WO2017088613A1 - 一种用于启动汽车的电源装置及其启动控制方法 - Google Patents

一种用于启动汽车的电源装置及其启动控制方法 Download PDF

Info

Publication number
WO2017088613A1
WO2017088613A1 PCT/CN2016/102642 CN2016102642W WO2017088613A1 WO 2017088613 A1 WO2017088613 A1 WO 2017088613A1 CN 2016102642 W CN2016102642 W CN 2016102642W WO 2017088613 A1 WO2017088613 A1 WO 2017088613A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion capacitor
capacitor module
secondary battery
charging
Prior art date
Application number
PCT/CN2016/102642
Other languages
English (en)
French (fr)
Inventor
梁亚青
廖运平
闵凡奇
尹传丰
熊栋
Original Assignee
上海展枭新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201520954375.1U external-priority patent/CN205195388U/zh
Priority claimed from CN201510834527.9A external-priority patent/CN105634102B/zh
Application filed by 上海展枭新能源科技有限公司 filed Critical 上海展枭新能源科技有限公司
Publication of WO2017088613A1 publication Critical patent/WO2017088613A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering

Definitions

  • the present invention relates to a power supply device for starting an automobile and a startup control method thereof.
  • a lead-acid battery is mainly used as a starting power source for a car.
  • the battery has defects that cannot be compensated by itself: poor low-temperature performance, high-rate output capability has an irreversible effect on itself, and self-discharge capability is also relatively high.
  • the battery's charge acceptance, charging efficiency, and capacity will decrease. If the electric vehicle load is too large (large current discharge), long-time high-current discharge, the actual discharge capacity of the battery will be become smaller. This is why all batteries are not ideal for winter use.
  • the internal DC internal resistance of the battery varies with the ambient temperature and the environment in which it is used. Especially in the low temperature environment below -25 °C, the charging capacity of the battery is seriously degraded, and even its starting voltage is not reached at all; in addition, its discharge capacity will drop greatly with the decrease of temperature, and may even use no discharge. ability. When the ambient temperature drops below 0 °C, the internal resistance increases by about 15% for every 10 °C decrease in temperature. Because the viscosity of the sulfuric acid solution becomes larger, the resistance of the sulfuric acid solution is increased, and the polarization of the electrode is increased, and the battery capacity is increased. Significantly reduced.
  • the current of the starter at the moment of starting is several times the rated current during normal operation, which results in a significant drop in the instantaneous voltage of the battery and poor performance.
  • the battery as the starting power source takes a long time to charge after the energy is used; and when the battery cannot be used and needs to be discarded, the heavy metal lead and the like are seriously polluted to the environment, which limits the application of the battery.
  • the monthly self-discharge rate of the battery is as high as 30%. Therefore, in a long-term unused car, it needs to be started every three months to charge the battery for a period of time. This also limits the application of the battery.
  • the supercapacitor is used in parallel to start the vehicle, for example, the patent CN202429148U.
  • the supercapacitor has the characteristics of large capacity, high power, long life, good low temperature characteristics and no pollution, and can be used in parallel with the battery. Use super power during car start-up
  • the instantaneous high power of the container supplies power to the starter, which greatly increases the service life of the battery; however, the self-discharge rate of the supercapacitor itself is extremely large, and it is basically discharged in three days, which greatly limits the use of the supercapacitor.
  • lithium-ion batteries can clearly find that their self-discharge rate is very low, basically one year, and the power can be maintained at 80%; the lithium-ion battery has a much longer cycle life than the battery. Therefore, the patent CN104037446A directly replaces the battery with the lithium ion battery as the starting power source of the automobile, but has not completely solved the problem of the battery as the starting power source of the automobile, and mainly relates to the capability of high-power instantaneous discharge.
  • the technical problem to be solved by the present invention is to provide a power supply device for starting a vehicle and a startup control method thereof, in order to solve the shortcomings existing in the existing automobile starting power supply technology, which can prolong the service life of the cycle, improve the power density, and optimize Low-temperature discharge characteristics, etc.
  • Lithium-ion capacitors use a hybrid structure of lithium-ion batteries and supercapacitors.
  • the positive electrode uses the positive electrode of the supercapacitor
  • the negative electrode uses the negative electrode of the lithium-ion battery
  • the high power density of the supercapacitor (the power density is much larger than the lead-acid battery), and the long life.
  • Characteristics and characteristics of high energy density of lithium ion batteries It has a high voltage holding capacity, and it is placed at normal temperature of 25 ° C for 3 months, voltage drop ⁇ 5%; wide operating temperature range (-40 ° C ⁇ 70 ° C) for operational safety and reliability.
  • the power supply device for starting the vehicle of the present invention includes a starter that drives the operation of the internal combustion engine, and the power supply of the starter is a lithium ion capacitor module.
  • the power supply device is further provided with a secondary battery for charging the lithium ion capacitor module.
  • the power supply device is further provided with a generator for charging the secondary battery, and the generator is driven by the internal combustion engine.
  • the lithium ion capacitor module is connected to the starter through an ignition switch to form a discharge closed loop, and the starter is connected to the internal combustion engine of the automobile;
  • the secondary battery and the lithium ion capacitor module are connected to form a first charging closed loop, and a unidirectional charging module for unidirectionally charging the secondary battery to the lithium ion capacitor module is disposed between the secondary battery and the lithium ion capacitor module;
  • the generator is connected in series with the secondary battery to form a second charging closed loop.
  • the secondary battery having a secondary battery voltage of 12 V is any one of a battery, a lithium ion battery, a lithium ion polymer battery, a nickel cadmium battery, or a nickel hydrogen battery.
  • the one-way charging module is a unidirectional DC power source.
  • the lithium ion capacitor module includes two positive terminals and one negative terminal.
  • the second positive end of the lithium ion capacitor module is connected to one end of the starter through an ignition switch, and the other end of the starter is connected to the negative end of the lithium ion capacitor module;
  • the positive end of the unidirectional DC power source is connected to the positive terminal of the secondary battery, and the other end is connected to the first positive terminal of the lithium ion capacitor module, and the conduction direction is the positive terminal of the secondary battery to the lithium ion capacitor module.
  • the first positive terminal; the negative terminal of the unidirectional DC power supply always turns on the negative terminal of the secondary battery and the negative terminal of the lithium ion capacitor module.
  • the unidirectional charging module can also be a series unidirectional diode and a current limiting resistor, and the current limiting resistor can make the charging current of the lithium ion capacitor module of the secondary battery relatively small, effectively increasing the service life of the secondary battery. .
