WO2021155811A1 - 启动电池与快速储能模块并联出力比配置系统 - Google Patents
启动电池与快速储能模块并联出力比配置系统 Download PDFInfo
- Publication number
- WO2021155811A1 WO2021155811A1 PCT/CN2021/075107 CN2021075107W WO2021155811A1 WO 2021155811 A1 WO2021155811 A1 WO 2021155811A1 CN 2021075107 W CN2021075107 W CN 2021075107W WO 2021155811 A1 WO2021155811 A1 WO 2021155811A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energy storage
- storage module
- output ratio
- battery
- fast energy
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/345—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
Definitions
- the present invention is related to the life of the starter battery, and particularly relates to a parallel output ratio configuration system for a starter battery and a fast energy storage module.
- the starting system needs to be jump start. Connecting another battery in parallel to make the starting battery have enough power for triggering. This jump start method is not only troublesome, but may also be dangerous due to the wrong connection of the electrodes of the starting battery.
- any electronic device on the vehicle that needs to use a starting battery will cause the voltage of the starting battery to drop instantly at the moment of starting. Therefore, how to stabilize the voltage of the starting battery to extend the life of the electronic device and the ignition system, and how to increase the life of the starting battery is also urgently needed. solve.
- the present invention originates from the fact that the starter battery will affect its life due to different pumping currents.
- the starter battery's life span is the period of use during which the starter battery cannot draw out the load current of the starter motor from the first use to after being charged. Therefore, the present invention Install fast energy storage modules (such as super capacitor banks), start batteries in parallel (such as lead-acid batteries), share the power to start the starting motor, reduce the current drawn by the starting battery to extend the life of the starting battery, and use fast energy storage
- the module can be used as a short-term high-current discharge device, so if a high-current discharge device (such as a generator or a steam locomotive) is required, it is quite suitable to use a fast energy storage module to share the large current.
- the starter battery and the fast energy storage module of the present invention are connected in parallel with the output ratio configuration system, which is used to start the starter motor, including the starter battery, which has a first total internal resistance value; and the fast energy storage module has a second total internal resistance. Resistance value, the fast energy storage module is connected in parallel with the starter battery; when installing, select any known specifications of the starter battery and the fast energy storage module on the market, and set the starter battery and the fast energy storage
- the modules respectively provide the initial electrical output ratio of the starter motor, the sum of the initial electrical output ratio of the starter battery plus the initial electrical output ratio of the fast energy storage module is equal to 1, and by reducing the starter battery’s initial electrical output ratio
- the initial electrical output ratio extends the life of the starting battery.
- the parallel output ratio configuration system of the starting battery and the fast energy storage module disclosed in the present invention further includes a first wire resistance component and a second wire resistance component, wherein the first wire resistance component is electrically connected The starting battery and the second wire resistance component are electrically connected to the fast energy storage module.
- the parallel output ratio configuration system of the starter battery and the fast energy storage module disclosed in the present invention satisfies the following formula (2):
- R r10 1-((R TH + R 1 ) /((R TH +R 1 )+(R C +R 2 ))),
- R r20 1-((R C +R 2 )/((R TH +R 1 )+(R C +R 2 ) )),
- R r10 is the initial electrical output ratio of the starting battery
- R r20 is the initial electrical output ratio of the fast energy storage module
- R TH is the first total internal resistance of the starting battery at the initial stage
- R 1 is the first resistance value of the first wire resistance component that is initially electrically connected to the starter battery
- R C is the second total internal resistance value of the fast energy storage module initially
- R 2 is the first resistance value of the fast energy storage module that is initially electrically connected.
- the second resistance value of the second wire resistance component of the energy module can be reduced by increasing the first resistance value R 1 of the first wire resistance component at the initial time or reducing the second resistance value R 2 of the second wire resistance component at the initial time.
- the parallel output ratio configuration system of the starting battery and the fast energy storage module disclosed in the present invention wherein the initial electrical output ratio R r10 of the starting battery is set to 80%, and Set the initial electrical output ratio R r20 of the fast energy storage module to 20% and increase the life of the startup battery by more than 3 times, or set the initial electrical output ratio R r10 of the startup battery to 70%, set the The initial electrical output ratio R r20 of the fast energy storage module is 30%, and the life of the starting battery is increased by more than 5 times, or the initial electrical output ratio R r10 of the starting battery is set to 60%, and the fast storage is set The initial electrical output ratio R r20 of the energy module is 40%, and the starting battery life is increased by more than 9 times, or the initial electrical output ratio R r10 of the starting battery is set to 50%, and the fast energy storage module is set The initial electrical output ratio R r20 of the starting battery is 50%, and the starting battery life is increased by more than 16 times, or the initial electrical
- the power output ratio R r20 is 70%, and the starting battery life is increased by more than 74 times, or the initial electrical output ratio R r10 of the starting battery is set to 20%, and the initial electrical output of the fast energy storage module is set
- the ratio R r20 is 80%, and the life of the starting battery is increased by more than 250 times.
- the starting battery and the fast energy storage module disclosed in the present invention are connected in parallel with the output ratio configuration system, and the initial electrical output ratio of the starting battery is between 20% and 80%, or The initial electrical output ratio of the starting battery is between 30% and 70%, or the initial electrical output ratio of the starting battery is between 40% and 60%, the initial electrical output of the fast energy storage module The electrical output ratio is between 20% and 80%, or the initial electrical output ratio of the fast energy storage module is between 30% and 70%, or the initial electrical output ratio of the fast energy storage module is medium Between 40% and 60%, the sum of the initial electrical output ratio of the starting battery plus the initial electrical output ratio of the fast energy storage module is equal to 1.
- the starter battery and the fast energy storage module are disclosed in the parallel output ratio configuration system, wherein the starter motor is used to restart the vehicle engine.
- the number of starts is N times, and N is an arithmetic average or a positive integer, where the initial electrical output ratio R r10 of the starting battery is set to 40%, and the initial electrical output of the fast energy storage module is set If the power output ratio R r20 is 60%, the starting battery is increased by 31 times divided by the life of N or more, or the initial electrical output ratio R r10 of the starting battery is set to 30%, and the initial electrical output of the fast energy storage module is set R r20 output ratio of 70%, the battery starts to enhance life of more than 74 times by N, or the starting battery set electrically output the initial ratio R r10 20%, setting the fast energy storage module to the initial
- the electrical output ratio R r20 is 80%, and the starting battery has a lifespan of more than 250 times divided by N.
- the starter battery and the fast energy storage module are disclosed in the parallel output ratio configuration system, wherein the starter motor is used to restart the vehicle engine.
- the number of starts is N times, N is the arithmetic mean or a positive integer, the initial electrical output ratio of the starting battery is between 20% and 40%, or the initial electrical output ratio of the starting battery is medium
- the initial electrical output ratio of the fast energy storage module is between 60% and 80%, or the initial electrical output ratio of the fast energy storage module is between 60% and 70 %
- the sum of the initial electrical output ratio of the starting battery plus the initial electrical output ratio of the fast energy storage module is equal to 1.
- the parallel output ratio configuration system of the starter battery and the fast energy storage module disclosed in the present invention does not change the first total internal resistance value R TH of the starter battery at the initial stage and the initial
- the second total internal resistance value R C of the fast energy storage module, the first resistance value R 1 of the first wire resistance component at the initial stage, and the second resistance value R 2 of the second wire resistance component at the initial stage are selected by selecting a larger capacity
- the start-up battery or the fast energy storage module with a larger capacity is selected to reduce the initial electrical output ratio of the start-up battery and prolong the life of the start-up battery.
