WO2021155756A1 - 信息确定、接收方法、装置、通信节点及存储介质 - Google Patents

信息确定、接收方法、装置、通信节点及存储介质 Download PDF

Info

Publication number
WO2021155756A1
WO2021155756A1 PCT/CN2021/074080 CN2021074080W WO2021155756A1 WO 2021155756 A1 WO2021155756 A1 WO 2021155756A1 CN 2021074080 W CN2021074080 W CN 2021074080W WO 2021155756 A1 WO2021155756 A1 WO 2021155756A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
physical uplink
uplink channel
correspond
channel transmissions
Prior art date
Application number
PCT/CN2021/074080
Other languages
English (en)
French (fr)
Inventor
潘煜
蒋创新
鲁照华
高波
何震
张淑娟
姚珂
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21751259.9A priority Critical patent/EP4102747A4/en
Priority to CA3166910A priority patent/CA3166910A1/en
Priority to US17/797,399 priority patent/US20230084983A1/en
Publication of WO2021155756A1 publication Critical patent/WO2021155756A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission

Definitions

  • This application relates to a wireless communication network, for example, to a method, device, communication node, and storage medium for determining and receiving information.
  • the fifth generation mobile communication (Fifth Generation, 5G) technology's uplink unauthorized transmission can support repeated transmission in the time domain, but the actual transmission process also involves a variety of complex factors such as space, frequency domain, and beam.
  • Repeated transmission is an effective means to improve reliability, which can improve the wireless communication system, especially the transmission reliability of ultra-reliable and low-latency communication (Ultra-Reliable and Low Latency Communication, URLLC).
  • ultra-Reliable and low-latency communication Ultra-Reliable and Low Latency Communication, URLLC.
  • URLLC Ultra-Reliable and Low Latency Communication
  • This application provides a method, device, communication node, and storage medium for determining and receiving information, so as to improve the reliability of physical uplink channel transmission.
  • An embodiment of the present application provides an information determination method, including: receiving indication information; and determining channel state information for M physical uplink channel transmissions according to the indication information, where M is an integer greater than or equal to 1.
  • An embodiment of the present application also provides a receiving method, including: sending indication information; receiving M physical uplink channel transmissions, where M is an integer greater than or equal to 1.
  • the embodiment of the present application also provides an information determining device, including: an instruction information receiving module configured to receive instruction information; an information determining module configured to determine channel state information for M physical uplink channel transmissions according to the instruction information, wherein , M is an integer greater than or equal to 1.
  • An embodiment of the present application also provides a receiving device, including: an indication module configured to send indication information; and a receiving module configured to receive M physical uplink channel transmissions, where M is an integer greater than or equal to 1.
  • the embodiment of the present application also provides a communication node, including: one or more processors; a storage device for storing one or more programs; when the one or more programs are used by the one or more processors Execution, so that the one or more processors implement the above-mentioned information determining method or receiving method.
  • the embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the above-mentioned information determining method or receiving method is implemented.
  • FIG. 1 is a flowchart of a method for determining information according to an embodiment
  • FIG. 2 is a schematic diagram of space division multiplexing of M physical uplink transmissions provided by an embodiment
  • FIG. 3 is a schematic diagram of frequency division multiplexing of M physical uplink transmissions corresponding to one uplink transmission block provided by an embodiment
  • FIG. 4 is a schematic diagram of frequency division multiplexing of M physical uplink transmissions corresponding to N spatial transmission filters provided by an embodiment
  • 5 is a schematic diagram of time division multiplexing and frequency division multiplexing of M physical uplink transmissions corresponding to N spatial transmission filters provided by an embodiment
  • FIG. 6 is a schematic diagram of time division multiplexing and frequency division multiplexing of M physical uplink transmissions corresponding to N spatial transmission filters provided by another embodiment
  • FIG. 7 is a schematic diagram of time division multiplexing of M physical uplink transmissions corresponding to N spatial transmission filters provided by an embodiment
  • FIG. 8 is a flowchart of a receiving method provided by an embodiment
  • FIG. 9 is a schematic structural diagram of an information determining device provided by an embodiment.
  • FIG. 10 is a schematic structural diagram of a receiving device according to an embodiment
  • FIG. 11 is a schematic diagram of the hardware structure of a communication node provided by an embodiment.
  • the embodiment of the present application provides an information determination method, which accurately determines the channel state information of each repeated transmission according to the indication information, and performs transmission according to this, so as to improve the reliability of physical uplink channel transmission.
  • Fig. 1 is a flowchart of a method for determining information according to an embodiment.
  • the information determining method in this embodiment may be applied to a first communication node, and the first communication node may be a user terminal (User Equipment, UE).
  • the method of this embodiment includes step 110 and step 120.
  • step 110 receiving instruction information.
  • step 120 the channel state information of M physical uplink channel transmissions is determined according to the indication information, where M is an integer greater than or equal to 1.
  • the UE receives the indication information of the second communication node (the second communication node is a serving node, such as a base station), and performs M physical uplink channel transmissions according to the indication information, such as a physical uplink shared channel (PUSCH). ) Transmission.
  • M physical uplink channel transmissions can be the transmission of M physical uplink channel resources used to transmit physical uplink data, or one physical uplink channel resource transmission at different transmission times, or on different transmission carriers, and different transmission subbands. , Or transmission of different layers.
  • M physical uplink channel transmissions correspond to a certain number of uplink transmission blocks.
  • the uplink transmission can be completed according to the uplink transmission blocks in space, time domain, frequency domain, etc., so as to perform physical uplink channel transmission uniformly and efficiently, and improve the reliability of uplink transmission.
  • M physical uplink channel transmissions may correspond to different antenna panels of the UE, and the above-mentioned antenna panel may be a transmission receiving point or a communication node. Different antenna panels can be replaced with spatial parameters, such as transmitting beams, receiving beams, spatial transmission filters, quasi-co-location type D (type D), etc.
  • the spatial transmission filter in this application determines the direction of the transmitting beam and the receiving beam on the antenna panel. For example, PUSCH transmissions corresponding to the same spatial transmission filter can be transmitted by the same antenna panel, that is, PUSCH transmissions corresponding to the same spatial transmission filter have the same transmission beam direction.
  • the indication information includes at least one of the following: a transmission scheme indication; a time-frequency domain resource indication; a transmission block number indication.
  • the time-frequency domain resource indication and the transmission block number indication are respectively related to the transmission
  • the scheme indication corresponds;
  • the channel state information includes at least one of the following: time-frequency domain resources; number of transmission blocks; spatial transmission filter; redundancy version (Redundancy Version, RV) RV; transmission uplink precoding matrix indication information ( Transmitted Precoding Matrix Indicator (TPMI); Demodulation Reference Signal (DMRS) port; Modulation and Coding Scheme (MCS); Power control parameters.
  • TPMI Transmitted Precoding Matrix Indicator
  • DMRS Demodulation Reference Signal
  • MCS Modulation and Coding Scheme
  • the transmission scheme indicator is used to indicate the transmission scheme of the physical uplink channel transmission, thereby correspondingly indicating the number of transmission blocks, the corresponding relationship between M physical uplink channel transmissions and transmission blocks, and the occupation of each physical uplink channel transmission. Based on this, the UE can accurately determine channel state information and perform physical uplink channel transmission.
  • the indication information is indicated by at least one of the following information domains: Radio Resource Control (RRC) signaling; Media Access Control-Control Element (MAC-) CE); Downlink Control Information (DCI).
  • RRC Radio Resource Control
  • MAC- Media Access Control-Control Element
  • DCI Downlink Control Information
  • the transmission scheme when the transmission scheme is indicated as the first transmission scheme, the number of corresponding transmission blocks is indicated as 1, and the corresponding time-frequency domain resource indication is: M physical uplink channel transmissions correspond to the same time domain Resources; each physical uplink channel transmission corresponds to a section of frequency domain resources, and each section of frequency domain resources does not overlap.
  • M physical uplink channel transmissions correspond to one uplink transmission block
  • M physical uplink channel transmissions occupy the same time domain resources and different frequency domain resources
  • M physical uplink channel transmissions correspond to M segments that do not overlap each other. Frequency domain resources.
  • the number of corresponding transmission blocks is indicated as M
  • the corresponding time-frequency domain resource indication is: the M physical uplink channel transmissions correspond to M The same uplink transmission block; M physical uplink channel transmissions correspond to the same time domain resources and the same frequency domain resources; each uplink transmission block corresponds to one or more layers of transmission.
  • M physical uplink channel transmissions correspond to M same uplink transmission blocks.
  • the uplink transmission block may also be referred to as transmission information, such as information before channel coding, or a coding block in the uplink information, or a large coding block corresponding to multiple sub-coding blocks.
  • the M same uplink transmission blocks mean that the M uplink transmission blocks carry exactly the same information to be transmitted, that is, the M uplink transmission blocks are repeatedly transmitted.
  • M physical uplink channel transmissions occupy the same time domain resources and the same frequency domain resources, and each uplink transmission block corresponds to one or more layers of transmission.
  • the transmission scheme when the transmission scheme is indicated as the third transmission scheme, the number of corresponding transmission blocks is indicated as M, and the corresponding time-frequency domain resource indication is: M physical uplink channel transmissions correspond to M identical Uplink transmission block; M physical uplink channel transmissions correspond to the same time domain resource; each physical uplink channel transmission corresponds to a section of frequency domain resources, and each section of frequency domain resources does not overlap.
  • M physical uplink channel transmissions correspond to M same uplink transmission blocks
  • M physical uplink channel transmissions occupy the same time domain resources and different frequency domain resources
  • M physical uplink channel transmissions correspond to M segments Frequency domain resources that do not overlap each other.
  • the transmission scheme when the transmission scheme is indicated as the fourth transmission scheme, the number of corresponding transmission blocks is indicated as M, and the corresponding time-frequency domain resource indication is: M physical uplink channel transmissions Corresponding to M identical uplink transmission blocks; each physical uplink channel transmission corresponds to a segment of time domain resources, and each segment of time domain resources does not overlap; the M physical uplink channel transmissions correspond to N segments of frequency domain resources, There is no overlap between frequency domain resources, where N is an integer greater than or equal to 1 and N is an integer less than or equal to M.
  • M physical uplink channel transmissions correspond to M same uplink transmission blocks, that is, M uplink transmission blocks are repeatedly transmitted.
  • M physical uplink channel transmissions occupy different time domain resources and N segments of non-overlapping frequency domain resources, where 1 ⁇ N ⁇ M.
  • N is the number of spatial transmission filters, that is, M physical uplink channel transmissions correspond to N spatial transmission filters.
  • the transmission scheme when the transmission scheme is indicated as the fifth transmission scheme, the number of corresponding transmission blocks is indicated as M, and the corresponding time-frequency domain resource indication is: M physical uplink channel transmissions correspond to M identical Uplink transmission block; M physical uplink channel transmissions correspond to the same frequency domain resources; each physical uplink channel transmission corresponds to a segment of time domain resources, and each segment of time domain resources does not overlap.
  • M physical uplink channel transmissions correspond to M same uplink transmission blocks
  • M physical uplink channel transmissions occupy the same frequency domain resources and different time domain resources
  • M physical uplink channel transmissions correspond to M segments Time domain resources that do not overlap each other.
  • the frequency domain resources of M physical uplink channel transmissions include a first frequency domain resource and a second frequency domain resource; the frequency domain resources of M physical uplink channel transmissions correspond to the first frequency offset and the second frequency domain resource.
  • Frequency offset where the first frequency offset is the difference between the start frequency of the second frequency domain resource and the start frequency of the first frequency domain resource, and the second frequency offset is the first The difference between the start frequency of the frequency domain resource and the start frequency of the bandwidth part (Bandwidth Part, BWP).
  • the frequency domain resources of M physical uplink channel transmissions are divided into two parts: a first frequency domain resource and a second frequency domain resource.
  • the frequency part beyond the boundary is transmitted through the target frequency band of the BWP, where the target The frequency band includes the frequency band between the start frequency of the BWP and the start frequency of the first frequency domain resource.
  • X start after the start frequency of the BWP is the start frequency of the first frequency domain resource
  • X offset after the start frequency of the first frequency domain resource is the start frequency of the second frequency domain resource
  • M physical uplink channel transmissions correspond to the same MCS.
  • M physical uplink channel transmissions correspond to the same DMRS port; or, M physical uplink channel transmissions correspond to M different DMRS ports, where M is greater than or equal to 2.
  • M physical uplink channel transmissions correspond to the same TPMI; or, physical uplink channel transmissions corresponding to the same spatial transmission filter correspond to the same TPMI; or, each physical uplink channel transmission in turn corresponds to One TPMI, each of the TPMIs is cyclically arranged in the order of the codebook table.
  • each physical uplink channel transmission corresponds to one TPMI in turn
  • the cyclical arrangement of each TPMI in the order of the codebook table refers to:
  • M physical uplink channel transmissions correspond to the same RV; or, physical uplink channel transmissions corresponding to the same spatial transmission filter correspond to the same RV; or, each physical uplink channel transmission in turn corresponds to One RV, and each RV is cyclically arranged in a set order.
  • each physical uplink channel transmission corresponds to one RV in turn.
  • the cyclic arrangement of each RV in a set order means that the UE may According to the RV setting sequence (for example, 0-2-3-1), the polling selection of the RV corresponds to M physical uplink channel transmissions in sequence.
  • the first physical uplink channel transmission corresponds to RV1
  • the second physical uplink channel transmission corresponds to RV2
  • the third physical uplink channel transmission corresponds to RV3
  • the fourth physical uplink channel transmission corresponds to RV4
  • the fifth physical uplink channel transmission corresponds to RV4.
  • Uplink channel transmission corresponds to RV1 and so on.
  • M physical uplink channel transmissions correspond to N spatial transmission filters
  • M physical uplink channel transmissions correspond to N sets of power control parameters, where N is an integer greater than or equal to 1 and N is less than or An integer equal to M.
  • the N spatial transmission filters are determined according to one of the following: Transmission Configuration Indication (TCI) status; Quasi-Co-Location (QCL); Sounding Reference Signal Resource Indicator (Sounding Reference Signal Resource Indicator) , SRI) information; Spatial Relation Information; Sounding Reference Signal (SRS); Channel State Information Reference Signal (CSI-RS); Synchronization Signal Block (Sychronization Signal Block, SSB).
  • TCI Transmission Configuration Indication
  • QCL Quasi-Co-Location
  • SRI Sounding Reference Signal Resource Indicator
  • SRI Spatial Relation Information
  • SRS Sounding Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • Synchronization Signal Block Synchronization Signal Block
  • a set of power control parameters includes: open-loop power control parameters (P0-PUSCH-AlphaSet), path loss reference signals (PUSCH-Pathloss Reference Signal), and closed-loop process parameters (two PUSCH-PC-Adjustment States).
  • the first X physical uplink channel transmissions correspond to the first Y spatial transmission filters
  • the last X physical uplink channel transmissions correspond to the last Y spatial transmission filters
  • the odd number of physical uplink channel transmissions corresponds to the first Y spatial transmission filters
  • the even number of physical uplink channel transmissions corresponds to the last Y spatial transmission filters
  • the M physical uplink channel transmissions In each of the two physical uplink channel transmissions as a group, the odd group corresponds to the first Y spatial transmission filters, and the even group physical uplink channel transmission corresponds to the latter Y spatial transmission filters, where X is two of M. One-half, Y is one-half of N.
  • M physical uplink channel transmissions correspond to N spatial transmission filters, and M ⁇ N.
  • the first M/2 physical uplink channel transmissions correspond to the first N/2 spatial transmission filters
  • the last M/2 physical uplink channel transmissions correspond to the last N/2 spatial transmission filters
  • the odd number of physical uplink channel transmissions corresponds to the last N/2 spatial transmission filters.
  • the uplink channel transmission corresponds to the first N/2 spatial transmission filters
  • the even-numbered physical uplink channel transmission corresponds to the last N/2 spatial transmission filters
  • the odd group corresponds to the first Y spatial transmission filters
  • the even group corresponds to the first Y spatial transmission filters
  • the physical uplink channel transmission corresponds to the last Y spatial transmission filters, for example, the 1, 2, 5, 6, ... M-3, M-2 physical uplink channel transmissions correspond to the first Y spatial transmission filters, and the third , 4, 7, 8, ... M-1, M transmissions correspond to the last Y spatial transmission filters.
  • the physical uplink channel transmission corresponding to the same spatial transmission filter corresponds to the same power control parameter.
  • the method for determining the information of M physical uplink channel transmissions is described through the following different examples.
  • M PUSCH transmissions correspond to M same uplink transmission blocks, that is, the serving node schedules the UE to perform M PUSCH repeated transmissions on M uplink transmission blocks
  • M uplink transmission blocks correspond to M PUSCH transmissions one-to-one.
  • M PUSCH transmissions use the same time domain resources and frequency domain resources, and each uplink transmission block corresponds to one or more layers of transmission.
  • the scheduling scheme can be implemented in various ways, for example, a transmission scheme indicator is configured in the PUSCH-Config structure in RRC and an M value is configured to indicate the scheduling scheme; or in RRC Configure a transmission scheme indicator in the Time Domain Resource Allocation (TDRA) structure of the PUSCH and configure the M value to indicate the scheduling scheme; or configure the transmission scheme indicator and M value in the PUSCH-Config structure
  • TDRA field or Frequency Domain Resource Allocation (FDRA) field of DCI selects a transmission scheme indication and M value in the pool and should be used in the PUSCH transmission scheduled by the DCI.
  • M PUSCH transmissions correspond to the same MCS.
  • M PUSCH transmissions may correspond to one DMRS port, or correspond to M different DMRS ports.
  • M PUSCH transmissions correspond to N different spatial transmission filters and N sets of power control parameters, 1 ⁇ N ⁇ M.
  • the correspondence between M PUSCH transmissions and N spatial transmission filters can be one of the following: 1) The first M/2 PUSCH transmissions correspond to the first N/2 spatial transmission filters, and the last M/2 times PUSCH transmission corresponds to the last N/2 spatial transmission filters; 2) The odd-numbered PUSCH transmission corresponds to the first N/2 spatial transmission filters, and the even-numbered PUSCH transmission corresponds to the last N/2 spatial transmission filters; 3) Every two physical uplink channel transmissions constitute a group, the odd group corresponds to the first Y spatial transmission filters, and the even group physical uplink channel transmission corresponds to the last Y spatial transmission filters.
  • the PUSCH transmission corresponding to the same spatial transmission filter corresponds to the same power control parameter.
  • M PUSCH transmissions may correspond to the same TPMI; or M PUSCH transmissions correspond to N TPMIs, and PUSCH transmissions corresponding to the same spatial transmission filter correspond to the same TPMI; or, according to the codebook table
  • the sequence of polling determines the TPMI corresponding to each physical uplink channel transmission.
  • M PUSCH transmissions can correspond to the same RV.
  • the number of RVs is 1; or, M PUSCH transmissions correspond to N RVs, and the number of RVs is N, which corresponds to the same spatial transmission.
  • the PUSCH transmission of the filter corresponds to the same RV; alternatively, the RV corresponding to each physical uplink channel transmission is determined by polling according to the set sequence, for example, it is selected in the order of 0-2-3-1. In this case, The number of RV is min(M, 4).