  • the lithium ion capacitor module includes two positive terminals and one negative terminal.
  • the second positive end of the lithium ion capacitor module is connected to one end of the starter through an ignition switch, and the other end of the starter is connected to the negative end of the lithium ion capacitor module;
  • the unidirectional diode and the current limiting resistor are connected in series, one end is connected to the positive terminal of the secondary battery, and the other end is connected to the first positive terminal of the lithium ion capacitor module, and the conduction direction of the unidirectional diode is the positive terminal of the secondary battery To the first positive terminal of the lithium ion capacitor module.
  • the invention also discloses a control method for starting a vehicle by using the foregoing power supply device for starting a vehicle, comprising:
  • the module provides instantaneous high-power current for the starter to drive the internal combustion engine. After the internal combustion engine rapidly rotates and reaches the ignition point speed, the internal combustion engine starts to complete, enters normal operation, the ignition switch is turned off, and the discharge closed loop is disconnected;
  • the one-way charging module conducts the first charging and closing.
  • the circuit the secondary battery charges the lithium ion capacitor module to its rated voltage or is charged to at least meet the voltage requirements required for the start of the vehicle;
  • the secondary battery has no energy to continue charging the lithium ion capacitor module to at least satisfy the voltage required to start the vehicle again,
  • the first charging and closing circuit of the one-way charging module
  • the one-way charging module disconnects the first charging closed loop, and the lithium ion capacitor module is in a natural state, waiting for the next car. start up.
  • the invention fully utilizes the characteristics of the lithium ion capacitor, high power density, low temperature charge and discharge capability, long cycle life, high energy density and high voltage retention capability, and compensates for the shortcomings of the battery when it is used as a starting power source for a car.
  • the device uses a secondary battery to supply power to the lithium ion capacitor, the lithium ion capacitor directly supplies power to the starter, the starter drives the generator to generate electricity, and the generator supplies the secondary battery in a mode, which can effectively avoid the instantaneous high power discharge of the secondary battery. Especially for instantaneous high-power discharge under low temperature conditions, the use of secondary batteries is relatively low.
  • lithium-ion capacitors have high voltage holding capability, there is no need to worry about not being able to start the car without being used for several months.
  • the vehicle starting power supply unit can be maintenance-free, and does not have to be similar to a battery, and is maintained once a year.
  • the lithium ion capacitor due to the high power density of the lithium ion capacitor, its value is much higher than the power density of the battery. Therefore, under the same starting and use conditions, the number of lithium ion capacitors required is greatly reduced, thereby enabling the vehicle to start. The weight and volume of the power supply unit are greatly reduced.
  • FIG. 1 is a schematic diagram of a circuit principle according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of a circuit principle according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of a circuit principle according to Embodiment 3 of the present invention.
  • MG start generator
  • QC start contactor
  • XK knife switch
  • LIC lithium ion capacitor bank
  • Figure 2 12V secondary battery BAT12V; secondary battery positive terminal +; secondary battery negative terminal -; unidirectional DC power supply DC / DC; lithium ion capacitor module LIC; lithium ion capacitor first positive terminal B +; lithium ion Capacitor second positive terminal S+; lithium ion capacitor negative terminal GND; ignition switch S; starter Motor; generator Generator.
  • Figure 3 12V secondary battery BAT12V; secondary battery positive terminal +; secondary battery negative terminal -; unidirectional diode D; current limiting resistor R; lithium ion capacitor module LIC; lithium ion capacitor first positive terminal B +; Lithium ion capacitor second positive terminal S+; lithium ion capacitor negative terminal GND; ignition switch S; starter Motor; generator Generator.
  • Embodiment 1 The power supply device for starting the vehicle is as shown in FIG. 1 , and mainly includes:
  • a starting contactor QC that can be connected to the starting circuit of the internal combustion engine
  • the internal combustion engine When starting, the internal combustion engine can be driven to start, and during the normal operation of the internal combustion engine, the starter generator MG that generates its own continuous operation and generates electricity, that is, the starter generator MG is integrated and the power generation function is integrated, and can be used as a starter and power generation respectively.
  • the starter generator MG that generates its own continuous operation and generates electricity, that is, the starter generator MG is integrated and the power generation function is integrated, and can be used as a starter and power generation respectively.
  • the starting generator MG can be powered by a large power, and after the startup is completed, the lithium ion capacitor bank LIC is charged by the power generating start generator MG.
  • a power knife device is also provided with a knife switch XK through which the lithium ion capacitor bank LIC is connected to the meter.
  • the meter includes at least a voltmeter for monitoring lithium ions. Whether the voltage of the capacitor bank LIC satisfies the starting condition; at the same time, it may also include other components such as an indicator lamp, and the meter such as the voltmeter is disposed in the operating room of the diesel locomotive; in addition, the knife switch XK also serves to start the internal combustion engine. Lithium-ion capacitor bank LIC and startup in the circuit The role of the contactor QC.
  • the control process of the power supply device for starting the car is:
  • the knife switch XK First close the knife switch XK and check the value of the voltmeter connected to the lithium ion capacitor bank LIC to see if the start condition is met. If it is not met, the ground charging device is required to quickly charge the lithium ion capacitor bank LIC, but this situation will basically only occur if the diesel locomotive has not been used for several months. After the knife switch XK is closed, the lithium ion capacitor module LIC also supplies power to the instruments, indicators and other loads in the operating room.
  • the start contactor QC is turned on, and the lithium ion capacitor bank LIC is supplied with high power to the starter generator MG to operate (turning the electric energy from the lithium ion capacitor bank LIC into the kinetic energy that drives the internal combustion engine).
  • the generator MG is started (used as a starter)
  • the internal combustion engine is driven to make the internal combustion engine quickly reach the ignition speed and enter normal operation. At this time, the internal combustion engine is started.
  • the starter generator MG is continuously operated, and the starter generator MG (used as a generator) is used to generate electricity and charge the lithium ion capacitor bank LIC (the kinetic energy of the engine MG is turned into electric energy by the internal combustion engine, and at the same time
