CN113661675A - 用于网络协作通信的基于重复的数据传输的方法和装置 - Google Patents

用于网络协作通信的基于重复的数据传输的方法和装置 Download PDF

Info

Publication number
CN113661675A
CN113661675A CN202080025782.8A CN202080025782A CN113661675A CN 113661675 A CN113661675 A CN 113661675A CN 202080025782 A CN202080025782 A CN 202080025782A CN 113661675 A CN113661675 A CN 113661675A
Authority
CN
China
Prior art keywords
transmission
pdsch
terminal
pdsch transmission
tbs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080025782.8A
Other languages
English (en)
Inventor
朴珍贤
卢勋东
康进圭
裵泰汉
杨熙喆
池衡柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority claimed from PCT/KR2020/004218 external-priority patent/WO2020204492A1/en
Publication of CN113661675A publication Critical patent/CN113661675A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种在无线通信系统中由用户设备(UE)执行的方法包括:接收携带相同传输块(TB)并且与第一传输配置指示符(TCI)状态和第二TCI状态分别相关联的第一物理下行链路共享信道(PDSCH)传输和第二PDSCH传输;确定第一PDSCH的传输块大小(TBS);以及针对第一PDSCH传输和第二PDSCH传输中每一个,基于所确定的TBS,确定与传输块相对应的低密度奇偶校验(LDPC)基图,其中,所确定的第一PDSCH传输的TBS被应用于第二PDSCH传输。

Description

用于网络协作通信的基于重复的数据传输的方法和装置
技术领域
本公开涉及无线通信系统,更具体地,涉及一种在无线通信系统中重复发送/接收相同数据的方法和装置。
背景技术
为了满足第4代(4G)通信系统的商业化之后的增加的无线数据业务的需求,已经努力开发第五代(5G)通信系统或pre-5G通信系统。因此,5G或pre-5G通信系统被称为“超越4G网络”的通信系统或“后长期演进(post-LTE)”系统。为了实现高数据速率,正在考虑在超高频毫米波(mmWave)频带(例如,60GHz频带)中实施5G通信系统。为了降低5G通信系统在超高频带的路径损耗并增加传输距离,正在研究了诸如波束成形、大规模多输入多输出(MIMO)、全维多输入多输出(FD-MIMO)、阵列天线、模拟波束成形和大规模天线等的各种技术。为了改进5G通信系统的系统网络,诸如演进的小小区、先进的小小区、云无线电接入网(云-RAN)、超密集网络、设备到设备(D2D)通信、无线回程、移动网络、协作通信、协调多点(CoMP)和干扰消除等的各种技术已经得到发展。另外,对于5G通信系统,已经开发了诸如混合频移键控(FSK)和正交幅度(QAM)调制(FQAM)和滑动窗口叠加编码(SWSC)的先进编码调制(ACM)技术,以及诸如滤波器组多载波(FBMC)、非正交多址接入(NOMA)和稀疏码多址接入(SCMA)的先进接入技术。
人类生成和消耗信息的以人为本连接网的互联网已经向物联网(IoT)演进,在物联网中分布式实体(例如事物)彼此交换信息以处理信息。万物联网(IoE)技术已经出现,万物联网是IoT技术与大数据处理技术通过与云服务器连接的结合。为了实现IoT,需要诸如传感技术、有线/无线通信和网络基础设施、服务接口技术以及安全技术的各种技术要素,并且近年来,已经研究了与用于连接对象的传感器网络、机器对机器(M2M)通信以及机器类型通信(MTC)相关的技术。在IoT环境中,可以提供智能互联网技术服务,以收集和分析从连接对象获得的数据从而为人类生活创造新价值。随着现有信息技术(IT)和各行各业的相互融合和结合,IoT可被应用于诸如智能家居、智能楼宇、智慧城市、智能汽车或联网汽车、智能电网、医疗保健、智能家电和先进医疗服务等各个领域。
正在进行各种尝试以将5G通信系统应用于IoT网络。例如,正通过使用包括波束成形、MIMO以及阵列天线的5G通信技术实现与传感器网络、M2M通信以及MTC相关的技术。作为如上所述大数据处理技术的云RAN应用可以是5G通信技术和IoT技术融合的示例。
如上所述,随着无线通信系统的发展,需要一种用于协作通信的数据发送/接收方法。
发明内容
问题的解决方案
根据本公开的实施例,一种在无线通信系统中由用户设备(UE)执行的方法包括:接收携带相同传输块(TB)并且与第一传输配置指示符(TCI)状态和第二TCI状态分别相关联的第一物理下行链路共享信道(PDSCH)传输和第二PDSCH传输;确定第一PDSCH的传输块大小(TBS);以及针对第一PDSCH传输和第二PDSCH传输中每一个,基于所确定的TBS,确定与传输块相对应的低密度奇偶校验(LDPC)基图,其中,第一PDSCH传输的所确定的TBS被应用于第二PDSCH传输。
附图说明
为了更加完整地理解本公开及其优点,现在参考结合附图的以下文字描述,在附图中相同的附图标记代表相同的部件:
图1示出了长期演进(LTE)或演进通用陆地无线接入(E-UTRA)、先进LTE(LTE-A)、新无线(NR)或类似的无线通讯系统的时频域传输结构;
图2示出了第五代(5G)通信技术中的帧、子帧和时隙结构;
图3示出了根据本公开的实施例的在无线通信系统中根据一些实施例的带宽部分(BWP)配置的示例;
图4示出了根据本公开的实施例的在无线通信系统中的BWP指示和变化的示例;
图5示出了根据本公开的实施例的在无线通信系统中下行链路控制信道的控制区域配置的示例;
图6示出了根据本公开的实施例的在无线通信系统中的物理下行链路共享信道(PDSCH)频率轴资源分配的示例;
图7示出了根据本公开的实施例的在无线通信系统中PDSCH时间轴资源分配的示例;
图8示出了根据本公开的实施例的在无线通信系统中根据数据信道和控制信道的子载波间隔的PDSCH时间轴资源分配的示例;
图9示出了根据本公开实施例的在无线通信系统中确定用于传输块(TB)的编码和码字的解码的低密度奇偶校验(LDPC)基图的方法;
图10示出了根据本公开的实施例的在无线通信系统中逐时隙重复传输(时隙聚合)的示例;
图11示出了根据本公开的实施例的在无线通信系统中协作通信的天线端口配置和资源分配的示例;
图12示出了根据本公开的实施例的在无线通信系统中用于协作通信的下行链路控制信息(DCI)配置的示例;
图13A示出了根据本公开的实施例的在无线通信系统中基于各种资源分配方法的多个发送和接收点(TRP)的重复传输的示例;
图13B示出了根据本公开的实施例的在无线通信系统中基于各种资源分配方法的多个TRP的重复传输的示例;
图13C示出了根据本公开的实施例的在无线通信系统中基于各种资源分配方法的多个TRP的重复传输的示例;
图13D示出了根据本公开的实施例的在无线通信系统中基于各种资源分配方法的多个TRP的重复传输的示例;
图14示出了根据本公开的实施例的在无线通信系统中在多个TRP的重复传输中重新定义DCI有效载荷的示例;
图15示出了根据本公开的实施例的无线通信系统中的终端的结构;以及
图16示出了根据本公开的实施例的无线通信系统中的基站的结构。
具体实施方式
提供了一种在无线通信系统中用于在网络协作通信(网络协调)的多个发送节点与终端之间重复地传输相同数据的方法和装置。
根据本公开的实施例,一种在无线通信系统中由用户设备(UE)执行的方法包括:接收携带相同传输块(TB)并且与第一传输配置指示符(TCI)状态和第二TCI状态分别相关联的第一物理下行链路共享信道(PDSCH)传输和第二PDSCH传输;确定第一PDSCH的传输块大小(TBS);以及针对第一PDSCH传输和第二PDSCH传输中每一个,基于所确定的TBS,确定与传输块相对应的低密度奇偶校验(LDPC)基图,其中,第一PDSCH传输的所确定的TBS被应用于第二PDSCH传输。
