JP6282255B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP6282255B2
JP6282255B2 JP2015217196A JP2015217196A JP6282255B2 JP 6282255 B2 JP6282255 B2 JP 6282255B2 JP 2015217196 A JP2015217196 A JP 2015217196A JP 2015217196 A JP2015217196 A JP 2015217196A JP 6282255 B2 JP6282255 B2 JP 6282255B2
Authority
JP
Japan
Prior art keywords
temperature
partition
refrigerator
state
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015217196A
Other languages
Japanese (ja)
Other versions
JP2016035381A (en
Inventor
良二 河井
良二 河井
大平 昭義
昭義 大平
慎一郎 岡留
慎一郎 岡留
正展 石塚
正展 石塚
塩野 謙治
謙治 塩野
大 板倉
大 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2015217196A priority Critical patent/JP6282255B2/en
Publication of JP2016035381A publication Critical patent/JP2016035381A/en
Application granted granted Critical
Publication of JP6282255B2 publication Critical patent/JP6282255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、冷蔵庫に関する。   The present invention relates to a refrigerator.

本技術分野の背景技術として、特開2009−174767号公報(特許文献1)がある。   As a background art in this technical field, there is JP 2009-174767 A (Patent Document 1).

特許文献1には、貯蔵室が形成された断熱箱体に、冷凍サイクルを構成する圧縮機及び凝縮器が設けられ、貯蔵室の開口周縁部に配設された結露防止配管が冷凍サイクルの配管に接続され、結露防止配管に冷媒を流通させる加熱モードと、結露防止配管をバイパスさせる通常モードのいずれかに切換可能な切換手段が設けられ、圧縮機の運転及び切換手段の動作を制御する制御装置が設けられた冷蔵庫であって、結露防止配管が、圧縮機と凝縮器との間に接続され、制御装置は、圧縮機の運転をオンオフ制御するとともに、切換手段を制御することにより、圧縮機の運転オン期間の一部期間において加熱モードを実行し、それ以外の期間においては通常モードを実行する技術が開示されている(特許文献1、第1図〜第3図等)。   In Patent Document 1, a compressor and a condenser constituting a refrigeration cycle are provided in a heat insulating box body in which a storage chamber is formed, and a dew condensation prevention pipe disposed at the opening peripheral edge of the storage chamber is a pipe of the refrigeration cycle. Is provided with a switching means that can be switched between a heating mode for circulating the refrigerant through the dew condensation prevention pipe and a normal mode for bypassing the dew condensation prevention pipe, and controls the operation of the compressor and the operation of the switching means. The apparatus is provided with a refrigerator, and a dew condensation prevention pipe is connected between the compressor and the condenser, and the control device performs on / off control of the operation of the compressor and controls the switching means to thereby compress the compressor. A technique is disclosed in which the heating mode is executed in a part of the operation on period of the machine and the normal mode is executed in other periods (Patent Document 1, FIGS. 1 to 3 and the like).

特開2009−174767号公報JP 2009-174767 A

しかしながら、特許文献1に記載の技術では、構造及び制御に関して配慮が十分なされておらず、省エネルギー性能を十分高くすることができていなかった。   However, in the technique described in Patent Document 1, consideration is not sufficiently given to the structure and control, and the energy saving performance cannot be sufficiently increased.

本発明は上記課題に鑑みてなされたものであり、貯蔵室の開口周縁部(仕切部)を加熱する加熱手段を備えた冷蔵庫の省エネルギー性能をより向上させることを目的とする。   This invention is made | formed in view of the said subject, and it aims at improving the energy-saving performance of the refrigerator provided with the heating means which heats the opening peripheral part (partition part) of a storage chamber.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、断熱箱体に設けられ開口を有する貯蔵室と、前記開口を区画する仕切部と、該仕切部に接することで前記開口を閉塞する複数の扉と、前記仕切部を加熱する加熱手段と、を備える冷蔵庫であって、前記扉間の隙間の奥行き寸法は、前記複数の扉間の隙間の幅寸法の3倍以上であり前記扉間の隙間の幅寸法は、10mm以下であり、当該冷蔵庫の周囲空気の温度及び湿度を検知する検知手段と、前記加熱手段の加熱量を制御する加熱量制御手段と、を備え、前記加熱手段は、圧縮機と減圧手段との間に設けられた放熱パイプであり、前記仕切部の温度が前記周囲空気の露点温度以上となる時間より、露点温度以下となる時間の方を長くして、前記仕切部の温度の時間平均値が前記周囲空気の露点温度以下となるように前記加熱量制御手段を制御するモードを実行可能であり、前記検知手段によって検知された前記周囲空気の湿度が所定値超である場合に、前記圧縮機が運転されているときに前記圧縮機から吐出された冷媒が、前記放熱手段を介して前記減圧手段に流れる状態に前記加熱量制御手段を制御することを特徴とする。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-mentioned problems. To give an example, a storage chamber provided in a heat insulating box and having an opening, a partition section for partitioning the opening, and contacting the partition section. And a heating means for heating the partition portion, wherein the depth dimension of the gap between the doors is 3 of the width dimension of the gap between the plurality of doors. More than double, the width dimension of the gap between the doors is 10 mm or less, a detection means for detecting the temperature and humidity of the ambient air of the refrigerator, and a heating amount control means for controlling the heating amount of the heating means The heating means is a heat radiating pipe provided between the compressor and the decompression means, and the time during which the temperature of the partitioning portion is not higher than the dew point temperature of the ambient air is not more than the dew point temperature. The length of the During an average value Ri executable der a mode for controlling the heating amount control means to have a dew point temperature or less of the ambient air, when the humidity of the ambient air detected by said detecting means is a predetermined value greater than the refrigerant which the compressor is discharged from the compressor when it is operated, characterized that you control the heating amount control means in a state flowing in the vacuum means through the heat dissipating means.

本発明によれば、貯蔵室の開口周縁部(仕切部)を加熱する加熱手段を備えた冷蔵庫の省エネルギー性能を十分高くすることができる。   ADVANTAGE OF THE INVENTION According to this invention, the energy saving performance of the refrigerator provided with the heating means which heats the opening peripheral part (partition part) of a store room can be made high enough.

本発明の実施形態に係る冷蔵庫の正面外形図。The front external view of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の庫内の構成を表す図1のX−X断面図。XX sectional drawing of FIG. 1 showing the structure in the refrigerator compartment which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の冷凍サイクルの構成を表す図。The figure showing the structure of the refrigerating cycle of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の放熱パイプの配設位置を表す図。The figure showing the arrangement | positioning position of the heat radiating pipe of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の横仕切部近傍の構成を表す要部拡大断面図。The principal part expanded sectional view showing the structure of the horizontal partition part vicinity of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の制御を表すフローチャート。The flowchart showing control of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の制御と温度変化を表すタイムチャート。The time chart showing the control and temperature change of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の扉間隙間の水蒸気移動を表す模式図。The schematic diagram showing the water vapor | steam movement between the door gaps of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の仕切部の温度変化を表す図。The figure showing the temperature change of the partition part of the refrigerator which concerns on embodiment of this invention.

本発明に係る冷蔵庫の実施形態を、図1〜図9を参照しながら説明する。   An embodiment of a refrigerator according to the present invention will be described with reference to FIGS.

図1は本実施形態の冷蔵庫の正面外形図である。図2は冷蔵庫の庫内の構成を表す図1におけるX−X断面図である。図3は本実施形態の冷蔵庫の冷凍サイクルの構成を表す図である。図4は本実施形態の冷蔵庫における放熱パイプの配設位置を表す図である。また、図5は図2中に示した領域A近傍の拡大図であって、本発明の実施形態に係る冷蔵庫の横仕切部近傍の構成を表す要部拡大断面図である。   FIG. 1 is a front outline view of the refrigerator of the present embodiment. FIG. 2 is a cross-sectional view taken along the line XX in FIG. 1 showing the configuration inside the refrigerator. FIG. 3 is a diagram illustrating the configuration of the refrigeration cycle of the refrigerator of the present embodiment. FIG. 4 is a diagram illustrating the disposition positions of the heat radiating pipes in the refrigerator of the present embodiment. FIG. 5 is an enlarged view of the vicinity of the region A shown in FIG. 2 and is an enlarged cross-sectional view of the main part showing the configuration in the vicinity of the horizontal partition portion of the refrigerator according to the embodiment of the present invention.

図1に示すように本実施形態の冷蔵庫1は上方から、冷蔵室2、製氷室3及び上段冷凍室4、下段冷凍室5、野菜室6を備えている。なお、製氷室3と上段冷凍室4は、冷蔵室2と下段冷凍室5との間に左右に並べて設けている。冷蔵室2及び野菜室6は、およそ3〜5℃の冷蔵温度帯の貯蔵室である。また、製氷室3、上段冷凍室4及び下段冷凍室5は、およそ−18℃の冷凍温度帯の貯蔵室である。   As shown in FIG. 1, the refrigerator 1 of the present embodiment includes a refrigerator compartment 2, an ice making compartment 3, an upper freezer compartment 4, a lower freezer compartment 5, and a vegetable compartment 6 from above. The ice making chamber 3 and the upper freezing chamber 4 are provided side by side between the refrigerator compartment 2 and the lower freezing chamber 5. The refrigerated room 2 and the vegetable room 6 are storage rooms in a refrigerated temperature zone of approximately 3 to 5 ° C. Further, the ice making room 3, the upper freezer room 4, and the lower freezer room 5 are storage rooms in a freezing temperature zone of approximately −18 ° C.

冷蔵室2は、前方側に左右に分割された観音開き型の冷蔵室扉2a、2bを備えている。製氷室3、上段冷凍室4、下段冷凍室5、野菜室6は、それぞれ引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを備えている。また、各扉の貯蔵室側の面には、各扉の外縁に沿うようにシール部材70(図5参照)を設けており、各扉の閉鎖時、貯蔵室内への外気の侵入、及び貯蔵室からの冷気漏れを抑制する。   The refrigerating room 2 is provided with double door-type refrigerating room doors 2a and 2b that are divided into left and right on the front side. The ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 include a drawer type ice making room door 3a, an upper freezing room door 4a, a lower freezing room door 5a, and a vegetable room door 6a, respectively. Further, a seal member 70 (see FIG. 5) is provided on the surface of each door on the storage chamber side along the outer edge of each door. When each door is closed, the outside air enters and stores the storage chamber. Suppresses cold air leakage from the room.

また、本実施形態の冷蔵庫1は、各貯蔵室に設けた扉の開閉状態をそれぞれ検知する扉センサ(図示せず)と、各扉が開放していると判定された状態が所定時間、例えば、1分間以上継続された場合に、使用者に報知するアラーム(図示せず)と、冷蔵室2の温度設定や上段冷凍室4や下段冷凍室5の温度設定をする温度設定器等(図示せず)を備えている。   Moreover, the refrigerator 1 of this embodiment has a door sensor (not shown) that detects the open / closed state of the door provided in each storage room, and a state in which each door is determined to be open for a predetermined time, for example, An alarm (not shown) for notifying the user when the operation is continued for one minute or more, a temperature setting device for setting the temperature of the refrigerator compartment 2, the temperature of the upper freezer compartment 4 and the lower freezer compartment 5, etc. Not shown).

図2に示すように、本実施形態の冷蔵庫1の庫外と庫内は、外箱1aと内箱1bとの間に発泡断熱材(発泡ポリウレタン)を充填することにより形成される断熱箱体10により隔てられている。また、本実施形態の冷蔵庫1は複数の真空断熱材25を実装している。   As shown in FIG. 2, the outside of the refrigerator 1 and the inside of the refrigerator 1 according to this embodiment are formed by filling a foam insulation (foamed polyurethane) between the outer box 1a and the inner box 1b. 10 separated by 10. Moreover, the refrigerator 1 of this embodiment is equipped with a plurality of vacuum heat insulating materials 25.

本実施形態の冷蔵庫1は、上側断熱仕切壁51により冷蔵室2と、上段冷凍室4及び製氷室3(図1参照、図2中で製氷室3は図示されていない)とが断熱壁を介して隔てられ、下側断熱仕切壁52により、下段冷凍室5と野菜室6とが断熱的に隔てられている。また、図1中に破線で示すように、下段冷凍室5の上部には、横仕切部53を備えている。横仕切部53は、製氷室3及び上段冷凍室4と、下段冷凍室5とを上下方向に仕切っている。また、横仕切部53の上部には、製氷室3と上段冷凍室4との間を左右方向に仕切る縦仕切部54を備えている。   In the refrigerator 1 of this embodiment, the refrigerator compartment 2, the upper freezer compartment 4, and the ice making chamber 3 (see FIG. 1, the ice making chamber 3 is not shown in FIG. 2) are insulated by the upper heat insulating partition wall 51. The lower freezing compartment 5 and the vegetable compartment 6 are insulated from each other by the lower heat insulating partition wall 52. Further, as indicated by a broken line in FIG. 1, a horizontal partition 53 is provided in the upper part of the lower freezer compartment 5. The horizontal partition 53 partitions the ice making chamber 3 and the upper freezing chamber 4 and the lower freezing chamber 5 in the vertical direction. In addition, a vertical partition 54 that partitions the ice making chamber 3 and the upper freezing chamber 4 in the left-right direction is provided above the horizontal partition 53.

