WO2022228247A1 - 智能能量存储系统 - Google Patents

智能能量存储系统 Download PDF

Info

Publication number
WO2022228247A1
WO2022228247A1 PCT/CN2022/087975 CN2022087975W WO2022228247A1 WO 2022228247 A1 WO2022228247 A1 WO 2022228247A1 CN 2022087975 W CN2022087975 W CN 2022087975W WO 2022228247 A1 WO2022228247 A1 WO 2022228247A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
converter
lithium battery
storage device
voltage value
Prior art date
Application number
PCT/CN2022/087975
Other languages
English (en)
French (fr)
Inventor
林子闵
王镝程
Original Assignee
天扬精密科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天扬精密科技股份有限公司 filed Critical 天扬精密科技股份有限公司
Priority to AU2022267584A priority Critical patent/AU2022267584A1/en
Priority to EP22794718.1A priority patent/EP4333254A1/en
Priority to CA3212841A priority patent/CA3212841A1/en
Priority to KR1020237035625A priority patent/KR20230175200A/ko
Priority to JP2023561256A priority patent/JP2024514807A/ja
Priority to US18/274,702 priority patent/US20240106260A1/en
Publication of WO2022228247A1 publication Critical patent/WO2022228247A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an energy storage system, in particular to an intelligent energy storage system.
  • Rechargeable batteries have been widely used in various daily life items, among which a battery for starting an engine in a vehicle with an internal combustion engine (hereinafter referred to as "engine") as a power source is an example.
  • engine an internal combustion engine
  • lead-acid batteries are not environmentally friendly because of the lead-containing process, and their service life is generally only 2 to 3 years.
  • This traditional lead-acid battery consists of a positive plate. , negative plate, separator, battery tank, electrolyte and terminals and other parts, the principle of the battery is to convert chemical energy and direct current electrical energy into each other, and then provide repeated power storage and use through charging energy after discharge.
  • the device using lead-acid battery to start the engine needs to draw a large current instantaneously.
  • the lead-acid battery will accelerate the deterioration, which will lead to the gradual failure of the lead-acid battery.
  • the lead-acid battery will affect its life due to different pumping currents.
  • the disadvantage of lead-acid batteries is that in addition to the shortened service life due to the continuous increase of internal resistance, dangerous flammable hydrogen may be generated when overcharged.
  • the crystallization causes irreversible serious damage, which leads to serious aging of the battery, and the storage capacity is greatly reduced or even reduced to zero; in addition, lead-acid batteries are heavy and bulky, and there is a high risk of pollution to the environment after they are discarded. ideal.
  • the present invention discloses an intelligent energy storage system that is electrically connected to an external power source and a load.
  • the intelligent energy storage system includes: a first energy storage device for storing electrical energy; a second energy storage device The device is electrically connected to the external power supply and the load.
  • the external power supply is used as the power source to charge the first energy storage device through the second energy storage device, and in the energy transfer mode (Energy Transfer Mode) Mode), using the first energy storage device as a power source to charge the second energy storage device; at least one converter is electrically connected between the first energy storage device and the second energy storage device to adjust the output voltage and an output current to allow the first energy storage device to charge the second energy storage device unidirectionally, or to allow an external power source to charge the first energy storage device unidirectionally through the second energy storage device; and a controller to detect the first energy storage device At least one electrical characteristic of the energy storage device or the second energy storage device is used to adjust the output voltage and output current of the converter, to avoid high current charging or discharge of the first energy storage device, and to achieve the purpose of protecting the first energy storage device.
  • the present invention discloses an intelligent energy storage system, wherein the first energy storage device is a lithium battery structure, including any one or a combination of lithium (iron) batteries, ternary lithium batteries, etc., and the second energy storage device is a lithium battery structure.
  • the energy storage device is a capacitor structure, including any one or a combination of supercapacitors, supercapacitor banks, capacitor banks, etc.
  • the external power source is used as a power source, including any one or a combination of a generator, an external battery, etc. It is used to provide the power required by the load, and the second energy storage device is electrically connected to the external power supply.
  • the external power supply When the external power supply is in the power supply state of the external power supply, that is, in the power storage mode, the external power supply is connected to the converter through the second energy storage device. Connected to the first energy storage device, the controller controls the output voltage and output current of the converter to charge the first energy storage device, that is, the electrical energy output by the external power supply can be recharged to the first energy storage device unidirectionally through the converter device.
  • the present invention discloses an intelligent energy storage system, wherein the controller detects at least one electrical characteristic of the first energy storage device, and detects that the voltage measuring device and the current measuring device respectively measure the electrical properties of the first energy storage device.
  • the first voltage value and the first current value the controller detects at least one electrical characteristic of the second energy storage device, and detects the second voltage value of the second energy storage device measured by the voltage measuring device; wherein the first energy storage device A voltage value, a first current value and a second voltage value of the second energy storage device respectively provide the controller, whereby the controller adjusts the output voltage and output current of the converter.
  • the present invention discloses an intelligent energy storage system, wherein the converter includes an off state, a charge control state and a discharge control state, the off state is that the converter does not perform charging or discharging operations, and the charge control state is an external power supply
  • the first energy storage device is unidirectionally charged through the second energy storage device and the converter
  • the discharge control state is that the first energy storage device unidirectionally charges the second energy storage device through the converter.
  • the present invention discloses an intelligent energy storage system, wherein the controller controls the converter to be in an off state and control the charging according to the detected at least one electrical characteristic of the first energy storage device or the second energy storage device. state and discharge control state.
  • the present invention discloses an intelligent energy storage system, wherein the controller enters the power storage mode after detecting that the second voltage value of the second energy storage device conforms to the power supply state of the external power supply, and the controller controls the converter to switch to In the charging control state, the external power source is used as the power source, and the first energy storage device is charged unidirectionally through the second energy storage device and the converter until the first energy storage device is fully charged to a high potential, that is, the first energy storage device The first current value reaches the first lower limit current value.
  • the present invention discloses an intelligent energy storage system, wherein after the controller detects that the second voltage value of the second energy storage device conforms to the state where the external power supply is stopped, the load uses the first energy storage device and the second energy storage device. At least one of the energy storage devices is used as a power supply source.
  • the controller controls the converter to switch to the discharge control state, uses the discharge of the first energy storage device as the power source, and charges the second energy storage device unidirectionally through the converter until the second energy storage device is fully charged to a high level.
  • voltage that is, when the second voltage value of the second energy storage device reaches the second upper limit voltage value, the controller controls the converter to switch to an off state, so that the converter does not perform charging or discharging operations.
  • the present invention discloses an intelligent energy storage system, wherein when the external power supply stops supplying power, the load uses the second energy storage device as the power supply source, and when the controller detects the second energy storage device of the second energy storage device.
  • the load When the voltage value has a sudden and rapid continuous drop, the load should have a large power demand for a long time.
  • the controller controls the switch circuit to turn on the first energy storage device and the second energy storage device, so that the first energy storage device and the second energy storage device are turned on.
  • the energy devices together serve as the source of power supply, and the large power demand that the load needs to last for a long time.
  • the present invention discloses an intelligent energy storage system, wherein, in the power storage mode, when the converter is switched to the charging control state, the controller adjusts the converter to charge the first energy storage device unidirectionally, according to The fixed current charging mode and the fixed voltage charging mode are sequentially executed, and the condition for changing the fixed current charging mode to the fixed voltage charging mode is to satisfy a predetermined upper limit charging voltage value.
  • the present invention discloses an intelligent energy storage system, wherein, in the dump mode, when the converter switches to the discharge control state, the controller adjusts the converter to charge the second energy storage device unidirectionally, according to the The fixed current charging mode and the fixed voltage charging mode are sequentially executed, and the condition for changing the fixed current charging mode to the fixed voltage charging mode is to satisfy the preset upper limit charging voltage value.