- the start-up battery and the fast energy storage module disclosed in the present invention are connected in parallel with the output ratio configuration system, by selecting the start-up battery with a smaller capacity, or at the same time improving the initial electrical connection to the start-up battery
- the first resistance value R 1 of the first wire resistance component or the second resistance value R 2 of the second wire resistance component that is initially electrically connected to the fast energy storage module is reduced to reduce the initial electrical output ratio of the starting battery, Extend the life of the starting battery.
- the fast energy storage module in parallel with the starting battery during the normal operation of the automobile engine, the voltage of the starting battery can be maintained stable, and the effect of voltage stabilization can be achieved, and the purpose of extending the service life of the on-board electronic device can be achieved.
- Fig. 1 is a block diagram of a parallel output ratio configuration system of a starter battery and a fast energy storage module according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram of an equivalent circuit of a starter motor, a fast energy storage module, and a starter battery according to an embodiment of the present invention.
- Fig. 3 is a schematic diagram of an equivalent circuit of a starter motor, a fast energy storage module, and a starter battery according to another embodiment of the present invention.
- the parallel output ratio configuration system 10 of the startup battery and the fast energy storage module of the present invention includes the startup battery 33 and the fast energy storage module. 13.
- the startup battery 33 and the fast energy storage module 13 form a parallel connection relationship, so that the fast energy storage module 13 and the startup battery 33 jointly provide the power required for the startup motor 31 to achieve the purpose of startup, and then Drive the engine to run, and the fast energy storage module 13 is used to assist the power supply of the starting battery 33;
- the parallel output ratio configuration system 10 of the starting battery and the fast energy storage module of the present invention also includes a switch (not shown) and a processing circuit (not shown) , The switch is used to control the connection between the starting battery 33 and the fast energy storage module 13.
- the processing circuit includes a buck-boost module (not shown) to adjust the voltage value of the input terminal (not shown), and Output voltage to the output terminal (not shown).
- the buck-boost module is used to increase the voltage value of the input terminal, that is, make the voltage value of the output terminal higher than the voltage value of the input terminal to charge the fast energy storage module 13 .
- the fast energy storage module 13 is a super capacitor group, and the fast energy storage module 13 has a faster charging and discharging speed than the start battery 33 and has a longer life span than the start battery 33. Therefore, the fast energy storage module 13 can Charging and storing the power required at startup in a short period of time, but the fast energy storage module 13 is not limited to the super capacitor group.
- the starter battery 33 is made to charge the fast energy storage module 13 in advance to reach a fast speed.
- the starting battery 33 can be assisted for starting.
- the fast energy storage module 13 is electrically connected in parallel to the starting battery 33 to jointly provide the starting power of the starting motor 31.
- the equivalent circuit is shown in Figure 2, where V TH represents the starting battery 33 I TH represents the load current of the starting battery 33, R TH represents the first total internal resistance value of the starting battery 33 at the initial stage, C represents the capacitance value of the fast energy storage module 13, and V C represents the fast energy storage module 13 Voltage, I C represents the current drawn by the fast energy storage module 13, R C represents the second total internal resistance value of the fast energy storage module 13 at the initial stage, and RL represents the load impedance value of the starter motor 31.
- an embodiment of the present invention uses the fast energy storage module 13 to start the battery 33 in parallel to share the electric power to start the starting motor 31.
- the initial electrical output ratio of the starting battery 33 is the ratio of the output current of the starting battery 33 to the starting current of the starting motor 31
- the initial electrical output ratio of the fast energy storage module 13 is the fast The ratio of the output current of the energy storage module 13 to the starting current of the starting motor 31, the initial electrical output ratio of the starting battery 33 plus the initial electrical output ratio of the fast energy storage module 13 is equal to 1, by reducing The initial electrical output ratio of the starting battery 33 extends the life of the starting battery 33.
- the fast energy storage module 13 is a super capacitor group
- the starter battery 33 is a lead-acid battery
- the lead-acid battery has a first total internal resistance value and the super capacitor group has a second total internal resistance value.
- R r10 is the initial electrical output ratio of the starting battery 33
- R r20 is the initial electrical output ratio of the fast energy storage module 13
- R TH is the first total internal resistance of the starting battery 33 at the initial stage
- R C is the second total internal resistance value of the fast energy storage module 13 at the initial time.
- the starter battery 33 and the fast energy storage module 13 are used to supply power to a car
- the fast energy storage module 13 is a super capacitor group
- the starter battery 33 is a lead-acid battery.
- the lead-acid battery has the first total internal resistance value
- the super capacitor group has the second total internal resistance value, and then choose the first line resistance that is initially electrically connected to the starter battery 33
- the first resistance value R 1 of the component and the second resistance value R 2 of the second wire resistance component that is initially electrically connected to the fast energy storage module 13 are selected to reach the fast energy storage module 13 (for example, a super capacitor group) and the starting battery
- the embodiments of the present invention shown in Fig. 2 or Fig. 3 respectively originate from the fact that lead-acid batteries will affect their life due to different pumping currents. Therefore, supercapacitors are installed and lead-acid batteries are connected in parallel to share and provide power to start the engine (for example, start the engine). Motor 31), reduce the current drawn by the lead-acid battery to extend the life of the lead-acid battery. For example, set the initial electrical output ratio of a brand new lead-acid battery at about 50%, and the initial electrical output ratio of the supercapacitor group at 50% This can reduce the current drawn by half of the lead-acid battery. Compared with the same lead-acid battery, the service life can be increased by more than 2 times. This is the first benefit.
- the lead-acid battery deteriorates as the number of uses increases. , Reducing the current drawn by half of lead-acid batteries, slowing the deterioration of lead-acid batteries by one-half, and increasing the life span of more than 2 times, which is the second benefit; lead-acid batteries will deteriorate as the number of times of use increases.
- the lead-acid battery's first total internal resistance gradually increases, while the second total internal resistance of the supercapacitor bank is almost unchanged, and the electrical output ratio of the lead-acid battery is reduced until it reaches zero. This is even more effective.
- the lead-acid battery cannot draw the target current (such as cold start current CCA), and now the starter battery 33 can be used enough to charge the supercapacitor group to the real minimum remaining power lower limit state of the startable voltage, so it can Realize the function of exhausting all available electric energy of lead-acid batteries, and can achieve the purpose of extending the life of lead-acid batteries, so it is expected that the number of use of lead-acid batteries will increase by 2 times, which is the fourth benefit; so the original average life of lead-acid batteries For two years, now combining the above four multiplying benefits, lead-acid batteries can increase their lifespan by more than 16 times (life is more than 32 years). However, the service life of a general car is about 20 years, so there is no need to replace the lead-acid battery before the car is scrapped. .
- the target current such as cold start current CCA
- the initial electrical output ratio R r10 of the starting battery 33 is set to 80% during installation, and the initial electrical output of the fast energy storage module 13 is set.
- the output ratio R r20 is 20%.