  • FIG. 2 is a schematic diagram of space division multiplexing of M physical uplink transmissions provided by an embodiment.
  • the serving node schedules the UE to perform two repeated PUSCH transmissions on two identical uplink transport blocks.
  • the two PUSCH transmissions use the same time-frequency domain resources ( In Figure 2, the horizontal direction represents time domain resources and the vertical direction represents frequency domain resources), and each PUSCH transmission corresponds to a layer 1 transmission.
  • each PUSCH transmission corresponds to the same MCS
  • each PUSCH transmission corresponds to different DMRS ports, RV, TPMI, spatial transmission filters, and power control parameters.
  • M PUSCH transmissions correspond to one uplink transmission block, that is, the serving node schedules the UE to divide 1 uplink transmission block into M PUSCH transmissions, and the data for each PUSCH transmission is different, and M ⁇ 1.
  • M PUSCH transmissions correspond to the same MCS.
  • M PUSCH transmissions may correspond to one DMRS port, or correspond to M different DMRS ports.
  • M PUSCH transmissions correspond to N different spatial transmission filters and N sets of power control parameters, 1 ⁇ N ⁇ M.
  • M PUSCH transmissions use the same time domain resources and different frequency domain resources.
  • the correspondence between M PUSCH transmissions and N spatial transmission filters can be one of the following: 1) The first M/2 PUSCH transmissions correspond to the first N/2 spatial transmission filters, and the last M/2 times PUSCH transmission corresponds to the last N/2 spatial transmission filters; 2) The odd-numbered PUSCH transmission corresponds to the first N/2 spatial transmission filters, and the even-numbered PUSCH transmission corresponds to the last N/2 spatial transmission filters; 3) Every two physical uplink channel transmissions constitute a group, the odd group corresponds to the first Y spatial transmission filters, and the even group physical uplink channel transmission corresponds to the last Y spatial transmission filters.
  • the PUSCH transmission corresponding to the same spatial transmission filter corresponds to the same power control parameter.
  • M PUSCH transmissions may correspond to the same TPMI; or M PUSCH transmissions correspond to N TPMIs, and PUSCH transmissions corresponding to the same spatial transmission filter correspond to the same TPMI; or, according to the codebook table
  • the sequence of polling determines the TPMI corresponding to each physical uplink channel transmission.
  • M PUSCH transmissions can correspond to the same RV.
  • the number of RVs is 1; or, M PUSCH transmissions correspond to N RVs, and the number of RVs is N, which corresponds to the same spatial transmission.
  • the PUSCH transmission of the filter corresponds to the same RV; alternatively, the RV corresponding to each physical uplink channel transmission is determined by polling according to the set sequence, for example, it is selected in the order of 0-2-3-1. In this case, The number of RV is min(M, 4).
  • the serving node may configure X offset between the frequency domain resources of different PUSCH transmissions, where X offset is the difference between the start frequency of the second frequency domain resource minus the start frequency of the first frequency domain resource, in, Is the bandwidth of the currently activated BWP, Is the bandwidth of each PUSCH transmission.
  • the serving node configures X start for the UE, which represents the difference between the start frequency of the BWP and the start frequency of the first frequency resource. In the case where X start is not 0 and X offset makes the frequency range of a certain PUSCH transmission exceed the boundary of the BWP, the excess frequency part can be transmitted in the range of the starting position of the BWP from 0 to X start.
  • FIG. 3 is a schematic diagram of frequency division multiplexing of M physical uplink transmissions corresponding to one uplink transmission block provided by an embodiment.
  • the serving node schedules the UE to divide one uplink transmission block into two PUSCHs for transmission.
  • the two PUSCH transmissions use the same time domain resources (as shown in the vertical time slot resource in Figure 3) and different frequency domain resources (as shown in the horizontal resource in Figure 3).
  • the two PUSCH transmissions correspond to the same RV and DMRS ports.
  • MCS, 2 PUSCH transmissions correspond to 2 different spatial transmission filters, 2 different TPMIs, and 2 sets of power control parameters.
  • a frequency domain offset X offset is configured between the frequency domain resources of the second PUSCH transmission
  • X start is configured between the frequency domain resource of the first PUSCH transmission and the start frequency of the uplink (Uplilnk, UL) BWP.
  • M PUSCH transmissions correspond to M same uplink transmission blocks, that is, the serving node schedules the UE to perform M PUSCH repeated transmissions on M uplink transmission blocks, and M uplink transmission blocks correspond to M PUSCH transmissions one-to-one. , M ⁇ 1.
  • M PUSCH transmissions correspond to the same MCS.
  • M PUSCH transmissions may correspond to one DMRS port, or correspond to M different DMRS ports.
  • M PUSCH transmissions correspond to N different spatial transmission filters and N sets of power control parameters, 1 ⁇ N ⁇ M.
  • M PUSCH transmissions use the same time domain resources and different frequency domain resources.
  • the correspondence between M PUSCH transmissions and N spatial transmission filters can be one of the following: 1) The first M/2 PUSCH transmissions correspond to the first N/2 spatial transmission filters, and the last M/2 times PUSCH transmission corresponds to the last N/2 spatial transmission filters; 2) The odd-numbered PUSCH transmission corresponds to the first N/2 spatial transmission filters, and the even-numbered PUSCH transmission corresponds to the last N/2 spatial transmission filters; 3) Every two physical uplink channel transmissions constitute a group, the odd group corresponds to the first Y spatial transmission filters, and the even group physical uplink channel transmission corresponds to the last Y spatial transmission filters.
  • the PUSCH transmission corresponding to the same spatial transmission filter corresponds to the same power control parameter.
  • M PUSCH transmissions may correspond to the same TPMI; or M PUSCH transmissions correspond to N TPMIs, and PUSCH transmissions corresponding to the same spatial transmission filter correspond to the same TPMI; or, according to the codebook table
  • the sequence of polling determines the TPMI corresponding to each physical uplink channel transmission.
  • M PUSCH transmissions can correspond to the same RV.
  • the number of RVs is 1; or, M PUSCH transmissions correspond to N RVs, and the number of RVs is N, which corresponds to the same spatial transmission.
  • the PUSCH transmission of the filter corresponds to the same RV; alternatively, the RV corresponding to each physical uplink channel transmission is determined by polling according to the set sequence, for example, it is selected in the order of 0-2-3-1. In this case, The number of RV is min(M, 4).
  • the serving node configures X start for the UE, which represents the difference between the start frequency of the BWP and the start frequency of the first frequency resource.
  • X start is not 0 and X offset makes the frequency range of a PUSCH transmission beyond the boundary of the BWP, the excess frequency part can be transmitted in the range of the starting position of the BWP from 0 to X start.
  • FIG. 4 is a schematic diagram of frequency division multiplexing of M physical uplink transmissions corresponding to N spatial transmission filters provided by an embodiment.
  • the serving node schedules the UE to perform 6 PUSCH repeated transmissions on 6 identical uplink transmission blocks.
  • the 6 uplink transmission blocks use the same time domain resources (as shown in the vertical time slot resource in Fig. 4), and use different frequency domain resources (as shown in the horizontal resource in Fig. 4), corresponding to the same DMRS port.
  • the first three PUSCH transmissions correspond to the first one spatial transmission filter
  • the last three PUSCH transmissions correspond to the latter one spatial transmission filter
  • the PUSCH transmissions with the same spatial transmission filter correspond to the same RV, namely ,
  • the first 3 PUSCH transmissions correspond to spatial transmission filter 1, RV1, TPMI1, and power control parameter 1;
  • the last 3 PUSCH transmissions correspond to spatial transmission filter 2, RV2, TPMI2, and power control parameter 2.
  • the frequency domain offset X offset is configured between the first 3 PUSCH transmissions and the last 3 PUSCH transmissions
  • X start is configured between the frequency domain resource of the first PUSCH transmission and the start frequency of the UL BWP.
  • M PUSCH transmissions correspond to M same uplink transmission blocks, that is, the serving node schedules the UE to perform M PUSCH repeated transmissions on M uplink transmission blocks, and M uplink transmission blocks correspond to M PUSCH transmissions one-to-one. , M ⁇ 1.
  • M PUSCH transmissions correspond to the same MCS.
  • M PUSCH transmissions may correspond to one DMRS port, or correspond to M different DMRS ports.
  • M PUSCH transmissions correspond to N different spatial transmission filters and N sets of power control parameters, 1 ⁇ N ⁇ M.
  • M PUSCH transmissions use different time domain resources and different frequency domain resources.
  • time-frequency domain resources there are two ways to configure time-frequency domain resources: 1) The first M/2 PUSCH transmissions are transmitted on the first time unit and occupy a continuous frequency domain resource, and the last M/2 PUSCH transmissions are transmitted on the first time unit. It is transmitted on two time units and occupies another continuous frequency domain resource.
  • the frequency domain offset X offset can be configured between the above two frequency domain resources; 2) the odd number of PUSCH transmissions are transmitted on the first time unit, and the even number of times
  • the PUSCH is transmitted on the second time unit, and the PUSCHs transmitted on the first time unit and the second time unit are staggeredly distributed on a continuous frequency domain resource.
  • the above-mentioned first time unit and second time unit may be in one time slot, or may be two different time slots.
  • the transmission blocks transmitted in the same time unit have the same spatial transmission filter, and the transmission blocks transmitted in different time units have different spatial transmission filters.
  • the PUSCH transmission corresponding to the same spatial transmission filter corresponds to the same power control parameter.
  • M PUSCH transmissions may correspond to the same TPMI; or M PUSCH transmissions correspond to N TPMIs, and PUSCH transmissions corresponding to the same spatial transmission filter correspond to the same TPMI; or, according to the codebook table
  • the sequence of polling determines the TPMI corresponding to each physical uplink channel transmission.
  • M PUSCH transmissions can correspond to the same RV.
  • the number of RVs is 1; or, M PUSCH transmissions correspond to N RVs, and the number of RVs is N, which corresponds to the same spatial transmission.
  • the PUSCH transmission of the filter corresponds to the same RV; alternatively, the RV corresponding to each physical uplink channel transmission is determined by polling according to the set sequence, for example, it is selected in the order of 0-2-3-1. In this case, The number of RV is min(M, 4).
  • the serving node configures X start for the UE, which represents the difference between the start frequency of the BWP and the start frequency of the first frequency resource.
  • X start is not 0 and X offset causes the frequency range of a certain PUSCH transmission to exceed the boundary of the BWP, the excess frequency part can be transmitted in the range of the starting position of the BWP from 0 to X start.
  • FIG. 5 is a schematic diagram of time division multiplexing and frequency division multiplexing of M physical uplink transmissions corresponding to N spatial transmission filters provided by an embodiment.
  • the serving node schedules the UE to perform 6 repeated PUSCH transmissions on 6 identical uplink transmission blocks.
  • the first 3 PUSCH transmissions are transmitted on the first time unit (time slot n) and occupy a continuous frequency domain resource
  • the last 3 PUSCH transmissions are transmitted on the second time unit (time slot n+1) and are combined Occupy another continuous frequency domain resource.
  • PUSCH transmissions with the same spatial transmission filter have the same RV, the number of RVs indicated is 2, the first 3 PUSCH transmissions correspond to the spatial transmission filter 1, RV1, TPMI1, and power control parameter 1, and the last 3 PUSCHs The transmission corresponds to spatial transmission filter 2, RV2, TPMI2, and power control parameter 2.
  • X offset is configured between the first 3 PUSCH transmissions and the last 3 PUSCH transmissions.
  • FIG. 6 is a schematic diagram of time division multiplexing and frequency division multiplexing of M physical uplink transmissions corresponding to N spatial transmission filters provided by another embodiment.
  • the serving node schedules the UE to perform 6 PUSCH repeated transmissions on 6 identical uplink transmission blocks.
  • the odd number of PUSCH transmissions are transmitted on the first time unit
  • the even number of PUSCHs are transmitted on the second time unit
  • the PUSCHs transmitted on the first time unit and the second time unit are interleaved on a continuous frequency domain resource.
  • the first, third, and fifth PUSCH transmissions are transmitted on the first time unit (time slot n), and the second, fourth, and sixth PUSCH transmissions are transmitted on the second time unit (time slot n+1).
  • PUSCH transmissions with the same spatial transmission filter have the same RV, then the number of RV values indicated is 2.
  • the first, third, and fifth PUSCH transmissions correspond to spatial transmission filter 1, RV1, TPMI1, and power control parameter 1. (Ie, power control parameter 1)
  • the second, fourth, and sixth PUSCH transmissions correspond to the spatial transmission filter 2, RV2, TPMI2, and power control parameter 2 (ie, power control parameter 2).
  • X offset may not be configured.
  • M PUSCH transmissions correspond to M same uplink transmission blocks, that is, the serving node schedules the UE to perform M PUSCH repeated transmissions on M uplink transmission blocks, and M uplink transmission blocks correspond to M PUSCH transmissions one-to-one. , M ⁇ 1.
  • M PUSCH transmissions correspond to the same MCS.
  • M PUSCH transmissions may correspond to one DMRS port, or correspond to M different DMRS ports.
  • M PUSCH transmissions correspond to N different spatial transmission filters and N sets of power control parameters, 1 ⁇ N ⁇ M.
  • M PUSCH transmissions use the same frequency domain resources and different time domain resources.
  • the time domain resource may be one of the following: different Orthogonal Frequency Division Multiplexing (OFDM) symbols in one time slot, or several different time slots.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the correspondence between M PUSCH transmissions and N spatial transmission filters can be one of the following: 1) The first M/2 PUSCH transmissions correspond to the first N/2 spatial transmission filters, and the last M/2 times PUSCH transmission corresponds to the last N/2 spatial transmission filters; 2) The odd-numbered PUSCH transmission corresponds to the first N/2 spatial transmission filters, and the even-numbered PUSCH transmission corresponds to the last N/2 spatial transmission filters; 3) Every two physical uplink channel transmissions constitute a group, the odd group corresponds to the first Y spatial transmission filters, and the even group physical uplink channel transmission corresponds to the last Y spatial transmission filters.
  • the PUSCH transmission corresponding to the same spatial transmission filter corresponds to the same power control parameter.
  • M PUSCH transmissions may correspond to the same TPMI; or M PUSCH transmissions correspond to N TPMIs, and PUSCH transmissions corresponding to the same spatial transmission filter correspond to the same TPMI; or, according to the codebook table
  • the sequence of polling determines the TPMI corresponding to each physical uplink channel transmission.
  • M PUSCH transmissions can correspond to the same RV.
  • the number of RVs is 1; or, M PUSCH transmissions correspond to N RVs, and the number of RVs is N, which corresponds to the same spatial transmission.
  • the PUSCH transmission of the filter corresponds to the same RV; alternatively, the RV corresponding to each physical uplink channel transmission is determined by polling according to the set order, for example, it is selected in the order of 0-2-3-1.
  • FIG. 7 is a schematic diagram of time division multiplexing of M physical uplink transmissions corresponding to N spatial transmission filters provided by an embodiment.
  • the serving node schedules the UE to perform 6 repeated PUSCH transmissions on 6 identical uplink transmission blocks.
  • the 6 transmissions use the same frequency domain resources (such as the vertical resources in Figure 7) and different time domain resources (such as the horizontal resources in Figure 7), which are distributed in 6 consecutive time slots (the horizontal resources in Figure 7). Is a time domain resource).
  • 6 PUSCH transmissions correspond to the same DMRS port and MCS
  • the first 3 PUSCH transmissions correspond to spatial transmission filter 1
  • the last 3 PUSCH transmissions correspond to the second spatial transmission filter, corresponding to the PUSCH of the same spatial transmission filter
  • the transmission corresponds to the same TPMI, RV value and power control parameters.
  • the above-mentioned embodiment realizes the diversity gain of space, frequency domain, and beam, and fully guarantees the reliability of uplink transmission data.
  • a receiving method is also provided, which is applied to a service node.
  • the serving node guarantees the reliability of the uplink transmission by sending instruction information and receiving M physical uplink channel transmissions corresponding to the uplink transmission block.
  • FIG. 8 is a flowchart of a receiving method provided by an embodiment. As shown in FIG. 8, the method provided in this embodiment includes step 210 and step 220.
  • step 210 the instruction information is sent.
  • step 220 receive M physical uplink channel transmissions, where M is an integer greater than or equal to 1.
  • the indication information includes at least one of the following: a transmission scheme indication; a time-frequency domain resource indication; a transmission block number indication.
  • the time-frequency domain resource indication and the transmission block number indication are respectively related to the transmission
  • the scheme indication corresponds;
  • the channel state information includes at least one of the following: time-frequency domain resources; number of transmission blocks; spatial transmission filter; RV; TPMI; DMRS port; MCS; power control parameters.
  • the indication information is indicated by at least one of the following information domains: radio resource control (RRC) signaling; medium access control layer control unit (MAC-CE); downlink control information (DCI).
  • RRC radio resource control
  • MAC-CE medium access control layer control unit
  • DCI downlink control information
  • the transmission scheme when the transmission scheme is indicated as the first transmission scheme, the number of corresponding transmission blocks is indicated as 1, and the corresponding time-frequency domain resource indication is: M physical uplink channel transmissions correspond to the same time domain Resources; each physical uplink channel transmission corresponds to a section of frequency domain resources, and each section of frequency domain resources does not overlap.
  • the number of corresponding transmission blocks is indicated as M
  • the corresponding time-frequency domain resource indication is: the M physical uplink channel transmissions correspond to M The same uplink transmission block; the M physical uplink channel transmissions correspond to the same time domain resources and the same frequency domain resources; each uplink transmission block corresponds to one or more layers of transmission.
  • the transmission scheme when the transmission scheme is indicated as the third transmission scheme, the number of corresponding transmission blocks is indicated as M, and the corresponding time-frequency domain resource indication is: the M physical uplink channel transmissions correspond to M The same uplink transmission block; the M physical uplink channel transmissions correspond to the same time domain resources; each physical uplink channel transmission corresponds to a section of frequency domain resources, and each section of frequency domain resources does not overlap.
  • the transmission scheme when the transmission scheme is indicated as the fourth transmission scheme, the number of corresponding transmission blocks is indicated as M, and the corresponding time-frequency domain resource indication is: the M physical uplink channel transmissions correspond to M The same uplink transmission block; each physical uplink channel transmission corresponds to a segment of time domain resources, and each segment of time domain resources does not overlap; the M physical uplink channel transmissions correspond to N segments of frequency domain resources, and each segment of frequency domain There is no overlap between resources, where N is an integer greater than or equal to 1 and N is an integer less than or equal to M.
  • the transmission scheme when the transmission scheme is indicated as the fifth transmission scheme, the number of corresponding transmission blocks is indicated as M, and the corresponding time-frequency domain resource indication is: the M physical uplink channel transmissions correspond to M The same uplink transmission block; the M physical uplink channel transmissions correspond to the same frequency domain resources; each physical uplink channel transmission corresponds to a section of time domain resources, and each section of time domain resources does not overlap.
  • the frequency domain resources of the M physical uplink channel transmissions include a first frequency domain resource and a second frequency domain resource; the frequency domain resources of the M physical uplink channel transmissions correspond to the first frequency offset And a second frequency offset; wherein, the first frequency offset is the difference between the start frequency of the second frequency domain resource and the start frequency of the first frequency domain resource, and the second frequency The offset is the difference between the start frequency of the first frequency domain resource and the start frequency of the bandwidth part BWP.
  • the frequency part beyond the boundary passes through the target of the BWP Frequency band transmission, wherein the target frequency band includes a frequency band between the start frequency of the BWP and the start frequency of the first frequency domain resource.
  • the M physical uplink channel transmissions correspond to the same modulation and coding strategy (MCS).
  • MCS modulation and coding strategy
  • the M physical uplink channel transmissions correspond to the same demodulation reference signal (DMRS) port; or, the M physical uplink channel transmissions correspond to M different DMRS ports, where M is greater than Or equal to 2.
  • DMRS demodulation reference signal
  • the M physical uplink channel transmissions correspond to the same transmission uplink precoding matrix indication information (TPMI); or, the physical uplink channel transmissions corresponding to the same spatial transmission filter correspond to the same TPMI; Or, each physical uplink channel transmission sequentially corresponds to one TPMI, and each TPMI is cyclically arranged in the order of the codebook table.