  • the lithium ion capacitor bank LIC is charged, and the lithium ion capacitor bank LIC stores the high voltage energy generated by the generator MG.
  • the lithium ion capacitor bank LIC reaches the rated voltage, it is floated until the internal combustion engine stops.
  • the electric energy supplied for the load such as the instrument and the indicator light in the operating room of the diesel locomotive comes from the power of the starting generator.
  • the starting contactor QC is turned off; the internal combustion engine is stopped, the generator MG is started to stop generating electricity, and the lithium ion capacitor bank LIC is no longer charged. Turn on the knife switch XK. At this time, the lithium ion capacitor LIC is completely disconnected from the system and is in a natural state until the next internal combustion engine starts.
  • the power supply device for starting the car is as shown in FIG. 2, including
  • the 12V secondary battery BAT12V has a secondary battery positive terminal + and a secondary battery negative terminal -
  • the secondary battery can be a battery, a lithium ion battery (including lithium iron phosphate Any one of a battery and a ternary material lithium battery), a lithium ion polymer battery, a nickel cadmium battery, a nickel hydrogen battery, or the like;
  • One-way DC power supply DC/DC as a one-way charging module, prevents the lithium ion capacitor module LIC
  • the secondary battery is charged, and the charging current of the secondary battery to the lithium ion capacitor module LIC is relatively small, thereby effectively increasing the service life of the secondary battery;
  • the lithium ion capacitor module LIC has three lead terminals, which are a first positive terminal B+ of the lithium ion capacitor, a second positive terminal S+ of the lithium ion capacitor, and a negative terminal GND of the lithium ion capacitor;
  • the starter Motor is connected to the internal combustion engine of the automobile;
  • One end of the DC/DC positive terminal of the unidirectional DC power supply is connected to the positive terminal + of the secondary battery, and the other end is connected to the first positive terminal B+ of the lithium ion capacitor module LIC; the negative terminal of the unidirectional DC power supply DC/DC is The negative terminal of the secondary battery - the negative terminal GND of the lithium ion capacitor module LIC is directly turned on, so that the secondary battery, the unidirectional DC power supply DC/DC, and the lithium ion capacitor module LIC form a first closed charging circuit.
  • the secondary battery converts the low voltage direct current into a high voltage direct current to charge the lithium ion capacitor module LIC through the unidirectional direct current power source DC/DC. And controlling the magnitude of the charging current; another function of the unidirectional DC power supply DC/DC is to prevent the current from flowing to the secondary battery and causing the loss of the starting energy when the lithium ion capacitor module LIC supplies power to the starter Motor.
  • the second positive terminal S+ of the lithium ion capacitor module LIC is connected to one end of the starter Motor through the ignition switch S, and the negative terminal GND is directly connected to the other end of the starter Motor to form a discharge closed loop.
  • the lithium ion capacitor module LIC instantaneously supplies high power to the starter motor, so that the operation of the motor is started to drive the internal combustion engine of the automobile.
  • the unidirectional DC power source DC/DC due to the existence of the unidirectional DC power source DC/DC, the phenomenon that the lithium ion capacitor module LIC charges the secondary battery does not occur.
  • a generator generator connected to the internal combustion engine is connected to the secondary battery to form a second closed charging circuit.
  • the lithium ion capacitor module LIC stops working, and the starter motor also stops running.
  • the internal combustion engine of the automobile enters a normal operation process, and the generator generator connected thereto is driven to operate, and the generator generator generates electricity and charges the secondary battery.
  • the role of the secondary battery is mainly to supply power to the vehicle load and charge the lithium ion capacitor module LIC.
  • Embodiment 3 As shown in FIG. 3, different from Embodiment 2, the unidirectional charging module in this embodiment adopts a unidirectional diode D and a current limiting resistor R connected in series, and one end is connected to the positive terminal of the secondary battery + The other end is connected to the first positive terminal B+ of the lithium ion capacitor module LIC, and the conduction side of the unidirectional diode D The direction is the first positive terminal B+ of the lithium ion capacitor module LIC.
  • the unidirectional diode D and the current limiting resistor R connected in series may be either the current limiting resistor R close to the first positive terminal B+ of the lithium ion capacitor module LIC or the unidirectional diode D close to the lithium ion capacitor module LIC. The first positive terminal B+.
  • the current limiting resistor R can make the charging current of the secondary battery to the lithium ion capacitor module LIC relatively small, effectively increasing the service life of the secondary battery.
  • the unidirectional DC power supply DC/DC can be used to charge the low voltage secondary battery to the high voltage lithium ion capacitor module LIC, avoiding the use of the unidirectional diode D and the current limiting resistor R when the secondary battery is used.
  • the voltage is lower than the lithium ion capacitor module LIC and the lithium ion capacitor module LIC cannot be charged.
  • the case where the secondary battery voltage is lower than the LIC voltage of the lithium ion capacitor module is generally only caused when the automobile is not used for a long time and the secondary battery is severely self-discharged. And when the lithium ion capacitor module LIC voltage meets the starting condition, the secondary battery is not required to be charged.
  • the unidirectional diode D and the current limiting resistor R in combination, and the unidirectional diode D and the current limiting resistor R, There is an advantage of reducing the volume and reducing the cost.
  • the lithium ion capacitor module LIC voltage cannot meet the starting conditions, and the secondary battery cannot be charged. It can also be charged by an external device.
  • the ignition switch After receiving the vehicle start signal, the ignition switch is closed, and the discharge closed loop is turned on.
  • the lithium ion capacitor module provides instantaneous high-power current for the starter to drive the internal combustion engine, and the internal combustion engine rapidly rotates and reaches the ignition point speed.
  • the ignition switch When the internal combustion engine is started, it enters normal operation, the ignition switch is turned off, and the discharge closed circuit is disconnected;
  • the one-way charging module conducts the first charging and closing.
  • the secondary battery charges the lithium ion capacitor module to its rated voltage or to at least Meet the voltage conditions required for a car start;
  • the secondary battery has no energy to continue charging the lithium ion capacitor module to at least satisfy the voltage required to start the vehicle again,
  • the first charging and closing circuit of the one-way charging module
  • the one-way charging module disconnects the first charging closed loop, and the lithium ion capacitor module is in a natural state, waiting for the next car. start up.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种用于汽车启动的电源装置及其启动控制方法,其电源装置包括带动内燃机运转的起动机,该起动机的供电电源为锂离子电容器模组。所述装置和方法充分发挥了锂离子电容器的特性,高功率密度、低温充放电能力、长循环使用寿命以及高能量密度和高电压保持能力。