- the starter battery 33 has a life span of more than 3 times , Or set the initial electrical output ratio R r10 of the starting battery 33 to 70%, and set the initial electrical output ratio R r20 of the fast energy storage module 13 to 30%, combining the above four multiplying benefits ( 100%/70%) ⁇ (100%/70%) ⁇ (100%/70%) ⁇ 2, the starting battery 33 has a life span of more than 5 times, or the initial electrical output ratio R of the starting battery 33 is set r10 is 60%, set the initial electrical output ratio R r20 of the fast energy storage module 13 to be 40%, combining the above four multiplying benefits (100%/60%) ⁇ (100%/60%) ⁇ ( 100%/60%) ⁇ 2, the starting battery 33 increases its life by more than 9 times, or the initial electrical output ratio R r10 of the starting battery 33 is set to 40%, and the initial electrical output ratio of the fast energy storage module 13 is set The electrical output ratio R r20 is
- the starting battery is increased by more than 31 times life, or to set the start of the initial battery electrically Rr10 33 output ratio is 30%, sets the fast energy storage module to the initial electrical output ratio R r20 13 is 70%, effective multiplication of the four integrated ( 100%/30%) ⁇ (100%/30%) ⁇ (100%/30%) ⁇ 2, the starting battery 33 has a life span of more than 74 times, or the initial electrical output ratio of the starting battery 33 is set to Rr10 Is 20%.
- the starting battery 33 has a life span of more than 250 times; so the initial electrical output ratio of the starting battery 33 is between 20% and 80%, or the initial electrical output of the starting battery 33
- the output ratio is between 30% and 70%, or the initial electrical output ratio of the starting battery 33 is between 40% and 60%, and the initial electrical output ratio of the fast energy storage module 13 is between 20 % And 80%, or the initial electrical output ratio of the fast energy storage module 13 is between 30% and 70%, or the initial electrical output ratio of the fast energy storage module 13 is between 40% and 60%
- the sum of the initial electrical output ratio of the starting battery 33 plus the initial electrical output ratio of the fast energy storage module 13 is equal to 1, which can greatly slow down the The degree of deterioration of the starting battery 33 achieves the purpose of extending the service life of the starting battery 33.
- the starting battery 33 such as a lead-acid battery
- the fast energy storage module 13 such as a super capacitor bank
- start /Stop system an idling stop system
- the number of starts is N times compared with the normal starter motor, where N is the arithmetic average or a positive integer
- the initial electrical output ratio R r10 of the starter battery 33 is set to 40%
- the initial electrical output ratio R r20 of the fast energy storage module 13 is set to 60%, and the above four multiplying benefits ((100%/40%) ⁇ (100%/40%) ⁇ (100%/ 40%) ⁇ 2) divided by N
- the starting battery 33 is increased by 31 times divided by N or more than the life span, or the initial electrical output ratio R r10 of the starting battery 33 is set to 30%
- the fast energy storage module is set
- the initial electrical output ratio R r20 of 13 is 70%, and the above four multiplying benefits ((100%/30%) ⁇ (100%/30%)
- the starter battery 33 is increased by 250 Multiply by N or more of the life; so the initial electrical output ratio of the starting battery 33 is between 20% and 40%, or the initial electrical output ratio of the starting battery 33 is between 30% and 40% ,
- the initial electrical output ratio of the fast energy storage module 13 is between 60% and 80%, or the initial electrical output ratio of the fast energy storage module 13 is between 60% and 70%, where the The sum of the initial electrical output ratio of the starting battery 33 plus the initial electrical output ratio of the fast energy storage module 13 is equal to 1, so that the deterioration of the starting battery 33 (such as a lead-acid battery) can be greatly reduced, and the start-up can be prolonged.
- the purpose of the service life of the battery 33 is used to increase the deterioration of the starting battery 33.
- the fast energy storage module 13 is charged in advance by the power of the starter battery 33 to quickly store the battery.
- the energy module 13 (such as the super capacitor bank) has a faster charge and discharge capacity than the starter battery 33. Therefore, the fast energy storage module 13 can quickly charge and accumulate to the required voltage value; in addition, the fast energy storage module 13 has the ability to be independent
- the parallel output ratio configuration system of the starting battery and the fast energy storage module disclosed in this invention can adjust and control the initial electrical output ratio of the starting battery 33, so that the actual service life of the starting battery 33 is greatly extended.
- the startup battery 33 with a larger capacity is selected, or the fast energy storage module 13 with a larger capacity is selected,
- the capacity of the starter battery 33 was originally 55Ahr (CCA: 370A, cold start current)
- the larger capacity of the starter battery 33 has 75Ahr (CCA: 460A, cold start current)
- the fast energy storage module 13 such as a super capacitor bank
- the starter battery 33 selects the starting battery 33 with a smaller capacity, or increase the first resistance value of the first wire resistance component that is initially electrically connected to the starting battery 33 at the same time, or reduce the initial electrical connection to the
- the first resistance value of the first wire resistance component that is initially electrically connected to the starter battery 33 is increased or decreased Initially, the second resistance value of the second wire resistance component of the fast energy storage module 13 makes the starting battery 33 with a smaller capacity of 55Ahr drop from 230A to 180A.
- the actual electrical output ratio is 50%, so it can maintain 16
- the lifetime of the starting battery 33 is more than 32 years; if the first total internal resistance value of the starting battery 33 with a capacity of 55Ahr is different from the first total internal resistance value of the starting battery 33 with a capacity of 75Ahr, the initial value can also be adjusted and corrected.
- the first total internal resistance of the battery 33 is higher than the first total internal resistance of the starting battery 33 with a capacity of 75 Ahr.
- the starting battery 33 with a smaller capacity can be selected, and the electrical output ratio of the starting battery 33 can be reduced to 50. %.
- the electrical output ratio of the starting battery 33 is 50%.
- the resistance value is higher, and it can be adjusted and selected naturally to reduce the electrical output ratio of the starting battery 33 with a smaller capacity to close to 50%, so that the life of the starting battery 33 can be maintained from 16 times to 32 years.
- the parallel output ratio configuration system of the starter battery and the fast energy storage module of the present invention is not limited to automobiles.