横仕切部53は、下側断熱仕切壁52前面及び左右側壁前面とともに、下段冷凍室扉5aの貯蔵室側の面に設けたシール部材70を受けて、下段冷凍室5と下段冷凍室扉5aとの間での気体の移動を抑制する。また、製氷室扉3a及び上段冷凍室扉4aの貯蔵室側の面に設けたシール部材70は、横仕切部53、縦仕切部54、上側断熱仕切壁51及び冷蔵庫1の左右側壁前面と接することで、各貯蔵室と各扉との間での気体の移動をそれぞれ抑制する(詳細構造は後述)。   The horizontal partition 53 receives the seal member 70 provided on the storage room side surface of the lower freezer compartment door 5a together with the front surface of the lower heat insulating partition wall 52 and the front surfaces of the left and right side walls, and receives the lower freezer compartment 5 and the lower freezer compartment door 5a. The movement of gas between the two. Further, the seal member 70 provided on the surface of the ice making room door 3 a and the upper freezing room door 4 a on the storage room side is in contact with the horizontal partition 53, the vertical partition 54, the upper heat insulating partition wall 51, and the front surfaces of the left and right side walls of the refrigerator 1. This suppresses the movement of gas between each storage chamber and each door (detailed structure will be described later).

なお、製氷室3、上段冷凍室4及び下段冷凍室5は、いずれも冷凍温度帯なので、横仕切部53及び縦仕切部54は、各扉のシール部材を受けるために、少なくとも冷蔵庫の前側にあればよい(図2参照)。すなわち、冷凍温度帯の各貯蔵室間で気体の移動があってもよく、断熱区画しない場合であってもよい。一方、上段冷凍室4を温度切替室とする場合は、断熱区画する必要があるため、横仕切部53及び縦仕切部54は、冷蔵庫1の前側から後壁まで延在させる。   Since the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are all freezing temperature zones, the horizontal partition 53 and the vertical partition 54 are at least on the front side of the refrigerator in order to receive the seal member of each door. What is necessary (see FIG. 2). That is, there may be a movement of gas between the storage chambers in the freezing temperature zone, and there may be a case where the heat insulation section is not provided. On the other hand, in the case where the upper freezer compartment 4 is a temperature switching chamber, it is necessary to make a heat insulating compartment, and therefore the horizontal partition 53 and the vertical partition 54 extend from the front side of the refrigerator 1 to the rear wall.

本実施形態の冷蔵庫1は、冷蔵室扉2a、2bの貯蔵室内側に、複数の扉ポケット32を備えている(図2参照)。また、冷蔵室2内には複数の棚90を備えている。冷蔵室2は棚90によって縦方向に複数の貯蔵スペースに区画されている。   The refrigerator 1 of the present embodiment includes a plurality of door pockets 32 on the storage room side of the refrigerator compartment doors 2a and 2b (see FIG. 2). Further, the refrigerator compartment 2 is provided with a plurality of shelves 90. The refrigerator compartment 2 is partitioned into a plurality of storage spaces in the vertical direction by shelves 90.

図2に示すように、上段冷凍室4、下段冷凍室5及び野菜室6は、それぞれの貯蔵室の前方に備えられた扉と一体に前後方向に移動する収納容器3b、4b、5b、6bを備えている。製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a及び野菜室扉6aは、それぞれ図示しない取手部に手を掛けて手前側に引き出すことにより、収納容器3b、4b、5b、6bが引き出せるようになっている。   As shown in FIG. 2, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are storage containers 3b, 4b, 5b, 6b that move in the front-rear direction together with the doors provided in front of the respective storage compartments. It has. The ice making room door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are each pulled out to the front side by placing a hand on a handle portion (not shown) so that the storage containers 3b, 4b, 5b, 6b It can be pulled out.

図2及び図3に示すように、本実施形態の冷蔵庫1は、冷却手段として蒸発器7を備えている。蒸発器7(一例として、フィンチューブ型熱交換器)は、下段冷凍室5の略背部に備えられた蒸発器収納室8内に設けられている。また、蒸発器収納室8内であって蒸発器7の上方に、送風手段として庫内送風機9(一例として、プロペラファン)を備えている。   As shown in FIG.2 and FIG.3, the refrigerator 1 of this embodiment is provided with the evaporator 7 as a cooling means. The evaporator 7 (for example, a fin tube type heat exchanger) is provided in an evaporator storage chamber 8 provided substantially at the back of the lower freezing chamber 5. In addition, an internal fan 9 (propeller fan as an example) is provided as a blowing means in the evaporator storage chamber 8 and above the evaporator 7.

蒸発器7と熱交換して冷やされた空気(以下、蒸発器7で熱交換した低温の空気を「冷気」と称する)は、庫内送風機9によって、冷蔵室送風ダクト11、野菜室送風ダクト(図示せず)、上段冷凍室送風ダクト16を介して、冷蔵室2、野菜室6、製氷室3、上段冷凍室4、下段冷凍室5の各貯蔵室へそれぞれ送られる。各貯蔵室への送風は、冷蔵室2への送風量を制御する冷蔵室ダンパ80と、野菜室6への送風量を制御する野菜室ダンパ(図示せず)と、冷凍温度帯室(製氷室3、上段冷凍室4、下段冷凍室5)への送風量を制御する冷凍室ダンパ81とにより制御される。   Air that has been cooled by exchanging heat with the evaporator 7 (hereinafter, low-temperature air that has been heat-exchanged by the evaporator 7 is referred to as “cold air”) is cooled by a refrigerator 9 in the refrigerator compartment air duct 11 and the vegetable compartment air duct. (Not shown), it is sent to the respective storage rooms of the refrigerator compartment 2, the vegetable compartment 6, the ice making chamber 3, the upper freezer compartment 4, and the lower freezer compartment 5 through the upper freezer compartment blower duct 16. The ventilation to each storage room is performed by a refrigerator compartment damper 80 for controlling the amount of air sent to the refrigerator compartment 2, a vegetable compartment damper (not shown) for controlling the amount of air sent to the vegetable compartment 6, and a freezing temperature zone compartment (ice making). It is controlled by a freezer damper 81 that controls the amount of air blown into the chamber 3, the upper freezer 4 and the lower freezer 5).

冷蔵室ダンパ80が開状態で冷蔵室2への送風が行われる場合、冷気は、冷蔵室送風ダクト11を経て多段に設けられた吹き出し口2cから冷蔵室2に流入する。冷蔵室2を冷却した冷気は、冷蔵室2の下部に設けられた冷蔵室戻り口(図示しない)から蒸発器収納室8の側方に配設された冷蔵室戻りダクト(図示しない)を経て、蒸発器収納室8の下部に戻る。   When ventilation to the refrigerator compartment 2 is performed with the refrigerator compartment damper 80 in the open state, the cold air flows into the refrigerator compartment 2 from the outlets 2 c provided in multiple stages via the refrigerator compartment air duct 11. The cold air that has cooled the refrigerator compartment 2 passes through a refrigerator compartment return duct (not shown) provided on the side of the evaporator storage chamber 8 from a refrigerator compartment return port (not shown) provided in the lower portion of the refrigerator compartment 2. Return to the lower part of the evaporator storage chamber 8.

野菜室ダンパが開状態で野菜室6への送風が行われる場合、冷気は、野菜室送風ダクト(図示しない)を経て野菜室吹き出し口(図示しない)から野菜室6に流入する。野菜室6を冷却した冷気は、下側断熱仕切壁52の下部前方に設けられた野菜室戻りダクト入口18bから野菜室戻りダクト18を経て、野菜室戻りダクト出口18aから蒸発器収納室8の下部に戻る。   When the vegetable room damper is opened and air is blown to the vegetable room 6, the cold air flows into the vegetable room 6 from the vegetable room outlet (not shown) through the vegetable room air duct (not shown). The cool air that has cooled the vegetable compartment 6 passes from the vegetable compartment return duct inlet 18b provided in front of the lower part of the lower heat insulating partition wall 52 through the vegetable compartment return duct 18 and from the vegetable compartment return duct outlet 18a to the evaporator storage chamber 8. Return to the bottom.

本実施形態の冷蔵庫1は、図2に示すように、蒸発器収納室8前方には、各貯蔵室と蒸発器収納室8との間を仕切る仕切部材13を備えている。仕切部材13には、吹き出し口3c、4c、5cが形成されており、冷凍室ダンパ81が開状態の場合、冷気は、図示しない製氷室送風ダクト、上段冷凍室送風ダクト16、下段冷凍室送風ダクト12を経て吹き出し口3c、4c、5cから上段冷凍室4、下段冷凍室5、製氷室3へ流入する。仕切部材13には、下段冷凍室5の奥下部の位置に冷凍室戻り口17が設けられており、冷凍温度帯室(製氷室3、上段冷凍室4、下段冷凍室5)を冷却した冷気は、冷凍室戻り口17を介して蒸発器収納室8に流入する。なお、冷凍室戻り口17は蒸発器7の幅とほぼ等しい幅寸法である。   As shown in FIG. 2, the refrigerator 1 of the present embodiment includes a partition member 13 that partitions each storage chamber and the evaporator storage chamber 8 in front of the evaporator storage chamber 8. The partition member 13 is formed with blowout ports 3c, 4c, and 5c, and when the freezer damper 81 is in an open state, the cold air is blown into an ice making fan blow duct, an upper freezer blower duct 16, and a lower freezer blower (not shown). It flows into the upper freezer compartment 4, the lower freezer compartment 5, and the ice making chamber 3 through the ducts 12 through the outlets 3 c, 4 c, and 5 c. The partition member 13 is provided with a freezer return port 17 at a position in the lower part of the lower freezer compartment 5, and cool air that has cooled the freezing temperature zone (the ice making room 3, the upper freezer room 4, the lower freezer room 5). Flows into the evaporator storage chamber 8 via the freezer return port 17. The freezer compartment return port 17 has a width dimension substantially equal to the width of the evaporator 7.

一般に、周囲温度に対して低温の冷気は、上方から下方に向かう下降流を形成する。よって、貯蔵室の上方により多くの冷気を供給することで、下降流の作用で貯蔵室内を良好に冷却できる。本実施形態では、冷凍室ダンパ81を設けているが、これを庫内送風機9の上方に設置することで、庫内送風機9からの送風をスムーズに製氷室3や上段冷凍室4に送風できるように配慮している。また、製氷室3、上段冷凍室4及び下段冷凍室5が連通した構成とすれば、下降流による冷却効果を高めることができる。   Generally, cold air having a low temperature with respect to the ambient temperature forms a downward flow from the upper side to the lower side. Therefore, by supplying more cold air to the upper side of the storage chamber, the storage chamber can be favorably cooled by the action of the downward flow. In this embodiment, the freezer compartment damper 81 is provided. However, by installing the freezer damper 81 above the internal fan 9, the air from the internal fan 9 can be smoothly blown to the ice making chamber 3 and the upper freezer compartment 4. Consideration is taken. Further, if the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are configured to communicate with each other, the cooling effect by the downflow can be enhanced.

図2に示すとおり、蒸発器収納室8の下方には、除霜ヒータ22が備えられている。蒸発器7及びその周辺の蒸発器収納室8の壁に成長した霜は、除霜ヒータ22に通電して加熱することで溶かされる。霜が融解することで生じた除霜水は、図2に示す蒸発器収納室8の下部に備えられた樋23に流入した後に、排水管27を介して機械室19に配された蒸発皿21に達する。蒸発皿21内の除霜水は、機械室19内に配設される圧縮機24及び凝縮器61(図2中に図示せず)の発熱により蒸発する。   As shown in FIG. 2, a defrost heater 22 is provided below the evaporator storage chamber 8. The frost that has grown on the wall of the evaporator 7 and the surrounding evaporator storage chamber 8 is melted by energizing and heating the defrost heater 22. The defrost water generated by melting of the frost flows into the eaves 23 provided at the lower part of the evaporator storage chamber 8 shown in FIG. 2, and is then disposed in the machine chamber 19 through the drain pipe 27. 21 is reached. The defrost water in the evaporating dish 21 evaporates due to heat generated by the compressor 24 and the condenser 61 (not shown in FIG. 2) disposed in the machine room 19.

次に、本実施形態における冷凍サイクルについて、図3〜図5、及び、適宜図2を参照しながら説明する。本実施形態の冷蔵庫1は、図3に示すように、冷媒を圧縮する圧縮機24と、圧縮機24から送られた冷媒を放熱する放熱手段60と、放熱手段60から送られた冷媒を減圧する減圧手段であるキャピラリチューブ43と、キャピラリチューブ43から送られた冷媒が蒸発して空気を冷却する冷却手段である蒸発器7を備えており、これらを冷媒が流れる管で順次接続することで冷凍サイクルを構成している。   Next, the refrigeration cycle in the present embodiment will be described with reference to FIGS. 3 to 5 and FIG. 2 as appropriate. As shown in FIG. 3, the refrigerator 1 according to the present embodiment includes a compressor 24 that compresses a refrigerant, a heat dissipating unit 60 that dissipates the refrigerant sent from the compressor 24, and decompresses the refrigerant sent from the heat dissipating unit 60. A pressure reducing means, a capillary tube 43, and an evaporator 7 as a cooling means for cooling the air sent from the capillary tube 43 by evaporating, and these are sequentially connected by a pipe through which the refrigerant flows. It constitutes the refrigeration cycle.

圧縮機24は、図2に示すように、冷蔵庫1の下部後方に設けた機械室19に配設されている。   The compressor 24 is arrange | positioned in the machine room 19 provided in the lower back of the refrigerator 1, as shown in FIG.