  • TPMI transmission uplink precoding matrix indication information
  • the M physical uplink channel transmissions correspond to the same redundancy version RV; or, the physical uplink channel transmissions corresponding to the same spatial transmission filter correspond to the same RV; or, each physical uplink transmission corresponds to the same RV; Channel transmission sequentially corresponds to one RV, and each RV is cyclically arranged in a set order.
  • the M physical uplink channel transmissions correspond to N spatial transmission filters, and the M physical uplink channel transmissions correspond to N sets of power control parameters, where N is an integer greater than or equal to 1 and N is an integer less than or equal to M;
  • the N spatial transmission filters are determined according to one of the following: transmission configuration indication (TCI) status; quasi co-location (QCL); sounding reference signal resource indication (SRI) information; spatial relationship Information, sounding reference signal (SRS), channel state information reference signal (CSI-RS), synchronization signal block (SSB).
  • TCI transmission configuration indication
  • QCL quasi co-location
  • SRI sounding reference signal resource indication
  • SRS spatial relationship Information
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • the first X physical uplink channel transmissions correspond to the first Y spatial transmission filters, and the last X physical uplink channel transmissions correspond to the last Y spatial transmission filters;
  • the odd number of physical uplink channel transmissions in the M physical uplink channel transmissions correspond to the first Y spatial transmission filters, and the even number of physical uplink channel transmissions correspond to the last Y spatial transmission filters; or, the M times In the physical uplink channel transmission, every two physical uplink channel transmissions constitute a group, the odd group corresponds to the first Y spatial transmission filters, and the even group physical uplink channel transmission corresponds to the latter Y spatial transmission filters, where the X It is one-half of M, and Y is one-half of N.
  • the physical uplink channel transmission corresponding to the same spatial transmission filter corresponds to the same power control parameter.
  • the receiving method applied to the serving node in this embodiment is relative to the information determining method applied to the UE.
  • the information determining method applied to the UE For technical details not described in this embodiment, please refer to any of the foregoing embodiments.
  • FIG. 9 is a schematic structural diagram of an information determination device provided by an embodiment. As shown in FIG. 9, the information determining device includes: an instruction information receiving module 310 and an information determining module 320.
  • the instruction information receiving module 310 is configured to receive instruction information.
  • the information determining module 320 is configured to determine channel state information of M physical uplink channel transmissions according to the indication information, where M is an integer greater than or equal to 1.
  • the information determining apparatus of this embodiment determines the channel state information of each repeated transmission correspondingly according to the instruction information, and performs transmission accordingly, so as to improve the reliability of physical uplink channel transmission.
  • the indication information includes at least one of the following: a transmission scheme indication; a time-frequency domain resource indication; a transmission block number indication.
  • the time-frequency domain resource indication and the transmission block number indication are respectively related to the transmission
  • the scheme indication corresponds;
  • the channel state information includes at least one of the following: time-frequency domain resources; number of transmission blocks; spatial transmission filter; redundancy version (RV); transmission uplink precoding matrix indication information (TPMI); solution Modulation reference signal (DMRS) port; modulation and coding strategy (MCS) and power control parameters.
  • the indication information is indicated by at least one of the following information domains: radio resource control (RRC) signaling; medium access control layer control unit (MAC-CE); downlink control information (DCI).
  • RRC radio resource control
  • MAC-CE medium access control layer control unit
  • DCI downlink control information
  • the transmission scheme when the transmission scheme is indicated as the first transmission scheme, the number of corresponding transmission blocks is indicated as 1, and the corresponding time-frequency domain resource indication is: the M physical uplink channel transmissions correspond to the same Time domain resources; each physical uplink channel transmission corresponds to a section of frequency domain resources, and each section of frequency domain resources does not overlap.
  • the number of corresponding transmission blocks is indicated as M
  • the corresponding time-frequency domain resource indication is: the M physical uplink channel transmissions correspond to M The same uplink transmission block; the M physical uplink channel transmissions correspond to the same time domain resources and the same frequency domain resources; each uplink transmission block corresponds to one or more layers of transmission.
  • the transmission scheme when the transmission scheme is indicated as the third transmission scheme, the number of corresponding transmission blocks is indicated as M, and the corresponding time-frequency domain resource indication is: the M physical uplink channel transmissions correspond to M The same uplink transmission block; the M physical uplink channel transmissions correspond to the same time domain resources; each physical uplink channel transmission corresponds to a section of frequency domain resources, and each section of frequency domain resources does not overlap.
  • the transmission scheme when the transmission scheme is indicated as the fourth transmission scheme, the number of corresponding transmission blocks is indicated as M, and the corresponding time-frequency domain resource indication is: the M physical uplink channel transmissions correspond to M The same uplink transmission block; each physical uplink channel transmission corresponds to a segment of time domain resources, and each segment of time domain resources does not overlap; the M physical uplink channel transmissions correspond to N segments of frequency domain resources, and each segment of frequency domain There is no overlap between resources, where N is an integer greater than or equal to 1 and N is an integer less than or equal to M.
  • the transmission scheme when the transmission scheme is indicated as the fifth transmission scheme, the number of corresponding transmission blocks is indicated as M, and the corresponding time-frequency domain resource indication is: the M physical uplink channel transmissions correspond to M The same uplink transmission block; the M physical uplink channel transmissions correspond to the same frequency domain resources; each physical uplink channel transmission corresponds to a section of time domain resources, and each section of time domain resources does not overlap.
  • the frequency domain resources of the M physical uplink channel transmissions include a first frequency domain resource and a second frequency domain resource; the frequency domain resources of the M physical uplink channel transmissions correspond to the first frequency offset And a second frequency offset; wherein, the first frequency offset is the difference between the start frequency of the second frequency domain resource and the start frequency of the first frequency domain resource, and the second frequency The offset is the difference between the start frequency of the first frequency domain resource and the start frequency of the bandwidth part BWP.
  • the frequency part beyond the boundary passes through the target of the BWP Frequency band transmission, wherein the target frequency band includes a frequency band between the start frequency of the BWP and the start frequency of the first frequency domain resource.
  • the M physical uplink channel transmissions correspond to the same modulation and coding strategy (MCS).
  • MCS modulation and coding strategy
  • the M physical uplink channel transmissions correspond to the same demodulation reference signal (DMRS) port; or, the M physical uplink channel transmissions correspond to M different DMRS ports, where M is greater than Or equal to 2.
  • DMRS demodulation reference signal
  • the M physical uplink channel transmissions correspond to the same transmission uplink precoding matrix indication information (TPMI); or, the physical uplink channel transmissions corresponding to the same spatial transmission filter correspond to the same TPMI; Or, each physical uplink channel transmission sequentially corresponds to one TPMI, and each TPMI is cyclically arranged in the order of the codebook table.
  • TPMI transmission uplink precoding matrix indication information
  • the M physical uplink channel transmissions correspond to the same redundancy version RV; or, the physical uplink channel transmissions corresponding to the same spatial transmission filter correspond to the same RV; or, each physical uplink transmission corresponds to the same RV; Channel transmission sequentially corresponds to one RV, and each RV is cyclically arranged in a set order.
  • the M physical uplink channel transmissions correspond to N spatial transmission filters, and the M physical uplink channel transmissions correspond to N sets of power control parameters, where N is an integer greater than or equal to 1 and N is an integer less than or equal to M;
  • the N spatial transmission filters are determined according to one of the following: transmission configuration indication (TCI) status; quasi co-location (QCL); sounding reference signal resource indication (SRI) information; spatial relationship Information, sounding reference signal (SRS), channel state information reference signal (CSI-RS), synchronization signal block (SSB).
  • TCI transmission configuration indication
  • QCL quasi co-location
  • SRI sounding reference signal resource indication
  • SRS spatial relationship Information
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • the first X physical uplink channel transmissions correspond to the first Y spatial transmission filters, and the last X physical uplink channel transmissions correspond to the last Y spatial transmission filters;
  • the odd number of physical uplink channel transmissions in the M physical uplink channel transmissions correspond to the first Y spatial transmission filters, and the even number of physical uplink channel transmissions correspond to the last Y spatial transmission filters; or, the M times In the physical uplink channel transmission, every two physical uplink channel transmissions constitute a group, the odd group corresponds to the first Y spatial transmission filters, and the even group physical uplink channel transmission corresponds to the latter Y spatial transmission filters, where the X It is one-half of M, and Y is one-half of N.
  • the physical uplink channel transmission corresponding to the same spatial transmission filter corresponds to the same power control parameter.
  • FIG. 10 is a schematic structural diagram of a receiving device according to an embodiment. As shown in FIG. 10, the receiving device includes: an indication module 410 and a receiving module 420.
  • the instruction module 410 is configured to send instruction information.
  • the receiving module 420 is configured to receive M physical uplink channel transmissions, where M is an integer greater than or equal to 1.
  • the receiving device of this embodiment ensures the reliability of the uplink transmission by sending instruction information and receiving M physical uplink channel transmissions corresponding to the uplink transmission block.
  • the indication information includes at least one of the following: a transmission scheme indication; a time-frequency domain resource indication; a transmission block number indication, the time-frequency domain resource indication and the transmission block number indication respectively correspond to the transmission scheme indication;
  • the channel state information includes at least one of the following: time-frequency domain resources; number of transmission blocks; spatial transmission filter; redundancy version (RV); transmission uplink precoding matrix indication information (TPMI); demodulation reference signal (DMRS port ); modulation and coding strategy (MCS); power control parameters.
  • the indication information is indicated by at least one of the following information domains: radio resource control (RRC) signaling; medium access control layer control unit (MAC-CE); downlink control information (DCI).
  • RRC radio resource control
  • MAC-CE medium access control layer control unit
  • DCI downlink control information
  • the transmission scheme when the transmission scheme is indicated as the first transmission scheme, the number of corresponding transmission blocks is indicated as 1, and the corresponding time-frequency domain resource indication is: the M physical uplink channel transmissions correspond to the same Time domain resources; each physical uplink channel transmission corresponds to a section of frequency domain resources, and each section of frequency domain resources does not overlap.
  • the number of corresponding transmission blocks is indicated as M
  • the corresponding time-frequency domain resource indication is: the M physical uplink channel transmissions correspond to M The same uplink transmission block; the M physical uplink channel transmissions correspond to the same time domain resources and the same frequency domain resources; each uplink transmission block corresponds to one or more layers of transmission.
  • the transmission scheme when the transmission scheme is indicated as the third transmission scheme, the number of corresponding transmission blocks is indicated as M, and the corresponding time-frequency domain resource indication is: the M physical uplink channel transmissions correspond to M The same uplink transmission block; the M physical uplink channel transmissions correspond to the same time domain resources; each physical uplink channel transmission corresponds to a section of frequency domain resources, and each section of frequency domain resources does not overlap.
  • the transmission scheme when the transmission scheme is indicated as the fourth transmission scheme, the number of corresponding transmission blocks is indicated as M, and the corresponding time-frequency domain resource indication is: the M physical uplink channel transmissions correspond to M The same uplink transmission block; each physical uplink channel transmission corresponds to a segment of time domain resources, and each segment of time domain resources does not overlap; the M physical uplink channel transmissions correspond to N segments of frequency domain resources, and each segment of frequency domain There is no overlap between resources, where N is an integer greater than or equal to 1 and N is an integer less than or equal to M.
  • the transmission scheme when the transmission scheme is indicated as the fifth transmission scheme, the number of corresponding transmission blocks is indicated as M, and the corresponding time-frequency domain resource indication is: the M physical uplink channel transmissions correspond to M The same uplink transmission block; the M physical uplink channel transmissions correspond to the same frequency domain resources; each physical uplink channel transmission corresponds to a section of time domain resources, and each section of time domain resources does not overlap.
  • the frequency domain resources of the M physical uplink channel transmissions include a first frequency domain resource and a second frequency domain resource; the frequency domain resources of the M physical uplink channel transmissions correspond to the first frequency offset And a second frequency offset; wherein, the first frequency offset is the difference between the start frequency of the second frequency domain resource and the start frequency of the first frequency domain resource, and the second frequency The offset is the difference between the start frequency of the first frequency domain resource and the start frequency of the bandwidth part (BWP).
  • BWP bandwidth part
  • the frequency part beyond the boundary passes through the target of the BWP Frequency band transmission, wherein the target frequency band includes a frequency band between the start frequency of the BWP and the start frequency of the first frequency domain resource.
  • the M physical uplink channel transmissions correspond to the same modulation and coding strategy (MCS).
  • MCS modulation and coding strategy
  • the M physical uplink channel transmissions correspond to the same demodulation reference signal (DMRS) port; or, the M physical uplink channel transmissions correspond to M different DMRS ports, where M is greater than Or equal to 2.
  • DMRS demodulation reference signal
  • the M physical uplink channel transmissions correspond to the same transmission uplink precoding matrix indication information (TPMI); or, the physical uplink channel transmissions corresponding to the same spatial transmission filter correspond to the same TPMI; Or, each physical uplink channel transmission sequentially corresponds to one TPMI, and each TPMI is cyclically arranged in the order of the codebook table.
  • TPMI transmission uplink precoding matrix indication information
  • the M physical uplink channel transmissions correspond to the same redundancy version (RV); or, the physical uplink channel transmissions corresponding to the same spatial transmission filter correspond to the same RV; or, each time
  • the physical uplink channel transmission sequentially corresponds to one RV, and each RV is cyclically arranged in a set order.
  • the M physical uplink channel transmissions correspond to N spatial transmission filters, and the M physical uplink channel transmissions correspond to N sets of power control parameters, where N is an integer greater than or equal to 1 and N is an integer less than or equal to M;
  • the N spatial transmission filters are determined according to one of the following: transmission configuration indication (TCI) status; quasi co-location (QCL); sounding reference signal resource indication (SRI) information; spatial relationship Information, sounding reference signal (SRS), channel state information reference signal (CSI-RS), synchronization signal block (SSB).
  • TCI transmission configuration indication
  • QCL quasi co-location
  • SRI sounding reference signal resource indication
  • SRS spatial relationship Information
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • the first X physical uplink channel transmissions correspond to the first Y spatial transmission filters, and the last X physical uplink channel transmissions correspond to the last Y spatial transmission filters;
  • the odd number of physical uplink channel transmissions in the M physical uplink channel transmissions correspond to the first Y spatial transmission filters, and the even number of physical uplink channel transmissions correspond to the last Y spatial transmission filters; or, the M times In the physical uplink channel transmission, every two physical uplink channel transmissions constitute a group, the odd group corresponds to the first Y spatial transmission filters, and the even group physical uplink channel transmission corresponds to the latter Y spatial transmission filters, where the X It is one-half of M, and Y is one-half of N.
  • the physical uplink channel transmission corresponding to the same spatial transmission filter corresponds to the same power control parameter.
  • the receiving device proposed in this embodiment and the receiving method proposed in the above embodiment belong to the same concept.
  • the embodiment of the present application also provides a communication node.
  • the information determining method may be executed by an information determining device, which may be implemented by software and/or hardware and integrated in the communication node.
  • the communication node mainly refers to a user terminal.
  • the receiving method may be executed by a receiving device, which may be implemented by software and/or hardware and integrated in the communication node.
  • the communication node mainly refers to a service node.
  • FIG. 11 is a schematic diagram of the hardware structure of a communication node provided by an embodiment.
  • a communication node provided in this embodiment includes: a processor 510 and a storage device 520.
  • one processor 510 is taken as an example.
  • the processor 510 and the storage device 520 in the device may be connected by a bus or other means. In FIG. Take the bus connection as an example.
  • the one or more programs are executed by the one or more processors 510, so that the one or more processors implement the information determining method or receiving method described in any of the foregoing embodiments.
  • the storage device 520 in the communication node is used as a computer-readable storage medium and can be used to store one or more programs.
  • the programs can be software programs, computer-executable programs, and modules, such as the information determination method in the embodiments of this application.
  • Corresponding program instructions/modules (for example, the modules in the information determining device shown in FIG. 9 include: an instruction information receiving module 310 and an information determining module 320).
  • the processor 510 executes various functional applications and data processing of the communication node by running the software programs, instructions, and modules stored in the storage device 520, that is, implements the information determining method or receiving method in the foregoing method embodiment.
  • the storage device 520 mainly includes a storage program area and a storage data area.
  • the storage program area can store an operating system and an application program required by at least one function; the storage data area can store data created according to the use of the device, etc. In the example, indication information, physical uplink channel transmission, etc.).
  • the storage device 520 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 520 may include memories remotely provided with respect to the processor 510, and these remote memories may be connected to a communication node through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the communication node proposed in this embodiment belongs to the same concept as the information determining method or receiving method proposed in the foregoing embodiment. For technical details not described in this embodiment, reference may be made to any of the foregoing embodiments.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to execute an information determination method or a receiving method when executed by a computer processor.
  • this application can be implemented by software and general hardware, or can be implemented by hardware.
  • the technical solution of the present application can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, read-only memory (ROM), Random Access Memory (RAM), flash memory (FLASH), hard disk or optical disk, etc., including multiple instructions to make a computer device (which can be a personal computer, server, or network device, etc.) execute any of this application
  • a computer-readable storage medium such as a computer floppy disk, read-only memory (ROM), Random Access Memory (RAM), flash memory (FLASH), hard disk or optical disk, etc.
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital multi-function optical discs) (Digital Video Disc, DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processors
  • ASICs application specific integrated circuits
  • FPGA Field Programmable Gate Array
  • processors based on multi-core processor architecture such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信息确定、接收方法、装置、通信节点及介质。该方法接收指示信息;根据所述指示信息确定M次物理上行信道传输的信道状态信息,其中,M为大于或等于1的整数。