- the parallel output ratio configuration system 10 of the starter battery and the fast energy storage module can also be applied to those that require larger power to start the starter motor 31.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本发明提供一种启动电池与快速储能模块并联出力比配置系统,用于启动启动马达,包括启动电池,具有第一总内阻值;以及快速储能模块,具有第二总内阻值,所述快速储能模块与所述启动电池并联连接;在安装时,选择市场上任一已知的所述启动电池与所述快速储能模块规格,通过初始设定所述启动电池与所述快速储能模块分别提供所述启动马达启动电流的初始电性出力比值,所述启动电池的所述初始电性出力比值加上所述快速储能模块的所述初始电性出力比值的总和等于1,通过降低所述启动电池的所述初始电性出力比值,以达成延长该启动电池寿命的目的。
Description
本发明与启动电池寿命有关,尤其涉及一种启动电池与快速储能模块并联出力比配置系统。
目前,车辆若发生欠电压(启动电池没电)时,车辆是无法被原有的启动系统启动,因此,启动系统需进行跨接启动(jump start),跨接启动是在启动电池的两电极端并联另一电池,以使启动电池有足够的电量来做触发,这种跨接启动的方式不仅麻烦,还可能会因为启动电池的电极接错而发生危险。
再者,车辆上任何需要使用启动电池的电子装置启动瞬间都会让启动电池的电压瞬间下降,因此,如何稳定启动电池的电压来延长电子装置及点火系统寿命,以及如何增长启动电池的寿命也亟待解决。
目前利用启动电池(例如铅酸电池)启动引擎的装置,由于必需瞬间抽载大电流,多次作业将导致启动电池劣化,而导致内阻升高,可是在启动引擎的抽载大电流不变之下,启动电池加速劣化,而导致启动电池渐渐失效,启动电池例如铅酸电池或其他会因不同的抽载电流而影响其寿命,因此如何提升启动电池寿命也亟待解决。
发明内容
有鉴于上述缺失,本发明源于启动电池会因不同的抽载电流而影响其寿命,启动电池的寿命为启动电池自首次使用至充电后仍无法抽出启动马达负载电流的使用期间,因此本发明以加装快速储能模块(例如超级电容组),并联启动电池(例如铅酸电池),一起分摊提供电力启动启动马达,降低启动电池的抽载电流来延长启动电池的寿命,利用快速储能模块可以被用来当作短时间的大电流放电装置,因此如果需要用到大电流放电的装置(例如发电机或汽机车),相当适合使用快速储能模块分担提供大电流。
为达成上述目的,本发明的启动电池与快速储能模块并联出力比配置系 统,用于启动启动马达,包括启动电池,具有第一总内阻值;以及快速储能模块,具有第二总内阻值,该快速储能模块与该启动电池并联连接;在安装时,选择市场上任一已知的的该启动电池与该快速储能模块规格,通过初始设定该启动电池与该快速储能模块分别提供该启动马达的初始电性出力比值,该启动电池的该初始电性出力比值加上该快速储能模块的该初始电性出力比值的总和等于1,并通过降低该启动电池的该初始电性出力比值,延长该启动电池的寿命。
又,为了达成本发明的另一目的,本发明所揭示的启动电池与快速储能模块并联出力比配置系统,满足以下的公式(1):R
r10=1-(R
TH/(R
TH+R
C)),R
r20=1-(R
C/(R
TH+R
C)),其中R
r10是该启动电池的该初始电性出力比值,R
r20是该快速储能模块的该初始电性出力比值,R
TH是初始时该启动电池的第一总内阻值,R
C是初始时该快速储能模块的第二总内阻值,选择该启动电池具有较高的初始时第一总内阻值R
TH,或选择该快速储能模块具有较低的初始时的第二总内阻值R
C,通过降低该启动电池的该初始电性出力比值,延长该启动电池的寿命。
又,为了达成本发明的另一目的,本发明所揭示的启动电池与快速储能模块并联出力比配置系统还包括第一线阻组件以及第二线阻组件,其中第一线阻组件电性连接该启动电池,第二线阻组件电性连接该快速储能模块。
又,为了达成本发明的另一目的,本发明所揭示的启动电池与快速储能模块并联出力比配置系统,满足以下的公式(2):R
r10=1-((R
TH+R
1)/((R
TH+R
1)+(R
C+R
2))),R
r20=1-((R
C+R
2)/((R
TH+R
1)+(R
C+R
2))),其中R
r10是该启动电池的该初始电性出力比值,R
r20是该快速储能模块的该初始电性出力比值,R
TH是初始时启动电池的第一总内阻值,R
1是初始时电性连接该启动电池的第一线阻组件的第一电阻值,R
C是初始时快速储能模块的第二总内阻值,R
2是初始时电性连接该快速储能模块的第二线阻组件的第二电阻值,通过升高初始时第一线阻组件的第一电阻值R
1或降低初始时第二线阻组件的第二电阻值R
2,降低该启动电池的该初始电性出力比值,延长该启动电池的寿命。
又,为了达成本发明的另一目的,本发明所揭示的启动电池与快速储能模块并联出力比配置系统,其中,设定该启动电池的该初始电性出力比值R
r10 是80%,设定该快速储能模块的该初始电性出力比值R
r20是20%,该启动电池提升3倍以上寿命,或者设定该启动电池的该初始电性出力比值R
r10是70%,设定该快速储能模块的该初始电性出力比值R
r20是30%,该启动电池提升5倍以上寿命,或者设定该启动电池的该初始电性出力比值R
r10是60%,设定该快速储能模块的该初始电性出力比值R
r20是40%,该启动电池提升9倍以上寿命,或者设定该启动电池的该初始电性出力比值R
r10是50%,设定该快速储能模块的该初始电性出力比值R
r20是50%,该启动电池提升16倍以上寿命,或者设定该启动电池的该初始电性出力比值R
r10是40%,设定该快速储能模块的该初始电性出力比值R
r20是60%,该启动电池提升31倍以上寿命,或者设定该启动电池的该初始电性出力比值R
r10是30%,设定该快速储能模块的该初始电性出力比值R
r20是70%,该启动电池提升74倍以上寿命,或者设定该启动电池的该初始电性出力比值R
r10是20%,设定该快速储能模块的该初始电性出力比值R
r20是80%,该启动电池提升250倍以上寿命。
又,为了达成本发明的另一目的,本发明所揭示的启动电池与快速储能模块并联出力比配置系统,该启动电池的该初始电性出力比值介于20%与80%之间,或者该启动电池的该初始电性出力比值介于30%与70%之间,或者该启动电池的该初始电性出力比值介于40%与60%之间,该快速储能模块的该初始电性出力比值介于20%与80%之间,或者该快速储能模块的该初始电性出力比值介于30%与70%之间,或者该快速储能模块的该初始电性出力比值介于40%与60%之间,该启动电池的该初始电性出力比值加上该快速储能模块的该初始电性出力比值的总和等于1。
又,为了达成本发明的另一目的,本发明所揭示的启动电池与快速储能模块并联出力比配置系统,其中该启动马达用以重新启动车辆引擎具有怠速熄火系统,相较于一般启动马达的启动次数为N倍,N为算术平均数或进位的正整数,其中,设定该启动电池的该初始电性出力比值R
r10是40%,设定该快速储能模块的该初始电性出力比值R
r20是60%,该启动电池提升31倍除以N以上寿命,或者设定该启动电池的该初始电性出力比值R
r10是30%,设定该快速储能模块的该初始电性出力比值R
r20是70%,该启动电池提升74倍除以N以上寿命,或者设定该启动电池的该初始电性出力比值R
r10是20%,设定该快速储能模块的该初始电性出力比值R
r20是80%,该启动电池提升250 倍除以N以上寿命。
又,为了达成本发明的另一目的,本发明所揭示的启动电池与快速储能模块并联出力比配置系统,其中该启动马达用以重新启动车辆引擎具有怠速熄火系统,相较于一般启动马达的启动次数为N倍,N为算术平均数或进位的正整数,该启动电池的该初始电性出力比值介于20%与40%之间,或者该启动电池的该初始电性出力比值介于30%与40%之间,该快速储能模块的该初始电性出力比值介于60%与80%之间,或者该快速储能模块的该初始电性出力比值介于60%与70%之间,该启动电池的该初始电性出力比值加上该快速储能模块的该初始电性出力比值的总和等于1。