其它方面将部分地在随后的描述中进行阐述,并且部分地从随后的描述中显而易见,或者可以通过实践本公开的所示的实施例而获知。
在进行以下的描述之前,阐明贯穿本专利文件使用的某些词语和短语的定义可能是有利的:术语“包含”和“包括”以及它们的衍生词,意指没有限制的包含;术语“或”是包含性的,意指和/或;短语“与……相关联”和“与其相关联”以及他们的衍生词,可以意指包含、被包含在内、与……相联系、含有、被包含于……内、连接到或与……连接、耦接到或与……耦接、能够与……通信、与……合作、交错、并列、接近……、绑定到或与……绑定、具有、具有……属性等。术语“控制器”是指控制至少一个操作的任何设备、系统或它们的一部分,这样的设备可以用硬件、固件或软件或它们中至少两项的某种组合来实现。应当注意的是,与任何特定控制器相关的功能可以是本地或远程的集中式或分布式。
此外,下面描述的各种功能可以由一个或更多个计算机程序实现或支持,每个计算机程序由计算机可读程序代码形成并记录在计算机可读介质中。术语“应用”和“程序”是指适于在合适的计算机可读程序代码中实施的一个或更多个计算机程序、软件组件、指令集、过程、功能、对象、类、实例、相关数据或它们的一部分。短语“计算机可读程序代码”包括任何类型的计算机代码,包括源代码、目标代码和可执行代码。短语“计算机可读介质”包括能够由计算机访问的任何类型的介质,例如只读存储器(ROM)、随机存取存储器(RAM)、硬盘驱动器、光盘(CD)、数字视频光盘(DVD)或任何其他类型的存储器。“非暂时性”计算机可读介质不包括传输暂时性电的或其他信号的有线、无线、光学或其他通信链路。非暂时性计算机可读介质包括可永久存储数据的介质以及可存储数据并随后覆盖的介质,例如可重写光盘或可擦除存储设备。
贯穿本专利文件规定了某些词语或短语的定义,本领域普通技术人员应该明白即使不是在大多数情况下也是在很多情况下,这样的定义适用于这样定义的词语和短语在以前以及未来的使用。
下面讨论的图1到图16以及在本专利文件中用来描述本公开原理的各种实施例仅仅是示例性的,不应以限制本公开范围的方式进行解释。本领域技术人员将理解本公开的原理可以在任何适当设置的系统或设备中实施。
在下文中,将参考附图详细描述本公开的实施例。
在描述本公开的实施例时,将省略对本公开所属技术领域中公知的并且不直接与本公开相关的技术内容的描述。这是为了通过省略其不必要的描述来更清楚地传达本公开的主题而不使其模糊。
由于相同的原因,附图中的一些组件可能被放大地、省略地或示意性地示出。同样,每个组件的大小并不完全反映其实际大小。在附图中,相同或相应的元件可以由相同的附图标记表示。
根据以下参照附图详细描述的本公开的实施例,本公开的优点和特征以及实现其的方法将显而易见。然而,本公开可以以多种不同的形式被实施,并且不应被解释为限于以下描述的本公开的实施例;相反,提供这些实施例是为了完成本公开并将本公开的范围充分传达给本领域的普通技术人员,并且本公开将仅由权利要求的范围限定。贯穿说明书相似的附图表示表示相似的元件。
在整个本公开中,表述“a、b或c中的至少一个”表示仅a,仅b,仅c,a和b两者,a和c两者,b和c两者,a、b和c的全部,或它们变体。
终端的示例可以包括用户设备(UE)、移动台(MS)、蜂窝电话、智能电话、计算机或能够执行通信功能的多媒体系统等。
在本公开中,控制器还可以被称为处理器。
在整个说明书中,层(或层装置)也可以被称为实体。
应当理解的是,过程流程图的每个框和流程图的组合可以由计算机程序指令执行。因为这些计算机程序指令可以安装在通用计算机、专用计算机或其他可编程数据处理设备的处理器上,所以通过计算机或其他可编程数据处理设备的处理器执行的指令可以生成执行(多个)流程图框中描述的功能的装置。因为这些计算机程序指令可以存储在计算机可用或计算机可读存储器中,该存储器可以被定向到计算机或其他可编程数据处理设备以特定方式实现功能,所以存储在计算机可用或计算机可读存储器中的指令也可以产生包含执行(多个)流程图框中描述的功能的指令装置的产品。因为计算机程序指令也可以安装在计算机或其他可编程数据处理设备上,所以在计算机或其他可编程数据处理设备上执行一系列操作以生成执行计算机或其他可编程数据处理设备的计算机实施的过程的指令也可以提供用于执行(多个)流程图框中描述的功能的操作。
此外,每个框可以表示包括用于执行一个或更多个特定的逻辑功能的一个或更多个可执行指令的模块、段或代码的一部分。另外,还应该注意,在一些替代实施方式示例中,在框中记录的功能可能以不同的顺序发生。例如,取决于对应的功能,连续示出的两个框实际上可以基本上同时执行,或者有时可以以相反的顺序执行。
在这种情况下,本实施例中使用的术语“~单元”可以指代软件组件或硬件组件,诸如现场可编程门阵列(FPGA)或专用集成电路(ASIC),并且“~单元”可以执行特定任务。然而,“~单元”不限于软件或硬件。“~单元”可以被配置为在可寻址存储介质中,或者可以被配置为操作一个或更多个处理器。因此,根据本公开的实施例,“~单元”可以包括组件,诸如软件组件、面向对象的软件组件、类组件和任务组件,并且可以包括进程、功能、属性、过程、子例程、程序代码段、驱动程序、固件、微代码、电路、数据、数据库、数据结构、表格、阵列和变量。由组件和“~单元”提供的功能可以与更少的组件和“~单元”相关联,或者被进一步划分成额外的组件和“~单元”。另外,组件和“~单元”可以被实施为在设备或安全多媒体卡中操作一个或更多个中央处理单元(CPU)。并且,根据本公开的实施例,“~单元”可以包括一个或更多个处理器。
在下文中,将参考附图详细描述本公开的操作原理。在本公开的以下描述中,将省略对公知功能或配置的详细描述,因为它们将不必要地模糊本公开的主题。此外,以下使用的术语是考虑到本公开中的功能而定义的,并且根据用户或操作者的意图、习惯等可以具有不同的含义。因此,应该基于本公开的整个上下文来定义术语。在下文中,基站是执行终端资源分配的代理,并且可以是gNode B、eNode B、节点B、基站(BS)、无线接入单元、基站控制器或网络上的节点中的至少一者。终端的示例可以包括用户设备(UE)、移动台(MS)、蜂窝电话机、智能电话机、计算机或能够执行通信功能的多媒体系统。然而,本公开不限于此。
在下文中,本公开提供用于终端从无线通信系统中的基站接收广播信息的技术。本公开涉及一种用于融合第五代(5G)通信系统和物联网(IoT)技术以支持第四代(4G)通信系统之后更高数据速率的通信方法和系统。本公开适用于基于5G通信技术和物联网技术的智能服务(例如,智能家居、智能建筑、智慧城市、智能汽车或联网汽车、医疗保健、数字教育、零售、安防和安全服务)。
在以下描述中,为了便于描述,示出了指示广播信息的术语、指示控制信息的术语、与通信覆盖范围相关的术语、指示状态改变(例如,事件)的术语、指示网络实体的术语、指示消息的术语、指示装置的组件的术语等。因此,本公开不限于以下描述的术语并且可以使用具有等同技术含义的其他术语。
在以下描述中,为了便于描述,可以使用在第三代合作伙伴计划长期演进(3GPPLTE)标准中定义的术语和名称。然而,本公开不限于那些术语和名称,并且还可以类似地应用于根据其他标准的系统。
根据诸如高速分组接入(HSPA)、长期演进(LTE)或演进的通用地面无线接入(E-UTRA)、LTE高级(LTE-A)、3GPP的LTE-Pro、3GPP2的高速率分组数据(HRPD)和超移动宽带(UMB)以及电气与电子工程师协会(IEEE)的802.16e之类的通信标准,提供基于语音的服务的无线通信系统正被发展为提供高速和高质量分组数据服务的宽带无线通信系统。
作为宽带无线通信系统的代表性示例,LTE系统针对下行链路使用正交频分复用(OFDM)并且针对上行链路使用单载波频分多址(SC-FDMA)。上行链路可以指用于从终端(例如,用户设备(UE)或移动站(MS))向基站(例如,演进型节点B(eNB)或基站(BS))发送数据或控制信号的无线电链路,并且下行链路可以指用于从基站向终端发送数据或控制信号的无线电电路。上述多址方案以分配和管理用于承载用户的数据或控制信息的时频资源彼此不交叠的方式(即实现它们之间的正交性)来识别不同用户的数据或控制信息。
作为post-LTE系统,5G系统需要支持能够反映和满足用户、服务提供商等各种需求的服务。为5G系统考虑的服务可能包括增强型移动宽带(eMBB)、规模机器类型通信(mMTC)和超可靠性低延迟通信(URLLC)服务。
