler 14a and the refrigerating cooler 14b are provided. The temperature of is detected.
  • an outside air temperature / humidity sensor 37 that detects the temperature and humidity of the outside air (outside air) is provided.
  • a defrost heater 21 for heating the freezing cooler 14b is provided in the lower part of the freezing cooler room 8b.
  • the defrost heater 21 is, for example, an electric heater of 50 W to 200 W.
  • the defrosted water (melted water) generated during the defrosting of the refrigerating cooler 14b flows down to the gutter 23b provided in the lower part of the refrigerating cooler room 8b, and flows down to the refrigerator via the drain port 22b and the refrigerating drain pipe 27b. It reaches the machine room 39 provided in the lower part behind (rear side) of No. 1, and is discharged to the evaporating dish 32 in the upper part of the compressor 24 installed in the machine room 39.
  • a control board 31 On the ceiling of the refrigerator 1, a control board 31 on which a CPU, a memory such as a ROM or RAM, an interface circuit, etc., which are a part of the control device, is mounted is arranged.
  • the control board 31 is connected to the refrigerator compartment temperature sensor 41, the freezer compartment temperature sensor 42, the vegetable compartment temperature sensor 43, the cooler temperature sensors 40a, 40b, etc., and the CPU described above sets these output values and the operation unit 99. , ON / OFF and rotation speed control of the compressor 24, the refrigerating fan 9a, and the refrigerating fan 9b, the defrosting heater 21, the gutter heater 101, and the drain pipe upper heater, based on the program recorded in advance in the ROM described above. It controls 102, the drain pipe lower heater 103, and the three-way valve 52, which will be described later.
  • FIG. 5 is a schematic view of the refrigerating cycle of the refrigerator 1.
  • the refrigerator 1 is a compressor 24 that compresses the refrigerant, an external radiator 50a that is located downstream of the compressor 24 and dissipates the refrigerant, a wall surface heat dissipation pipe 50b, and a heat insulating partition that is located downstream of the compressor 24 and dissipates the refrigerant.
  • the three-way valve 52 as a refrigerant switching valve located downstream of the radiator 50a-50c, and the three-way valve 52.
  • Refrigerant capillary tube 53a that is connected to reduce the pressure of the refrigerant
  • refrigerating capillary tube 53b that is connected to the other outlet 52b of the three-way valve 52 to reduce the pressure of the refrigerant
  • refrigerating capillary tube 53a to evaporate the refrigerant. It is provided with a refrigerating cooler 14a that absorbs heat (supplies cold air) and a refrigerating cooler 14b that is located downstream of the refrigerating capillary tube 53b and absorbs heat by evaporating the refrigerant.
  • These various components are connected in an annular shape by a refrigerant pipe.
  • a dryer 51 for removing water during the refrigeration cycle is provided upstream of the three-way valve 52.
  • a refrigerating gas-liquid separator 54a and a refrigerating gas-liquid separator 54b for preventing the liquid refrigerant from flowing into the compressor 24 are provided downstream of the refrigerating cooler 14a and downstream of the refrigerating cooler 14b, respectively.
  • a check valve 56 is provided downstream of the freezing gas-liquid separator 54b and upstream of the confluence portion downstream of the capillary tubes 53a and 53b.
  • the temperature of the refrigerating cooler 14a can be adjusted by the rotation speed of the compressor 24 and the refrigerating fan 9a.
  • the temperature of the freezing cooler 14b can be adjusted by the rotation speed of the compressor 24 and the freezing fan 9b.
  • the three-way valve 52 includes an outlet 52a and an outlet 52b, and the following modes are possible.
  • a refrigerating mode in which the refrigerant flows to the refrigerating capillary tube 53a side with the outflow port 52a in the open state and the outflow port 52b in the closed state.
  • a freezing mode in which the refrigerant flows to the refrigerating capillary tube 53b side with the outlet 52a closed and the outlet 52b open.
  • Fully closed mode in which both the outlets 52a and 52b are closed.
  • the refrigerant discharged from the compressor 24 flows through the external radiator 50a, the external radiator 50b, and the dew condensation suppression pipe 50c to dissipate heat, and is dissipated through the dryer 51. It reaches 52.
  • the refrigerant flows through the refrigerating capillary tube 53a, is depressurized, reaches the refrigerating cooler 14a, and exchanges heat with the return air of the refrigerating chamber 2.
  • the refrigerant discharged from the refrigerating cooler 14a passes through the refrigerating gas-liquid separator 54a, flows through the contact portion 57a with the refrigerating capillary tube 53a, and is compressed after exchanging heat with the refrigerant flowing in the refrigerating capillary tube 53a.
  • the refrigerant flows through the freezing capillary tube 53b, is depressurized, reaches the freezing cooler 14b, and exchanges heat with the return air of the freezing chamber 7.
  • the vegetable compartment damper 19 is in the open state, heat is further exchanged with the return air of the vegetable compartment 6.
  • the refrigerant discharged from the freezing cooler 14b passes through the freezing gas-liquid separator 54b, flows through the contact portion 57b with the freezing capillary tube 53b, exchanges heat with the refrigerant flowing in the freezing capillary tube 53b, and is compressed. Return to machine 24.
  • the refrigerator of this embodiment can be operated as follows. "Refrigerating operation” in which the three-way valve 52 is controlled to the refrigerating mode to cool the refrigerating chamber 2. "Frozen vegetable operation” in which the freezing chamber 7 and the vegetable compartment 6 are cooled by controlling the freezing mode and opening the vegetable compartment damper 19. A “freezing operation” in which the freezing chamber 7 is cooled by controlling the freezing mode and closing the vegetable compartment damper 19. A “refrigerant recovery operation” in which the compressor 24 is driven by controlling the fully closed mode to recover the refrigerant to the heat radiating means side. "Operation stop” that controls the fully closed mode and puts the compressor 24 in a stopped state.
  • FIG. 6 is a time chart of a stable state during non-rapid cooling operation when installed in an environment where the outside air is 32 ° C and the relative humidity is 70%.
  • the rotation speed increases from the speed 1 to the speed 4.
  • T0 is the time when the refrigerating operation for cooling the refrigerating chamber 2 is started.
  • the three-way valve 52 is controlled to the refrigerating mode, the compressor 24 is driven at a speed of 1, and the refrigerant is supplied to the refrigerating cooler 14a, so that the temperature of the refrigerating cooler 14a is lowered.
  • the refrigerating fan 9a is driven at a speed of 2
  • the air that has passed through the refrigerating cooler 14a and has become low temperature is blown out from the refrigerating chamber discharge port 11a into the refrigerating chamber 2, and the refrigerating chamber 2 is cooled to a temperature. Is declining.
  • the time average temperature of the refrigerating cooler 14a during the refrigerating operation is ⁇ 6 ° C., which is higher than the time average temperature of the refrigerating cooler 14b during the refrigerating operation described later, which is ⁇ 24 ° C.
  • the temperature of the refrigerating cooler 14a should be increased.
  • the rotation speed of the refrigerating fan 9a and the compressor 24 is controlled to improve the energy saving performance.
  • the refrigerating room temperature TR detected by the refrigerating room temperature sensor 41 at time t1 drops to the refrigerating operation end temperature TR_off, and the refrigerating operation ends.
  • the operation is switched to the refrigerant recovery operation.
  • the amount of refrigerant that can be supplied to the freezing cooler 14b can be secured, and the shortage of refrigerant in the subsequent frozen vegetable operation or freezing operation can be suppressed.
  • the refrigerating fan 9a by driving the refrigerating fan 9a, the residual refrigerant in the refrigerating cooler 14a is utilized for cooling the refrigerating chamber 2, and the refrigerating cooler is heated by the air in the refrigerating chamber 2.
  • the pressure drop in 14a is alleviated.
  • the increase in the specific volume of the suction refrigerant of the compressor 24 is suppressed, a large amount of refrigerant can be recovered in a relatively short time, and the cooling efficiency can be improved.
  • Time t2 is the time when the refrigerant recovery operation is completed. It is determined whether to execute the refrigerating cooler defrosting operation. Here, it is determined that the refrigerating fan 9a is driven at a speed of 1, and the refrigerating cooler defrosting operation is performed. As a result, the temperature of the refrigerating cooler 14a rises, and the temperature rise of the refrigerating chamber 2 is alleviated by the cooling effect of frost and the cold storage heat of the refrigerating cooler 14a. By providing the mode for driving the refrigerating fan 9a by performing the defrosting operation of the refrigerating cooler 14a in this way, the driving time of the refrigerating fan 9a is longer than the driving time of the refrigerating fan 9b described later. In addition, the air in the refrigerator compartment is circulated for a long time, so that the temperature inside the refrigerator compartment can be equalized.
  • the frozen vegetable operation is started, the vegetable room 6 is cooled, and the vegetable room temperature TV is lowered. ing.
  • the three-way valve 52 is controlled to the freezing mode, the compressor 24 is driven at a speed of 2, the refrigerant is supplied to the freezing cooler 14b, and the freezing cooler 14b becomes low in temperature.
  • the vegetable compartment damper 19 is opened, and the freezing fan 9b is driven at a speed of 1, so that the freezing chamber 7 and the vegetable compartment 6 are cooled by the air that has passed through the freezing cooler 14b and has become cold.
  • the freezing room temperature TF detected by the freezing room temperature sensor 42 reaches the freezing operation end temperature TF_off, and the freezing operation ends.
  • the refrigerating room temperature TR detected by the refrigerating room temperature sensor 41 has reached the refrigerating operation start temperature TR_on or higher, the refrigerating operation start condition is satisfied and the refrigerant recovery operation is performed.
  • the operations in which the freezing chamber 7 is cooled are the frozen vegetable operation (t2 to t3), the freezing operation (t3 to t4), and the refrigerant recovery operation (t4 to t5), and for freezing during these operations.
  • the freezing fan 9b and the compressor 24 are controlled so that the time average temperature of the cooler 14b is about ⁇ 24 ° C. Further, the time average value of the air temperature discharged from the refrigerating chamber during the refrigerating operation in which the refrigerating fan 9a is driven and the refrigerating cooler defrosting operation is -1.5 ° C., and refrigerating.
  • the temperature is higher than the arithmetic mean value (-8 ° C.) of the room maintenance temperature TF_keep (4 ° C.) and the refrigerating room maintenance temperature TR_keep (-20 ° C.).
  • the refrigerating operation was started again from t5 during the time when the refrigerant recovery operation was completed, and the above-mentioned operation was periodically repeated thereafter. It is maintained at 7 ° C.
  • FIG. 7 is a time chart of the rapid cooling operation.
  • the rapid cooling operation may be started by an explicit command such as pressing an operation switch by the user, or a region suitable for rapid cooling and a food that detects that food or the like is placed in this region.
  • a sensor may be provided and automatically started by sensor detection.
  • load temperature The temperature of food that the user wants to cool by rapid cooling. It is assumed that the initial load temperature charged into the storage chamber is higher than the storage chamber temperature (refrigerating chamber temperature TR in this embodiment) and the temperature of other foods in the refrigerating chamber 2.
  • the rapid cooling button of the operation unit 99 is pressed, and the rapid cooling command is received, the rapid cooling control is started, preferably the rapid cooling LED is turned on to the user. Notifies that rapid cooling has started.
  • the rapid cooling control of this embodiment will be described in three stages (Phase 1, Phase 2, Phase 3).
  • the end condition of each phase is controlled by the timer or the detection temperature of the refrigerating room temperature sensor 41 and / or the refrigerating room upper temperature sensor 44. If the rapid cooling command is canceled in the middle of the operation by the user, all the phases are terminated at that time, the rapid cooling control is terminated, the rapid cooling LED is turned off, and the normal operation control is restored.
  • Phase 1 (quenching step) is started first.
  • the three-way valve 52 is controlled to the refrigerating mode, and the compressor 24 operates to supply the refrigerant to the refrigerating cooler 14a and drive the refrigerating fan 9a. That is, the refrigerant circulates in the refrigerating cooler 14a to lower the temperature of the refrigerating cooler 14a, and the refrigerating fan 9a can be driven (preferably executed at a higher speed than the non-rapid cooling control or in the non-rapid cooling control).
  • the speed is 2 or 3
  • the low-temperature cold air that has exchanged heat with the refrigerating cooler 14a is blown to the refrigerating chamber 2 via the refrigerating chamber air passage 11 and the refrigerating chamber discharge port 11a.
  • the temperature of the refrigerator compartment 2 drops.
  • the temperature of the entire refrigerating chamber 2 may be lowered as in the present embodiment, or a region for intensively supplying cold air is set as a part of the refrigerating chamber 2, and the temperature is lowered around this region. You may let me.
  • Phase 1 ends. It is preferable that the temperature threshold value of the refrigerating room temperature sensor 41 for determining the end of Phase 1 is set lower than the normal refrigerating operation end temperature TR_off.
  • the food can be cooled immediately after the start of rapid cooling. Even if food is taken out during the rapid cooling control or the rapid cooling command is canceled, the food that the user wants to quench cools faster than during normal operation if the refrigerating fan 9a is driven at high speed. Therefore, the user can enjoy the effect of rapid cooling even in a short time.
  • Phase 2 slow cooling step
  • the supply of refrigerant to the refrigerating cooler 14a is reduced or cut off.
  • the three-way valve 52 is controlled to the freezing mode to execute "freezing operation” or "frozen vegetable operation".
  • the three-way valve 52 may be controlled in the fully closed mode and the compressor 24 may be controlled in the stopped state. Since the temperature of the refrigerating cooler 14a rises due to a decrease or interruption of the refrigerant supply, when the refrigerating fan 9a is driven, air having a higher temperature than the quenching step circulates in the refrigerating chamber 2. Since the temperature of the air circulating in the refrigerating chamber 2 is high in the slow cooling step, it is possible to prevent the food in the refrigerating chamber 2 from freezing.
  • the three-way valve 52 is set to the refrigerating mode or the fully closed mode in order to execute the slow cooling step, but instead of the refrigerating fan 9a arranged outside the refrigerating chamber 2, for example, the refrigerating cooler chamber 8a.
  • a refrigerating room fan (referred to as a refrigerating room circulation fan when it is particularly necessary to distinguish between them) can be provided in the refrigerating room 2.
  • the slow cooling step can be executed regardless of the state of the three-way valve 52.
  • the cold air can be circulated in the refrigerating chamber 2 by driving the refrigerating chamber circulation fan, the temperature of the part of the food that is locally lowered and may be frozen is raised, and other parts are raised. Since the cold air in the refrigerating chamber 2 comes into contact with the portion and other foods, the temperature rise can be suppressed.
  • the refrigerating chamber fan on the refrigerating chamber 8a side can be stopped as needed while the refrigerating chamber circulation fan is being driven.
  • a refrigerating chamber damper may be provided between the refrigerating chamber 2 and the refrigerating cooler chamber 8a (which may be an air passage or a return air passage) and may be closed while the refrigerating chamber circulation fan is being driven.
  • the time for executing the phase 1 may be predetermined and timed by a timer without separately providing a sensor for detecting the food temperature.
  • the compressor 24 is stopped during the phase 2, the above-mentioned quenching effect can be obtained while suppressing the power consumption to be smaller than that of operating the compressor 24, so that energy-saving rapid cooling can be executed.
  • Whether or not to operate the compressor 24 can be determined by the temperature of the other storage room at the time of transition to Phase 2, that is, the temperature detected by the freezing room temperature sensor 42 and the vegetable room temperature sensor 43. If those temperatures are sufficiently low, it is preferable to stop the compressor 24 to reduce the power consumption. Even if the compressor 24 is stopped at the start of Phase 2, if the temperature of the other storage chamber rises in the middle of Phase 2, the compressor 24 is operated from the middle of Phase 2 to perform "freezing operation".
  • Phase 2 ends when the timer detects the passage of a predetermined time, or when the temperatures detected by the refrigerating room temperature sensor 41 and / or the refrigerating room upper temperature sensor 44 become equal to or higher than the predetermined values. .. Since it is not easy to detect a temperature rise in a region where freezing is a concern due to temperature fluctuations of the refrigerating chamber temperature sensors 41 and 44, determination by a timer is preferable.
  • Phase 3 may have the same control as Phase 1, and when the execution time is set by the timer, changes may be given such as shortening the execution time.
  • the refrigerating mode for supplying the refrigerant to the refrigerating cooler 14a is controlled again, and the refrigerating fan 9a is driven. Since the temperature inside the refrigerating chamber 2 is equalized and the average temperature inside the refrigerating chamber 2 is raised by the slow cooling step of the phase 2, the temperature of the refrigerating chamber 2 is adjusted by executing the quenching step again. Let it descend.
  • the rapid cooling control is terminated in this embodiment, the rapid cooling LED is turned off, and the normal operation control is restored. If necessary, the process may shift to Phase 2 again, and Phases 2 and 3 may be repeated.
  • the cooling rate can be improved while suppressing the freezing of food by alternately executing the quenching step and the slow cooling step.
  • the refrigerating fan 9a substantially continues to be driven during the rapid cooling operation, so that the air around the lunch box continues to circulate.
  • it is possible to prevent the air around the lunch box from staying warm, so that it is possible to suppress the temperature rise of other foods around the lunch box and suppress the so-called aging of the food.
  • low-temperature air tends to collect downward, and the temperature of the lower part of the refrigerator chamber 2 tends to be lower than that of the upper part. Since the temperature can be made uniform, the storage place for the high-temperature food to be stored when the rapid cooling operation is executed can be not only the lower part of the refrigerating chamber 2 but also the upper part. Since the refrigerating room temperature sensor 41 is provided below the center of the refrigerating room 2 and the refrigerating room upper temperature sensor 44 is provided on the ceiling of the refrigerator, the temperatures of the upper and lower parts of the refrigerating room 2 are detected during rapid cooling. can.
  • a damper capable of opening and closing the cold air discharged from each, and a louver capable of switching the discharge direction of the cold air are provided, the upper and lower portions thereof can be switched.
  • the rapid cooling operation of this embodiment can also be performed in a so-called single cooling type refrigerator having only one cooler. Further, it can be executed not only in the refrigerating room but also in other non-freezing temperature zone storage rooms such as a vegetable room and a chilled room above the freezing point.
  • freezing was suppressed by changing the temperature of the cooler while driving the refrigerating fan 9a, but freezing was suppressed by changing the location and direction of the cold air supplied to the refrigerating chamber 2. May be good.
  • the location and direction of blowing out may be changed in Phase 2 and returned in Phase 3.