  • FIG. 1 is a schematic diagram of a first embodiment of an intelligent energy storage system with one converter
  • FIG. 2 is a schematic diagram of a second embodiment of an intelligent energy storage system having two converters
  • FIG. 3 is a schematic diagram of a third embodiment of an intelligent energy storage system having one converter and one switching circuit.
  • the intelligent energy system disclosed in the present invention provides a combined structure of the first energy storage device 10 and the second energy storage device 20, wherein the intelligent energy storage system of the first embodiment, the second embodiment and the third embodiment provides an energy battery and a power battery
  • the combined structure in which the energy battery is a lithium battery structure, and the power battery is a capacitor structure, that is, the first energy storage device is a lithium battery structure, and the second energy storage device is a capacitor structure.
  • This structure replaces the traditional lead-acid battery
  • the structure is electrically connected to the load/generator to achieve the purpose of lead-free permanent battery.
  • the lead-acid battery required by the external load and generator is replaced with a capacitor structure.
  • the occasional instantaneous voltage jump of the generator will be absorbed by the capacitor structure to stabilize the DC of the generator.
  • the capacitor structure When the generator is in the power supply state, the lithium battery structure is only used to store the power. When the generator stops power supply, the lithium battery structure Provide the power loss caused by self-consumption or vehicle-mounted equipment power consumption of the capacitor structure; the composition of the smart energy storage system of the present invention is described above, and then, the operation and efficacy of the smart energy storage system of the present invention are described in detail.
  • the present invention provides an intelligent energy storage system 100 , which is electrically connected to an external power source 400 and a load 500 .
  • the intelligent energy storage system 100 includes: a first energy storage device 10 , which is used to store electric energy;
  • the second energy storage device 20 is electrically connected to the external power source 400 and the load 500;
  • the converter 30 is electrically connected between the first energy storage device 10 and the second energy storage device 20; and
  • the controller 40 is used to detect the first energy storage device 10 and the second energy storage device 20.
  • At least one electrical property of the energy storage device 10 or the second energy storage device 20 is used to adjust the output voltage and output current of the converter 30; in the power storage mode, the external power source 400 is used as the power source, and the second energy storage device 20 and the converter 30 charge the first energy storage device 10 unidirectionally, that is, the controller 40 controls the converter 30 to adjust an output voltage V 1crg and an output current I 1crg , allowing the external power source 400 to pass through the second energy storage device 10 .
  • the energy device 20 charges the first energy storage device 10 unidirectionally to avoid the influence of the high current charging of the first energy storage device 10; in the dump mode, the first energy storage device 10 is used as the power source, and the converter 30 is used to unidirectionally charge the first energy storage device 10.
  • the second energy storage device 20 is charged, that is, the controller 40 controls the converter 30 to adjust an output voltage V 2crg and an output current I 2crg , allowing the first energy storage device 10 to unidirectionally charge the second energy storage device 20 charging to avoid the influence of high current discharge or overdischarge of the first energy storage device 10 ; through the above technical means, the first energy storage device 10 is protected and the service life of the first energy storage device 10 is extended.
  • the first energy storage device 10 is a lithium (iron) battery
  • the second energy storage device 20 is a super capacitor bank
  • the external power source 400 is a generator, which is used to provide a load 500
  • the required power includes any one or a combination of the starter motor, on-board equipment
  • the super capacitor bank is directly electrically connected to the generator, the starter motor and the on-board equipment
  • the converter 30 is located between the lithium (iron) battery and the super capacitor.
  • the lithium (iron) battery and the supercapacitor bank are electrically connected respectively to adjust the output voltage and output current.
  • the capacitor bank and the converter 30 charge the lithium (iron) battery unidirectionally; in addition, when the car is turned off, after an external power supply stops supplying power, the supercapacitor bank provides the power required by the load 500, and when the supercapacitor bank is insufficient to provide power
  • the power required by the load 500 allows the lithium (iron) battery to be discharged through the converter 30 to charge the supercapacitor bank in one direction, but the first energy storage device 10 of the present invention is not limited to the lithium (iron) battery, and the second energy storage device 20 It is not limited to the super capacitor bank, the external power supply is not limited to the generator, and the load is not limited to the starter motor and vehicle-mounted equipment.
  • the converter 30 in the first embodiment has a bidirectional charging function, and has a unidirectional charging function for lithium (iron) batteries and a unidirectional charging function for a super capacitor bank.
  • the converter 30 includes an off state, a charging control state and a discharging control state. , wherein the off state is that the converter 30 does not charge or discharge the lithium (iron) battery, and the charging control state is that the generator is used as the power source, and the supercapacitor group and the converter 30 are unidirectional The lithium (iron) battery is charged, and the discharge control state is that the lithium (iron) battery is used as the power source, and the supercapacitor group is charged unidirectionally through the converter 30 .
  • the converter 30 is in an off state, and the converter 30 does not perform charging or discharging operations.
  • the controller 40 detects that the second voltage value V2 of the supercapacitor group matches an external power
  • the controller 40 detects that the second voltage value V2 of the supercapacitor group matches an external power
  • the controller 40 detects that the second voltage value V2 of the supercapacitor group matches an external power
  • the controller 40 detects that the second voltage value V2 of the supercapacitor group matches an external power
  • the controller 40 detects that the second voltage value V2 of the supercapacitor group matches an external power
  • the controller 40 detects that the second voltage value V2 of the supercapacitor group matches an external power
  • the controller 40 provides the converter 30 with a control signal CS crg corresponding to the charging control state to adjust the converter 30 to generate a control signal CS crg .
  • the output voltage V 1crg and the output current I 1crg make the converter 30 switch to the charging control state, use the generator as a power source, and charge the lithium (iron) battery unidirectionally through the super capacitor bank and the converter 30 until the lithium (iron) battery is charged.
  • the first voltage value of the battery has reached any voltage value higher than the preset first lower limit voltage value V 1min according to the demand, that is, the first upper limit voltage value V 1max is preset, preferably set to full potential or rated voltage, or, the controller 40 detects that the first current value I1 of the lithium (iron) battery reaches a first lower limit current value I1min , the first lower limit current value I1min in this embodiment can be set to 0.2C, The controller 40 provides the control signal CS off corresponding to the off state to the converter 30, so that the converter 30 is switched to the off state and does not perform charging operation, so that the lithium (iron) battery can be prevented from being overcharged.
  • the controller 40 After the controller 40 detects that the second voltage value V 2 of the supercapacitor group matches an external power supply stop state, for example, the converter 30 is turned off and the second voltage value V 2 of the second energy storage device 20 drops to meet a predetermined state Set the flameout voltage value, or the variation of the second voltage value V 2 is in line with a preset flameout voltage difference, or it is a flameout signal provided by the car, when the second voltage value V 2 of the super capacitor bank is too low, this The phenomenon is also called undervoltage, which means that the super capacitor bank cannot normally provide the cold cranking current (CCA, Cold Cranking Ampere) of the starter motor, that is, the super capacitor bank cannot supply enough current for the starter motor to start, so when the controller 40 detects When the second voltage value V 2 of the super capacitor group is lower than the second lower limit voltage value V 2min , the controller 40 detects that the first voltage value V 1 of the lithium (iron) battery is greater than the first lower limit voltage value V 1min , wherein the first voltage value V
  • the controller 40 provides the converter 30 with a voltage corresponding to the discharge control state.
  • the control signal CS discrg is used to adjust the output voltage V 2crg and the output current I 2crg generated by the converter 30 , so that the converter 30 is switched to the discharge control state, and the lithium (iron) battery is used as the power source to unidirectionally conduct the super capacitor group.
  • the controller 40 Charge until the controller 40 detects that the second voltage value V 2 of the super capacitor group reaches the preset second upper limit voltage value V 2max , preferably set to full potential or rated voltage, or when the controller 40 detects lithium ( The first voltage value V 1 of the iron) battery is lower than the first lower limit voltage value V 1min , the controller 40 provides the control signal CS off corresponding to the off state to the converter 30 , so that the converter 30 is switched to the off state, and no Lithium (iron) battery discharge action, when necessary, can issue a warning, including any one or a combination of buzzer, display or light warning.
