WO2021156987A1 - 基板処理装置、半導体装置の製造方法および記録媒体 - Google Patents

基板処理装置、半導体装置の製造方法および記録媒体 Download PDF

Info

Publication number
WO2021156987A1
WO2021156987A1 PCT/JP2020/004436 JP2020004436W WO2021156987A1 WO 2021156987 A1 WO2021156987 A1 WO 2021156987A1 JP 2020004436 W JP2020004436 W JP 2020004436W WO 2021156987 A1 WO2021156987 A1 WO 2021156987A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reaction tube
gas supply
substrate
nozzle
Prior art date
Application number
PCT/JP2020/004436
Other languages
English (en)
French (fr)
Inventor
優作 岡嶋
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2020/004436 priority Critical patent/WO2021156987A1/ja
Priority to JP2021575170A priority patent/JP7304975B2/ja
Priority to CN202080089801.3A priority patent/CN114902381A/zh
Priority to TW110102975A priority patent/TW202137329A/zh
Publication of WO2021156987A1 publication Critical patent/WO2021156987A1/ja
Priority to US17/853,377 priority patent/US20220349061A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45504Laminar flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction

Definitions

  • the present disclosure relates to a substrate processing apparatus, a manufacturing method of a semiconductor apparatus, and a recording medium.
  • a reaction vessel that performs a process of forming a film containing a plurality of elements on a substrate as a substrate processing device for processing the substrate by arranging a plurality of substrates to be processed in multiple stages inside the reaction tube, and this reaction.
  • a heater that heats the inside of the vessel and at least a part of the heater are provided in the reaction vessel so as to face the heater, and contain at least one element among a plurality of elements constituting the membrane, and the membrane is deposited by itself. It contains at least one nozzle that supplies the resulting first gas into the reaction vessel, and at least one of the plurality of elements that are provided so as to cover at least the portion of the nozzle facing the heater and that constitutes the membrane.
  • Described is a substrate processing apparatus having a flow tube for circulating a second gas, which cannot deposit a film by itself, and supplying it into a reaction vessel.
  • Patent Document 1 Patent Document 1
  • nozzles are provided in the vertical direction from the lower side of the reaction tube, and the nozzles are formed with a plurality of holes according to the number of wafers installed inside the reaction tube.
  • the first gas is used. Since the gas is heated by the heater and decomposition proceeds inside the nozzle that extends in the vertical direction, the degree of decomposition differs depending on the vertical direction of the nozzle, and the wafer placed on the upper part and the wafer placed on the lower part of the reaction tube Then, the state of film formation will be different.
  • the substrate processing apparatus is arranged with a reaction tube accommodating the substrate and extending in a direction parallel to the surface of the substrate on the side of the reaction tube and corresponding to the substrate. It is provided with a nozzle accommodating portion, a plurality of gas supply nozzles inserted inside the nozzle accommodating portion and extending from the outside of the reaction tube to the inside of the reaction tube, and a first gas supply unit that supplies a first gas to the gas supply nozzle.
  • a reaction tube accommodating the substrate and extending in a direction parallel to the surface of the substrate on the side of the reaction tube and corresponding to the substrate. It is provided with a nozzle accommodating portion, a plurality of gas supply nozzles inserted inside the nozzle accommodating portion and extending from the outside of the reaction tube to the inside of the reaction tube, and a first gas supply unit that supplies a first gas to the gas supply nozzle.
  • a reaction product due to the gas supplied to the inside of the reaction tube is generated at the tip of the nozzle (gas supply tube) that supplies gas to the inside of the reaction tube, and easily adheres to the tip as it is.
  • the reaction product adhering to the tip of this nozzle (gas supply pipe) gradually increases, causing clogging of the tip of the nozzle, or peeling off from the tip of the nozzle and adhering to the substrate to be processed. It may cause foreign matter on the surface of the surface.
  • a reaction product due to the gas supplied to the inside of the reaction tube is generated at the tip of the nozzle (gas supply tube) that supplies gas to the inside of the reaction tube, and easily adheres to the tip as it is.
  • the reaction products adhering to the tip of this nozzle (gas supply pipe) gradually increase (grow), causing hole clogging at the tip of the nozzle, or peeling off from the tip of the nozzle and part of it is the substrate to be processed. There is a possibility that foreign matter will be generated on the surface of the substrate to be treated.
  • the present disclosure solves the above-mentioned problems and makes it possible to perform a uniform film forming process on the surfaces of a plurality of substrates (wafers) installed at predetermined intervals in the vertical direction inside the reaction tube. It is an object of the present invention to provide a recording medium in which a substrate processing apparatus, a method of manufacturing a semiconductor apparatus using the substrate processing apparatus, and a program to be executed by the substrate processing apparatus by a computer are recorded. That is, in the present disclosure, a means for supplying the inert gas is provided on the outer periphery of the gas nozzle for supplying the reaction gas or the raw material gas, and the reaction gas or the raw material gas is prevented from entering the outside of the gas nozzle from the side of the reaction tube (inner tube). This is intended to prevent the reaction product from adhering to the outer periphery of the gas nozzle and to improve the homogeneity and quality of the film formed on the surface of the substrate.
  • FIG. 1A is a cross-sectional view showing the configuration of a main part of the substrate processing apparatus 100 according to the first embodiment.
  • 120 is a reaction tube
  • 130 is an inner tube
  • 140 is a substrate support (boat) holding a plurality of substrates (wafers) 101, and a plurality of partition plates 142 supported by a partition plate support portion 141 of a plurality of substrates. It divides the space.
  • Reference numeral 143 is a top plate at the top of the partition plate 142.
  • the board support 140 uses a vertical mechanism (boat elevator) (not shown) to move a plurality of held boards into and out of the inner tube 130.
  • boat elevator boat elevator
  • Reference numeral 110 denotes a heater, which heats the inside of the inner tube 130 including the reaction tube 120 with the substrate support 140 mounted inside the inner tube 130 by a vertical mechanism (not shown).
  • the heater 110 may be divided into a plurality of blocks in the vertical direction, and the heating state may be controlled for each block based on the data of a temperature measuring means such as a thermometer (not shown).
  • Reference numeral 150 denotes a gas supply unit that supplies gas to the inside of the inner tube 130, so that gas can be supplied for each substrate 101 according to the vertical pitch (interval) of the substrate 101 held by the substrate support 140.
  • a plurality of components are provided in the same plane of the cross section shown in 1A.
  • the gas supply unit 150 is attached in a direction substantially parallel to the surface of the substrate 101 held by the substrate support 140 inside the inner tube 130.
  • a plurality of gas introduction holes 131 are formed in the inner tube 130 so that the gas supplied from the gas supply unit 150 is introduced into the inner tube 130 at a position where the tip portion of the gas supply unit 150 is located. There is.
  • a slit 132 is formed in a portion of the inner tube 130 facing the portion where the plurality of gas introduction holes 131 are formed, and among the gases supplied to the inside of the inner tube 130 from the plurality of gas introduction holes 131. , The gas that did not contribute to the reaction inside the inner tube 130 including the surface of the substrate 101 held by the substrate support 140 is discharged from the inside of the inner tube 130.
  • the gas discharged from the inside of the inner tube 130 to the reaction tube 120 side through the slit 132 is discharged to the outside of the reaction tube 120 by an exhaust means (not shown) through the exhaust pipe 121.
  • controller 180 is a controller that controls the operation of each part of the board processing device 100. The details of the controller will be described with reference to FIG. 1B.
  • FIG. 2 shows a cross-sectional view of the gas supply unit 150.
  • the gas supply unit 150 includes a main body 151, an introduction pipe 152 mounted inside the main body 151, O-rings 1591 and 1592 for sealing between the introduction pipe 152 and the main body 151, a bush 156, and a bush.
  • the nut 157 that pushes in 156 to deform the O-rings 1591 and 1592, and the O-ring 1593, bush 1582, and bush 1581 for sealing between the nozzle accommodating pipe and the introduction pipe portion 152, which will be described later, are pushed in to deform the O-ring 1593. It is provided with a nut 158 to allow.
  • the inner surfaces of the nuts 157 and 158 are threaded.
  • the portion where the nuts 157 and 158 of the main body 151 are attached is also threaded.
  • the main body 151 has a first gas supply pipe 153 for introducing a gas to be supplied to the inside of the inner tube 130, and a second gas supply pipe 153 for supplying an inert gas between the main body 151 and the introduction pipe 152.
  • a gas supply pipe 154 is formed.
  • the first gas supply pipe 153 and the second gas supply pipe 154 are each connected to the gas supply source 1500 shown in FIG.
  • FIG. 3 shows the configuration of the gas supply source 1500.
  • the gas supply source 1500 includes a raw material gas / reaction gas supply system 1530 that supplies a raw material gas or a reaction gas to the first gas supply pipe 153, and an inert gas supply system 1540 that supplies an inert gas to the second gas supply pipe 154. It has.
  • the raw material gas / reaction gas supply system 1530 includes a gas supply pipe 1531 for supplying the raw material gas, a mass flow controller (MFC) 1533 for controlling the flow rate of the raw material gas, a valve 1535 for turning on / off the flow of the raw material gas, and a reaction gas.
  • the inert gas supply system 1540 includes a gas supply pipe 1541 for supplying the inert gas, a mass flow controller (MFC) 1542 for controlling the flow rate of the inert gas, a valve 1543 for turning on / off the flow of the inert gas, and a second gas.
  • a gas supply pipe 1544 connected to the supply pipe 154 is provided.
  • the raw material gas supplied from a gas source (not shown) is passed through the gas supply pipe 1531.
  • the mass flow controller (MFC) 1533 adjusts the flow rate, the valve 1535 is turned on, the raw material gas supply flows, and the raw material gas is supplied from the gas supply pipe 1537 to the first gas supply pipe 153.
  • the flow rate of the reaction gas supplied from a gas source is adjusted by the mass flow controller (MFC) 1534 through the reaction gas supply pipe 1532.
  • MFC mass flow controller
  • the gas supply pipe 1537 is shared, and the valve 1535 and the valve 1536 are alternately switched on and off, so that the gas supply pipe 1537 is changed to the first gas supply pipe 153.
  • the gas type to be supplied can be switched between the raw material gas and the reaction gas.
  • the flow rate of the mass flow controller (MFC) 1542 is adjusted by passing the inert gas supplied from a gas source (not shown) through the gas supply pipe 1541, and the valve 1543 is turned on and disabled.
  • the active gas supply is flowed to supply the raw material gas from the gas supply pipe 1544 to the second gas supply pipe 154.
  • a gas introduction hole 155 for supplying the gas supplied from the first gas supply pipe 153 to the inside of the inner tube 130 is formed inside the main body portion 151.
  • the nozzle 1521 which is a portion ahead of the portion where the inert gas is introduced from the second gas supply pipe 154 of the introduction pipe portion 152, is formed in a pipe shape, and the inert gas is formed from the second gas supply pipe 154.
  • a gap is formed between the inside of the main body 151 and the inside of the main body 151 at the portion where the gas is introduced.
  • FIG. 4 is a cross-sectional view showing a state in which the gas supply unit 150 is mounted so as to face the gas introduction hole 131 formed in the inner tube through the heater 110 and the reaction tube 120.
  • FIG. 4 shows an example of the uppermost gas introduction unit among the plurality of gas supply units 150 provided.
  • the tip of the nozzle accommodating pipe 160 as the nozzle accommodating portion is inserted into the main body portion 151 and fixed with a nut 158. In this state, there is a gap between the hole 161 formed inside the nozzle accommodating pipe 160 and the nozzle 1521 of the introduction pipe portion 152, and a passage for the inert gas supplied from the second gas supply pipe 154 is secured. Will be done.
  • the nozzle 1521 is configured to be inserted into the nozzle accommodating pipe 160 as the nozzle accommodating portion. Further, the nozzle 1521 is also referred to as being individually housed in the nozzle housing portion.
  • the gas (raw material gas or reaction gas) supplied from the first gas supply pipe 153 and the inert gas supplied from the second gas supply pipe 154 are from the coaxial direction parallel to the surface of the substrate 101. It is supplied to the inside of the reaction tube 120.