又,为了达成本发明的另一目的,本发明所揭示的启动电池与快速储能模块并联出力比配置系统,其中不改变初始时该启动电池的第一总内阻值R
TH、初始时该快速储能模块的第二总内阻值R
C、初始时第一线阻组件的第一电阻值R
1、以及初始时第二线阻组件的第二电阻值R
2,通过选择较大容量的该启动电池或选择较大容量的该快速储能模块,降低该启动电池的该初始电性出力比值,延长该启动电池的寿命。
又,为了达成本发明的另一目的,本发明所揭示的启动电池与快速储能模块并联出力比配置系统,通过选择较小容量的该启动电池,或同时提升初始时电性连接该启动电池的第一线阻组件的第一电阻值R
1或降低初始时电性连接该快速储能模块的第二线阻组件的第二电阻值R
2,降低该启动电池的该初始电性出力比值,延长该启动电池的寿命。
又,为了达成本发明的另一目的,本发明所揭示的启动电池与快速储能模块并联出力比系统,初始时,若该快速储能模块的额定最大输出电流I
CMAX低于该启动马达的启动电流I
SC,记忆该启动电池的更换启动电池的电性出力比值R
r1,满足以下的公式(3):R
r1=(I
SC-I
CMAX)/I
SC,若该快速储能模块的该额定最大输出电流I
CMAX大于或等于该启动马达的该启动电流I
SC,则指定特定值为该更换启动电池的电性出力比值R
r1,每次启动该启动马达时,得到该启动电池的电性出力比值R
r11,满足以下的公式(4):R
r11=I
TH/(I
TH+I
C),其中I
TH是该启动电池的抽载电流,I
C是该快速储能模块的抽载电流,若该启动电池的电性出力比值R
r11小于该更换启动电池的电性出力比值R
r1,发出该启动电池更换警告。
又,通过在汽车引擎正常运转时也使快速储能模块并联该启动电池,也可使启动电池电压维持稳定,而达到稳压的效果,而能达到延长车载电子装置使用寿命的目的。
有关本发明所提供的启动电池与快速储能模块并联出力比配置系统的详细构造、特点、组装或使用方式,将于后续的实施方式详细说明中予以描述。然而,在本发明领域中技术人员应能了解,该等详细说明以及实施本发明所列举的特定实施例,仅用于说明本发明,并非用以限制本发明的技术方案。
包含附图以便进一步理解本发明,且附图并入本说明书中并构成本说明书的一部分。附图说明本发明的实施例,并与描述一起用于解释本发明的原理。
图1是依照本发明一实施例所示出的启动电池与快速储能模块并联出力比配置系统的方块图。
图2是依照本发明一实施例所示出的启动马达、快速储能模块与启动电池的等效电路示意图。
图3是依照本发明另一实施例所示出的启动马达、快速储能模块与启动电池的等效电路示意图。
以下,配合各附图列举对应的较佳实施例来对本发明的启动电池与快速储能模块并联出力比配置系统的组成构件、作动及达成功效来作说明。然各附图中启动电池与快速储能模块并联出力比配置系统的构件、尺寸及外观仅用来说明本发明的技术特征,而非对本发明构成限制。
如图1所示,本发明的启动电池与快速储能模块并联出力比配置系统10,本实施例中,启动电池与快速储能模块并联出力比配置系统10包括启动电池33及快速储能模块13,启动模式时,通过启动电池33及快速储能模块13形成并联(parallel)连接关系,使快速储能模块13与启动电池33共同提供启动马达31所需电力,来达到启动的目的,进而带动引擎运转,快速储能模块13 用于启动电池33的供电辅助;本发明的启动电池与快速储能模块并联出力比配置系统10还包括开关(图未示)及处理电路(图未示),开关供控制该启动电池33与该快速储能模块13间的连接,处理电路在启动模式时,控制该开关使快速储能模块13并联连接启动电池33;处理电路在充电模式时,控制该开关使快速储能模块13断开与启动电池33的并联连接,处理电路包括升降压(buck-boost)模块(图未示),用以调整输入端(图未示)的电压值,并输出电压至输出端(图未示),本实施例中,升降压模块用以提高输入端电压值,也就是让输出端的电压值高于输入端的电压值,以对快速储能模块13充电。
在本发明的一实施例中,快速储能模块13是超级电容组,快速储能模块13的充放电速度较启动电池33快且寿命也较启动电池33长,因此,快速储能模块13能在短时间内充电储存启动时所需的电量,但快速储能模块13不以超级电容组为限。
当启动电池33的电压值过低,这个现象也被称为欠电压,表示启动马达31不能单独通过启动电池33正常启动,因此,使启动电池33预先对快速储能模块13进行充电,至快速储能模块13的电压值到达启动电压值,可辅助启动电池33来做启动。
以上说明本发明的启动电池与快速储能模块并联出力比配置系统10的组成,随后,详述本发明的启动电池与快速储能模块并联出力比配置系统10的运作及功效。
请合并参照图1及图2,此时快速储能模块13电性并联连接启动电池33以共同提供启动马达31的启动电力,其等效电路如图2所示,其中V
TH表示启动电池33的电压,I
TH表示启动电池33的抽载电流,R
TH表示初始时启动电池33的第一总内阻值,C表示快速储能模块13的电容值,V
C表示快速储能模块13的电压,I
C表示快速储能模块13的抽载电流,R
C表示初始时快速储能模块13的第二总内阻值,R
L表示启动马达31的负载阻抗值。
请续参照图1,发电机或汽机车在启动模式时,本发明的一实施例,以快速储能模块13并联启动电池33方式,共同分摊电力启动该启动马达31,例如汽车在安装时,选择市场上任一已知的该启动电池33与该快速储能模块13规格,通过初始设定该启动电池33与该快速储能模块13分别提供该启动马达31负载电性的初始电性出力比值,换句话说,该启动电池33的该初始 电性出力比值为该启动电池33的输出电流占启动马达31的启动电流的比例,该快速储能模块13的该初始电性出力比值为该快速储能模块13的输出电流占启动马达31的启动电流的比例,该启动电池33的该初始电性出力比值加上该快速储能模块13的该初始电性出力比值的总和等于1,通过降低该启动电池33的该初始电性出力比值,延长该启动电池33的寿命。
请续参照图2,一实施例中,在初始时,例如汽车在安装该启动电池33以及该快速储能模块13,该快速储能模块13为超级电容组,该启动电池33为铅酸电池,首先选择适切的铅酸电池及超级电容组,铅酸电池具有第一总内阻值以及超级电容组具有第二总内阻值,通过设定快速储能模块13与启动电池33的初始电性出力比值,满足以下的公式(1):R
r10=1-(R
TH/(R
TH+R
C)),R
r20=1-(R
C/(R
TH+R
C)),其中R
r10是该启动电池33的该初始电性出力比值,R
r20是该快速储能模块13的该初始电性出力比值,R
TH是初始时该启动电池33的第一总内阻值,R
C是初始时快速储能模块13的第二总内阻值,选择该启动电池33具有较高的初始时第一总内阻值R
TH,或选择该快速储能模块13具有较低的初始时的第二总内阻值R
C,通过降低该启动电池33的该初始电性出力比值,延长该启动电池33的寿命。
请续参照图3,另一实施例中,例如该启动电池33以及该快速储能模块13为供电于汽车,该快速储能模块13为超级电容组,该启动电池33为铅酸电池,首先选择适切的铅酸电池及超级电容组,铅酸电池具有第一总内阻值以及超级电容组具有第二总内阻值,再选择初始时电性连接该启动电池33的第一线阻组件的第一电阻值R
1,以及选择初始时电性连接该快速储能模块13的第二线阻组件的第二电阻值R
2,达到快速储能模块13(例如超级电容组)与启动电池33(例如铅酸电池)的初始电性出力比值,满足以下的公式(2):R
r10=1-((R
TH+R
1)/((R
TH+R
1)+(R
C+R
2))),R
r20=1-((R
C+R
2)/((R
TH+R
1)+(R
C+R
2))),其中R
r10是该启动电池33的该初始电性出力比值,R
r20是该快速储能模块13的该初始电性出力比值,R
TH是初始时该启动电池33的第一总内阻值,R
1是初始时电性连接该启动电池33的第一线阻组件的第一电阻值,R
C是初始时该快速储能模块13的第二总内阻值,R
2是初始时电性连接该快速储能模块13的第二线阻组件的第二电阻值,即通过较高初始时第一电阻值R
1或较低初始时第二电阻值R
2,达到降低该启动电池33的该初始电性出力 比值,延长该启动电池33的寿命。