  • the setting methods of the second lower limit voltage value V 2min and the second upper limit voltage value V 2max of the super capacitor bank are as follows.
  • the load current of the existing car starter motor It is related to the vehicle exhaust volume CC, which refers to the total volume of air and gas mixture inhaled by an internal combustion engine in a complete engine cycle, usually expressed in cubic centimeters (CC), and the size of the exhaust volume is related to The power of the vehicle, acceleration performance, fuel consumption and CO 2 emissions are related;
  • the minimum current value of cold cranking current (CCA) is set by the factory specification of the starting battery, for example, it defines that a 12-volt starting battery can operate at a temperature of 0°F If the current of the starting battery corresponding to the voltage value of 7.2 volts is lower than the minimum current value of the cold starting current, the power of the starting battery will be insufficient for instantaneous discharge, that is, the starting The battery cannot supply enough current to the starter motor.
  • the starter battery is rated between 1600CC and 2000CC and needs to use a 500A cold start current amperage (CCA) starter battery.
  • CCA cold start current amperage
  • the internal resistance of the supercapacitor group plus the line resistance is 0.013 ⁇ , then the second lower limit voltage V 2min that the super capacitor group can extract 500A is 13.7V.
  • V 2min for example, the external power supply is a car generator of 12V system, the charging voltage of the generator is generally greater than or equal to 14.2V, and the second lower limit voltage value V 2min is set to 13.7V, so that the super capacitor group can supply enough current at any time.
  • the second upper limit voltage value V 2max of the super capacitor group can be set to any voltage value higher than the second lower limit voltage value V 2min according to requirements, preferably set to full potential or rated voltage
  • the second upper limit voltage value V 2max of the super capacitor group can be set to 15.8V.
  • the intelligent energy storage system utilizes the characteristics of the super capacitor group to generate large current and voltage regulation.
  • the super capacitor group is directly connected in parallel with the generator, the starter motor, and the on-board equipment. It can effectively start the starter motor and stabilize the generator, and at the same time improve the stability and service life of on-board equipment. Since the lithium (iron) battery does not directly participate in the overall start-up motor and generator voltage stabilization, the starter motor starts Instantaneous ( ⁇ 5ms) high current does not need to be supplied from lithium (iron) batteries.
  • the alternating current of the alternator When the alternating current of the alternator is regulated, the occasional instantaneous voltage jump while the car is running will be absorbed by the supercapacitor bank, that is, only the supercapacitor bank assists in voltage regulation, The lithium (iron) battery will not bear the chain wave and the large charging current, and the life of the lithium (iron) battery can be prolonged.
  • the power of the lithium (iron) battery is 30AHrs.
  • the generator In the power storage mode, when the generator starts, the generator is used as the power source to charge the lithium (iron) battery unidirectionally through the super capacitor bank and the converter 30.
  • the converter 30 Charge the lithium (iron) battery with the controllable output current and controllable output voltage of the 0.5C maximum 15A charging IC, which can eliminate the possibility of high current charging of the lithium (iron) battery; in the dump mode, the super capacitor group needs to be recharged
  • the converter 30 charges the super capacitor bank unidirectionally with the controllable output current and controllable output voltage of the charging IC with a maximum of 1C and 30A, which can prevent the large current of the lithium (iron) battery.
  • the converter 30 in this embodiment includes one or more up/down Boost/buck module, but the present invention is not limited to this, the boost/buck module has directionality, can receive a voltage source in one direction, and convert it into one or more output voltages, boost/drop
  • the design of the voltage module depends on the potential of the lithium (iron) battery and the super capacitor bank, and it operates in the boost mode or the step-down mode. "Buck mode" means that one voltage is stepped down to obtain another voltage.
  • the controller 40 adjusts the converter 30 to charge the lithium (iron) battery or super capacitor bank in one direction.
  • the mode is to execute a fixed current charging mode (CC mode) and a fixed voltage charging mode (CV mode) in sequence, at the beginning of charging (assuming that the lithium (iron) battery or super capacitor bank is in a low power state, but not limited to This state), at this time, the charging mode of the lithium (iron) battery or supercapacitor group is the fixed current charging mode. At this time, the charging current is fixed and is a relatively high charging current.
  • the battery has more capacity and the speed is also faster, so that the storage capacity of the lithium (iron) battery or supercapacitor group can be quickly charged.
  • the charging mode of the lithium (iron) battery or supercapacitor will be changed to a fixed voltage charging mode.
  • the voltage is fixed and the charging current decreases, and the charging speed becomes slower, which makes the lithium (iron) battery or supercapacitor charge slower.
  • the group is close to the optimal condition of being fully charged.
  • the intelligent energy storage system 100 of the present invention can supply power when the vehicle is equipped with an idling stop system (start/stop system), compared with a general starter motor, the number of starts is N times, where N is the arithmetic mean or carry.
  • the controller 40 controls the converter 30 to switch to the discharge control state , discharge the lithium (iron) battery through the converter 30 to unidirectionally charge and supply power to the super capacitor group until the second voltage value V 2 of the super capacitor group reaches the second upper limit voltage V 2max for the next engine start;
  • the controller 40 controls the converter 30 to switch to the charging control state, and the generator power passes through the super capacitor bank and the converter 30 unidirectionally to the lithium (iron) battery.
  • the smart energy storage system 200 of the present invention is substantially the same as the smart energy storage system 100 of the first embodiment, and the only difference between the two is that the second embodiment has two different directions of conversion
  • the converter 30a and the converter 30b wherein the converter 30a is electrically connected between the first energy storage device 10 and the second energy storage device 20, when an external power supply stop state is met, for example, the controller 40 detects the The second voltage value V2 is too low, that is, the supercapacitor group cannot normally provide the power required by the load 500, so it enters the dump mode, and the controller 40 controls the converter 30a to switch to the discharge control state, using the lithium (iron) battery as the The power source is to charge the supercapacitor bank unidirectionally through the converter 30a, but the other converter 30b is turned off, so the lithium (iron) battery does not directly participate in the action of providing power to the overall load 500 and regulating the generator; When an external power supply state is met, the power storage mode is entered, and the controller
  • the intelligent energy storage system 300 of the present invention is substantially the same as the intelligent energy storage system 100 of the first embodiment, and the only difference between the two is that a switch circuit 50 is added for the first storage
  • the switch between the conduction and non-conduction of the energy device 10 and the second energy storage device 20 when the generator stops supplying power, after the power supply of an external power supply is stopped, the second energy storage device 20 provides the power required by the load 500, If it is detected by the controller 40 that the second voltage value V 2 of the second energy storage device 20 continues to drop too fast, that is, the load 500 still has continuous large power consumption, the controller 40 provides the control signal CS corresponding to the off state off to the converter 30 , so that the converter 30 is switched to the off state without charging or discharging, and the controller 40 provides the corresponding control signal CS fast , so that the switch circuit 50 turns on the first energy storage device 10 and the second energy storage device 10 .
  • the third embodiment can provide a higher charging current, such as 70A, so that the first energy storage device 10 can quickly charge the second energy storage device 20 . , and can quickly meet the large power demand of the load 500;
  • the switch circuit 50 is, for example, a metal-oxide-semiconductor field-effect transistor (MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor), an insulated gate bipolar transistor (IGBT: Insulated Gate Bipolar Transistor)
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • a switch composed of at least one of a Transistor a relay (Relay) and an electromagnetic switch, but the present invention is not limited to this.
  • the load 500 can store the first energy The device is used as the power supply source, or the load 500 can use the second energy storage device 20 as the power supply source, or the load 500 can use the first energy storage device 10 and the second energy storage device 20 as the power supply source.
  • the application of the intelligent energy storage system of the present invention is not limited to automobiles, locomotives and fishing boats.
  • the intelligent energy storage system itself is an independent battery, which can achieve protection and prolong the service life of the intelligent energy storage system.
  • An intelligent energy storage system can be used to meet the needs of power storage, voltage stabilization and large current at the same time.
  • the voltage stabilization makes the vehicle, internal combustion engine, fuel oil or electronic control more efficient and stable, and reduces air pollution.
  • the present invention can be applied In any vehicle with an internal combustion engine as the power source or electrical equipment that requires batteries, it can be directly imported into the original factory without changing the design, and can also meet the needs of the aftermarket market.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Saccharide Compounds (AREA)