  • the tip of the nozzle accommodating pipe 160 on the opposite side penetrates the heater 110 and reaches the inside of the reaction tube 120.
  • the tip portion 1522 of the nozzle 1521 of the introduction pipe portion 152 extends further inside the reaction tube 120 than the tip portion on the opposite side of the nozzle accommodating pipe 160, and immediately before the gas introduction hole 131 formed in the inner tube 130. Has reached.
  • gas raw material gas or reaction gas
  • the supplied gas is formed in the introduction pipe portion 152.
  • the gas is discharged from the tip portion 1522 of the nozzle 1521 of the introduction pipe portion 152 into the inside of the reaction tube 120 through the gas introduction hole 155.
  • Most of the gas released into the reaction tube 120 is supplied to the inside of the inner tube 130 through the gas introduction hole 131 formed in the inner tube 130, and is held inside the inner tube 130 by the substrate support 140.
  • a thin film is formed by reacting on the surface of the substrate 101.
  • the inert gas is introduced from the second gas supply pipe 154 into the inside of the reaction pipe 120 through the gap between the hole 161 of the nozzle accommodating pipe 160 and the nozzle 1521 of the introduction pipe portion 152. It is configured to supply.
  • the inert gas is supplied from the second gas supply pipe 154 to the inside of the reaction tube 120 while supplying the gas (raw material gas or reaction gas) from the first gas supply pipe 153 to the inside of the inner tube 130.
  • an inert gas for example, N 2 : nitrogen
  • N 2 nitrogen
  • the flow rate of the gas (raw material gas or reaction gas) from the first gas supply pipe 153 to the inside of the inner tube 130 and the flow rate of the inert gas supplied from the second gas supply pipe 154 are controlled by the controller 180. It is adjusted by a mass flow controller (not shown).
  • the flow rate of the inert gas supplied from the second gas supply pipe 154 is set to be smaller than the flow rate of the gas (raw material gas or reaction gas) supplied from the first gas supply pipe 153. More preferably, the flow rate of the inert gas is set to 1/10 or less of the flow rate of the gas (raw material gas or reaction gas).
  • the formation of the reaction product is suppressed, the reaction product can be prevented from adhering to the surface of the substrate 101 inside the inner tube 130, and the quality of the thin film formed on the surface of the substrate 101 is high. Can be maintained in a state.
  • a part of the inert gas supplied from the second gas supply pipe 154 may be introduced into the inner tube 130 through the gas introduction hole 131 formed in the inner tube 130.
  • the raw material gas or the reaction gas is supplied from the first gas supply pipe 153 to the inside of the inner tube 130 .
  • the gas supply pipe 1 and the first gas supply pipe dedicated to the reaction gas supply may be provided separately.
  • the configuration in which the tip portion 1522 of the nozzle 1521 of the introduction pipe portion 152 extends to immediately before the gas introduction hole 131 formed in the inner tube 130 has been described, but the introduction pipe portion 152 The tip portion 1522 of the nozzle 1521 may be inserted into the gas introduction hole 131 formed in the inner tube 130.
  • the configuration in which the inner tube 130 is provided inside the reaction tube 120 has been described, but the substrate 101 is mounted inside the reaction tube 120 with the substrate support 140 without using the inner tube 130. It may be configured to be taken in and out.
  • the tip portion 1522 of the nozzle 1521 of the introduction pipe portion 152 is installed so as to be located in the vicinity of the substrate 101 held by the substrate support 140.
  • controller As shown in FIG. 1A, the substrate processing apparatus 100 is connected to a controller 180 that controls the operation of each unit.
  • the outline of the controller 180 is shown in FIG. 1B.
  • the controller 180 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 180a, a RAM (Random Access Memory) 180b, a storage device 180c, and an input / output port (I / O port) 180d.
  • the RAM 180b, the storage device 180c, and the I / O port 180d are configured so that data can be exchanged with the CPU 180a via the internal bus 180e.
  • An input / output device 181 configured as a touch panel or the like and an external storage device 182 can be connected to the controller 180, for example.
  • the storage device 180c is composed of a storage medium such as a flash memory or an HDD (Hard Disk Drive).
  • a control program for controlling the operation of the substrate processing apparatus, a process recipe in which the procedures and conditions for substrate processing described later are described, a database, and the like are readablely stored.
  • the process recipe is a combination of the process recipes so that the controller 180 can execute each procedure in the substrate processing process described later and obtain a predetermined result, and functions as a program.
  • this program recipe, control program, etc. are collectively referred to as a program.
  • program may include only the program recipe alone, the control program alone, or both.
  • the RAM 180b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 180a are temporarily held.
  • the I / O port 180d is connected to a heater 110, a board carry-in port (not shown), a boat vertical mechanism, a rotary drive motor, a mass flow controller, a vacuum pump, and the like.
  • connection in the present disclosure includes the meaning that each part is connected by a physical cable, but means that the signal (electronic data) of each part can be directly or indirectly transmitted / received. Also includes. For example, equipment for relaying signals and equipment for converting or calculating signals may be provided between each unit.
  • the CPU 180a is configured to read and execute a control program from the storage device 180c and read a process recipe from the storage device 180c in response to an input of an operation command from the controller 180 or the like. Then, the CPU 180a performs a power supply operation to the heater 110, an opening / closing operation of a substrate carry-in port (not shown), a vertical drive motor drive, and a boat vertical mechanism drive so as to follow the contents of the read process recipe. , It is configured to control the rotational operation of the rotary drive motor.
  • the controller 180 is not limited to the case where it is configured as a dedicated computer, and may be configured as a general-purpose computer.
  • an external storage device for example, magnetic tape, magnetic disk such as flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card
  • the controller 180 according to the present embodiment can be configured by preparing the 182 and installing the program on a general-purpose computer using the external storage device 182.
  • the means for supplying the program to the computer is not limited to the case of supplying the program via the external storage device 182.
  • a communication means such as a network 183 (Internet or a dedicated line) may be used to supply the program without going through the external storage device 182.
  • the storage device 180c and the external storage device 182 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium. In the present specification, when the term recording medium is used, the storage device 180c alone may be included, the external storage device 182 alone may be included, or both of them may be included.
  • SiO 2 (as an example of a process of forming a thin film on a substrate 101 as one step of a manufacturing process of a semiconductor device (device)).
  • the process of forming the silicon oxide) layer will be described.
  • the step of forming a film such as a SiO 2 layer is executed inside the reaction tube 120 of the substrate processing apparatus 100 described above. Execution of the manufacturing process is performed by program execution stored in a controller (not shown).
  • the substrate support (boat) 140 is raised by a vertical drive means (not shown), and the substrate support 140 is raised as shown in FIG. 1A. It is inserted into an inner tube 130 installed inside the reaction tube 120. In this state, the substrate 101 mounted on the substrate support 140 has a predetermined height (interval) with respect to the partition plate 142.
  • the above steps (a) to (d) are repeated a plurality of times to form the SiO 2 layer on the substrate 10.
  • the second gas is supplied in parallel with the supply of gas from the first gas supply pipe 153 to the inside of the gas introduction hole 155 of the gas supply unit 150.
  • Inactive gas is supplied from the pipe 154 to the gap between the hole 161 of the nozzle accommodating pipe 160 and the nozzle 1521 of the introduction pipe portion 152 of the gas supply unit 150, and the tip portion of the nozzle 1521 is supplied inside the reaction tube 120 through this gap.
  • An inert gas is supplied in the vicinity of 1522.
  • the formation of the reaction product near the tip portion 1522 of the slip 1521 is suppressed, and the reaction product can be prevented from adhering to the surface of the substrate 101 inside the inner tube 130, and the surface of the substrate 101 can be prevented.
  • the quality of the thin film formed in the above can be maintained in a high state.
  • the word "board” when used in this specification, it means “the board itself” or “a laminate (aggregate) of a board and a predetermined layer or film formed on the surface thereof). “(That is, a substrate including a predetermined layer, film, etc. formed on the surface) may be used.
  • the term “surface of the substrate” when used in the present specification, it means “the surface of the substrate itself (exposed surface)” or “the surface of a predetermined layer or film formed on the substrate”. That is, it may mean “the outermost surface of the substrate as a laminated body”. It should be noted that the use of the term “board” in the present specification is synonymous with the use of the term “wafer”.
  • SiO two-layer forming step S505 Subsequently, in order to form, for example, a SiO 2 layer as the first layer, the following detailed steps are performed.
  • the flow rate of Si 2 Cl 6 gas which is a raw material gas, is adjusted from the first gas supply pipe 153 of the gas supply unit 150 to the inside of the reaction pipe 120 through the nozzle 1521. Shed in a state of being.
  • the raw material gas supplied to the reaction tube 120 is supplied to the inside of the inner tube 130 through the gas introduction hole 131 formed in the inner tube 130, and a part of the raw material gas is not supplied to the inside of the inner tube 130.
  • the gas that did not contribute to the reaction on the surface of the substrate 101 flows out from the slit 132 formed in the inner tube 130 to the reaction tube 120 side and is exhausted from the exhaust pipe 121.
  • the Si 2 Cl 6 gas is supplied to the substrate 101 held by the substrate support 140.
  • the flow rate of the supplied Si 2 Cl 6 gas is set in the range of 0.002 to 1 slm (Standard liter per minute), more preferably in the range of 0.1 to 1 slm.
  • an inert gas such as N 2 (nitrogen) gas or Ar (argon) gas is introduced into the gas supply unit 150 from the second gas supply pipe 154 as a carrier gas together with the Si 2 Cl 6 gas to the reaction tube. It is supplied to the inside of 120 and exhausted from the exhaust pipe 121.
  • the specific flow rate of the carrier gas is set in the range of 0.01 to 5 slm, more preferably in the range of 0.5 to 5 slm.
  • the N 2 gas of the carrier gas is supplied to the inside through the gap between the nozzle 1521 and the hole 161 formed in the nozzle accommodating pipe 160, and a part thereof is provided through the gas introduction hole 131 formed in the inner tube 130. It passes through and enters the inside of the inner tube 130.
  • most of the N 2 gas supplied to the inside of the reaction tube 120 is exhausted from between the reaction tube 120 and the inner tube 130 through the exhaust pipe 121.
  • the temperature of the heater 110 is set so that the temperature of the substrate 101 is in the range of, for example, 250 to 550 ° C.
  • the only gases flowing inside the inner tube 130 are Si 2 Cl 6 gas and N 2 gas, and by supplying the Si 2 Cl 6 gas to the inner tube 130, on the substrate 101 (surface base film), for example.
  • a Si-containing layer having a thickness of less than one atomic layer to several atomic layers is formed.
  • the supply of the N 2 gas, which is the carrier gas, from the gap between the nozzle 1521 and the hole 161 formed in the nozzle accommodating pipe 160 into the reaction tube 130 is maintained.
  • the N 2 gas acts as a purge gas and enhances the effect of removing the unreacted or Si 2 Cl 6 gas remaining inside the reaction tube 120 from the inside of the inner tube 130 and the reaction tube 120 after contributing to the formation of the Si-containing layer. be able to.
  • reaction gas supply S5053
  • the O 2 gas which is the reaction gas
  • the gas supply unit 150 After removing the residual gas inside the inner tube 130 and the reaction tube 120, the O 2 gas, which is the reaction gas, is introduced into the gas supply unit 150 from the first gas supply tube 153, and the inner is from the nozzle 1521 via the reaction tube 120.
  • the O 2 gas supplied to the inside of the tube 130 and not contributing to the reaction is exhausted from the inner tube 130 and the reaction tube 120 via the exhaust pipe 121.
  • the flow rate of the O 2 gas to be supplied is set in the range of 0.2 to 10 slm, more preferably in the range of 1 to 5 slm.