Abstract

Provided is a refrigerator with which a food item in a refrigeration compartment can be cooled more rapidly while preventing the food item from freezing. A refrigerator having a cooler for feeding cold air, a storage compartment in a refrigeration temperature range, an airflow path linking the cooler and the storage compartment, and a storage compartment fan. The temperature of the cooler progresses so as to decrease, then increase, and then decrease, during which the storage compartment fan substantially continues driving.

Description

冷蔵庫refrigerator
 本発明は冷蔵庫に関する。 The present invention relates to a refrigerator.
 貯蔵室、例えば冷蔵温度帯の室内に入れられた食品を速く冷やす急速冷却機能の技術が提案されている。食品を緩慢に冷却するよりも急速に冷やす方が食品の保存性を向上できることが知られているところ、冷蔵温度帯で保存されるべき食品に大量の冷気を供給し続けると、特に、冷気が直接吹き付けられる食品や、そのような食品の一部分が凍結してしまうことが懸念される。 A technology with a rapid cooling function that quickly cools food stored in a storage room, for example, a room in a refrigerated temperature range, has been proposed. It is known that rapid cooling of food can improve the shelf life of food rather than slow cooling, especially when a large amount of cold air is continuously supplied to food that should be stored in the refrigerated temperature range. There is concern that foods that are directly sprayed or parts of such foods may freeze.
 このような中、特許文献1は、急速冷蔵運転中、設定温度Tsから温度センサ12が検知する庫内温度を引いた値が1deg以上あるときダンパを閉にし(ステップS504,505)、庫内温度から設定温度Tsを引いた値が1deg以上あるとき、ダンパを開にする(ステップS511,512)ことを開示する(明細書第3頁右下欄、第6図)。 Under such circumstances, Patent Document 1 closes the damper when the value obtained by subtracting the temperature inside the refrigerator detected by the temperature sensor 12 from the set temperature Ts is 1 deg or more during the rapid refrigeration operation (steps S504 and 505). It is disclosed that the damper is opened (step S511,512) when the value obtained by subtracting the set temperature Ts from the temperature is 1 deg or more (lower right column on page 3 of the specification, FIG. 6).
特開昭62-73072号公報Japanese Unexamined Patent Publication No. 62-73072
 特許文献1のようにダンパの開閉で冷気供給を断続させると、ダンパを閉じている間は冷気の供給が停止するため、食品の冷却が停止する。また、貯蔵室内の空気の撹拌も停止するため、特に高温の食品が貯蔵室内に収納されている場合、その熱が高温食品周囲の食品を温めてしまうし、高温食品の冷却もほとんど行われない。 If the cold air supply is interrupted by opening and closing the damper as in Patent Document 1, the cold air supply is stopped while the damper is closed, so that the cooling of food is stopped. In addition, since the agitation of the air in the storage chamber is also stopped, the heat heats the food around the hot food, especially when the hot food is stored in the storage room, and the hot food is hardly cooled. ..
 上記事情に鑑みてなされた本発明は、
 冷気を供給する冷却器と、
 冷蔵温度帯の貯蔵室と、
 前記冷却器及び前記貯蔵室を繋ぐ送風路と、
 貯蔵室ファンと、を有し、
 前記冷却器の温度が低下し、その後上昇し、さらにその後低下する経過を示し、この間、前記貯蔵室ファンは、実質的に駆動し続ける冷蔵庫。
The present invention made in view of the above circumstances
A cooler that supplies cold air and
A storage room in the refrigerated temperature range and
An air passage connecting the cooler and the storage chamber,
With a storage room fan,
A refrigerator in which the temperature of the cooler decreases, then increases, and then decreases, during which the storage chamber fan substantially continues to drive.
 また、上記事情に鑑みてなされた第二の本発明は、
 冷気を供給する冷却器と、
 冷蔵温度帯の貯蔵室と、
 前記冷却器及び前記貯蔵室を繋ぐ送風路と、
 貯蔵室ファンと、を有し、
 前記送風路から吹き出す冷気の場所又は方向が変化した後元に戻る経過を示し、この間、前記貯蔵室ファンは、実質的に駆動し続ける冷蔵庫。
In addition, the second invention made in view of the above circumstances is
A cooler that supplies cold air and
A storage room in the refrigerated temperature range and
An air passage connecting the cooler and the storage chamber,
With a storage room fan,
A refrigerator that shows a process of changing the location or direction of the cold air blown out from the air passage and then returning to the original state, during which the storage chamber fan substantially continues to drive.
実施例の冷蔵庫の正面外観図。Front view of the refrigerator of the embodiment. 実施例の冷蔵庫の風路構成を表す模式図。The schematic diagram which shows the air passage composition of the refrigerator of an Example. 図1のA-A断面図。A cross-sectional view taken along the line AA of FIG. 図3のB-B断面図。BB sectional view of FIG. 実施例の冷蔵庫の冷凍サイクルの概略図。The schematic diagram of the refrigerating cycle of the refrigerator of an Example. 実施例の冷蔵庫の非急速冷却運転時の安定状態のタイムチャート。Time chart of stable state during non-rapid cooling operation of the refrigerator of the embodiment. 急速冷却運転を実行している間を含むタイムチャートである。It is a time chart including while executing a rapid cooling operation.
 以下、本発明の実施例を添付の図面を参照しつつ説明する。
 図1は実施例の冷蔵庫1の正面図である。
 冷蔵庫1の断熱箱体10は、前方に開口しており、複数の貯蔵室を有している。貯蔵室としては上方から、冷蔵室2(第一冷蔵温度帯室)、左右に並設された製氷室3と上段冷凍室4、下段冷凍室5、野菜室6(第二冷蔵温度帯室)を備える。以下では、製氷室3、上段冷凍室4、下段冷凍室5は、まとめて冷凍室7(冷凍温度帯室)と呼ぶ。
Hereinafter, examples of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a front view of the refrigerator 1 of the embodiment.
The heat insulating box body 10 of the refrigerator 1 is open to the front and has a plurality of storage chambers. From the top, the storage chambers are the refrigerating room 2 (first refrigerating temperature zone room), the ice making chambers 3 and the upper freezing chamber 4 arranged side by side, the lower freezing chamber 5, and the vegetable compartment 6 (second refrigerating temperature zone room). To be equipped. Hereinafter, the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are collectively referred to as a freezing chamber 7 (freezing temperature zone chamber).
 冷蔵室2の前方の開口は、左右に分割された回転式の冷蔵室扉2a,2bにより開閉され、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6の前方の開口は、引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aによってそれぞれ開閉される。 The front opening of the refrigerating chamber 2 is opened and closed by the rotary refrigerating chamber doors 2a and 2b divided into left and right, and the front opening of the ice making chamber 3, the upper freezing chamber 4, the lower freezing chamber 5, and the vegetable compartment 6 is opened. It is opened and closed by a pull-out type ice making room door 3a, an upper freezing room door 4a, a lower freezing room door 5a, and a vegetable room door 6a, respectively.
 例えば、冷蔵室扉2aには、ユーザからの指令を受付けたりユーザへの報知をしたりできる操作部99を設けている。操作部99は、ユーザからの急速冷却指令を受付ける受付部として、急速冷却ボタンを有する。また、急速冷却運転の実行中は、その旨を報知する表示部として、例えば「急速冷却」と文字状に発光出力するLEDや光透過部を有している。 For example, the refrigerator compartment door 2a is provided with an operation unit 99 capable of receiving a command from the user and notifying the user. The operation unit 99 has a rapid cooling button as a reception unit for receiving a rapid cooling command from the user. Further, during the execution of the rapid cooling operation, as a display unit for notifying the fact, for example, an LED or a light transmitting unit that emits and outputs "rapid cooling" in a character shape is provided.
 冷蔵室扉2aには公知の回転仕切り98を設け、回転仕切り98内に回転仕切りヒータ61を備えている。後述する冷蔵室吐出口11aから上方に向けて吹き出された冷却空気は、回転仕切り98の庫内側表面を流れて冷却するため、回転仕切りの庫外表面に結露が発生する虞がある。特に、後述する急速冷却を実行するとその虞が大きい。このため、急速冷却時は、回転仕切りヒータ61の出力を通常時と比べて高くするのが好ましい。 A known rotary partition 98 is provided on the refrigerator compartment door 2a, and a rotary partition heater 61 is provided in the rotary partition 98. Since the cooling air blown upward from the refrigerator chamber discharge port 11a, which will be described later, flows upward on the inner surface of the rotary partition 98 to cool the cooling air, dew condensation may occur on the outer surface of the rotary partition 98. In particular, there is a great risk that rapid cooling, which will be described later, is performed. Therefore, at the time of rapid cooling, it is preferable to increase the output of the rotary partition heater 61 as compared with the normal time.
 図2は実施例の冷蔵庫1の風路構成を示す模式図である。
 冷蔵用冷却器14aと熱交換して低温になった空気は、冷蔵用ファン9aを駆動することにより、冷蔵室送風路11を介して冷蔵室2に送風され、冷蔵室2内を冷却する。冷蔵室2に送られた空気は、冷蔵室戻り風路15から冷蔵用冷却器室8aに戻る。
FIG. 2 is a schematic view showing the air passage configuration of the refrigerator 1 of the embodiment.
The air that has become cold due to heat exchange with the refrigerating cooler 14a is blown to the refrigerating chamber 2 through the refrigerating chamber air passage 11 by driving the refrigerating fan 9a to cool the inside of the refrigerating chamber 2. The air sent to the refrigerating chamber 2 returns from the refrigerating chamber return air passage 15 to the refrigerating cooler chamber 8a.
 冷凍用冷却器14bと熱交換して低温になった空気は、冷凍用ファン9bを駆動することにより、冷凍室送風路12を介して冷凍室7に送風され、冷凍室7内を冷却する。冷凍室7に送られた空気は、冷凍室戻り風路17から冷凍用冷却器室8bに戻る。 The air that has become cold due to heat exchange with the freezing cooler 14b is blown to the freezing chamber 7 through the freezing chamber air passage 12 by driving the freezing fan 9b, and cools the inside of the freezing chamber 7. The air sent to the freezing chamber 7 returns from the freezing chamber return air passage 17 to the freezing cooler chamber 8b.
 冷凍用冷却器14bと熱交換して低温になった空気は、野菜室ダンパ19が開放状態の場合には、冷凍室送風路12に流入した冷却空気の一部が野菜室送風路13を介して野菜室6に至り、野菜室6内を冷却する。野菜室6に送られた空気は、野菜室戻り風路18を流れて冷凍用冷却器室8bに戻る。 When the vegetable compartment damper 19 is open, a part of the cooling air that has flowed into the freezing chamber air passage 12 passes through the vegetable chamber air passage 13 for the air that has become cold due to heat exchange with the freezing cooler 14b. It reaches the vegetable compartment 6 and cools the inside of the vegetable compartment 6. The air sent to the vegetable compartment 6 flows through the vegetable compartment return air passage 18 and returns to the freezing cooler chamber 8b.
 図3は図1のA-A断面図である。図4は図3のB-B断面図である。
 断熱箱体10の外殻を形成する外箱10aと内箱10bとの間には発泡断熱材や真空断熱材が充填されている。チルドルーム35下部にはチルドルームの冷え過ぎを抑えるチルドルーム温度補償ヒータ60を備えている。チルドルーム35は、断熱仕切壁28を介して冷凍温度帯にある製氷室3や上段冷凍室4に隣接するため、低温になり易い。後述する急速冷却運転を実行すると、チルドルーム35内の食品が凍結しやすくなるため、急速冷却運転中はチルドルーム温度補償ヒータ60の出力を通常時と比べて高くすると好ましい。
FIG. 3 is a cross-sectional view taken along the line AA of FIG. FIG. 4 is a cross-sectional view taken along the line BB of FIG.
A foam heat insulating material or a vacuum heat insulating material is filled between the outer box 10a and the inner box 10b forming the outer shell of the heat insulating box body 10. A chilled room temperature compensating heater 60 for suppressing overcooling of the chilled room is provided in the lower part of the chilled room 35. Since the chilled room 35 is adjacent to the ice making chamber 3 and the upper freezing chamber 4 in the freezing temperature zone via the heat insulating partition wall 28, the temperature tends to be low. When the rapid cooling operation described later is executed, the food in the chilled room 35 is likely to freeze. Therefore, it is preferable that the output of the chilled room temperature compensating heater 60 is higher than in the normal state during the rapid cooling operation.
