JP7351762B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP7351762B2
JP7351762B2 JP2020019298A JP2020019298A JP7351762B2 JP 7351762 B2 JP7351762 B2 JP 7351762B2 JP 2020019298 A JP2020019298 A JP 2020019298A JP 2020019298 A JP2020019298 A JP 2020019298A JP 7351762 B2 JP7351762 B2 JP 7351762B2
Authority
JP
Japan
Prior art keywords
cooler
compartment
refrigeration
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020019298A
Other languages
Japanese (ja)
Other versions
JP2021124259A (en
Inventor
祐理 石▲崎▼
遵自 鈴木
圭介 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2020019298A priority Critical patent/JP7351762B2/en
Priority to PCT/JP2020/032087 priority patent/WO2021157110A1/en
Priority to CN202010905758.5A priority patent/CN113251719A/en
Publication of JP2021124259A publication Critical patent/JP2021124259A/en
Application granted granted Critical
Publication of JP7351762B2 publication Critical patent/JP7351762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は冷蔵庫に関する。 The present invention relates to a refrigerator.

貯蔵室、例えば冷蔵温度帯の室内に入れられた食品を速く冷やす急速冷却機能の技術が提案されている。食品を緩慢に冷却するよりも急速に冷やす方が食品の保存性を向上できることが知られているところ、冷蔵温度帯で保存されるべき食品に大量の冷気を供給し続けると、特に、冷気が直接吹き付けられる食品や、そのような食品の一部分が凍結してしまうことが懸念される。 Techniques have been proposed that provide a rapid cooling function that quickly cools food stored in a storage room, for example, a room in a refrigerated temperature range. It is known that rapid cooling of food can improve the shelf life of food rather than slow cooling. However, if a large amount of cold air is continuously supplied to food to be stored in the refrigeration temperature range, the cold air There is concern that food that is directly sprayed or parts of such food may freeze.

このような中、特許文献1は、急速冷蔵運転中、設定温度Tsから温度センサ12が検知する庫内温度を引いた値が1deg以上あるときダンパを閉にし(ステップS504,505)、庫内温度から設定温度Tsを引いた値が1deg以上あるとき、ダンパを開にする(ステップS511,512)ことを開示する(明細書第3頁右下欄、第6図)。 Under these circumstances, Patent Document 1 discloses that during rapid refrigeration operation, when the value obtained by subtracting the temperature inside the refrigerator detected by the temperature sensor 12 from the set temperature Ts is 1 degree or more, the damper is closed (steps S504 and 505), and the temperature inside the refrigerator is closed. It is disclosed that when the value obtained by subtracting the set temperature Ts from the temperature is 1 degree or more, the damper is opened (steps S511, 512) (lower right column on page 3 of the specification, FIG. 6).

特開昭62-73072号公報Japanese Unexamined Patent Publication No. 62-73072

特許文献1のようにダンパの開閉で冷気供給を断続させると、ダンパを閉じている間は冷気の供給が停止するため、食品の冷却が停止する。また、貯蔵室内の空気の撹拌も停止するため、特に高温の食品が貯蔵室内に収納されている場合、その熱が高温食品周囲の食品を温めてしまうし、高温食品の冷却もほとんど行われない。 When the supply of cold air is interrupted by opening and closing the damper as in Patent Document 1, the supply of cold air is stopped while the damper is closed, and therefore the cooling of the food is stopped. Additionally, since the agitation of the air in the storage room is also stopped, especially if high-temperature food is stored in the storage room, the heat will warm the food around the high-temperature food, and the high-temperature food will hardly be cooled down. .

上記事情に鑑みてなされた本発明は、
冷気を供給する冷却器と、
冷蔵温度帯の貯蔵室と、
前記冷却器及び前記貯蔵室を繋ぐ送風路と、
貯蔵室ファンと、
前記貯蔵室及び前記冷却器を繋ぐ戻り風路と、を有し、
前記冷却器の温度が低下し、該冷却器の残留冷媒がある状態でその後上昇し、さらにその後低下する経過を示し、この間、前記貯蔵室ファンは、前記冷却器を含む経路で実質的に冷気を循環させ続けるとともに、
急速冷却運転指令の検知に応じ、前記冷却器の温度が低下し、その後上昇し、さらにその後低下する経過を示し、この間、前記貯蔵室ファンは、実質的に駆動し続ける、急速冷却運転制御を実行する冷蔵庫。
The present invention, made in view of the above circumstances,
A cooler that supplies cold air;
A storage room with a refrigerated temperature range,
an air duct connecting the cooler and the storage room;
storage room fan,
a return air path connecting the storage chamber and the cooler;
The temperature of the cooler decreases, then rises with residual refrigerant in the cooler, and then decreases, during which time the storage fan cools substantially cold air in a path that includes the cooler. While continuing to circulate,
In response to the detection of the rapid cooling operation command, the temperature of the cooler decreases, then increases, and then further decreases, and during this period, the storage room fan substantially continues to drive, performing rapid cooling operation control. Refrigerator to run .

実施例の冷蔵庫の正面外観図Front external view of the refrigerator of the example 実施例の冷蔵庫の風路構成を表す模式図Schematic diagram showing the air passage configuration of the refrigerator of the example 図1のA-A断面図AA sectional view in Figure 1 図3のB-B断面図BB sectional view in Figure 3 実施例の冷蔵庫の冷凍サイクルの概略図Schematic diagram of the refrigeration cycle of the example refrigerator 実施例の冷蔵庫の非急速冷却運転時の安定状態のタイムチャートTime chart of stable state during non-rapid cooling operation of the refrigerator of the example 急速冷却運転を実行している間を含むタイムチャートである。It is a time chart including the time when rapid cooling operation is being performed.

以下、本発明の実施例を添付の図面を参照しつつ説明する。
図1は実施例の冷蔵庫1の正面図である。
冷蔵庫1の断熱箱体10は、前方に開口しており、複数の貯蔵室を有している。貯蔵室としては上方から、冷蔵室2(第一冷蔵温度帯室)、左右に並設された製氷室3と上段冷凍室4、下段冷凍室5、野菜室6(第二冷蔵温度帯室)を備える。以下では、製氷室3、上段冷凍室4、下段冷凍室5は、まとめて冷凍室7(冷凍温度帯室)と呼ぶ。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a front view of a refrigerator 1 according to an embodiment.
The insulating box 10 of the refrigerator 1 is open to the front and has a plurality of storage chambers. From above, the storage rooms include a refrigerator compartment 2 (first refrigeration temperature range room), an ice making compartment 3 and an upper freezer compartment 4 arranged side by side on the left and right, a lower freezer compartment 5, and a vegetable compartment 6 (second refrigeration temperature range room). Equipped with Hereinafter, the ice making compartment 3, the upper freezing compartment 4, and the lower freezing compartment 5 will be collectively referred to as a freezing compartment 7 (freezing temperature range room).

冷蔵室2の前方の開口は、左右に分割された回転式の冷蔵室扉2a,2bにより開閉され、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6の前方の開口は、引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aによってそれぞれ開閉される。 The front opening of the refrigerator compartment 2 is opened and closed by rotary refrigerator compartment doors 2a and 2b divided into left and right parts, and the front openings of the ice making compartment 3, upper freezer compartment 4, lower freezer compartment 5, and vegetable compartment 6 are as follows. It is opened and closed by a pull-out ice making compartment door 3a, an upper freezing compartment door 4a, a lower freezing compartment door 5a, and a vegetable compartment door 6a, respectively.

例えば扉2aには、ユーザからの指令を受付けたりユーザへの報知をしたりできる操作部99を設けている。操作部99は、ユーザからの急速冷却指令を受付ける受付部として、急速冷却ボタンを有する。また、急速冷却運転の実行中は、その旨を報知する表示部として、例えば「急速冷却」と文字状に発光出力するLEDや光透過部を有している。 For example, the door 2a is provided with an operation section 99 that can receive commands from the user and notify the user. The operation unit 99 has a rapid cooling button as a reception unit that receives a rapid cooling command from a user. Further, while the rapid cooling operation is in progress, a display unit that notifies the user to that effect includes, for example, an LED or a light transmitting unit that emits light in the form of characters saying "rapid cooling."

扉2aには公知の回転仕切り98を設け、回転仕切り98内に回転仕切りヒータ61を備えている。後述する冷蔵室吐出口11aから上方に向けて吹き出された冷却空気は、回転仕切り98の庫内側表面を流れて冷却するため、回転仕切りの庫外表面に結露が発生する虞がある。特に、後述する急速冷却を実行するとその虞が大きい。このため、急速冷却時は、回転仕切りヒータ61の出力を通常時と比べて高くするのが好ましい。 A known rotating partition 98 is provided on the door 2a, and a rotating partition heater 61 is provided within the rotating partition 98. Cooling air blown upward from the refrigerating chamber outlet 11a, which will be described later, flows and cools the inside surface of the rotary partition 98, so there is a possibility that dew condensation may occur on the outside surface of the rotary partition. This is particularly likely to occur if rapid cooling, which will be described later, is performed. Therefore, during rapid cooling, it is preferable to increase the output of the rotary partition heater 61 compared to normal times.

図2は実施例の冷蔵庫1の風路構成を示す模式図である。
冷蔵用冷却器14aと熱交換して低温になった空気は、冷蔵用ファン9aを駆動することにより、冷蔵室送風路11を介して冷蔵室2に送風され、冷蔵室2内を冷却する。冷蔵室2に送られた空気は、冷蔵室戻り風路15から冷蔵用冷却器室8aに戻る。
FIG. 2 is a schematic diagram showing the air passage configuration of the refrigerator 1 according to the embodiment.
The air, which has become low temperature through heat exchange with the refrigerator cooler 14a, is blown into the refrigerator compartment 2 via the refrigerator compartment air passage 11 by driving the refrigerator fan 9a, thereby cooling the inside of the refrigerator compartment 2. The air sent to the refrigerator compartment 2 returns to the refrigerator cooler compartment 8a from the refrigerator compartment return air path 15.