  • N 2 gas Is not supplied to the inside of the reaction tube 120 together with the O 2 gas. That is, since the O 2 gas is supplied to the inside of the reaction tube 120 and the inner tube 130 without being diluted with the N 2 gas, it is possible to improve the film formation rate of the SiO 2 layer.
  • the temperature of the heater 110 at this time is set to the same temperature as that of the Si 2 Cl 6 gas supply step.
  • the only gas flowing inside the reaction tube 120 and the inner tube 130 is O 2 gas.
  • the O 2 gas undergoes a substitution reaction with at least a part of the Si-containing layer formed on the substrate 101 in the raw material gas (Si 2 Cl 6) supply step (S4051).
  • Si contained in the Si-containing layer and O contained in the O 2 gas are combined to form a SiO 2 layer containing Si and O on the substrate 101.
  • SiO having a predetermined thickness (for example, 0.1 to 2 nm) is placed on the substrate 10.
  • a predetermined thickness for example, 0.1 to 2 nm
  • the above cycle is preferably repeated a plurality of times, for example, preferably about 10 to 80 times, and more preferably about 10 to 15 times, so that the surface of the substrate 10 is a thin film having a uniform film thickness distribution. Can be formed.
  • step S506 After repeatedly executes a series of steps a predetermined number of times in step S505, it supplies the nozzle 1521 N 2 gas into the interior of the inner and the inner tube 130 of the reaction tube 120 is exhausted from the exhaust pipe 121.
  • the N 2 gas acts as a purge gas, whereby the inside of the reaction tube 120 and the inside of the inner tube 130 are purged with an inert gas, and the gas and by-products remaining inside the reaction tube 120 and the inside of the inner tube 130 are removed. It is removed from the reaction tube 120.
  • a SiO 2 film on the substrate 101 has been described, but the present embodiment is not limited to this.
  • a Si 3 N 4 (silicon nitride) film or a TiN (titanium nitride) film can be formed instead of the SiO 2 film.
  • a gas containing at least one of the above-mentioned halogen-containing gas, halogen element, amino group, cyclopenta group, oxygen (O), carbon (C), alkyl group, etc. is used.
  • the formation of the reaction product is suppressed during the film formation on the substrate, and the reaction product can be prevented from adhering to the surface of the substrate inside the inner tube, and the reaction product can be prevented from adhering to the surface of the substrate.
  • the formation of a high quality thin film can be stably maintained.
  • the supply of the gas (raw material gas or reaction gas) and the supply of the inert gas are coaxially oriented in a plane parallel to the surface of the substrate 101 held by the substrate support 140 inside the inner tube 130.
  • the configuration to be performed from is explained.
  • the gas (raw material gas or reaction gas) is supplied from a direction parallel to the surface of the substrate 101 as in the case of the first embodiment, and the inert gas is supplied in the gas supply pipe vertically arranged inside the reaction tube 120. It was configured to be supplied from 510.
  • FIG. 7 shows a cross section of a portion of the substrate processing apparatus in this modification in which the gas supply unit is attached to the inner tube.
  • the configuration of the gas supply unit 150 for supplying the gas is the same as that described in the first embodiment, but in the present modification, the second gas supply pipe 154 is the gas supply pipe 510. It is used to discharge the inert gas supplied from the inside of the reaction tube 120 to the outside.
  • the gas (raw material gas or reaction gas) is supplied from the tip portion 1522 of the nozzle 1521 of the gas supply unit 150 to the gas supply pipe 510 vertically arranged inside the reaction tube 120.
  • the inert gas is supplied to the inside of the reaction tube 120 from a plurality of holes 511 formed corresponding to the supply unit 150.
  • the inert gas is supplied to the vicinity of the tip portion 1522 of the nozzle 1521 of the introduction pipe portion 152 inside the gas supply pipe 410, and the reaction is generated by the gas supplied from the first gas supply pipe 153 to the vicinity of the tip portion 1522.
  • the formation of things is suppressed.
  • the formation of the reaction product is suppressed, the reaction product can be prevented from adhering to the surface of the substrate 101 inside the inner tube 130, and the quality of the thin film formed on the surface of the substrate 101 is high. Can be maintained in a state.
  • the gas supply pipe 510 may have a U-turn shape in which the tip portion thereof is bent into a U shape and folded back. Further, in this modification, the second gas supply pipe 154 may not be provided.
  • the inert gas is supplied to the inside of the reaction tube 120 from the hole 511 formed in the gas supply tube 510 vertically arranged inside the reaction tube 120.
  • the structure is such that instead of the hole 511, the protrusion 711 having a hole formed inside supplies the inside of the reaction tube 120.
  • the gas supply pipe 710 supplies the inert gas to the vicinity of the tip portion 1522 of the nozzle 1521 of the introduction pipe portion 152, and the gas supplied from the first gas supply pipe 153 to the vicinity of the tip portion 1522 is used. The formation of reaction products is suppressed.
  • the formation of the reaction product is suppressed, the reaction product can be prevented from adhering to the surface of the substrate 101 inside the inner tube 130, and the quality of the thin film formed on the surface of the substrate 101 is high. Can be maintained in a state.
  • the gas supply pipe 510 is formed into a straight shape and a plurality of protrusions 711 are formed therein has been described, but a plurality of gas supply pipes 510 are provided in the straight shape and nozzles are provided for each. It may be configured in a ⁇ (gamma) shape in which a protrusion 711 is formed at a position corresponding to the tip portion 1522 of 1521. Further, in this modification, the second gas supply pipe 154 may not be provided.
  • FIG. 9 is a cross-sectional view showing the configuration of a main part of the substrate processing apparatus 800 according to the second embodiment of the present disclosure.
  • the same components as those in the first embodiment described with reference to FIG. 1A are numbered the same.
  • the nozzle accommodating portion is not a pipe shape and is provided with a nozzle accommodating portion 810 capable of accommodating a plurality of gas supply units 850.
  • 120 is a reaction tube
  • 130 is an inner tube
  • 140 is a substrate support (boat) holding a plurality of substrates (wafers) 101, and a plurality of partition plates 142 supported by a partition plate support portion 141 of a plurality of substrates. It divides the space.
  • Reference numeral 143 is a top plate at the top of the partition plate 142.
  • the board support 140 uses a vertical mechanism (boat elevator) (not shown) to move a plurality of held boards into and out of the inner tube 130.
  • Reference numeral 110 denotes a heater, which heats the inside of the inner tube 130 including the reaction tube 120 with the substrate support 140 mounted inside the inner tube 130 by a vertical mechanism (not shown).
  • the heater 110 may be divided into a plurality of blocks in the vertical direction, and the heating state may be controlled for each block.
  • Reference numeral 850 is a gas supply unit for supplying gas to the inside of the inner tube 130, and the gas is supplied for each substrate 101 according to the vertical pitch (interval) of the substrate 101 held by the substrate support 140.
  • a plurality of components are provided in the same plane of the cross section shown in 9.
  • the gas supply unit 850 is attached in a direction substantially parallel to the surface of the substrate 101 held by the substrate support 140 inside the inner tube 130.
  • Reference numeral 810 is a nozzle accommodating unit that simultaneously holds a plurality of gas supply units 850, and is connected to the reaction tube 120 through the heater 110 while simultaneously holding the plurality of gas supply units 850.
  • the gas supply unit 850 held in the nozzle accommodating unit 810 has the same configuration as that described later in FIGS. 2 to 4 in the first embodiment, and the nozzle of the gas supply unit 850 (to the nozzle 1521 in the first embodiment).
  • the tip portion of (corresponding to) is located at a position immediately before the gas introduction hole 131 formed in the inner tube 130.
  • a slit 132 is formed in a portion of the inner tube 130 facing the portion where the plurality of gas introduction holes 131 are formed, and among the gases supplied to the inside of the inner tube 130 from the plurality of gas introduction holes 131. , The gas that did not contribute to the reaction inside the inner tube 130 including the surface of the substrate 101 held by the substrate support 140 is discharged from the inside of the inner tube 130.
  • the gas discharged from the inside of the inner tube 130 to the reaction tube 120 side through the slit 132 is discharged to the outside of the reaction tube 120 by an exhaust means (not shown) through the exhaust pipe 121.
  • the plurality of gas supply units 850 can be collectively handled by the nozzle accommodating unit 810, maintenance of the plurality of gas supply units 850 in the substrate processing apparatus 800 can be performed for comparative application.
  • the formation of the reaction product is suppressed during the film formation on the substrate, and the reaction product can be prevented from adhering to the surface of the substrate inside the inner tube.
  • the formation of a high quality thin film on the surface can be stably maintained.
  • the present disclosure also includes the following embodiments.
  • a reaction tube that houses the substrate and A nozzle accommodating portion on the side of the reaction tube, which is arranged so as to extend in the horizontal direction of the substrate.
  • a gas supply nozzle inserted into the nozzle accommodating portion from the outside of the reaction tube, and A first gas supply unit that supplies the first gas into the gas supply nozzle, A second gas supply unit that supplies a second gas into the nozzle accommodating unit, Substrate processing equipment with.
  • the reaction tube has an inner tube.
  • the inner tube has an opening facing the opening of the gas supply nozzle.
  • the tip of the gas supply nozzle is configured to be insertable up to the inner wall of the inner tube.
  • the second gas is supplied between the reaction tube and the inner tube.
  • the second gas is supplied between the nozzle accommodating portion and the gas supply nozzle.
  • the second gas supply unit is connected in the direction perpendicular to the surface of the substrate of the nozzle accommodating unit.
  • the nozzle accommodating portion is formed in a tubular shape, and the second gas supply portion is connected to the wall of the pipe.
  • a fixture for fixing the gas supply nozzle is provided in the nozzle accommodating portion, and the second gas supply unit is configured to be able to supply the second gas via the fixture.
  • the nozzle accommodating portion is provided with an exhaust pipe for exhausting the atmosphere in the nozzle accommodating portion.
  • the reaction tube has an inner tube, and a third gas supply unit for supplying a second gas is provided between the reaction tube and the inner tube.
  • the third gas supply unit is provided with an opening or a protruding portion protruding from the nozzle accommodating portion at a position corresponding to the nozzle accommodating portion.
  • the third gas supply unit is formed in any of a straight shape, a ⁇ (gamma) shape, a U-turn shape, and a comb shape.
  • the first gas supply unit is provided with a first flow rate adjusting unit for adjusting the first gas flow rate
  • the second gas supply unit is provided with a second flow rate adjusting unit for adjusting the second gas flow rate.
  • a control unit is provided so that the first flow rate adjusting unit and the second flow rate adjusting unit can be controlled so that the second gas flow rate becomes smaller than the first gas flow rate. And have.
  • the control unit causes the first flow rate adjusting unit and the second flow rate adjusting unit so that the flow rate of the second gas is 1/10 or less of the flow rate of the first gas. It is configured to be controllable.
  • the control unit sets the flow rate of the second gas to 1/10 of the flow rate of the first gas.
  • the program included in the control unit can be controlled so that the flow rate exceeding the above can not be set.
  • the second gas supply unit is provided in the nozzle accommodating unit.
  • a plurality of the first gas supply units are provided in the nozzle accommodating unit.
  • the first gas is a processing gas
  • the second gas is an inert gas.
  • the processing gas includes either or both of a raw material gas and a reaction gas.
  • the present invention is not limited to this, and one substrate may be held in the substrate holder for processing, or the substrate holder may be used. It may be configured so that one substrate can be held.
  • the film forming process is described as one step of the manufacturing process of the semiconductor device, but it can be applied not only to the film forming process but also to processes such as heat treatment and plasma treatment.
  • the substrate processing apparatus capable of carrying out one step of the manufacturing process of the semiconductor device has been described, but the present invention is not limited to this, and the substrate for processing a substrate such as a ceramic substrate, a liquid crystal device substrate, a light emitting device substrate, etc. It may be a processing device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