図3に示すように、放熱手段60は、機械室19(図2参照)内に配設された凝縮器61(一例としてフィンチューブ型熱交換器)及び放熱パイプ62、64から成る。機械室19内には庫外送風機26が配設されており(図2中には図示せず)、庫外送風機26を駆動することで、凝縮器61の放熱を促進することができるようになっている。   As shown in FIG. 3, the heat radiating means 60 includes a condenser 61 (for example, a finned tube heat exchanger) and heat radiating pipes 62 and 64 disposed in the machine room 19 (see FIG. 2). An outside fan 26 is disposed in the machine room 19 (not shown in FIG. 2), and the heat from the condenser 61 can be promoted by driving the outside fan 26. It has become.

放熱パイプ62(図4中に点線で図示)は、断熱箱体10の両側面、背面及び天井面の外箱1aと内箱1bとの間であって、外箱1a面に接するように配設されている。外箱1aは鋼板製であり外箱1a外表面から庫外空気に良好に放熱がなされる。   The heat radiating pipe 62 (illustrated by a dotted line in FIG. 4) is arranged between the outer box 1a and the inner box 1b on both side surfaces, the back surface, and the ceiling surface of the heat insulating box 10 so as to be in contact with the surface of the outer box 1a. It is installed. The outer box 1a is made of a steel plate, and heat is radiated well from the outer surface of the outer box 1a to the outside air.

また、放熱パイプ64は、断熱箱体10の開口部前縁面を加熱するように図4中に破線で示すように前縁面の内部前方に配設されており、断熱箱体10の上側断熱仕切壁51、下側断熱仕切壁52、横仕切部53及び縦仕切部54を加熱できるようになっている。これらの仕切壁(仕切部)は、貯蔵室に接しているため低温であるが、前方部は各貯蔵室の開口縁となるので、外気に接触しやすく、結露が生じ易い箇所となる。   Further, the heat radiating pipe 64 is disposed in front of the front edge surface as indicated by a broken line in FIG. 4 so as to heat the front edge surface of the opening of the heat insulation box 10. The heat insulation partition wall 51, the lower heat insulation partition wall 52, the horizontal partition part 53, and the vertical partition part 54 can be heated. Since these partition walls (partition portions) are in low temperature because they are in contact with the storage chambers, the front portion serves as an opening edge of each storage chamber, so that the partition walls (partition portions) are likely to come into contact with the outside air and easily cause condensation.

機械室19内には放熱性能制御手段としての三方弁65が配設されている(図2、図4中には不図示)。放熱パイプ62の出口配管は機械室19に入り(図4参照)、三方弁65の入口配管に接続されている。三方弁65は、入口1箇所(65a)出口2箇所(65b、65c)で形成されており、入口65aから流入した冷媒を出口65bに流す状態(以下「状態A」という)と、入口65aから流入した冷媒を出口65cに流す状態(以下「状態B」という)を切換制御可能な電動弁である。三方弁65の出口配管は放熱パイプ64の入口配管に、三方弁65の出口配管はバイパスパイプ63の入口配管に、それぞれ接続される(図3参照)。   A three-way valve 65 as a heat dissipation performance control means is disposed in the machine room 19 (not shown in FIGS. 2 and 4). The outlet pipe of the heat radiating pipe 62 enters the machine room 19 (see FIG. 4) and is connected to the inlet pipe of the three-way valve 65. The three-way valve 65 is formed at one inlet (65a) and two outlets (65b, 65c). A state in which the refrigerant flowing from the inlet 65a flows to the outlet 65b (hereinafter referred to as "state A"), and the inlet 65a This is a motor-operated valve capable of switching and controlling the state (hereinafter referred to as “state B”) of flowing the refrigerant flowing into the outlet 65c. The outlet pipe of the three-way valve 65 is connected to the inlet pipe of the heat radiating pipe 64, and the outlet pipe of the three-way valve 65 is connected to the inlet pipe of the bypass pipe 63 (see FIG. 3).

放熱パイプ64の出口配管には逆止弁67が配設されている(図3参照)。放熱パイプ64の出口配管と、バイパスパイプ63の出口配管は機械室内の合流管(図示せず)に接続され合流する。合流管の出口配管にはドライヤ41が配設されており、ドライヤの出口配管は、冷媒流量調整手段としての二方弁66の入口配管に接続される。なお、ドライヤ41、二方弁66は機械室19内に設置されている。二方弁66の出口配管は、キャピラリチューブ43に接続される。また、ドライヤ41は、冷媒中の水分を乾燥吸湿するためのものであり、管内が凍結して詰まり、冷媒が循環しなくなることを防ぐ。   A check valve 67 is disposed at the outlet pipe of the heat radiating pipe 64 (see FIG. 3). The outlet pipe of the heat radiating pipe 64 and the outlet pipe of the bypass pipe 63 are connected to and joined with a joining pipe (not shown) in the machine room. A dryer 41 is disposed at the outlet pipe of the junction pipe, and the outlet pipe of the dryer is connected to an inlet pipe of a two-way valve 66 as a refrigerant flow rate adjusting means. The dryer 41 and the two-way valve 66 are installed in the machine room 19. The outlet pipe of the two-way valve 66 is connected to the capillary tube 43. Further, the dryer 41 is for drying and absorbing moisture in the refrigerant, and prevents the inside of the tube from being frozen and clogged, so that the refrigerant does not circulate.

また、蒸発器7から圧縮機24に向かう管68の一部である管68a部は、キャピラリチューブ43と近接又は接触させており、キャピラリチューブ43内の熱が、管68a内の冷媒に移動するようにしてある(図3参照)。また、結露防止用の放熱パイプ64は、図4に示すように、特に温度差が大きくなる冷凍温度帯の貯蔵室の前方開口縁に重点的に配設されている。   The pipe 68a, which is a part of the pipe 68 from the evaporator 7 toward the compressor 24, is close to or in contact with the capillary tube 43, and the heat in the capillary tube 43 moves to the refrigerant in the pipe 68a. (See FIG. 3). Further, as shown in FIG. 4, the heat-dissipating pipe 64 for preventing condensation is disposed mainly on the front opening edge of the storage room in the freezing temperature zone where the temperature difference becomes large.

図5は図2中に示した領域A近傍の拡大図である。図5に示すように、横仕切部53は前面に熱伝導部材53a(一例として、鋼板のような金属板)を備えており、横仕切部53内部には断熱材53b(一例として、スチロフォーム、ウレタンのような発泡断熱材)が配設されている。放熱パイプ64は断熱材53bと鋼板53aの間に配設され、図示しない熱伝導性緩衝材を介して鋼板53aに密着させている。横仕切部53内部には仕切部温度センサ38が鋼板53aに密着するように配設されている。また、上段冷凍室扉4a及び下段冷凍室扉5a内側の横仕切部53と対向する面には、内部にマグネットが実装されたシール部材70が備えられている。各扉の閉鎖時には、マグネットの吸着作用によって、貯蔵室内への外気の侵入、及び貯蔵室からの冷気漏れを抑制する。なお、本実施形態の冷蔵庫1は、上段冷凍室扉4aと下段冷凍室扉5a間の上下方向寸法(隙間幅)L1が10mm以下となるようにしており、本実施形態の冷蔵庫1はL1=7mmである。また、横仕切部53の前面である鋼板53a表面から冷凍室扉前縁までの奥行き寸法(隙間奥行き)L2はL1の3倍以上としており、本実施形態の冷蔵庫1はL2=40mmである。なお、ここでは横仕切部53近傍の構成を説明したが、縦仕切部54、上側断熱仕切壁51、下側断熱仕切壁52についても、類似の構成となっており、扉間の隙間幅L1は10mm以下、扉間の隙間奥行きL2は、L1の3倍以上である30mm以上としている。   FIG. 5 is an enlarged view of the vicinity of the region A shown in FIG. As shown in FIG. 5, the horizontal partition 53 is provided with a heat conducting member 53a (as an example, a metal plate such as a steel plate) on the front surface, and a heat insulating material 53b (as an example, styrofoam) inside the horizontal partition 53. , Foam insulation such as urethane) is disposed. The heat radiating pipe 64 is disposed between the heat insulating material 53b and the steel plate 53a, and is in close contact with the steel plate 53a via a heat conductive buffer material (not shown). A partition temperature sensor 38 is disposed inside the horizontal partition 53 so as to be in close contact with the steel plate 53a. In addition, a seal member 70 in which a magnet is mounted is provided on the surface facing the horizontal partition 53 inside the upper freezer compartment door 4a and the lower freezer compartment door 5a. When each door is closed, the intrusion of outside air into the storage chamber and the cold air leakage from the storage chamber are suppressed by the adsorption action of the magnet. In the refrigerator 1 of the present embodiment, the vertical dimension (gap width) L1 between the upper freezer compartment door 4a and the lower freezer compartment door 5a is 10 mm or less, and the refrigerator 1 of the present embodiment is L1 = 7 mm. Moreover, the depth dimension (gap depth) L2 from the steel plate 53a surface which is the front surface of the horizontal partition part 53 to the freezer compartment door front edge is set to three times or more of L1, and the refrigerator 1 of this embodiment is L2 = 40 mm. In addition, although the structure of the horizontal partition part 53 vicinity was demonstrated here, it is the same structure also about the vertical partition part 54, the upper side heat insulation partition wall 51, and the lower side heat insulation partition wall 52, and the clearance gap width L1 between doors. Is 10 mm or less, and the gap depth L2 between the doors is 30 mm or more, which is three times or more of L1.

冷蔵庫1は、図2に示すように、蒸発器7の上部に、蒸発器7に取り付けられた蒸発器温度センサ35、冷蔵室2に冷蔵室温度センサ33、下段冷凍室5に冷凍室温度センサ34をそれぞれ備えており、それぞれ蒸発器7の温度、冷蔵室2の温度、下段冷凍室5の温度を検知する。   As shown in FIG. 2, the refrigerator 1 includes an evaporator temperature sensor 35 attached to the evaporator 7, an refrigerator temperature sensor 33 in the refrigerator room 2, and a freezer compartment temperature sensor in the lower freezer room 5. 34, respectively, and detects the temperature of the evaporator 7, the temperature of the refrigerator compartment 2, and the temperature of the lower freezer compartment 5, respectively.

更に、冷蔵庫1は、設置された周囲環境の温度及び湿度(外気温度、外気湿度)を検知する検知手段である外気温度センサ36と外気湿度センサ37、放熱パイプ64が配設された断熱箱体10の前方開口縁温度を検知する仕切部温度センサ38を備えている。また、野菜室6にも野菜室温度センサ33aを備えている。なお、冷蔵室温度センサ33、野菜室温度センサ33a、冷凍室温度センサ34は、各貯蔵室への吹き出し冷気が直接当たらない場所に設置することで、検知精度を高めている。   Furthermore, the refrigerator 1 is a heat insulating box provided with an outside air temperature sensor 36, an outside air humidity sensor 37, and a heat radiating pipe 64, which are detection means for detecting the temperature and humidity (outside air temperature, outside air humidity) of the surrounding environment. The partition part temperature sensor 38 which detects ten front opening edge temperatures is provided. The vegetable compartment 6 is also provided with a vegetable compartment temperature sensor 33a. The cold storage room temperature sensor 33, the vegetable room temperature sensor 33a, and the freezer room temperature sensor 34 are installed in a place where the cold air blown into each storage room is not directly applied to improve detection accuracy.

制御装置として、冷蔵庫1の天井壁上面側にはCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31が配置されている(図2参照)。制御基板31は、前記した外気温度センサ36、外気湿度センサ37、蒸発器温度センサ35、冷蔵室温度センサ33、野菜室温度センサ33a、冷凍室温度センサ34、仕切部温度センサ38、各貯蔵室扉の開閉状態をそれぞれ検知する扉センサ、冷蔵室扉2aに設けられた温度設定器、省電力モード設定器等と接続する。前記ROMに予め搭載されたプログラムにより、圧縮機24のON/OFFや、三方弁65、二方弁66、冷蔵室ダンパ80、野菜室ダンパ及び冷凍室ダンパ81を個別に稼働する図示しないそれぞれのアクチュエータの制御、庫内送風機9及び庫外送風機26のON/OFF制御や回転速度制御、前記した扉開放状態を報知するアラームのON/OFF等の制御を行う。なお、温度設定器や省電力モード設定器は、使用者が手動で操作して設定変更可能な機械式スイッチ、電気式スイッチ、静電容量式スイッチ等、公知の操作手段を用いることができる。   As a control device, a control board 31 on which a CPU, a memory such as a ROM and a RAM, an interface circuit, and the like are mounted is disposed on the upper surface of the ceiling wall of the refrigerator 1 (see FIG. 2). The control board 31 includes the outside air temperature sensor 36, the outside air humidity sensor 37, the evaporator temperature sensor 35, the refrigerator compartment temperature sensor 33, the vegetable compartment temperature sensor 33a, the freezer compartment temperature sensor 34, the partition temperature sensor 38, and each storage compartment. It connects with the door sensor which detects the opening-and-closing state of a door, respectively, the temperature setting device provided in the refrigerator compartment door 2a, the power saving mode setting device, etc. Each program (not shown) for individually operating the compressor 24 ON / OFF, the three-way valve 65, the two-way valve 66, the refrigerator compartment damper 80, the vegetable compartment damper, and the freezer compartment damper 81 according to a program previously installed in the ROM. Control of the actuator, ON / OFF control and rotation speed control of the internal fan 9 and the external fan 26, control of ON / OFF of an alarm for notifying the door open state described above, and the like are performed. The temperature setting device and the power saving mode setting device can use known operation means such as a mechanical switch, an electric switch, and a capacitance switch that can be manually operated and changed by the user.