Abstract

本发明提供一种智能能量存储系统,电性连接外部电源以及负载,其包含:第一储能装置,第二储能装置,至少一转换器以及控制器;其中第一储能装置作用在于储蓄电能;第二储能装置与外部电源以及负载电性连接;转换器电性连接于第一储能装置与第二储能装置之间;控制器用以检测第一储能装置或第二储能装置的至少一电性特性,以调节转换器的输出电压以及输出电流;在储电模式,以外部电源作为电力来源,经过第二储能装置对第一储能装置进行充电,在转储模式,以第一储能装置作为电力来源,对第二储能装置进行充电。

Description

智能能量存储系统 技术领域
本发明涉及一种能量存储系统,尤其涉及一种智能型能量存储系统。
背景技术
充电式蓄电池已被广泛应用于各式日常生活物品中,其中内燃机(以下记载为“引擎”)为动力源的载具中用来启动引擎用的电池即为一例。目前市面上的多数汽机车的启动和蓄电都是使用铅酸电池,然而铅酸电池是含铅制程并不环保且使用寿命一般仅为2~3年,该种传统铅酸电池由正极板、负极板、隔板、电池槽、电解液和接线端子等部份构成,蓄电池的原理是将化学能和直流电能相互转化,在放电后经由充电能再提供重复蓄电与使用。目前利用铅酸电池启动引擎的装置,由于必需瞬间抽载大电流,多次作业后易导致铅酸电池劣化,而使其内阻升高,可是在启动引擎的抽载大电流不变之下,铅酸电池将加速劣化,而导致铅酸电池渐渐失效,铅酸电池会因不同的抽载电流而影响其寿命。再者,铅酸电池的缺点,除了使用寿命会因内阻不断增加而缩短使用期限之外,过充时可能产生具危险性的可燃氢气,过放时电解液及铅板将因大量硫酸铅结晶而产生不可逆的严重损害,导致电池严重老化,所能存储的容量剧减甚至减成零;再者,铅酸电池重量重,体积大,且废弃后对于环境存有高污染风险,实不理想。
因此,近年来业界发展出以超级电容组和锂(铁)电池来延长铅酸电池寿命或取代铅酸电池,现今虽然有超级电容组和铅酸电池的合并应用,但仍无法完全在启动中以及启动后发挥出两者结合的蓄电量、大电流以及稳压优势;而现今使用锂(铁)电池仍会有因大电流放电造成寿命下降的问题,且锂(铁)电池的充电电流不可控制;因此,如何以超级电容组和锂(铁)电池来取代铅酸电池,同时避免锂(铁)电池大电流充电或放电,达到保护锂(铁)电池的目的,并增加锂(铁)电池寿命的技术亟待解决。
发明内容
有鉴于上述缺失,并为达成上述改善目的,本发明所揭示智能能量存储系统,电性连接外部电源以及负载,智能能量存储系统包含:第一储能装置,作用在于储蓄电能;第二储能装置,与外部电源以及负载电性连接,在储电模式(Energy Storage Mode),以外部电源作为电力来源,经过第二储能装置对第一储能装置进行充电,在转储模式(Energy Transfer Mode),以第一储能装置作为电力来源,对第二储能装置进行充电;至少一转换器,电性连接于第一储能装置与第二储能装置之间,用以调节输出电压以及输出电流,允许第一储能装置单向对第二储能装置充电,或者允许外部电源经过第二储能装置单向对第一储能装置充电;以及控制器,用以检测第一储能装置或第二储能装置的至少一电性特性,以调节转换器的输出电压以及输出电流,避免第一储能装置大电流充电或放电,达到保护第一储能装置的目的。
又,为了达成上述目的,本发明所揭示智能能量存储系统,其中,第一储能装置为一锂电池结构,包含锂(铁)电池、三元锂电池等任一项或其组合,第二储能装置为一电容结构,包含超级电容、超级电容组、电容组等任一项或其组合,外部电源作为电力来源,包含一发电机、一外部电池等任一项或其组合,外部电源用于提供负载所需电力,另外第二储能装置电性连接至外部电源,当外部电源为外部电源供电状态,即在储电模式,外部电源经由第二储能装置连接至转换器后再连接至第一储能装置,通过控制器对转换器控制输出电压以及输出电流,对第一储能装置充电,亦即,外部电源输出的电能得以经由转换器单向回充至第一储能装置。
又,为了达成上述目的,本发明所揭示智能能量存储系统,其中,控制器检测第一储能装置的至少一电性特性,检测通过电压测量器以及电流测量器分别测量第一储能装置的第一电压值以及第一电流值;控制器检测第二储能装置的至少一电性特性,检测通过电压测量器测量第二储能装置的第二电压值;其中第一储能装置的第一电压值、第一电流值以及第二储能装置的第二电压值分别提供控制器,控制器藉以调节转换器的输出电压以及输出电流。
又,为了达成上述目的,本发明所揭示智能能量存储系统,其中,转换器包含关闭状态、充电控制状态以及放电控制状态,关闭状态为转换器不进行充电或放电动作,充电控制状态为外部电源经由第二储能装置以及转换器单向对第一储能装置充电,放电控制状态为第一储能装置经由转换器单向对 第二储能装置充电。
又,为了达成上述目的,本发明所揭示智能能量存储系统,其中,控制器依据检测的第一储能装置或第二储能装置的至少一电性特性,控制转换器于关闭状态、充电控制状态以及放电控制状态间切换。
又,为了达成上述目的,本发明所揭示智能能量存储系统,其中,控制器检测第二储能装置的第二电压值符合外部电源供电状态后,进入储电模式,控制器控制转换器切换至充电控制状态,以外部电源作为电力来源,经过第二储能装置以及转换器单向对第一储能装置进行充电,直到第一储能装置充饱至高电位,亦即,第一储能装置的第一电流值达到第一下限电流值。
又,为了达成上述目的,本发明所揭示智能能量存储系统,其中,控制器检测第二储能装置的第二电压值符合外部电源停止供电状态后,负载以第一储能装置以及第二储能装置的至少其中之一作为电力供电来源,当第二储能装置的电量不足以供应负载所需电量,亦即,第二储能装置的第二电压值低于第二下限电压值时,进入转储模式,控制器控制转换器切换至放电控制状态,以第一储能装置放电作为电力来源,经过转换器单向对第二储能装置进行充电,直到第二储能装置充饱至高电位,亦即,第二储能装置的第二电压值达到第二上限电压值时,控制器控制转换器切换至关闭状态,使转换器不进行充电或放电动作。
又,为了达成上述目的,本发明所揭示智能能量存储系统,其中,在外部电源停止供电状态时,负载以第二储能装置作为电力供电来源,当控制器检测第二储能装置的第二电压值有突然快速的持续下降时,负载应有持续长时间的大电量需求,控制器控制开关电路导通第一储能装置以及第二储能装置,使第一储能装置以及第二储能装置共同作为电力供电来源,供电负载所需持续长时间的大电量需求。
又,为了达成上述目的,本发明所揭示智能能量存储系统,其中,在储电模式,当转换器切换至充电控制状态,通过控制器调节转换器单向对第一储能装置进行充电,依序执行固定电流充电模式及固定电压充电模式,当固定电流充电模式变更为固定电压充电模式的条件为满足一预设上限充电电压值。
又,为了达成上述目的,本发明所揭示智能能量存储系统,其中,在转 储模式,当转换器切换至放电控制状态,通过控制器调节转换器单向对第二储能装置进行充电,依序执行固定电流充电模式及固定电压充电模式,当固定电流充电模式变更为固定电压充电模式的条件为满足预设上限充电电压值。
有关本发明所揭示智能能量存储系统的详细构造、特点、组装或使用方式,将于后续的实施方式详细说明中予以描述。然而,在本发明领域中技术人员应能了解,该等详细说明以及实施本发明所列举的特定实施例,仅用于说明本发明,并非用以限制本发明的技术方案。
附图说明
包含附图以便进一步理解本发明,且附图并入本说明书中并构成本说明书的一部分。附图说明本发明的实施例,并与描述一起用于解释本发明的原理。
图1为第一实施例具有一个转换器的智能能量存储系统的示意图;
图2为第二实施例具有二个转换器的智能能量存储系统的示意图;
图3为第三实施例具有一个转换器以及一个开关电路的智能能量存储系统的示意图。
具体实施方式
以下,配合各附图列举对应的较佳实施例来对本发明所揭示智能能量存储系统的组成构件、步骤及达成功效来作说明,然各附图中智能能量存储系统的构件、尺寸及外观仅用来说明本发明的技术特征,而非对本发明构成限制。