 冷蔵室2の略背部には冷蔵用冷却器室8aを備えており、冷蔵用冷却器室8a内には、フィンチューブ式熱交換器である冷蔵用冷却器14aが収納されている。冷蔵用冷却器14aの上方には冷蔵用ファン9aを備えている。また、冷蔵室2背部の幅方向の略中心には、冷蔵用冷却器室8aと冷蔵室2とを繋ぐ冷蔵室送風路11を備えている。冷蔵室送風路11の上部には、吹き出す空気を上方に指向させる指向手段を備えた冷蔵室吐出口11aを備えている。 A refrigerating cooler room 8a is provided substantially behind the refrigerating room 2, and a refrigerating cooler 14a, which is a fin tube type heat exchanger, is housed in the refrigerating cooler room 8a. A refrigerating fan 9a is provided above the refrigerating cooler 14a. Further, a refrigerating chamber air passage 11 connecting the refrigerating cooler chamber 8a and the refrigerating chamber 2 is provided at substantially the center of the back of the refrigerating chamber 2 in the width direction. A refrigerating chamber discharge port 11a provided with a directing means for directing the blown air upward is provided above the refrigerating chamber air passage 11.
 冷蔵室吐出口11aから上方に向けて吹き出された冷却空気は、図2中に矢印で示すように冷蔵室2の天井面を沿って流れて冷蔵室2の前方の領域に到達し、棚34a-34cと扉ポケット33a-33cとの隙間を流れて下降し、チルドルーム35の後方空間に入り、冷蔵用冷却器室8aの下部に設けられた冷蔵室戻り風路15aから冷蔵用冷却器室8aに戻る。 The cooling air blown upward from the refrigerating room discharge port 11a flows along the ceiling surface of the refrigerating room 2 as shown by an arrow in FIG. 2 and reaches the area in front of the refrigerating room 2 and reaches the area in front of the refrigerating room 2 and reaches the shelf 34a. It flows down through the gap between -34c and the door pockets 33a-33c, enters the space behind the chilled room 35, and enters the refrigerating cooler room from the refrigerating room return air passage 15a provided at the lower part of the refrigerating cooler room 8a. Return to 8a.
 冷凍室7の略背部には冷凍用冷却器室8bを備えており、冷凍用冷却器室8b内には、フィンチューブ式熱交換器である冷凍用冷却器14bが収納されている。冷凍用冷却器14bの上方には冷凍用ファン9bを備えている。また、冷凍室7の背部には冷凍室送風路12を備えており、冷凍用ファン9bの前方の冷凍室送風路12には複数の冷凍室吐出口12aを備えている。冷凍用冷却器室8bの下部前方には冷凍室7に送られた空気が戻る冷凍室戻り風路17を備えている。 A freezing cooler room 8b is provided substantially behind the freezing room 7, and a freezing cooler 14b, which is a fin tube type heat exchanger, is housed in the freezing cooler room 8b. A freezing fan 9b is provided above the freezing cooler 14b. Further, the back of the freezing chamber 7 is provided with a freezing chamber air passage 12, and the freezing chamber air passage 12 in front of the freezing fan 9b is provided with a plurality of freezing chamber discharge ports 12a. A freezing chamber return air passage 17 for returning the air sent to the freezing chamber 7 is provided in front of the lower part of the freezing cooler chamber 8b.
 野菜室6への風路となる野菜室送風路13は、冷凍室送風路12の右下方から分岐形成され、断熱仕切壁29を通過している。野菜室送風路13は、野菜室ダンパ19を備えている。野菜室6と冷凍室7の間の断熱仕切壁29の下部前方には、野菜室戻り流入口18aを備えており、断熱仕切壁29内を通過する野菜室戻り風路18を介して冷凍用冷却器室8bの下部前方に設けられた野菜室戻り流出口18bに至る流路が形成されている。 The vegetable compartment air passage 13 serving as an air passage to the vegetable chamber 6 is branched from the lower right of the freezing chamber air passage 12 and passes through the heat insulating partition wall 29. The vegetable compartment air passage 13 includes a vegetable compartment damper 19. A vegetable compartment return inlet 18a is provided in front of the lower part of the heat insulating partition wall 29 between the vegetable compartment 6 and the freezing chamber 7, and for freezing via the vegetable compartment return air passage 18 passing through the heat insulating partition wall 29. A flow path leading to the return outlet 18b of the vegetable chamber provided in front of the lower part of the cooler chamber 8b is formed.
 冷蔵室2、冷凍室7、野菜室6の例えば庫内背面側には、冷蔵室温度センサ41、冷凍室温度センサ42、野菜室温度センサ43を備え、それぞれ冷蔵室2、冷凍室7、野菜室6の温度を検知している。また、冷蔵室2の庫内天井部に冷蔵室上部温度センサ44を備えており、冷蔵室2の上部の温度を検知している。また、冷蔵用冷却器14aの上部には冷蔵用冷却器温度センサ40a、冷凍用冷却器14bの上部には冷凍用冷却器温度センサ40bを備え、冷蔵用冷却器14a、及び冷凍用冷却器14bの温度を検知している。冷蔵庫1の天井部の扉ヒンジカバー16の内部には、外気(庫外空気)の温度、湿度を検知する外気温湿度センサ37を備えている。 For example, the refrigerating room 2, the freezing room 7, and the vegetable room 6 are provided with a refrigerating room temperature sensor 41, a freezing room temperature sensor 42, and a vegetable room temperature sensor 43 on the back side of the refrigerator, and the refrigerating room 2, the freezing room 7, and vegetables are provided, respectively. The temperature of the room 6 is detected. Further, a refrigerating room upper temperature sensor 44 is provided on the ceiling of the refrigerating room 2 to detect the temperature of the upper part of the refrigerating room 2. Further, a refrigerating cooler temperature sensor 40a is provided above the refrigerating cooler 14a, a refrigerating cooler temperature sensor 40b is provided above the refrigerating cooler 14b, and the refrigerating cooler 14a and the refrigerating cooler 14b are provided. The temperature of is detected. Inside the door hinge cover 16 on the ceiling of the refrigerator 1, an outside air temperature / humidity sensor 37 that detects the temperature and humidity of the outside air (outside air) is provided.
 冷凍用冷却器室8bの下部には、冷凍用冷却器14bを加熱する除霜ヒータ21を備えている。除霜ヒータ21は、例えば50W~200Wの電気ヒータである。冷凍用冷却器14bの除霜時に発生した除霜水(融解水)は、冷凍用冷却器室8bの下部に備えた樋23bに流下し、排水口22b、冷凍用排水管27bを介して冷蔵庫1の後方(背面側)下部に設けられた機械室39に至り、機械室39内に設置された圧縮機24の上部の蒸発皿32に排出される。 A defrost heater 21 for heating the freezing cooler 14b is provided in the lower part of the freezing cooler room 8b. The defrost heater 21 is, for example, an electric heater of 50 W to 200 W. The defrosted water (melted water) generated during the defrosting of the refrigerating cooler 14b flows down to the gutter 23b provided in the lower part of the refrigerating cooler room 8b, and flows down to the refrigerator via the drain port 22b and the refrigerating drain pipe 27b. It reaches the machine room 39 provided in the lower part behind (rear side) of No. 1, and is discharged to the evaporating dish 32 in the upper part of the compressor 24 installed in the machine room 39.
 冷蔵庫1の天井部には、制御装置の一部であるCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31を配置している。制御基板31は、冷蔵室温度センサ41、冷凍室温度センサ42、野菜室温度センサ43、冷却器温度センサ40a,40b等と接続され、前述のCPUは、これらの出力値や操作部99の設定、前述のROMに予め記録されたプログラム等を基に、圧縮機24や冷蔵用ファン9a、冷凍用ファン9bのON/OFFや回転速度制御、除霜ヒータ21、樋ヒータ101、排水管上部ヒータ102、排水管下部ヒータ103、及び、後述する三方弁52の制御等を行っている。 On the ceiling of the refrigerator 1, a control board 31 on which a CPU, a memory such as a ROM or RAM, an interface circuit, etc., which are a part of the control device, is mounted is arranged. The control board 31 is connected to the refrigerator compartment temperature sensor 41, the freezer compartment temperature sensor 42, the vegetable compartment temperature sensor 43, the cooler temperature sensors 40a, 40b, etc., and the CPU described above sets these output values and the operation unit 99. , ON / OFF and rotation speed control of the compressor 24, the refrigerating fan 9a, and the refrigerating fan 9b, the defrosting heater 21, the gutter heater 101, and the drain pipe upper heater, based on the program recorded in advance in the ROM described above. It controls 102, the drain pipe lower heater 103, and the three-way valve 52, which will be described later.
 図5は、冷蔵庫1の冷凍サイクルの概略図である。冷蔵庫1は、冷媒を圧縮する圧縮機24、圧縮機24の下流に在り冷媒の放熱を行う庫外放熱器50aと壁面放熱配管50b、圧縮機24の下流に在り冷媒の放熱を行いながら断熱仕切壁28,29,30の前縁部への結露を抑制する結露抑制配管50c、放熱器50a-50cの下流に在る冷媒切替弁としての三方弁52、三方弁52の一方の流出口52aに接続していて冷媒を減圧させる冷蔵用キャピラリチューブ53a、三方弁52の他方の流出口52bに接続していて冷媒を減圧させる冷凍用キャピラリチューブ53b、冷蔵用キャピラリチューブ53aの下流に在り冷媒の蒸発により吸熱する(冷気を供給する)冷蔵用冷却器14a、及び、冷凍用キャピラリチューブ53bの下流に在り冷媒の蒸発により吸熱する冷凍用冷却器14bを備えている。これら各種の構成要素は、冷媒配管によって環状に接続されている。 FIG. 5 is a schematic view of the refrigerating cycle of the refrigerator 1. The refrigerator 1 is a compressor 24 that compresses the refrigerant, an external radiator 50a that is located downstream of the compressor 24 and dissipates the refrigerant, a wall surface heat dissipation pipe 50b, and a heat insulating partition that is located downstream of the compressor 24 and dissipates the refrigerant. At one of the outlets 52a of the dew condensation suppression pipe 50c that suppresses dew condensation on the front edges of the walls 28, 29, and 30, the three-way valve 52 as a refrigerant switching valve located downstream of the radiator 50a-50c, and the three-way valve 52. Refrigerant capillary tube 53a that is connected to reduce the pressure of the refrigerant, refrigerating capillary tube 53b that is connected to the other outlet 52b of the three-way valve 52 to reduce the pressure of the refrigerant, and is located downstream of the refrigerating capillary tube 53a to evaporate the refrigerant. It is provided with a refrigerating cooler 14a that absorbs heat (supplies cold air) and a refrigerating cooler 14b that is located downstream of the refrigerating capillary tube 53b and absorbs heat by evaporating the refrigerant. These various components are connected in an annular shape by a refrigerant pipe.
 その他三方弁52の上流には、冷凍サイクル中の水分を除去するドライヤ51を備えている。冷蔵用冷却器14aの下流と冷凍用冷却器14bの下流それぞれには、液冷媒が圧縮機24に流入するのを防止する冷蔵用気液分離器54aと冷凍用気液分離器54bを備えている。冷凍用気液分離器54bの下流かつキャピラリチューブ53a,53bの下流の合流部分より上流には、逆止弁56を備えている。 In addition, a dryer 51 for removing water during the refrigeration cycle is provided upstream of the three-way valve 52. A refrigerating gas-liquid separator 54a and a refrigerating gas-liquid separator 54b for preventing the liquid refrigerant from flowing into the compressor 24 are provided downstream of the refrigerating cooler 14a and downstream of the refrigerating cooler 14b, respectively. There is. A check valve 56 is provided downstream of the freezing gas-liquid separator 54b and upstream of the confluence portion downstream of the capillary tubes 53a and 53b.
 冷蔵用冷却器14aの温度は、圧縮機24、冷蔵用ファン9aの回転速度によって調整できる。冷凍用冷却器14bの温度は、圧縮機24、冷凍用ファン9bの回転速度によって調整できる。 The temperature of the refrigerating cooler 14a can be adjusted by the rotation speed of the compressor 24 and the refrigerating fan 9a. The temperature of the freezing cooler 14b can be adjusted by the rotation speed of the compressor 24 and the freezing fan 9b.
 三方弁52は、流出口52aと、流出口52bを備えており、次のモードが可能である。
 流出口52aを開放状態、流出口52bを閉鎖状態として、冷蔵用キャピラリチューブ53a側に冷媒を流す冷蔵モード。
 流出口52aを閉鎖状態、流出口52bを開放状態として、冷凍用キャピラリチューブ53b側に冷媒を流す冷凍モード。
 流出口52a,52bの何れも閉鎖状態とする全閉モード。
The three-way valve 52 includes an outlet 52a and an outlet 52b, and the following modes are possible.
A refrigerating mode in which the refrigerant flows to the refrigerating capillary tube 53a side with the outflow port 52a in the open state and the outflow port 52b in the closed state.
A freezing mode in which the refrigerant flows to the refrigerating capillary tube 53b side with the outlet 52a closed and the outlet 52b open.
Fully closed mode in which both the outlets 52a and 52b are closed.
 三方弁52が何れのモードであっても、圧縮機24から吐出した冷媒は、庫外放熱器50a、庫外放熱器50b、結露抑制配管50cを流れて放熱し、ドライヤ51を介して三方弁52に至る。 Regardless of the mode of the three-way valve 52, the refrigerant discharged from the compressor 24 flows through the external radiator 50a, the external radiator 50b, and the dew condensation suppression pipe 50c to dissipate heat, and is dissipated through the dryer 51. It reaches 52.
 冷蔵モードの場合、冷媒は冷蔵用キャピラリチューブ53aを流れて減圧され冷蔵用冷却器14aに至り、冷蔵室2の戻り空気と熱交換する。冷蔵用冷却器14aを出た冷媒は、冷蔵用気液分離器54aを通り、冷蔵用キャピラリチューブ53aとの接触部57aを流れることで冷蔵用キャピラリチューブ53a内を流れる冷媒と熱交換した後に圧縮機24に戻る。 In the refrigerating mode, the refrigerant flows through the refrigerating capillary tube 53a, is depressurized, reaches the refrigerating cooler 14a, and exchanges heat with the return air of the refrigerating chamber 2. The refrigerant discharged from the refrigerating cooler 14a passes through the refrigerating gas-liquid separator 54a, flows through the contact portion 57a with the refrigerating capillary tube 53a, and is compressed after exchanging heat with the refrigerant flowing in the refrigerating capillary tube 53a. Return to machine 24.