次に、本実施形態の冷蔵庫1の制御について、図6及び図7を参照しながら説明する。図6は本実施形態の冷蔵庫1の冷却運転中の制御を表す制御フローチャート、図7は本実施形態の冷蔵庫1の三方弁切換制御を実施した際の横仕切部表面温度の変化と制御状態を表すタイムチャートである。なお、制御は制御装置、すなわち制御基板31(図2参照)のCPUがROMに格納されたプログラムを実行することによって行われる。   Next, control of the refrigerator 1 of this embodiment is demonstrated, referring FIG.6 and FIG.7. FIG. 6 is a control flowchart showing the control during the cooling operation of the refrigerator 1 of the present embodiment, and FIG. 7 shows the change in the surface temperature of the horizontal partitioning portion and the control state when the three-way valve switching control of the refrigerator 1 of the present embodiment is performed. It is a time chart showing. The control is performed by the control device, that is, the CPU of the control board 31 (see FIG. 2) executing a program stored in the ROM.

図6に示すように、冷蔵庫1は電源投入により圧縮機が稼働して冷却運転を開始する(図6における「スタート」)。冷却運転は、圧縮機24を駆動して蒸発器7で熱交換した冷気を、庫内送風機9を駆動して各貯蔵室へ送風する運転である。   As shown in FIG. 6, the refrigerator 1 starts the cooling operation by turning on the power supply and starts the cooling operation (“start” in FIG. 6). The cooling operation is an operation that drives the compressor 24 and heats the cold air exchanged by the evaporator 7 to drive the internal fan 9 to the respective storage chambers.

このとき、初期状態として、三方弁65は前述の状態A(入口65aから流入した冷媒を出口65bから放熱パイプ64に流す状態(図3参照))となる。続いて、外気温度センサ36、外気湿度センサ37検知情報に基づいて、三方弁切換制御のモードiの条件が成立しているか否かを判定する(ステップS101)。本実施形態の冷蔵庫1は、「外気温度35℃以下」、「外気湿度80%以下」、且つ「省電力モードOFF」の場合に、三方弁切換制御のモードiの条件が成立する。なお、省電力モードのON/OFFは、冷蔵室扉2aに設けられた省電力モード設定器によって設定される。三方弁切換制御のモードiの条件が成立しなかった場合(No)、続いて、三方弁切換制御のモードiiの条件が成立しているか否かを判定する(ステップS102)。本実施形態の冷蔵庫1は、「外気温度40℃以下」、「外気湿度85%以下」、且つ「省電力モードON」の場合に三方弁切換制御のモードiiの条件が成立する。   At this time, as an initial state, the three-way valve 65 is in the above-described state A (the state in which the refrigerant flowing from the inlet 65a flows from the outlet 65b to the heat radiating pipe 64 (see FIG. 3)). Subsequently, based on the detection information of the outside air temperature sensor 36 and the outside air humidity sensor 37, it is determined whether or not the condition of the mode i of the three-way valve switching control is established (step S101). In the refrigerator 1 of the present embodiment, the condition of the mode i of the three-way valve switching control is established when “the outside air temperature is 35 ° C. or less”, “the outside air humidity is 80% or less”, and “the power saving mode is OFF”. In addition, ON / OFF of power saving mode is set by the power saving mode setting device provided in the refrigerator compartment door 2a. When the condition of the mode i of the three-way valve switching control is not satisfied (No), it is subsequently determined whether or not the condition of the mode ii of the three-way valve switching control is satisfied (step S102). In the refrigerator 1 of the present embodiment, the condition of the mode ii of the three-way valve switching control is established when “the outside air temperature is 40 ° C. or less”, “the outside air humidity is 85% or less”, and “the power saving mode is ON”.

なお、モードiは、安定運転時の仕切部表面の時間平均温度を露点温度以上とする制御モードであり、モードiiは、安定運転時の仕切部表面の時間平均温度を露点温度以下とする制御モードであり、使用者が省電力モード設定器によって設定可能である。詳細は後述する。   Mode i is a control mode in which the time average temperature of the partition surface during stable operation is equal to or higher than the dew point temperature, and mode ii is a control where the time average temperature of the partition surface during stable operation is equal to or lower than the dew point temperature. Mode, which can be set by the user with the power saving mode setting device. Details will be described later.

三方弁切換制御のモードiiの条件が成立しなかった場合(No)、続いて、圧縮機OFFの条件が成立しているか否かを判定する(ステップS103)。本実施形態の冷蔵庫1では、冷凍室温度センサ34、冷蔵室温度センサ33、野菜室温度センサ33aが検知する温度が、それぞれ所定温度以下になっている場合に圧縮機OFFの条件が成立する。なお、圧縮機OFFの条件が成立する温度は、冷蔵室扉2aに設けられた温度設定器の設定に基づいて算出される。本実施形態の冷蔵庫1は、温度設定器によって「強(貯蔵室温度低め)」「中(標準)」「弱(貯蔵室温度高め)」の選択が可能となっており、温度を例えば、「中」設定とした場合の圧縮機OFFの条件は、「冷凍室温度−21℃以下、冷蔵室温度5℃以下、野菜室温度5℃以下」となる。   If the condition for mode ii of the three-way valve switching control is not satisfied (No), it is subsequently determined whether or not the condition for compressor OFF is satisfied (step S103). In the refrigerator 1 of the present embodiment, the compressor OFF condition is established when the temperatures detected by the freezer temperature sensor 34, the refrigerator temperature sensor 33, and the vegetable room temperature sensor 33a are each equal to or lower than a predetermined temperature. Note that the temperature at which the compressor-off condition is established is calculated based on the setting of the temperature setting device provided in the refrigerator compartment door 2a. The refrigerator 1 of the present embodiment is capable of selecting “strong (lower storage room temperature)”, “medium (standard)”, and “weak (higher storage room temperature)” by the temperature setting device. The compressor OFF condition when “medium” is set is “freezer compartment temperature −21 ° C. or lower, refrigerator compartment temperature 5 ° C. or lower, vegetable compartment temperature 5 ° C. or lower”.

圧縮機OFFの条件が成立しなかった場合(No)、再びステップS101の判定に戻り、圧縮機OFFの条件が成立した場合(Yes)、三方弁65を状態Aとする(ステップS104)。状態Aの継続時間がt1に達した後に(ステップS105)、二方弁66を閉状態として(ステップS106)圧縮機がOFF状態となる(ステップS107)。このように圧縮機停止時に二方弁66を閉状態とすることで、放熱手段60内の高温高圧冷媒が、キャピラリチューブ43を介して蒸発器7に流入して熱負荷となることを防止できるので、省エネルギー性能が高くなる。なお、本実施形態の冷蔵庫1ではt1=15分である。   When the condition for compressor OFF is not satisfied (No), the process returns to the determination of step S101 again. When the condition for compressor OFF is satisfied (Yes), the three-way valve 65 is set to state A (step S104). After the duration time of state A reaches t1 (step S105), the two-way valve 66 is closed (step S106), and the compressor is turned off (step S107). Thus, by closing the two-way valve 66 when the compressor is stopped, it is possible to prevent the high-temperature and high-pressure refrigerant in the heat radiation means 60 from flowing into the evaporator 7 via the capillary tube 43 and becoming a heat load. Therefore, energy saving performance becomes high. In the refrigerator 1 of the present embodiment, t1 = 15 minutes.

続いて、圧縮機ONの条件が成立するか否かを判定する(ステップS108)。本実施形態の冷蔵庫1は、冷凍室温度センサ34検知温度が所定温度に上昇した場合に圧縮機ONの条件が成立する。例えば、温度設定器によって「中」設定とした場合の圧縮機ONの条件は、「冷凍室温度−19℃以上」となる。なお、本実施形態の冷蔵庫1は圧縮機ONの条件は冷凍室温度によって判定しているが、これは、本実施形態の冷蔵庫1は、圧縮機OFF中にも冷蔵室2及び野菜室6の冷却を行うことができるためである。具体的には、圧縮機OFF中に冷蔵室2及び野菜室6は、冷凍室ダンパ81を閉状態、冷蔵室ダンパ80と野菜室ダンパを開状態として、庫内送風機9を稼働させ、冷却器7に付着した霜の冷熱によって冷却する。なお、冷蔵室温度センサ33、野菜室温度センサ33aの検知温度に基づいて、冷蔵室ダンパ80あるいは野菜室ダンパの一方を閉状態として、冷蔵室2あるいは野菜室6の何れか一方のみ冷却する場合もある。   Subsequently, it is determined whether or not the compressor ON condition is satisfied (step S108). In the refrigerator 1 of the present embodiment, the compressor ON condition is established when the temperature detected by the freezer temperature sensor 34 rises to a predetermined temperature. For example, the compressor ON condition when the temperature setting device is set to “medium” is “freezer temperature −19 ° C. or higher”. In addition, although the refrigerator 1 of this embodiment has determined the conditions of compressor ON by the freezer compartment temperature, this is because the refrigerator 1 of this embodiment has the refrigerator compartment 2 and the vegetable compartment 6 also during compressor OFF. This is because cooling can be performed. Specifically, during the compressor OFF, the refrigerator compartment 2 and the vegetable compartment 6 have the freezer damper 81 closed, the refrigerator compartment damper 80 and the vegetable compartment damper open, and the internal blower 9 is operated, and the cooler It cools with the cold heat of the frost adhering to 7. In the case where only one of the refrigerator compartment 2 or the vegetable compartment 6 is cooled by closing one of the refrigerator compartment damper 80 or the vegetable compartment damper based on the temperature detected by the refrigerator compartment temperature sensor 33 or the vegetable compartment temperature sensor 33a. There is also.

圧縮機ONの条件が成立した場合(Yes)、続いて二方弁66を開状態として(ステップS109)、圧縮機を通常の冷却運転時よりも高回転で稼働して冷却運転を再開し(ステップS110)、t2経過後(本実施形態の冷蔵庫1ではt2=30秒)(ステップS111)、圧縮機回転数を通常の冷却運転時の回転数まで低減する(ステップS112)。なお、ステップS110とステップS112において制御される圧縮機回転数は、外気温度センサ36の検知温度に基づいて設定されるが、例えば外気温が30℃の場合には、ステップS110において圧縮機は2500r/minとなり、ステップS112において1600r/minに回転数が低減される。   If the compressor ON condition is satisfied (Yes), then the two-way valve 66 is opened (step S109), and the compressor is operated at a higher speed than in the normal cooling operation to restart the cooling operation ( Step t110) After t2 has elapsed (in the refrigerator 1 of the present embodiment, t2 = 30 seconds) (step S111), the compressor rotational speed is reduced to the rotational speed during normal cooling operation (step S112). The compressor speed controlled in steps S110 and S112 is set based on the temperature detected by the outside air temperature sensor 36. For example, when the outside air temperature is 30 ° C., the compressor is set to 2500 r in step S110. / Min, and the rotational speed is reduced to 1600 r / min in step S112.

次にステップS101、または、ステップS102において、三方弁切換制御のモードiの条件、または、モードiiの条件が成立した場合について説明する。   Next, the case where the condition for mode i or the condition for mode ii of the three-way valve switching control is satisfied in step S101 or step S102 will be described.

ステップS101においてモードiの条件が成立した場合(Yes)、続いて、モードiにおける三方弁を状態Aから状態Bへ切換える切換条件が成立するか否かが判定される(ステップS201)。本実施形態の冷蔵庫1は、「状態Aの継続時間がt3経過」、または、「圧縮機が停止状態から起動後の経過時間がt3経過」によって状態Aから状態Bへの切換条件が成立する。なお、t3は外気温度センサ36及び外気湿度センサ37が検知する温度及び湿度に基づいて算出される。ステップS201において、状態Aから状態Bへの切換条件が成立しなかった場合(No)、続いて、ステップS202の判定に移り、ステップS201が成立した場合(Yes)、三方弁を状態Bに切り換えた後に(ステップS204)、ステップS202の判定に移る。   When the condition of mode i is satisfied in step S101 (Yes), it is subsequently determined whether a switching condition for switching the three-way valve in mode i from state A to state B is satisfied (step S201). In the refrigerator 1 of the present embodiment, the condition for switching from the state A to the state B is established by “the duration of the state A has elapsed t3” or “the elapsed time since the compressor has been started since the start time t3 has elapsed”. . Note that t3 is calculated based on the temperature and humidity detected by the outside air temperature sensor 36 and the outside air humidity sensor 37. In step S201, when the switching condition from state A to state B is not satisfied (No), the process proceeds to the determination of step S202. When step S201 is satisfied (Yes), the three-way valve is switched to state B. (Step S204), the process proceeds to step S202.

ステップS202では、モードiにおける三方弁を状態Bから状態Aへ切換える切換条件が成立するか否かが判定される。本実施形態の冷蔵庫1は、「状態Bの継続時間がt4経過」、「扉の開動作(扉センサによる検知)」、または、「仕切部温度センサ38検知温度が下限温度Tmin1到達」の何れかの条件が成立した場合に状態Bから状態Aへの切換条件が成立する。なお、t4は外気温度センサ36及び外気湿度センサ37が検知する温度及び湿度に基づいて算出され、低温低湿であるほど、前述のt3に対して相対的にt4の比率が長くなる。例えば、本実施形態の冷蔵庫1は、外気温度30℃で外気湿度70%の場合、t3=20分でt4=10分となり、外気温度15℃で外気湿度55%の場合、t3=20分でt4=20分となる。また、Tmin1は、外気温度センサ36及び外気湿度センサ37が検知する温湿度に基づいて算出される露点温度Tdewに対して、Tmin1=Tdew−5[℃]としている。   In step S202, it is determined whether or not a switching condition for switching the three-way valve in mode i from state B to state A is satisfied. The refrigerator 1 according to the present embodiment has any one of “continuation time of state B t4”, “door opening operation (detection by door sensor)”, or “partition temperature sensor 38 detection temperature reaches lower limit temperature Tmin1”. When such a condition is satisfied, the switching condition from the state B to the state A is satisfied. Note that t4 is calculated based on the temperature and humidity detected by the outside air temperature sensor 36 and the outside air humidity sensor 37. The lower the temperature and humidity, the longer the ratio of t4 to t3. For example, in the refrigerator 1 of the present embodiment, when the outside air temperature is 30 ° C. and the outside air humidity is 70%, t3 = 20 minutes and t4 = 10 minutes. When the outside air temperature is 15 ° C. and the outside air humidity is 55%, t3 = 20 minutes. t4 = 20 minutes. Tmin1 is set to Tmin1 = Tdew−5 [° C.] with respect to the dew point temperature Tdew calculated based on the temperature and humidity detected by the outside air temperature sensor 36 and the outside air humidity sensor 37.