Description

信息确定、接收方法、装置、通信节点及存储介质
本申请要求在2020年02月04日提交中国专利局、申请号为202010079956.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络,例如涉及一种信息确定、接收方法、装置、通信节点及存储介质。
背景技术
第五代移动通信(Fifth Generation,5G)技术的上行免授权传输可支持时域上的重复传输,但实际上行传输过程中还涉及到空间、频域、波束等多种复杂的因素。重复传输是一种有效的提高可靠性的手段,可以提高无线通信系统,特别是提高超高可靠度和低时延通讯(Ultra-Reliable and Low Latency Communication,URLLC)的传输可靠性。在支持重复传输的场景下,缺乏有效的机制来统一高效地规划物理上行信道传输,终端侧无法准确地确定进行物理上行信道传输的信道状态信息,物理上行信道传输的可靠性差。
发明内容
本申请提供一种信息确定、接收方法、装置、通信节点及存储介质,以提高物理上行信道传输的可靠性。
本申请实施例提供一种信息确定方法,包括:接收指示信息;根据所述指示信息确定M次物理上行信道传输的信道状态信息,其中,M为大于或等于1的整数。
本申请实施例还提供了一种接收方法,包括:发送指示信息;接收M次物理上行信道传输,其中,M为大于或等于1的整数。
本申请实施例还提供了一种信息确定装置,包括:指示信息接收模块,设置为接收指示信息;信息确定模块,设置为根据所述指示信息确定M次物理上行信道传输的信道状态信息,其中,M为大于或等于1的整数。
本申请实施例还提供了一种接收装置,包括:指示模块,设置为发送指示信息;接收模块,设置为接收M次物理上行信道传输,其中,M为大于或等于1的整数。
本申请实施例还提供了一种通信节点,包括:一个或多个处理器;存储装 置,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的信息确定方法或接收方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述的信息确定方法或接收方法。
附图说明
图1为一实施例提供的一种信息确定方法的流程图;
图2为一实施例提供的M次物理上行传输的空分复用的示意图;
图3为一实施例提供的M次物理上行传输对应于一个上行传输块的频分复用的示意图;
图4为一实施例提供的M次物理上行传输对应于N个空间传输滤波器的频分复用的示意图;
图5为一实施例提供的M次物理上行传输对应于N个空间传输滤波器的时分复用且频分复用的示意图;
图6为另一实施例提供的M次物理上行传输对应于N个空间传输滤波器的时分复用且频分复用的示意图;
图7为一实施例提供的M次物理上行传输对应于N个空间传输滤波器的时分复用的示意图;
图8为一实施例提供的一种接收方法的流程图;
图9为一实施例提供的一种信息确定装置的结构示意图;
图10为一实施例提供的一种接收装置的结构示意图;
图11为一实施例提供的一种通信节点的硬件结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的实施例仅仅用于解释本申请,而非对本申请的限定。为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
在涉及空间、时域、频域、波束等多种复杂因素的支持重复传输的场景下,缺乏有效的机制来统一高效地规划物理上行信道传输,由于无法准确地确定进行物理上行信道传输的信道状态信息,物理上行信道传输的可靠性低。
本申请实施例中提供了一种信息确定方法,根据指示信息准确地确定各次重复传输的信道状态信息,据此进行传输,以提高物理上行信道传输的可靠性。
图1为一实施例提供的一种信息确定方法的流程图。本实施例的信息确定方法可应用于第一通信节点,第一通信节点可以为用户终端(User Equipment,UE)。如图1所示,本实施例的方法包括步骤110和步骤120。
在步骤110中,接收指示信息。
在步骤120中,根据所述指示信息确定M次物理上行信道传输的信道状态信息,其中,M为大于或等于1的整数。
本实施例中,UE接收第二通信节点(第二通信节点为服务节点,例如基站)的指示信息,根据指示信息进行M次物理上行信道传输,例如物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的传输。M次物理上行信道传输,可以是M个用于传输物理上行数据的物理上行信道资源的传输,或是一个物理上行信道资源在不同传输时间、或者不同传输载波、不同传输子带上的一次传输、或是不同层的传输。M次物理上行信道传输对应于一定数量的上行传输块,可以根据空间、时域、频域等按照上行传输块完成上行传输,从而统一高效地进行物理上行信道传输,提高上行传输的可靠性。M次物理上行信道传输可以对应于UE的不同天线面板,上述天线面板可以是一个传输接收点或者通信节点。不同的天线面板可以用空间参数,例如发送波束,接收波束,空间传输滤波器,准共位置类型类型D(type D)等代替。本申请中的空间传输滤波器决定了该天线面板上的发送波束和接受波束的方向。例如,对应于相同空间传输滤波器的PUSCH传输可由同一个天线面板进行传输,即,对应于相同空间传输滤波器的PUSCH传输具有相同的发送波束方向。
在一实施例中,所述指示信息包括以下至少之一:传输方案指示;时频域资源指示;传输块个数指示,所述时频域资源指示和所述传输块个数指示分别与传输方案指示相对应;所述信道状态信息包括以下至少之一:时频域资源;传输块个数;空间传输滤波器;冗余版本(Redundancy Version,RV)RV;传输上行预编码矩阵指示信息(Transmitted Precoding Matrix Indicator,TPMI);解调参考信号(Demodulation Reference Signal,DMRS)端口;调制与编码策略(Modulation and Coding Scheme,MCS);功率控制参数。
本实施例中,传输方案指示用于指示物理上行信道传输的传输方案,从而相应地指示出传输块的个数、M次物理上行信道传输与传输块的对应关系、各次物理上行信道传输占用的时频域资源等,UE据此可以准确确定信道状态信息并进行物理上行信道传输。
在一实施例中,所述指示信息通过以下信息域中的至少之一指示:无线资源控制(Radio Resource Control,RRC)信令;介质访问控制层控制单元(Media Access Control-Control Element,MAC-CE);下行控制信息(Downlink Control Information,DCI)。
在一实施例中,在传输方案指示为第一传输方案的情况下,对应的传输块个数指示为1,对应的时频域资源指示为:M次物理上行信道传输对应于相同的时域资源;每次物理上行信道传输分别对应于一段频域资源,各段频域资源之间不重叠。
本实施例中,M次物理上行信道传输对应于一个上行传输块,M次物理上行信道传输占用相同的时域资源和不同的频域资源,M次物理上行信道传输对应于M段互不重叠的频域资源。
在一实施例中,在传输方案指示为第二传输方案的情况下,对应的传输块个数指示为M,对应的时频域资源指示为:所述M次物理上行信道传输对应于M个相同的上行传输块;M次物理上行信道传输对应于相同的时域资源以及相同的频域资源;每个上行传输块对应于一层或多层传输。
本实施例中,M次物理上行信道传输对应于M个相同的上行传输块。上行传输块也可以称为传输信息,例如信道编码前的信息,或者上行信息中一个编码块,或者多个子编码块所对应的一个大的编码块等。M个相同的上行传输块是指,M个上行传输块携带了完全相同的待传输信息,即M个上行传输块是重复传输的。M次物理上行信道传输占用相同的时域资源和相同的频域资源,每个上行传输块对应于一层或多层传输。
在一实施例中,在传输方案指示为第三传输方案的情况下,对应的传输块个数指示为M,对应的时频域资源指示为:M次物理上行信道传输对应于M个相同的上行传输块;M次物理上行信道传输对应于相同的时域资源;每次物理上行信道传输分别对应于一段频域资源,各段频域资源之间不重叠。
本实施例中,M次物理上行信道传输对应于M个相同的上行传输块,M次物理上行信道传输占用相同的时域资源和不同的频域资源,M次物理上行信道传输对应于M段互不重叠的频域资源。
在一实施例中,在一实施例中,在传输方案指示为第四传输方案的情况下,对应的传输块个数指示为M,对应的时频域资源指示为:M次物理上行信道传输对应于M个相同的上行传输块;每次物理上行信道传输分别对应于一段时域资源,各段时域资源之间不重叠;所述M次物理上行信道传输对应于N段频域资源,各段频域资源之间不重叠,其中,N为大于或等于1的整数且N为小于 或等于M的整数。
本实施例中,M次物理上行信道传输对应于M个相同的上行传输块,即M个上行传输块是重复传输的。M次物理上行信道传输占用不同的时域资源以及N段互不重叠的频域资源,其中,1≤N≤M。在N=1的情况下,M次物理上行信道传输对应于相同的频域资源;在N=M的情况下,M次物理上行信道传输对应于互不重叠的频域资源;在1<N<M的情况下,M次物理上行信道传输对应的频域资源存在相同的情况,也存在不重叠的情况。
在一些实施例中,N为空间传输滤波器的个数,即,M次物理上行信道传输对应于N个空间传输滤波器。
在一实施例中,在传输方案指示为第五传输方案的情况下,对应的传输块个数指示为M,对应的时频域资源指示为:M次物理上行信道传输对应于M个相同的上行传输块;M次物理上行信道传输对应于相同的频域资源;每次物理上行信道传输分别对应于一段时域资源,各段时域资源之间不重叠。
本实施例中,M次物理上行信道传输对应于M个相同的上行传输块,M次物理上行信道传输占用相同的频域资源和不同的时域资源,M次物理上行信道传输对应于M段互不重叠的时域资源。
在一实施例中,M次物理上行信道传输的频域资源包括第一频域资源和第二频域资源;M次物理上行信道传输的频域资源对应于第一频率偏移量和第二频率偏移量;其中,第一频率偏移量为所述第二频域资源的起始频率与第一频域资源的起始频率的差值,第二频率偏移量为所述第一频域资源的起始频率与带宽部分(Bandwidth Part,BWP)的起始频率的差值。
本实施例中,将M次物理上行信道传输的频域资源划分为两部分:第一频域资源和第二频域资源。两部分频域资源(的起始频率)之间具有第一频率偏移量X offset,第一频域资源的起始频率与BWP的起始频率之间具有第二频率偏移量X start
在一实施例中,在第二频率偏移量不为0且存在至少一次物理上行信道传输的频率范围超出BWP的边界的情况下,超出边界的频率部分通过BWP的目标频段传输,其中,目标频段包括BWP的起始频率与所述第一频域资源的起始频率之间的频段。
本实施例中,BWP的起始频率之后的X start为第一频域资源的起始频率,第一频域资源的起始频率之后的X offset为第二频域资源的起始频率,如果X start不为0,且由于X start和X offset的存在,导致靠后的物理上行信道传输的频率范围超出BWP的边界,则通过X start的频段传输超出边界的部分(超出边界的部分可 能为一次物理上行信道传输,也可能存在多次物理上行信道传输都超出边界),从而提高资源的利用率,提高上行传输的可靠性。
在一实施例中,M次物理上行信道传输对应于相同的MCS。
在一实施例中,M次物理上行信道传输对应于相同的DMRS端口;或者,M次物理上行信道传输对应于M个不同的DMRS端口,其中,M大于或等于2。
在一实施例中,M次物理上行信道传输对应于相同的TPMI;或者,对应于相同的空间传输滤波器的物理上行信道传输对应于相同的TPMI;或者,各次物理上行信道传输依次对应于一个TPMI,各所述TPMI按照码本表的顺序循环排列。
本实施例中,M次物理上行信道传输与TPMI之间的对应关系有三种,其中,各次物理上行信道传输依次对应于一个TPMI,各所述TPMI按照码本表的顺序循环排列是指:UE可以按照码本表中给定的TPMI及TPMI的排列顺序,轮询选取TPMI依次对应于M次物理上行信道传输。例如,38.212中的表7.3.1.1.2-3,如果UE天线属性为部分天线相关传输,基站给UE指示了起始索引值4,对应TPMI=4,则UE按照表格中间“天线非相关和部分相关”一列的顺序依次选取TPMI索引值,将TPMI=4应用于第一次PUSCH传输,将TPMI=5应用于第二次PUSCH传输,以此类推。
在一实施例中,M次物理上行信道传输对应于相同的RV;或者,对应于相同的空间传输滤波器的物理上行信道传输对应于相同的RV;或者,各次物理上行信道传输依次对应于一个RV,各所述RV按照设定顺序循环排列。
本实施例中,M次物理上行信道传输与RV之间的对应关系有三种,其中,各次物理上行信道传输依次对应于一个RV,各所述RV按照设定顺序循环排列是指:UE可以按照RV的设定顺序(例如0-2-3-1),轮询选取RV依次对应于M次物理上行信道传输。例如,第一次物理上行信道传输对应于RV1,第二次物理上行信道传输对应于RV2,第三次物理上行信道传输对应于RV3,第四次物理上行信道传输对应于RV4,第五次物理上行信道传输对应于RV1等。
在一实施例中,M次物理上行信道传输对应于N个空间传输滤波器,M次物理上行信道传输对应于N套功率控制参数,其中,N为大于或等于1的整数且N为小于或等于M的整数。所述N个空间传输滤波器根据以下之一确定:传输配置指示(Transmission Configuration Indication,TCI)状态;准共址(Quasi-Co-Location,QCL);探测参考信号资源指示(Sounding Reference Signal Resource Indicator,SRI)信息;空间关系信息(Spatial Relation Information);探测参考信号(Sounding Reference Signal,SRS);信道状态信息参考信号 (Channel state Information Reference Signal,CSI-RS);同步信号块(Sychronization Signal Block,SSB)。
本实施例中,一套功率控制参数包括:开环功率控制参数(P0-PUSCH-AlphaSet)、路损参考信号(PUSCH-Pathloss Reference Signal)以及闭环进程参数(twoPUSCH-PC-Adjustment States)。
在一实施例中,M次物理上行信道传输中的前X次物理上行信道传输对应于前Y个空间传输滤波器,后X次物理上行信道传输对应于后Y个空间传输滤波器;或者,M次物理上行信道传输中的奇数次物理上行信道传输对应于前Y个空间传输滤波器,偶数次物理上行信道传输对应于后Y个空间传输滤波器;或者,所述M次物理上行信道传输中,每两次物理上行信道传输作为一组,奇数组对应于前Y个空间传输滤波器,偶数组物理上行信道传输对应于后Y个空间传输滤波器,其中,所述X为M的二分之一,Y为N的二分之一。
本实施例中,M次物理上行信道传输对应于N个空间传输滤波器,M≥N。其中,前M/2次物理上行信道传输对应于前N/2个空间传输滤波器,后M/2次物理上行信道传输对应于后N/2个空间传输滤波器;或者,奇数次的物理上行信道传输对应于前N/2个空间传输滤波器,偶数次的物理上行信道传输对应于后N/2个空间传输滤波器;或者,奇数组对应于前Y个空间传输滤波器,偶数组物理上行信道传输对应于后Y个空间传输滤波器,例如,第1、2、5、6、…M-3、M-2次物理上行信道传输对应于前Y个空间传输滤波器,第3、4、7、8、…M-1、M次传输对应于后Y个空间传输滤波器。
在一实施例中,对应于相同的空间传输滤波器的物理上行信道传输对应于相同的功率控制参数。
以物理上行信道传输为PUSCH传输为例,通过以下不同的示例对M次物理上行信道传输的信息确定方法进行说明。
示例一:
本示例中,M次PUSCH传输对应于M个相同的上行传输块,即,服务节点调度UE对M个上行传输块进行M次PUSCH重复传输,M个上行传输块和M次PUSCH传输一一对应,M≥1。M次PUSCH传输使用相同的时域资源和频域资源,每一个上行传输块对应于一层或多层传输。在本申请的各示例中,调度方案的实现方式多种多样,例如,在RRC中的PUSCH-Config结构体中配置一个传输方案指示并配置M值,用于指示该调度方案;或在RRC中的PUSCH的时域资源分配(Time Domain Resource Allocation,TDRA)结构体中配置一个传输方案指示并配置M值,用于指示该调度方案;或在PUSCH-Config结构体 中配置传输方案指示与M值的池,由DCI的TDRA域或频域资源分配(Frequency Domain Resource Allocation,FDRA)域选择池中一个传输方案指示和M值并应于于该DCI调度的PUSCH传输等。
本示例中,M次PUSCH传输对应于一个相同的MCS。M次PUSCH传输可以对应于一个DMRS端口,或者对应于M个不同的DMRS端口。M次PUSCH传输对应于N个不同的空间传输滤波器以及N套功率控制参数,1≤N≤M。