反応管の内部に設置した基板(ウェハ)の表面に、均質な成膜処理を施すことを可能にする技術であって、基板処理装置を、基板を内部に収容する反応管と、反応管の側方で基板の表面に平行な方向に延びて基板に対応して配置されるノズル収容部と、ノズル収容部の内部に挿入され反応管の外側から反応管の内部に伸びるガス供給ノズルと、ガス供給ノズルに第1のガスを供給する第1ガス供給部とを備えて構成した。

Description

基板処理装置、半導体装置の製造方法および記録媒体
 本開示は、基板処理装置、半導体装置の製造方法および記録媒体に関する。
 反応管の内部に処理対象である複数の基板が多段に配置されて基板を処理するための基板処理装置として、基板上に複数の元素を含む膜を生成する処理を行う反応容器と、この反応容器内を加熱するヒータと、少なくとも一部がヒータと対向するように反応容器内に設けられ、膜を構成する複数の元素のうち少なくとも一つの元素を含み、それ単独で膜を堆積させることのできる第1ガスを反応容器内に供給する少なくとも一つのノズルと、このノズルの少なくともヒータと対向する部分を覆うように設けられ、膜を構成する複数の元素のうち少なくとも一つの元素を含み、それ単独では膜を堆積させることのできない第2ガスを内部に流通させて反応容器内に供給する流通管とを有する基板処理装置が記載されている。例えば、特許文献1。
特開2008-244443号公報
 縦型の基板処理装置では、反応管の下側から垂直方向にノズルを設け、ノズルには、反応管の内部に設置されるウェハも枚数に応じた複数の穴が形成されている。このような構成で膜を構成する複数の元素のうち少なくとも一つの元素を含み、それ単独で膜を堆積させることのできる第1ガスをノズルから反応管の内部に噴射する構成においては、第1ガスがヒータで加熱されて垂直方向に延びるノズルの内部で分解が進んでしまうので、ノズルの上下方向で分解の度合いが異なり、反応管の上部に載置したウェハと下部に載置したウェハとでは、成膜の状態が異なってしまう。
 上記した課題を解決するために、本開示では、基板処理装置を、基板を収容する反応管と、反応管の側方で基板の表面に平行な方向に延びて基板に対応して配置されるノズル収容部と、ノズル収容部の内部に挿入され反応管の外側から反応管の内部に伸びる複数のガス供給ノズルと、ガス供給ノズルに第1のガスを供給する第1ガス供給部とを備えて構成した。
 本開示によれば、複数の基板毎の処理均一性を向上させることが可能となる。
本開示の第1の実施例に係る基板処理装置の主要部の構成を示す断面図である。 本開示の第1の実施例に係る基板処理装置のコントローラの構成を示すブロック図である。 本開示の第1の実施例に係る基板処理装置のガス供給部の構成を示す断面図である。 本開示の第1の実施例に係るガス供給源の構成を示すブロック図である。 本開示の第1の実施例に係る基板処理装置のガス供給部をインナーチューブに装着した状態を示す断面図である。 本開示の第1の実施例に係る基板処理方法の処理の流れを示すフローチャートである。 本開示の第1の実施例の第1の変形例に係る基板処理装置の主要部の構成を示す断面図である。 本開示の第1の実施例の第1の変形例に係る基板処理装置のガス供給部をインナーチューブに装着した状態を示す断面図である。 本開示の第1の実施例の第2の変形例に係る基板処理装置のガス供給部をインナーチューブに装着した状態を示す断面図である。 本開示の第1の実施例に係る基板処理装置の主要部の構成を示す断面図である。
 反応管の内部にガスを供給するノズル(ガス供給管)の先端部分には、反応管の内部に供給するガスによる反応生成物が発生して、そのまま先端部分に付着しやすい。このノズル(ガス供給管)の先端部分に付着した反応生成物は次第に増加して、ノズルの先端部分の穴詰まりを引き起こしたり、ノズルの先端部分からはがれて被処理基板に付着して被処理基板の表面の異物発生を引き起こしてしまう可能性がある。
 また、反応管の内部にガスを供給するノズル(ガス供給管)の先端部分には、反応管の内部に供給するガスによる反応生成物が発生して、そのまま先端部分に付着しやすい。このノズル(ガス供給管)の先端部分に付着した反応生成物は次第に増加(成長)して、ノズルの先端部分の穴詰まりを引き起こしたり、ノズルの先端部分からはがれてその一部が被処理基板に付着し、被処理基板の表面の異物発生を引き起こしてしまう可能性がある。
 本開示は、上記した課題を解決して、反応管の内部で上下方向に所定の間隔を置いて設置した複数の基板(ウェハ)の表面に、均質な成膜処理を施すことを可能にする基板処理装置及びそれを用いた半導体装置の製造方法並びにコンピュータによって基板処理装置に実行させるプログラムを記録した記録媒体を提供するものである。 すなわち本開示は、反応ガス又は原料ガスを供給するガスノズルの外周に、不活性ガスを供給する手段を設け、反応ガス又は原料ガスが反応管(インナーチューブ)の側からガスノズルの外側に入り込むのを防止して、ガスノズルの外周に反応生成物が付着するのを防ぎ、基板の表面に形成する膜の均質性と品質を向上させるようにしたものである。
 以下、本開示の実施の形態を図面に基づいて詳細に説明する。本実施の形態を説明するための全図において同一機能を有するものは同一の符号を付すようにし、その繰り返しの説明は原則として省略する。
 ただし、本開示は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本開示の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。
 本開示の第1の実施例を、図1A乃至図3を用いて説明する。 
 図1Aは、第1の実施例に係る基板処理装置100の主要部の構成を示す断面図である。120は反応管、130はインナーチューブ、140は基板支持具(ボート)で複数枚の基板(ウェハ)101を保持し、仕切板支持部141により支持される複数の仕切板142で複数の基板の間を仕切っている。143は仕切板142の一番上にある天板である。基板支持具140は、図示していない上下機構(ボートエレベータ)により、保持した複数枚の基板をインナーチューブ130の内部への出し入れを行う。
 110はヒータで、図示していない上下機構により基板支持具140がインナーチューブ130の内部に装着された状態で、反応管120を含めてインナーチューブ130の内部を加熱する。ヒータ110は、上下方向に複数のブロックに分割して、各ブロックごとに図示していない温度計などの測温手段のデータに基づいて加熱状態を制御するようにしてもよい。
 150はインナーチューブ130の内部にガスを供給するガス供給部で、基板支持具140に保持される基板101の上下方向のピッチ(間隔)に合わせて基板101ごとにガスを供給できるように、図1Aに示した断面の同一面内に複数備えた構成となっている。ガス供給部150は、インナーチューブ130の内部で基板支持具140に保持される基板101の表面に対してほぼ平行な方向に取り付けられている。
 インナーチューブ130には、ガス供給部150の先端部分が位置する箇所に、ガス供給部150から供給されるガスをインナーチューブ130の内部に導入するように、複数のガス導入穴131が形成されている。
 一方、インナーチューブ130の複数のガス導入穴131が形成された箇所に対向する箇所にはスリット132が形成されており、複数のガス導入穴131からインナーチューブ130の内部に供給されたガスのうち、基板支持具140に保持された基板101の表面を含むインナーチューブ130の内部での反応に寄与しなかったガスを、インナーチューブ130の内部から排出させる。
 スリット132を通ってインナーチューブ130の内部から反応管120の側に排出されたガスは、排気管121を通って、図示していない排気手段により反応管120の外部に排出される。
 180はコントローラで、基板処理装置100の各部の動作を制御する。なお、コントローラの詳細については、図1Bを用いて説明する。
 図2には、ガス供給部150の断面図を示す。 
 ガス供給部150は、本体部151、本体部151の内部に装着される導入管部152、導入管部152と本体部151との間を密閉するためのOリング1591と1592、ブッシュ156、ブッシュ156を押し込んでOリング1591と1592を変形させるナット157、後述するノズル収容パイプと導入管部152との間を密閉するためのOリング1593、ブッシュ1582、ブッシュ1581を押し込んでOリング1593を変形させるナット158を備えている。
 ナット157と158には、内面がネジ加工されている。一方、本体部151のナット157と158とを取付ける部分にも、ネジ加工が施されている。ナット157と158とはそれぞれ本体部151のネジ加工が施された部分に装着することにより、ブッシュ156及びブッシュ1581を押し込んで、Oリング1591と1592及びOリング1593を変形させる。
 本体部151には、インナーチューブ130の内部に供給するガスを導入するための第1ガス供給管153と、本体部151と導入管部152との間に不活性ガスを供給するための第2ガス供給管154とが形成されている。第1ガス供給管153と第2ガス供給管154とは、夫々図3に示すガス供給源1500と接続されている。
 図3に、ガス供給源1500の構成を示す。ガス供給源1500は、第1ガス供給管153に原料ガス又は反応ガスを供給する原料ガス・反応ガス供給系1530と、第2ガス供給管154に不活性ガスを供給する不活性ガス供給系1540を備えている。
 原料ガス・反応ガス供給系1530は、原料ガスを供給するガス供給管1531と原料ガスの流量を制御するマスフローコントローラ(MFC)1533、原料ガスの流れをオン・オフするバルブ1535、及び、反応ガスを供給する反応ガス供給管1532と反応ガスの流量を制御するマスフローコントローラ(MFC)1534、反応ガスの流れをオン・オフするバルブ1536と、第1ガス供給管153に接続するガス供給管1537を備えている。
 不活性ガス供給系1540は、不活性ガスを供給するガス供給管1541と不活性ガスの流量を制御するマスフローコントローラ(MFC)1542、不活性ガスの流れをオン・オフするバルブ1543と第2ガス供給管154に接続するガス供給管1544を備えている。
 このような構成において、原料ガス・反応ガス供給系1530では、バルブ1536をオフにして反応ガスの流れを停止した状態で、図示していないガス源から供給された原料ガスをガス供給管1531を通して、マスフローコントローラ(MFC)1533で流量を調整し、バルブ1535をオンの状態にして原料ガス供給を流して、ガス供給管1537から第1ガス供給管153に原料ガスを供給する。
 また、バルブ1535をオフにして原料ガスの供給を停止した状態で、図示していないガス源から供給された反応ガスを反応ガス供給管1532を通して、マスフローコントローラ(MFC)1534で流量を調整し、バルブ1536をオンの状態にして反応ガスを流して、ガス供給管1537から第1ガス供給管153に反応ガスを供給する。
 すなわち、原料ガス・反応ガス供給系1530では、ガス供給管1537を共有し、バルブ1535とバルブ1536とのオンとオフとを交互に切り替えることで、ガス供給管1537から第1ガス供給管153に供給するガス種を、原料ガスと反応ガスとの間で切り替えることができる。