ステップS202において、状態Bから状態Aへの切換条件が成立しなかった場合(No)、続いてステップS203の判定に移り、ステップS202が成立した場合(Yes)、ステップS205で三方弁を状態Aに切り換えた後に、ステップS203の判定に移る。   In step S202, when the switching condition from state B to state A is not satisfied (No), the process proceeds to the determination of step S203, and when step S202 is satisfied (Yes), the three-way valve is changed to state A in step S205. After switching to step S203, the process proceeds to step S203.

ステップS203では、圧縮機OFFの条件が成立しているか否かを判定する。なお、ステップS203における圧縮機OFFの条件はステップS103と同様である。ステップS203において圧縮機OFFの条件が成立した場合(Yes)、ステップS104に移行し、ステップS203が成立しなかった場合(No)、ステップS201の判定に戻る。   In step S203, it is determined whether or not the compressor OFF condition is satisfied. Note that the compressor-off condition in step S203 is the same as that in step S103. When the compressor OFF condition is satisfied in step S203 (Yes), the process proceeds to step S104, and when step S203 is not satisfied (No), the process returns to the determination in step S201.

ステップS102においてモードiiの条件が成立した場合(Yes)、続いて、モードiiにおける状態Aから状態Bへの切換条件が成立するか否かが判定される(ステップS301)。本実施形態の冷蔵庫1は、「状態Aの継続時間がt5経過」、または、「圧縮機が停止状態から起動後の経過時間がt5経過」によって状態Aから状態Bへの切換条件が成立する。なお、t5は外気温度センサ36及び外気湿度センサ37が検知する温湿度に基づいて算出される。ステップS301において、三方弁を状態Aから状態Bへ切換える切換条件が成立しなかった場合(No)、続いて、ステップS302の判定に移り、ステップS301が成立した場合(Yes)、三方弁を状態Bに切り換えた後に(ステップS304)、ステップS302の判定に移る。   When the condition of mode ii is satisfied in step S102 (Yes), it is subsequently determined whether or not the condition for switching from state A to state B in mode ii is satisfied (step S301). In the refrigerator 1 according to the present embodiment, the condition for switching from the state A to the state B is satisfied by “the continuation time of the state A is t5” or “the elapsed time after the compressor is started from the stop state is t5”. . Note that t5 is calculated based on the temperature and humidity detected by the outside air temperature sensor 36 and the outside air humidity sensor 37. In step S301, if the switching condition for switching the three-way valve from state A to state B is not satisfied (No), then the process proceeds to step S302, and if step S301 is satisfied (Yes), the three-way valve is in the state. After switching to B (step S304), the process proceeds to the determination in step S302.

ステップS302では、モードiiにおける三方弁を状態Bから状態Aへ切換える切換条件が成立するか否かが判定される。本実施形態の冷蔵庫1は、「状態Bの継続時間がt6経過」、「扉の開動作(扉センサによる検知)」、または「仕切部温度センサ38検知温度が下限温度Tmin2到達」の何れかの条件が成立した場合に状態Bから状態Aへの切換条件が成立する。なお、t6は外気温度センサ36及び外気湿度センサ37が検知する温湿度に基づいて算出され、低温低湿であるほど、前述のt5に対して相対的にt6の比率が長くなる。例えば、本実施形態の冷蔵庫1は、外気温度30℃で外気湿度70%の場合、t5=15分でt6=20分となり、外気温度15℃で外気湿度55%の場合、t5=20分でt6=40分となる。また、Tmin2は、外気温度センサ36及び外気湿度センサ37が検知する温湿度に基づいて算出される露点温度Tdewに対して、Tmin2=Tdew−8[℃]としている。   In step S302, it is determined whether or not a switching condition for switching the three-way valve in mode ii from state B to state A is satisfied. The refrigerator 1 of the present embodiment is any one of “the duration B of state B has elapsed t6”, “the door opening operation (detection by the door sensor)”, or “the temperature detected by the partition temperature sensor 38 reaches the lower limit temperature Tmin2”. The condition for switching from state B to state A is satisfied when the above condition is satisfied. Note that t6 is calculated based on the temperature and humidity detected by the outside air temperature sensor 36 and the outside air humidity sensor 37. The lower the temperature and humidity, the longer the ratio of t6 to t5. For example, in the refrigerator 1 of the present embodiment, when the outside air temperature is 30 ° C. and the outside air humidity is 70%, t5 = 15 minutes and t6 = 20 minutes, and when the outside air temperature is 15 ° C. and the outside air humidity is 55%, t5 = 20 minutes. t6 = 40 minutes. Tmin2 is set to Tmin2 = Tdew−8 [° C.] with respect to the dew point temperature Tdew calculated based on the temperature and humidity detected by the outside air temperature sensor 36 and the outside air humidity sensor 37.

ステップS302において、状態Bから状態Aへの切換条件が成立しなかった場合(No)、続いて、ステップS303の判定に移り、ステップS302が成立した場合(Yes)、三方弁を状態Aに切り換えた後に(ステップS305)、ステップS303の判定に移る。   If the switching condition from state B to state A is not satisfied in step S302 (No), then the process proceeds to step S303, and if step S302 is satisfied (Yes), the three-way valve is switched to state A. (Step S305), the process proceeds to step S303.

ステップS303では、圧縮機OFFの条件が成立しているか否かを判定する。なお、ステップS303における圧縮機OFFの条件はステップS103と同様である。ステップS303において圧縮機OFFの条件が成立した場合(Yes)、ステップS104に移行し、ステップS303が成立しなかった場合(No)、ステップS301の判定に戻る。   In step S303, it is determined whether or not the compressor OFF condition is satisfied. Note that the compressor-off condition in step S303 is the same as that in step S103. If the compressor OFF condition is satisfied in step S303 (Yes), the process proceeds to step S104. If step S303 is not satisfied (No), the process returns to the determination in step S301.

次に、本実施形態の冷蔵庫1を省電力モードに設定した状態で、温度30℃、相対湿度70%の環境に設置して、安定運転状態となった場合(詳細はJISC9801:2006に準拠)の、横仕切部53表面(鋼板53a表面)の温度変化と、三方弁65、二方弁66、圧縮機24の制御状態について、図7を参照しながら説明する。なお、安定運転状態とは、外気温変動や扉開閉といった負荷変動要因がなく、安定的に貯蔵室内をほぼ一定の温度範囲に冷却している状態を指す。   Next, when the refrigerator 1 according to the present embodiment is set in the power saving mode and installed in an environment with a temperature of 30 ° C. and a relative humidity of 70%, and is in a stable operation state (details conform to JIS C9801: 2006). The temperature change of the surface of the horizontal partition 53 (the surface of the steel plate 53a) and the control state of the three-way valve 65, the two-way valve 66, and the compressor 24 will be described with reference to FIG. The stable operation state refers to a state in which there is no load fluctuation factor such as outside temperature fluctuation or door opening / closing, and the storage chamber is stably cooled to a substantially constant temperature range.

図7に示すように、経過時間taにおいて、図示しない冷凍室温度(冷凍室温度センサ34検知温度)が所定温度(−19℃)に達したため圧縮機ON条件が成立し(図6におけるステップS108がYes)、二方弁66が開状態となり(図6におけるステップS109)、圧縮機24が起動している(図6におけるステップS110)。なお、経過時間taにおいては、それまで圧縮機24が停止しており、横仕切部53に配設された放熱パイプ64に高温冷媒が流れないため、横仕切部53の温度は低下し、外気温湿度に基づく露点温度(ここでは23.9℃が露点温度)を下回った状態となっている。   As shown in FIG. 7, at the elapsed time ta, the freezer compartment temperature (the temperature detected by the freezer compartment temperature sensor 34) reaches a predetermined temperature (−19 ° C.), so that the compressor ON condition is satisfied (step S108 in FIG. 6). Is Yes), the two-way valve 66 is open (step S109 in FIG. 6), and the compressor 24 is activated (step S110 in FIG. 6). At the elapsed time ta, the compressor 24 has been stopped so far, and the high-temperature refrigerant does not flow into the heat radiating pipe 64 disposed in the horizontal partition 53, so that the temperature of the horizontal partition 53 decreases and the outside The temperature is lower than the dew point temperature (here, 23.9 ° C. is the dew point temperature) based on the temperature and humidity.

経過時間taにおいて、三方弁65は状態Aに制御されているので、圧縮機の稼働によって高温冷媒が放熱パイプ64に流入して横仕切部53表面が加熱され、横仕切部表面温度が上昇し、経過時間tbにおいて露点温度に達している。なお圧縮機24は、起動後30秒間は高回転(本実施形態の冷蔵庫1では2400r/min)に制御されるので(図6におけるステップS110、ステップS111)、低温になっていた横仕切部53表面が速やかに加熱される。なお、ここでは、省電力モードに設定してあり、外気温湿度が30℃、70%の環境下に冷蔵庫1を設置しているので、モードiiの切換条件が成立して、三方弁切換制御はモードiiが選択される(図6のステップS102)。モードiiでは、圧縮機起動後の経過時間が所定時間t5(=15分)に到達した場合に三方弁状態Aから状態Bへの切換条件が成立する(図6におけるステップS301)。ここでは、経過時間tcで三方弁状態Aから状態Bへの切換条件が成立して、三方弁が状態Bに切り換わっている(図6におけるステップS304)。   Since the three-way valve 65 is controlled to the state A at the elapsed time ta, the high temperature refrigerant flows into the heat radiating pipe 64 by the operation of the compressor, the surface of the horizontal partition 53 is heated, and the surface temperature of the horizontal partition increases. The dew point temperature is reached at the elapsed time tb. Since the compressor 24 is controlled at a high rotation speed (2400 r / min in the refrigerator 1 of the present embodiment) for 30 seconds after activation (step S110 and step S111 in FIG. 6), the horizontal partition 53 that has become low temperature is used. The surface is heated quickly. Here, the power saving mode is set, and since the refrigerator 1 is installed in an environment where the outside air temperature humidity is 30 ° C. and 70%, the switching condition of the mode ii is satisfied, and the three-way valve switching control is performed. Mode ii is selected (step S102 in FIG. 6). In mode ii, the switching condition from the three-way valve state A to the state B is satisfied when the elapsed time after the start of the compressor reaches a predetermined time t5 (= 15 minutes) (step S301 in FIG. 6). Here, the switching condition from the three-way valve state A to the state B is satisfied at the elapsed time tc, and the three-way valve is switched to the state B (step S304 in FIG. 6).

三方弁が状態Bに切り換わったことで、放熱パイプ64内に高温冷媒が流れなくなるため、横仕切部表面温度は低下し、経過時間tdにおいて、露点温度に達している。続いて、モードiiでは、状態Bの継続時間がt6に到達した場合に三方弁65の状態Bから状態Aへの切換条件が成立する(図6におけるステップS302)。ここでは、経過時間teで三方弁65の状態Bから状態Aへの切換条件が成立して、三方弁が状態Aに切り換わっている(図6におけるステップS305)。   When the three-way valve is switched to the state B, the high-temperature refrigerant does not flow in the heat radiating pipe 64, so the surface temperature of the horizontal partition portion decreases and reaches the dew point temperature at the elapsed time td. Subsequently, in mode ii, the switching condition from the state B to the state A of the three-way valve 65 is satisfied when the duration of the state B reaches t6 (step S302 in FIG. 6). Here, the switching condition from the state B to the state A of the three-way valve 65 is established at the elapsed time te, and the three-way valve is switched to the state A (step S305 in FIG. 6).

三方弁が状態Aに切り換わったことで、放熱パイプ64内に高温冷媒が流れ、横仕切部53は加熱され、横仕切部表面温度は再び上昇し、経過時間tfにおいて、露点温度に達している。   When the three-way valve is switched to the state A, the high-temperature refrigerant flows into the heat radiating pipe 64, the horizontal partition 53 is heated, the surface temperature of the horizontal partition increases again, and reaches the dew point temperature at the elapsed time tf. Yes.

続いて、モードiiでは、状態Aの継続時間がt5に到達した場合に三方弁65の状態Aから状態Bへの切換条件が成立する(図6におけるステップS301)。ここでは、経過時間tgで三方弁65の状態Aから状態Bへの切換条件が成立して、三方弁が状態Bに切り換わっている(図6におけるステップS304)。以後圧縮機OFF条件(図6におけるステップS303)が成立するまで以上の三方弁切換制御が実施される。   Subsequently, in mode ii, the switching condition from the state A to the state B of the three-way valve 65 is satisfied when the duration time of the state A reaches t5 (step S301 in FIG. 6). Here, the switching condition from the state A to the state B of the three-way valve 65 is satisfied at the elapsed time tg, and the three-way valve is switched to the state B (step S304 in FIG. 6). Thereafter, the above three-way valve switching control is performed until the compressor OFF condition (step S303 in FIG. 6) is satisfied.