 冷凍モードの場合、冷媒は冷凍用キャピラリチューブ53bを流れて減圧され冷凍用冷却器14bに至り、冷凍室7の戻り空気と熱交換する。野菜室ダンパ19が開放状態の場合はさらに、野菜室6の戻り空気と熱交換する。冷凍用冷却器14bを出た冷媒は、冷凍用気液分離器54bを通り、冷凍用キャピラリチューブ53bとの接触部57bを流れることで冷凍用キャピラリチューブ53b内を流れる冷媒と熱交換した後に圧縮機24に戻る。 In the freezing mode, the refrigerant flows through the freezing capillary tube 53b, is depressurized, reaches the freezing cooler 14b, and exchanges heat with the return air of the freezing chamber 7. When the vegetable compartment damper 19 is in the open state, heat is further exchanged with the return air of the vegetable compartment 6. The refrigerant discharged from the freezing cooler 14b passes through the freezing gas-liquid separator 54b, flows through the contact portion 57b with the freezing capillary tube 53b, exchanges heat with the refrigerant flowing in the freezing capillary tube 53b, and is compressed. Return to machine 24.
 全閉モードの場合、圧縮機24を駆動してもキャピラリチューブ53a,53bから冷媒が供給されない状態となるため、冷却器14a,14b内の冷媒が圧縮機24に吸い込まれて圧縮されてから吐出され、放熱器50に回収される。 In the fully closed mode, even if the compressor 24 is driven, the refrigerant is not supplied from the capillary tubes 53a and 53b. Therefore, the refrigerant in the coolers 14a and 14b is sucked into the compressor 24 and compressed before being discharged. And collected in the radiator 50.
 本実施例の冷蔵庫は、次の運転が可能である。
 三方弁52を冷蔵モードに制御して冷蔵室2を冷却する「冷蔵運転」。
 冷凍モードに制御して野菜室ダンパ19を開とすることで冷凍室7と野菜室6を冷却する「冷凍野菜運転」。
 冷凍モードに制御して野菜室ダンパ19を閉とすることで冷凍室7を冷却する「冷凍運転」。
 全閉モードに制御して圧縮機24を駆動して、冷媒を放熱手段側に回収する「冷媒回収運転」。
 全閉モードに制御して圧縮機24を停止状態とする「運転停止」。
 冷蔵用冷却器14aに冷媒が流れない状態に制御して冷蔵用ファン9aを駆動状態として、冷蔵用冷却器14aの表面に成長した霜や冷却器自体の蓄冷熱で冷蔵室2を冷却しつつ冷蔵用冷却器14aの除霜を行う「冷蔵用冷却器除霜運転」。
 全閉モードに制御して圧縮機24を停止状態、冷凍用ファン9bを停止状態、除霜ヒータ21を通電状態とすることで、冷凍用冷却器14bの除霜を行う「冷凍用冷却器除霜運転」。
The refrigerator of this embodiment can be operated as follows.
"Refrigerating operation" in which the three-way valve 52 is controlled to the refrigerating mode to cool the refrigerating chamber 2.
"Frozen vegetable operation" in which the freezing chamber 7 and the vegetable compartment 6 are cooled by controlling the freezing mode and opening the vegetable compartment damper 19.
A "freezing operation" in which the freezing chamber 7 is cooled by controlling the freezing mode and closing the vegetable compartment damper 19.
A "refrigerant recovery operation" in which the compressor 24 is driven by controlling the fully closed mode to recover the refrigerant to the heat radiating means side.
"Operation stop" that controls the fully closed mode and puts the compressor 24 in a stopped state.
Controlling the state in which the refrigerant does not flow into the refrigerating cooler 14a and driving the refrigerating fan 9a, while cooling the refrigerating chamber 2 with the frost grown on the surface of the refrigerating cooler 14a and the cold storage heat of the cooler itself. "Refrigerator defrosting operation" for defrosting the refrigerating cooler 14a.
By controlling the fully closed mode to stop the compressor 24, stop the freezing fan 9b, and energize the defrost heater 21, the freezing cooler 14b is defrosted. Frost operation ".
 図6は、外気32℃、相対湿度70%の環境下に設置し、非急速冷却運転時の安定状態のタイムチャートである。圧縮機24やファン9a,9bのON状態では、速度1から速度4に向けて回転数が大きくなる。 FIG. 6 is a time chart of a stable state during non-rapid cooling operation when installed in an environment where the outside air is 32 ° C and the relative humidity is 70%. In the ON state of the compressor 24 and the fans 9a and 9b, the rotation speed increases from the speed 1 to the speed 4.
 t0は冷蔵室2を冷却する冷蔵運転が開始された時刻である。三方弁52が冷蔵モードに制御され、圧縮機24が速度1で駆動されて冷蔵用冷却器14aに冷媒が供給されることで、冷蔵用冷却器14aの温度が低下している。冷蔵用ファン9aが速度2で駆動されることで、冷蔵用冷却器14aを通過して低温になった空気が冷蔵室吐出口11aから冷蔵室2内に吹き出し、冷蔵室2が冷却されて温度が低下している。 T0 is the time when the refrigerating operation for cooling the refrigerating chamber 2 is started. The three-way valve 52 is controlled to the refrigerating mode, the compressor 24 is driven at a speed of 1, and the refrigerant is supplied to the refrigerating cooler 14a, so that the temperature of the refrigerating cooler 14a is lowered. When the refrigerating fan 9a is driven at a speed of 2, the air that has passed through the refrigerating cooler 14a and has become low temperature is blown out from the refrigerating chamber discharge port 11a into the refrigerating chamber 2, and the refrigerating chamber 2 is cooled to a temperature. Is declining.
 ここで、冷蔵運転中の冷蔵用冷却器14aの時間平均温度は-6℃であり、後述する冷凍運転中の冷凍用冷却器14bの時間平均温度の-24℃よりも高くしている。一般に冷却器温度(蒸発温度)が高い方が、冷凍サイクル成績係数(圧縮機24の入力に対する吸熱量の割合)が高く、省エネルギー性能が高い。冷凍室7は冷凍温度に維持するために冷凍用冷却器14bの温度を低温にする必要があるが、冷蔵室2は冷蔵温度に維持すれば良いので、冷蔵用冷却器14aの温度を高めるように冷蔵用ファン9a及び圧縮機24の回転速度を制御して、省エネルギー性能を向上している。 Here, the time average temperature of the refrigerating cooler 14a during the refrigerating operation is −6 ° C., which is higher than the time average temperature of the refrigerating cooler 14b during the refrigerating operation described later, which is −24 ° C. Generally, the higher the cooler temperature (evaporation temperature), the higher the coefficient of performance of the refrigeration cycle (the ratio of the amount of heat absorbed to the input of the compressor 24), and the higher the energy saving performance. In the freezer chamber 7, it is necessary to lower the temperature of the refrigerating cooler 14b in order to maintain the freezing temperature, but since the refrigerating chamber 2 may be maintained at the refrigerating temperature, the temperature of the refrigerating cooler 14a should be increased. The rotation speed of the refrigerating fan 9a and the compressor 24 is controlled to improve the energy saving performance.
 時刻t1で冷蔵室温度センサ41が検知する冷蔵室温度TRが冷蔵運転終了温度TR_offまで低下したことで、冷蔵運転は終了する。本実施例では、終了後、冷媒回収運転に切換わっている。冷媒回収運転では三方弁52が全閉モードに制御され、圧縮機24が速度1、冷蔵用ファン9aが速度2で駆動されて、冷蔵用冷却器14a内の冷媒が例えば2分間回収される(ΔTA1=2min)。これにより、冷凍用冷却器14bに供給し得る冷媒量を確保し、続いて行う冷凍野菜運転又は冷凍運転での冷媒不足を抑制できる。なお、このとき冷蔵用ファン9aが駆動されることで、冷蔵用冷却器14a内の残留冷媒が冷蔵室2の冷却に活用されるとともに、冷蔵室2内の空気による加熱で、冷蔵用冷却器14a内の圧力低下が緩和される。これにより、圧縮機24の吸込冷媒の比体積増加が抑制され、比較的短い時間で多くの冷媒を回収できるようになり、冷却効率を高めることができる。 The refrigerating room temperature TR detected by the refrigerating room temperature sensor 41 at time t1 drops to the refrigerating operation end temperature TR_off, and the refrigerating operation ends. In this embodiment, after the completion, the operation is switched to the refrigerant recovery operation. In the refrigerant recovery operation, the three-way valve 52 is controlled to the fully closed mode, the compressor 24 is driven at a speed of 1, the refrigerating fan 9a is driven at a speed of 2, and the refrigerant in the refrigerating cooler 14a is recovered for, for example, 2 minutes ( ΔTA1 = 2min). As a result, the amount of refrigerant that can be supplied to the freezing cooler 14b can be secured, and the shortage of refrigerant in the subsequent frozen vegetable operation or freezing operation can be suppressed. At this time, by driving the refrigerating fan 9a, the residual refrigerant in the refrigerating cooler 14a is utilized for cooling the refrigerating chamber 2, and the refrigerating cooler is heated by the air in the refrigerating chamber 2. The pressure drop in 14a is alleviated. As a result, the increase in the specific volume of the suction refrigerant of the compressor 24 is suppressed, a large amount of refrigerant can be recovered in a relatively short time, and the cooling efficiency can be improved.
 時刻t2は冷媒回収運転が終了した時刻である。冷蔵用冷却器除霜運転を実行するかが判定される。ここでは実行すると判定され、冷蔵用ファン9aが速度1で駆動されて冷蔵用冷却器除霜運転が行われている。これにより冷蔵用冷却器14aの温度が上昇するとともに、霜や冷蔵用冷却器14aの蓄冷熱による冷却効果によって、冷蔵室2の温度上昇が緩和される。このように冷蔵用冷却器14aの除霜運転を行い、冷蔵用ファン9aを駆動するモードを備えることで、冷蔵用ファン9aの駆動時間は、後述する冷凍用ファン9bの駆動時間よりも長く、また、長時間冷蔵室内の空気を循環することとなり、冷蔵室庫内の均温化を図ることができる。 Time t2 is the time when the refrigerant recovery operation is completed. It is determined whether to execute the refrigerating cooler defrosting operation. Here, it is determined that the refrigerating fan 9a is driven at a speed of 1, and the refrigerating cooler defrosting operation is performed. As a result, the temperature of the refrigerating cooler 14a rises, and the temperature rise of the refrigerating chamber 2 is alleviated by the cooling effect of frost and the cold storage heat of the refrigerating cooler 14a. By providing the mode for driving the refrigerating fan 9a by performing the defrosting operation of the refrigerating cooler 14a in this way, the driving time of the refrigerating fan 9a is longer than the driving time of the refrigerating fan 9b described later. In addition, the air in the refrigerator compartment is circulated for a long time, so that the temperature inside the refrigerator compartment can be equalized.
 また時刻t2で冷凍室温度センサ42が検知する冷凍室温度TFが冷凍野菜運転開始温度TF_on以上となっていることから冷凍野菜運転が開始され、野菜室6が冷却され野菜室温度TVが低下している。冷凍野菜運転では、三方弁52が冷凍モードに制御され、圧縮機24が速度2で駆動されて冷凍用冷却器14bに冷媒が供給されて、冷凍用冷却器14bが低温になる。この状態で野菜室ダンパ19が開放され、冷凍用ファン9bが速度1で駆動されることで、冷凍用冷却器14bを通過して低温になった空気で冷凍室7と野菜室6が冷却される。 Further, since the freezing room temperature TF detected by the freezing room temperature sensor 42 at time t2 is equal to or higher than the frozen vegetable operation start temperature TF_on, the frozen vegetable operation is started, the vegetable room 6 is cooled, and the vegetable room temperature TV is lowered. ing. In the frozen vegetable operation, the three-way valve 52 is controlled to the freezing mode, the compressor 24 is driven at a speed of 2, the refrigerant is supplied to the freezing cooler 14b, and the freezing cooler 14b becomes low in temperature. In this state, the vegetable compartment damper 19 is opened, and the freezing fan 9b is driven at a speed of 1, so that the freezing chamber 7 and the vegetable compartment 6 are cooled by the air that has passed through the freezing cooler 14b and has become cold. NS.
 時刻t3で野菜室温度センサ43が検知する野菜室温度TVが野菜室冷却終了温度TV_offに到達したことにより、野菜室ダンパ19が閉鎖され、冷凍運転に移行する。 When the vegetable room temperature TV detected by the vegetable room temperature sensor 43 reaches the vegetable room cooling end temperature TV_off at time t3, the vegetable room damper 19 is closed and the operation shifts to the freezing operation.
 時刻t4で冷凍室温度センサ42が検知する冷凍室温度TFが冷凍運転終了温度TF_offに到達し、冷凍運転が終了する。このとき冷蔵室温度センサ41が検知する冷蔵室温度TRが冷蔵運転開始温度TR_on以上に達していることから、冷蔵運転開始条件が成立し、冷媒回収運転が行われる。冷媒回収運転では、三方弁52が全閉モードに制御され、圧縮機24が速度2、冷凍用ファン9bが速度1で駆動されて、冷凍用冷却器14b内の冷媒が例えば1.5分間回収される(ΔtB1=1.5min)。これにより、次の冷蔵運転での冷媒不足による冷却効率低下を抑制できる。なお、このとき冷凍用ファン9bを駆動することで、冷凍用冷却器14b内の残留冷媒を冷凍室7の冷却に活用するとともに、冷凍室7内の空気による加熱で、冷凍用冷却器14b内の圧力低下が緩和される。これにより圧縮機24の吸込冷媒の比体積増加が抑制され、比較的短い時間で多くの冷媒を回収できるようになり、冷却効率を高めることができる。 At time t4, the freezing room temperature TF detected by the freezing room temperature sensor 42 reaches the freezing operation end temperature TF_off, and the freezing operation ends. At this time, since the refrigerating room temperature TR detected by the refrigerating room temperature sensor 41 has reached the refrigerating operation start temperature TR_on or higher, the refrigerating operation start condition is satisfied and the refrigerant recovery operation is performed. In the refrigerant recovery operation, the three-way valve 52 is controlled to the fully closed mode, the compressor 24 is driven at a speed of 2, the refrigerating fan 9b is driven at a speed of 1, and the refrigerant in the refrigerating cooler 14b is recovered for, for example, 1.5 minutes. (ΔtB1 = 1.5min). As a result, it is possible to suppress a decrease in cooling efficiency due to a shortage of refrigerant in the next refrigerating operation. At this time, by driving the freezing fan 9b, the residual refrigerant in the freezing cooler 14b is utilized for cooling the freezing chamber 7, and the inside of the freezing cooler 14b is heated by heating with air in the freezing chamber 7. Pressure drop is alleviated. As a result, the increase in the specific volume of the suction refrigerant of the compressor 24 is suppressed, a large amount of refrigerant can be recovered in a relatively short time, and the cooling efficiency can be improved.