根据本公开的实施例,eMBB可以旨在提供比现有LTE、LTE-A或LTE-Pro所支持的数据速率更高的数据速率。例如,在5G通信系统中,从基站的角度来看,eMBB应该能够在下行链路中提供20Gbps的峰值数据速率,在上行链路中提供10Gbps的峰值数据速率。同时,需要提高终端的用户感知数据速率。为了满足此要求,需要改进各种发送/接收技术,包括更完善的多输入多输出(MIMO)发送技术。而且,可以通过在3GHz到6GHz、或6GHz或更高频段中使用比20MHz更宽的频率带宽来满足5G通信系统中所需的数据速率,而不是当前LTE使用的2GHz频段。
同时,正在考虑mMTC用来支持5G通信系统中的IoT等应用服务。为了高效地提供IoT,需要mMTC来支持小区中大型终端的访问、改进的终端覆盖范围、改进的电池时间并降低终端成本等。IoT需要能够支持小区中的大量终端(例如1,000,000终端/km2),因为它已连接到各种传感器和各种设备以提供通信功能。此外,由于服务的特性,支持mMTC的终端可能位于无法被小区覆盖的阴影区域(诸如建筑物的地下室)中,因此与5G通信系统所提供的其他服务相比,可能需要更广泛的覆盖范围。支持mMTC的终端可以被配置为低成本终端并且需要非常长的电池寿命,因为很难经常更换终端的电池。
最后,由于URLLC可以用作机器人或机器、工业自动化、无人驾驶飞机、远程医疗保健、紧急警报等的远程控制服务,作为用于关键任务的基于蜂窝的无线通信服务目的,因此,URLLC提供的通信可能必须提供超低延迟和超高可靠性。例如,支持URLLC的服务应满足小于0.5毫秒的空中接口等待时间并且同时可能具有10-5或更小的分组差误率。因此,对于支持URLLC的服务,5G系统应提供比其他服务更小的发送时间间隔(TTI)并且同时可能具有在频带中分配较宽资源的设计要求。然而,上述mMTC、URLLC和eMBB仅是不同服务类型的示例,本公开适用的服务类型不限于此。
可以基于一个框架以相互融合的方式提供5G通信系统中考虑的上述服务。也就是说,为了高效的资源管理和控制,各个服务可以作为一个系统进行集成、控制和传输,而不是独立运行。
另外,尽管下面将以LTE、LTE-A、LTE Pro或NR系统为例描述本公开的实施例,但是本公开的实施例也可以是应用于具有类似技术背景或信道类型的其他通信系统。此外,而在不脱离本领域普通技术人员的判断而脱离本公开的范围的情况下,本公开的实施例还可以通过一些修改而应用于其他通信系统。
本公开涉及用于在终端与执行协作通信的多个发送节点之间重复地传输数据和控制信号以提高通信可靠性的方法和装置。
根据本公开,当在无线通信系统中使用网络协作通信时,可以提高终端接收数据/控制信号的可靠性。
在下文中,将参考附图更详细地描述5G系统的帧结构。图1是示出了LTE、LTE-A、NR或类似无线通信系统的时频域传输结构的图。
图1示出了5G系统中传输数据或控制信道的无线资源区域(即时频区域)的基本结构。
参照图1,图1中的横轴表示时域,纵轴表示频域。时频域资源的基本单位可以是资源粒子(RE)1-01,可以时间轴上被定义为一个正交频分复用(OFDM)符号1-02,在频率轴上被定义为一个子载波1-03。在频域中,
Figure BDA0003284904950000101
(例如,12)个连续的RE可以构成一个资源块(RB)1-04。
图2示出了5G中的帧、子帧和时隙结构。
参照图2,图2示出了帧2-00、子帧2-01和时隙2-02的结构的示例。一个帧2-00可以定义为10ms。一个子帧2-01可以定义为1ms,因此,一个帧2-00可以包括总共十个子帧2-01。一个时隙2-02或2-03可以定义为十四个OFDM符号(即每时隙的符号数
Figure BDA0003284904950000102
)。一个子帧2-01可以包括一个或更多个时隙2-02或2-03,并且每个子帧2-01的时隙2-02或2-03的数量可以根据子载波间隔的配置值μ(2-04和2-05)而不同。在图2的示例中,示出了子载波间隔值被设置为μ=0(2-04)和μ=1(2-05)的情况。在μ=0(2-04)的情况下,一个子帧2-01可以包含一个时隙2-02,在μ=1(2-05)的情况下,一个子帧2-01可以包含两个时隙2-03.即,每个子帧的时隙数
Figure BDA0003284904950000103
可能会根据子载波间隔的配置值μ而变化,因此,每帧的时隙数
Figure BDA0003284904950000104
可能会变化。根据子载波间隔值μ的
Figure BDA0003284904950000105
Figure BDA0003284904950000106
可以定义如下表1。
表1。子载波间隔值
Figure BDA0003284904950000107
在NR中,一个分量载波CC或服务小区可以包括多达250个或更多个RB。因此,当终端在LTE中总是接收整个服务小区带宽时,终端的功耗可能会非常大,为了解决这个限制,基站可以为终端配置一个或更多个带宽部分(BWP)来支持终端改变小区的接收区域。在NR中,基站可以通过MIB向终端配置“初始BWP”,即CORESET#0(或公共搜索空间(CSS))的带宽。此后,基站可以通过无线资源控制(RRC)信令配置终端的初始BWP(第一BWP),并通知至少一条BWP配置信息(其可以未来通过下行控制信息(DCI)被指示)。此后,基站可以通过DCI通知BWP ID以指示终端可以使用哪个频带。当终端在一定时间或更长时间内未能在当前分配的BWP中接收DCI时,终端可以返回“默认BWP”并尝试接收DCI。
图3示出了根据本公开的实施例的在无线通信系统中的BWP配置的示例。
参照图3,图3示出了终端(UE)带宽3-00被配置为两个带宽部分,即带宽部分#1 3-05和带宽部分#2 3-10的示例。基站可以向终端配置一个或更多个带宽部分,并且可以为每个带宽部分配置如下表2中的信息。
表2。配置信息
Figure BDA0003284904950000111
除了表2中描述的配置信息之外,还可以向终端配置与带宽部分相关的各种参数。上述信息可以通过高层信令(例如RRC信令)从基站发送给终端。可以激活配置的一个或更多个带宽部分中的至少一个带宽部分。关于配置的带宽部分的激活/去激活(deactivation)的信息可以通过RRC信令从基站半静态地发送到终端,或者可以通过媒体接入控制(MAC)控制元素(CE)或DCI动态地发送。
由5G通信系统支持的带宽部分的配置可以用于各种目的。
例如,当终端支持的带宽小于系统带宽时,可以通过带宽部分的设置,只配置终端所支持的带宽。例如,可以为表2中的终端配置带宽部分的频率位置,从而终端可以在系统带宽中的特定频率位置发送/接收数据。
作为另一示例,为了支持不同的参数集(numerology),基站可以为终端配置多个带宽部分。例如,为了支持使用15kHz的子载波间隔和30kHz的子载波间隔到随机终端的数据发送/接收,两个带宽部分可以被配置为分别使用15kHz和30kHz的子载波间隔。不同的带宽部分可以被频分复用(FDMed),并且当要以特定子载波间隔发送/接收数据时,可以激活以特定子载波间隔配置的带宽部分。
作为另一示例,为了降低终端的功耗,基站可以向终端配置具有不同大小带宽的带宽部分。例如,当终端支持非常大的带宽(例如100MHz的带宽)并且总是以该带宽发送/接收数据时,可能会造成非常大的功耗。特别地,在没有流量的情况下,在功耗方面,对于100MHz的大带宽终端监听不必要的下行链路控制信道可能是非常低效的。因此,为了降低终端的功耗,基站可以向终端配置比较小的带宽的带宽部分,例如20MHz的带宽部分。终端可以在没有流量的情况下在20MHz带宽部分进行监听操作,可以在生成数据时根据基站的指示使用100MHz带宽部分发送/接收数据。
图4示出了根据本公开的实施例的无线通信系统中的BWP指示和变化的示例。
参照图4,如表2中所述,基站可以向终端配置一个或更多个带宽部分,并且可以通过每个带宽部分的配置,通知终端关于带宽部分的带宽、带宽部分的频率位置或带宽部分的参数集等的信息。图4示出了向一个终端在终端带宽4-00中配置了两个带宽部分(即,带宽部分#1(BWP#1)4-05和带宽部分#2(BWP#2)4-10)的示例。可以激活配置的带宽中的一个或更多个带宽部分,图4中可以考虑激活一个带宽部分的示例。在图4中,在时隙#0 4-25中配置的带宽部分中的带宽部分#1 4-05被激活,并且终端可以在带宽部分#1 4-05中设置的控制区域#1 4-45中监听物理下行链路控制信道(PDCCH),并且可以在带宽部分#1 4-05中发送/接收数据4-55。终端接收PDCCH的控制区域可以根据配置的带宽部分中的哪个带宽部分被激活而改变,相应地,终端监听PDCCH的带宽可以改变。