此外,在本文中所使用的用词“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指“包含但不限于”。此外,本文中所使用的“和/或”,包含相关列举项目中一或多个项目的任意一个以及其所有组合。
本发明所揭示智能能量系统提供第一储能装置10和第二储能装置20的组合架构,其中第一实施例、第二实施例以及第三实施例智能能量存储系统提供能量电池和功率电池的组合架构,其中能量电池为锂电池结构,功率电池为电容结构,亦即,第一储能装置为一锂电池结构,第二储能装置为一电容结构,此架构取代传统的铅酸电池和负载/发电机电性连接架构,达到无铅 永久电池的目的,将外部负载和发电机需求的铅酸电池以电容结构取代,发电机偶发的瞬间电压跳动将由电容结构吸收,稳定发电机的直流供电,因此不论提供负载电量或是发电机稳压都是通过电容结构去作动,当发电机供电状态时,锂电池结构仅是用来存储电量,当发电机停止供电状态后,锂电池结构提供电容结构因自耗电或车载用设备耗电造成的电量损失;以上说明本发明的智能能量存储系统的组成,随后,详述本发明的智能能量存储系统的运作及功效。
参考图1所示第一实施例,本发明提供一种智能能量存储系统100,电性连接外部电源400以及负载500,智能能量存储系统100包含:第一储能装置10,作用在于储蓄电能;第二储能装置20,与外部电源400以及负载500电性连接;转换器30电性连接于第一储能装置10与第二储能装置20之间;以及控制器40,用以检测第一储能装置10或第二储能装置20的至少一电性特性,以调节转换器30的输出电压以及输出电流;在储电模式,以外部电源400作为电力来源,经过第二储能装置20以及转换器30单向对第一储能装置10进行充电,亦即,控制器40控制转换器30用以调节一输出电压V 1crg以及一输出电流I 1crg,允许外部电源400经过第二储能装置20单向对第一储能装置10充电,避免第一储能装置10大电流充电的影响;在转储模式,以第一储能装置10作为电力来源,经过转换器30单向对第二储能装置20进行充电,亦即,控制器40控制转换器30用以调节一输出电压V 2crg以及一输出电流I 2crg,允许第一储能装置10单向对第二储能装置20充电,以避免第一储能装置10大电流放电或过放电的影响;通过以上所述技术手段,达到保护第一储能装置10并且延长第一储能装置10的使用寿命。
在本发明第一实施例中,以汽车为例,第一储能装置10为锂(铁)电池,第二储能装置20为超级电容组,外部电源400为发电机,用于提供负载500所需电量,负载500包含启动马达、车载用设备等任一项或其组合,超级电容组直接电性连接至发电机、启动马达及车载用设备,转换器30位于锂(铁)电池与超级电容组之间,并且分别电性连接锂(铁)电池与超级电容组,用以调节输出电压以及输出电流,当汽车行进时,符合一外部电源供电状态后,允许发电机发电出电力经过超级电容组及转换器30单向对锂(铁)电池充电;另外当汽车熄火时,符合一外部电源停止供电状态后,由超级电容组提供负 载500所需电量,当超级电容组电量不足以提供负载500所需电量,允许锂(铁)电池放电经由转换器30单向对超级电容组充电,但本发明第一储能装置10不以锂(铁)电池为限,第二储能装置20不以超级电容组为限,外部电源不以发电机为限,负载不以启动马达与车载用设备为限。
第一实施例中的转换器30具有双向充电功能,分别具有单向对锂(铁)电池充电功能以及单向对超级电容组充电功能,转换器30包含关闭状态、充电控制状态以及放电控制状态,其中关闭状态为转换器30不进行对锂(铁)电池充电动作或不进行锂(铁)电池放电动作,充电控制状态为以发电机为电力来源,经由超级电容组及转换器30单向对锂(铁)电池充电,放电控制状态为以锂(铁)电池为电力来源,经由转换器30单向对超级电容组充电。
进一步说明第一实施例具体运作方式,启始时,转换器30为关闭状态,转换器30不进行充电或放电动作,当控制器40检测超级电容组的第二电压值V 2符合一外部电源供电状态后,例如转换器30为关闭状态或放电控制状态同时第二储能装置20的第二电压值V 2上升至符合一预设启动电压值,或是第二电压值V 2的变化量符合一预设启动电压差值,又或者是汽车提供的一启动信号,即进入储电模式,控制器40提供转换器30对应于充电控制状态的控制信号CS crg,用以调节转换器30产生输出电压V 1crg以及输出电流I 1crg,使转换器30切换至充电控制状态,以发电机作为电力来源,经过超级电容组以及转换器30单向对锂(铁)电池进行充电,直到锂(铁)电池的第一电压值已达依需求设定至较预设第一下限电压值V 1min高的任一电压值,即预设为第一上限电压值V 1max,较佳为设定至满电位或额定电压,或,控制器40检测锂(铁)电池的第一电流值I 1达到一第一下限电流值I 1min,本实施例第一下限电流值I 1min可以设定为0.2C,由控制器40提供对应于关闭状态的控制信号CS off给转换器30,使转换器30切换至关闭状态,不进行充电动作,如此可以避免锂(铁)电池过度充电。
当控制器40检测超级电容组的第二电压值V 2符合一外部电源停止供电状态后,例如转换器30为关闭状态同时第二储能装置20的第二电压值V 2下降至符合一预设熄火电压值,或是第二电压值V 2的变化量符合一预设熄火电压差值,又或者是汽车提供的一熄火信号,当超级电容组的第二电压值V 2过低,这个现象也被称为欠电压,表示超级电容组不能正常提供启动马达的 冷启动电流(CCA,Cold Cranking Ampere),也就是超级电容组无法供应足够的电流给启动马达启动,因此当控制器40检测到超级电容组的第二电压值V 2低于第二下限电压值V 2min时,同时控制器40检测锂(铁)电池的第一电压值V 1大于第一下限电压值V 1min,其中第一下限电压值V 1min设定以锂(铁)电池已达过放电压值,以避免锂(铁)电池过度放电,即进入转储模式,控制器40提供转换器30对应于放电控制状态的控制信号CS discrg,用以调节转换器30产生的输出电压V 2crg以及输出电流I 2crg,使转换器30切换至放电控制状态,以锂(铁)电池作为电力来源,单向对超级电容组进行充电,直到控制器40检测超级电容组的第二电压值V 2达到预设的第二上限电压值V 2max,较佳为设定至满电位或额定电压,又或者当控制器40检测锂(铁)电池的第一电压值V 1低于第一下限电压值V 1min,由控制器40提供对应于关闭状态的控制信号CS off给转换器30,使转换器30切换至关闭状态,不进行锂(铁)电池放电动作,必要时可以发出警告,包含蜂呜、显示或亮灯警告等任一项或其组合。
本发明第一实施例中转储模式中,超级电容组的第二下限电压值V 2min以及第二上限电压值V 2max的设定方式如下,以汽车为例,现有汽车启动马达的负载电流与汽车排气量CC有关,排气量是指内燃式发动机在一次完整发动机循环中吸入的空气和燃气混和气的总体积,通常用立方厘米(CC)表示,而排气量的大小则与车辆的动力强弱、加速性能、油耗值以及CO 2排放量有关;冷启动电流(CCA)的最低电流值为启动电池出厂规格书所订,例如定义12伏特启动电池可以在0°F的温度下传递30秒,同时保持至少为7.2伏特的电压的安培数,若启动电池对应于7.2伏特电压值的电流低于冷启动电流的最低电流值,启动电池瞬间放电的电力将不足,也就是启动电池无法供应足够的电流给启动马达,通常启动电池分级介于1600CC与2000CC之间需要使用500A冷启动电流安培数(CCA)的启动电池,本发明智能能量存储系统因为完全由超级电容组的总CCA提供启动马达电流,例如超级电容组由串联6颗超级电容组成,每颗超级电容电压2.8V,超级电容组最大电压2.8V x 6=16.8V,因此超级电容组升压到能抽出500A,超级电容组的内阻加上线阻为0.013Ω,则超级电容组能抽出500A的第二下限电压值V 2min为13.7V,计算方式如下:7.2V/500A=0.0144Ω,V 2min/(0.013Ω+0.0144Ω)=500A,因此,较佳设计为第二下限电压值V 2min低于与超级电容组并联连接的外部电源的电 压值,使超级电容组的电压值保持在高于第二下限电压值V 2min,例如外部电源为12V系统的汽车发电机,发电机充电电压一般为大于或等于14.2V,第二下限电压值V 2min设定为13.7V,使超级电容组能随时供应足够的电流给启动马达进行启动;另超级电容组的第二上限电压值V 2max可依需求设定至较第二下限电压值V 2min高的任一电压值,较佳为设定至满电位或额定电压,例如超级电容组的第二上限电压值V 2max可以设定为15.8V。