Description

一种用于启动汽车的电源装置及其启动控制方法 技术领域
本发明涉及一种用于启动汽车的电源装置及其启动控制方法。
背景技术
现有技术中主要是以铅酸蓄电池作为汽车的启动电源,然而蓄电池却存在着自身无法弥补的缺陷:低温性能差,高倍率输出能力对自身产生不可逆转的影响,自放电能力也比较高。
由蓄电池的结构特性决定,在低温状态下,电池的充电接受能力,充电效率,容量都会下降,若电动车辆负载过大(大电流放电),长时间大电流放电,电池的实际放电容量将会变得更小。这也是所有蓄电池在冬季使用中不够理想的原因。蓄电池内部直流内阻的大小随着环境温度以及使用环境的变化而产生变化。特别是在-25℃以下的低温环境下,蓄电池的充电接受能力严重下滑,甚至根本达不到其启动电压;另外,其放电容量将会随着温度的降低大幅度下降,甚至可能没用放电能力。当环境温度降至0℃以下,温度每降低10℃,内阻约增大15%左右,因为硫酸溶液粘度变大,所以增大了硫酸溶液电阻,而加重了电极极化影响,蓄电池容量会明显减小。
在正常使用条件下,起动机在启动的瞬间电流是正常运转时额定电流的几倍,故而导致蓄电池瞬时电压大幅下降,性能变差。且蓄电池作为启动电源在能量使用完毕后充电所需时间较长;且在蓄电池无法使用需要废弃时,重金属铅等对环境污染严重,限制了蓄电池的应用。
同时,蓄电池的月自放电率高达30%,因此,在长期未用的汽车,需要每三个月启动一次,为蓄电池充电一段时间。这同样对蓄电池的应用有所限制。
为了改善汽车启动电源的性能,使用超级电容器并联蓄电池的方式来启动汽车,例如专利CN202429148U。超级电容器具有容量大、功率高、寿命长、低温特性好和无污染等特点,可以与蓄电池并联使用。在汽车启动过程中利用超级电 容器的瞬时大功率为起动机供电,这样使蓄电池的使用寿命大大增加;然而,超级电容器自身的自放电率极大,基本上3天就会放完,这就大大限制了超级电容器的使用。
锂离子电池与蓄电池相比,可以明显发现其自放电率很低,基本上放置一年,电量还可维持80%;锂离子电池的循环使用寿命远高于蓄电池。因此,专利CN104037446A直接用锂离子电池替代蓄电池作为汽车启动电源,但是仍未彻底解决蓄电池作为汽车启动电源所存在的问题,主要涉及大功率瞬时放电的能力。
另外,还有另一种替换型启动电源装置是是利用超级电容器取代蓄电池,例如专利CN203827004U、CN202978396U。在此系统中,蓄电池的主要作用是为超级电容器充电和为车内负载供电。此系统依旧没有改变超级电容器自放电严重而导致大量能量损失的弊端,再次启动之前需要对超级电容器再次充电。
发明内容
本发明所要解决的技术问题是,为了解决现有汽车启动电源技术中存在的缺点,而提供一种用于汽车启动的电源装置及其启动控制方法,可延长循环使用寿命,提高功率密度,优化低温放电特性等。
锂离子电容器采用锂离子电池和超级电容器混合结构,其正极采用超级电容器的正极,负极采用锂离子电池的负极,兼具超级电容器的高功率密度(其功率密度远大于铅酸蓄电池)、长寿命特性和锂离子电池高能量密度的特性。本身具有很高的电压保持能力,常温25℃放置3个月,电压下降≤5%;宽使用温度范围(-40℃~70℃)的运行安全性、可靠性。
为解决所提出的技术问题,并鉴于锂离子电容器的优异性能,本发明用于汽车启动的电源装置包括带动内燃机运转的起动机,该起动机的供电电源为锂离子电容器模组。
进一步地,该电源装置还设置有为锂离子电容器模组充电的二次电池。
进一步地,该电源装置还设置有为二次电池充电的发电机,所述发电机由内燃机带动运转。
进一步地,所述锂离子电容器模组通过点火开关连接起动机,形成放电闭合回路,所述起动机与汽车内燃机连接;
二次电池和锂离子电容器模组连接形成第一充电闭合回路,在二次电池和锂离子电容器模组之间设置有使二次电池向锂离子电容器模组单向充电的单向充电模块;
所述发电机与二次电池串联形成第二充电闭合回路。
进一步地,所述二次电池电压12V的二次电池,为蓄电池、锂离子电池、锂离子聚合物电池、镍镉电池或镍氢电池中的任意一种。
进一步地,所述单向充电模块为单向直流电源。
进一步地,所述锂离子电容器模组包括两个正极端和一个负极端,
所述锂离子电容器模组的第二正极端通过点火开关连接起动机一端,启动机的另一端连接锂离子电容器模组的负极端;
所述单向直流电源的正极端一端连接到二次电池的正极端,另一端连接到锂离子电容器模组的第一正极端,导通方向为二次电池正极端到锂离子电容器模组的第一正极端;单向直流电源的负极端始终导通二次电池的负极端和锂离子电容器模组的负极端。
进一步地,所述单向充电模块还可以为串联的单向二极管和限流电阻,限流电阻可以使二次电池对锂离子电容器模组充电电流比较小,有效增加了二次电池的使用寿命。
进一步地,所述锂离子电容器模组包括两个正极端和一个负极端,
所述锂离子电容器模组的第二正极端通过点火开关连接起动机一端,启动机的另一端连接锂离子电容器模组的负极端;
串联的单向二极管和限流电阻,一端连接到二次电池的正极端,另一端连接到锂离子电容器模组的第一正极端,所述单向二极管的导通方向为二次电池正极端到锂离子电容器模组的第一正极端。
本发明还公开了采用前述用于汽车启动的电源装置对汽车启动的控制方法,包括:
(1)、收到汽车启动信号,点火开关闭合,接通放电闭合回路,锂离子电容 器模组为起动机提供瞬时大功率电流,使其带动内燃机运转,内燃机迅速转动并达到发火点转速后,内燃机启动完成,进入正常运转,点火开关断开,放电闭合回路断开;
(2)、内燃机进入正常运转状态后,带动发电机运转,发电机发电,第二充电闭合回路接通,发电机对二次电池充电至额定电压后,继续浮充至内燃机停止运转,发电机停止发电,第二充电闭合回路断开;
(3)、当锂离子电容器模组的电压满足不了汽车启动一次所需的电压条件,并且二次电池有充足的电压对锂离子电容器模组充电时,单向充电模块导通第一充电闭合回路,二次电池对锂离子电容器模组充电至其额定电压或充电至能至少满足一次汽车启动所需电压条件;
或,当锂离子电容器模组的电压能至少满足一次汽车启动所需电压条件,并且二次电池已没有能量继续为锂离子电容器模组充电至能至少满足再多一次启动汽车所需电压时,单向充电模块第一充电闭合回路;
或,当锂离子电容器模组达到其额定电压后,并且二次电池依旧有剩余的能量时,单向充电模块断开第一充电闭合回路,锂离子电容器模组处于自然状态,待下一次汽车启动。
本发明充分发挥了锂离子电容器的特性,高功率密度、低温充放电能力、长循环使用寿命以及高能量密度和高电压保持能力,弥补了蓄电池在作为汽车启动电源时的缺点。
本装置采用二次电池对锂离子电容器供电,锂离子电容器直接对起动机供电,启动机带动发电机发电,发电机对二次电池供电的模式,可以有效避免了二次电池的瞬时大功率放电,尤其是低温条件下的瞬时大功率的放电,对二次电池的使用要求相对较低。
由于锂离子电容器具有高电压保持能力,因此不必担心几个月没有使用而导致无法启动汽车。
又由于锂离子电容器具有宽温度范围内的高安全性和高稳定性,因此该汽车启动电源装置可以免维护,而不必类似于蓄电池,一年维护一次。
又由于锂离子电容器的高功率密度,其值远高于蓄电池的功率密度,因此在满足相同启动使用条件下,锂离子电容器所需的数量大幅度减少,进而使汽车启 动电源装置的重量和体积有很大的节省。
附图说明
图1为本发明实施例1的电路原理示意图;
图2为本发明实施例2的电路原理示意图;
图3为本发明实施例3的电路原理示意图。
图1中:MG:启动发电机;QC:启动接触器;XK:闸刀开关;LIC:锂离子电容器组。
图2中:12V二次电池BAT12V;二次电池正极端+;二次电池负极端-;单向直流电源DC/DC;锂离子电容器模组LIC;锂离子电容器第一正极端B+;锂离子电容器第二正极端S+;锂离子电容器负极端GND;点火开关S;起动机Motor;发电机Generator。
图3中:12V二次电池BAT12V;二次电池正极端+;二次电池负极端-;单向二极管D;限流电阻R;锂离子电容器模组LIC;锂离子电容器第一正极端B+;锂离子电容器第二正极端S+;锂离子电容器负极端GND;点火开关S;起动机Motor;发电机Generator。
具体实施方式
实施例1:该用于汽车启动的电源装置如图1所示,主要包括:
可连通内燃机启动电路的启动接触器QC;
启动时可带动内燃机运转至启动完成,并在内燃机正常运转过程中带动自身持续运转而发电的启动发电机MG,即该启动发电机MG集启动、发电功能于一体,可分别作为起动机和发电机使用;
启动时可对启动发电机MG进行大功率供电,并在启动完成后由发电的启动发电机MG对其进行充电的锂离子电容器组LIC。
为了能够监控锂离子电容器组LIC的电压,该电源装置中还设置有一个闸刀开关XK,锂离子电容器组LIC通过该闸刀开关XK连接仪表,仪表至少包含有电压表,用于监控锂离子电容器组LIC的电压,是否满足启动条件;同时也可包含指示灯等其他元器件,该所述电压表等仪表设置于内燃机车内操作室;另外,该闸刀开关XK也起着连通内燃机启动电路中的锂离子电容器组LIC和启动 接触器QC的作用。
该电源装置对汽车启动的的控制过程为:
先闭合闸刀开关XK,查看连接锂离子电容器组LIC的电压表的数值,是否满足启动条件。如果不满足则需要地面充电设备对锂离子电容器组LIC进行快速充电,但这种情况基本上只会在内燃机车数月没有使用的前提下才会发生。闸刀开关XK闭合后,锂离子电容器模组LIC也会同时对操作室内的仪表、指示灯等负载供电。
开启启动接触器QC,使锂离子电容器组LIC对启动发电机MG进行大功率的供电,使其运转(将来自锂离子电容器组LIC的电能转为带动内燃机运转的动能)。启动发电机MG(作为启动机使用)运转则带动内燃机运转,使内燃机迅速达到发火点转速,进入正常运转,此时内燃机启动完成。在内燃机正常运转过程中会带动启动发电机MG持续运转,使启动发电机MG(作为发电机使用)发电并对锂离子电容器组LIC进行充电(将内燃机带动启动发动机MG的动能转为电能,同时为锂离子电容器组LIC充电,锂离子电容器组LIC储存启动发电机MG产生的高电压能量),当锂离子电容器组LIC达到到额定电压后,对其进行浮充,直至内燃机停止运转。在启动发电机为锂离子电容器模组LIC充电过程中,为内燃机车内操作室的仪表和指示灯等负载提供的电能来自于启动发电机的电能。
当内燃机需要停止运转时,关闭启动接触器QC;内燃机停止运转,启动发电机MG停止发电,不再对锂离子电容器组LIC充电。打开闸刀开关XK,此时锂离子电容器LIC与系统彻底断开,处于自然状态,待下一次内燃机启动。