 一方、不活性ガス供給系1540では、図示していないガス源から供給された不活性ガスをガス供給管1541を通して、マスフローコントローラ(MFC)1542流量を調整し、バルブ1543をオンの状態にして不活性ガス供給を流して、ガス供給管1544から第2ガス供給管154に原料ガスを供給する。
 図2に示すように、本体部151の内部には、第1ガス供給管153から供給されたガスをインナーチューブ130の内部に供給するためのガス導入用の孔155が形成されている。また、導入管部152の第2ガス供給管154から不活性ガスが導入される部分よりも先の部分であるノズル1521はパイプ状に形成されており、第2ガス供給管154から不活性ガスが導入される部分において、本体部151の内部との間に隙間が形成されている。
 図4には、ガス供給部150を、ヒータ110と反応管120を通してインナーチューブに形成したガス導入穴131と対向するように装着した状態を示す断面図である。図4には、複数備えたガス供給部150の内、最上部のガス導入部の例を示している。
 ノズル収容部としてのノズル収容パイプ160の先端部分が本体部151の内部に挿入され、ナット158で固定されている状態を示している。この状態で、ノズル収容パイプ160の内部に形成された穴161と導入管部152のノズル1521との間には隙間があり、第2ガス供給管154から供給された不活性ガスの通路が確保される。言い換えると、ノズル1521は、ノズル収容部としてのノズル収容パイプ160内に挿入される様に構成される。また、ノズル1521は、ノズル収容部に個別に収容されているとも呼ぶ。
 このように、第1ガス供給管153から供給されたガス(原料ガス又は反応ガス)と第2ガス供給管154から供給された不活性ガスは、基板101の表面に対して平行な同軸方向から反応管120の内部に供給される。
 ノズル収容パイプ160の反対側の先端部分はヒータ110を貫通して反応管120の内側まで達している。一方、導入管部152のノズル1521の先端部分1522は、ノズル収容パイプ160の反対側の先端部分よりもさらに反応管120の内部に伸びて、インナーチューブ130に形成されたガス導入穴131の直前まで達している。
 この状態で、ヒータ110によりノズル1521及びインナーチューブ130の内部を加熱しながら第1ガス供給管153からガス(原料ガス又は反応ガス)を供給すると、供給されたガスは、導入管部152に形成されたガス導入用の孔155を通って、導入管部152のノズル1521の先端部分1522から反応管120の内部に放出される。この反応管120の内部に放出されたガスの大部分はインナーチューブ130に形成されたガス導入穴131を通ってインナーチューブ130の内部に供給され、インナーチューブ130の内部で基板支持具140により保持されている基板101の表面上で反応して薄膜が形成される。
 この時、導入管部152のノズル1521の先端部分1522から反応管120の内部に放出されたガスのうち一部は、ガス導入穴131を通ってインナーチューブ130の内部に供給されずに反応管120の内部に残留する。
 この、インナーチューブ130の内部に供給されずに反応管120の内部に残留したガスをそのままの状態にしておくと、導入管部152のノズル1521の先端部分1522の周囲に残留したガスによる反応生成物が形成される。この反応生成物が先端部分1522に反応生成物が堆積すると、その一部が剥がれ落ちてインナーチューブ130の内部に飛散して基板101の表面に付着してしまい、基板101の表面に形成する薄膜の膜の品質を低下させてしまう恐れがある。
 これに対して、本実施例では第2ガス供給管154から不活性ガスをノズル収容パイプ160の穴161と導入管部152のノズル1521との間の隙間を通して反応管120の内部に不活性ガスを供給する構成となっている。
 このような構成において、第1ガス供給管153からインナーチューブ130の内部にガス(原料ガス又は反応ガス)を供給しながら第2ガス供給管154から反応管120の内部に不活性ガスを供給することにより、導入管部152のノズル1521の先端部分1522付近に不活性ガス(例えば、N:窒素)が供給され、先端部分1522付近への第1ガス供給管153から供給されたガスによる反応生成物の形成が抑制される。
 ここで、第1ガス供給管153からインナーチューブ130の内部にガス(原料ガス又は反応ガス)の流量と、第2ガス供給管154から供給される不活性ガスの流量は、コントローラ180でコントロールされる図示していないマスフローコントローラにより調整される。
 本実施例においては、第2ガス供給管154から供給される不活性ガスの流量は第1ガス供給管153から供給されるガス(原料ガス又は反応ガス)の流量よりも少なく設定する。より好ましくは、不活性ガスの流量をガス(原料ガス又は反応ガス)の流量の1/10以下に設定する。
 これにより、反応生成物の形成が抑制されてインナーチューブ130の内部における反応生成物の基板101の表面への付着を防止することができ、基板101の表面に形成する薄膜の膜の品質を高い状態で維持することができる。
 第2ガス供給管154から供給された不活性ガスの一部は、インナーチューブ130に形成されたガス導入穴131を通ってインナーチューブ130の内部に導入されても良い。
 なお、上記に説明した実施例では、第1ガス供給管153からインナーチューブ130の内部に原料ガス又は反応ガスを供給例について説明したが、第1ガス供給管153として、原料ガス供給専用の第1のガス供給管と、反応ガス供給専用の第1のガス供給管とを別々に設けてもよい。
 また、上記に説明した実施例では、導入管部152のノズル1521の先端部分1522は、インナーチューブ130に形成されたガス導入穴131の直前まで伸びている構成について説明したが、導入管部152のノズル1521の先端部分1522がインナーチューブ130に形成されたガス導入穴131の内部に挿入されるような構成にしてもよい。
 さらに、上記に説明した実施例では、反応管120の内部にインナーチューブ130を設けた構成について説明したが、インナーチューブ130を用いずに、反応管120の内部に基板支持具140で基板101を出し入れするように構成してもよい。この場合、導入管部152のノズル1521の先端部分1522は、基板支持具140に保持されている基板101の近傍に位置するように設置する。
 [コントローラ] 
 図1Aに示す様に、基板処理装置100は、各部の動作を制御するコントローラ180と接続されている。
 コントローラ180の概略を図1Bに示す。制御部(制御手段)であるコントローラ180は、CPU(Central Processing Unit)180a、RAM(Random Access Memory)180b、記憶装置180c、入出力ポート(I/Oポート)180dを備えたコンピュータとして構成されている。RAM180b、記憶装置180c、I/Oポート180dは、内部バス180eを介して、CPU180aとデータ交換可能なように構成されている。コントローラ180には、例えばタッチパネル等として構成された入出力装置181や、外部記憶装置182が接続可能に構成されている。
 記憶装置180cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等の記憶媒体で構成されている。記憶装置180c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプロセスレシピおよびデータベース等が読み出し可能に格納されている。
 なお、プロセスレシピは、後述する基板処理工程における各手順をコントローラ180に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。
 以下、このプログラムレシピや制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プログラムレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM180bは、CPU180aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート180dは、ヒータ110や、図示していない基板搬入口,ボート上下機構、回転駆動用モータ、マスフローコントローラ、真空ポンプ等に接続されている。
 なお、本開示における「接続」とは、各部が物理的なケーブルで繋がっているという意味も含むが、各部の信号(電子データ)が直接または間接的に送信/受信可能になっているという意味も含む。例えば、各部の間に、信号を中継する機材や、信号を変換または演算する機材が設けられていても良い。
 CPU180aは、記憶装置180cからの制御プログラムを読み出して実行すると共に、コントローラ180からの操作コマンドの入力等に応じて記憶装置180cからプロセスレシピを読み出すように構成されている。そして、CPU180aは、読み出されたプロセスレシピの内容に沿うように、ヒータ110への電力供給動作や、図示していない基板搬入口の開閉動作、上下駆動用モータの駆動、ボート上下機構の駆動、回転駆動用モータの回転動作などを制御するように構成されている。
 なお、コントローラ180は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていても良い。例えば、上述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MOなどの光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)182を用意し、係る外部記憶装置182を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態に係るコントローラ180を構成することができる。
 なお、コンピュータにプログラムを供給するための手段は、外部記憶装置182を介して供給する場合に限らない。例えば、ネットワーク183(インターネットや専用回線)等の通信手段を用い、外部記憶装置182を介さずにプログラムを供給するようにしても良い。なお、記憶装置180cや外部記憶装置182は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に記録媒体ともいう。なお、本明細書において、記録媒体という言葉を用いた場合は、記憶装置180c単体のみを含む場合、外部記憶装置182単体のみを含む場合、または、その両方を含む場合が有る。
 [基板処理工程(成膜工程)] 
 次に、図1乃至図4で説明した基板処理装置を用いて基板上に膜を形成する基板処理工程(成膜工程)について図5を用いて説明する。
 本開示は、成膜プロセス及びエッチングプロセスの何れにも適用することができるが、半導体装置(デバイス)の製造工程の一工程として、基板101上に、薄膜を形成する工程の一例としてSiO(酸化シリコン)層を形成する工程について説明する。SiO層などの膜を形成する工程は、上述した基板処理装置100の反応管120の内部で実行される。製造工程の実行は、図示していないコントローラに記憶されたプログラム実行によってなされる。