本发明图2或图3分别所述实施例源于铅酸电池会因不同的抽载电流而影响其寿命,因此以加装超级电容组,并联铅酸电池,分摊提供电力启动引擎(例如启动马达31),降低铅酸电池的抽载电流来延长铅酸电池的寿命,例如设定全新铅酸电池的初始电性出力比值在50%左右,超级电容组的初始电性出力比值在50%左右,如此可降低铅酸电池一半的抽载电流,相较于同样铅酸电池的使用次数可提升2倍以上寿命,属第一种效益;再者铅酸电池随着使用次数的增加而劣化,降低铅酸电池一半的抽载电流,使铅酸电池的劣化减缓二分之一,可再提升2倍以上寿命,属第二种效益;铅酸电池随着使用次数的增加,会劣化而导致铅酸电池的第一总内阻值渐渐升高,而超级电容组的第二总内阻值几乎不变的特性,而降低铅酸电池的电性出力比值,直至零为止,如此更可以大幅减缓铅酸电池电解液劣化程度,使铅酸电池的劣化再减缓二分之一,可再提升2倍以上寿命,属第三种效益;再者,一组能单独启动启动马达31的超级电容组所需电量,只要启动电池33的寿命容量剩下1%(依电池容量而定)时,只要能充饱超级电容组即可发动启动马达31,相对一般铅酸电池原本设计老化至50%电量时,铅酸电池即无法抽出目标电流(例如冷启动电流CCA),现在将可以使该启动电池33使用到足以对超级电容组充电到可启动电压的真正最少剩余电能下限状态,因此可实现用尽铅酸电池所有可用电能的功能,而能达到延长铅酸电池寿命的目的,如此可望铅酸电池的使用次数再提升2倍,属第四种效益;如此铅酸电池原本平均寿命为两年,现在综合上述四种相乘效益,铅酸电池可提升16倍以上寿命(寿命是32年以上),然而一般车子使用寿命约20年,因此车子报废前尚不需更换铅酸电池。
又例如前揭图2或图3分别所述实施例,在安装时设定该启动电池33的该初始电性出力比值R
r10是80%,设定该快速储能模块13的该初始电性出力比值R
r20是20%,综合上述四种相乘效益(100%/80%)×(100%/80%)×(100%/80%)×2,该启动电池33提升3倍以上寿命,或者设定该启动电池33的该初始电性出力比值R
r10是70%,设定该快速储能模块13的该初始电性出力比值R
r20是30%,综合上述四种相乘效益(100%/70%)×(100%/70%)×(100%/70%)×2,该启动电池33提升5倍以上寿命,或者设定该启动电池33的该初始 电性出力比值R
r10是60%,设定该快速储能模块13的该初始电性出力比值R
r20是40%,综合上述四种相乘效益(100%/60%)×(100%/60%)×(100%/60%)×2,该启动电池33提升9倍以上寿命,或者设定该启动电池33的该初始电性出力比值R
r10是40%,设定该快速储能模块13的该初始电性出力比值R
r20是60%,综合上述四种相乘效益(100%/40%)×(100%/40%)×(100%/40%)×2,该启动电池提升31倍以上寿命,或者设定该启动电池33的该初始电性出力比值Rr10是30%,设定该快速储能模块13的该初始电性出力比值R
r20是70%,综合上述四种相乘效益(100%/30%)×(100%/30%)×(100%/30%)×2,该启动电池33提升74倍以上寿命,或者设定该启动电池33的该初始电性出力比值Rr10是20%,设定该快速储能模块13的该初始电性出力比值R
r20是80%,综合上述四种相乘效益(100%/20%)×(100%/20%)×(100%/20%)×2,该启动电池33提升250倍以上寿命;如此该启动电池33的该初始电性出力比值介于20%与80%之间,或者该启动电池33的该初始电性出力比值介于30%与70%之间,或者该启动电池33的该初始电性出力比值介于40%与60%之间,该快速储能模块13的该初始电性出力比值介于20%与80%之间,或者该快速储能模块13的该初始电性出力比值介于30%与70%之间,或者该快速储能模块13的该初始电性出力比值介于40%与60%之间,该启动电池33的该初始电性出力比值加上该快速储能模块13的该初始电性出力比值的总和等于1,可以大幅减缓该启动电池33劣化程度,达成延长该启动电池33使用寿命的目的。
又例如汽车具有怠速熄火系统时,由于发动次数为一般车辆的N倍,为了降低污染与油耗,一些汽车制造商在其新一代车型中加装启动/停止(start/stop)系统,当汽车停下来时关闭引擎,而当驾驶人的脚从煞车踏板移向油门踏板时,就自动重新启动引擎,这就帮助降低市区驾车及停停走走式的交通繁忙时期的油耗同时减少空气污染,本发明图2或图3分别所述实施例中,该启动电池33(例如铅酸电池)以及该快速储能模块13(例如超级电容组)为供电于汽车有加装具有怠速熄火系统(启动/停止系统)时,相较于一般启动马达的启动次数为N倍,N为算术平均数或进位的正整数,其中,设定该启动电池33的该初始电性出力比值R
r10是40%,设定该快速储能模块13的该初始电性出力比值R
r20是60%,综合上述四种相乘效益((100%/40%)×(100% /40%)×(100%/40%)×2)除以N,该启动电池33提升31倍除以N以上寿命,或者设定该启动电池33的该初始电性出力比值R
r10是30%,设定该快速储能模块13的该初始电性出力比值R
r20是70%,综合上述四种相乘效益((100%/30%)×(100%/30%)×(100%/30%)×2)除以N,该启动电池33提升74倍除以N以上寿命,或者设定该启动电池33的该初始电性出力比值R
r10是20%,设定该快速储能模块13的该初始电性出力比值R
r20是80%,综合上述四种相乘效益((100%/20%)×(100%/20%)×(100%/20%)×2)除以N,该启动电池33提升250倍除以N以上寿命;如此该启动电池33的该初始电性出力比值介于20%与40%之间,或者该启动电池33的该初始电性出力比值介于30%与40%之间,该快速储能模块13的该初始电性出力比值介于60%与80%之间,或者该快速储能模块13的该初始电性出力比值介于60%与70%之间,其中该启动电池33的该初始电性出力比值加上该快速储能模块13的该初始电性出力比值的总和等于1,如此可以大幅减缓启动电池33(例如铅酸电池)劣化程度,达成延长该启动电池33使用寿命的目的。
当启动电池33的电压值过低,这个现象也被称为欠电压,表示启动马达31不能正常启动,在充电模式中通过启动电池33的电力来预先对快速储能模块13进行充电,快速储能模块13(例如超级电容组)具有较启动电池33更快的充放电能力,因此,快速储能模块13能快速充电累积至所需的电压值;再者,快速储能模块13具有能单独启动启动马达31所需的电量,且即使当启动电池33的寿命容量剩下1%甚至以下时(依启动电池33容量而定),仍能充饱快速储能模块13并发动启动马达31,如此使用此发明所揭示的启动电池与快速储能模块并联出力比配置系统将可调整控制启动电池33的初始电性出力比值,而使启动电池33的实际使用寿命大幅延长。
请参照图1、图2及图3,其中不改变初始时该启动电池33的第一总内阻值R
TH、初始时该快速储能模块13的第二总内阻值R
C、初始时第一线阻组件的第一电阻值R
1、以及初始时第二线阻组件的第二电阻值R
2,选择较大容量的该启动电池33,或选择较大容量的快速储能模块13,例如该启动电池33容量原为55Ahr(CCA:370A,冷启动电流),选择较大容量的该启动电池33具有75Ahr(CCA:460A,冷启动电流),若同样启动马达31抽载360A,加装该快速储能模块13(例如超级电容组),该启动电池33电流抽载减半至 180A(该启动电池的电性出力比值=50%),对75Ahr容量的该启动电池33而言,等同出力50%×(370A/460A)=40%电性出力比值,如此该启动电池33的寿命将可从3倍提升31倍,虽然更换启动电池33会影响到启动电池33的第一总内阻值,但整体的设计是以上述作业趋进方式达到设计目标,如此可以大幅减缓启动电池33(例如铅酸电池)劣化程度,达成延长该启动电池33使用寿命的目的。