本示例中,M次PUSCH传输与N个空间传输滤波器的对应方式可以为以下之一:1)前M/2次PUSCH传输对应于前N/2个空间传输滤波器,后M/2次PUSCH传输对应于后N/2个空间传输滤波器;2)奇数次PUSCH传输对应于前N/2个空间传输滤波器,偶数次PUSCH传输对应于后N/2个空间传输滤波器;3)每两次物理上行信道传输作为一组,奇数组对应于前Y个空间传输滤波器,偶数组物理上行信道传输对应于后Y个空间传输滤波器。
对应于相同空间传输滤波器的PUSCH传输对应于相同的功率控制参数。
本示例中,M次PUSCH传输可对应于相同的TPMI;或者,M次PUSCH传输对应于N个TPMI,对应于相同的空间传输滤波器的PUSCH传输对应于相同的TPMI;或者,按照码本表的顺序轮询确定各次物理上行信道传输对应的TPMI。
本示例中,M次PUSCH传输可对应于相同的RV,这种情况下,RV的数量为1;或者,M次PUSCH传输对应于N个RV,RV的数量为N,对应于相同的空间传输滤波器的PUSCH传输对应于相同的RV;或者,按照设定顺序轮询确定各次物理上行信道传输对应的RV,例如,按照0-2-3-1的顺序依次选取,这种情况下,RV的数量为min(M,4)。
图2为一实施例提供的M次物理上行传输的空分复用的示意图。如图2所示,在M=2、N=2的情况下,服务节点调度UE对2个相同的上行传输块进行2次PUSCH的重复传输,2次PUSCH传输使用相同的时频域资源(图2中横向表示时域资源,纵向表示频域资源),每次PUSCH传输对应于1层传输。图2中,每次PUSCH传输对应于相同的MCS,每次PUSCH传输分别对应于不同的DMRS端口、RV、TPMI、空间传输滤波器和功率控制参数。
示例二
本示例中,M次PUSCH传输对应于一个上行传输块,即,服务节点调度UE将1个上行传输块分成M次PUSCH传输,每次PUSCH传输的数据不相同,M≥1。M次PUSCH传输对应于一个相同的MCS。M次PUSCH传输可以对应于一个DMRS端口,或者对应于M个不同的DMRS端口。M次PUSCH传输 对应于N个不同的空间传输滤波器以及N套功率控制参数,1≤N≤M。
本示例中,M次PUSCH传输使用相同的时域资源和不同的频域资源。
本示例中,M次PUSCH传输与N个空间传输滤波器的对应方式可以为以下之一:1)前M/2次PUSCH传输对应于前N/2个空间传输滤波器,后M/2次PUSCH传输对应于后N/2个空间传输滤波器;2)奇数次PUSCH传输对应于前N/2个空间传输滤波器,偶数次PUSCH传输对应于后N/2个空间传输滤波器;3)每两次物理上行信道传输作为一组,奇数组对应于前Y个空间传输滤波器,偶数组物理上行信道传输对应于后Y个空间传输滤波器。
对应于相同空间传输滤波器的PUSCH传输对应于相同的功率控制参数。
本示例中,M次PUSCH传输可对应于相同的TPMI;或者,M次PUSCH传输对应于N个TPMI,对应于相同的空间传输滤波器的PUSCH传输对应于相同的TPMI;或者,按照码本表的顺序轮询确定各次物理上行信道传输对应的TPMI。
本示例中,M次PUSCH传输可对应于相同的RV,这种情况下,RV的数量为1;或者,M次PUSCH传输对应于N个RV,RV的数量为N,对应于相同的空间传输滤波器的PUSCH传输对应于相同的RV;或者,按照设定顺序轮询确定各次物理上行信道传输对应的RV,例如,按照0-2-3-1的顺序依次选取,这种情况下,RV的数量为min(M,4)。
本示例中,服务节点可以为不同次PUSCH传输的频域资源之间配置X offset,X offset为第二频域资源起始频率减去第一频域资源起始频率的差值,
Figure PCTCN2021074080-appb-000001
其中,
Figure PCTCN2021074080-appb-000002
为当前激活BWP的带宽,
Figure PCTCN2021074080-appb-000003
为每次PUSCH传输的带宽。可选的,在一些实施例中,服务节点为UE配置X start,表示BWP的起始频率到第一频率资源起始频率的差值。在X start不为0且X offset使得某次PUSCH传输的频率范围超出了BWP的边界的情况下,超出的频率部分可以在BWP的起始位置0~X start范围内传输。
图3为一实施例提供的M次物理上行传输对应于一个上行传输块的频分复用的示意图。如图3所示,在M=2、N=2的情况下,服务节点调度UE将1个上行传输块分成2次PUSCH进行传输。2次PUSCH传输使用相同的时域资源(如图3中纵向的时隙资源),使用不同的频域资源(如图3中横向的资源),2次PUSCH传输对应于相同的RV、DMRS端口以及MCS,2次PUSCH传输对应于2个不同的空间传输滤波器、2个不同的TPMI以及2套功率控制参数。2次PUSCH传输的频域资源之间配置了频域偏移量X offset,第一次PUSCH传输 的频域资源与上行(Uplilnk,UL)BWP的起始频率之间配置了X start
示例三
本示例中,M次PUSCH传输对应于M个相同的上行传输块,即,服务节点调度UE对M个上行传输块进行M次PUSCH重复传输,M个上行传输块和M次PUSCH传输一一对应,M≥1。M次PUSCH传输对应于一个相同的MCS。本示例中,M次PUSCH传输可以对应于一个DMRS端口,或者对应于M个不同的DMRS端口。M次PUSCH传输对应于N个不同的空间传输滤波器以及N套功率控制参数,1≤N≤M。
本示例中,M次PUSCH传输使用相同的时域资源和不同的频域资源。
本示例中,M次PUSCH传输与N个空间传输滤波器的对应方式可以为以下之一:1)前M/2次PUSCH传输对应于前N/2个空间传输滤波器,后M/2次PUSCH传输对应于后N/2个空间传输滤波器;2)奇数次PUSCH传输对应于前N/2个空间传输滤波器,偶数次PUSCH传输对应于后N/2个空间传输滤波器;3)每两次物理上行信道传输作为一组,奇数组对应于前Y个空间传输滤波器,偶数组物理上行信道传输对应于后Y个空间传输滤波器。
对应于相同空间传输滤波器的PUSCH传输对应于相同的功率控制参数。
本示例中,M次PUSCH传输可对应于相同的TPMI;或者,M次PUSCH传输对应于N个TPMI,对应于相同的空间传输滤波器的PUSCH传输对应于相同的TPMI;或者,按照码本表的顺序轮询确定各次物理上行信道传输对应的TPMI。
本示例中,M次PUSCH传输可对应于相同的RV,这种情况下,RV的数量为1;或者,M次PUSCH传输对应于N个RV,RV的数量为N,对应于相同的空间传输滤波器的PUSCH传输对应于相同的RV;或者,按照设定顺序轮询确定各次物理上行信道传输对应的RV,例如,按照0-2-3-1的顺序依次选取,这种情况下,RV的数量为min(M,4)。
本示例中,不同次PUSCH传输的频域资源之间可以配置X offset,X offset为第二频域资源起始频率减去第一频域资源起始频率的差值,
Figure PCTCN2021074080-appb-000004
其中,
Figure PCTCN2021074080-appb-000005
为当前激活BWP的带宽,
Figure PCTCN2021074080-appb-000006
为每次PUSCH传输的带宽。可选的,在一些实施例中,服务节点为UE配置X start,表示BWP的起始频率到第一频率资源起始频率的差值。在X start不为0且X offset使得一次PUSCH传输的频率范围超出了BWP的边界的情况下,超出的频率部分可以在BWP的起始位置0~X start范围内传输。
图4为一实施例提供的M次物理上行传输对应于N个空间传输滤波器的频 分复用的示意图。如图4所示,在M=6、N=2的情况下,服务节点调度UE对6个相同的上行传输块进行6次PUSCH重复传输。6个上行传输块使用相同的时域资源(如图4中纵向的时隙资源),使用不同的频域资源(如图4中横向的资源),对应于相同的DMRS端口。图4中,前3次PUSCH传输对应于前1个空间传输滤波器,后3次PUSCH传输对应于后1个空间传输滤波器,具有相同空间传输滤波器的PUSCH传输对应于相同的RV,即,前3次PUSCH传输对应于空间传输滤波器1、RV1、TPMI1以及功率控制参数1;后3次PUSCH传输对应于空间传输滤波器2、RV2、TPMI2以及功率控制参数2。前3次与后3次PUSCH传输之间配置了频域偏移量X offset,第一次PUSCH传输的频域资源与UL BWP的起始频率之间配置了X start
示例四
本示例中,M次PUSCH传输对应于M个相同的上行传输块,即,服务节点调度UE对M个上行传输块进行M次PUSCH重复传输,M个上行传输块和M次PUSCH传输一一对应,M≥1。M次PUSCH传输对应于一个相同的MCS。本示例中,M次PUSCH传输可以对应于一个DMRS端口,或者对应于M个不同的DMRS端口。本示例中,M次PUSCH传输对应于N个不同的空间传输滤波器以及N套功率控制参数,1≤N≤M。
本示例中,M次PUSCH传输使用不同的时域资源和不同的频域资源。
本示例中,时频域资源配置上有以下两种方式:1)前M/2次PUSCH传输在第一时间单元上传输并占用一段连续的频域资源,后M/2次PUSCH传输在第二时间单元上传输并占用另一段连续的频域资源,上述的两段频域资源之间可以配置频域偏移量X offset;2)奇数次PUSCH传输在第一时间单元上传输,偶数次PUSCH在第二时间单元上传输,第一时间单元和第二时间单元上传输的PUSCH在一段连续的频域资源上交错分布。上述的第一时间单元与第二时间单元可以在一个时隙内,也可以为不同的两个时隙。
本示例中,在相同时间单元传输的传输块具有相同的空间传输滤波器,在不同时间单元上传输的传输块具有不同的空间传输滤波器。对应于相同空间传输滤波器的PUSCH传输对应于相同的功率控制参数。
本示例中,M次PUSCH传输可对应于相同的TPMI;或者,M次PUSCH传输对应于N个TPMI,对应于相同的空间传输滤波器的PUSCH传输对应于相同的TPMI;或者,按照码本表的顺序轮询确定各次物理上行信道传输对应的TPMI。
本示例中,M次PUSCH传输可对应于相同的RV,这种情况下,RV的数 量为1;或者,M次PUSCH传输对应于N个RV,RV的数量为N,对应于相同的空间传输滤波器的PUSCH传输对应于相同的RV;或者,按照设定顺序轮询确定各次物理上行信道传输对应的RV,例如,按照0-2-3-1的顺序依次选取,这种情况下,RV的数量为min(M,4)。
本示例中,不同次PUSCH传输的频域资源之间可以配置X offset,X offset为第二频域资源起始频率减去第一频域资源起始频率的差值,
Figure PCTCN2021074080-appb-000007
其中,
Figure PCTCN2021074080-appb-000008
为当前激活BWP的带宽,
Figure PCTCN2021074080-appb-000009
为每次PUSCH传输的带宽。可选的,在一些实施例中,服务节点为UE配置X start,表示BWP的起始频率到第一频率资源起始频率的差值。在X start不为0且X offset使得某次PUSCH传输的频率范围超出了BWP的边界的情况下,超出的频率部分可以在BWP的起始位置0~X start范围内传输。
图5为一实施例提供的M次物理上行传输对应于N个空间传输滤波器的时分复用且频分复用的示意图。如图5所示,在M=6、N=2的情况下,服务节点调度UE对6个相同的上行传输块进行6次PUSCH重复传输。图5中,前3次PUSCH传输在第一时间单元(时隙n)上传输并占用一段连续的频域资源,后3次PUSCH传输在第二时间单元(时隙n+1)上传输并占用另一段连续的频域资源。具有相同空间传输滤波器的PUSCH传输具有相同的RV,则被指示的RV的数目为2,前3次PUSCH传输对应于空间传输滤波器1、RV1、TPMI1以及功率控制参数1,后3次PUSCH传输对应于空间传输滤波器2、RV2、TPMI2以及功率控制参数2。前3次PUSCH传输和后3次PUSCH传输之间配置了X offset
图6为另一实施例提供的M次物理上行传输对应于N个空间传输滤波器的时分复用且频分复用的示意图。如图6所示,在M=6、N=2的情况下,服务节点调度UE对6个相同的上行传输块进行6次PUSCH重复传输。图6中,奇数次PUSCH传输在第一时间单元上传输,偶数次PUSCH在第二时间单元上传输,第一时间单元和第二时间单元上传输的PUSCH在一段连续的频域资源上交错分布,即,第1、3、5次PUSCH传输在第一时间单元(时隙n)上传输,第2、4、6次PUSCH传输在第二时间单元(时隙n+1)上传输。具有相同空间传输滤波器的PUSCH传输具有相同的RV,则被指示的RV值的数目为2,第1、3、5次PUSCH传输对应于空间传输滤波器1、RV1、TPMI1以及功率控制参数1(即功控参数1),第2、4、6次PUSCH传输对应于空间传输滤波器2、RV2、TPMI2以及功率控制参数2(即功控参数2)。这种情况,可以不配置X offset
示例五
本示例中,M次PUSCH传输对应于M个相同的上行传输块,即,服务节 点调度UE对M个上行传输块进行M次PUSCH重复传输,M个上行传输块和M次PUSCH传输一一对应,M≥1。M次PUSCH传输对应于一个相同的MCS。本示例中,M次PUSCH传输可以对应于一个DMRS端口,或者对应于M个不同的DMRS端口。M次PUSCH传输对应于N个不同的空间传输滤波器以及N套功率控制参数,1≤N≤M。
本示例中,M次PUSCH传输使用相同的频域资源,使用不同的时域资源。时域资源可以为以下之一:在一个时隙内的不同正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,或是几个不同的时隙。
本示例中,M次PUSCH传输与N个空间传输滤波器的对应方式可以为以下之一:1)前M/2次PUSCH传输对应于前N/2个空间传输滤波器,后M/2次PUSCH传输对应于后N/2个空间传输滤波器;2)奇数次PUSCH传输对应于前N/2个空间传输滤波器,偶数次PUSCH传输对应于后N/2个空间传输滤波器;3)每两次物理上行信道传输作为一组,奇数组对应于前Y个空间传输滤波器,偶数组物理上行信道传输对应于后Y个空间传输滤波器。
对应于相同空间传输滤波器的PUSCH传输对应于相同的功率控制参数。
本示例中,M次PUSCH传输可对应于相同的TPMI;或者,M次PUSCH传输对应于N个TPMI,对应于相同的空间传输滤波器的PUSCH传输对应于相同的TPMI;或者,按照码本表的顺序轮询确定各次物理上行信道传输对应的TPMI。
本示例中,M次PUSCH传输可对应于相同的RV,这种情况下,RV的数量为1;或者,M次PUSCH传输对应于N个RV,RV的数量为N,对应于相同的空间传输滤波器的PUSCH传输对应于相同的RV;或者,按照设定顺序轮询确定各次物理上行信道传输对应的RV,例如,按照0-2-3-1的顺序依次选取。
图7为一实施例提供的M次物理上行传输对应于N个空间传输滤波器的时分复用的示意图。如图7所示,在M=6、N=2的情况下,服务节点调度UE对6个相同的上行传输块进行6次PUSCH重复传输。6次传输使用相同的频域资源(如图7中纵向的资源)和不同的时域资源(如图7中横向的资源),分布在连续的6个时隙上(图7中横向的资源为时域资源)。6次PUSCH传输对应于相同的DMRS端口和MCS,前3次PUSCH传输对应于空间传输滤波器1,后3次PUSCH传输对应于第2个空间传输滤波器,对应于相同空间传输滤波器的PUSCH传输对应于相同的TPMI、RV值和功率控制参数。
上述实施例实现了空间、频域以及波束的分集增益,充分保证上行传输数据的可靠性。
在本申请实施例中,还提供一种接收方法,应用于服务节点。服务节点通过发送指示信息,并接收对应于上行传输块的M次物理上行信道传输,保证上行传输的可靠性。
图8为一实施例提供的一种接收方法的流程图,如图8所示,本实施例提供的方法包括步骤210和步骤220。
在步骤210中,发送指示信息。
在步骤220中,接收M次物理上行信道传输,其中,M为大于或等于1的整数。
在一实施例中,所述指示信息包括以下至少之一:传输方案指示;时频域资源指示;传输块个数指示,所述时频域资源指示和所述传输块个数指示分别与传输方案指示相对应;所述信道状态信息包括以下至少之一:时频域资源;传输块个数;空间传输滤波器;RV;TPMI;DMRS端口;MCS;功率控制参数。
在一实施例中,所述指示信息通过以下信息域中的至少之一指示:无线资源控制(RRC)信令;介质访问控制层控制单元(MAC-CE);下行控制信息(DCI)。
在一实施例中,在传输方案指示为第一传输方案的情况下,对应的传输块个数指示为1,对应的时频域资源指示为:M次物理上行信道传输对应于相同的时域资源;每次物理上行信道传输分别对应于一段频域资源,各段频域资源之间不重叠。
在一实施例中,在传输方案指示为第二传输方案的情况下,对应的传输块个数指示为M,对应的时频域资源指示为:所述M次物理上行信道传输对应于M个相同的上行传输块;所述M次物理上行信道传输对应于相同的时域资源以及相同的频域资源;每个上行传输块对应于一层或多层传输。
在一实施例中,在传输方案指示为第三传输方案的情况下,对应的传输块个数指示为M,对应的时频域资源指示为:所述M次物理上行信道传输对应于M个相同的上行传输块;所述M次物理上行信道传输对应于相同的时域资源;每次物理上行信道传输分别对应于一段频域资源,各段频域资源之间不重叠。