 冷凍室7が冷却される運転は、冷凍野菜運転(t2~t3)、冷凍運転(t3~t4)、冷媒回収運転(t4~t5)であり、これらの運転が行われている間の冷凍用冷却器14bの時間平均温度は約-24℃となるように、冷凍用ファン9b及び圧縮機24が制御されている。また、冷蔵用ファン9aが駆動状態となっている冷凍運転と冷蔵用冷却器除霜運転が行われている間の冷蔵室吐出空気温度の時間平均値は、-1.5℃であり、冷凍室維持温度TF_keep(4℃)と冷蔵室維持温度TR_keep(-20℃)の算術平均値(-8℃)より高い温度となっている。 The operations in which the freezing chamber 7 is cooled are the frozen vegetable operation (t2 to t3), the freezing operation (t3 to t4), and the refrigerant recovery operation (t4 to t5), and for freezing during these operations. The freezing fan 9b and the compressor 24 are controlled so that the time average temperature of the cooler 14b is about −24 ° C. Further, the time average value of the air temperature discharged from the refrigerating chamber during the refrigerating operation in which the refrigerating fan 9a is driven and the refrigerating cooler defrosting operation is -1.5 ° C., and refrigerating. The temperature is higher than the arithmetic mean value (-8 ° C.) of the room maintenance temperature TF_keep (4 ° C.) and the refrigerating room maintenance temperature TR_keep (-20 ° C.).
 冷媒回収運転が終了した時刻間t5より再び、冷蔵運転が開始され、以後周期的に上述の運転が繰り返され、冷蔵室2は約4℃、冷凍室7は約-20℃、野菜室は約7℃に維持される。 The refrigerating operation was started again from t5 during the time when the refrigerant recovery operation was completed, and the above-mentioned operation was periodically repeated thereafter. It is maintained at 7 ° C.
 図7は急速冷却運転のタイムチャートである。急速冷却運転は上述のように、ユーザによる操作スイッチの押下など明示的な指令により開始してもよいし、急速冷却に適した領域及びこの領域に食品等が載置されたことを検知する食品センサを設けておいて、センサ検知によって自動的に開始してもよい。 FIG. 7 is a time chart of the rapid cooling operation. As described above, the rapid cooling operation may be started by an explicit command such as pressing an operation switch by the user, or a region suitable for rapid cooling and a food that detects that food or the like is placed in this region. A sensor may be provided and automatically started by sensor detection.
 ユーザが急速冷却で冷やしたい食品の温度を「負荷温度」という。貯蔵室に投入された初期の負荷温度は、貯蔵室温度(本実施例では冷蔵室温度TR)及び冷蔵室2内の他の食品の温度よりも高温であることを想定する。 The temperature of food that the user wants to cool by rapid cooling is called "load temperature". It is assumed that the initial load temperature charged into the storage chamber is higher than the storage chamber temperature (refrigerating chamber temperature TR in this embodiment) and the temperature of other foods in the refrigerating chamber 2.
 ユーザが急冷したい高温の食品が冷蔵室2内に入れられ、操作部99の急速冷却ボタンが押され、急冷指令を受付けると急速冷却制御が開始され、好ましくは急速冷却LEDを点灯させてユーザに急速冷却が開始したことを報知する。 When the high temperature food that the user wants to quench is put in the refrigerating chamber 2, the rapid cooling button of the operation unit 99 is pressed, and the rapid cooling command is received, the rapid cooling control is started, preferably the rapid cooling LED is turned on to the user. Notifies that rapid cooling has started.
 本実施例の急速冷却制御を、説明の便利のため、三つの段階(フェーズ1、フェーズ2、フェーズ3)に分けて説明する。各フェーズの終了条件はタイマーまたは冷蔵室温度センサ41及び/若しくは冷蔵室上部温度センサ44の検知温度で制御されている。ユーザの操作によって途中で急速冷却指令が解除された場合は、その時点で全フェーズを終了させて急速冷却制御を終了し、急速冷却LEDを消灯して通常の運転制御に戻る。 For convenience of explanation, the rapid cooling control of this embodiment will be described in three stages (Phase 1, Phase 2, Phase 3). The end condition of each phase is controlled by the timer or the detection temperature of the refrigerating room temperature sensor 41 and / or the refrigerating room upper temperature sensor 44. If the rapid cooling command is canceled in the middle of the operation by the user, all the phases are terminated at that time, the rapid cooling control is terminated, the rapid cooling LED is turned off, and the normal operation control is restored.
 急速冷却制御が開始すると、まずフェーズ1(急冷ステップ)が開始される。フェーズ1では、三方弁52が冷蔵モードに制御され、圧縮機24が運転することで冷蔵用冷却器14aに冷媒が供給され、冷蔵用ファン9aが駆動する。すなわち、冷蔵用冷却器14aに冷媒が循環して冷蔵用冷却器14aの温度が低下し、冷蔵用ファン9aが駆動(好ましくは非急速冷却制御よりも高速、又は非急速冷却制御で実行され得る速度の中で高速である速度2又は速度3。)するから、冷蔵用冷却器14aと熱交換された低温の冷気が冷蔵室送風路11、冷蔵室吐出口11aを介して冷蔵室2に送風され、冷蔵室2が温度低下する。タイムチャートでは冷蔵モードに制御されたと同時に冷蔵室2の温度が低下し始めているように見えるが、実際は、冷蔵モードに制御された後に冷蔵用冷却器14aが温度低下し、冷蔵室2が冷却されるため、三方弁52の制御から冷蔵用冷却器14aや冷蔵室2の温度低下までには、やや遅れ時間が存在する。 When the rapid cooling control starts, Phase 1 (quenching step) is started first. In the phase 1, the three-way valve 52 is controlled to the refrigerating mode, and the compressor 24 operates to supply the refrigerant to the refrigerating cooler 14a and drive the refrigerating fan 9a. That is, the refrigerant circulates in the refrigerating cooler 14a to lower the temperature of the refrigerating cooler 14a, and the refrigerating fan 9a can be driven (preferably executed at a higher speed than the non-rapid cooling control or in the non-rapid cooling control). Since the speed is 2 or 3), which is the highest speed among the speeds, the low-temperature cold air that has exchanged heat with the refrigerating cooler 14a is blown to the refrigerating chamber 2 via the refrigerating chamber air passage 11 and the refrigerating chamber discharge port 11a. The temperature of the refrigerator compartment 2 drops. In the time chart, it seems that the temperature of the refrigerating chamber 2 starts to decrease at the same time when it is controlled to the refrigerating mode, but in reality, after being controlled to the refrigerating mode, the temperature of the refrigerating cooler 14a decreases and the refrigerating chamber 2 is cooled. Therefore, there is a slight delay between the control of the three-way valve 52 and the temperature drop of the refrigerating cooler 14a and the refrigerating chamber 2.
 急冷ステップにおいては、本実施例のように冷蔵室2全体を温度低下させてもよいし、集中的に冷気を供給する領域を冷蔵室2一部に設定して、この領域を中心に温度低下させてもよい。 In the quenching step, the temperature of the entire refrigerating chamber 2 may be lowered as in the present embodiment, or a region for intensively supplying cold air is set as a part of the refrigerating chamber 2, and the temperature is lowered around this region. You may let me.
 その後、所定の時間が経過する又は冷蔵室温度センサ41及び/若しくは冷蔵室上部温度センサ44の検知温度が、それぞれ所定の値以下になった場合、フェーズ1が終了する。フェーズ1終了を判定する冷蔵室温度センサ41の温度閾値は、通常時の冷蔵運転終了温度TR_offよりも低く設定されていると好ましい。 After that, when a predetermined time elapses or the detected temperatures of the refrigerating room temperature sensor 41 and / or the refrigerating room upper temperature sensor 44 become equal to or less than the predetermined values, Phase 1 ends. It is preferable that the temperature threshold value of the refrigerating room temperature sensor 41 for determining the end of Phase 1 is set lower than the normal refrigerating operation end temperature TR_off.
 最初の段階であるフェーズ1で急冷ステップを実行することによって、急速冷却の開始直後から食品を冷やすことができる。もし、急速冷却制御の途中で食品が取り出されたり、急速冷却指令が解除されたりした場合でも、ユーザが急冷したい食品は、冷蔵用ファン9aが高速駆動していれば通常運転時よりも速く冷えており、短時間でもユーザが急速冷却の効果を享受できる。 By executing the quenching step in Phase 1, which is the first stage, the food can be cooled immediately after the start of rapid cooling. Even if food is taken out during the rapid cooling control or the rapid cooling command is canceled, the food that the user wants to quench cools faster than during normal operation if the refrigerating fan 9a is driven at high speed. Therefore, the user can enjoy the effect of rapid cooling even in a short time.
 フェーズ2(緩冷ステップ)では、冷蔵用ファン9aは駆動(好ましくは高速駆動)しながら、冷蔵用冷却器14aへの冷媒供給が減少又は遮断される。本実施例では、三方弁52が冷凍モードに制御され「冷凍運転」又は「冷凍野菜運転」を実行する。三方弁52を全閉モード且つ圧縮機24を停止状態に制御してもよい。冷蔵用冷却器14aの温度は冷媒供給の減少又は遮断により上昇するため、冷蔵用ファン9aを駆動させると、冷蔵室2には急冷ステップよりも高温の空気が循環する。緩冷ステップでは冷蔵室2を循環する空気の温度が高いため、冷蔵室2内の食品の凍結を防止できる。 In Phase 2 (slow cooling step), while the refrigerating fan 9a is driven (preferably driven at high speed), the supply of refrigerant to the refrigerating cooler 14a is reduced or cut off. In this embodiment, the three-way valve 52 is controlled to the freezing mode to execute "freezing operation" or "frozen vegetable operation". The three-way valve 52 may be controlled in the fully closed mode and the compressor 24 may be controlled in the stopped state. Since the temperature of the refrigerating cooler 14a rises due to a decrease or interruption of the refrigerant supply, when the refrigerating fan 9a is driven, air having a higher temperature than the quenching step circulates in the refrigerating chamber 2. Since the temperature of the air circulating in the refrigerating chamber 2 is high in the slow cooling step, it is possible to prevent the food in the refrigerating chamber 2 from freezing.
 タイムチャートでは冷凍モードに制御されたと同時に冷蔵室2の温度が上昇し始めているように見えるが、実際は、冷凍モードに制御されて冷媒供給が遮断された後も、多少は残留冷媒による冷却が可能であるから、冷蔵用冷却器14aの温度上昇までにはやや遅れ時間が存在する。 In the time chart, it seems that the temperature of the refrigerator compartment 2 starts to rise at the same time when it is controlled to the refrigerating mode, but in reality, even after being controlled to the refrigerating mode and the refrigerant supply is cut off, it is possible to cool with some residual refrigerant. Therefore, there is a slight delay time until the temperature of the refrigerating cooler 14a rises.
 本タイムチャートでは、緩冷ステップの実行には三方弁52を冷凍モード又は全閉モードにするが、冷蔵室2の外側、例えば冷蔵用冷却器室8aに配されている冷蔵用ファン9aに代えて又は追加して、冷蔵室2内に冷蔵室ファン(特に区別する必要がある場合は、冷蔵室循環ファンという。)を設けることができる。この場合、三方弁52の状態に拘わらず緩冷ステップを実行できる。具体的には、冷蔵室循環ファンを駆動することで冷蔵室2内で冷気を循環させることができるから、局所的に温度低下して凍結が懸念される食品の部分を温度上昇させ、他の部分や他の食品については冷蔵室2の冷気が接触するから温度上昇を抑制できる。なお、この場合、冷蔵室循環ファンの駆動中、必要に応じて冷蔵用冷却器室8a側の冷蔵室ファンを停止させることができる。また、冷蔵室2と冷蔵用冷却器室8aとの間(送風路でも戻り風路でもよい。)に冷蔵室ダンパを設けて、冷蔵室循環ファンの駆動中にこれを閉にしてもよい。 In this time chart, the three-way valve 52 is set to the refrigerating mode or the fully closed mode in order to execute the slow cooling step, but instead of the refrigerating fan 9a arranged outside the refrigerating chamber 2, for example, the refrigerating cooler chamber 8a. Alternatively or additionally, a refrigerating room fan (referred to as a refrigerating room circulation fan when it is particularly necessary to distinguish between them) can be provided in the refrigerating room 2. In this case, the slow cooling step can be executed regardless of the state of the three-way valve 52. Specifically, since the cold air can be circulated in the refrigerating chamber 2 by driving the refrigerating chamber circulation fan, the temperature of the part of the food that is locally lowered and may be frozen is raised, and other parts are raised. Since the cold air in the refrigerating chamber 2 comes into contact with the portion and other foods, the temperature rise can be suppressed. In this case, the refrigerating chamber fan on the refrigerating chamber 8a side can be stopped as needed while the refrigerating chamber circulation fan is being driven. Further, a refrigerating chamber damper may be provided between the refrigerating chamber 2 and the refrigerating cooler chamber 8a (which may be an air passage or a return air passage) and may be closed while the refrigerating chamber circulation fan is being driven.