另请参照图1及图3,选择较小容量的该启动电池33,或者同时提升初始时电性连接该启动电池33的第一线阻组件的第一电阻值或降低初始时电性连接该快速储能模块13的第二线阻组件的第二电阻值,例如该启动电池33容量原为75Ahr(CCA:460A,冷启动电流),选择较小容量的该启动电池33具有55Ahr(CCA:370A,冷启动电流),从75Ahr换到55Ahr时,若启动马达31抽载460A,加装该快速储能模块13(例如超级电容组),该启动电池33电流抽载减半至230A(该启动电池33的电性出力比值是50%),对55Ahr容量的该启动电池33而言,如果55Ahr容量的该启动电池33的第一总内阻值与75Ahr容量的该启动电池33的第一总内阻值相同,等同出力50%×(460A/370A)=62%电性出力比值,此时通过升高初始时电性连接该启动电池33的第一线阻组件的第一电阻值或者降低初始时该快速储能模块13的第二线阻组件的第二电阻值,使较小容量55Ahr的该启动电池33由230A抽载降至180A的实质电性出力比值是50%,如此可维持16倍以上到32年的该启动电池33寿命;如果55Ahr容量的该启动电池33的第一总内阻值与75Ahr容量的该启动电池33的第一总内阻值不相同,同样可以调整校正初始时电性连接该启动电池33的第一线阻组件的第一电阻值以及初始时电性连接该快速储能模块13的第二线阻组件的第二电阻值;又,如果55Ahr容量的该启动电池33的第一总内阻值较75Ahr容量的该启动电池33的第一总内阻值高,可以选择更小容量的该启动电池33,调降该启动电池33的电性出力比值是50%,例如汽车以3,000CC为标准,该启动电池33的电性出力比值是50%,当换成较小容量的该启动电池33,因为一般较小容量的该启动电池33的第一总内阻值较高,可自然调整选择使较小容量的该启动电池33的电性出力比值下降到接近50%,如此仍然可维持16倍以上到32年的该启动电池33的寿命。
请参照图1及图2,初始时,若该快速储能模块13的额定最大输出电流I
CMAX低于该启动马达31的启动电流I
SC,记忆该启动电池33的更换启动电池的电性出力比值R
r1,满足以下的公式(3):R
r1=(I
SC-I
CMAX)/I
SC,若该快速储能模块13的该额定最大输出电流I
CMAX大于或等于该启动马达31的该启动电流I
SC,则指定特定值为该更换启动电池的电性出力比值R
r1,每次启动该启动马达31时,得到该启动电池的电性出力比值R
r11,满足以下的公式(4):R
r11=I
TH/(I
TH+I
C),其中I
TH是该启动电池33的抽载电流,I
C是该快速储能模块13的抽载电流,若该启动电池33的电性出力比值R
r11小于该更换启动电池的电性出力比值R
r1,发出该启动电池33更换警告。
本发明启动电池与快速储能模块并联出力比配置系统所揭示不以汽车为限,启动电池与快速储能模块并联出力比配置系统10也可以被应用在需要较大电力来启动启动马达31的各种可能装置,例如无线吸尘器、柴油发电机等,或是以启动电池33供电但瞬间需要较大电流等大负载的装置。因此,所谓启动仅是一代表词,其实际上包含任何需要较大电流的状况与系统。
最后,强调,本发明于前实施例中所揭示的构成组件,仅为举例说明,并非用来限制本案的范围,其他等效组件的替代或变化,也应为本案的技术方案的范围所涵盖。
Claims (11)
- 一种启动电池与快速储能模块并联出力比配置系统,用于启动启动马达,其特征在于,包括:启动电池,具有第一总内阻值;以及快速储能模块,具有第二总内阻值,所述快速储能模块与所述启动电池并联连接;在安装时,选择市场上任一已知的所述启动电池与所述快速储能模块规格,通过初始设定所述启动电池与所述快速储能模块分别提供所述启动马达启动电流的初始电性出力比值,所述启动电池的所述初始电性出力比值加上所述快速储能模块的所述初始电性出力比值的总和等于1,通过降低所述启动电池的所述初始电性出力比值,延长所述启动电池的寿命。
- 根据权利要求1所述的启动电池与快速储能模块并联出力比配置系统,其特征在于,还包括第一线阻组件以及第二线阻组件,其中第一线阻组件电性连接所述启动电池,第二线阻组件电性连接所述快速储能模块。
- 根据权利要求1所述的启动电池与快速储能模块并联出力比配置系统,其特征在于,其中满足以下的公式(1):R r10=1-(R TH/(R TH+R C)),R r20=1-(R C/(R TH+R C)),其中R r10是所述启动电池的所述初始电性出力比值,R r20是所述快速储能模块的所述初始电性出力比值,R TH是初始时所述启动电池的第一总内阻值,R C是初始时所述快速储能模块的第二总内阻值,选择所述启动电池具有较高的初始时第一总内阻值R TH,或选择所述快速储能模块具有较低的初始时的第二总内阻值R C。
- 根据权利要求2所述的启动电池与快速储能模块并联出力比配置系统,其特征在于,满足以下的公式(2):R r10=1-((R TH+R 1)/((R TH+R 1)+(R C+R 2))),R r20=1-((R C+R 2)/((R TH+R 1)+(R C+R 2))),其中R r10是所述启动电池的所述初始电性出力比值,R r20是所述快速储能模块的所述初始电性出力比值,R TH是初始时所述启动电池的第一总内阻值,R 1是初始时第一线阻组件的第一电阻值,R C是初始时所述快速储能模块的第二总内阻值,R 2是初始时第二线阻组件的第二电阻值,升高初始时第一电阻值R 1或降低初始时第二电阻值R 2。
- 根据权利要求3或4所述的启动电池与快速储能模块并联出力比配置 系统,其特征在于,所述启动电池的所述初始电性出力比值介于20%与80%之间,所述快速储能模块的所述初始电性出力比值介于20%与80%之间。
- 根据权利要求5所述的启动电池与快速储能模块并联出力比配置系统,其特征在于,设定所述启动电池的所述初始电性出力比值R r10是80%,设定所述快速储能模块的所述初始电性出力比值R r20是20%,所述启动电池提升3倍以上寿命,或者设定所述启动电池的所述初始电性出力比值R r10是70%,设定所述快速储能模块的所述初始电性出力比值R r20是30%,所述启动电池提升5倍以上寿命,或者设定所述启动电池的所述初始电性出力比值R r10是60%,设定所述快速储能模块的所述初始电性出力比值R r20是40%,所述启动电池提升9倍以上寿命,或者设定所述启动电池的所述初始电性出力比值R r10是50%,设定所述快速储能模块的所述初始电性出力比值R r20是50%,所述启动电池提升16倍以上寿命,或者设定所述启动电池的所述初始电性出力比值R r10是40%,设定所述快速储能模块的所述初始电性出力比值R r20是60%,所述启动电池提升31倍以上寿命,或者设定所述启动电池的所述初始电性出力比值R r10是30%,设定所述快速储能模块的所述初始电性出力比值R r20是70%,所述启动电池提升74倍以上寿命,或者设定所述启动电池的所述初始电性出力比值R r10是20%,设定所述快速储能模块的所述初始电性出力比值R r20是80%,所述启动电池提升250倍以上寿命。
- 根据权利要求6所述的启动电池与快速储能模块并联出力比配置系统,其特征在于,所述启动马达用以重新启动车辆引擎具有怠速熄火系统,相较于一般启动马达的启动次数为N倍,N为算术平均数或进位的正整数,所述启动电池的所述初始电性出力比值介于20%与40%之间,所述快速储能模块的所述初始电性出力比值介于60%与80%之间。
- 根据权利要求7所述的启动电池与快速储能模块并联出力比配置系统,其特征在于,设定所述启动电池的所述初始电性出力比值R r10是40%,设定所述快速储能模块的所述初始电性出力比值R r20是60%,所述启动电池提升31倍除以N以上寿命,或者设定所述启动电池的所述初始电性出力比值R r10是30%,设定所述快速储能模块的所述初始电性出力比值R r20是70%,所述启动电池提升74倍除以N以上寿命,或者设定所述启动电池的所述初始电性出力比值R r10是20%,设定所述快速储能模块的所述初始电性出力比 值R r20是80%,所述启动电池提升250倍除以N以上寿命。
- 根据权利要求2所述的启动电池与快速储能模块并联出力比配置系统,其特征在于,不改变初始时所述启动电池的第一总内阻值R TH、初始时所述快速储能模块的第二总内阻值R C、初始时第一线阻组件的第一电阻值R 1、以及初始时第二线阻组件的第二电阻值R 2,选择较大容量的所述启动电池或选择较大容量的所述快速储能模块。
- 根据权利要求2所述的启动电池与快速储能模块并联出力比配置系统,其特征在于,选择较小容量的所述启动电池,或同时提升初始时第一线阻组件的第一电阻值R 1或降低初始时第二线阻组件的第二电阻值R 2。