基站还可以向终端发送用于改变带宽部分的配置的指示符。在此,改变带宽部分的配置可以被认为与激活特定带宽部分的操作相同(例如,将激活从带宽部分A改变到带宽部分B)。基站可以在特定时隙向终端发送配置改变指示符(配置切换指示符),终端可以在从基站接收配置改变指示符之后,通过从特定时间点开始应用根据配置改变指示符的改变后的配置,确定要激活的带宽部分,并且可以监听在激活的带宽部分配置的控制区域中的PDCCH。
在图4中,基站可以在时隙#1 4-30中向终端发送配置切换指示符4-15,其指示激活的带宽部分从现有带宽部分#1 4-05改变到带宽部分#2 4-10。在接收到指示符后,终端可以根据指示符的内容激活带宽部分#2 4-10。在这种情况下,可能需要改变带宽部分的过渡时间4-20,相应地,可以确定改变应用要激活的带宽部分的时间点。图4示出了在接收到配置切换指示符4-15之后需要一个时隙的过渡时间4-20的情况。在过渡时间4-20(4-60)中可能无法执行数据发送/接收。因此,带宽部分#2 4-10可以在时隙#2 4-35中被激活以在相应的带宽部分中执行发送/接收控制信道和数据的操作。
基站可以通过高层信令(例如,RRC信令)向终端预先配置一个或更多个带宽部分,并且配置切换指示符4-15可以通过与由基站预设的带宽部分配置之一相映射来指示激活。例如,log2N比特的指示符可以选择并指示N个预配置带宽部分中的一个带宽部分。在下面的表3中,描述了使用2比特指示符指示关于带宽部分的配置信息的示例。
表3。配置信息的指示
指示符 带宽部分设置
00 由高层信令设置的带宽设置A
01 由高层信令设置的带宽设置B
10 由高层信令设置的带宽设置C
11 由高层信令设置的带宽设置D
图4中描述的带宽部分的配置切换指示符4-15可以以媒体接入控制(MAC)控制元素(CE)信令或L1信令(例如,公共DCI、组公共DCI或终端特定的DCI)的形式从基站发送到终端。
根据图4中描述的带宽部分的配置切换指示符4-15,可以从哪个时间点开始应用带宽部分激活可以取决于以下内容。从哪个时间点可以应用配置切换可以取决于预定义值(例如,在接收到配置切换指示符后的N(=1)个时隙之后应用),可以由基站通过高层信令(例如,RRC信令)配置,或者可以部分地包含在配置切换指示符4-15的内容中而被发送。或者,可以通过上述方法的组合来确定。在接收到带宽部分的配置切换指示符4-15后,终端可以从上述方法得到的时间点开始应用改变后的配置。
在下文中,将参考附图更详细地描述5G通信系统中的下行链路控制信道。
图5示出了根据本公开的实施例的在无线通信系统中下行链路控制信道的控制区域配置的示例。
参照图5,图5示出了在频率轴上的终端的带宽部分5-10和时间轴上的一个时隙5-20中配置两个控制区域(控制区域#1 5-01和控制区域#25-02)的示例。控制区域5-01和5-02可以被配置为频率轴上整个终端带宽部分5-10中的特定频率资源5-03。控制区域5-01和5-02可以由时间轴上的一个或更多个OFDM符号配置并且可以由控制区域长度5-04定义。在图5的示例中,控制区域#1 5-01可以由两个符号的控制区域长度配置,并且控制区域#2 5-02可以由一个符号的控制区域长度配置。
上述5G中的控制区域可以由基站通过高层信令(例如,系统信息、主信息块(MIB)或无线资源控制(RRC)信令)向终端配置。在终端中配置控制区域可以是指向终端提供控制区标识、控制区域的频率位置或控制区域的符号长度等信息。例如,其中可以包括表4的信息。
表4。配置信息
Figure BDA0003284904950000151
在表4中,tci-StatesPDCCH(简称TCI状态)配置信息可以包括与在相应控制区域中传输的解调参考信号(DMRS)具有准共址(QCL)关系的信道状态信息参考信号(CSI-RS)索引或一个或更多个同步信号(SS)/物理广播信道(PBCH)块索引的信息。
在下文中,将详细描述NR中的DCI。在NR中,可以通过DCI从基站向终端发送关于上行链路数据(或物理上行链路共享信道(PUSCH))或下行链路数据(或物理下行链路共享信道(PDSCH))的调度信息。为了终端的有效控制信道接收,可以根据目的提供如下表5中的各种类型的DCI格式。
表5。DCI格式的类型
Figure BDA0003284904950000152
Figure BDA0003284904950000161
终端可以监听关于PUSCH或PDSCH的回退DCI格式和非回退DCI格式。回退DCI格式可以包括基站和终端之间预先定义的固定字段,非回退DCI格式可以包括可配置字段。
DCI可以通过信道编码和调制过程通过物理下行链路控制信道(PDCCH)传输。循环冗余校验(CRC)可以附加到DCI消息有效载荷,并且CRC可以用与终端的身份相对应的无线电网络临时标识符(RNTI)加扰。可以根据DCI消息的目的使用不同的RNTI,例如终端特定(UE-specific)数据传输、功率控制命令或随机接入响应。即,RNTI可以不被显式地发送,而是可以被包括在CRC计算过程中并被发送。在接收到在PDCCH上传输的DCI消息后,终端可以通过分配的RNTI对CRC进行校验,当CRC校验结果正确时,终端就可以知道该消息是发送给终端的。
例如,可以用SI-RNTI对用于调度关于系统信息(SI)的PDSCH的DCI进行加扰。可以用RA-RNTI对用于调度关于随机接入响应(RAR)消息的PDSCH的DCI进行加扰。可以用P-RNTI对用于调度寻呼消息的PDSCH的DCI进行加扰。可以用SFI-RNTI对用于通知时隙格式指示符(SFI)的DCI进行加扰。可以用TPC-RNTI对用于通知发射功率控制(TPC)的DCI进行加扰。可以用C-RNTI(小区RNTI)对用于调度终端特定的PDSCH或PUSCH的DCI进行加扰。
可以使用DCI格式0_0作为用于调度PUSCH的回退DCI,并且在这种情况下,可以使用C-RNTI对CRC进行加扰。其中用C-RNTI对CRC进行加扰的DCI格式0_0可以包括例如下表6的信息。
表6。信息配置
Figure BDA0003284904950000162
Figure BDA0003284904950000171
可以使用DCI格式0_1作为用于调度PUSCH的非回退DCI,并且在这种情况下,可以使用C-RNTI对CRC进行加扰。其中用C-RNTI对CRC进行加扰的DCI格式0_1可以包括例如下表7的信息。
表7。信息配置
Figure BDA0003284904950000172
Figure BDA0003284904950000181
可以使用DCI格式1_0作为用于调度PDSCH的回退DCI,并且在这种情况下,可以使用C-RNTI对CRC进行加扰。其中用C-RNTI对CRC进行加扰的DCI格式1_0可以包括例如下表8的信息。
表8。信息配置
Figure BDA0003284904950000182
可以使用DCI格式1_1作为用于调度PDSCH的非回退DCI,并且在这种情况下,可以使用C-RNTI对CRC进行加扰。其中用C-RNTI对CRC进行加扰的DCI格式1_1可以包括例如下表9的信息。
表9。信息配置
Figure BDA0003284904950000191
在NR中,除了通过BWP指示进行频率轴资源候选分配之外,还可以通过DCI提供以下详细的频域资源分配方法(FD-RA)。
图6示出了根据本公开的实施例的无线通信系统中PDSCH频率轴资源分配的示例。
参照图6,当终端通过高层信令(6-00)被配置为仅使用资源类型0时,用于向终端分配PDSCH的一些DCI可以具有包括NRBG个比特的比特图。下面将再次描述其条件。在这种情况下,NRBG指的是根据高层参数rbg-Size和BWP指示符分配的BWP大小的如表10中确定的资源块组(RBG)的数量、以及可以在RBG中传输数据(表示为比特图为“1”)。
表10。RBG的数量
带宽部分大小 配置1 配置2
1-36 2 4
37-72 4 8
73-144 8 16
145-275 16 16
当终端通过高层信令(6-05)被配置为仅使用资源类型1时,用于向终端分配PDSCH的一些DCI可以包括
Figure BDA0003284904950000201
个比特的频率轴资源分配信息。基站可以配置起始VRB 6-20和长度6-25的从其连续分配的频率轴资源。