 緩冷ステップでは、急冷されやすい食品の温度が既に循環空気温度より低ければ、循環空気によって温度上昇するから凍結が抑制される。また、緩冷ステップでは、対象貯蔵室内の食品のうち循環空気温度より高いものは、循環空気によって冷却される。このため、フェーズ1からフェーズ2への移行のタイミングを厳密に判定する必要性も下がる。よって、食品温度を検知するセンサを別途設けずに、フェーズ1(急冷ステップ)を実行する時間をあらかじめ定めておき、これをタイマで計時してもよい。 In the slow cooling step, if the temperature of the food that is easily rapidly cooled is already lower than the circulating air temperature, the temperature rises due to the circulating air, so freezing is suppressed. Further, in the slow cooling step, foods having a temperature higher than the circulating air temperature among the foods in the target storage chamber are cooled by the circulating air. Therefore, it is less necessary to strictly determine the timing of the transition from Phase 1 to Phase 2. Therefore, the time for executing the phase 1 (quenching step) may be predetermined and timed by a timer without separately providing a sensor for detecting the food temperature.
 また、フェーズ2中に圧縮機24を停止させると、圧縮機24を運転させるよりも消費電力量を小さく抑えながら上記の急冷効果を得ることができるため、省エネな急速冷却を実行できる。圧縮機24を運転させるかどうかは、フェーズ2に移行した時点での他貯蔵室の温度、即ち冷凍室温度センサ42や野菜室温度センサ43の検知温度によって判断することができる。それらの温度が十分低いようであれば、圧縮機24を停止させて消費電力量の低減を図ることが好ましい。フェーズ2の開始時に圧縮機24を停止させた場合であっても、フェーズ2の途中で他貯蔵室の温度が上昇したときは、フェーズ2の途中から圧縮機24を運転させて「冷凍運転」又は「冷凍野菜運転」を実行することで、消費電力量を低く抑えつつ、食品貯蔵温度を適正に保つことができる。フェーズ2は、タイマにより所定の時間の経過を検知した場合、又は、冷蔵室温度センサ41及び/若しくは冷蔵室上部温度センサ44の検知した温度が、それぞれ所定の値以上になった場合に終了する。冷蔵室温度センサ41,44の温度変動で凍結が懸念される領域の温度上昇を検知することは容易ではないため、タイマによる判定が好ましい。 Further, if the compressor 24 is stopped during the phase 2, the above-mentioned quenching effect can be obtained while suppressing the power consumption to be smaller than that of operating the compressor 24, so that energy-saving rapid cooling can be executed. Whether or not to operate the compressor 24 can be determined by the temperature of the other storage room at the time of transition to Phase 2, that is, the temperature detected by the freezing room temperature sensor 42 and the vegetable room temperature sensor 43. If those temperatures are sufficiently low, it is preferable to stop the compressor 24 to reduce the power consumption. Even if the compressor 24 is stopped at the start of Phase 2, if the temperature of the other storage chamber rises in the middle of Phase 2, the compressor 24 is operated from the middle of Phase 2 to perform "freezing operation". Alternatively, by executing "frozen vegetable operation", the food storage temperature can be maintained appropriately while keeping the power consumption low. Phase 2 ends when the timer detects the passage of a predetermined time, or when the temperatures detected by the refrigerating room temperature sensor 41 and / or the refrigerating room upper temperature sensor 44 become equal to or higher than the predetermined values. .. Since it is not easy to detect a temperature rise in a region where freezing is a concern due to temperature fluctuations of the refrigerating chamber temperature sensors 41 and 44, determination by a timer is preferable.
 フェーズ2が終了した後、フェーズ3(急冷ステップ)に移る。フェーズ3はフェーズ1と同一の制御にしてもよいし、タイマで実行時間を設定している場合は、実行時間を短くするなど、変更点を与えてもよい。
 少なくともフェーズ3では再び、冷蔵用冷却器14aに冷媒を供給する冷蔵モードに制御するとともに冷蔵用ファン9aを駆動させる。フェーズ2の緩冷ステップによって冷蔵室2内の温度が均温化されると共に、冷蔵室2内の平均温度が上昇させられているため、再び急冷ステップを実行することで冷蔵室2の温度を降下させる。
After the completion of Phase 2, the process proceeds to Phase 3 (quenching step). Phase 3 may have the same control as Phase 1, and when the execution time is set by the timer, changes may be given such as shortening the execution time.
At least in Phase 3, the refrigerating mode for supplying the refrigerant to the refrigerating cooler 14a is controlled again, and the refrigerating fan 9a is driven. Since the temperature inside the refrigerating chamber 2 is equalized and the average temperature inside the refrigerating chamber 2 is raised by the slow cooling step of the phase 2, the temperature of the refrigerating chamber 2 is adjusted by executing the quenching step again. Let it descend.
 フェーズ3が終了すると本実施例では急速冷却制御を終了し、急速冷却LEDを消灯して通常の運転制御に復帰する。必要であれば再びフェーズ2に移行し、フェーズ2,3を繰り返してもよい。 When the phase 3 is completed, the rapid cooling control is terminated in this embodiment, the rapid cooling LED is turned off, and the normal operation control is restored. If necessary, the process may shift to Phase 2 again, and Phases 2 and 3 may be repeated.
 このように、本実施例では、急冷ステップと緩冷ステップを交互に実行することで食品の凍結を抑えつつ、冷却速度を向上できる。例えば温かい弁当を冷蔵室2内に収納して急速冷却を実行すると、急速冷却運転中は冷蔵用ファン9aが実質的に駆動し続けるため、弁当の周囲の空気が循環し続ける。これにより、弁当の周囲空気が温められたまま滞留することを抑制できるから、特に弁当周囲の他の食品の温度上昇を抑えて、食品のいわゆる老化を抑制できる。 As described above, in this embodiment, the cooling rate can be improved while suppressing the freezing of food by alternately executing the quenching step and the slow cooling step. For example, when a warm lunch box is stored in the refrigerating chamber 2 and rapid cooling is performed, the refrigerating fan 9a substantially continues to be driven during the rapid cooling operation, so that the air around the lunch box continues to circulate. As a result, it is possible to prevent the air around the lunch box from staying warm, so that it is possible to suppress the temperature rise of other foods around the lunch box and suppress the so-called aging of the food.
 一般的に低温空気は下方へ集まり易く、冷蔵室2内でも上部より下部の方が低温化される傾向にあるが、本実施例によれば、急速冷却運転中、冷蔵室2の上部と下部の温度を均一化できるから、急速冷却運転実行に際して収納する高温食品の収納場所を、冷蔵室2の下部のみならず上部にすることもできる。冷蔵室2の中央より下方に冷蔵室温度センサ41を、庫内天井部に冷蔵室上部温度センサ44をそれぞれ備えているため、急速冷却実行中に冷蔵室2の上部と下部の温度をそれぞれ検知できる。このため、例えば冷蔵室吐出口11aを好ましくは複数設け、それぞれから吐出される冷気を開放及び閉塞切替可能なダンパや、冷気の吐出方向を切替可能なルーバを設ければ、これら上部と下部の検知温度に応じて制御することで、均温化を容易にすることができる。
 なお、本実施例の急速冷却運転は、冷却器が1つだけのいわゆるシングル冷却方式の冷蔵庫でも実行し得る。また、冷蔵室に限らず野菜室や氷点以上のチルド室などその他の非冷凍温度帯の貯蔵室でも実行し得る。
In general, low-temperature air tends to collect downward, and the temperature of the lower part of the refrigerator chamber 2 tends to be lower than that of the upper part. Since the temperature can be made uniform, the storage place for the high-temperature food to be stored when the rapid cooling operation is executed can be not only the lower part of the refrigerating chamber 2 but also the upper part. Since the refrigerating room temperature sensor 41 is provided below the center of the refrigerating room 2 and the refrigerating room upper temperature sensor 44 is provided on the ceiling of the refrigerator, the temperatures of the upper and lower parts of the refrigerating room 2 are detected during rapid cooling. can. For this reason, for example, if a plurality of refrigerating chamber discharge ports 11a are preferably provided, a damper capable of opening and closing the cold air discharged from each, and a louver capable of switching the discharge direction of the cold air are provided, the upper and lower portions thereof can be switched. By controlling according to the detected temperature, it is possible to facilitate temperature equalization.
The rapid cooling operation of this embodiment can also be performed in a so-called single cooling type refrigerator having only one cooler. Further, it can be executed not only in the refrigerating room but also in other non-freezing temperature zone storage rooms such as a vegetable room and a chilled room above the freezing point.
 本実施例では、冷蔵用ファン9aを駆動させつつ冷却器の温度を変動させることで凍結を抑制したが、冷蔵室2に供給する冷気の吹き出す場所や方向を変更することで凍結を抑制してもよい。例えばフェーズ2で吹き出す場所や方向を変え、フェーズ3で戻してもよい。 In this embodiment, freezing was suppressed by changing the temperature of the cooler while driving the refrigerating fan 9a, but freezing was suppressed by changing the location and direction of the cold air supplied to the refrigerating chamber 2. May be good. For example, the location and direction of blowing out may be changed in Phase 2 and returned in Phase 3.
 1   冷蔵庫
 2   冷蔵室
 2a,2b 冷蔵室扉
 3   製氷室
 4   上段冷凍室
 5   下段冷凍室冷凍室
 3a,4a,5a 冷凍室扉
 6   野菜室
 6a  野菜室扉
 7   冷凍室
 8a  冷蔵用冷却器室
 8b  冷凍用冷却器室
 9a  冷蔵用ファン
 9b  冷凍用ファン
 10  断熱箱体
 10a 外箱
 10b 内箱
 11  冷蔵室送風路
 11a 冷蔵室吐出口
 12  冷凍室送風路
 12a 冷凍室吐出口
 13  野菜室送風路
 13a 野菜室吐出口
 14a 冷蔵用冷却器(冷蔵用蒸発器)
 14b 冷凍用冷却器(冷凍用蒸発器)
 15a,15b,15c 冷蔵室戻り風路
 16  ヒンジカバー
 17  冷凍室戻り口
 18  野菜室戻り風路
 18a 野菜室戻り口
 19  野菜室ダンパ
 21  ラジアントヒータ
 22a,22b 排水口
 23a,23b 樋
 24  圧縮機
 25  風路
 26  庫外ファン
 27a 冷蔵用排水管
 27b 冷凍用排水管
 28,29,30 断熱仕切壁
 31  制御基板
 32  蒸発皿
 35  チルドルーム
 39  機械室
 40a 冷蔵用冷却器温度センサ
 40b 冷凍用冷却器温度センサ
 41  冷蔵室温度センサ
 42  冷凍室温度センサ
 43  野菜室温度センサ
 44  冷蔵室上部温度センサ
 50a,50b 庫外放熱器(放熱器)
 50c 結露抑制配管(放熱器)
 51  ドライヤ
 52  三方弁(冷媒切替弁)
 53a 冷蔵用キャピラリチューブ(減圧部)
 53b 冷凍用キャピラリチューブ(減圧部)
 54a 冷蔵用気液分離器
 54b 冷凍用気液分離器
 55a,55b 熱交換部
 56  逆止弁
 60  チルドルーム温度補償ヒータ
 61  回転仕切りヒータ
 91  脱臭部材
 95a,95b 冷蔵室パッキン
 96a,96b,96c 冷凍室パッキン
 97  野菜室パッキン
 98  回転仕切り
 101 樋部ヒータ
 102 排水管上部ヒータ
 103 排水管下部ヒータ
1 Refrigerator 2 Refrigerator room 2a, 2b Refrigerator room door 3 Ice making room 4 Upper freezer room 5 Lower freezer room Freezer room 3a, 4a, 5a Freezer room door 6 Vegetable room 6a Vegetable room door 7 Freezer room 8a Refrigerator room 8b Refrigerator Refrigerator room 9a Refrigerator fan 9b Refrigerator fan 10 Insulation box body 10a Outer box 10b Inner box 11 Refrigerator room air passage 11a Refrigerator room air outlet 12 Freezer room air passage 12a Freezer room air outlet 13 Vegetable room air passage 13a Vegetable room Discharge port 14a Refrigerator (refrigerator)
14b Freezing cooler (freezing evaporator)
15a, 15b, 15c Refrigerator return air passage 16 Hing cover 17 Freezer room return port 18 Vegetable room return air passage 18a Vegetable room return port 19 Vegetable room damper 21 Radiant heater 22a, 22b Drain port 23a, 23b Hi 24 Compressor 25 Wind Road 26 Outside fan 27a Refrigerator drain pipe 27b Refrigerator drain pipe 28, 29, 30 Insulation partition wall 31 Control board 32 Evaporator 35 Chilled room 39 Machine room 40a Refrigerator cooler temperature sensor 40b Refrigerator temperature sensor 41 Refrigerator room temperature sensor 42 Freezer room temperature sensor 43 Vegetable room temperature sensor 44 Refrigerator room upper temperature sensor 50a, 50b External radiator (radiator)
50c Condensation suppression piping (radiator)
51 Dryer 52 Three-way valve (refrigerant switching valve)
53a Capillary tube for refrigeration (decompression part)
53b Capillary tube for freezing (decompression part)
54a Refrigerator gas-liquid separator 54b Refrigerator gas-liquid separator 55a, 55b Heat exchange part 56 Check valve 60 Chilled room temperature compensation heater 61 Rotating partition heater 91 Deodorizing member 95a, 95b Refrigerator room packing 96a, 96b, 96c Refrigerator room Packing 97 Vegetable room packing 98 Rotating partition 101 Higashi part heater 102 Drain pipe upper heater 103 Drain pipe lower heater