 本実施形態による基板処理工程(半導体装置の製造工程)では、まず、図示していない上下駆動手段で基板支持具(ボート)140を上昇させて、図1Aに示したように基板支持具140を反応管120の内部に設置されたインナーチューブ130に挿入する。この状態で、基板支持具140に載置された基板101は、仕切板142に対した所定の高さ(間隔)となっている。
 この状態で、
(a)インナーチューブ130の内部に収容された基板101に対して、第1ガス供給管153からガス供給部150のガス導入用の孔155の内部にSiCl(六塩化二ケイ素)ガスを導入してノズル1521の先端部分1522からインナーチューブ130の内部に供給する工程と、
(b)第1ガス供給管153からのガスの導入を停止して、反応管120の内部の残留ガスを排気管121から外部へ排出して残留ガスを除去する工程と、
(c)インナーチューブ130の内部に収容された基板101に対して、第1ガス供給管153からガス供給部150のガス導入用の孔155の内部にO(酸素)(又はO(オゾン)又はHO(水))を導入してノズル1521の先端部分1522からインナーチューブ130の内部に供給する工程と、
(d)第1ガス供給管153からのガスの導入を停止して、反応管120の内部の残留ガスを排気管121から外部へ排出して残留ガスを除去する工程と、
を有し、上記(a)~(d)の工程を複数回繰り返して、SiO層を基板10上に形成する。
 また、上記(a)と(c)の工程において、第1ガス供給管153からガス供給部150のガス導入用の孔155の内部へのガスの供給を行うと並行して、第2ガス供給管154から不活性ガスをノズル収容パイプ160の穴161とガス供給部150の導入管部152のノズル1521との間の隙間に供給し、この隙間を通して反応管120の内部でノズル1521の先端部分1522の近傍に不活性ガスを供給する。
 これにより、のずる1521の先端部分1522付近への反応生成物の形成が抑制されてインナーチューブ130の内部における反応生成物の基板101の表面への付着を防止することができ、基板101の表面に形成する薄膜の膜の品質を高い状態で維持することができる。
 なお、本明細書において「基板」という言葉を用いた場合は、「基板そのもの」を意味する場合や、「基板とその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合(すなわち、表面に形成された所定の層や膜等を含めて基板と称する場合)がある。また、本明細書において「基板の表面」という言葉を用いた場合は、「基板そのものの表面(露出面)」を意味する場合や、「基板上に形成された所定の層や膜等の表面、すなわち、積層体としての基板の最表面」を意味する場合がある。
なお、本明細書において「基板」という言葉を用いた場合も、「ウェハ」という言葉を用いた場合と同義である。
 次に、具体的な成膜工程の例について、図5に示したフロー図に沿って説明する。 
 (プロセス条件設定):S501 
 まず、コントローラ180のCPU180aは、記憶装置180cに格納されているプロセスレシピ及び関連するデータベースを読み込んで、プロセス条件を設定する。
 (基板搬入):S502 
 基板支持具140に新たな基板101を1枚ずつ搭載して保持した状態で、図示していない駆動手段で基板支持具140を上昇させて、基板支持具140を反応管120の内側に設置されたインナーチューブ130の内部に搬入する。
 (圧力調整):S503 
 基板支持具140がインナーチューブ130の内部に搬入された状態で、反応管120の内部を図示していない真空ポンプによって排気管121から真空排気し、反応管120の内部が所望の圧力となるように調整する。
 (温度調整):S504 
 図示していない真空ポンプによって真空排気された状態で、ステップS501で読み込んだレシピに基づいて、反応管120の内部が所望の圧力(真空度)となるように反応管120の内部をヒータ110によって加熱する。この際、反応管120の内部が所望の温度分布となるように、図示していない温度センサが検出した温度情報に基づきヒータ110への通電量がフィードバック制御される。ヒータ110による反応管120の内部の加熱は、少なくとも基板101に対する処理が完了するまでの間は継続して行われる。
 [SiO層形成工程]:S505 
 続いて、第1の層として例えばSiO層を形成するために、以下のような詳細なステップを実行する。
 (原料ガス供給):S5051 
 まず、図示していない回転駆動により、基板支持具140に支持されている仕切板142と基板101とを回転させる。
 この仕切板142と基板101との回転を維持した状態で、ガス供給部150の第1ガス供給管153からノズル1521を通して反応管120の内部に原料ガスであるSiClガスを流量調整された状態で流す。反応管120に供給された原料ガスは、インナーチューブ130に形成したガス導入穴131を通ってインナーチューブ130の内部に供給され、一部がインナーチューブ130の内部に供給されずに、インナーチューブ130と反応管120との間の空間にとどまる。ノズル1521から供給された原料ガスのうち、基板101の表面での反応に寄与しなかったガスは、インナーチューブ130に形成したスリット132から反応管120の側に流出して排気管121から排気される。
 ノズル1521からインナーチューブ130の内部にSiClガスを導入することにより、基板支持具140に保持された基板101に対してSiClガスが供給されることとなる。供給するSiClガスの流量は、一例として、0.002~1slm(Standard liter per minute)の範囲、より好ましくは、0.1~1slmの範囲に設定する。
 このときSiClガスと一緒にキャリアガスとして、N(窒素)ガス、又はAr(アルゴン)ガス等の不活性ガスが第2ガス供給管154からガス供給部150に導入されて反応管120の内部に供給され、排気管121から排気される。キャリアガスの具体的な流量は、0.01~5slmの範囲、より好ましくは、0.5~5slmの範囲に設定する。
 キャリアガスのNガスは、ノズル1521とノズル収容パイプ160に形成された穴161との間の隙間を介しての内部に供給され、一部はインナーチューブ130に形成されたガス導入穴131を通ってインナーチューブ130の内部に入り込む。一方、反応管120の内部に供給されたNガスの大部分は、反応管120とインナーチューブ130との間から排気管121を通って排気される。このときヒータ110の温度は、基板101の温度が、例えば250~550℃の範囲内の温度となるような温度に設定する。
 インナーチューブ130の内部に流れているガスはSiClガスとNガスのみであり、SiClガスのインナーチューブ130への供給により、基板101(表面の下地膜)上に、例えば1原子層未満から数原子層程度の厚さのSi含有層が形成される。
 (原料ガス排気):S5052 
 インナーチューブ130の内部に所定の時間ノズル1521を介して原料ガスであるSiClガスを供給して、所定の温度範囲に加熱された基板101の表面にSi含有層が形成された後、SiClガスの供給を停止する。このとき、図示していない真空ポンプにより反応管120の内部を真空排気し、インナーチューブ130を含む反応管120内に残留する未反応もしくはSi含有層形成に寄与した後のSiClガスをインナーチューブ130及び反応管120の内部から排除する。
 このときノズル1521とノズル収容パイプ160に形成された穴161との間の隙間からのキャリアガスであるNガスの反応管130内部への供給を維持する。Nガスはパージガスとして作用し、反応管120の内部に残留する未反応もしくはSi含有層形成に寄与した後のSiClガスをインナーチューブ130及び反応管120の内部から排除する効果を高めることができる。
 (反応ガス供給):S5053 
 インナーチューブ130及び反応管120の内部の残留ガスを除去した後、第1ガス供給管153から反応ガスであるOガスをガス供給部150に導入し、ノズル1521から反応管120を介してインナーチューブ130の内部に供給し、反応に寄与しなかったOガスをインナーチューブ130及び反応管120から排気管121を介して排気する。これにより、基板101に対してOが供給されることとなる。具体的に供給するOガスの流量は、0.2~10slmの範囲、より好ましくは、1~5slmの範囲に設定する。
 このとき、第2ガス供給管154からガス供給部150へのNガスの供給を停止し、インナーチューブ130及び反応管120の内部へのNガスの供給を停止した状態として、NガスがOガスと一緒に反応管120の内部に供給されないようにする。すなわち、OガスはNガスで希釈されることなく、反応管120及びインナーチューブ130の内部に供給されるので、SiO層の成膜レートを向上させることが可能である。このときのヒータ110の温度は、SiClガス供給ステップと同様の温度に設定する。
 このとき反応管120及びインナーチューブ130の内部に流しているガスは、Oガスのみである。Oガスは、原料ガス(SiCl)供給ステップ(S4051)で基板101上に形成されたSi含有層の少なくとも一部と置換反応する。置換反応の際には、Si含有層に含まれるSiとOガスに含まれるOとが結合して、基板101上にSiとOとを含むSiO層が形成される。
 (残留ガス排気):S5054 
 SiO層を形成した後、ノズル1521から反応管120の内部及びインナーチューブ130の内部へのOガスの供給を停止する。そして、ステップS4052と同様の処理手順により、反応管120の内部及びインナーチューブ130の内部に残留する未反応もしくはSiO層の形成に寄与した後のOガスや反応副生成物を反応管120の内部及びインナーチューブ130の内部から排除する。
 (所定回数実施) 
 ステップS505における上記した詳細ステップS5051~ステップS5055を順に行うサイクルを1回以上(所定回数(n回))行うことにより、基板10上に、所定の厚さ(例えば0.1~2nm)のSiO層を形成する。上述のサイクルは、複数回繰り返すのが好ましく、例えば10~80回ほど行うことが好ましく、より好ましくは10~15回ほど行うことにより、基板10の表面には、均一な膜厚分布を有する薄膜を形成することができる。
 (アフターパージ):S506 
 上記ステップS505の一連の工程を所定の回数繰り返して実行した後、ノズル1521からNガスを反応管120の内部及びインナーチューブ130の内部へ供給し、排気管121から排気する。Nガスはパージガスとして作用し、これにより反応管120の内部及びインナーチューブ130の内部が不活性ガスでパージされ、反応管120の内部及びインナーチューブ130の内部に残留するガスや副生成物が反応管120内から除去される。
(基板搬出):S507 
 その後、図示していない上下機構により基板支持具140を反応管120のインナーチューブ130から下降させ、表面に所定の厚さの薄膜が形成された基板101を基板支持具140から取り出して基板101の処理を終了する。