冷凍用冷却器14bと熱交換して低温になった空気は、冷凍用ファン9bを駆動することにより、冷凍室送風路12を介して冷凍室7に送風され、冷凍室7内を冷却する。冷凍室7に送られた空気は、冷凍室戻り風路17から冷凍用冷却器室8bに戻る。 The air, which has become low temperature through heat exchange with the freezing cooler 14b, is blown into the freezing compartment 7 via the freezing compartment air passage 12 by driving the freezing fan 9b, thereby cooling the inside of the freezing compartment 7. The air sent to the freezing compartment 7 returns to the freezing cooler compartment 8b from the freezing compartment return air path 17.

冷凍用冷却器14bと熱交換して低温になった空気は、野菜室ダンパ19が開放状態の場合には、冷凍室送風路12に流入した冷却空気の一部が野菜室送風路13を介して野菜室6に至り、野菜室6内を冷却する。野菜室6に送られた空気は、野菜室戻り風路18を流れて冷凍用冷却器室8bに戻る。 When the crisper damper 19 is in the open state, a part of the cooling air that has flown into the freezer compartment air passage 12 passes through the vegetable compartment air passage 13. It reaches the vegetable compartment 6 and cools the inside of the vegetable compartment 6. The air sent to the vegetable compartment 6 flows through the vegetable compartment return air passage 18 and returns to the freezing cooler compartment 8b.

図3は図1のA-A断面図である。図4は図3のB-B断面図である。
断熱箱体10の外殻を形成する外箱10aと内箱10bとの間には発泡断熱材や真空断熱材が充填されている。チルドルーム35下部にはチルドルームの冷え過ぎを抑えるチルドルーム温度補償ヒータ60を備えている。チルドルーム35は、断熱仕切壁28を介して冷凍温度帯にある製氷室3や上段冷凍室4に隣接するため、低温になり易い。後述する急速冷却運転を実行すると、チルドルーム35内の食品が凍結しやすくなるため、急速冷却運転中はチルドルーム温度補償ヒータ60の出力を通常時と比べて高くすると好ましい。
FIG. 3 is a sectional view taken along line AA in FIG. FIG. 4 is a sectional view taken along line BB in FIG.
A foamed heat insulating material or a vacuum heat insulating material is filled between an outer box 10a and an inner box 10b that form the outer shell of the heat insulating box 10. The lower part of the chilled room 35 is equipped with a chilled room temperature compensation heater 60 for suppressing the chilled room from becoming too cold. The chilled room 35 is adjacent to the ice making compartment 3 and the upper freezing compartment 4, which are in the freezing temperature range, through the heat insulating partition wall 28, and thus tends to become low temperature. When the rapid cooling operation described below is executed, the food in the chilled room 35 is likely to freeze, so it is preferable that the output of the chilled room temperature compensation heater 60 is higher than normal during the rapid cooling operation.

冷蔵室2の略背部には冷蔵用冷却器室8aを備えており、冷蔵用冷却器室8a内には、フィンチューブ式熱交換器である冷蔵用冷却器14aが収納されている。冷蔵用冷却器14aの上方には冷蔵用ファン9aを備えている。また、冷蔵室2背部の幅方向の略中心には、冷却気質8aと冷蔵室2とを繋ぐ冷蔵室送風路11を備えている。冷蔵室送風路11の上部には、吹き出す空気を上方に指向させる指向手段を備えた冷蔵室吐出口11aを備えている。 A refrigerating cooler chamber 8a is provided approximately at the back of the refrigerating compartment 2, and a refrigerating cooler 14a, which is a fin-tube heat exchanger, is housed in the refrigerating cooler chamber 8a. A refrigeration fan 9a is provided above the refrigeration cooler 14a. Further, approximately at the center in the width direction of the back of the refrigerator compartment 2, there is provided a refrigerator compartment air passage 11 that connects the cooling air 8a and the refrigerator compartment 2. The upper part of the refrigerating compartment air passage 11 is provided with a refrigerating compartment discharge port 11a provided with a directing means for directing the blown air upward.

冷蔵室吐出口11aから上方に向けて吹き出された冷却空気は、図2中に矢印で示すように冷蔵室2の天井面を沿って流れて冷蔵室2の前方の領域に到達し、棚34a-34cと扉ポケット33a-33cとの隙間を流れて下降し、チルドルーム35の後方空間に入り、冷蔵用冷却器室8aの下部に設けられた冷蔵室戻り風路15aから冷蔵用冷却器室8aに戻る。 The cooling air blown upward from the refrigerator compartment outlet 11a flows along the ceiling surface of the refrigerator compartment 2 as shown by the arrow in FIG. 2, reaches the front area of the refrigerator compartment 2, and reaches the shelf 34a. -34c and the door pocket 33a-33c, flows down, enters the rear space of the chilled room 35, and enters the refrigerator cooler room from the refrigerator return air passage 15a provided at the lower part of the refrigerator cooler room 8a. Return to 8a.

冷凍室7の略背部には冷凍用冷却器室8bを備えており、冷凍用冷却器室8b内には、フィンチューブ式熱交換器である冷凍用冷却器14bが収納されている。冷凍用冷却器14bの上方には冷凍用ファン9bを備えている。また、冷凍室7の背部には冷凍室送風路12を備えており、冷凍用ファン9bの前方の冷凍室送風路12には複数の冷凍室吐出口12aを備えている。冷凍室用冷却器室8bの下部前方には冷凍室7に送られた空気が戻る冷凍室戻り風路17を備えている。 A freezing cooler chamber 8b is provided approximately at the back of the freezing compartment 7, and a freezing cooler 14b, which is a fin-tube heat exchanger, is housed in the freezing cooler chamber 8b. A freezing fan 9b is provided above the freezing cooler 14b. Further, a freezer compartment air passage 12 is provided at the back of the freezer compartment 7, and a plurality of freezer compartment outlet ports 12a are provided in the freezer compartment air passage 12 in front of the freezing fan 9b. A freezer compartment return air passage 17 through which air sent to the freezer compartment 7 returns is provided at the lower front of the freezer compartment cooler chamber 8b.

野菜室6への風路となる野菜室送風路13は、冷凍室送風路12の右下方から分岐形成され、断熱仕切壁29を通過している。野菜室送風路13は、野菜室ダンパ19を備えている。野菜室6と冷凍室7の間の断熱仕切壁29の下部前方には、野菜室戻り流入口18aを備えており、断熱仕切壁29内を通過する野菜室戻り風路18を介して冷凍用冷却器室8bの下部前方に設けられた野菜室戻り流出口18bに至る流路が形成されている。 A vegetable compartment air passage 13 serving as an air passage to the vegetable compartment 6 is branched from the lower right side of the freezer compartment ventilation passage 12 and passes through a heat insulating partition wall 29 . The vegetable compartment air passage 13 is equipped with a vegetable compartment damper 19. A vegetable compartment return inlet 18a is provided at the front of the lower part of the heat insulating partition wall 29 between the vegetable compartment 6 and the freezer compartment 7. A flow path is formed that reaches a vegetable compartment return outlet 18b provided at the front of the lower part of the cooler compartment 8b.

冷蔵室2、冷凍室7、野菜室6の例えば庫内背面側には、冷蔵室温度センサ41、冷凍室温度センサ42、野菜室温度センサ43を備え、それぞれ冷蔵室2、冷凍室7、野菜室6の温度を検知している。また、冷蔵室2の庫内天井部に冷蔵室上部温度センサ44を備えており、冷蔵室2の上部の温度を検知している。また、冷蔵用冷却器14aの上部には冷蔵用冷却器温度センサ40a、冷凍用冷却器14bの上部には冷凍用冷却器温度センサ40bを備え、冷蔵用冷却器14a、及び冷凍用冷却器14bの温度を検知している。冷蔵庫1の天井部の扉ヒンジカバー16の内部には、外気(庫外空気)の温度、湿度を検知する外気温湿度センサ37を備えている。 A refrigerator compartment temperature sensor 41, a freezer compartment temperature sensor 42, and a vegetable compartment temperature sensor 43 are provided on the back side of the refrigerator compartment 2, the freezer compartment 7, and the vegetable compartment 6, respectively. The temperature in room 6 is being detected. Furthermore, a refrigerator compartment upper temperature sensor 44 is provided on the ceiling of the refrigerator compartment 2 to detect the temperature of the upper part of the refrigerator compartment 2 . Further, a refrigerating cooler temperature sensor 40a is provided on the upper part of the refrigerating cooler 14a, and a refrigerating cooler temperature sensor 40b is provided on the upper part of the freezing cooler 14b. is detecting the temperature. Inside the door hinge cover 16 on the ceiling of the refrigerator 1 is provided an outside temperature/humidity sensor 37 that detects the temperature and humidity of outside air (outside air).

冷凍用冷却器室8bの下部には、冷凍用冷却器14bを加熱する除霜ヒータ21を備えている。除霜ヒータ21は、例えば50W~200Wの電気ヒータである。冷凍用冷却器14bの除霜時に発生した除霜水(融解水)は、冷凍用冷却器室8bの下部に備えた樋23bに流下し、排水口22b、冷凍用排水管27bを介して冷蔵庫1の後方(背面側)下部に設けられた機械室39に至り、機械室39内に設置された圧縮機24の上部の蒸発皿32に排出される。 The lower part of the freezing cooler chamber 8b is provided with a defrosting heater 21 that heats the freezing cooler 14b. The defrosting heater 21 is, for example, a 50W to 200W electric heater. Defrosting water (melting water) generated during defrosting of the freezing cooler 14b flows down to the gutter 23b provided at the lower part of the freezing cooler chamber 8b, and flows into the refrigerator via the drain port 22b and the freezing drain pipe 27b. The air flows to a machine room 39 provided at the lower rear (back side) of the engine 1, and is discharged to an evaporation tray 32 above the compressor 24 installed in the machine room 39.