当终端通过高层信令(6-10)被配置为使用资源类型0和资源类型1两者时,用于向终端分配PDSCH的一些DCI可以具有频率轴资源分配信息(包括用于设置资源类型0的载荷6-15和用于设置资源类型1的载荷6-20和6-25中大值6-35的比特)。下面将再次描述其条件。在这种情况下,可以在DCI中频率轴资源分配信息的最前面部分(MSB)增加一比特,当该比特为“0”时,可以指示使用资源类型0,当比特为“1”,可以指示使用资源类型1。
图7示出了根据本公开的实施例的在无线通信系统中PDSCH时间轴资源分配的示例。
参照图7,基站可以根据通过高层配置的数据信道和控制信道的子载波间隔μPDSCH和μPDCCH、调度偏移K0值、通过DCI动态地指示的一个时隙的OFDM符号的起始位置7-00和长度7-05,来指示PDSCH资源的时间轴位置。
图8示出了根据本公开的实施例的在无线通信系统中根据数据信道和控制信道的子载波间隔的PDSCH时间轴资源分配的示例。
参照图8,当数据信道和控制信道的子载波间隔彼此相等时(8-00,μPDSCH=μPDCCH),由于数据和控制的时隙号彼此相等,基站和终端可以知道根据预定的时隙偏移K0发生了调度偏移。另一方面,当数据信道和控制信道的子载波间隔不同时(8-05,μPDSCH≠μPDCCH),由于数据和控制的时隙号不同,基站和终端可以知道:基于PDCCH的子载波间隔,根据预定的时隙偏移K0,发生了调度偏移。
接下来,将详细描述NR中的DCI调度的PDSCH的解码过程的一部分。
终端可以通过DCI接收PDSCH的调制和编码方案(MCS)的指示以及为PDSCH分配的频率和时间资源信息。DCI的MCS字段可以指示通过高层从以下三个表表11、表12和表13中选择的一个表的索引。初始传输和HARQ重传指示的索引范围可以不同,其中表11的索引0~28、表12的索引0~27、表13的索引0~28可以用于初始传输,表11的索引29~31、表12的索引28~31、表13的索引29~31可以用于重传。初始传输中指示的索引可以包含被传输的PDSCH的调制阶数和目标码率信息,重传中指示的索引可以包含被传输的PDSCH的调制阶数信息。
表11。MCS索引
PDSCH的MCS索引表1
Figure BDA0003284904950000211
Figure BDA0003284904950000221
表12。MCS索引
PDSCH的MCS索引表2
Figure BDA0003284904950000231
Figure BDA0003284904950000241
表13。MCS索引
PDSCH的MCS索引表2
Figure BDA0003284904950000242
Figure BDA0003284904950000251
在初始传输的情况下,终端可能需要在调度的PDSCH被编码之前知道传输块(TB)的大小。为此,可以进行以下处理,当传输两个TB时,可以对每个码字进行以下处理。
在过程1的一个实施例中,终端可以计算在其中调度PDSCH的时隙和一个物理资源块(PRB)中的对PDSCH传输分配的资源元素(RE)的总数
Figure BDA0003284904950000252
在计算针对PDSCH传输分配的RE总数的式中,
Figure BDA0003284904950000253
表示“12”对应于一个PRB中的子载波数,
Figure BDA0003284904950000254
表示在一个时隙中为PDSCH调度的符号数。此外,
Figure BDA0003284904950000255
表示PRB中为DM-RS分配的RE数量,包括DM-RS CDM组中指示的DCI上没有数据的开销。此外,
Figure BDA0003284904950000256
指示由高层指示的开销值。接下来,整个调度PRB的RE总数计算为NRE=min(156,N′RE)·nPRB,在计算整个调度PRB的RE总数的等式中,nPRB表示分配给终端的PDSCH传输的PRB总数。
在过程2的一个实施例中,PDSCH中信息比特的中间数目可以计算为Ninfo=NRE·R·Qm·υ,其中R和Qm分别表示MCS表示的目标速率和调制阶数,“v”表示层数。
在过程3的一个实施例中,当计算出的Ninfo值大于3824时,终端可以确定可以传输多个码块(过程5),否则终端可以确定单个码块被传输(过程4)。
在过程4的一个实施例中,当终端确定发送单个码块时,终端可以计算
Figure BDA0003284904950000261
其中
Figure BDA0003284904950000262
然后终端可以在表14中找到一个不小于N′inf o的最小传输块大小(TBS)。终端找到的TBS可以是终端确定的传输块(TB)的大小。
在过程5的一个实施例中,当终端确定可以传输多个码块时,终端可以根据
Figure BDA0003284904950000263
执行以下过程,其中
Figure BDA0003284904950000264
值和目标码率。
在过程5-1的一个例子中,当目标码率≤1/4时,
Figure BDA0003284904950000265
其中
Figure BDA0003284904950000266
并且所以计算出的TBS表示码块数。
在过程5-2的一个示例中,当目标码率>1/4时,在N′info>8424时,
Figure BDA0003284904950000267
其中
Figure BDA0003284904950000268
并且所计算出的TBS表示码块数。除此以外,
Figure BDA0003284904950000269
并且传输单个代码块。
表14。索引和TBS
Figure BDA00032849049500002610
Figure BDA0003284904950000271
在重传的情况下,假设要重传的PDSCH的TB大小与初始传输时计算的TB大小相同。
图9示出了根据本公开的实施例的在无线通信系统中确定用于传输块(TB)的编码和码字的解码的低密度奇偶校验(LDPC)基图(BG)的方法。
参照图9,示出了选择LDPC BG的方法。终端可以根据MCS指示的目标码率和计算出的TB大小,找到用于解码相应码字的LDPC BG。在NR中,可以根据TB大小和码率选择BG1和BG2之一,如图9所示。在BG1的情况下,码块的长度可以确定为8448,在BG2的情况下,码块0的长度可以确定为3840。在初始传输的情况下,终端可以根据情况在计算TB大小时同时找到LDPC BG。例如,当应用上述TB大小计算过程5-1)时,终端可能发现LDPC BG2被使用,当应用TB大小计算过程5-2)时,终端可能发现LDPC BG1被使用。在重传的情况下,可以假设重传的LDPC BG等于初始传输中使用的LDPC BG。
接下来,终端可以根据找到的TB大小、BG等,通过对接收到的码字进行解交织、解速率匹配、解码等处理,来找到数据。在重传的情况下,终端可以将初始传输中接收到的接收信号和重传接收到的接收信号合并后解码到与初始传输和重传使用的LDPC BG和TB大小对应的缓冲区中,从而提高接收可靠性。
当TB在多个码块中传输时,为了提高重传效率,终端可以仅重传其中的一些码块,此时,重传的码块的单位可以称为码块组(CBG)。当终端支持CBG传输时,终端接收到的TB的CBG个数可以由下式确定。
M=min(N,C)。
在上述式中,N是配置给高层的值,C是被传输的码块的数量。在总共M个CBG中,第(m=0,1,...,M1-1,M1=mod(C,M))个CBG可以包括第(m+K1+k,k=0,1,...,K1-1,K1=[C/M])个代码块和第(m=M1,M1+1,...,M-1)个CBG可以包括第(M1K1+(m-M1)K2+k,k=0,1,...,K2-1,K2=[C/M])个代码块。
当通过上述配置接收CBG时,终端可以为每个CBG生成ACK/NACK,然后生成HARQ-ACK码本并将其发送给基站。基站接收到HARQ-ACK信息后,可以以CBG为单位进行重传,并可以通过DCI将重传的CBG的索引通知给终端。其中传输CBG索引的DCI字段可以是上述CBG传输信息字段。
图10示出了根据本公开的实施例的在无线通信系统中逐时隙重复传输(时隙聚合)的示例。