 上記に説明した例においては、基板101上にSiO膜を形成する例について説明したが、本実施例はこれに限られるものではない。例えば、SiO膜の替わりに、Si(窒化シリコン)膜、又はTiN(窒化チタン)膜を形成することもできる。また、これらの膜に限るものでは無い。例えば、W、Ta、Ru、Mo、Zr、Hf、Al、Si、Ge、Ga等又は、これら元素と同族の元素、で構成される元素単体の膜や、これら元素と窒素との化合物膜(窒化膜)、これら元素と酸素との化合物膜(酸化膜)等にも適用することが可能である。なお、これらの膜を形成する際には、上述のハロゲン含有ガスや、ハロゲン元素、アミノ基、シクロペンタ基、酸素(O)、炭素(C)、アルキル基、等の少なくともいずれかを含むガスを用いることができる。
 本実施例によれば、基板上に成膜中に、反応生成物の形成が抑制されてインナーチューブの内部における反応生成物の基板の表面への付着を防止することができ、基板の表面に高い品質の薄膜を形成することを、安定して維持することができる。
 [変形例1] 
 実施例1では、ガス(原料ガス又は反応ガス)の供給と不活性ガスの供給とを、インナーチューブ130の内部で基板支持具140により保持されている基板101の表面に平行な面で同軸方向から行う構成について説明した。これに対して、本変形例では、図6に示すように。ガス(原料ガス又は反応ガス)の供給は実施例1の場合と同様に基板101の表面に平行な方向から供給し、不活性ガスは、反応管120の内部に縦方向に配置したガス供給管510から供給する構成とした。
 本変形例における基板処理装置の、ガス供給部をインナーチューブに装着した部分の断面を図7に示す。ガス(原料ガス又は反応ガス)を供給するガス供給部150の構成は、実施例1で説明したものと同じであるが、本変形例においては、第2ガス供給管154は、ガス供給管510から反応管120の内部に供給された不活性ガスを外部に排出するために用いられる。
 すなわち、本変形例においては、ガス供給部150のノズル1521の先端部分1522からガス(原料ガス又は反応ガス)を供給しながら、反応管120の内部に縦方向に配置したガス供給管510にガス供給部150に対応して複数形成した孔511から反応管120の内部に不活性ガスを供給する。
 これにより、ガス供給管410の内部で導入管部152のノズル1521の先端部分1522付近に不活性ガスが供給され、先端部分1522付近への第1ガス供給管153から供給されたガスによる反応生成物の形成が抑制される。
 その結果、反応生成物の形成が抑制されてインナーチューブ130の内部における反応生成物の基板101の表面への付着を防止することができ、基板101の表面に形成する薄膜の膜の品質を高い状態で維持することができる。
 なお、本変形例においては、ガス供給管510をストレート形状の場合について説明したが、ガス供給管510の先端部分がU字型にまがって折り返す、Uターン形状に構成してもよい。 
 また、本変形例では、第2ガス供給管154は設けなくても良い。
 [変形例2] 
 変形例1では、不活性ガスは、反応管120の内部に縦方向に配置したガス供給管510に形成された孔511から反応管120の内部に供給する構成であったが、本変形例においては、図8に示すように、孔511に替えて内部に穴が形成された突起部711から反応管120の内部に供給する構成とした。
 本変形例によれば、ガス供給管710により導入管部152のノズル1521の先端部分1522付近に不活性ガスが供給され、先端部分1522付近への第1ガス供給管153から供給されたガスによる反応生成物の形成が抑制される。
 その結果、反応生成物の形成が抑制されてインナーチューブ130の内部における反応生成物の基板101の表面への付着を防止することができ、基板101の表面に形成する薄膜の膜の品質を高い状態で維持することができる。
 なお、本変形例においては、ガス供給管510をストレート形状にしてそれに複数の突起部711を形成したくし形形状に場合について説明したが、ストレート形状にガス供給管510を複数設け、それぞれにノズル1521の先端部分1522に対応する位置に突起部711を形成したΓ(ガンマ)形状に構成してもよい。 
 また、本変形例では、第2ガス供給管154は設けなくても良い。
 本開示の第2の実施例を、図9を用いて説明する。 
 図9は、本開示の第2の実施例に係る基板処理装置800の主要部の構成を示す断面図である。図1Aで説明した第1の実施例と同じ構成部品には同じ番号を付してある。
 図1Aで説明した第1の実施例と異なる点は、ノズル収容部をパイプ形状で無く、複数のガス供給部850を収容可能なノズル収容部810を備えた点である。
 120は反応管、130はインナーチューブ、140は基板支持具(ボート)で複数枚の基板(ウェハ)101を保持し、仕切板支持部141により支持される複数の仕切板142で複数の基板の間を仕切っている。143は仕切板142の一番上にある天板である。基板支持具140は、図示していない上下機構(ボートエレベータ)により、保持した複数枚の基板をインナーチューブ130の内部への出し入れを行う。
 110はヒータで、図示していない上下機構により基板支持具140がインナーチューブ130の内部に装着された状態で、反応管120を含めてインナーチューブ130の内部を加熱する。ヒータ110は、上下方向に複数のブロックに分割されて、各ブロックごとに加熱状態を制御するようにしてもよい。
 850はインナーチューブ130の内部にガスを供給するガス供給部で、基板支持具140に保持される基板101の上下方向のピッチ(間隔)に合わせて基板101ごとにガスを供給できるように、図9に示した断面の同一面内に複数備えた構成となっている。ガス供給部850は、インナーチューブ130の内部で基板支持具140に保持される基板101の表面に対してほぼ平行な方向に取り付けられている。
 810は複数のガス供給部850を同時に保持するノズル収容部で、複数のガス供給部850を同時に保持した状態で、ヒータ110を貫通して反応管120と接続している。ノズル収容部810に保持されたガス供給部850は、実施例1において図2乃至図4を後いて説明した構成と同じ構成を有し、ガス供給部850のノズル(実施例1におけるノズル1521に相当)の先端部分は、インナーチューブ130に形成したガス導入穴131の直前の場所に位置している。
 一方、インナーチューブ130の複数のガス導入穴131が形成された箇所に対向する箇所にはスリット132が形成されており、複数のガス導入穴131からインナーチューブ130の内部に供給されたガスのうち、基板支持具140に保持された基板101の表面を含むインナーチューブ130の内部での反応に寄与しなかったガスを、インナーチューブ130の内部から排出させる。
 スリット132を通ってインナーチューブ130の内部から反応管120の側に排出されたガスは、排気管121を通って、図示していない排気手段により反応管120の外部に排出される。
 本実施例によれば、複数のガス供給部850をノズル収容部810で一括して扱うことができるので、基板処理装置800における複数のガス供給部850のメンテナンスを比較適用に行うことができる。
 また、本実施例によれば、基板上に成膜中に、反応生成物の形成が抑制されてインナーチューブの内部における反応生成物の基板の表面への付着を防止することができ、基板の表面に高い品質の薄膜を形成することを、安定して維持することができる。
 なお、本開示は、以下のような実施形態も含む。
(1)基板を収容する反応管と、
  前記反応管の側方であって、前記基板の水平方向に延びて配置されるノズル収容部と、
  前記反応管の外側から、前記ノズル収容部の内部に挿入されるガス供給ノズルと、
  前記ガス供給ノズル内に第1のガスを供給する第1ガス供給部と、
  前記ノズル収容部内に第2のガスを供給する第2ガス供給部と、
を有する基板処理装置。
(2)前記反応管は、インナーチューブを有する。
(3)前記インナーチューブには、前記ガス供給ノズルの開口と対向する開口を有する。
(4)前記ガス供給ノズルの先端は前記インナーチューブの内壁まで挿入可能に構成される。
(5)前記第2のガスは、前記反応管と前記インナーチューブの間に供給される。
(6)前記第2のガスは、前記ノズル収容部と前記ガス供給ノズルの間に供給される。
(7)前記第2ガス供給部は、前記ノズル収容部の前記基板の面に対して垂直方向に接続される。
(8)前記ノズル収容部は、管状に構成され、前記第2のガス供給部は、前記管の壁に接続される。
(9)前記ノズル収容部に前記ガス供給ノズルを固定する固定具が設けられ、前記第2ガス供給部は、前記固定具を介して前記第2のガスを供給可能に構成される。
(10)前記ノズル収容部に、前記ノズル収容部内の雰囲気を排気する排気管が設けられる。
(11)前記反応管は、インナーチューブを有し、前記反応管と、前記インナーチューブの間に、第2のガスを供給する第3ガス供給部が設けられる。
(12)前記第3ガス供給部は、前記ノズル収容部と対応する位置に、開口又は、前記ノズル収容部に突出する突出部が設けられる。
(13)前記第3ガス供給部は、ストレート形状、Γ(ガンマ)形状、Uターン形状、くし形のいずれかの形状に構成される。
(14)前記第1ガス供給部に前記第1のガス流量を調整する第1の流量調整部が設けられ、前記第2ガス供給部に前記第2のガス流量を調整する第2の流量調整部が設けられ、前記第2のガス流量は、前記第1のガス流量よりも小さくなるように前記第1の流量調整部と前記第2の流量調整部とを制御可能に構成された制御部と、を有する。
(15)前記制御部は、前記第2のガスの流量を、前記第1のガスの流量の1/10以下とする様に前記第1の流量調整部と前記第2の流量調整部とを制御可能に構成される。
(16)前記制御部は、前記第2のガスの流量として、前記第1のガスの流量の1/10
を超えた流量を設定不可とするように前記制御部が有するプログラムを制御可能に構成される。
(17)前記第2ガス供給部は、前記ノズル収容部に一つ設けられる。
(18)前記第1ガス供給部は、前記ノズル収容部に複数設けられる。
(19)前記第1のガスは処理ガスであり、前記第2のガスは不活性ガスである。
(20)前記処理ガスは、原料ガスと反応ガスのいずれか又は両方を含む。
 また、上述では、ガス供給ノズルが、複数設けられた例について記したが、これに限らず、一つでもあれば良い。
 また、上述では、基板保持具に、複数の基板を保持する構成について記したが、これに限らず、基板保持具に一枚の基板を保持して処理しても良いし、基板保持具を一枚の基板を保持可能に構成しても良い。
 また、上述では、半導体装置の製造工程の一工程として、成膜工程について記したが成膜工程に限らず、熱処理や、プラズマ処理、等の工程にも適用することができる。
 また、上述では、半導体装置の製造工程の一工程を実施可能な基板処理装置について記したが、これに限らず、セラミックス基板、液晶デバイスの基板、発光デバイスの基板、等の基板を処理する基板処理装置であっても良い。
 100、500,800  基板処理装置
 101  基板
110  ヒータ
120  反応管
130  インナーチューブ
140  基板支持具
150  ガス供給部
160  ノズル収容パイプ
180  コントローラ
510,710  ガス供給管