経過時間tiで、圧縮機OFF条件が成立し、具体的には、図示しない冷凍室温度(冷凍室温度センサ34検知温度)、冷蔵室温度(冷凍室温度センサ34検知温度)、野菜室温度(野菜室温度センサ33a検知温度)がそれぞれ冷凍室温度−19℃、冷蔵室温度が4℃、野菜室温度が5℃)となる。続いて、三方弁が状態Aに制御されている(図6におけるステップS104)。状態Aの継続時間がt1(=15分)となった経過時間tiにおいて(図6におけるステップS105)、二方弁66が閉状態となり(図6におけるステップS106)、圧縮機24が停止している(図6におけるステップS107)。続いて、経過時間tjにおいて、再び圧縮機ON条件が成立し、圧縮機24が稼働している。以後安定運転状態では同様の制御が行われる。なお、図7中に示すとおりモードiiの切換制御によって安定運転状態における横仕切部表面の時間平均温度は露点温度以下で、本実施形態の冷蔵庫1では22℃(露点温度23.9℃)に制御されている。また、モードiiによる三方弁切換制御中の横仕切部表面温度の最高温度は、露点温度以上(本実施形態の冷蔵庫1では26℃)で、最低温度は、露点温度以下(本実施形態の冷蔵庫1では19℃)となっている。さらに、最低温度は下限温度(Tmin2)以上を維持している。   At the elapsed time ti, the compressor OFF condition is satisfied. Specifically, the temperature of the freezer (not shown) (the temperature detected by the freezer temperature sensor 34), the temperature of the refrigerator (the temperature detected by the freezer temperature sensor 34), the temperature of the vegetable room ( The vegetable room temperature sensor 33a detection temperature) is the freezer room temperature −19 ° C., the refrigerator room temperature is 4 ° C., and the vegetable room temperature is 5 ° C.). Subsequently, the three-way valve is controlled to the state A (step S104 in FIG. 6). At the elapsed time ti when the duration time of state A is t1 (= 15 minutes) (step S105 in FIG. 6), the two-way valve 66 is closed (step S106 in FIG. 6), and the compressor 24 is stopped. (Step S107 in FIG. 6). Subsequently, at the elapsed time tj, the compressor ON condition is satisfied again, and the compressor 24 is operating. Thereafter, the same control is performed in the stable operation state. In addition, as shown in FIG. 7, the time average temperature of the surface of the horizontal partitioning part in the stable operation state is not more than the dew point temperature by switching control of mode ii, and in the refrigerator 1 of the present embodiment, it is 22 ° C. (dew point temperature 23.9 ° C.). It is controlled. In addition, the maximum temperature of the horizontal partition surface during the three-way valve switching control in mode ii is equal to or higher than the dew point temperature (26 ° C. in the refrigerator 1 of the present embodiment), and the minimum temperature is equal to or lower than the dew point temperature (the refrigerator of the present embodiment). 1 is 19 ° C.). Furthermore, the minimum temperature is maintained above the lower limit temperature (Tmin2).

ちなみに、本実施形態の冷蔵庫1において省電力モード設定を解除した状態で、温度30℃、相対湿度70%の環境に設置して、安定運転状態となった場合には、モードiによる切換制御が実施され、横仕切部表面の時間平均温度は露点温度以上(本実施形態の冷蔵庫1では24.3℃(露点温度23.9℃))となる。   Incidentally, when the power saving mode setting is canceled in the refrigerator 1 of the present embodiment and the system is installed in an environment with a temperature of 30 ° C. and a relative humidity of 70% and is in a stable operation state, the switching control by the mode i is performed. The time average temperature on the surface of the horizontal partition is equal to or higher than the dew point temperature (24.3 ° C. (dew point temperature 23.9 ° C.) in the refrigerator 1 of the present embodiment).

以上で、本実施形態の冷蔵庫の構造と、制御方法の説明をしたが、次に、本実施形態の冷蔵庫の奏する効果について説明する。   Although the structure of the refrigerator of this embodiment and the control method were demonstrated above, the effect which the refrigerator of this embodiment shows next is demonstrated.

本実施形態の冷蔵庫1は、扉間の隙間の奥に位置し、扉閉鎖時に扉を受けて庫外と庫内間の通気を防止する仕切部(上側断熱仕切壁51、下側断熱仕切壁52、横仕切部53、縦仕切部54)と仕切部を加熱する加熱手段(放熱パイプ64)を備えており、仕切部を加熱する加熱手段の加熱量を制御することで、安定運転状態における仕切部表面温度の時間平均値を外気温湿度に対する露点温度以下にしている。すなわち、前方に開口が形成された断熱箱体と、前記開口を開閉する複数の扉と、前記複数の扉間の隙間の背方にて前記扉閉鎖時に前記扉と接して庫内外の空気の流通を阻止する仕切部と、前記仕切部を加熱する加熱手段と、前記断熱箱体の周囲空気の温度及び湿度を検知する検知手段とを備え、前記仕切部表面温度の時間平均値が露点温度以下となるように前記加熱手段を制御する。これにより、仕切部表面から庫内に流入する熱量を抑制でき、冷蔵庫の省エネルギー性能をより向上させることができる。   The refrigerator 1 of this embodiment is located in the back of the gap between doors, and receives a door when the door is closed to prevent ventilation between the outside and the inside of the compartment (upper heat insulating partition wall 51, lower heat insulating partition wall). 52, horizontal partition 53, vertical partition 54) and heating means (radiating pipe 64) for heating the partition, and by controlling the heating amount of the heating means for heating the partition, in a stable operation state The time average value of the partition surface temperature is set to be equal to or lower than the dew point temperature relative to the outside air temperature humidity. That is, a heat insulating box with an opening formed in the front, a plurality of doors for opening and closing the openings, and a back of a gap between the plurality of doors in contact with the door when the door is closed, A partition unit that prevents distribution; a heating unit that heats the partition unit; and a detection unit that detects a temperature and humidity of ambient air around the heat insulating box, and a time average value of the surface temperature of the partition unit is a dew point temperature. The heating means is controlled to be as follows. Thereby, the calorie | heat amount which flows in into a store | warehouse | chamber from the partition part surface can be suppressed, and the energy saving performance of a refrigerator can be improved more.

本実施形態の冷蔵庫1は、扉間の隙間の奥に位置し、扉閉鎖時に扉を受けて庫外と庫内間の通気を防止する仕切部(上側断熱仕切壁51、下側断熱仕切壁52、横仕切部53、縦仕切部54)と仕切部を加熱する加熱手段(放熱パイプ64)を備えており、仕切部を加熱する加熱手段の加熱量を制御することで、安定運転状態における仕切部表面温度が外気温湿度に対する露点温度以上となる時間より、露点温度以下となる時間の方が長くなるようにしている。すなわち、前方に開口が形成された断熱箱体と、前記開口を開閉する複数の扉と、前記複数の扉間の隙間の背方にて前記扉閉鎖時に前記扉と接して庫内外の空気の流通を阻止する仕切部と、前記仕切部を加熱する加熱手段と、前記断熱箱体の周囲空気の温度及び湿度を検知する検知手段とを備え、前記仕切部表面温度が露点温度以上となる時間より露点温度以下となる時間を長くするように、前記加熱手段を制御する。これにより、仕切部表面から庫内に流入する熱量を抑制でき、冷蔵庫の省エネルギー性能をより向上させることができる。   The refrigerator 1 of this embodiment is located in the back of the gap between doors, and receives a door when the door is closed to prevent ventilation between the outside and the inside of the compartment (upper heat insulating partition wall 51, lower heat insulating partition wall). 52, horizontal partition 53, vertical partition 54) and heating means (radiating pipe 64) for heating the partition, and by controlling the heating amount of the heating means for heating the partition, in a stable operation state The time when the partition surface temperature is equal to or lower than the dew point temperature is longer than the time when the partition surface temperature is equal to or higher than the dew point temperature relative to the outside air temperature humidity. That is, a heat insulating box with an opening formed in the front, a plurality of doors for opening and closing the openings, and a back of a gap between the plurality of doors in contact with the door when the door is closed, A time for which the partition surface temperature is equal to or higher than the dew point temperature, comprising: a partition that prevents distribution; a heating unit that heats the partition; and a detection unit that detects the temperature and humidity of the ambient air around the heat insulating box. The heating means is controlled so as to increase the time during which the dew point temperature is reached. Thereby, the calorie | heat amount which flows in into a store | warehouse | chamber from the partition part surface can be suppressed, and the energy saving performance of a refrigerator can be improved more.

本実施形態の冷蔵庫1は、仕切部(上側断熱仕切壁51、下側断熱仕切壁52、横仕切部53、縦仕切部54)の前方の扉間の隙間幅寸法(図5におけるL1)より、扉前縁から仕切部表面に至る隙間奥行き寸法(図5におけるL2)の方が大きくなるようにしている。これにより、仕切部を露点温度以下として省エネルギー性能を高めつつ、結露が成長し難い冷蔵庫とすることができる。理由を以下で説明する。   The refrigerator 1 of this embodiment is based on the gap width dimension (L1 in FIG. 5) between the doors in front of the partition portions (the upper heat insulation partition wall 51, the lower heat insulation partition wall 52, the horizontal partition portion 53, and the vertical partition portion 54). The gap depth dimension (L2 in FIG. 5) extending from the door front edge to the partition surface is made larger. Thereby, it can be set as the refrigerator with which it is hard to grow dew condensation, improving a energy-saving performance by making a partition part below dew point temperature. The reason will be explained below.

結露は、外気中の水蒸気が、露点温度以下の壁面に向けて対流と拡散によって移動して凝縮する現象(物質移動現象)であるが、特に対流が露点温度以下の壁面近傍で生じると、壁面近傍の水蒸気濃度の勾配(水蒸気分圧の勾配)が急勾配になり、物質移動が積極的に生じるようになる。そのために、対流が生じると、露点温度を下回る壁面上には短時間で結露が成長し、流下するレベルに至ってしまう。密度差により生じる自然対流は物質移動の促進度合いは比較的小さいが、例えば、冷蔵庫の前を人が通過した場合などには強制対流、つまり扉間隙間の前方で生じた強制対流が誘起する流れが隙間内部に生じた場合は、物質移動が促進され、短時間で結露が成長してしまう場合がある。   Condensation is a phenomenon in which water vapor in the outside air condenses by moving to the wall surface below the dew point temperature by convection and diffusion (mass transfer phenomenon), but especially when convection occurs near the wall surface below the dew point temperature, The nearby water vapor concentration gradient (water vapor partial pressure gradient) becomes steep, and mass transfer occurs actively. Therefore, when convection occurs, condensation grows on the wall surface below the dew point temperature in a short time and reaches a level where it flows down. Natural convection caused by density difference has a relatively small degree of mass transfer promotion.For example, when a person passes in front of a refrigerator, forced convection, that is, a flow induced by forced convection in front of the door gap. If this occurs in the gap, mass transfer is promoted, and condensation may grow in a short time.

そこで、本実施形態の冷蔵庫1では、扉間の隙間幅寸法より、扉前縁から仕切部表面に至る隙間奥行き寸法の方が大きくなるようにして、仕切部温度を露点温度以下としていても、扉の前方で生じた強制対流の影響を十分小さく抑えることができるようにしている。これにより、結露が成長し難い状態を保つことができる。   Therefore, in the refrigerator 1 of the present embodiment, the gap depth dimension from the door leading edge to the partition surface is larger than the gap width dimension between the doors, and the partition temperature is set to the dew point temperature or less. The influence of forced convection generated in front of the door can be kept sufficiently small. As a result, it is possible to maintain a state in which condensation does not easily grow.

本実施形態の冷蔵庫1は、仕切部である上側断熱仕切壁51、下側断熱仕切壁52、横仕切部53、縦仕切部54の前方の扉間の隙間幅寸法(図5におけるL1)を10mm以下として、扉前縁から仕切部表面に至る隙間奥行き寸法(図5におけるL2)を隙間幅寸法の3倍以上確保している。強制対流に比べて影響の度合いは小さくなるが、自然対流も物質移動促進に寄与する。自然対流は狭空間で生じ難いので、扉間の隙間幅寸法を10mm以下とすることで、十分小さく抑えることができ、さらに、隙間幅寸法の3倍以上の隙間奥行き寸法を確保することで、扉の前方で生じた強制対流の影響も十分小さく抑えることができる。これにより、水蒸気の移動は主として拡散による移動となり、対流が生じている場合に比べて物質移動が十分小さく抑えられる。したがって、仕切部を露点温度以下としても、より結露が成長し難い冷蔵庫とすることができる。   The refrigerator 1 of the present embodiment has a gap width dimension (L1 in FIG. 5) between doors in front of the upper heat insulating partition wall 51, the lower heat insulating partition wall 52, the horizontal partition portion 53, and the vertical partition portion 54, which are partition portions. The gap depth dimension (L2 in FIG. 5) from the door front edge to the partition surface is secured at least three times the gap width dimension as 10 mm or less. Natural convection also contributes to the promotion of mass transfer, although the degree of influence is small compared to forced convection. Since natural convection is unlikely to occur in a narrow space, by setting the gap width dimension between doors to 10 mm or less, it can be kept sufficiently small, and by securing a gap depth dimension that is at least three times the gap width dimension, The influence of forced convection generated in front of the door can also be suppressed sufficiently small. Thereby, the movement of water vapor is mainly due to diffusion, and the mass movement is suppressed to be sufficiently smaller than that in the case where convection occurs. Therefore, even if a partition part is made into dew point temperature or less, it can be set as the refrigerator in which condensation does not grow easily.