冷蔵庫1の天井部には、制御装置の一部であるCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31を配置している。制御基板31は、冷蔵室温度センサ41、冷凍室温度センサ42、野菜室温度センサ43、冷却器温度センサ40a、40b等と接続され、前述のCPUは、これらの出力値や操作部99の設定、前述のROMに予め記録されたプログラム等を基に、圧縮機24や冷蔵用ファン9a、冷凍用ファン9bのON/OFFや回転速度制御、除霜ヒータ21、樋ヒータ101、排水管上部ヒータ102、排水管下部ヒータ103、及び、後述する三方弁52の制御等を行っている。 A control board 31 is disposed on the ceiling of the refrigerator 1 and includes a CPU, memory such as ROM and RAM, an interface circuit, etc., which are part of the control device. The control board 31 is connected to a refrigerator compartment temperature sensor 41, a freezer compartment temperature sensor 42, a vegetable compartment temperature sensor 43, cooler temperature sensors 40a, 40b, etc., and the aforementioned CPU controls the output values of these and the settings of the operation unit 99. , ON/OFF and rotational speed control of the compressor 24, the refrigerating fan 9a, and the freezing fan 9b, the defrosting heater 21, the gutter heater 101, and the drain pipe upper heater based on the program recorded in advance in the ROM. 102, a drain pipe lower heater 103, and a three-way valve 52 to be described later.

図5は、冷蔵庫1の冷凍サイクルの概略図である。冷蔵庫1は、冷媒を圧縮する圧縮機24、圧縮機24の下流に在り冷媒の放熱を行う庫外放熱器50aと壁面放熱配管50b、圧縮機24の下流に在り冷媒の放熱を行いながら断熱仕切壁28,29,30の前縁部への結露を抑制する結露抑制配管50c、放熱器50a-50cの下流に在る冷媒切替弁としての三方弁52、三方弁52の一方の流出口52aに接続していて冷媒を減圧させる冷蔵用キャピラリチューブ53a、三方弁52の他方の流出口52bに接続していて冷媒を減圧させる冷凍用キャピラリチューブ53b、冷蔵用キャピラリチューブ53aの下流に在り冷媒の蒸発により吸熱する(冷気を供給する)冷蔵用冷却器14a、及び、冷凍用キャピラリチューブ53bの下流に在り冷媒の蒸発により吸熱する冷凍用冷却器14bを備えている。これら各種の構成要素は、冷媒配管によって環状に接続されている。 FIG. 5 is a schematic diagram of the refrigeration cycle of the refrigerator 1. The refrigerator 1 includes a compressor 24 that compresses refrigerant, an external radiator 50a and wall heat radiation piping 50b that are downstream of the compressor 24 and that radiates heat from the refrigerant, and a heat insulating partition that is downstream of the compressor 24 and radiates heat from the refrigerant. A condensation suppression pipe 50c that suppresses condensation on the front edges of the walls 28, 29, and 30, a three-way valve 52 as a refrigerant switching valve located downstream of the radiators 50a-50c, and one outlet 52a of the three-way valve 52. A refrigeration capillary tube 53a is connected to reduce the pressure of the refrigerant, a refrigeration capillary tube 53b is connected to the other outlet 52b of the three-way valve 52 to reduce the pressure of the refrigerant, and a refrigeration capillary tube 53b is downstream of the refrigeration capillary tube 53a to evaporate the refrigerant. A refrigerating cooler 14a that absorbs heat (supplies cold air) by cooling, and a freezing cooler 14b that is located downstream of the freezing capillary tube 53b and absorbs heat by evaporating the refrigerant. These various components are connected in an annular manner by refrigerant piping.

その他三方弁52の上流には、冷凍サイクル中の水分を除去するドライヤ51を備えている。冷蔵用冷却器14aの下流と冷凍用冷却器14bの下流それぞれには、液冷媒が圧縮機24に流入するのを防止する冷蔵用気液分離器54aと冷凍用気液分離器54bを備えている。冷凍用気液分離器54bの下流かつキャピラリーチューブ53a,53bの下流の合流部分より上流には、逆止弁56を備えている。 Additionally, a dryer 51 is provided upstream of the three-way valve 52 to remove moisture in the refrigeration cycle. A refrigeration gas-liquid separator 54a and a refrigeration gas-liquid separator 54b are provided downstream of the refrigeration cooler 14a and downstream of the refrigeration cooler 14b, respectively, to prevent liquid refrigerant from flowing into the compressor 24. There is. A check valve 56 is provided downstream of the freezing gas-liquid separator 54b and upstream of the downstream confluence of the capillary tubes 53a and 53b.

冷蔵用冷却器14aの温度は、圧縮機24、冷蔵用ファン9aの回転速度によって調整できる。冷凍用冷却器14bの温度は、圧縮機24、冷凍用ファン9bの回転速度によって調整できる。 The temperature of the refrigeration cooler 14a can be adjusted by the rotational speeds of the compressor 24 and the refrigeration fan 9a. The temperature of the refrigeration cooler 14b can be adjusted by the rotational speeds of the compressor 24 and the refrigeration fan 9b.

三方弁52は、流出口52aと、流出口52bを備えており、次のモードが可能である。
流出口52aを開放状態、流出口52bを閉鎖状態として、冷蔵用キャピラリチューブ53a側に冷媒を流す冷蔵モード。
流出口52aを閉鎖状態、流出口52bを開放状態として、冷凍用キャピラリチューブ53b側に冷媒を流す冷凍モード。
流出口52a、52bの何れも閉鎖状態とする全閉モード。
The three-way valve 52 includes an outlet 52a and an outlet 52b, and is capable of the following modes.
A refrigeration mode in which the refrigerant is flowed to the refrigeration capillary tube 53a side with the outflow port 52a in an open state and the outflow port 52b in a closed state.
A freezing mode in which the outlet 52a is closed and the outlet 52b is open, and the refrigerant flows toward the freezing capillary tube 53b.
A fully closed mode in which both the outlet ports 52a and 52b are closed.

三方弁52が何れのモードであっても、圧縮機24から吐出した冷媒は、庫外放熱器50a、庫外放熱器50b、結露抑制配管50cを流れて放熱し、ドライヤ51を介して三方弁52に至る。 No matter which mode the three-way valve 52 is in, the refrigerant discharged from the compressor 24 flows through the external radiator 50a, the external radiator 50b, and the condensation suppression piping 50c to radiate heat, and passes through the dryer 51 to the three-way valve. It reaches 52.

冷蔵モードの場合、冷媒は冷蔵用キャピラリチューブ53aを流れて減圧され冷蔵用冷却器14aに至り、冷蔵室2の戻り空気と熱交換する。冷蔵用冷却器14aを出た冷媒は、冷蔵用気液分離器54aを通り、キャピラリチューブ53aとの接触部57aを流れることでキャピラリチューブ53a内を流れる冷媒と熱交換した後に圧縮機24に戻る。 In the case of the refrigeration mode, the refrigerant flows through the refrigeration capillary tube 53a, is decompressed, reaches the refrigeration cooler 14a, and exchanges heat with the return air of the refrigeration compartment 2. The refrigerant that has exited the refrigeration cooler 14a passes through the refrigeration gas-liquid separator 54a, flows through the contact portion 57a with the capillary tube 53a, exchanges heat with the refrigerant flowing inside the capillary tube 53a, and then returns to the compressor 24. .

冷凍モードの場合、冷媒は冷凍用キャピラリチューブ53bを流れて減圧され冷凍用冷却器14bに至り、冷凍室7の戻り空気と熱交換する。野菜室ダンパ19が開放状態の場合はさらに、野菜室6の戻り空気と熱交換する。冷凍用冷却器14bを出た冷媒は、冷凍用気液分離器54bを通り、キャピラリチューブ53bとの接触部57bを流れることでキャピラリチューブ53b内を流れる冷媒と熱交換した後に圧縮機24に戻る。 In the case of the freezing mode, the refrigerant flows through the freezing capillary tube 53b, is depressurized, reaches the freezing cooler 14b, and exchanges heat with the return air of the freezing compartment 7. When the vegetable compartment damper 19 is in an open state, heat is further exchanged with the return air of the vegetable compartment 6. The refrigerant that has exited the refrigeration cooler 14b passes through the refrigeration gas-liquid separator 54b, flows through the contact portion 57b with the capillary tube 53b, exchanges heat with the refrigerant flowing inside the capillary tube 53b, and then returns to the compressor 24. .

全閉モードの場合、圧縮機24を駆動してもキャピラリチューブ53a,53bから冷媒が供給されない状態となるため、冷却器14a,14b内の冷媒が圧縮機24に吸い込まれて圧縮されてから吐出され、放熱器50に回収される。 In the fully closed mode, even if the compressor 24 is driven, refrigerant is not supplied from the capillary tubes 53a, 53b, so the refrigerant in the coolers 14a, 14b is sucked into the compressor 24, compressed, and then discharged. and is collected in the heat radiator 50.