实施例2:
该用于汽车启动的电源装置如图2所示,包括
(1)、12V二次电池BAT12V,该12V二次电池BAT12V具有一个二次电池正极端+和一个二次电池负极端-,该二次电池可以是蓄电池、锂离子电池(也包括磷酸铁锂电池和三元材料锂电池)、锂离子聚合物电池、镍镉电池、镍氢电池等中的任意一种;
(2)、单向直流电源DC/DC,作为单向充电模块,阻止锂离子电容器模组LIC 对二次电池充电,同时使二次电池对锂离子电容器模组LIC的充电电流比较小,有效增加了二次电池的使用寿命;
(3)、锂离子电容器模组LIC,具有三个引出端子,分别为锂离子电容器第一正极端B+、锂离子电容器第二正极端S+和锂离子电容器负极端GND;
(4)、点火开关S;
(5)、起动机Motor,连接汽车内燃机;
(6)、发电机Generator,连接汽车内燃机。
单向直流电源DC/DC正极端的一端连接到二次电池的正极端+,另一端连接到锂离子电容器模组LIC的第一正极端B+;单向直流电源DC/DC的负极端是和二次电池的负极端-、锂离子电容器模组LIC的负极端GND直接导通的,使二次电池、单向直流电源DC/DC、锂离子电容器模组LIC形成第一闭合充电回路。当锂离子电容器模组LIC的电压不足以支持汽车启动所需的电压时,二次电池通过单向直流电源DC/DC将低电压直流转换成高电压直流对锂离子电容器模组LIC进行充电,并控制充电电流的大小;单向直流电源DC/DC的另一作用是当锂离子电容器模组LIC对起动机Motor供电时,避免了电流流向二次电池而导致启动能量的损失。
锂离子电容器模组LIC的第二正极端S+通过点火开关S与起动机Motor的一端连接,其负极端GND直接与起动机Motor的另一端连接而形成放电闭合回路。当点火开关S闭合时,锂离子电容器模组LIC对起动机Motor进行瞬时大功率的供电,使其运转进而带动汽车内燃机启动。而由于单向直流电源DC/DC的存在,不会发生锂离子电容器模组LIC对二次电池充电的现象的发生。
与内燃机连接的发电机Generator则与二次电池连接,形成第二闭合充电回路。当汽车内燃机启动结束后,锂离子电容器模组LIC停止工作,同样起动机Motor停止运转。此时,汽车内燃机进入正常运转过程,带动与之连接的发电机Generator运转,使发电机Generator发电并对对二次电池进行充电。二次电池的作用主要是为车内负载供电和为锂离子电容器模组LIC充电。
实施例3:如图3所示,与实施例2不同的是,本实施例中的单向充电模块采用串联的单向二极管D和限流电阻R,一端连接到二次电池的正极端+,另一端连接到锂离子电容器模组LIC的第一正极端B+,所述单向二极管D的导通方 向为锂离子电容器模组LIC的第一正极端B+。以串联方式连接的单向二极管D和限流电阻R既可以是限流电阻R靠近锂离子电容器模组LIC的第一正极端B+,也可以是单向二极管D靠近锂离子电容器模组LIC的第一正极端B+。
由于单向二极管D的存在,不会发生锂离子电容器模组LIC对二次电池充电的现象发生。限流电阻R可以使二次电池对锂离子电容器模组LIC的充电电流比较小,有效增加了二次电池的使用寿命。
其余未提事项同实施例1,不再赘述。
对于单向充电模块,使用单向直流电源DC/DC,可以使低压的二次电池对高压的锂离子电容器模组LIC充电,避免了采用单向二极管D和限流电阻R联用时二次电池电压低于锂离子电容器模组LIC而不能对锂离子电容器模组LIC充电的问题。不过,二次电池电压低于锂离子电容器模组LIC电压的情况一般只有在长期未使用汽车,二次电池自放电严重时才会导致。并且当锂离子电容器模组LIC电压满足启动条件时并不需要二次电池的充电,因此采用单向二极管D和限流电阻R联用是可行的,而且单向二极管D和限流电阻R,存在减小体积,降低成本的优点。如锂离子电容器模组LIC电压无法满足启动条件,也无法接受二次电池的充电,还可以通过外部设备进行充电。
实施例2和实施例3对汽车启动的控制过程进一步详细描述为:
包括:
(1)、收到汽车启动信号,点火开关闭合,接通放电闭合回路,锂离子电容器模组为起动机提供瞬时大功率电流,使其带动内燃机运转,内燃机迅速转动并达到发火点转速后,内燃机启动完成,进入正常运转,点火开关断开,放电闭合回路断开;
(2)、内燃机进入正常运转状态后,带动发电机运转,发电机发电,第二充电闭合回路接通,发电机对二次电池充电至额定电压后,继续浮充至内燃机停止运转,发电机停止发电,第二充电闭合回路断开;
(3)、当锂离子电容器模组的电压满足不了汽车启动一次所需的电压条件,并且二次电池有充足的电压对锂离子电容器模组充电时,单向充电模块导通第一充电闭合回路,二次电池对锂离子电容器模组充电至其额定电压或充电至能至少 满足一次汽车启动所需电压条件;
或,当锂离子电容器模组的电压能至少满足一次汽车启动所需电压条件,并且二次电池已没有能量继续为锂离子电容器模组充电至能至少满足再多一次启动汽车所需电压时,单向充电模块第一充电闭合回路;
或,当锂离子电容器模组达到其额定电压后,并且二次电池依旧有剩余的能量时,单向充电模块断开第一充电闭合回路,锂离子电容器模组处于自然状态,待下一次汽车启动。