在一实施例中,在传输方案指示为第四传输方案的情况下,对应的传输块个数指示为M,对应的时频域资源指示为:所述M次物理上行信道传输对应于M个相同的上行传输块;每次物理上行信道传输分别对应于一段时域资源,各段时域资源之间不重叠;所述M次物理上行信道传输对应于N段频域资源,各段频域资源之间不重叠,其中,N为大于或等于1的整数且N为小于或等于M的整数。
在一实施例中,在传输方案指示为第五传输方案的情况下,对应的传输块个数指示为M,对应的时频域资源指示为:所述M次物理上行信道传输对应于M个相同的上行传输块;所述M次物理上行信道传输对应于相同的频域资源;每次物理上行信道传输分别对应于一段时域资源,各段时域资源之间不重叠。
在一实施例中,所述M次物理上行信道传输的频域资源包括第一频域资源和第二频域资源;所述M次物理上行信道传输的频域资源对应于第一频率偏移量和第二频率偏移量;其中,所述第一频率偏移量为所述第二频域资源的起始频率与第一频域资源的起始频率的差值,所述第二频率偏移量为所述第一频域资源的起始频率与带宽部分BWP的起始频率的差值。
在一实施例中,在所述第二频率偏移量不为0且存在至少一次物理上行信道传输的频率范围超出所述BWP的边界的情况下,超出边界的频率部分通过所述BWP的目标频段传输,其中,所述目标频段包括所述BWP的起始频率与所述第一频域资源的起始频率之间的频段。
在一实施例中,所述M次物理上行信道传输对应于相同的调制与编码策略(MCS)。
在一实施例中,所述M次物理上行信道传输对应于相同的解调参考信号(DMRS)端口;或者,所述M次物理上行信道传输对应于M个不同的DMRS端口,其中,M大于或等于2。
在一实施例中,所述M次物理上行信道传输对应于相同的传输上行预编码矩阵指示信息(TPMI);或者,对应于相同的空间传输滤波器的物理上行信道传输对应于相同的TPMI;或者,各次物理上行信道传输依次对应于一个TPMI,各所述TPMI按照码本表的顺序循环排列。
在一实施例中,所述M次物理上行信道传输对应于相同的冗余版本RV;或者,对应于相同的空间传输滤波器的物理上行信道传输对应于相同的RV;或者,各次物理上行信道传输依次对应于一个RV,各所述RV按照设定顺序循环排列。
在一实施例中,所述M次物理上行信道传输对应于N个空间传输滤波器,所述M次物理上行信道传输对应于N套功率控制参数,其中,N为大于或等于1的整数且N为小于或等于M的整数;所述N个空间传输滤波器根据以下之一确定:传输配置指示(TCI)状态;准共址(QCL);探测参考信号资源指示(SRI)信息;空间关系信息,探测参考信号(SRS),信道状态信息参考信号(CSI-RS),同步信号块(SSB)。
在一实施例中,所述M次物理上行信道传输中的前X次物理上行信道传输 对应于前Y个空间传输滤波器,后X次物理上行信道传输对应于后Y个空间传输滤波器;或者,所述M次物理上行信道传输中的奇数次物理上行信道传输对应于前Y个空间传输滤波器,偶数次物理上行信道传输对应于后Y个空间传输滤波器;或者,所述M次物理上行信道传输中,每两次物理上行信道传输作为一组,奇数组对应于前Y个空间传输滤波器,偶数组物理上行信道传输对应于后Y个空间传输滤波器,其中,所述X为M的二分之一,Y为N的二分之一。
在一实施例中,对应于相同的空间传输滤波器的物理上行信道传输对应于相同的功率控制参数。
本实施例中的应用于服务节点的接收方法与应用于UE的信息确定方法是相对的,未在本实施例中描述的技术细节可参见上述任一实施例。
本申请实施例还提供一种信息确定装置。图9为一实施例提供的一种信息确定装置的结构示意图。如图9所示,所述信息确定装置包括:指示信息接收模块310和信息确定模块320。
指示信息接收模块310,设置为接收指示信息。
信息确定模块320,设置为根据所述指示信息确定M次物理上行信道传输的信道状态信息,其中,M为大于或等于1的整数。
本实施例的信息确定装置,通过根据指示信息相应地确定各次重复传输的信道状态信息,据此进行传输,以提高物理上行信道传输的可靠性。
在一实施例中,所述指示信息包括以下至少之一:传输方案指示;时频域资源指示;传输块个数指示,所述时频域资源指示和所述传输块个数指示分别与传输方案指示相对应;所述信道状态信息包括以下至少之一:时频域资源;传输块个数;空间传输滤波器;冗余版本(RV);传输上行预编码矩阵指示信息(TPMI);解调参考信号(DMRS)端口;调制与编码策略(MCS)和功率控制参数。
在一实施例中,所述指示信息通过以下信息域中的至少之一指示:无线资源控制(RRC)信令;介质访问控制层控制单元(MAC-CE);下行控制信息(DCI)。
在一实施例中,在传输方案指示为第一传输方案的情况下,对应的传输块个数指示为1,对应的时频域资源指示为:所述M次物理上行信道传输对应于相同的时域资源;每次物理上行信道传输分别对应于一段频域资源,各段频域资源之间不重叠。
在一实施例中,在传输方案指示为第二传输方案的情况下,对应的传输块 个数指示为M,对应的时频域资源指示为:所述M次物理上行信道传输对应于M个相同的上行传输块;所述M次物理上行信道传输对应于相同的时域资源以及相同的频域资源;每个上行传输块对应于一层或多层传输。
在一实施例中,在传输方案指示为第三传输方案的情况下,对应的传输块个数指示为M,对应的时频域资源指示为:所述M次物理上行信道传输对应于M个相同的上行传输块;所述M次物理上行信道传输对应于相同的时域资源;每次物理上行信道传输分别对应于一段频域资源,各段频域资源之间不重叠。
在一实施例中,在传输方案指示为第四传输方案的情况下,对应的传输块个数指示为M,对应的时频域资源指示为:所述M次物理上行信道传输对应于M个相同的上行传输块;每次物理上行信道传输分别对应于一段时域资源,各段时域资源之间不重叠;所述M次物理上行信道传输对应于N段频域资源,各段频域资源之间不重叠,其中,N为大于或等于1的整数且N为小于或等于M的整数。
在一实施例中,在传输方案指示为第五传输方案的情况下,对应的传输块个数指示为M,对应的时频域资源指示为:所述M次物理上行信道传输对应于M个相同的上行传输块;所述M次物理上行信道传输对应于相同的频域资源;每次物理上行信道传输分别对应于一段时域资源,各段时域资源之间不重叠。
在一实施例中,所述M次物理上行信道传输的频域资源包括第一频域资源和第二频域资源;所述M次物理上行信道传输的频域资源对应于第一频率偏移量和第二频率偏移量;其中,所述第一频率偏移量为所述第二频域资源的起始频率与第一频域资源的起始频率的差值,所述第二频率偏移量为所述第一频域资源的起始频率与带宽部分BWP的起始频率的差值。
在一实施例中,在所述第二频率偏移量不为0且存在至少一次物理上行信道传输的频率范围超出所述BWP的边界的情况下,超出边界的频率部分通过所述BWP的目标频段传输,其中,所述目标频段包括所述BWP的起始频率与所述第一频域资源的起始频率之间的频段。
在一实施例中,所述M次物理上行信道传输对应于相同的调制与编码策略(MCS)。
在一实施例中,所述M次物理上行信道传输对应于相同的解调参考信号(DMRS)端口;或者,所述M次物理上行信道传输对应于M个不同的DMRS端口,其中,M大于或等于2。
在一实施例中,所述M次物理上行信道传输对应于相同的传输上行预编码矩阵指示信息(TPMI);或者,对应于相同的空间传输滤波器的物理上行信道 传输对应于相同的TPMI;或者,各次物理上行信道传输依次对应于一个TPMI,各所述TPMI按照码本表的顺序循环排列。
在一实施例中,所述M次物理上行信道传输对应于相同的冗余版本RV;或者,对应于相同的空间传输滤波器的物理上行信道传输对应于相同的RV;或者,各次物理上行信道传输依次对应于一个RV,各所述RV按照设定顺序循环排列。
在一实施例中,所述M次物理上行信道传输对应于N个空间传输滤波器,所述M次物理上行信道传输对应于N套功率控制参数,其中,N为大于或等于1的整数且N为小于或等于M的整数;所述N个空间传输滤波器根据以下之一确定:传输配置指示(TCI)状态;准共址(QCL);探测参考信号资源指示(SRI)信息;空间关系信息,探测参考信号(SRS),信道状态信息参考信号(CSI-RS),同步信号块(SSB)。
在一实施例中,所述M次物理上行信道传输中的前X次物理上行信道传输对应于前Y个空间传输滤波器,后X次物理上行信道传输对应于后Y个空间传输滤波器;或者,所述M次物理上行信道传输中的奇数次物理上行信道传输对应于前Y个空间传输滤波器,偶数次物理上行信道传输对应于后Y个空间传输滤波器;或者,所述M次物理上行信道传输中,每两次物理上行信道传输作为一组,奇数组对应于前Y个空间传输滤波器,偶数组物理上行信道传输对应于后Y个空间传输滤波器,其中,所述X为M的二分之一,Y为N的二分之一。
在一实施例中,对应于相同的空间传输滤波器的物理上行信道传输对应于相同的功率控制参数。
本实施例提出的信息确定装置与上述实施例提出的信息确定方法属于同一构思,未在本实施例中描述的技术细节可参见上述任意实施例。
本申请实施例还提供一种接收装置。图10为一实施例提供的一种接收装置的结构示意图。如图10所示,所述接收装置包括:指示模块410和接收模块420。
指示模块410,设置为发送指示信息。
接收模块420,设置为接收M次物理上行信道传输,其中,M为大于或等于1的整数。
本实施例的接收装置,通过发送指示信息,并接收对应于上行传输块的M次物理上行信道传输,保证上行传输的可靠性。
所述指示信息包括以下至少之一:传输方案指示;时频域资源指示;传输块个数指示,所述时频域资源指示和所述传输块个数指示分别与传输方案指示相对应;所述信道状态信息包括以下至少之一:时频域资源;传输块个数;空 间传输滤波器;冗余版本(RV);传输上行预编码矩阵指示信息(TPMI);解调参考信号(DMRS端口);调制与编码策略(MCS);功率控制参数。
在一实施例中,所述指示信息通过以下信息域中的至少之一指示:无线资源控制(RRC)信令;介质访问控制层控制单元(MAC-CE);下行控制信息(DCI)。
在一实施例中,在传输方案指示为第一传输方案的情况下,对应的传输块个数指示为1,对应的时频域资源指示为:所述M次物理上行信道传输对应于相同的时域资源;每次物理上行信道传输分别对应于一段频域资源,各段频域资源之间不重叠。
在一实施例中,在传输方案指示为第二传输方案的情况下,对应的传输块个数指示为M,对应的时频域资源指示为:所述M次物理上行信道传输对应于M个相同的上行传输块;所述M次物理上行信道传输对应于相同的时域资源以及相同的频域资源;每个上行传输块对应于一层或多层传输。
在一实施例中,在传输方案指示为第三传输方案的情况下,对应的传输块个数指示为M,对应的时频域资源指示为:所述M次物理上行信道传输对应于M个相同的上行传输块;所述M次物理上行信道传输对应于相同的时域资源;每次物理上行信道传输分别对应于一段频域资源,各段频域资源之间不重叠。
在一实施例中,在传输方案指示为第四传输方案的情况下,对应的传输块个数指示为M,对应的时频域资源指示为:所述M次物理上行信道传输对应于M个相同的上行传输块;每次物理上行信道传输分别对应于一段时域资源,各段时域资源之间不重叠;所述M次物理上行信道传输对应于N段频域资源,各段频域资源之间不重叠,其中,N为大于或等于1的整数且N为小于或等于M的整数。
在一实施例中,在传输方案指示为第五传输方案的情况下,对应的传输块个数指示为M,对应的时频域资源指示为:所述M次物理上行信道传输对应于M个相同的上行传输块;所述M次物理上行信道传输对应于相同的频域资源;每次物理上行信道传输分别对应于一段时域资源,各段时域资源之间不重叠。
在一实施例中,所述M次物理上行信道传输的频域资源包括第一频域资源和第二频域资源;所述M次物理上行信道传输的频域资源对应于第一频率偏移量和第二频率偏移量;其中,所述第一频率偏移量为所述第二频域资源的起始频率与第一频域资源的起始频率的差值,所述第二频率偏移量为所述第一频域资源的起始频率与带宽部分(BWP)的起始频率的差值。
在一实施例中,在所述第二频率偏移量不为0且存在至少一次物理上行信道传输的频率范围超出所述BWP的边界的情况下,超出边界的频率部分通过所 述BWP的目标频段传输,其中,所述目标频段包括所述BWP的起始频率与所述第一频域资源的起始频率之间的频段。
在一实施例中,所述M次物理上行信道传输对应于相同的调制与编码策略(MCS)。
在一实施例中,所述M次物理上行信道传输对应于相同的解调参考信号(DMRS)端口;或者,所述M次物理上行信道传输对应于M个不同的DMRS端口,其中,M大于或等于2。
在一实施例中,所述M次物理上行信道传输对应于相同的传输上行预编码矩阵指示信息(TPMI);或者,对应于相同的空间传输滤波器的物理上行信道传输对应于相同的TPMI;或者,各次物理上行信道传输依次对应于一个TPMI,各所述TPMI按照码本表的顺序循环排列。
在一实施例中,所述M次物理上行信道传输对应于相同的冗余版本(RV);或者,对应于相同的空间传输滤波器的物理上行信道传输对应于相同的RV;或者,各次物理上行信道传输依次对应于一个RV,各所述RV按照设定顺序循环排列。
在一实施例中,所述M次物理上行信道传输对应于N个空间传输滤波器,所述M次物理上行信道传输对应于N套功率控制参数,其中,N为大于或等于1的整数且N为小于或等于M的整数;所述N个空间传输滤波器根据以下之一确定:传输配置指示(TCI)状态;准共址(QCL);探测参考信号资源指示(SRI)信息;空间关系信息,探测参考信号(SRS),信道状态信息参考信号(CSI-RS),同步信号块(SSB)。
在一实施例中,所述M次物理上行信道传输中的前X次物理上行信道传输对应于前Y个空间传输滤波器,后X次物理上行信道传输对应于后Y个空间传输滤波器;或者,所述M次物理上行信道传输中的奇数次物理上行信道传输对应于前Y个空间传输滤波器,偶数次物理上行信道传输对应于后Y个空间传输滤波器;或者,所述M次物理上行信道传输中,每两次物理上行信道传输作为一组,奇数组对应于前Y个空间传输滤波器,偶数组物理上行信道传输对应于后Y个空间传输滤波器,其中,所述X为M的二分之一,Y为N的二分之一。
在一实施例中,对应于相同的空间传输滤波器的物理上行信道传输对应于相同的功率控制参数。
本实施例提出的接收装置与上述实施例提出的接收方法属于同一构思,未在本实施例中描述的技术细节可参见上述任意实施例
本申请实施例还提供一种通信节点。所述信息确定方法可以由信息确定装置执行,该信息确定装置可以通过软件和/或硬件的方式实现,并集成在所述通信节点中,这种情况下,所述通信节点主要指用户终端。所述接收方法可以由接收装置执行,该接收装置可以通过软件和/或硬件的方式实现,并集成在所述通信节点中,这种情况下,所述通信节点主要指服务节点。
图11为一实施例提供的一种通信节点的硬件结构示意图。如图11所示,本实施例提供的一种通信节点,包括:处理器510和存储装置520。该通信节点中的处理器可以是一个或多个,图11中以一个处理器510为例,所述设备中的处理器510和存储装置520可以通过总线或其他方式连接,图11中以通过总线连接为例。
所述一个或多个程序被所述一个或多个处理器510执行,使得所述一个或多个处理器实现上述任一实施例所述的信息确定方法或接收方法。
该通信节点中的存储装置520作为一种计算机可读存储介质,可用于存储一个或多个程序,所述程序可以是软件程序、计算机可执行程序以及模块,如本申请实施例中信息确定方法对应的程序指令/模块(例如,附图9所示的信息确定装置中的模块,包括:指示信息接收模块310和信息确定模块320)。处理器510通过运行存储在存储装置520中的软件程序、指令以及模块,从而执行通信节点的各种功能应用以及数据处理,即实现上述方法实施例中的信息确定方法或接收方法。
存储装置520主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等(如上述实施例中的指示信息、物理上行信道传输等)。此外,存储装置520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置520可包括相对于处理器510远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
当上述通信节点中所包括一个或者多个程序被所述一个或者多个处理器510执行时,实现如下操作:接收指示信息;根据所述指示信息确定M次物理上行信道传输的信道状态信息,其中,M为大于或等于1的整数。
或者,当上述通信节点中所包括一个或者多个程序被所述一个或者多个处理器510执行时,实现如下操作:发送指示信息;接收M次物理上行信道传输,其中,M为大于或等于1的整数。
本实施例提出的通信节点与上述实施例提出的信息确定方法或接收方法属于同一构思,未在本实施例中描述的技术细节可参见上述任意实施例。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种信息确定方法或接收方法。
通过以上关于实施方式的描述,所属领域的技术人员可以了解到,本申请可借助软件及通用硬件来实现,也可以通过硬件实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请任意实施例所述的信息确定方法或接收方法。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (22)