本发明第一实施例中智能能量存储系统利用超级电容组可以出大电流和稳压的特性,以汽车为例,将超级电容组直接与发电机及启动马达、车载用设备电性并联连接,可以有效启动启动马达和对发电机进行稳压作用,同时提升车载用设备的稳定度及使用寿命,由于锂(铁)电池可不直接参与整体启动启动马达和发电机稳压的动作,启动马达启动瞬间(<5ms)大电流无需从锂(铁)电池提供,发电机的交流电稳压时,汽车行进间偶发的瞬间电压跳动将由超级电容组吸收,亦即,仅有超级电容组协助稳压,使锂(铁)电池不会承受链波和大的充电电流,而可延长锂(铁)电池的寿命。
例如锂(铁)电池的电量为30AHrs,在储电模式,当发电机发动后,以发电机作为电力来源,经过超级电容组以及转换器30单向对锂(铁)电池进行充电,转换器30以0.5C最大15A的充电IC可控输出电流和可控输出电压对锂(铁)电池充电,可以杜绝锂(铁)电池大电流充电的可能;在转储模式,超级电容组需要补电时,以锂(铁)电池放电作为电力来源,转换器30以1C最大30A的充电IC可控输出电流和可控输出电压单向对超级电容组充电,可以杜绝锂(铁)电池的大电流放电的可能;通过上述机制,可以满足蓄电、稳压以及瞬间大电流的需求且不会造成锂(铁)电池因大电流的损伤,本实施例转换器30包含一个或多个升/降压模块(boost/buck module),但本发明不以此为限,升/降压模块具方向性,可单向接收一电压源,并将之转换成一个或多个输出电压,升/降压模块的设计取决于锂(铁)电池与超级电容组的电位,操作于升压模式或降压模式,顾名思义,“升压模式”代表的是将某一电压升压而得到另一电压;“降压模式”代表的是将某一电压降压而得到另一电压。
不论在储电模式或转储模式,当转换器30为充电控制状态或放电控制状态,通过控制器40调节转换器30单向对锂(铁)电池或超级电容组进行充电,较佳的充电模式为依序执行一固定电流充电模式(CC模式)及一固定电压充电 模式(CV模式),于刚开始充电时(假设锂(铁)电池或超级电容组处于低电量状态,但不局限于此状态),此时锂(铁)电池或超级电容组的充电模式为固定电流充电模式,此时充电电流固定且为较高充电电流,因此充入锂(铁)电池或超级电容组的蓄电容量较多且速度也较快,以让锂(铁)电池或超级电容组蓄电容量能被快速充满,当锂(铁)电池或超级电容组的蓄电容量快充满至接近一上限充电电压值时,此时锂(铁)电池或超级电容组的充电模式会变更为固定电压充电模式充电,此时电压固定且充电电流下降,充电速度变慢,使锂(铁)电池或超级电容组接近被完全充饱的最佳状况。
又例如汽车具有一怠速熄火系统时,由于发动次数为一般车辆的N倍,为了降低污染与油耗,一些汽车制造商在其新一代车型中加装启动/停止(start/stop)系统,当汽车停下来时关闭引擎,而当驾驶人的脚从剎车踏板移向油门踏板时,就自动重新启动引擎,这就帮助降低市区驾车及停停走走式的交通繁忙时期的油耗同时减少空气污染,本发明智能能量存储系统100可以供电于汽车有加装具有一怠速熄火系统(启动/停止系统)时,相较于一般启动马达的一启动次数为N倍,N为算术平均数或进位的正整数,因此,当汽车停下来时关闭引擎,亦即,发电机没有供电符合一外部电源停止供电状态后,以超级电容组来供电汽车上车载用设备的电子耗电例如冷气、音响或大灯等,造成超级电容组的持续电量损失,因此当控制器40检测超级电容组的第二电压V 2低于第二下限电压V 2min时,控制器40控制转换器30切换至放电控制状态,将锂(铁)电池放电经由转换器30单向对超级电容组充电及补充供电,直到超级电容组的第二电压值V 2达到第二上限电压V 2max,供下一次引擎起动;若于汽车行进间,亦即,发电机供电符合一外部电源供电状态后,控制器40控制转换器30切换至充电控制状态,发电机电力经过超级电容组以及转换器30单向对锂(铁)电池充电至预设的第一上限电压值V 1max,较佳为设定至满电位或额定电压,超级电容组的第二电压值V 2将只会与发电机电压等电位或略高。
参阅图2所示第二实施例,本发明的智能能量存储系统200与第一实施例智能能量存储系统100大致相同,两者的差异处仅在于:第二实施例具有二个不同方向的转换器30a及转换器30b,其中转换器30a电性连接于第一储能装置10与第二储能装置20之间,当符合一外部电源停止供电状态后,例 如控制器40检测超级电容组的第二电压值V 2过低,亦即,超级电容组不能正常提供负载500所需电力,因此进入转储模式,控制器40控制转换器30a切换至放电控制状态,以锂(铁)电池作为电力来源,通过转换器30a单向对超级电容组进行充电,但另一转换器30b为关闭状态,因此锂(铁)电池不直接参与整体负载500电力提供和对发电机进行稳压的动作;当符合一外部电源供电状态后,进入储电模式,控制器40控制转换器30b切换至充电控制状态,以发电机作为电力来源,发电机经过超级电容组通过转换器30b单向对锂(铁)电池进行充电,但另一转换器30a为关闭状态。
参阅图3所示第三实施例,本发明的智能能量存储系统300与第一实施例智能能量存储系统100大致相同,两者的差异处仅在于:增加一开关电路50,用于第一储能装置10与第二储能装置20的导通及不导通的切换,当发电机停止供电时,符合一外部电源停止供电状态后,由第二储能装置20提供负载500所需电量,若由控制器40检测第二储能装置20的第二电压值V 2持续下降太快,亦即,负载500仍有持续性大电量耗损,由控制器40提供对应于关闭状态的控制信号CS off给转换器30,使转换器30切换至关闭状态,不进行充电或放电动作,同时控制器40提供对应的控制信号CS fast,使开关电路50导通第一储能装置10与第二储能装置20,相较于第一实施例转换器30的充电电流30A,第三实施例可提供较高的充电电流,例如70A,达到第一储能装置10对第二储能装置20快速充电,而能迅速满足负载500的大电量需求;其中开关电路50例如是金属氧化物半导体场效晶体管(MOSFET:Metal-Oxide-Semiconductor Field-Effect Transistor)、绝缘栅双极晶体管(IGBT:Insulated Gate Bipolar Transistor)、继电器(Relay)及电磁开关的至少其一所构成的开关,但本发明不以此为限。
本发明智能能量存储系统的变化实施例中(图未示),控制器40检测第二储能装置20的第二电压值V 2符合一外部电源停止供电状态后,负载500可以第一储能装置作为电力供电来源,或者负载500可以第二储能装置20作为电力供电来源,亦或者负载500可以第一储能装置10以及第二储能装置20作为电力供电来源。
本发明智能能量存储系统所应用不以汽机车、渔船为限,智能能量存储系统本身就是一个独立电瓶,可以达到保护并且延长智能能量存储系统的使 用寿命,使车辆及内燃机等终其一生只需要用一个智能能量存储系统即可,同时满足蓄电、稳压以及大电流的需求,其中稳压让载具及内燃机、燃油或电控更有效率及稳定,减少空气污染,本发明可以被应用在任何内燃机为动力源的载具或需要电瓶的电力设备等,无需变更设计而可直接导入原厂,同时亦可满足后装市场的需求。
最后,强调,本发明于前揭示实施例中所揭示的构成组件,仅为举例说明,并非用来限制本发明的范围,其他等效组件的替代或变化,亦应为本发明的技术方案的范围所涵盖。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (11)