Claims (10)

  1. 一种用于汽车启动的电源装置,包括带动内燃机运转的起动机,其特征在于:该起动机的供电电源为锂离子电容器模组。
  2. 根据权利要求1所述用于汽车启动的电源装置,其特征在于:该电源装置还设置有为锂离子电容器模组充电的二次电池。
  3. 根据权利要求2所述用于汽车启动的电源装置,其特征在于:该电源装置还设置有为二次电池充电的发电机,所述发电机由内燃机带动运转。
  4. 根据权利要求3所述用于汽车启动的电源装置,其特征在于:
    所述锂离子电容器模组通过点火开关连接起动机,形成放电闭合回路,所述起动机与汽车内燃机连接;
    二次电池和锂离子电容器模组连接形成第一充电闭合回路,在二次电池和锂离子电容器模组之间设置有使二次电池向锂离子电容器模组单向充电的单向充电模块;
    所述发电机与二次电池串联形成第二充电闭合回路。
  5. 根据权利要求2或3或4所述用于汽车启动的电源装置,其特征在于:所述二次电池为蓄电池、锂离子电池、锂离子聚合物电池、镍镉电池或镍氢电池中的任意一种。
  6. 根据权利要求4所述用于汽车启动的电源装置,其特征在于:所述单向充电模块为单向直流电源。
  7. 根据权利要求6所述用于汽车启动的电源装置,其特征在于:所述锂离子电容器模组包括两个正极端和一个负极端,
    所述锂离子电容器模组的第二正极端通过点火开关连接起动机一端,启动机的另一端连接锂离子电容器模组的负极端;
    所述单向直流电源的正极端一端连接到二次电池的正极端,另一端连接到锂离子电容器模组的第一正极端,导通方向为二次电池正极端到锂离子电容器模组的第一正极端;单向直流电源的负极端始终导通二次电池的负极端和锂离子电容 器模组的负极端。
  8. 根据权利要求4所述用于汽车启动的电源装置,其特征在于:所述单向充电模块为串联的单向二极管和限流电阻。
  9. 根据权利要求8所述用于汽车启动的电源装置,其特征在于:所述锂离子电容器模组包括两个正极端和一个负极端,
    所述锂离子电容器模组的第二正极端通过点火开关连接起动机一端,启动机的另一端连接锂离子电容器模组的负极端;
    串联的单向二极管和限流电阻,一端连接到二次电池的正极端,另一端连接到锂离子电容器模组的第一正极端,所述单向二极管的导通方向为二次电池正极端到锂离子电容器模组的第一正极端。
  10. 一种按照权利要求1-9任意一项权利要求所述用于汽车启动的电源装置对汽车启动的控制方法,其特征在于该方法包括:
    (1)、收到汽车启动信号,点火开关闭合,接通放电闭合回路,锂离子电容器模组为起动机提供瞬时大功率电流,使其带动内燃机运转,内燃机迅速转动并达到发火点转速后,内燃机启动完成,进入正常运转,点火开关断开,放电闭合回路断开;
    (2)、内燃机进入正常运转状态后,带动发电机运转,发电机发电,第二充电闭合回路接通,发电机对二次电池充电至额定电压后,继续浮充至内燃机停止运转,发电机停止发电,第二充电闭合回路断开;
    (3)、当锂离子电容器模组的电压满足不了汽车启动一次所需的电压条件,并且二次电池有充足的电压对锂离子电容器模组充电时,单向充电模块导通第一充电闭合回路,二次电池对锂离子电容器模组充电至其额定电压或充电至能至少满足一次汽车启动所需电压条件;
    或,当锂离子电容器模组的电压能至少满足一次汽车启动所需电压条件,并且二次电池已没有能量继续为锂离子电容器模组充电至能至少满足再多一次启动汽车所需电压时,单向充电模块第一充电闭合回路;
    或,当锂离子电容器模组达到其额定电压后,并且二次电池依旧有剩余的能量时,单向充电模块断开第一充电闭合回路,锂离子电容器模组处于自然状态, 待下一次汽车启动。
PCT/CN2016/102642 2015-11-25 2016-10-20 一种用于启动汽车的电源装置及其启动控制方法 WO2017088613A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510834527.9 2015-11-25
CN201520954375.1 2015-11-25
CN201520954375.1U CN205195388U (zh) 2015-11-25 2015-11-25 一种用于启动汽车的电源装置
CN201510834527.9A CN105634102B (zh) 2015-11-25 2015-11-25 一种用于启动汽车的电源装置及其启动控制方法