本実施例の冷蔵庫は、次の運転が可能である。
三方弁52を冷蔵モードに制御して冷蔵室2を冷却する「冷蔵運転」。
冷凍モードに制御して野菜室ダンパ19を開とすることで冷凍室7と野菜室6を冷却する「冷凍野菜運転」。
冷凍モードに制御して野菜室ダンパ19を閉とすることで冷凍室7を冷却する「冷凍運転」。
全閉モードに制御して圧縮機24を駆動して、冷媒を放熱手段側に回収する「冷媒回収運転」。
全閉モードに制御して圧縮機24を停止状態とする「運転停止」。
冷蔵冷却器14aに冷媒が流れない状態に制御して冷蔵用ファンを駆動状態として、冷蔵用冷却器14aの表面に成長した霜や冷却器自体の蓄冷熱で冷蔵室2を冷却しつつ冷蔵用冷却器14aの除霜を行う「冷蔵用冷却器除霜運転」。
全閉モードに制御して圧縮機24を停止状態、冷凍用ファン9bを停止状態、除霜ヒータ21を通電状態とすることで、冷凍用冷却器14bの除霜を行う「冷凍用冷却器除霜運転」。
The refrigerator of this embodiment can operate as follows.
"Refrigerating operation" in which the three-way valve 52 is controlled to the refrigerating mode to cool the refrigerating compartment 2.
"Frozen vegetable operation" in which the freezer compartment 7 and the vegetable compartment 6 are cooled by controlling the freezing mode and opening the vegetable compartment damper 19.
"Freezing operation" in which the freezer compartment 7 is cooled by controlling the freezing mode and closing the vegetable compartment damper 19.
"Refrigerant recovery operation" in which the compressor 24 is controlled to be in a fully closed mode and the refrigerant is recovered to the heat radiation means side.
"Stop operation" in which the compressor 24 is stopped by controlling the fully closed mode.
By controlling the refrigerant cooler 14a so that the refrigerant does not flow and driving the refrigerating fan, the refrigerator compartment 2 is cooled using the frost that has grown on the surface of the refrigerating cooler 14a and the stored cold heat of the cooler itself. "Refrigerating cooler defrosting operation" that defrosts the cooler 14a.
By controlling the fully closed mode, the compressor 24 is stopped, the refrigeration fan 9b is stopped, and the defrost heater 21 is energized, the refrigeration cooler 14b is defrosted. "Frost operation".

図6は、外気32℃、相対湿度70%の環境下に設置し、非急速冷却運転時の安定状態のタイムチャートである。圧縮機24やファン9a,9bのON状態では、速度1から速度4に向けて回転数が大きくなる。 FIG. 6 is a time chart of a stable state during non-rapid cooling operation when the device is installed in an environment with outside air of 32° C. and relative humidity of 70%. When the compressor 24 and fans 9a and 9b are in the ON state, the rotational speed increases from speed 1 to speed 4.

t0は冷蔵室2を冷却する冷蔵運転が開始された時刻である。三方弁52が冷蔵モードに制御され、圧縮機24が速度1で駆動されて冷蔵用冷却器14aに冷媒が供給されることで、冷蔵用冷却器14aの温度が低下している。冷蔵用ファン9aが速度2で駆動されることで、冷蔵用冷却器14aを通過して低温になった空気が冷蔵室吐出口11aから冷蔵室2内に吹き出し、冷蔵室2が冷却されて温度が低下している。 t0 is the time when the refrigeration operation for cooling the refrigerator compartment 2 is started. The three-way valve 52 is controlled to the refrigeration mode, the compressor 24 is driven at speed 1, and refrigerant is supplied to the refrigeration cooler 14a, thereby reducing the temperature of the refrigeration cooler 14a. By driving the refrigeration fan 9a at speed 2, the air that has passed through the refrigeration cooler 14a and has become low temperature is blown out from the refrigeration compartment outlet 11a into the refrigeration compartment 2, and the refrigeration compartment 2 is cooled to lower the temperature. is decreasing.

ここで、冷蔵運転中の冷蔵用冷却器14aの時間平均温度は-6℃であり、後述する冷凍運転中の冷凍用冷却器14bの時間平均温度の-24℃よりも高くしている。一般に冷却器温度(蒸発温度)が高い方が、冷凍サイクル成績係数(圧縮機24の入力に対する吸熱量の割合)が高く、省エネルギー性能が高い。冷凍室7は冷凍温度に維持するために冷凍用冷却器14bの温度を低温にする必要があるが、冷蔵室2は冷蔵温度に維持すれば良いので、冷蔵用冷却器14aの温度を高めるように冷蔵用ファン9a及び圧縮機24の回転速度を制御して、省エネルギー性能を向上している。 Here, the time average temperature of the refrigeration cooler 14a during the refrigeration operation is -6°C, which is higher than the time average temperature of -24°C of the refrigeration cooler 14b during the refrigeration operation, which will be described later. Generally, the higher the cooler temperature (evaporation temperature), the higher the refrigeration cycle coefficient of performance (the ratio of the amount of heat absorbed to the input to the compressor 24), and the higher the energy saving performance. In order to maintain the freezing temperature in the freezing compartment 7, the temperature of the freezing cooler 14b needs to be lowered, but since the refrigerator compartment 2 only needs to be maintained at the refrigeration temperature, it is necessary to raise the temperature of the refrigerator cooler 14a. The rotational speeds of the refrigeration fan 9a and the compressor 24 are controlled to improve energy saving performance.

時刻t1で冷蔵室温度センサ41が検知する冷蔵室温度TRが冷蔵運転終了温度TR_offまで低下したことで、冷蔵運転は終了する。本実施例では、終了後、冷媒回収運転に切換わっている。冷媒回収運転では三方弁52が全閉モードに制御され、圧縮機24が速度1、冷蔵用ファン9aが速度2で駆動されて、冷蔵用冷却器14a内の冷媒が例えば2分間回収される(ΔTA1=2min)。これにより、冷凍用冷却器14bに供給し得る冷媒量を確保し、続いて行う冷凍野菜運転又は冷凍運転での冷媒不足を抑制できる。なお、このとき冷蔵用ファン9aが駆動されることで、冷蔵用冷却器14a内の残留冷媒が冷蔵室2の冷却に活用されるとともに、冷蔵室2内の空気による加熱で、冷蔵用冷却器14a内の圧力低下が緩和される。これにより、圧縮機24の吸込冷媒の比体積増加が抑制され、比較的短い時間で多くの冷媒を回収できるようになり、冷却効率を高めることができる。 At time t1, the refrigerating room temperature TR detected by the refrigerating room temperature sensor 41 drops to the refrigerating operation end temperature TR_off, and the refrigerating operation ends. In this embodiment, after the completion, the operation is switched to refrigerant recovery operation. In the refrigerant recovery operation, the three-way valve 52 is controlled to the fully closed mode, the compressor 24 is driven at speed 1, the refrigeration fan 9a is driven at speed 2, and the refrigerant in the refrigeration cooler 14a is recovered for, for example, 2 minutes ( ΔTA1=2min). Thereby, the amount of refrigerant that can be supplied to the freezing cooler 14b can be ensured, and a shortage of refrigerant in the subsequent frozen vegetable operation or freezing operation can be suppressed. In addition, by driving the refrigerating fan 9a at this time, the residual refrigerant in the refrigerating cooler 14a is utilized for cooling the refrigerating compartment 2, and the refrigerating cooler is heated by the air in the refrigerating compartment 2. The pressure drop within 14a is alleviated. This suppresses an increase in the specific volume of the refrigerant sucked into the compressor 24, making it possible to recover a large amount of refrigerant in a relatively short period of time, and improving cooling efficiency.

時刻t2は冷媒回収運転が終了した時刻である。冷蔵用冷却器除霜運転を実行するかが判定される。ここでは実行すると判定され、冷蔵用ファン9aが速度1で駆動されて冷蔵用冷却器除霜運転が行われている。これにより冷蔵用冷却器14aの温度が上昇するとともに、霜や冷蔵用冷却器14aの蓄冷熱による冷却効果によって、冷蔵室2の温度上昇が緩和される。このように冷蔵用冷却器の除霜運転を行い、冷蔵用ファンを駆動するモードを備えることで、冷蔵用ファンの駆動時間は、後述する冷凍用ファンの駆動時間よりも長く、また、長時間冷蔵室内の空気を循環することとなり、冷蔵室庫内の均温化を図ることができる。 Time t2 is the time when the refrigerant recovery operation ends. It is determined whether to perform the refrigerating cooler defrosting operation. Here, it is determined that the process is to be executed, and the refrigerating fan 9a is driven at speed 1 to perform the defrosting operation of the refrigerating cooler. As a result, the temperature of the refrigerating cooler 14a increases, and the temperature rise in the refrigerating compartment 2 is alleviated by the cooling effect of frost and cold storage heat of the refrigerating cooler 14a. By providing a mode in which the refrigeration cooler is defrosted and the refrigeration fan is driven, the refrigeration fan can be operated for a longer period of time than the refrigeration fan described later. The air inside the refrigerator compartment is circulated, and the temperature inside the refrigerator compartment can be equalized.

また時刻t2で冷凍室温度センサ42が検知する冷凍室温度TFが冷凍野菜運転開始温度TF_on以上となっていることから冷凍野菜運転が開始され、野菜室6が冷却され野菜室温度TVが低下している。冷凍野菜運転では、三方弁52が冷凍モードに制御され、圧縮機24が速度2で駆動されて冷凍用冷却器14bに冷媒が供給されて、冷凍用冷却器14bが低温になる。この状態で野菜室ダンパ19が開放され、冷凍用ファン9bが速度1で駆動されることで、冷凍用冷却器14bを通過して低温になった空気で冷凍室7と野菜室6が冷却される。 Furthermore, at time t2, the freezer compartment temperature TF detected by the freezer compartment temperature sensor 42 is equal to or higher than the frozen vegetable operation start temperature TF_on, so the frozen vegetable operation is started, the vegetable compartment 6 is cooled, and the vegetable compartment temperature TV is lowered. ing. In the frozen vegetable operation, the three-way valve 52 is controlled to the freezing mode, the compressor 24 is driven at speed 2, refrigerant is supplied to the freezing cooler 14b, and the freezing cooler 14b is brought to a low temperature. In this state, the vegetable compartment damper 19 is opened and the freezing fan 9b is driven at speed 1, so that the freezing compartment 7 and the vegetable compartment 6 are cooled with the low temperature air that has passed through the freezing cooler 14b. Ru.

時刻t3で野菜室温度センサ43が検知する野菜室温度TVが野菜室冷却終了温度TV_offに到達したことにより、野菜室ダンパ19が閉鎖され、冷凍運転に移行する。 When the vegetable compartment temperature TV detected by the vegetable compartment temperature sensor 43 reaches the vegetable compartment cooling end temperature TV_off at time t3, the vegetable compartment damper 19 is closed and the operation shifts to freezing.