- 根据权利要求1所述的启动电池与快速储能模块并联出力比配置系统,其特征在于,初始时,若所述快速储能模块的额定最大输出电流I CMAX低于所述启动马达的启动电流I SC,记忆所述启动电池的更换启动电池的电性出力比值R r1,满足以下的公式(3):R r1=(I SC-I CMAX)/I SC,若所述快速储能模块的所述额定最大输出电流I CMAX大于或等于所述启动马达的所述启动电流I SC,则指定特定值为所述更换启动电池的电性出力比值R r1,每次启动所述启动马达时,得到所述启动电池的电性出力比值R r11,满足以下的公式(4):R r11=I TH/(I TH+I C),其中I TH是所述启动电池的抽载电流,I C是所述快速储能模块的抽载电流,若所述启动电池的电性出力比值R r11小于所述更换启动电池的电性出力比值R r1,发出所述启动电池的更换警告。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010080790.4 | 2020-02-05 | ||
CN202010080790.4A CN113224826A (zh) | 2020-02-05 | 2020-02-05 | 启动电池与快速储能模块并联出力比配置系统及其方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021155811A1 true WO2021155811A1 (zh) | 2021-08-12 |
Family
ID=77085500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/075107 WO2021155811A1 (zh) | 2020-02-05 | 2021-02-03 | 启动电池与快速储能模块并联出力比配置系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113224826A (zh) |
WO (1) | WO2021155811A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105201722A (zh) * | 2015-10-16 | 2015-12-30 | 南车株洲电力机车有限公司 | 一种内燃动车组的动力包启动电路 |
US20170253231A1 (en) * | 2016-03-02 | 2017-09-07 | Gentherm | Systems and methods for supplying power in a hybrid vehicle using capacitors, a battery and one or more dc/dc converters |
CN207021364U (zh) * | 2017-07-25 | 2018-02-16 | 湖北圣融科技有限公司 | 一种新型柴油机启动复合电源 |
CN107800180A (zh) * | 2017-12-07 | 2018-03-13 | 河南省桓立机电科技有限公司 | 一种车用启动装置、应急启动电源和车用启动电源 |
CN110171298A (zh) * | 2019-05-10 | 2019-08-27 | 湖南科技大学 | 盾构电瓶车的铅酸电池与超级电容混合动力控制系统 |
-
2020
- 2020-02-05 CN CN202010080790.4A patent/CN113224826A/zh active Pending
-
2021
- 2021-02-03 WO PCT/CN2021/075107 patent/WO2021155811A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105201722A (zh) * | 2015-10-16 | 2015-12-30 | 南车株洲电力机车有限公司 | 一种内燃动车组的动力包启动电路 |
US20170253231A1 (en) * | 2016-03-02 | 2017-09-07 | Gentherm | Systems and methods for supplying power in a hybrid vehicle using capacitors, a battery and one or more dc/dc converters |
CN207021364U (zh) * | 2017-07-25 | 2018-02-16 | 湖北圣融科技有限公司 | 一种新型柴油机启动复合电源 |
CN107800180A (zh) * | 2017-12-07 | 2018-03-13 | 河南省桓立机电科技有限公司 | 一种车用启动装置、应急启动电源和车用启动电源 |
CN110171298A (zh) * | 2019-05-10 | 2019-08-27 | 湖南科技大学 | 盾构电瓶车的铅酸电池与超级电容混合动力控制系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113224826A (zh) | 2021-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9950629B2 (en) | Vehicle power source | |
JP5520629B2 (ja) | 車両用電源装置 | |
US20060186738A1 (en) | Method of supplying electric current, method of starting internal combustion engine, power supply apparatus, and vehicle | |
US10377246B2 (en) | Vehicle power source | |
KR100993654B1 (ko) | 연료전지 차량의 제어 방법 | |
JP2002325377A (ja) | 自動車電源装置 | |
KR102155041B1 (ko) | 차량용 전원 안정화 장치 및 그를 이용한 전원 공급 시스템 | |
JP4737533B2 (ja) | 車両用制御装置 | |
TWI750087B (zh) | 智慧能量存儲系統 | |
JP2020157861A (ja) | 制御装置 | |
JP4292865B2 (ja) | 車両用電力供給システム | |
JP2020100259A (ja) | 車両用電源装置 | |
JP4873365B2 (ja) | 車両用制御装置 | |
WO2021155811A1 (zh) | 启动电池与快速储能模块并联出力比配置系统 | |
WO2022228247A1 (zh) | 智能能量存储系统 | |
JP2019009910A (ja) | 車両用電源装置 | |
TWI702773B (zh) | 啟動電池與快速儲能模組並聯出力比配置系統及其方法 | |
US20210376639A1 (en) | System for output ratio configuration of start-up battery and rapid energy storage module in parallel | |
TWI698361B (zh) | 電池電力延續系統及電池電力延續方法 | |
TWI730870B (zh) | 啟動電池與快速儲能模組並聯出力比配置系統及方法 | |
TWI769477B (zh) | 多電壓式儲能裝置之驅動發電系統 | |
CN114074621A (zh) | 启动电池与快速储能模块并联出力比配置系统及方法 | |
JP2004324547A (ja) | 電源装置 | |
TWM630566U (zh) | 用於車輛電瓶的輔助供電裝置 | |
JP2020020329A (ja) | 車両用電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21751174 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21751174 Country of ref document: EP Kind code of ref document: A1 |