本実施形態の冷蔵庫1は、仕切部に配設した加熱手段の加熱量を制御して、仕切部表面温度を外気温湿度の露点温度以上の状態と、露点温度以下の状態を交互に繰り返すようにして、仕切部の時間平均温度を露点温度以下に制御している。これにより、仕切部を露点温度以下としても、結露が成長し難い冷蔵庫とすることができる。図8を参照しながら以下で理由を説明する。   The refrigerator 1 of the present embodiment controls the heating amount of the heating means disposed in the partitioning section so that the partition surface temperature alternately repeats a state above the dew point temperature of the outside air temperature humidity and a state below the dew point temperature. Thus, the time average temperature of the partition is controlled below the dew point temperature. Thereby, even if it makes a partition part below dew point temperature, it can be set as the refrigerator with which condensation does not grow easily. The reason will be described below with reference to FIG.

図8(a)は、仕切部表面温度が露点温度以下となっている場合に扉間の隙間を水蒸気が拡散する様子を表す模式図、図8(b)は、仕切部表面温度が露点温度以上となっている場合に扉間隙間を水蒸気が拡散する様子を表す模式図である。図8(a)に示すように、仕切部の表面温度が露点温度以下に低下した場合、仕切部表面の極近傍の水蒸気は凝縮して仕切部表面に微小水滴が生じる。このとき、仕切部表面近傍は仕切部表面の温度に基づく飽和の水蒸気分圧Pwとなり、外気湿度に基づく水蒸気分圧に対する勾配が形成される。この水蒸気分圧Pwの差が水蒸気分子の拡散の駆動力となる。一方で、扉間の隙間内の全圧P(=Pw+Pa)は一定に保たれるので、空気の分圧Paは水蒸気分圧Pwが低下する分だけ上昇する。   FIG. 8A is a schematic diagram showing how water vapor diffuses through the gap between the doors when the partition surface temperature is equal to or lower than the dew point temperature, and FIG. 8B shows the partition surface temperature is the dew point temperature. It is a schematic diagram showing a mode that water vapor | steam diffuses in the clearance gap between doors when it is above. As shown in FIG. 8 (a), when the surface temperature of the partition portion falls below the dew point temperature, the water vapor in the vicinity of the surface of the partition portion condenses to produce minute water droplets on the surface of the partition portion. At this time, the vicinity of the partition surface becomes the saturated water vapor partial pressure Pw based on the temperature of the partition surface, and a gradient with respect to the water vapor partial pressure based on the outside air humidity is formed. The difference in the water vapor partial pressure Pw becomes the driving force for the diffusion of water vapor molecules. On the other hand, since the total pressure P (= Pw + Pa) in the gap between the doors is kept constant, the partial pressure Pa of air increases by the amount by which the water vapor partial pressure Pw decreases.

したがって、空気は水蒸気と圧力勾配が逆向きになり庫外に向けて拡散しようするために、仕切部表面に向かおうとする水蒸気の拡散を妨げるように作用する。この作用により、初期段階で微小水滴が生じたとしても、その後の水蒸気の移動が空気によって妨げられ水蒸気の拡散抵抗が大きくなるので、仕切部表面温度が露点温度以下であっても結露は成長し難い状態となる。   Therefore, since the air and the pressure gradient are opposite to each other and the air tends to diffuse toward the outside of the chamber, the air acts to prevent the diffusion of the water vapor that tends to go to the partition surface. Due to this action, even if minute water droplets are generated in the initial stage, the subsequent movement of water vapor is hindered by air and the diffusion resistance of water vapor increases, so that condensation grows even when the partition surface temperature is below the dew point temperature. It becomes difficult.

次に、図8(a)の状態から、図8(b)に示す露点温度以上の状態に加熱した場合、仕切部表面には微小水滴があるため飽和しており、仕切部表面の水蒸気分圧Pwは、仕切部表面温度に基づく圧力となる。表面温度が露点温度をわずかに上回る程度であっても、外気の水蒸気分圧Pwに対して高く、さらに、空気の拡散方向と、水蒸気の拡散方向が一致するため、水蒸気の拡散が促進される(水蒸気の拡散抵抗が小さくなる)。   Next, when heated from the state of FIG. 8 (a) to a temperature equal to or higher than the dew point temperature shown in FIG. 8 (b), the partition surface is saturated because there are minute water droplets, and the water vapor content of the partition surface is reduced. The pressure Pw is a pressure based on the partition surface temperature. Even if the surface temperature is slightly higher than the dew point temperature, it is higher than the partial pressure Pw of the outside air, and furthermore, the diffusion direction of the water vapor is promoted because the air diffusion direction and the water vapor diffusion direction coincide. (The diffusion resistance of water vapor is reduced).

したがって、仕切部に配設した加熱手段の加熱量を制御して、仕切部表面温度を外気温湿度の露点温度以上の状態と、露点温度以下の状態を交互に繰り返すようにして、仕切部の時間平均温度を露点温度以下に制御すると、露点温度を下回った場合には、拡散抵抗が大きくなることで結露が成長し難くなり、露点温度を上回った場合には、拡散抵抗が小さくなることで、庫外への水蒸気の排出が積極的に行われるようになるため、仕切部の時間平均温度を露点温度以下に制御して省エネルギー性能を十分高めているにも関わらず、実質的にはほぼ結露の成長がない冷蔵庫とすることができる。   Therefore, by controlling the heating amount of the heating means provided in the partition, the partition surface temperature is alternately repeated between a state above the dew point temperature of the outside air temperature humidity and a state below the dew point temperature. If the time average temperature is controlled below the dew point temperature, if the dew point temperature is below, the diffusion resistance will increase, making it difficult for condensation to grow, and if it exceeds the dew point temperature, the diffusion resistance will decrease. However, since water vapor is actively discharged to the outside of the warehouse, the time average temperature of the partition part is controlled to be below the dew point temperature, so that the energy saving performance is sufficiently enhanced, but substantially substantially. It can be set as the refrigerator without the growth of condensation.

なお、本実施形態の冷蔵庫1では、安定運転状態における仕切部表面温度の時間平均値を外気温湿度に対する露点温度以下にするための切換制御のタイミングを、時間によって定めているが(t5及びt6)、例えば、仕切部温度センサ38の検知温度に基づいて、切換制御のタイミングを定めても良い。   In addition, in the refrigerator 1 of this embodiment, although the timing of the switching control for making the time average value of the partition surface temperature in the stable operation state to be equal to or lower than the dew point temperature with respect to the outside air temperature and humidity is determined by time (t5 and t6). For example, the switching control timing may be determined based on the detected temperature of the partition temperature sensor 38.

本実施形態の冷蔵庫1は、加熱量の調節が可能な仕切部表面の加熱手段を備え、加熱手段の背面側には断熱材を配設し、加熱量が大きい状態、つまり放熱パイプ64内に高温冷媒が流れている状態、加熱量が小さい状態、つまり放熱パイプ64内に高温冷媒が流れない状態をそれぞれ定常状態に至る前に交互に切換制御するようにして、仕切部表面の温度を制御している。これにより、加熱手段の加熱によって庫内に流入する熱量を抑制できる。理由を図9と適宜図5を参照しながら説明する。   The refrigerator 1 according to the present embodiment includes heating means on the partition surface that can adjust the heating amount, and a heat insulating material is disposed on the back side of the heating means so that the heating amount is large, that is, in the heat radiating pipe 64. The temperature of the partition surface is controlled by alternately switching the state in which the high-temperature refrigerant is flowing and the state in which the heating amount is small, that is, the state in which the high-temperature refrigerant does not flow into the heat radiating pipe 64, before reaching the steady state. doing. Thereby, the calorie | heat amount which flows in in a store | warehouse | chamber by the heating of a heating means can be suppressed. The reason will be described with reference to FIG. 9 and FIG. 5 as appropriate.

図9は仕切部の表面と庫内に接する面(面の位置は図5参照)の温度変化を表す図である。図9のtAにおいては、仕切部の表面と庫内に接する面の何れも温度が低い状態にある。続いて加熱手段である放熱パイプ64によって加熱状態とすることで、仕切部の表面温度は素早く温度上昇している。このとき仕切部の庫内に接する面の温度は、背面側に配設した断熱材53bの熱容量のために緩やかに温度が上昇する。次に、tBにおいて、仕切部の庫内に接する面の温度が定常状態に至る前に放熱パイプ64内に高温冷媒が流れない非加熱状態に切り換えている。これにより、断熱材53bの放熱パイプ64に近い部分の温度は上昇しても、仕切部の庫内に接する面近傍は十分に温度上昇していない状態となる。tBからtCまでは非加熱状態であり、非加熱状態では仕切部の庫内に接する面から断熱材53bが冷却されて温度が低下し、次第に仕切部の表面の温度も低下する。以上のように、仕切部の庫内に接する面の温度が定常状態に至る前に加熱状態から非加熱状態に切り換えることで、仕切部の庫内に接する面は比較的低温に保たれ、仕切部の表面を加熱する際に庫内に流入する熱量を抑制することができ、省エネルギー性能の高い冷蔵庫とすることができる。また、断熱材53bにより、仕切部表面の温度降下が緩やかになるため、非加熱状態を加熱状態より長くしても結露が生じ難い冷蔵庫となる。 FIG. 9 is a diagram showing the temperature change of the surface of the partition portion and the surface in contact with the interior (see FIG. 5 for the surface position). At t A in FIG. 9, both the surface of the partition and the surface in contact with the interior are in a low temperature state. Then, the surface temperature of a partition part is rising quickly by making it into a heating state with the heat radiating pipe 64 which is a heating means. At this time, the temperature of the surface in contact with the inside of the partition portion gradually increases due to the heat capacity of the heat insulating material 53b disposed on the back side. Next, at t B , the temperature of the surface in contact with the interior of the partition is switched to a non-heated state in which the high-temperature refrigerant does not flow in the heat radiating pipe 64 before reaching the steady state. Thereby, even if the temperature of the part near the heat radiating pipe 64 of the heat insulating material 53b rises, the vicinity of the surface in contact with the inside of the partition portion is not sufficiently raised. From t B to t C is an unheated state, and in the unheated state, the heat insulating material 53b is cooled from the surface in contact with the inside of the partition portion, the temperature is lowered, and the temperature of the surface of the partition portion is gradually lowered. As described above, by switching from the heated state to the non-heated state before the temperature of the surface in contact with the compartment of the partition reaches the steady state, the surface in contact with the interior of the partition is kept at a relatively low temperature. When heating the surface of the unit, the amount of heat flowing into the cabinet can be suppressed, and a refrigerator with high energy saving performance can be obtained. Moreover, since the temperature drop on the surface of the partition portion is moderated by the heat insulating material 53b, even if the non-heated state is longer than the heated state, the refrigerator is less likely to cause condensation.

本実施形態の冷蔵庫1は、安定運転状態における仕切部表面の時間平均温度を露点温度以上とする制御モード(モードi)と、露点温度以下とする制御モード(モードii)を備えており、モード設定手段によって、モードを選択できるようにしている。これにより、同じ温湿度環境下であっても一段と省エネルギー性能を向上させる制御を選択可能となるので、例えば、電力供給量の不足が懸念される時間帯においては、消費電力を低減して省エネルギー性能を向上させたモードを選択するといったことが可能となる。さらに、ユーザーの設定が可能とすることによって、省エネルギー性能が高いモードである本実施形態の冷蔵庫1のモードiiの効果と、結露というリスクを正しく理解した上で、省エネルギー性能の向上を望む場合に使用することができるようになる。   The refrigerator 1 of the present embodiment includes a control mode (mode i) in which the time average temperature of the partition surface in a stable operation state is equal to or higher than the dew point temperature, and a control mode (mode ii) that is equal to or lower than the dew point temperature. The mode can be selected by setting means. As a result, it is possible to select control that further improves energy saving performance even under the same temperature and humidity environment.For example, during times when there is a concern about shortage of power supply, energy consumption can be reduced by reducing power consumption. It is possible to select a mode with improved performance. Furthermore, when it is desired to improve the energy saving performance after correctly understanding the effects of the mode ii of the refrigerator 1 of the present embodiment, which is a mode with high energy saving performance, and the risk of condensation, by enabling the user to set Will be able to use.