時刻t4で冷凍室温度センサ42が検知する冷凍室温度TFが冷凍運転終了温度TF_offに到達し、冷凍運転が終了する。このとき冷蔵室温度センサ41が検知する冷蔵室温度TRが冷蔵運転開始温度TR_on以上に達していることから、冷蔵運転開始条件が成立し、冷媒回収運転が行われる。冷媒回収運転では、三方弁52が全閉モードに制御され、圧縮機24が速度2、冷凍用ファン9bが速度1で駆動されて、冷凍用冷却器14b内の冷媒が例えば1.5分間回収される(ΔtB1=1.5min)。これにより、次の冷蔵運転での冷媒不足による冷却効率低下を抑制できる。なお、このとき冷凍用ファン9bを駆動することで、冷凍用冷却器14b内の残留冷媒を冷凍室7の冷却に活用するとともに、冷凍室7内の空気による加熱で、冷凍用冷却器14b内の圧力低下が緩和される。これにより圧縮機24の吸込冷媒の比体積増加が抑制され、比較的短い時間で多くの冷媒を回収できるようになり、冷却効率を高めることができる。 At time t4, the freezer compartment temperature TF detected by the freezer compartment temperature sensor 42 reaches the freezing operation end temperature TF_off, and the freezing operation ends. At this time, since the refrigerating room temperature TR detected by the refrigerating room temperature sensor 41 has reached the refrigerating operation start temperature TR_on, the refrigerating operation start condition is satisfied and the refrigerant recovery operation is performed. In the refrigerant recovery operation, the three-way valve 52 is controlled to the fully closed mode, the compressor 24 is driven at speed 2, the freezing fan 9b is driven at speed 1, and the refrigerant in the freezing cooler 14b is recovered for, for example, 1.5 minutes. (ΔtB1=1.5min). Thereby, it is possible to suppress a decrease in cooling efficiency due to a shortage of refrigerant in the next refrigeration operation. In addition, by driving the freezing fan 9b at this time, the residual refrigerant in the freezing cooler 14b is utilized for cooling the freezer compartment 7, and the air inside the freezing compartment 7 is heated to cool the freezer cooler 14b. pressure drop is alleviated. This suppresses an increase in the specific volume of the refrigerant sucked into the compressor 24, making it possible to recover a large amount of refrigerant in a relatively short period of time, and improving cooling efficiency.

冷凍室7が冷却される運転は、冷凍野菜運転(t2~t3)、冷凍運転(t3~t4)、冷媒回収運転(t4~t5)であり、これらの運転が行われている間の冷凍用冷却器14bの時間平均温度は約-24℃となるように、冷凍用ファン9b及び圧縮機24が制御されている。また、冷蔵用ファン9aが駆動状態となっている冷凍運転と冷蔵用冷却器除霜運転が行われている間の冷蔵室吐出空気温度の時間平均値は、-1.5℃であり、冷凍室維持温度TF_keep(4℃)と冷蔵室維持温度TR_keep(-20℃)の算術平均値(-8℃)より高い温度となっている。 The operations in which the freezer compartment 7 is cooled are frozen vegetable operation (t2 to t3), freezing operation (t3 to t4), and refrigerant recovery operation (t4 to t5). Refrigeration fan 9b and compressor 24 are controlled so that the hourly average temperature of cooler 14b is approximately -24°C. In addition, the time average value of the temperature of the discharge air of the refrigerator compartment during the freezing operation in which the refrigerator fan 9a is in the driving state and the refrigerator cooler defrosting operation is -1.5°C, and the The temperature is higher than the arithmetic mean value (-8°C) of the room maintenance temperature TF_keep (4°C) and the refrigerator compartment maintenance temperature TR_keep (-20°C).

冷媒回収運転が終了した時刻間t5より再び、冷蔵運転が開始され、以後周期的に上述の運転が繰り返され、冷蔵室2は約4℃、冷凍室7は約-20℃、野菜室は約7℃に維持される。 The refrigeration operation is started again from time t5 when the refrigerant recovery operation ends, and the above-mentioned operation is repeated periodically. Maintained at 7°C.

図7は急速冷却運転のタイムチャートである。急速冷却運転は上述のように、ユーザによる操作スイッチの押下など明示的な指令により開始してもよいし、急速冷却に適した領域及びこの領域に食品等が載置されたことを検知する食品センサを設けておいて、センサ検知によって自動的に開始してもよい。 FIG. 7 is a time chart of the rapid cooling operation. As mentioned above, the rapid cooling operation may be started by an explicit command such as pressing an operation switch by the user, or by detecting an area suitable for rapid cooling and food etc. placed in this area. A sensor may be provided and automatically initiated upon sensor detection.

ユーザが急速冷却で冷やしたい食品の温度を「負荷温度」という。貯蔵室に投入された初期の負荷温度は、貯蔵室温度(本実施例では冷蔵室温度TR)及び冷蔵室2内の他の食品の温度よりも高温であることを想定する。 The temperature of the food that the user wants to cool by rapid cooling is called the "load temperature." It is assumed that the initial load temperature when the food is put into the storage compartment is higher than the storage compartment temperature (refrigeration compartment temperature TR in this embodiment) and the temperature of other foods in the refrigerator compartment 2.

ユーザが急冷したい高温の食品が冷蔵室2内に入れられ、操作部99の急速冷却ボタンが押され、急冷指令を受付けると急速冷却制御が開始され、好ましくは急速冷却LEDを点灯させてユーザに急速冷却が開始したことを報知する。 When the high temperature food that the user wants to rapidly cool is placed in the refrigerator compartment 2, the quick cooling button on the operation unit 99 is pressed, and the quick cooling command is received, rapid cooling control is started, and preferably the quick cooling LED is turned on to notify the user. Notifies that rapid cooling has started.

本実施例の急速冷却制御を、説明の便利のため、三つの段階(フェーズ1、フェーズ2、フェーズ3)に分けて説明する。各フェーズの終了条件はタイマーまたは冷蔵室温度センサ41及び/若しくは冷蔵室上部温度センサ44の検知温度で制御されている。ユーザの操作によって途中で急速冷却指令が解除された場合は、その時点で全フェーズを終了させて急速冷却制御を終了し、急速冷却LEDを消灯して通常の運転制御に戻る。 For convenience of explanation, the rapid cooling control of this embodiment will be explained in three stages (phase 1, phase 2, and phase 3). The termination conditions for each phase are controlled by a timer or the temperature detected by the refrigerator compartment temperature sensor 41 and/or the refrigerator compartment upper temperature sensor 44. If the rapid cooling command is canceled midway through the user's operation, all phases are terminated at that point, the rapid cooling control is terminated, the rapid cooling LED is turned off, and normal operation control is resumed.

急速冷却制御が開始すると、まずフェーズ1(急冷ステップ)が開始される。フェーズ1では、三方弁52が冷蔵モードに制御され、圧縮機24が運転することで冷蔵用冷却器14aに冷媒が供給され、冷蔵用ファン9aが駆動する。すなわち、冷蔵用冷却器14aに冷媒が循環して冷蔵用冷却器14aの温度が低下し、冷蔵用ファン9aが駆動(好ましくは非急速冷却制御よりも高速、又は非急速冷却制御で実行され得る速度の中で高速である速度2又は速度3。)するから、冷蔵室冷却器14aと熱交換された低温の冷気が冷蔵室送風路11、冷蔵室吐出口11aを介して冷蔵室2に送風され、冷蔵室2が温度低下する。タイムチャートでは冷蔵モードに制御されたと同時に冷蔵室2の温度が低下し始めているように見えるが、実際は、冷蔵モードに制御された後に冷蔵用冷却器14aが温度低下し、冷蔵室2が冷却されるため、三方弁52の制御から冷却器14aや冷蔵室2の温度低下までには、やや遅れ時間が存在する。 When rapid cooling control starts, phase 1 (rapid cooling step) is started. In phase 1, the three-way valve 52 is controlled to the refrigeration mode, the compressor 24 is operated to supply refrigerant to the refrigeration cooler 14a, and the refrigeration fan 9a is driven. That is, the refrigerant circulates through the refrigeration cooler 14a, the temperature of the refrigeration cooler 14a decreases, and the refrigeration fan 9a is activated (preferably at a higher speed than non-rapid cooling control, or may be executed under non-rapid cooling control). (Speed 2 or Speed 3, which is the highest among the speeds.) Therefore, the low-temperature cold air that has been heat exchanged with the refrigerator compartment cooler 14a is blown into the refrigerator compartment 2 via the refrigerator compartment air passage 11 and the refrigerator compartment discharge port 11a. As a result, the temperature of the refrigerator compartment 2 decreases. In the time chart, it appears that the temperature of the refrigerator compartment 2 begins to decrease at the same time as the refrigeration mode is controlled, but in reality, the temperature of the refrigerator cooler 14a decreases after the refrigeration mode is controlled, and the refrigerator compartment 2 is cooled. Therefore, there is a slight delay time from when the three-way valve 52 is controlled until the temperatures of the cooler 14a and the refrigerator compartment 2 are lowered.

急冷ステップにおいては、本実施例のように冷蔵室2全体を温度低下させてもよいし、集中的に冷気を供給する領域を冷蔵室2一部に設定して、この領域を中心に温度低下させてもよい。 In the rapid cooling step, the temperature of the entire refrigerator compartment 2 may be lowered as in this embodiment, or a region to which cold air is supplied intensively may be set in a part of the refrigerator compartment 2, and the temperature may be lowered mainly in this region. You may let them.

その後、所定の時間が経過する又は冷蔵室温度センサ41及び/若しくは冷蔵室上部温度センサ44の検知温度が、それぞれ所定の値以下になった場合、フェーズ1が終了する。フェーズ1終了を判定する冷蔵室温度センサ41の温度閾値は、通常時の冷蔵運転終了温度TR_offよりも低く設定されていると好ましい。 Thereafter, when a predetermined period of time has elapsed or when the temperature detected by the refrigerator compartment temperature sensor 41 and/or the refrigerator compartment upper temperature sensor 44 becomes equal to or lower than a predetermined value, phase 1 ends. It is preferable that the temperature threshold value of the refrigerating room temperature sensor 41 for determining the end of phase 1 is set lower than the normal refrigerating operation end temperature TR_off.