参照图10,在NR中,可以支持相同PDSCH的重复传输以提高终端(10-00)的PDSCH接收可靠性。基站可以向诸如RRC等的高层设置PDSCH的重传次数(例如,PDSCH-Config中的pdsch-AggregationFactor)并且,当配置了重传次数时,在DCI中调度的PDSCH可以在与连续重复传输(10-05)的数量一样多的时隙中重复传输。重复传输的所有PDSCH在一个时隙中可以分配相同的时间资源,如图7所示,可以是DCI指示的一个时隙中的OFDM符号起始位置7-00和长度7-05。此外,可以假设在重复传输的所有PDSCH中传输相同的传输块(TB)。终端可以预期重复传输的PDSCH仅在单层中传输。另外,如下表15所示,可以根据用于调度PDSCH的DCI中指示的RV值和重复传输的PDSCH的索引来确定重复传输的PDSCH的冗余版本(RV)。
表15。重复传输的PDSCH的RV
Figure BDA0003284904950000291
在表15中,“n”可以指示每个PDSCH在被确定为高层(10-10、10-15)的重复传输次数内的索引。
参考以上与上述DCI结构、PDSCH时间/频率资源分配以及基于其执行的PDSCH发送和接收过程相关的描述,在LTE标准规范中,NR可以在PDSCH重复传输中仅使用单个传输点/面板/波束。当在PDSCH重复传输中可以应用使用多个传输点/面板/波束的协作通信时,因为可以获得针对信道阻塞等的更稳健的性能,所以在NR标准规范中积极讨论了基于多个传输点/面板/波束的重复传输方案。
在这种情况下,为了提高终端的接收可靠性,可能需要组合传输和接收点(TRP)/逐波束(beam-by-beam)传输信号。当为每个TRP/波束传输不同的码字时,除了每个码字的TB大小之外,用于编码/解码的所有LDPC BG可能需要相等以进行组合。如上所述,终端可以从MCS和通过DCI指示的调度RE量中找到码字和LDPC BG的TB大小,并且当TRP/逐波束速率匹配模式应用不同时,由终端计算的每个码字的TB大小和/或LDPC BG可能不同,因此,可能不执行组合。因此,本发明提供了一种提高接收可靠性的方法,保证终端在匹配TB大小和TRP/逐波束码字的LDPC BG后进行解码。
在下文中,将参考附图详细描述本公开的实施例。在本公开的以下描述中,将省略对公知功能或配置的详细描述,因为它们将不必要地模糊本公开的主题。此外,以下使用的术语是考虑到本公开中的功能而定义的,并且根据用户或操作者的意图、习惯等可以具有不同的含义。因此,应该基于本公开的整个上下文来定义术语。
在下文中,基站是执行终端资源分配的代理,并且可以是gNode B、gNB、eNode B、节点B,基站(BS)、无线接入单元、基站控制器或网络上的节点中的至少一者。终端的示例可以包括用户设备(UE)、移动台(MS)、蜂窝电话、智能电话、计算机或能够执行通信功能的多媒体系统。另外,尽管下面将以NR或LTE/LTE-A系统为例描述本公开的实施例,但是本公开的实施例也可以是应用于具有类似技术背景或信道类型的其他通信系统。此外,而在不脱离本领域普通技术人员的判断而脱离本公开的范围的情况下,本公开的实施例还可以通过一些修改而应用于其他通信系统。
本公开中的描述可以应用于FDD和TDD系统。
在本公开中,高层信令可以是通过使用物理层的下行链路数据信道从基站向终端发送信号或者通过使用物理层的上行链路数据信道从终端向基站发送信号的方法,并且也可以称为RRC信令、PDCP信令或MAC CE。
下文中,为了确定是否应用协作通信,终端可以使用各种方法,其中一个或更多个PDCCH用于分配应用协作通信的PDSCH具有特定格式,一个或更多个PDCCH用于分配应用协作通信的PDSCH包括指示是否应用协作通信的特定指示符,用于分配应用协作通信的PDSCH的一个或更多个PDCCH用特定的RNTI加扰,或者假设协作通信应用在由更高层指示的特定间隔。在下文中,为了便于描述,终端基于与上述条件类似的条件接收应用了协作通信的PDSCH的情况可以被称为NC-JT情况。
以下,在本公开中,确定A和B之间的优先级可以不同地称为根据预定的优先级规则选择更高的优先级,并执行与其相对应的操作,或者省略或丢弃相对于具有较低优先级的操作优先事项。
以下,在本公开中,将通过本公开的多个实施例对上述实施例进行说明;然而,它们不是彼此独立的,并且本公开的一个或更多个实施例可以同时或组合应用。
<实施例一:NC-JT的DCI接收>
与现有系统不同,5G无线通信系统不仅可以支持需要高传输速率的服务,还可以支持具有非常短的传输延迟的服务和需要高连接密度的服务。在包括多个小区、TRP或波束的无线通信网络中,每个小区、TRP和/或波束之间的协作通信(协调传输)可能是提高终端接收信号强度或有效提高信号强度的基本技术执行每个小区、TRP和/或波束间干扰控制以满足各种服务需求。
联合传输(joint transmission,JT)可以是上述协作通信的代表性传输技术,并且可以通过基于联合传输支持一个终端通过不同的小区、TRP和/或波束来增加终端接收的信号的强度技术。同时,由于小区、TRP和/或波束之间的信道特性可能存在显着差异,因此可能需要对小区、TRP和/或波束之间的链路应用不同的预编码、MCS或资源分配。特别地,在支持小区、TRP和/或波束之间的非相干预编码的非相干联合传输(NC-JT)的情况下,针对小区、TRP和/或波束的单独下行链路(DL)传输信息设置可能很重要。同时,针对小区、TRP和/或波束的这种单独的DL传输信息配置可能是增加DL DCI传输所需的载荷的主要因素,这可能不利地影响用于传输DCI的PDCCH的接收性能。因此,可能有必要仔细设计DCI信息量和PDCCH接收性能之间的折衷以支持JT。
图11示出了根据本公开的实施例的在无线通信系统中协作通信的天线端口配置和资源分配的示例。
参照图11,示出了根据情况的针对每个TRP的联合传输(JT)技术和无线资源分配的示例。在图11中,11-00是支持小区、TRP和/或波束之间的相干预编码的相干联合传输(C-JT)的示例。在C-JT中,从TRP A11-05和TRP B 11-10向终端11-15发送单个数据(PDSCH),并且在多个TRP中执行联合预编码。这表示TRP A 11-05和TRP B 11-10发送相同的DMRS端口(例如,两个TRP中的DMRS端口A和B)以接收相同的PDSCH。在这种情况下,终端可以接收用于接收由DMRS端口A和B解调的一个PDSCH的一条DCI信息。
在图11中,11-20是支持小区、TRP和/或波束之间的非相干预编码的非相干联合传输(NC-JT)的示例。在NC-JT的情况下,可以针对每个小区、TRP和/或波束向终端11-35发送PDSCH,并且可以对每个PDSCH应用单独的预编码。小区、TRP和/或波束可以发送不同的PDSCH以提高关于单个小区、TRP和/或波束传输的吞吐量,或者小区、TRP和/或波束可以重复传输相同的PDSCH以提高吞吐量单小区、TRP和/或波束传输的可靠性。
如多个TRP用于PDSCH传输的频率和时间资源都相同的情况(11-40),多个TRP使用的频率和时间资源完全不交叠的情况(11-45),以及多个TRP使用的频率和时间资源部分交叠的情况(11-50),可以考虑各种无线资源分配。对于上述无线资源分配,当多个TRP在每种情况下重复传输相同的PDSCH时,当接收终端不知道是否重复传输PDSCH时,终端可能不会在物理层对PDSCH进行合并,因此可能存在提高可靠性的限制。因此,本公开提供了一种提高NC-JT传输可靠性的重复传输指示和配置方法。
可以考虑DCI的各种形式、结构和关系以同时向一个终端分配多个PDSCH以支持NC-JT。
图12示出了根据本公开的实施例的在用于无线通信系统中的协作通信的DCI配置的示例。参照图12,示出了用于NC-JT支持的DCI设计的四个示例。
在图12中,情况#1 12-00是其中以与关于PDSCH的控制信息相同的格式(相同的DCI格式)传输关于在(N-1)个附加TRP中传输的PDSCH的控制信息的示例,在该情况下,除了用于单个PDSCH传输服务TRP(TRP#0)之外,(N-1)个不同的PDSCH被在(N-1)个附加TRP(TRP#1到TRP#(N-1))中传输。即,终端可以通过具有相同DCI格式和相同载荷的DCI获取关于在不同TRP(TRP#0到TRP#(N-1))中传输的PDSCH的控制信息。在上述的情况#1下,可以完全保证每个PDSCH控制(分配)自由度;然而,当每个DCI在不同的TRP中传输时,可能会出现逐DCI(DCI-by-DCI)的覆盖差异,从而导致接收性能下降。