Claims (16)

  1. 基板を収容する反応管と、
     前記反応管の側方で前記基板の表面に平行な方向に延びて配置されるノズル収容部と、
     前記ノズル収容部の内部に挿入され前記反応管の外側から前記反応管の内部に伸びるガス供給ノズルと、
     前記ガス供給ノズルに第1のガスを供給する第1ガス供給部と、
    を有する基板処理装置。
  2. 請求項1記載の基板処理装置であって、
     前記反応管の外側において前記ノズル収容部と前記ガス供給ノズルの間に第2のガスを供給する第2ガス供給部を有する。
  3. 請求項1記載の基板処理装置であって、
    前記反応管は、内部にインナーチューブを有し、前記インナーチューブの壁面には、前記反応管の内部に伸びる前記ガス供給ノズルの先端部分と対向する位置に開口を有する。
  4. 請求項3記載の基板処理装置であって、
    前記インナーチューブの前記開口が形成された壁面に対向する壁面には、スリット状の開口が形成されている。
  5. 請求項1記載の基板処理装置であって、
    前記反応管は、内部にインナーチューブを有し、前記反応管の内部に伸びる前記ガス供給ノズルの先端部分は、前記インナーチューブの壁面に形成された穴に挿入される。
  6. 請求項1記載の基板処理装置であって、
    前記反応管は、内部にインナーチューブを有し、前記反応管と前記インナーチューブの間に第2のガスを供給する第2ガス供給部を有する。
  7. 請求項1記載の基板処理装置であって、
    前記反応管の周囲を覆うヒータを更に備え、前記ノズル収容部は、前記反応管の側方で前記基板の表面に平行な方向に前記ヒータを貫通している。
  8. 請求項1記載の基板処理装置であって、
    前記反応管の内部で、前記反応管に所定の間隔で収容される複数の前記基板に沿って上下方向に延びて複数の前記ガス供給ノズルに対応した位置に第2のガスを放出するための孔が形成された供給管を有する第2ガス供給部を有する。
  9. 請求項8記載の基板処理装置であって、
    前記反応管は、内部にインナーチューブを有し、前記供給管は前記反応管と前記インナーチューブとの間に配置される。
  10.  請求項1記載の基板処理装置であって、前記ガス供給ノズルは、複数配置され、前記ノズル収容部は、複数配置された前記ガス供給ノズルそれぞれを個別に収容する様に構成される。
  11. 請求項1記載の基板処理装置であって、前記ガス供給ノズルは、複数配置され、前記ノズル収容部は、複数配置された前記ガス供給ノズルを収容する様に構成される。
  12.  基板を反応管の内部に収容する工程と、
     前記反応管の側方で前記基板の表面に平行な方向に延びて配置されるノズル収容部を有し、前記ノズル収容部の内部に挿入され前記反応管の外側から前記反応管の内部に伸びるガス供給ノズルから、前記基板に第1のガスを供給する工程と、
    を有する半導体装置の製造方法。
  13. 請求項12記載の半導体装置の製造方法であって、
    前記第1のガスを供給する工程では、前記ガス供給ノズルから原料ガス又は反応ガスを前記反応管の内部に供給することと、前記ガス供給ノズルの先端部の付近に不活性ガスを供給することとを並行に行う。
  14. 請求項13記載の半導体装置の製造方法であって、
    前記反応管の内部にガスを供給する工程では、前記不活性ガスを、前記原料ガス又は前記反応ガスを前記反応管の内部に供給する前記ガス供給ノズルと同軸方向から前記ガス供給ノズルの先端部の付近に供給する。
  15. 請求項13記載の半導体装置の製造方法であって、
    前記反応管の内部にガスを供給する工程では、前記ガス供給ノズルの先端部の付近に供給する前記不活性ガスの流量を、複数の前記ガス供給ノズルから前記反応管の内部に供給する原料ガス又は反応ガスの流量の1/10以下とする。
  16.  基板を反応管の内部に収容させる手順と、
     前記反応管の側方で前記基板の表面に平行な方向に延びて配置されるノズル収容部を有し、前記ノズル収容部の内部に挿入され前記反応管の外側から前記反応管の内部に伸びるガス供給ノズルから、前記基板に第1のガスを供給させる手順と、
    をコンピュータによって基板処理装置に実行させるプログラムを記録した記憶媒体。
PCT/JP2020/004436 2020-02-05 2020-02-05 基板処理装置、半導体装置の製造方法および記録媒体 WO2021156987A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2020/004436 WO2021156987A1 (ja) 2020-02-05 2020-02-05 基板処理装置、半導体装置の製造方法および記録媒体
JP2021575170A JP7304975B2 (ja) 2020-02-05 2020-02-05 基板処理装置、半導体装置の製造方法および記録媒体
CN202080089801.3A CN114902381A (zh) 2020-02-05 2020-02-05 基板处理装置、半导体装置的制造方法以及存储介质
TW110102975A TW202137329A (zh) 2020-02-05 2021-01-27 基板處理裝置,半導體裝置的製造方法及程式
US17/853,377 US20220349061A1 (en) 2020-02-05 2022-06-29 Substrate Processing Apparatus, Method of Manufacturing Semiconductor Device and Non-transitory Computer-readable Recording Medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/004436 WO2021156987A1 (ja) 2020-02-05 2020-02-05 基板処理装置、半導体装置の製造方法および記録媒体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/853,377 Continuation US20220349061A1 (en) 2020-02-05 2022-06-29 Substrate Processing Apparatus, Method of Manufacturing Semiconductor Device and Non-transitory Computer-readable Recording Medium

Publications (1)

Publication Number Publication Date
WO2021156987A1 true WO2021156987A1 (ja) 2021-08-12

Family

ID=77200809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004436 WO2021156987A1 (ja) 2020-02-05 2020-02-05 基板処理装置、半導体装置の製造方法および記録媒体

Country Status (5)

Country Link
US (1) US20220349061A1 (ja)
JP (1) JP7304975B2 (ja)
CN (1) CN114902381A (ja)
TW (1) TW202137329A (ja)
WO (1) WO2021156987A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534690A (en) * 1978-09-04 1980-03-11 Chiyou Lsi Gijutsu Kenkyu Kumiai Low pressure gas phase growing apparatus
JPS6376879A (ja) * 1986-09-18 1988-04-07 Hitachi Electronics Eng Co Ltd Cvd薄膜形成装置
JP2008172205A (ja) * 2006-12-12 2008-07-24 Hitachi Kokusai Electric Inc 基板処理装置、半導体装置の製造方法、および反応容器
JP2011195863A (ja) * 2010-03-18 2011-10-06 Mitsui Eng & Shipbuild Co Ltd 原子層堆積装置及び原子層堆積方法
JP2012227265A (ja) * 2011-04-18 2012-11-15 Tokyo Electron Ltd 熱処理装置
JP2014216540A (ja) * 2013-04-26 2014-11-17 東京エレクトロン株式会社 成膜装置のクリーニング方法および成膜装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214312A (ja) * 1998-01-26 1999-08-06 Sony Corp 半導体製造装置
KR101715193B1 (ko) 2015-07-20 2017-03-10 주식회사 유진테크 기판 처리장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534690A (en) * 1978-09-04 1980-03-11 Chiyou Lsi Gijutsu Kenkyu Kumiai Low pressure gas phase growing apparatus
JPS6376879A (ja) * 1986-09-18 1988-04-07 Hitachi Electronics Eng Co Ltd Cvd薄膜形成装置
JP2008172205A (ja) * 2006-12-12 2008-07-24 Hitachi Kokusai Electric Inc 基板処理装置、半導体装置の製造方法、および反応容器
JP2011195863A (ja) * 2010-03-18 2011-10-06 Mitsui Eng & Shipbuild Co Ltd 原子層堆積装置及び原子層堆積方法
JP2012227265A (ja) * 2011-04-18 2012-11-15 Tokyo Electron Ltd 熱処理装置
JP2014216540A (ja) * 2013-04-26 2014-11-17 東京エレクトロン株式会社 成膜装置のクリーニング方法および成膜装置

Also Published As

Publication number Publication date
US20220349061A1 (en) 2022-11-03
JPWO2021156987A1 (ja) 2021-08-12
JP7304975B2 (ja) 2023-07-07
CN114902381A (zh) 2022-08-12
TW202137329A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
JP6538582B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP2654996B2 (ja) 縦型熱処理装置
TWI396946B (zh) 薄膜沉積系統之清潔方法、薄膜沉積系統及其程式
US8080477B2 (en) Film formation apparatus and method for using same
KR20120007986A (ko) 박막 형성 장치의 세정 방법, 박막 형성 방법 및 박막 형성 장치
US20090114156A1 (en) Film formation apparatus for semiconductor process
JP2005064305A (ja) 基板処理装置及び半導体デバイスの製造方法
US20220356580A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
KR20060046767A (ko) 실리콘 질화막의 형성 방법 및 형성 장치
JP6994483B2 (ja) 半導体装置の製造方法、プログラム、及び基板処理装置
TWI807192B (zh) 氣體導入構造、熱處理裝置及氣體供給方法
WO2021033461A1 (ja) 基板処理装置、半導体装置の製造方法、プログラムおよび記録媒体
JP7033622B2 (ja) 気化装置、基板処理装置、クリーニング方法および半導体装置の製造方法
JP7064577B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
WO2020189205A1 (ja) 基板処理装置、半導体装置の製造方法およびノズル
US20140295675A1 (en) Silicon oxide film forming method and silicon oxide film forming apparatus
WO2021156987A1 (ja) 基板処理装置、半導体装置の製造方法および記録媒体
WO2021059492A1 (ja) 基板処理装置、昇降機構、半導体装置の製造方法及びプログラム
JP7016920B2 (ja) 基板処理装置、基板支持具、半導体装置の製造方法および基板処理方法
JP7079340B2 (ja) 半導体装置の製造方法、基板処理装置、及びプログラム
WO2023047552A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
TWI792478B (zh) 半導體裝置的製造方法,程式,基板處理裝置及基板處理方法
WO2023026412A1 (ja) 基板支持具、基板処理装置及び半導体装置の製造方法
US20230100702A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer readable recording medium
WO2020066701A1 (ja) 基板処理装置、半導体装置の製造方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575170

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917990

Country of ref document: EP

Kind code of ref document: A1