最初の段階であるフェーズ1で急冷ステップを実行することによって、急速冷却の開始直後から食品を冷やすことができる。もし、急速冷却制御の途中で食品が取り出されたり、急速冷却指令が解除されたりした場合でも、ユーザが急冷したい食品は、冷蔵用ファン9aが高速駆動していれば通常運転時よりも速く冷えており、短時間でもユーザが急速冷却の効果を享受できる。 By performing the rapid cooling step in phase 1, which is the first stage, the food can be cooled immediately after the start of rapid cooling. Even if the food is taken out during rapid cooling control or the rapid cooling command is canceled, the food that the user wants to rapidly cool will cool faster than during normal operation if the refrigeration fan 9a is driven at high speed. This allows users to enjoy the effects of rapid cooling even for a short period of time.

フェーズ2(緩冷ステップ)では、冷蔵室ファン9aは駆動(好ましくは高速駆動)しながら、冷蔵用冷却器14aへの冷媒供給が減少又は遮断される。本実施例では、三方弁52が冷凍モードに制御され「冷凍運転」又は「冷凍野菜運転」を実行する。三方弁52を全閉モード且つ圧縮機24を停止状態に制御してもよい。冷蔵用冷却器14aの温度は冷媒供給の減少又は遮断により上昇するため、冷蔵室ファン9aを駆動させると、冷蔵室2には急冷ステップよりも高温の空気が循環する。緩冷ステップでは冷蔵室2を循環する空気の温度が高いため、冷蔵室2内の食品の凍結を防止できる。 In phase 2 (slow cooling step), the refrigerant supply to the refrigerator cooler 14a is reduced or cut off while the refrigerator compartment fan 9a is driven (preferably driven at high speed). In this embodiment, the three-way valve 52 is controlled to the freezing mode to perform the "freezing operation" or the "frozen vegetable operation". The three-way valve 52 may be controlled to be in a fully closed mode and the compressor 24 may be in a stopped state. Since the temperature of the refrigerator cooler 14a increases due to a reduction or cutoff of the refrigerant supply, when the refrigerator compartment fan 9a is driven, air having a higher temperature than that in the quenching step is circulated in the refrigerator compartment 2. In the slow cooling step, the temperature of the air circulating in the refrigerator compartment 2 is high, so that food in the refrigerator compartment 2 can be prevented from freezing.

タイムチャートでは冷凍モードに制御されたと同時に冷蔵室2の温度が上昇し始めているように見えるが、実際は、冷凍モードに制御されて冷媒供給が遮断された後も、多少は残留冷媒による冷却が可能であるから、冷蔵用冷却器14aの温度上昇までにはやや遅れ時間が存在する。 In the time chart, it appears that the temperature of refrigerator compartment 2 begins to rise at the same time as freezing mode is activated, but in reality, even after freezing mode is activated and refrigerant supply is cut off, some residual refrigerant can provide some cooling. Therefore, there is a slight delay time until the temperature of the refrigerating cooler 14a rises.

本タイムチャートでは、緩冷ステップの実行には三方弁52を冷凍モード又は全閉モードにするが、冷蔵室2の外側、例えば冷蔵用冷却器室8aに配されている冷蔵室ファンに代えて又は追加して、冷蔵室2内に冷蔵室ファン(特に区別する必要がある場合は、冷蔵室循環ファンという。)を設けることができる。この場合、三方弁52の状態に拘わらず緩冷ステップを実行できる。具体的には、冷蔵室循環ファンを駆動することで冷蔵室2内で冷気を循環させることができるから、局所的に温度低下して凍結が懸念される食品の部分を温度上昇させ、他の部分や他の食品については冷蔵室2の冷気が接触するから温度上昇を抑制できる。なお、この場合、冷蔵室循環ファンの駆動中、必要に応じて冷却器室8a側の冷蔵室ファンを停止させることができる。また、冷蔵室2と冷蔵用冷却器室8aとの間(送風路でも戻り風路でもよい。)に冷蔵室ダンパを設けて、冷蔵室循環ファンの駆動中にこれを閉にしてもよい。 In this time chart, the three-way valve 52 is set to freezing mode or fully closed mode to execute the slow cooling step, but instead of using a refrigerator fan disposed outside the refrigerator compartment 2, for example, in the refrigerator cooler compartment 8a. Alternatively, a refrigerating room fan (referred to as a refrigerating room circulating fan if there is a particular need to distinguish) can be additionally provided in the refrigerating room 2. In this case, the slow cooling step can be performed regardless of the state of the three-way valve 52. Specifically, by driving the refrigerator compartment circulation fan, it is possible to circulate cold air within the refrigerator compartment 2, which increases the temperature of food in areas where there is a local temperature drop and is concerned about freezing, and prevents other food from freezing. Since the portions and other foods come into contact with the cold air from the refrigerator compartment 2, temperature rise can be suppressed. In this case, while the refrigerator compartment circulation fan is being driven, the refrigerator compartment fan on the cooler chamber 8a side can be stopped as necessary. Moreover, a refrigerator compartment damper may be provided between the refrigerator compartment 2 and the refrigerating cooler compartment 8a (either a blower path or a return air path), and may be closed while the refrigerator compartment circulation fan is being driven.

緩冷ステップでは、急冷されやすい食品の温度が既に循環空気温度より低ければ、循環空気によって温度上昇するから凍結が抑制される。また、緩冷ステップでは、対象貯蔵室内の食品のうち循環空気温度より高いものは、循環空気によって冷却される。このため、フェーズ1からフェーズ2への移行のタイミングを厳密に判定する必要性も下がる。よって、食品温度を検知するセンサを別途設けずに、フェーズ1(急冷ステップ)を実行する時間をあらかじめ定めておき、これをタイマで計時してもよい。 In the slow cooling step, if the temperature of the food that is likely to be rapidly cooled is already lower than the temperature of the circulating air, the circulating air will increase the temperature, thereby suppressing freezing. Further, in the slow cooling step, food items in the target storage room whose temperature is higher than the circulating air temperature are cooled by the circulating air. Therefore, it is less necessary to strictly determine the timing of transition from phase 1 to phase 2. Therefore, without separately providing a sensor for detecting food temperature, the time for executing phase 1 (quenching step) may be determined in advance, and this time may be measured by a timer.

また、フェーズ2中に圧縮機24を停止させると、圧縮機24を運転させるよりも消費電力量を小さく抑えながら上記の急冷効果を得ることができるため、省エネな急速冷却を実行できる。圧縮機24を運転させるかどうかは、フェーズ2に移行した時点での他貯蔵室の温度、即ち冷凍室温度センサ42や野菜室温度センサ43の検知温度によって判断することができる。それらの温度が十分低いようであれば、圧縮機24を停止させて消費電力量の低減を図ることが好ましい。フェーズ2の開始時に圧縮機24を停止させた場合であっても、フェーズ2の途中で他貯蔵室の温度が上昇したときは、フェーズ2の途中から圧縮機24を運転させて「冷凍運転」又は「冷凍野菜運転」を実行することで、消費電力量を低く抑えつつ、食品貯蔵温度を適正に保つことができる。 フェーズ2は、タイマにより所定の時間の経過を検知した場合、又は、冷蔵室温度センサ41及び/若しくは冷蔵室上部温度センサ44の検知した温度が、それぞれ所定の値以上になった場合に終了する。冷蔵室温度センサ41,44の温度変動で凍結が懸念される領域の温度上昇を検知することは容易ではないため、タイマによる判定が好ましい。 Further, when the compressor 24 is stopped during phase 2, the above-mentioned rapid cooling effect can be obtained while reducing power consumption to a lower level than when the compressor 24 is operated, so that energy-saving rapid cooling can be performed. Whether or not to operate the compressor 24 can be determined based on the temperature of the other storage compartments at the time of transition to phase 2, that is, the temperature detected by the freezer compartment temperature sensor 42 or the vegetable compartment temperature sensor 43. If those temperatures seem to be sufficiently low, it is preferable to stop the compressor 24 to reduce power consumption. Even if the compressor 24 is stopped at the start of Phase 2, if the temperature in other storage compartments rises during Phase 2, the compressor 24 is started during Phase 2 and the "refrigerating operation" is started. Alternatively, by executing the "frozen vegetable operation", it is possible to keep food storage temperature at an appropriate level while keeping power consumption low. Phase 2 ends when the timer detects that a predetermined time has elapsed, or when the temperature detected by the refrigerator compartment temperature sensor 41 and/or the refrigerator compartment upper temperature sensor 44 reaches a predetermined value or higher, respectively. . Since it is not easy to detect a temperature rise in a region where freezing is a concern due to temperature fluctuations in the refrigerator compartment temperature sensors 41 and 44, it is preferable to use a timer for determination.

フェーズ2が終了した後、フェーズ3(急冷ステップ)に移る。フェーズ3はフェーズ1と同一の制御にしてもよいし、タイマで実行時間を設定している場合は、実行時間を短くするなど、変更点を与えてもよい。
少なくともフェーズ3では再び、冷蔵用冷却器14aに冷媒を供給する冷蔵モードに制御するとともに冷蔵室ファン9aを駆動させる。フェーズ2の緩冷ステップによって冷蔵室2内の温度が均温化されると共に、冷蔵室2内の平均温度が上昇させられているため、再び急冷ステップを実行することで冷蔵室2の温度を降下させる。
After phase 2 is completed, the process moves to phase 3 (quenching step). Phase 3 may be controlled in the same way as phase 1, or if the execution time is set by a timer, changes may be made such as shortening the execution time.
At least in phase 3, control is again made to the refrigeration mode in which refrigerant is supplied to the refrigeration cooler 14a, and the refrigeration room fan 9a is driven. Since the temperature in the refrigerator compartment 2 is equalized by the slow cooling step of phase 2 and the average temperature in the refrigerator compartment 2 is raised, the temperature in the refrigerator compartment 2 can be lowered by performing the rapid cooling step again. lower it.