在图12中,情况#2 12-05是其中以与关于PDSCH的控制信息不同的格式(不同的DCI格式或不同的DCI载荷)传输关于在(N-1)个附加TRP中传输的PDSCH的控制信息的示例,在该情况下,除了用于单个PDSCH传输服务TRP(TRP#0)之外,(N-1)个不同的PDSCH被在(N-1)个附加TRP(TRP#1到TRP#(N-1))中传输。例如,在用于传输关于在服务TRP(TRP#0)中传输的PDSCH的控制信息的DCI#0的情况下,可以包括DCI格式1_0或DCI格式1_1的所有信息元素,但在用于传输关于在协作TRP(TRP#1到TRP#(N-1))中传输的PDSCH的控制信息的“缩短的”DCI(sDCI#0到sDCI#(N-2))的情况下,可以仅包括DCI格式1_0或DCI格式1_1的一些信息元素。因此,在sDCI用于传输关于在协作TRP中传输的PDSCH的控制信息的情况下,载荷可以小于用于传输在服务TRP中传输的PDSCH相关控制信息的正常DCI(nDCI)的载荷,或者可以包括与保留的比特数(与nDCL相比不足的比特数中的)一样多。在上述情况#2中,可以根据sDCI中包含的信息元素的内容来限制每个PDSCH控制(分配)自由度;然而,由于sDCI的接收性能可能高于nDCI,因此逐DCI覆盖差异出现的概率会降低。
在图12中,情况#3 12-10是其中以与关于PDSCH的控制信息不同的格式(不同的DCI格式或不同的DCI载荷)传输关于在(N-1)个附加TRP中传输的PDSCH的控制信息的另一示例,在该情况下,除了用于单个PDSCH传输服务TRP(TRP#0)之外,(N-1)个不同的PDSCH被在(N-1)个附加TRP(TRP#1到TRP#(N-1))中传输。例如,在用于传输关于在服务TRP(TRP#0)中传输的PDSCH的控制信息的DCI#0的情况下,可以包括DCI格式1_0或DCI格式1_1的所有信息元素,但在关于在协作TRP(TRP#1到TRP#(N-1))中传输的PDSCH的控制信息的情况下,DCI格式1_0或DCI格式1_1的仅一些信息元素被收集并在一条“辅助”DCI(sDCI)中被传输。例如,sDCI可以具有协作TRP的诸如频域资源分配(分派)和时域资源分配(分派)等的HARQ相关信息中的至少一条。另外,如果sDCI中没有包括BWP指示符或载波指示符等信息,则可以跟在服务TRP的DCI(DCI#0,正常DCI,nDCI)之后。在情况#3中,可以根据sDCI中包含的信息元素的内容来限制每个PDSCH控制(分配)自由度,但是相比于情况#1和情况#2,sDCI的接收性能可以被调整,并且终端的DCI盲解码的复杂度可以被降低。
在图12中,情况#4 12-15是其中以与关于PDSCH的控制信息相同的DCI(长DCI,IDCI)传输关于在(N-1)个附加TRP中传输的PDSCH的控制信息的示例,在该情况下,除了用于单个PDSCH传输服务TRP(TRP#0)之外,(N-1)个不同的PDSCH被在(N-1)个附加TRP(TRP#1到TRP#(N-1))中传输。即,终端可以通过单个DCI获取关于在不同TRP(TRP#0到TRP#(N-1))中传输的PDSCH的控制信息。在情况#4,终端的DCI盲解码的复杂度可能不会增加,但是PDSCH控制(分配)自由度可能较低,从而可以根据长DCI载荷限制来限制协作TRP的数量。
在本公开的以下描述和实施例中,sDCI可以指包括在协作TRP中传输的PDSCH控制信息的各种辅助DCI(例如缩短的DCI、辅助DCI或正常DCI(上述DCI格式1_0或1_1)),除非另有说明,该描述可以类似地适用于各种辅助DCI。
在本公开的以下描述和实施例中,其中一个或更多个DCI(PDCCH)用于NC-JT支持的上述情况#1、情况#2和情况#3可以被分类为基于多个PDCCH的NC-JT,其中单个DCI(PDCCH)用于NC-JT支持的上述情况#4可以被分类为基于单个PDCCH的NC-JT。
在本公开的实施例中,“协作TRP”在实际应用中可以替换为“协作面板”或“协作波束”等各种术语。
在本公开的实施例中,“应用NC-JT的情况”可以根据情况不同地解释,例如“终端在一个BWP中同时接收一个或更多个PDSCH的情况”、“终端在一个BWP中同时接收基于两个或更多个传输配置指示符(TCI)指示的PDSCH的情况”、以及“终端接收的PDSCH与一个或更多个DMRS端口组相关联的情况”,但它仅被用作为方便描述的一种表述。
在本公开中,可以根据TRP部署场景不同地使用用于NC-JT的无线协议架构。例如,当协作TRP之间没有回程延迟或回程延迟很小时,可以使用基于MAC层复用的架构(类CA方法)。另一方面,当协作TRP之间的回程延迟不可忽略时(例如,当协作TRP之间的CSI交换或调度信息交换需要2ms或更多的时间时),可以通过对来自RLC层的每个TRP使用独立的结构来确保抗延迟的特性使用独立的结构(类DC方法)。
<实施例二:NC-JT重复的传输配置方法>
在本公开的实施例中,提供了在同一传输频带中重复传输相同的PDSCH的详细配置和指示方法,其中两个或更多个TRP彼此相等,如实施例一所述,例如,提供传输频带、分量载波、BWP等。
图13A至图13D示出了根据本公开的实施例的在无线通信系统中基于各种资源分配方法的多个TRP的重复传输的示例。图13A至图13D示出了两个或更多个TRP重复传输相同PDSCH的示例。
在当前的NR中,如上所述,在相同PDSCH的重复传输中可能需要与重复传输次数一样多的时隙,并且在每个重复传输中可以使用相同的小区、TRP和/或波束。另一方面,通过在此描述的本公开的实施例,可以通过在每个时隙(13-00、13-05)中使用不同的TRP进行重复传输来实现更高的可靠性。同时,根据终端能力、延迟时间要求、TRP之间的可用资源状态等,可以采用其他的重复传输方式。例如,当终端具有接收NC-JT的能力时,每个TRP可以通过在相同的时频资源上传输相同的PDSCH的方法来提高频率资源利用率,减少PDSCH解码所需的延迟时间(13-10、13-15)。当要同时传输的TRP间波束彼此几乎正交并且因此存在小的波束间干扰时,该方法可以是有效的。作为另一示例,每个TRP可以使用同时在非交叠频率资源中传输相同PDSCH的方法(13-20、13-25)。当同时传输的TRP的波束间干扰较大且每个TRP的可用频率资源较大时,该方法可以是有效的。作为另一示例,每个TRP可以使用在相同时隙中的不同OFDM符号上传输相同PDSCH的方法(13-30、13-35)。当每个TRP可用的频率资源不多,并且要传输的数据量较小时,该方法可以是有效的。除了上述方法之外,基于上述方法的修改也是可能的。
在上述方法中,可以使用单个DCI来调度重复传输(13-00、13-10、13-20、13-30),并且DCI可以指示参与重复传输的所有TRP的列表。重复传输的TRP列表可以用TCI状态列表的形式表示,TCI状态列表的长度可以动态变化。可以重复传输DCI以提高可靠性,并且可以在重复传输中对每个DCI应用不同的波束。或者,可以使用多个DCI来调度重复传输(13-05、13-15、13-25、13-35),每个DCI可以对应不同TRP的PDSCH来参与重复传输。每个DCI的TRP可以以TCI状态或重复传输所使用的资源的形式来表示,其详细描述将在下面要描述的本公开实施例中给出。或者,也可以使用缩短的DCI来调度重复传输,普通DCI和辅助DCI可以分别对应不同TRP的PDSCH来参与重复传输。上述指示方法可以普遍应用于通过多个TRP的重复传输和通过多个TRP的不同数据的传输。
对于上述重复传输的方法,所有的TRP可以传输单个码字,也可以为每个TRP传输独立的码字。在后一种情况下,因为可以为每个码字确定不同的MCS和/或RV值,所以比前一种情况可能进行更多的自适应传输。在为每个TRP传输独立的码字的情况下,终端可以对每个码字进行如下处理以进行码字解码。以下各过程可能与上述现有NR中单码字解码的过程相同:1)通过传输码字的资源对应的RE、MCS等数量计算TB大小;2)根据TB大小和目标码率确定LDPC BG。
上述过程中使用的参数可以表示如下:(1)NRE:在PDSCH调度中分配的RE总数。PDSCH调度中分配的RE总数可以根据上述频率轴RB资源分配信息、时间轴符号资源分配信息、通过高层和/或DCI指示的速率匹配模式信息、零功率信道状态信息参考信号(ZP-CSI-RS)配置信息、RS配置信息(诸如DMRS和非零功率信道状态信息参考信号(NZP-CSI-RS))、LTE-CRS-ToMatchAround配置信息等,基于速率匹配的RE的数量来计算;(2)R:MCS指示的目标码率;(3)Qm:MCS指示的调制顺序;以及(4)v:DCI等的天线端口字段表示的层数。