  1. 一种信息确定方法,包括:
    接收指示信息;
    根据所述指示信息确定M次物理上行信道传输的信道状态信息,其中,M为大于或等于1的整数。
  2. 根据权利要求1所述的方法,其中,所述指示信息包括以下至少之一:传输方案指示;时频域资源指示;传输块个数指示;
    其中,所述时频域资源指示和所述传输块个数指示分别与所述传输方案指示相对应;
    所述信道状态信息包括以下至少之一:时频域资源;传输块个数;空间传输滤波器;冗余版本RV;传输上行预编码矩阵指示信息TPMI;解调参考信号DMRS端口;调制与编码策略MCS;功率控制参数。
  3. 根据权利要求1所述的方法,其中,所述指示信息通过以下信息域中的至少之一指示:无线资源控制RRC;介质访问控制层控制单元MAC-CE;下行控制信息DCI。
  4. 根据权利要求2所述的方法,其中,在所述传输方案指示为第一传输方案的情况下,所述传输方案指示对应的传输块个数指示为1,所述传输方案指示对应的时频域资源指示为:
    所述M次物理上行信道传输对应于相同的时域资源;
    M次物理上行信道传输分别对应于M段频域资源,M段频域资源之间不重叠。
  5. 根据权利要求2所述的方法,其中,在所述传输方案指示为第二传输方案的情况下,所述传输方案指示对应的传输块个数指示为M,所述传输方案指示对应的所述时频域资源指示为:
    所述M次物理上行信道传输对应于相同的时域资源以及相同的频域资源;
    每个上行传输块对应于一层或多层传输。
  6. 根据权利要求2所述的方法,其中,在所述传输方案指示为第三传输方案的情况下,所述传输方案指示对应的传输块个数指示为M,所述传输方案指示对应的时频域资源指示为:
    所述M次物理上行信道传输对应于相同的时域资源;
    M次物理上行信道传输分别对应于M段频域资源,M段频域资源之间不重叠。
  7. 根据权利要求2所述的方法,其中,在所述传输方案指示为第四传输方案的情况下,所述传输方案指示对应的传输块个数指示为M,所述传输方案指示对应的时频域资源指示为:
    M次物理上行信道传输分别对应于M段时域资源,M段时域资源之间不重叠;
    所述M次物理上行信道传输对应于N段频域资源,所述N段频域资源之间不重叠,其中,N为大于或等于1的整数且N为小于或等于M的整数。
  8. 根据权利要求2所述的方法,其中,在所述传输方案指示为第五传输方案的情况下,所述所述传输方案指示对应的传输块个数指示为M,所述传输方案指示对应的时频域资源指示为:
    所述M次物理上行信道传输对应于相同的频域资源;
    M次物理上行信道传输分别对应于M段时域资源,M段时域资源之间不重叠。
  9. 根据权利要求4或6或7所述的方法,其中,
    所述M次物理上行信道传输的频域资源包括第一频域资源和第二频域资源;
    所述M次物理上行信道传输的频域资源对应于第一频率偏移量和第二频率偏移量;
    其中,所述第一频率偏移量为所述第二频域资源的起始频率与所述第一频域资源的起始频率的差值,所述第二频率偏移量为所述第一频域资源的起始频率与带宽部分BWP的起始频率的差值。
  10. 根据权利要求9所述的方法,其中,
    在所述第二频率偏移量不为0且存在至少一次物理上行信道传输的频率范围超出所述BWP的边界的情况下,超出所述边界的频率部分通过所述BWP的目标频段传输,其中,所述目标频段包括所述BWP的起始频率与所述第一频域资源的起始频率之间的频段。
  11. 根据权利要求4-8任一项所述的方法,其中,所述M次物理上行信道传输对应于相同的MCS。
  12. 根据权利要求4-8任一项所述的方法,其中,所述M次物理上行信道传输对应于相同的DMRS端口;或者,
    所述M次物理上行信道传输对应于M个不同的DMRS端口,其中,M大于或等于2。
  13. 根据权利要求4-8任一项所述的方法,其中,所述M次物理上行信道传输对应于相同的TPMI;或者,
    对应于相同的空间传输滤波器的物理上行信道传输对应于相同的TPMI;或者,
    M次物理上行信道传输依次对应于M个TPMI,M个TPMI按照码本表的顺序循环排列。
  14. 根据权利要求4-8任一项所述的方法,其中,所述M次物理上行信道传输对应于相同的RV;或者,
    对应于相同的空间传输滤波器的物理上行信道传输对应于相同的RV;或者,
    M次物理上行信道传输依次对应于M个RV,M个RV按照设定顺序循环排列。
  15. 根据权利要求4-8任一项所述的方法,其中,所述M次物理上行信道传输对应于N个空间传输滤波器,所述M次物理上行信道传输对应于N套功率控制参数,其中,N为大于或等于1的整数且N为小于或等于M的整数;
    所述N个空间传输滤波器根据以下之一确定:
    传输配置指示TCI状态;准共址QCL信息;探测参考信号资源指示SRI信息;空间关系信息,探测参考信号SRS,信道状态信息参考信号CSI-RS,同步信号块SSB。
  16. 根据权利要求15所述的方法,其中,
    所述M次物理上行信道传输中的前X次物理上行信道传输对应于前Y个空间传输滤波器,后X次物理上行信道传输对应于后Y个空间传输滤波器;
    或者,所述M次物理上行信道传输中的奇数次物理上行信道传输对应于前Y个空间传输滤波器,偶数次物理上行信道传输对应于后Y个空间传输滤波器;
    或者,所述M次物理上行信道传输中,每两次物理上行信道传输作为一组,奇数组对应于前Y个空间传输滤波器,偶数组物理上行信道传输对应于后Y个空间传输滤波器;
    其中,X为M的二分之一,Y为N的二分之一,M为偶数,N为偶数。
  17. 根据权利要求15所述的方法,其中,
    对应于相同的空间传输滤波器的物理上行信道传输对应于相同的功率控制参数。
  18. 一种接收方法,包括:
    发送指示信息;
    接收M次物理上行信道传输,其中,M为大于或等于1的整数。
  19. 一种信息确定装置,包括:
    指示信息接收模块,设置为接收指示信息;
    信息确定模块,设置为根据所述指示信息确定M次物理上行信道传输的信道状态信息,其中,M为大于或等于1的整数。
  20. 一种接收装置,包括:
    指示模块,设置为发送指示信息;
    接收模块,设置为接收M次物理上行信道传输,其中,M为大于或等于1的整数。
  21. 一种通信节点,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行时,所述至少一个处理器实现如权利要求1-17中任一项所述的信息确定方法或如权利要求18所述的接收方法。
  22. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述程序被处理器执行时,实现如权利要求1-17中任一项所述的信息确定方法或如权利要求18所述的接收方法。
PCT/CN2021/074080 2020-02-04 2021-01-28 信息确定、接收方法、装置、通信节点及存储介质 WO2021155756A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21751259.9A EP4102747A4 (en) 2020-02-04 2021-01-28 METHOD AND DEVICE FOR DETERMINING INFORMATION, RECEIVING METHOD AND DEVICE, COMMUNICATION NODE AND STORAGE MEDIUM
CA3166910A CA3166910A1 (en) 2020-02-04 2021-01-28 Information determination method and device, receiving method and device, communication node, and storage medium
US17/797,399 US20230084983A1 (en) 2020-02-04 2021-01-28 Information determination method and device, receiving method and device, communication node, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010079956.0 2020-02-04
CN202010079956.0A CN111901066A (zh) 2020-02-04 2020-02-04 信息确定方法、接收方法、装置、通信节点及存储介质