フェーズ3が終了すると本実施例では急速冷却制御を終了し、急速冷却LEDを消灯して通常の運転制御に復帰する。必要であれば再びフェーズ2に移行し、フェーズ2,3を繰り返してもよい。 When phase 3 ends, in this embodiment, the rapid cooling control is ended, the rapid cooling LED is turned off, and normal operation control is resumed. If necessary, the process may proceed to Phase 2 again and Phases 2 and 3 may be repeated.

このように、本実施例では、急冷ステップと緩冷ステップを交互に実行することで食品の凍結を抑えつつ、冷却速度を向上できる。例えば温かい弁当を冷蔵室2内に収納して急速冷却を実行すると、急速冷却運転中は冷蔵室ファン9aが実質的に駆動し続けるため、弁当の周囲の空気が循環し続ける。これにより、弁当の周囲空気が温められたまま滞留することを抑制できるから、特に弁当周囲の他の食品の温度上昇を抑えて、食品のいわゆる老化を抑制できる。 In this manner, in this embodiment, by alternately performing the rapid cooling step and the slow cooling step, the cooling rate can be improved while suppressing freezing of the food. For example, when a warm lunch box is stored in the refrigerator compartment 2 and rapid cooling is performed, the refrigerator compartment fan 9a substantially continues to drive during the rapid cooling operation, so that the air around the lunch box continues to circulate. As a result, it is possible to suppress the air surrounding the lunch box from remaining warm, thereby suppressing the rise in temperature of other foods around the lunch box, thereby suppressing so-called aging of the food.

一般的に低温空気は下方へ集まり易く、冷蔵室内でも上部より下部の方が低温化される傾向にあるが、本実施例によれば、急速冷却運転中、冷蔵室の上部と下部の温度を均一化できるから、急速冷却運転実行に際して収納する高温食品の収納場所を、冷蔵室の下部のみならず上部にすることもできる。冷蔵室2の中央より下方に冷蔵室温度センサ41を、庫内天井部に冷蔵室上部温度センサ44をそれぞれ備えているため、急速冷却実行中に冷蔵室の上部と下部の温度をそれぞれ検知できる。このため、例えば冷蔵吐出口11aを好ましくは複数設け、それぞれから吐出される冷気を開放及び閉塞切替可能なダンパや、冷気の吐出方向を切替可能なルーバを設ければ、これら上部と下部の検知温度に応じて制御することで、均温化を容易にすることができる。
なお、本実施例の急速冷却運転は、冷却器が1つだけのいわゆるシングル冷却方式の冷蔵庫でも実行し得る。また、冷蔵室に限らず野菜室や氷点以上のチルド室などその他の非冷凍温度帯の貯蔵室でも実行し得る。
Generally, low-temperature air tends to gather downward, and the temperature at the bottom of the refrigerator compartment tends to be lower than at the top. However, according to this embodiment, during rapid cooling operation, the temperature at the top and bottom of the refrigerator compartment is lowered. Since it can be made uniform, the high temperature food to be stored during the rapid cooling operation can be stored not only in the lower part of the refrigerator compartment but also in the upper part. Since the refrigerator compartment temperature sensor 41 is provided below the center of the refrigerator compartment 2 and the refrigerator compartment upper temperature sensor 44 is provided on the ceiling of the refrigerator compartment, the temperatures of the upper and lower parts of the refrigerator compartment can be detected respectively during rapid cooling. . For this reason, for example, if a plurality of refrigeration discharge ports 11a are preferably provided, and a damper that can switch between opening and closing the cold air discharged from each, and a louver that can switch the discharge direction of the cold air, it is possible to detect the upper and lower parts of the refrigerating outlet 11a. By controlling the temperature according to the temperature, it is possible to easily equalize the temperature.
Note that the rapid cooling operation of this embodiment can also be performed in a so-called single cooling type refrigerator having only one cooler. Furthermore, the process can be carried out not only in the refrigerator compartment but also in other storage compartments in non-freezing temperature ranges such as vegetable compartments and chilled compartments above the freezing point.

本実施例では、冷蔵室ファン9aを駆動させつつ冷却器の温度を変動させることで凍結を抑制したが、冷蔵室2に供給する冷気の吹き出す場所や方向を変更することで凍結を抑制してもよい。例えばフェーズ2で吹き出す場所や方向を変え、フェーズ3で戻してもよい。 In this embodiment, freezing was suppressed by varying the temperature of the cooler while driving the refrigerator compartment fan 9a, but freezing was suppressed by changing the location and direction from which the cold air supplied to the refrigerator compartment 2 is blown out. Good too. For example, the location and direction of the ejection may be changed in phase 2, and returned in phase 3.

1 冷蔵庫
2 冷蔵室
2a、2b 冷蔵室扉
3 製氷室
4 上段冷凍室
5 下段冷凍室冷凍室
3a、4a、5a 冷凍室扉
6 野菜室
6a 野菜室扉
7 冷凍室
8a 冷蔵用冷却器室
8b 冷凍用冷却器室
9a 冷蔵用ファン
9b 冷凍用ファン
10 断熱箱体
10a 外箱
10b 内箱
11 冷蔵室送風路
11a 冷蔵室吐出口
12 冷凍室送風路
12a 冷凍室吐出口
13 野菜室送風路
13a 野菜室吐出口
14a 冷蔵用冷却器(冷蔵用蒸発器)
14b 冷凍用冷却器(冷凍用蒸発器)
15a、15b 15c 冷蔵室戻り風路
16 ヒンジカバー
17 冷凍室戻り口
18 野菜室戻り風路
18a 野菜室戻り口
19 野菜室ダンパ
21 ラジアントヒータ
22a、22b 排水口
23a、23b 樋
24 圧縮機
25 風路
26 庫外ファン
27a 冷蔵用排水管
27b 冷凍用排水管
28、29、30 断熱仕切壁
31 制御基板
32 蒸発皿
35 チルドルーム
39 機械室
40a 冷蔵用冷却器温度センサ
40b 冷凍用冷却器温度センサ
41 冷蔵室温度センサ
42 冷凍室温度センサ
43 野菜室温度センサ
44 冷蔵室上部温度センサ
50a、50b 庫外放熱器(放熱器)
50c 結露抑制配管(放熱器)
51 ドライヤ
52 三方弁(冷媒切替弁)
53a 冷蔵用キャピラリチューブ(減圧部)
53b 冷凍用キャピラリチューブ(減圧部)
54a 冷蔵用気液分離器
54b 冷凍用気液分離器
55a、55b 熱交換部
56 逆止弁
60 チルドルーム温度補償ヒータ
61 回転仕切りヒータ
91 脱臭部材
95a、95b 冷蔵室パッキン
96a、96b、96c 冷凍室パッキン
97 野菜室パッキン
98 回転仕切り
101 樋部ヒータ
102 排水管上部ヒータ
103 排水管下部ヒータ
1 Refrigerator 2 Refrigerator compartment 2a, 2b Refrigerator compartment door 3 Ice making compartment 4 Upper freezer compartment 5 Lower freezer compartment Freezer compartment 3a, 4a, 5a Freezer compartment door 6 Vegetable compartment 6a Vegetable compartment door 7 Freezer compartment 8a Refrigerator cooler compartment 8b Freezer Cooler chamber 9a Refrigeration fan 9b Freezer fan 10 Insulating box body 10a Outer box 10b Inner box 11 Refrigerator room air passage 11a Refrigerator room outlet 12 Freezer room air passage 12a Freezer room outlet 13 Vegetable room air passage 13a Vegetable compartment Discharge port 14a Refrigeration cooler (refrigeration evaporator)
14b Refrigeration cooler (refrigeration evaporator)
15a, 15b 15c Refrigerator compartment return air path 16 Hinge cover 17 Freezer compartment return port 18 Vegetable compartment return air path 18a Vegetable compartment return port 19 Vegetable compartment damper 21 Radiant heaters 22a, 22b Drain ports 23a, 23b Gutter 24 Compressor 25 Air path 26 External fan 27a Refrigeration drain pipe 27b Refrigeration drain pipe 28, 29, 30 Heat insulating partition wall 31 Control board 32 Evaporation dish 35 Chilled room 39 Machine room 40a Refrigeration cooler temperature sensor 40b Freezer cooler temperature sensor 41 Refrigeration Room temperature sensor 42 Freezer compartment temperature sensor 43 Vegetable compartment temperature sensor 44 Refrigerator compartment upper temperature sensor 50a, 50b External radiator (radiator)
50c Condensation suppression piping (radiator)
51 Dryer 52 Three-way valve (refrigerant switching valve)
53a Refrigeration capillary tube (decompression section)
53b Freezing capillary tube (decompression part)
54a Refrigerating gas-liquid separator 54b Freezing gas-liquid separator 55a, 55b Heat exchange section 56 Check valve 60 Chilled room temperature compensation heater 61 Rotary partition heater 91 Deodorizing members 95a, 95b Refrigerating compartment packing 96a, 96b, 96c Freezing compartment Packing 97 Vegetable compartment packing 98 Rotating partition 101 Gutter heater 102 Drain pipe upper heater 103 Drain pipe lower heater

Claims (8)