Claims (10)

  1.  冷気を供給する冷却器と、
     冷蔵温度帯の貯蔵室と、
     前記冷却器及び前記貯蔵室を繋ぐ送風路と、
     貯蔵室ファンと、を有し、
     前記冷却器の温度が低下し、その後上昇し、さらにその後低下する経過を示し、この間、前記貯蔵室ファンは、実質的に駆動し続ける冷蔵庫。
    A cooler that supplies cold air and
    A storage room in the refrigerated temperature range and
    An air passage connecting the cooler and the storage chamber,
    With a storage room fan,
    A refrigerator in which the temperature of the cooler decreases, then increases, and then decreases, during which the storage chamber fan substantially continues to drive.
  2.  急速冷却運転指令の検知に応じ、前記冷却器の温度が低下し、その後上昇し、さらにその後低下する経過を示し、この間、前記貯蔵室ファンは、実質的に駆動し続ける、急速冷却運転制御を実行する請求項1に記載の冷蔵庫。 In response to the detection of the rapid cooling operation command, the temperature of the cooler decreases, then rises, and then decreases, and during this period, the storage chamber fan substantially continues to drive the rapid cooling operation control. The refrigerator according to claim 1 to be executed.
  3.  前記急速冷却運転指令の検知後、前記冷却器の温度が低下し、その後上昇し、さらにその後低下する経過を示す間の一部又は略全部の時間に亘って、前記貯蔵室ファンの駆動速度は、該急速冷却運転指令の検知の前又は直前よりも高い請求項2に記載の冷蔵庫。 After the detection of the rapid cooling operation command, the driving speed of the storage chamber fan is set for a part or almost all of the time during which the temperature of the cooler decreases, then increases, and then decreases. The refrigerator according to claim 2, which is higher than before or immediately before the detection of the rapid cooling operation command.
  4.  前記貯蔵室に設けられたヒータ又は加熱部を有し、
     前記急速冷却運転指令の検知後、前記冷却器の温度が低下し、その後上昇し、さらにその後低下する経過を示す間の一部又は略全部の時間に亘って、該ヒータ又は該加熱部の温度又は発熱量が、該急速冷却運転指令の検知の前又は直前よりも増加する請求項2又は3に記載の冷蔵庫。
    It has a heater or heating unit provided in the storage chamber, and has a heater or a heating unit.
    After the detection of the rapid cooling operation command, the temperature of the heater or the heating unit is lowered for a part or almost all of the time during which the temperature of the cooler is lowered, then raised, and then lowered. The refrigerator according to claim 2 or 3, wherein the calorific value increases from before or immediately before the detection of the rapid cooling operation command.
  5.  前記冷却器と、前記冷却器への冷媒供給量を変更する冷媒切替弁と、を有する冷凍サイクルを備え、
     前記冷媒切替弁のモードが変更して前記冷却器への冷媒供給量が減少又は遮断した後に前記冷却器の温度が上昇し、
     前記冷媒切替弁のモードが変更して前記冷却器への冷媒供給量が増加した後に前記冷却器の温度が低下する請求項1乃至4何れか一項に記載の冷蔵庫。
    A refrigeration cycle comprising the cooler and a refrigerant switching valve for changing the amount of refrigerant supplied to the cooler.
    After the mode of the refrigerant switching valve is changed and the amount of refrigerant supplied to the cooler is reduced or cut off, the temperature of the cooler rises.
    The refrigerator according to any one of claims 1 to 4, wherein the temperature of the cooler decreases after the mode of the refrigerant switching valve is changed and the amount of refrigerant supplied to the cooler increases.
  6.  前記貯蔵室ファンは、前記冷却器及び前記貯蔵室を含む冷気のループ中、前記貯蔵室以外の場所に配されている請求項2乃至5何れか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 2 to 5, wherein the storage chamber fan is arranged in a place other than the storage chamber in a loop of cold air including the cooler and the storage chamber.
  7.  前記冷却器及び前記貯蔵室を含む冷気のループ中に設けられたダンパを有し、
     前記冷却器の温度が上昇してから再び低下するまでの間に、前記ダンパが閉となる請求項6に記載の冷蔵庫。
    It has a damper provided in a loop of cold air including the cooler and the storage chamber.
    The refrigerator according to claim 6, wherein the damper is closed between the time when the temperature of the cooler rises and the time when the temperature of the cooler falls again.
  8.  前記貯蔵室ファンは、前記冷却器及び前記貯蔵室を含む冷気のループ中、前記貯蔵室に配されている請求項2乃至5何れか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 2 to 5, wherein the storage chamber fan is arranged in the storage chamber in a loop of cold air including the cooler and the storage chamber.
  9.  前記急速冷却運転指令は、ユーザの操作により生じる指令である、又は、前記貯蔵室内の一部への食品投入を検知する検知手段により生じる指令である請求項2乃至4何れか一項に記載の冷蔵庫。 The rapid cooling operation command according to any one of claims 2 to 4, which is a command generated by a user operation or a command issued by a detection means for detecting food input to a part of the storage chamber. refrigerator.
  10.  冷気を供給する冷却器と、
     冷蔵温度帯の貯蔵室と、
     前記冷却器及び前記貯蔵室を繋ぐ送風路と、
     貯蔵室ファンと、を有し、
     前記送風路から吹き出す冷気の場所又は方向が変化した後元に戻る経過を示し、この間、前記貯蔵室ファンは、実質的に駆動し続ける冷蔵庫。
    A cooler that supplies cold air and
    A storage room in the refrigerated temperature range and
    An air passage connecting the cooler and the storage chamber,
    With a storage room fan,
    A refrigerator that shows a process of changing the location or direction of the cold air blown out from the air passage and then returning to the original state, during which the storage chamber fan substantially continues to drive.
PCT/JP2020/032087 2020-02-07 2020-08-25 Refrigerator WO2021157110A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-019298 2020-02-07
JP2020019298A JP7351762B2 (en) 2020-02-07 2020-02-07 refrigerator