Publications (1)

Publication Number Publication Date
WO2021155756A1 true WO2021155756A1 (zh) 2021-08-12

Family

ID=73169768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074080 WO2021155756A1 (zh) 2020-02-04 2021-01-28 信息确定、接收方法、装置、通信节点及存储介质

Country Status (5)

Country Link
US (1) US20230084983A1 (zh)
EP (1) EP4102747A4 (zh)
CN (1) CN111901066A (zh)
CA (1) CA3166910A1 (zh)
WO (1) WO2021155756A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022251757A3 (en) * 2021-09-30 2023-02-02 Futurewei Technologies, Inc. Method and apparatus of uplink precoding for multi-pusch

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020163988A1 (en) * 2019-02-12 2020-08-20 Qualcomm Incorporated Dynamic physical uplink shared channel configuration
CN111901066A (zh) * 2020-02-04 2020-11-06 中兴通讯股份有限公司 信息确定方法、接收方法、装置、通信节点及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631920A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种数据传输方法及装置
CN108650066A (zh) * 2017-03-23 2018-10-12 财团法人资讯工业策进会 用户装置及基站
CN108809476A (zh) * 2017-04-27 2018-11-13 电信科学技术研究院 一种进行数据传输的方法和设备
US20190158257A1 (en) * 2016-07-15 2019-05-23 Ntt Docomo, Inc. User equipment and radio communication method
CN110536450A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 一种数据传输方法、装置、传输接收节点、终端及介质
CN111901066A (zh) * 2020-02-04 2020-11-06 中兴通讯股份有限公司 信息确定方法、接收方法、装置、通信节点及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535614A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 信令信息的传输方法、装置、通信节点和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190158257A1 (en) * 2016-07-15 2019-05-23 Ntt Docomo, Inc. User equipment and radio communication method
CN108650066A (zh) * 2017-03-23 2018-10-12 财团法人资讯工业策进会 用户装置及基站
CN108631920A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种数据传输方法及装置
CN108809476A (zh) * 2017-04-27 2018-11-13 电信科学技术研究院 一种进行数据传输的方法和设备
CN110536450A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 一种数据传输方法、装置、传输接收节点、终端及介质
CN111901066A (zh) * 2020-02-04 2020-11-06 中兴通讯股份有限公司 信息确定方法、接收方法、装置、通信节点及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4102747A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022251757A3 (en) * 2021-09-30 2023-02-02 Futurewei Technologies, Inc. Method and apparatus of uplink precoding for multi-pusch

Also Published As

Publication number Publication date
CA3166910A1 (en) 2021-08-12
CN111901066A (zh) 2020-11-06
EP4102747A4 (en) 2024-02-28
EP4102747A1 (en) 2022-12-14
US20230084983A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US12010707B2 (en) Methods and apparatuses for transmitting and receiving control signaling, and method for determining information
WO2021043058A1 (zh) 数据传输方法、装置、传输接收节点、终端及介质
CN110166209B (zh) 下行控制信息传输方法
US20220312401A1 (en) Methods and apparatus for sending and receiving second stage sci, storage medium, sending ue, and receiving ue
WO2021155756A1 (zh) 信息确定、接收方法、装置、通信节点及存储介质
US10834633B2 (en) Transport block generation method and apparatus
WO2018171474A1 (zh) 数据传输的方法、设备和系统
CN111294194B (zh) 一种无线传输中的方法和装置
CN110557237B (zh) 一种降低网络延迟的无线通信方法和装置
CN111294971B (zh) 用于信道传输的方法、终端设备及网络设备
CN110741612B (zh) 一种调度请求的配置方法、网络设备及终端设备
CN112583523A (zh) 一种传输模式的指示方法、装置、基站、终端及存储介质
EP3800945B1 (en) Power allocation method and related device
AU2020416372B2 (en) Physical channel transmission method, apparatus, and node, and storage medium
WO2020029949A1 (zh) 时域资源配置方法
CN113661675A (zh) 用于网络协作通信的基于重复的数据传输的方法和装置
CN107666715B (zh) 一种无线传输中的方法和装置
CN111356233A (zh) 一种时隙聚合、时隙聚合的传输方法及装置
CN111130743B (zh) 一种无线通信中的方法和装置
WO2022057175A1 (zh) 一种通信方法和装置
WO2018171438A1 (zh) 在多天线通信系统中发射分集的方法及装置
WO2019160468A1 (en) Provision of granting of resources to a wireless device
WO2024093878A1 (zh) 一种通信方法及装置
WO2024065326A1 (zh) 一种数据传输方法、装置及电子设备
WO2024108927A1 (en) Configuration indication and processing for data channels in wireless communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21751259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3166910

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021751259

Country of ref document: EP

Effective date: 20220905