Publications (1)

Publication Number Publication Date
WO2017088613A1 true WO2017088613A1 (zh) 2017-06-01

Family

ID=58762967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102642 WO2017088613A1 (zh) 2015-11-25 2016-10-20 一种用于启动汽车的电源装置及其启动控制方法

Country Status (1)

Country Link
WO (1) WO2017088613A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114320703A (zh) * 2021-11-23 2022-04-12 深圳供电局有限公司 车辆辅助点火装置及车辆点火设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714785A (zh) * 2009-12-18 2010-05-26 深圳市今朝时代新能源技术有限公司 包括超级电容器的供电系统的电压调节方法
CN201679606U (zh) * 2010-01-08 2010-12-22 深圳市今朝时代新能源技术有限公司 一种利用超级电容器启动内燃机的系统
WO2011040128A1 (ja) * 2009-09-29 2011-04-07 株式会社 日立製作所 地絡検出回路および電源装置
CN104052141A (zh) * 2013-03-12 2014-09-17 天津普兰纳米科技有限公司 电源装置及其制造方法
CN205195388U (zh) * 2015-11-25 2016-04-27 上海展枭新能源科技有限公司 一种用于启动汽车的电源装置
CN105634102A (zh) * 2015-11-25 2016-06-01 上海展枭新能源科技有限公司 一种用于启动汽车的电源装置及其启动控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040128A1 (ja) * 2009-09-29 2011-04-07 株式会社 日立製作所 地絡検出回路および電源装置
CN101714785A (zh) * 2009-12-18 2010-05-26 深圳市今朝时代新能源技术有限公司 包括超级电容器的供电系统的电压调节方法
CN201679606U (zh) * 2010-01-08 2010-12-22 深圳市今朝时代新能源技术有限公司 一种利用超级电容器启动内燃机的系统
CN104052141A (zh) * 2013-03-12 2014-09-17 天津普兰纳米科技有限公司 电源装置及其制造方法
CN205195388U (zh) * 2015-11-25 2016-04-27 上海展枭新能源科技有限公司 一种用于启动汽车的电源装置
CN105634102A (zh) * 2015-11-25 2016-06-01 上海展枭新能源科技有限公司 一种用于启动汽车的电源装置及其启动控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114320703A (zh) * 2021-11-23 2022-04-12 深圳供电局有限公司 车辆辅助点火装置及车辆点火设备
CN114320703B (zh) * 2021-11-23 2024-02-20 深圳供电局有限公司 车辆辅助点火装置及车辆点火设备

Similar Documents

Publication Publication Date Title
JP6169564B2 (ja) 異なる公称電圧の車両用バッテリーの対を再充電するための方法および関連システム
CN112677781B (zh) 基于燃料电池和储能电池的混合动力电源系统及汽车
US20180372054A1 (en) Portable start-up power supply
CN106329692A (zh) 一种汽车应急启动电源及其启动控制方法
CN206099484U (zh) 一种飞机电气系统
CN205395802U (zh) 燃料电池与储能电池混合动力车系统
TWI750087B (zh) 智慧能量存儲系統
CN203747456U (zh) 超低温车用启动电源
CN205195388U (zh) 一种用于启动汽车的电源装置
CN205211873U (zh) 一种汽车启动锂离子蓄电池组装置
CN204205670U (zh) 动力电池内部电路及电动汽车
CN105599620A (zh) 一种基于锂离子电容器的汽车启动电源装置及其启动控制方法
CN205185889U (zh) 一种基于锂离子电容器的汽车启动电源装置
WO2017088613A1 (zh) 一种用于启动汽车的电源装置及其启动控制方法
CN205194527U (zh) 一种基于锂离子电容器的加速能量包、纯电动汽车电源装置
CN107269443A (zh) 一种交通运输工具的内燃机启动电路及装置
CN105634102B (zh) 一种用于启动汽车的电源装置及其启动控制方法
WO2022228247A1 (zh) 智能能量存储系统
CN205945101U (zh) 组合式超级电池
CN102368573A (zh) 一种电加热控温电池模块
CN205646974U (zh) 瞬态动力功率补偿器
CN205297809U (zh) 一种利用锂离子电容器启动内燃机的系统
KR102348991B1 (ko) 리듐인산철 시동배터리 방전시 차량의 인산철배터리 자체 전원복원장치
CN204103581U (zh) 采血车及采血车载设备的供电结构
CN206077042U (zh) 一种汽车应急启动电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16867839

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16867839

Country of ref document: EP

Kind code of ref document: A1