冷気を供給する冷却器と、
冷蔵温度帯の貯蔵室と、
前記冷却器及び前記貯蔵室を繋ぐ送風路と、
貯蔵室ファンと、
前記貯蔵室及び前記冷却器を繋ぐ戻り風路と、を有し、
前記冷却器の温度が低下し、該冷却器の残留冷媒がある状態でその後上昇し、さらにその後低下する経過を示し、この間、前記貯蔵室ファンは、前記冷却器を含む経路で実質的に冷気を循環させ続けるとともに、
急速冷却運転指令の検知に応じ、前記冷却器の温度が低下し、その後上昇し、さらにその後低下する経過を示し、この間、前記貯蔵室ファンは、実質的に駆動し続ける、急速冷却運転制御を実行する冷蔵庫。
A cooler that supplies cold air;
A storage room with a refrigerated temperature range,
an air duct connecting the cooler and the storage room;
storage room fan,
a return air path connecting the storage chamber and the cooler;
The temperature of the cooler decreases, then rises with residual refrigerant in the cooler, and then decreases, during which time the storage fan cools substantially cold air in a path that includes the cooler. While continuing to circulate,
In response to the detection of the rapid cooling operation command, the temperature of the cooler decreases, then increases, and then further decreases, and during this period, the storage room fan substantially continues to drive, performing rapid cooling operation control. Refrigerator to run.
前記冷却器と、前記冷却器への冷媒供給量を変更する冷媒切替弁と、を有する冷凍サイクルを備え、 A refrigeration cycle including the cooler and a refrigerant switching valve that changes the amount of refrigerant supplied to the cooler,
前記冷媒切替弁のモードが変更して前記冷却器への冷媒供給量が減少又は遮断した後に前記冷却器の温度が上昇し、 After the mode of the refrigerant switching valve is changed and the amount of refrigerant supplied to the cooler is reduced or cut off, the temperature of the cooler increases;
前記冷媒切替弁のモードが変更して前記冷却器への冷媒供給量が増加した後に前記冷却器の温度が低下する請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the temperature of the cooler decreases after the mode of the refrigerant switching valve changes and the amount of refrigerant supplied to the cooler increases.
冷気を供給する冷却器と、
冷蔵温度帯の貯蔵室と、
前記冷却器及び前記貯蔵室を繋ぐ送風路と、
貯蔵室ファンと、
前記貯蔵室及び前記冷却器を繋ぐ戻り風路と、を有し、
前記冷却器と、前記冷却器への冷媒供給量を変更する冷媒切替弁と、を有する冷凍サイクルを備え、
前記冷却器の温度が低下し、該冷却器の残留冷媒がある状態でその後上昇し、さらにその後低下する経過を示し、この間、前記貯蔵室ファンは、前記冷却器を含む経路で実質的に冷気を循環させ続けるとともに、
前記冷媒切替弁のモードが変更して前記冷却器への冷媒供給量が減少又は遮断した後に前記冷却器の温度が上昇し、
前記冷媒切替弁のモードが変更して前記冷却器への冷媒供給量が増加した後に前記冷却器の温度が低下する冷蔵庫。
A cooler that supplies cold air;
A storage room with a refrigerated temperature range,
an air duct connecting the cooler and the storage room;
storage room fan,
a return air path connecting the storage chamber and the cooler;
A refrigeration cycle including the cooler and a refrigerant switching valve that changes the amount of refrigerant supplied to the cooler,
The temperature of the cooler decreases, then rises with residual refrigerant in the cooler, and then decreases, during which time the storage fan cools substantially cold air in a path that includes the cooler. While continuing to circulate,
After the mode of the refrigerant switching valve is changed and the amount of refrigerant supplied to the cooler is reduced or cut off, the temperature of the cooler increases;
A refrigerator in which the temperature of the cooler decreases after the mode of the refrigerant switching valve changes and the amount of refrigerant supplied to the cooler increases.
前記貯蔵室ファンは、前記冷却器及び前記貯蔵室を含む冷気のループ中、前記貯蔵室以外の場所に配されている請求項1~3のいずれか1項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the storage compartment fan is arranged at a location other than the storage compartment in a cool air loop that includes the cooler and the storage compartment. 前記貯蔵室ファンは、前記冷却器及び前記貯蔵室を含む冷気のループ中、前記貯蔵室に配されている請求項1~3のいずれか1項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the storage compartment fan is arranged in the storage compartment in a cool air loop that includes the cooler and the storage compartment. 冷蔵室に冷気を供給する冷蔵用冷却器と、
冷凍室に冷気を供給する冷凍用冷却器と、
前記冷蔵室と前記冷蔵用冷却器とを含む循環風路に冷気を送風する冷蔵用ファンと、
前記冷凍室と前記冷凍用冷却器とを含む循環風路に冷気を送風する冷凍用ファンと、を有し、
食品の急速冷却制御時に、
急速冷却でない時よりも高速で前記冷蔵用ファンを駆動して、冷媒が供給され温度が低下した前記冷蔵用冷却器による冷気を前記冷蔵室に送風する急冷ステップと、
前記冷蔵用ファンを駆動したまま、前記冷凍用冷却器に冷媒が供給されるために冷媒が供給されずに温度が上昇した残留冷媒がある状態の前記冷蔵用冷却器による冷気を前記冷蔵室に送風する緩冷ステップと、を実行する
ことを特徴とする冷蔵庫。
A refrigerator cooler that supplies cold air to the refrigerator compartment;
A refrigeration cooler that supplies cold air to the freezer compartment;
a refrigeration fan that blows cold air into a circulation air path including the refrigeration room and the refrigeration cooler;
a refrigeration fan that blows cold air into a circulation air path that includes the freezer compartment and the refrigeration cooler;
When controlling food rapid cooling,
a rapid cooling step of driving the refrigeration fan at a higher speed than when not performing rapid cooling to blow cold air from the refrigeration cooler supplied with refrigerant and whose temperature has been lowered into the refrigeration compartment;
While the refrigeration fan is being driven, cool air from the refrigeration cooler with residual refrigerant whose temperature has increased due to the supply of refrigerant to the refrigeration cooler is supplied to the refrigerator compartment. A refrigerator characterized by performing a slow cooling step that blows air.
前記冷蔵用ファンの駆動は、前記緩冷ステップにおいて、前記急冷ステップに比べて増速しない
ことを特徴とする請求項6に記載の冷蔵庫。
7. The refrigerator according to claim 6, wherein the speed of the refrigeration fan is not increased in the slow cooling step compared to the rapid cooling step.
前記緩冷ステップの実行時間は、タイマーにより所定の時間の経過を検知して制御する
ことを特徴とする請求項6に記載の冷蔵庫。
7. The refrigerator according to claim 6, wherein the execution time of the slow cooling step is controlled by detecting the elapse of a predetermined time using a timer.
JP2020019298A 2020-02-07 2020-02-07 refrigerator Active JP7351762B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020019298A JP7351762B2 (en) 2020-02-07 2020-02-07 refrigerator
PCT/JP2020/032087 WO2021157110A1 (en) 2020-02-07 2020-08-25 Refrigerator
CN202010905758.5A CN113251719A (en) 2020-02-07 2020-09-01 Refrigerator with a door

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020019298A JP7351762B2 (en) 2020-02-07 2020-02-07 refrigerator

Publications (2)

Publication Number Publication Date
JP2021124259A JP2021124259A (en) 2021-08-30
JP7351762B2 true JP7351762B2 (en) 2023-09-27

Family

ID=77199807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020019298A Active JP7351762B2 (en) 2020-02-07 2020-02-07 refrigerator

Country Status (3)

Country Link
JP (1) JP7351762B2 (en)
CN (1) CN113251719A (en)
WO (1) WO2021157110A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235267A (en) 2000-02-22 2001-08-31 Sanyo Electric Co Ltd Operation controller for cooling storage cabinet
JP2006090664A (en) 2004-09-24 2006-04-06 Toshiba Corp Refrigerator
JP2012229832A (en) 2011-04-25 2012-11-22 Hoshizaki Electric Co Ltd Cooling storage

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273072A (en) * 1985-09-25 1987-04-03 三菱電機株式会社 Controller for refrigerator
JPH07104090B2 (en) * 1991-07-03 1995-11-13 オリオン機械株式会社 How to cool food in the refrigerator
JPH1026458A (en) * 1996-07-15 1998-01-27 Matsushita Refrig Co Ltd Refrigerator
JPH1026457A (en) * 1996-07-15 1998-01-27 Matsushita Refrig Co Ltd Refrigerator
JP3800900B2 (en) * 1999-09-09 2006-07-26 三菱電機株式会社 Refrigerating refrigerator, operation method of freezing refrigerator
KR100756725B1 (en) * 2003-11-28 2007-09-07 가부시끼가이샤 도시바 Refrigerator
KR20150086883A (en) * 2014-01-21 2015-07-29 주식회사 대유위니아 Method for controlling door heater of refrigerator
JP2017053583A (en) * 2015-09-11 2017-03-16 パナソニックIpマネジメント株式会社 refrigerator
CN110118461A (en) * 2018-02-06 2019-08-13 日立空调·家用电器株式会社 Refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235267A (en) 2000-02-22 2001-08-31 Sanyo Electric Co Ltd Operation controller for cooling storage cabinet
JP2006090664A (en) 2004-09-24 2006-04-06 Toshiba Corp Refrigerator
JP2012229832A (en) 2011-04-25 2012-11-22 Hoshizaki Electric Co Ltd Cooling storage

Also Published As

Publication number Publication date
WO2021157110A1 (en) 2021-08-12
CN113251719A (en) 2021-08-13
JP2021124259A (en) 2021-08-30

Similar Documents

Publication Publication Date Title
JP5017340B2 (en) refrigerator
JP5178642B2 (en) refrigerator
CN102374722B (en) Refrigerator
JP5507511B2 (en) refrigerator
US20060117768A1 (en) Defrost apparatus of refrigerator
JP2013061089A (en) Refrigerator
US11150006B2 (en) Refrigerator
JP2003121043A (en) Refrigerator
CN105452785A (en) Refrigerator
JP2011038715A (en) Refrigerator
JP7521098B2 (en) refrigerator
JPH10288440A (en) Refrigerator
KR101698101B1 (en) Refrigerator and conrtol method thereof
JP6890502B2 (en) refrigerator
KR20200105611A (en) Refrigerator
CN112378146B (en) Refrigerator with a door
JP5838238B2 (en) refrigerator
JP7351762B2 (en) refrigerator
CN110118461A (en) Refrigerator
JP2007309530A (en) Refrigerator
JP2019138481A (en) refrigerator
JP2007132543A (en) Refrigerator
JPH1047828A (en) Refrigerator
JP7475869B2 (en) refrigerator
JP2019132503A (en) refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230914

R150 Certificate of patent or registration of utility model

Ref document number: 7351762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150