本実施形態の冷蔵庫1は、冷凍サイクルの放熱手段60の一部である放熱パイプ64を仕切部の加熱手段として用いている。すなわち、前記放熱手段は、庫外への放熱を行う第一の放熱手段(凝縮器61、放熱パイプ62)と、前記仕切部を加熱する第二の放熱手段(放熱パイプ64)を備え、前記圧縮機により圧縮された冷媒を、前記第一の放熱手段及び前記第二の放熱手段に順次流す第一の冷媒流路)と、前記第一の放熱手段に冷媒を流通させた後に、第一の放熱手段の出口から前記第二の放熱手段の出口にバイパスさせる第二の冷媒流路(バイパスパイプ63)と、前記第一の冷媒流路と前記第二の冷媒流路を切り換える流路切換手段(三方弁65)とを備え、前記流路切換手段によって前記第二の放熱手段の放熱量を制御する。これにより、加熱手段としてヒータを採用する場合に比べて、冷凍サイクルのヒートポンプ作用により加熱に必要なエネルギーを高い成績係数(加熱エネルギー/加熱エネルギーを得るための消費電力)で得ることができるため、省エネルギー性能に優れた冷蔵庫となる。   The refrigerator 1 of the present embodiment uses a heat radiating pipe 64 that is a part of the heat radiating means 60 of the refrigeration cycle as a heating means for the partition. That is, the heat dissipating means includes a first heat dissipating means (condenser 61, heat dissipating pipe 62) that dissipates heat outside the warehouse, and a second heat dissipating means (heat dissipating pipe 64) that heats the partition portion, A first refrigerant flow path that sequentially flows the refrigerant compressed by the compressor to the first heat radiating means and the second heat radiating means, and the first heat radiating means after circulating the refrigerant, A second refrigerant flow path (bypass pipe 63) bypassed from the outlet of the heat radiating means to the outlet of the second heat radiating means, and a flow path switching for switching the first refrigerant flow path and the second refrigerant flow path. Means (three-way valve 65), and the heat radiation amount of the second heat radiation means is controlled by the flow path switching means. Thereby, compared with the case where a heater is employed as the heating means, energy required for heating can be obtained with a high coefficient of performance (heating energy / power consumption for obtaining heating energy) by the heat pump action of the refrigeration cycle. The refrigerator has excellent energy saving performance.

本実施形態の冷蔵庫1は、圧縮機起動時の回転数を所定時間だけ高回転としている。圧縮機稼働状態においては、三方弁を高温冷媒がバイパスパイプ63を流れる状態Bに切り換えると仕切部の温度が下がり、高温冷媒が放熱パイプ64を流れる状態Aに切り換えると、放熱パイプ62内の高温冷媒が素早く放熱パイプ64内に流入するので、短時間で仕切部を加熱できる。一方、圧縮機停止状態においても、放熱パイプ64内に高温冷媒は流れないため、仕切部温度は状態Bと同様に低下する。この状態から圧縮機が起動する場合、圧縮機が送り出す高温冷媒で、放熱パイプ64内が十分満たされるのに時間遅れが生じる。したがって、本実施形態の冷蔵庫1では、圧縮機停止状態から圧縮機が起動する際に、仕切部の温度上昇が緩慢になることを防止し、放熱パイプ64による良好な加熱状態を素早く得るために、圧縮機起動時の回転数を所定時間だけ高回転としている。例えば本実施形態の冷蔵庫1では30秒間2500r/minで圧縮機を駆動した後に1600r/minに回転数を低減している。すなわち、圧縮機の回転数は、起動時の所定時間第一の回転速度とした後、該第一の回転速度よりも遅い第二の回転速度とする。これにより、圧縮機起動後に放熱パイプによる加熱が不足し難くなり、省エネルギー性能が高く、結露が成長し難い冷蔵庫となる。   In the refrigerator 1 of the present embodiment, the rotation speed at the time of starting the compressor is set to a high rotation for a predetermined time. In the compressor operating state, when the three-way valve is switched to the state B in which the high-temperature refrigerant flows through the bypass pipe 63, the temperature of the partition portion decreases, and when the high-temperature refrigerant is switched to the state A in which the high-temperature refrigerant flows through the heat radiating pipe 64, Since the refrigerant quickly flows into the heat radiating pipe 64, the partition portion can be heated in a short time. On the other hand, since the high-temperature refrigerant does not flow in the heat radiating pipe 64 even in the compressor stopped state, the partition portion temperature is lowered similarly to the state B. When the compressor is started from this state, a time delay occurs until the inside of the heat radiating pipe 64 is sufficiently filled with the high-temperature refrigerant sent out by the compressor. Therefore, in the refrigerator 1 of the present embodiment, when the compressor is started from the compressor stopped state, the temperature rise of the partition portion is prevented from slowing down, and a good heating state by the heat radiating pipe 64 is quickly obtained. The rotation speed at the time of starting the compressor is set to a high rotation for a predetermined time. For example, in the refrigerator 1 of the present embodiment, the rotational speed is reduced to 1600 r / min after the compressor is driven at 2500 r / min for 30 seconds. That is, the rotation speed of the compressor is set to the first rotation speed for a predetermined time at the start-up, and then to the second rotation speed that is slower than the first rotation speed. Thereby, it becomes difficult for the heating by the heat radiating pipe to be insufficient after the compressor is started, and the refrigerator has a high energy saving performance and is unlikely to grow condensation.

本実施形態の冷蔵庫1は、仕切部の温度が下限温度に到達した場合、放熱パイプ64内に高温冷媒が流れるように制御している。これにより、例えば、仕切部と扉の間に食品残渣等が挟まり貯蔵室から庫外に冷気が漏れるといったことによって、仕切部温度が低温になり易くなった場合であっても、過度に仕切部温度が低下して結露が成長することを抑制できる。   The refrigerator 1 of this embodiment is controlled so that a high temperature refrigerant | coolant flows in the thermal radiation pipe 64, when the temperature of a partition part reaches | attains a minimum temperature. Thereby, for example, even if the partition portion temperature tends to become low due to food residue etc. being sandwiched between the partition portion and the door and cold air leaking out of the storage chamber, the partition portion is excessively reduced. It can suppress that temperature falls and dew condensation grows up.

なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、外気温度センサ36、外気湿度センサ37は、外気温湿度を検知することができる配設位置であればどこに設置しても良い。また、仕切部温度センサ38は仕切部温度が検知できるように設置していれば、横仕切部53の内部に設置していなくても良い。すなわち、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。   In addition, this invention is not limited to each above-mentioned Example, Various modifications are included. For example, the outside air temperature sensor 36 and the outside air humidity sensor 37 may be installed anywhere as long as they are in an arrangement position capable of detecting the outside air temperature and humidity. Further, the partition temperature sensor 38 may not be installed inside the horizontal partition 53 as long as it is installed so that the partition temperature can be detected. That is, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.

1 冷蔵庫
2 冷蔵室(冷蔵温度帯室)
3 製氷室(冷凍温度帯室)
4 上段冷凍室(冷凍温度帯室)
5 下段冷凍室(冷凍温度帯室)
6 野菜室(冷蔵温度帯室)
7 蒸発器(冷却手段)
8 蒸発器収納室
9 庫内送風機(送風手段)
10 断熱箱体
11 冷蔵室送風ダクト
16 上段冷凍室送風ダクト
13 仕切部材
17 冷凍室戻り口
18 野菜室戻りダクト
18a 野菜室戻りダクト出口
19 機械室
24 圧縮機
26 庫外送風機
33 冷蔵室温度センサ
33a 野菜室温度センサ
34 冷凍室温度センサ
35 蒸発器温度センサ
36 外気温度センサ(検知手段)
37 外気湿度センサ(検知手段)
38 仕切部温度センサ
41 ドライヤ
43 キャピラリチューブ(減圧手段)
51 上側断熱仕切壁(仕切部)
52 下側断熱仕切壁(仕切部)
53 横仕切部(仕切部)
54 縦仕切部(仕切部)
60 放熱手段
61 凝縮器(第一の放熱手段)
62 放熱パイプ(第一の放熱手段)
63 バイパスパイプ(第二の冷媒流路)
64 放熱パイプ(第二の放熱手段)
65 三方弁(流路切換手段)
66 二方弁(冷媒流量調整手段)
67 逆止弁
68 管
80 冷蔵室ダンパ
81 冷凍室ダンパ
1 Refrigerator 2 Refrigerated room (refrigerated temperature zone)
3 Ice making room (freezing temperature zone)
4 Upper freezer room (freezing temperature room)
5 Lower freezer compartment (freezing temperature zone)
6 Vegetable room (refrigerated temperature room)
7 Evaporator (cooling means)
8 Evaporator storage chamber 9 Blower (blower means)
DESCRIPTION OF SYMBOLS 10 Heat insulation box 11 Refrigerating room ventilation duct 16 Upper stage freezing room ventilation duct 13 Partition member 17 Freezing room return port 18 Vegetable room return duct 18a Vegetable room return duct outlet 19 Machine room 24 Compressor 26 Outside fan 33 Cold room temperature sensor 33a Vegetable room temperature sensor 34 Freezer room temperature sensor 35 Evaporator temperature sensor 36 Outside temperature sensor (detection means)
37 Outside air humidity sensor (detection means)
38 Partition temperature sensor 41 Dryer 43 Capillary tube (pressure reduction means)
51 Upper insulation partition wall (partition)
52 Lower heat insulation partition wall (partition)
53 Horizontal partition (partition)
54 Vertical partition (partition)
60 Heat dissipation means 61 Condenser (first heat dissipation means)
62 Heat radiation pipe (first heat radiation means)
63 Bypass pipe (second refrigerant flow path)
64 Heat radiation pipe (second heat radiation means)
65 Three-way valve (flow path switching means)
66 Two-way valve (refrigerant flow rate adjusting means)
67 Check valve 68 Pipe 80 Cold room damper 81 Freezer room damper

Claims (1)

断熱箱体に設けられ開口を有する貯蔵室と、前記開口を区画する仕切部と、該仕切部に接することで前記開口を閉塞する複数の扉と、前記仕切部を加熱する加熱手段と、を備える冷蔵庫であって、
前記扉間の隙間の奥行き寸法は、前記複数の扉間の隙間の幅寸法の3倍以上であり
前記扉間の隙間の幅寸法は、10mm以下であり、
当該冷蔵庫の周囲空気の温度及び湿度を検知する検知手段と、
前記加熱手段の加熱量を制御する加熱量制御手段と、を備え、
前記加熱手段は、圧縮機と減圧手段との間に設けられた放熱パイプであり、
前記仕切部の温度が前記周囲空気の露点温度以上となる時間より、露点温度以下となる時間の方を長くして、前記仕切部の温度の時間平均値が前記周囲空気の露点温度以下となるように前記加熱量制御手段を制御するモードを実行可能であり、
前記検知手段によって検知された前記周囲空気の湿度が所定値超である場合に、前記圧縮機が運転されているときに前記圧縮機から吐出された冷媒が、前記放熱手段を介して前記減圧手段に流れる状態に前記加熱量制御手段を制御することを特徴とする冷蔵庫。
A storage chamber provided in the heat insulating box and having an opening; a partition that partitions the opening; a plurality of doors that close the opening by contacting the partition; and a heating unit that heats the partition. A refrigerator with
The depth dimension of the gap between the doors is at least three times the width dimension of the gap between the plurality of doors,
The width dimension of the gap between the doors is 10 mm or less,
Detection means for detecting the temperature and humidity of the ambient air of the refrigerator;
Heating amount control means for controlling the heating amount of the heating means,
The heating means is a heat radiating pipe provided between the compressor and the decompression means,
The time during which the temperature of the partition is equal to or lower than the dew point temperature of the ambient air is longer than the time during which the temperature of the partition is equal to or lower than the dew point temperature, and the time average value of the temperature of the partition is equal to or lower than the dew point temperature of the ambient air. Ri executable der a mode for controlling the heating amount control means so that,
When the humidity of the ambient air detected by the detection means is higher than a predetermined value, the refrigerant discharged from the compressor when the compressor is in operation passes through the heat dissipation means and the pressure reduction means. refrigerators characterized that you control the heating amount control means in a state flowing in.
JP2015217196A 2015-11-05 2015-11-05 refrigerator Active JP6282255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015217196A JP6282255B2 (en) 2015-11-05 2015-11-05 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015217196A JP6282255B2 (en) 2015-11-05 2015-11-05 refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014090819A Division JP5838238B2 (en) 2014-04-25 2014-04-25 refrigerator

Publications (2)

Publication Number Publication Date
JP2016035381A JP2016035381A (en) 2016-03-17
JP6282255B2 true JP6282255B2 (en) 2018-02-21

Family

ID=55523319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015217196A Active JP6282255B2 (en) 2015-11-05 2015-11-05 refrigerator

Country Status (1)

Country Link
JP (1) JP6282255B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166787A (en) * 1997-12-02 1999-06-22 Toshiba Corp Refrigerator
JP2002228346A (en) * 2001-01-30 2002-08-14 Toshiba Corp Intermediate partition structure of refrigerator
JP2007263389A (en) * 2006-03-27 2007-10-11 Sanyo Electric Co Ltd Refrigerator and cooling device
JP2009174767A (en) * 2008-01-23 2009-08-06 Sharp Corp Refrigerator

Also Published As

Publication number Publication date
JP2016035381A (en) 2016-03-17

Similar Documents

Publication Publication Date Title
JP2013061089A (en) Refrigerator
JP5847626B2 (en) Refrigerator and operation method thereof
JP5507511B2 (en) refrigerator
JP5017340B2 (en) refrigerator
JP5391250B2 (en) Refrigerator and freezer
JP5178642B2 (en) refrigerator
JP4969674B2 (en) refrigerator
WO2014045576A1 (en) Refrigerator
JP5557661B2 (en) refrigerator
JP2015222131A (en) refrigerator
JP2018071874A (en) refrigerator
JP5838238B2 (en) refrigerator
JP4982537B2 (en) refrigerator
JP2013044438A (en) Refrigerator
JP4625794B2 (en) refrigerator
JP6282255B2 (en) refrigerator
JP2012063026A (en) Refrigerator
JP6762149B2 (en) refrigerator
JP5376796B2 (en) refrigerator
JP2019027649A (en) refrigerator
CN109708378B (en) Refrigerator with a door
WO2021157110A1 (en) Refrigerator
JP6844418B2 (en) refrigerator
JP2017187246A (en) refrigerator
JP5315788B2 (en) refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180123

R150 Certificate of patent or registration of utility model

Ref document number: 6282255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350