Publications (1)

Publication Number Publication Date
WO2021157110A1 true WO2021157110A1 (en) 2021-08-12

Family

ID=77199807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032087 WO2021157110A1 (en) 2020-02-07 2020-08-25 Refrigerator

Country Status (3)

Country Link
JP (1) JP7351762B2 (en)
CN (1) CN113251719A (en)
WO (1) WO2021157110A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510643A (en) * 1991-07-03 1993-01-19 Orion Mach Co Ltd Method for cooling food material in cooling device
JPH1026457A (en) * 1996-07-15 1998-01-27 Matsushita Refrig Co Ltd Refrigerator
JPH1026458A (en) * 1996-07-15 1998-01-27 Matsushita Refrig Co Ltd Refrigerator
JP2001235267A (en) * 2000-02-22 2001-08-31 Sanyo Electric Co Ltd Operation controller for cooling storage cabinet
JP2006090664A (en) * 2004-09-24 2006-04-06 Toshiba Corp Refrigerator
KR20150086883A (en) * 2014-01-21 2015-07-29 주식회사 대유위니아 Method for controlling door heater of refrigerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273072A (en) * 1985-09-25 1987-04-03 三菱電機株式会社 Controller for refrigerator
JP3800900B2 (en) * 1999-09-09 2006-07-26 三菱電機株式会社 Refrigerating refrigerator, operation method of freezing refrigerator
EP1707900A4 (en) * 2003-11-28 2008-10-29 Toshiba Kk Refrigerator
JP5766000B2 (en) * 2011-04-25 2015-08-19 ホシザキ電機株式会社 Cooling storage
JP2017053583A (en) * 2015-09-11 2017-03-16 パナソニックIpマネジメント株式会社 refrigerator
CN110118461A (en) * 2018-02-06 2019-08-13 日立空调·家用电器株式会社 Refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510643A (en) * 1991-07-03 1993-01-19 Orion Mach Co Ltd Method for cooling food material in cooling device
JPH1026457A (en) * 1996-07-15 1998-01-27 Matsushita Refrig Co Ltd Refrigerator
JPH1026458A (en) * 1996-07-15 1998-01-27 Matsushita Refrig Co Ltd Refrigerator
JP2001235267A (en) * 2000-02-22 2001-08-31 Sanyo Electric Co Ltd Operation controller for cooling storage cabinet
JP2006090664A (en) * 2004-09-24 2006-04-06 Toshiba Corp Refrigerator
KR20150086883A (en) * 2014-01-21 2015-07-29 주식회사 대유위니아 Method for controlling door heater of refrigerator

Also Published As

Publication number Publication date
CN113251719A (en) 2021-08-13
JP2021124259A (en) 2021-08-30
JP7351762B2 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
CN102374722B (en) Refrigerator
JP5178642B2 (en) refrigerator
JP5507511B2 (en) refrigerator
JP6131116B2 (en) refrigerator
JP2013061089A (en) Refrigerator
CN105452785B (en) Refrigerator
JP4059474B2 (en) refrigerator
CN102313424A (en) Refrigerator
JP5838238B2 (en) refrigerator
WO2021157110A1 (en) Refrigerator
JP6890502B2 (en) refrigerator
CN110118461A (en) Refrigerator
JP2019138481A (en) refrigerator
JP2007309530A (en) Refrigerator
CN112378146B (en) Refrigerator with a door
JP2019132503A (en) refrigerator
JP7254227B2 (en) refrigerator
CN109708378B (en) Refrigerator with a door
JP2019027649A (en) refrigerator
JP7473390B2 (en) refrigerator
JP7475869B2 (en) refrigerator
JP6282255B2 (en) refrigerator
JP2024042217A (en) refrigerator
JP2023068192A (en) refrigerator
WO2020175827A1 (en) Method for controlling refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917953

Country of ref document: EP

Kind code of ref document: A1