  1. 一种智能能量存储系统,电性连接外部电源以及负载,其特征在于,所述智能能量存储装置包含:
    锂电池结构,作用在于储蓄电能;
    电容结构,与所述外部电源以及所述负载电性连接,在储电模式,以所述外部电源作为电力来源,经过所述电容结构对所述锂电池结构进行充电,当所述电容结构的第二电压值低于第二下限电压值时,同时所述锂电池结构的第一电压值大于第一下限电压值时,进入转储模式,以所述锂电池结构作为电力来源,对所述电容结构进行充电;
    至少一转换器,电性连接于所述锂电池结构与所述电容结构之间,用以调节输出电压以及输出电流,允许所述锂电池结构单向对所述电容结构充电,或者允许所述外部电源经由所述电容结构以及所述转换器单向对所述锂电池结构充电;以及
    控制器,用以检测所述锂电池结构的所述第一电压值或所述电容结构的第二电压值,以调节所述转换器的所述输出电压以及所述输出电流,避免所述锂电池结构大电流充电或放电,达到保护所述锂电池结构的目的。
  2. 根据权利要求1所述的智能能量存储系统,其特征在于,所述转换器包含关闭状态、充电控制状态以及放电控制状态,所述关闭状态为所述转换器不进行充电动作或放电动作,所述充电控制状态为所述外部电源经由所述电容结构以及所述转换器单向对所述锂电池结构充电,所述放电控制状态为所述锂电池结构经由所述转换器单向对所述电容结构充电。
  3. 根据权利要求2所述的智能能量存储系统,其特征在于,所述控制器依据检测所述锂电池结构的所述第一电压值、第一电流值或所述电容结构的所述第二电压值,控制所述转换器于所述关闭状态、所述充电控制状态以及所述放电控制状态间切换。
  4. 根据权利要求1所述的智能能量存储系统,其特征在于,所述控制器检测所述电容结构的所述第二电压值符合外部电源供电状态后,进入所述储电模式。
  5. 根据权利要求3所述的智能能量存储系统,其特征在于,在所述储电模式,所述转换器为所述充电控制状态,直到所述锂电池结构的所述第一电 压值达到第一上限电压值,或者所述锂电池结构的所述第一电流值达到第一下限电流值,由所述控制器控制所述转换器切换至所述关闭状态,不进行所述充电动作。
  6. 根据权利要求2所述的智能能量存储系统,其特征在于,所述控制器检测所述电容结构的所述第二电压值符合外部电源停止供电状态后,所述负载以锂电池结构以及所述电容结构的至少其中之一作为电力供电来源。
  7. 根据权利要求2所述的智能能量存储系统,其特征在于,当进入所述转储模式时,所述转换器为所述放电控制状态,直到所述电容结构的所述第二电压值达到第二上限电压值。
  8. 根据权利要求2所述的智能能量存储系统,其特征在于,在所述储电模式或所述转储模式,当所述转换器为所述充电控制状态或所述放电控制状态,通过所述控制器调节所述转换器对锂电池结构或电容结构进行充电,依序执行固定电流充电模式及固定电压充电模式。
  9. 根据权利要求8所述的智能能量存储系统,其特征在于,所述固定电流充电模式变更为所述固定电压充电模式的条件为满足预设上限充电电压值。
  10. 根据权利要求2所述的智能能量存储系统,其特征在于,更包括开关电路,所述控制器控制所述转换器切换至所述关闭状态,使所述开关电路导通所述锂电池结构与所述电容结构,达到所述锂电池结构对所述电容结构快速充电的目的。
  11. 根据权利要求1所述的智能能量存储系统,其特征在于,所述负载包含启动马达,进入所述转储模式,满足以下的公式:R M=7.2V/CCA,以及V 2min=CCA×(R C+R L+R M),其中V 2min为所述电容结构的所述第二下限电压值,CCA为所述电容结构启动所述启动马达的冷启动电流安培数,R C为所述电容结构的内阻值,R L为所述电容结构的线阻值,R M为所述启动马达的电阻值。
PCT/CN2022/087975 2021-04-28 2022-04-20 智能能量存储系统 WO2022228247A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2022267584A AU2022267584A1 (en) 2021-04-28 2022-04-20 Intelligent energy storage system
EP22794718.1A EP4333254A1 (en) 2021-04-28 2022-04-20 Intelligent energy storage system
CA3212841A CA3212841A1 (en) 2021-04-28 2022-04-20 Intelligent energy storage system
KR1020237035625A KR20230175200A (ko) 2021-04-28 2022-04-20 지능형 에너지 저장 시스템
JP2023561256A JP2024514807A (ja) 2021-04-28 2022-04-20 インテリジェントエネルギー貯蔵システム
US18/274,702 US20240106260A1 (en) 2021-04-28 2022-04-20 Intelligent energy storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110465244.7A CN115250002A (zh) 2021-04-28 2021-04-28 智能能量存储系统
CN202110465244.7 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022228247A1 true WO2022228247A1 (zh) 2022-11-03

Family

ID=83697366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087975 WO2022228247A1 (zh) 2021-04-28 2022-04-20 智能能量存储系统

Country Status (8)

Country Link
US (1) US20240106260A1 (zh)
EP (1) EP4333254A1 (zh)
JP (1) JP2024514807A (zh)
KR (1) KR20230175200A (zh)
CN (1) CN115250002A (zh)
AU (1) AU2022267584A1 (zh)
CA (1) CA3212841A1 (zh)
WO (1) WO2022228247A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118100332A (zh) * 2022-11-15 2024-05-28 天扬精密科技股份有限公司 能量调节系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103786589A (zh) * 2012-10-29 2014-05-14 武汉英康汇通电气有限公司 一种混合储能系统电动车的电量控制装置以及控制方法
CN105667430A (zh) * 2015-03-25 2016-06-15 深圳太研能源科技有限公司 一种启动控制装置、系统和方法
US9960458B2 (en) * 2015-06-23 2018-05-01 Quantumscape Corporation Battery systems having multiple independently controlled sets of battery cells
CN109228893A (zh) * 2018-09-28 2019-01-18 肇庆理士电源技术有限公司 一种锂电池和超级电容混合储能的能源分配系统及其方法
TWI750087B (zh) * 2021-04-28 2021-12-11 天揚精密科技股份有限公司 智慧能量存儲系統

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103786589A (zh) * 2012-10-29 2014-05-14 武汉英康汇通电气有限公司 一种混合储能系统电动车的电量控制装置以及控制方法
CN105667430A (zh) * 2015-03-25 2016-06-15 深圳太研能源科技有限公司 一种启动控制装置、系统和方法
US9960458B2 (en) * 2015-06-23 2018-05-01 Quantumscape Corporation Battery systems having multiple independently controlled sets of battery cells
CN109228893A (zh) * 2018-09-28 2019-01-18 肇庆理士电源技术有限公司 一种锂电池和超级电容混合储能的能源分配系统及其方法
TWI750087B (zh) * 2021-04-28 2021-12-11 天揚精密科技股份有限公司 智慧能量存儲系統

Also Published As

Publication number Publication date
CA3212841A1 (en) 2022-11-03
JP2024514807A (ja) 2024-04-03
KR20230175200A (ko) 2023-12-29
US20240106260A1 (en) 2024-03-28
EP4333254A1 (en) 2024-03-06
CN115250002A (zh) 2022-10-28
AU2022267584A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
CN105936248B (zh) 电源系统
US9793722B2 (en) Power source apparatus for vehicle
TWI750087B (zh) 智慧能量存儲系統
CN108116350B (zh) 车载组合电池智能供电电器系统及供电方法
RU2592468C1 (ru) Устройство управления подачей энергии
JP5234052B2 (ja) 電源装置
JP5541134B2 (ja) 電源装置
JP5488046B2 (ja) 車載電源装置
US20140015534A1 (en) Battery system controller
US20060186738A1 (en) Method of supplying electric current, method of starting internal combustion engine, power supply apparatus, and vehicle
US20180233943A1 (en) Power supply system for vehicle
JP5387383B2 (ja) 車載電源装置
KR100993654B1 (ko) 연료전지 차량의 제어 방법
JP2014036557A (ja) 車両用電源システム
CN102126435B (zh) 混合动力车辆和传统车辆中低电压电路的控制算法
US9174542B2 (en) Power supply device for vehicle
CN109314399B (zh) 车载电源系统
EP3533668B1 (en) Vehicular power supply system control method and vehicular power supply system
WO2022228247A1 (zh) 智能能量存储系统
JP6801367B2 (ja) 車両用電源システムの制御方法および車両用電源システム
JP5409424B2 (ja) 電源装置
US20210376639A1 (en) System for output ratio configuration of start-up battery and rapid energy storage module in parallel
WO2017088613A1 (zh) 一种用于启动汽车的电源装置及其启动控制方法
CN218929386U (zh) 高寒高海拔地区机动车辅助启动系统
WO2021155811A1 (zh) 启动电池与快速储能模块并联出力比配置系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794718

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18274702

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022267584

Country of ref document: AU

Ref document number: AU2022267584

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 3212841

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022267584

Country of ref document: AU

Date of ref document: 20220420

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023561256

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022794718

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022794718

Country of ref document: EP

Effective date: 20231128