在这种情况下,用于重复传输的码字的NRE、R、Qm和v参数中的每一个或用于计算NRE、R、Qm和v参数的每个调度参数(例如,由上述频率轴资源分配方法和时间轴资源分配方法所指示的参数)可以为每个码字单独指示,也可以为所有重复传输指示一个值。
当为每个参数指示一个值时,对可以针对每个重复的的传输码字的根据重复传输技术的所有重复传输码字以及根据特定规则或式修饰的基站配置或值,可以同样应用针对每个参数指示的值。例如,当每个TRP的码字在不同的时间资源(13-00、13-05、13-30、13-35)重复传输时,与DCI指示的频率轴资源分配相同的频率轴资源分配可以是应用于每个码字。或者,当每个TRP的码字在不同频率轴资源(13-20、13-25)中重复传输时,可以根据每个码字的特定规则应用非交叠频率轴资源分配。例如,当调度两个重复传输码字时,可以将DCI指示的频率轴资源分配中偶数预编码组(PRG)分配给第一码字,将奇数预编码组(PRG)分配给第二码字。在PRG大小配置为宽带的情况下,当频率轴资源分配分配的RB数为N_RB时,前
Figure BDA0003284904950000371
个RB可以分配给第一码字,其他
Figure BDA0003284904950000372
个RB可以被分配给第二码字。总之,它可能如表16所示。
表16。多个RB的分配
Figure BDA0003284904950000373
作为另一示例,当每个TRP的码字在不同的频率轴资源中重复传输(13-20、13-25)或者当每个TRP的码字在不同的符号上被重复传输(13-00、13-05),DCI指示的时间轴资源分配中的符号偏移量S(7-00)和符号长度L(7-05)可以同样地应用于每个码字。同时,当每个TRP的码字在时隙(13-30,13-35)的不同符号中重复传输时,由DCI指示的时间轴资源分配中的符号偏移S(7-00)和符号长度L(7-05)可以被应用于第一码字,并且L(7-05)可以作为符号长度同样地应用于第二码字,但是S'=S+L可以被应用为符号偏移。此外,L(7-05)可以作为符号长度被同样应用于重复传输的TRP码字中的第n码字,但是S”=S+(n-1)L可以被应用为符号偏移。
当每个码字的速率匹配模式不同,分配的RE资源量不同,或者配置不同的MCS值时,每个码字计算的TB大小和确定的LDPC BG可能彼此不同。在这种情况下,可能不能进行对于不同TB大小和LDPC BG的码字之间的组合,因此可能难以在终端中实现目标接收可靠性。
因此,为了实现终端的目标接收可靠性,可能需要确保为每个TRP重复传输的码字之间具有相同的TB大小和相同的LDPC BG,为此可以考虑以下方法。
在方法1的一个示例中,基站执行调度使得所有码字的TB大小和LDPC BG可以彼此相等。
在方法2的一个示例中,终端为重复传输中的TB大小和LDPC BG计算配置代表值。
将在以下实施例中描述上述每种方法的详细描述。
<实施例三:基站执行调度,使得所有码字的TB大小和LDPC BG相等>
基站可以预先知道终端针对每个TRP重复传输的码字要计算的TB大小和LDPC BG值。如上所述,终端要计算的TB可以通过PDSCH中的中等数量的信息比特Ninfo=NRE·R·Qm·υ获得,该中等数量的信息比特的每个元素可以与上述相同。
基站可以对每个TRP/码字的上述中等数量的信息比特的四个元素中的任一个配置约束条件,以便终端针对为每个TRP传输的码字获得相同TB大小。例如,基站可以将每个TRP/码字的NRE值相等、频率和时间轴资源分配信息相同、速率匹配模式或速率匹配的RE的数量相同、MCS相同或层数相同的情况,配置为约束条件。此外,可以组合上述约束中的两个或更多个。或者,即使不应用上述约束条件,也可以配置NRE、R、Qm和v值的组合,使得终端针对每个TRP/码字计算的TB大小可以相等。同时,终端可能不会期望针对每个TRP/码字计算的TB大小可能不同,以进行组合。
如上所述,LDPC BG可由终端通过终端计算的TB大小和MCS指示的目标码率来确定。基站可以配置TB大小和/或MCS的约束条件,使得终端为每个TRP/码字找到的LDPC BG可以相等。例如,可以如上所述配置约束条件使得每个TRP/码字的TB大小可以相等,并且可以配置约束条件使得MCS可以相等。或者,即使不应用上述约束条件,也可以配置TB大小和MCS的组合,使得终端针对每个TRP/码字找到的TB大小可以相等。同时,终端可能不会期望针对每个TRP/码字计算的LDPC BG可能不同,以进行组合。
根据本公开的实施例,终端匹配每个TRP/码字的TB大小和LDPC BG的变化可能很小,但是基站中每个TRP的码字调度和传输的约束可能大。
<实施例四:配置用于计算在重复传输中终端的TB大小和LDPC BG的代表值>
在上述实施例三中,即使当每个TRP的信道状态或可分配给PDSCH的资源量不同时,由于上述约束条件,灵活的资源分配/MCS分配也可能困难。另一方面,在本公开的实施例中,基站可以考虑每个TRP的信道状态或者可用资源量,更加灵活地调度重传PDSCH,终端可以针对每个TRP重复传输的码字配置用于TB大小和LDPC BG计算的代表值,从而可以为所有码字获得相同的TB大小和LDPC BG。
针对每个TRP重复传输的码字,可以从为每个码字计算的TB大小获得用于计算TB大小和LDPC BG的代表值。例如,可以根据上述NR中的TB大小计算方法计算每个TRP的码字的TB大小,然后将这些TB大小的代表值进行合并解码。当每个TRP的码字的总共N个TB大小为TBS1、TBS2、...、TBSN时,TB大小的代表值可以用诸如TBS=f(TBS1,TBS2,...,TBSN)表示,并且以下函数可以被认为是用于计算TBS的函数。
在最大值的一个示例中,f(TBS1,TBS2,...,TBSN)=max(TBS1,TBS2,...,TBSN)。当每个TRP的码字的TB大小不同时,可以根据最大的TB大小计算TBS。在这种情况下,因为有效码率高,所以在吞吐量方面可能是有效的。
在最小值的一个示例中,f(TBS1,TBS2,...,TBSN)=min(TBS1,TBS2,...,TBSN)。当每个TRP的码字的TB大小不同时,可以根据最小的TB大小计算TBS。在这种情况下,由于有效码率较低,可以获得较高的可靠性。
在平均值的一个示例中,f(TBS1,TBS2,...,TBSN)=(TBS1,TBS2,...,TBSN)/N。当每个TRP的码字的TB大小不同时,可以根据TB大小的平均值计算TBS。
除了上述函数之外,可以将各种函数视为用于TBS计算的函数。或者,为了降低终端的计算复杂度,可以不计算每个码字的所有TB大小,而是可以将期望最大或最小TB大小的一个码字的TB大小配置为代表TB大小,终端可以仅计算代表TB大小。例如,当每个TRP的码字的MCS可以被不同地配置时,与最高或最低MCS的码字对应的TB大小可以被设置为代表TB大小。或者,当每个TRP的码字的频率/时间轴资源分配可以不同配置时,分配的最大或最小频率资源/时间资源/RE编号的码字对应的TB大小可以配置为具有代表性的TB大小。可以在与代表TB大小和相应码字对应的MCS中获得代表性LDPC BG值。
或者,可以基于分配给所有重复传输的码字的RE的数量来确定TB的数量。例如,当如上所述为整个重复传输指示一个频率轴资源分配和时间轴资源分配时,可以计算根据频率轴和时间轴资源分配的NRE值,并且可以从计算出的NRE值中获得代表TB大小TBSrep。在这种情况下,可以对所有重复传输的码字指示或应用相同的MCS和层数;即重复传输的码字的R、Qm和v都可以相等。重复传输的每个码字的TB大小可以根据代表TB大小进行配置;例如,它可以至少设置为以下之一:每个码字的TB大小等于代表TB大小,即,TBS1=TBS2=…=TBSN=TBSrep;每个码字的TB大小等于代表TB大小除以重复传输的码字数得到的值,即,
Figure BDA0003284904950000401
或者
Figure BDA0003284904950000402
或者,可以配置用于获得TB大小的代表值的代表TRP。例如,在TBS1、TBS2、...、TBSN重复传输的情况下,终端可以将从在TRPx(1≤x≤N)传输的码字计算出的TB大小配置为代表TB大小。为了描述方便,可以将TRPx称为代表性TRP。同时,终端在重复传输中可能无法直接接收到传输TRP信息的指示,此时,终端可以通过以下方法中的至少一种或者其组合来隐式配置代表TRP。
在TCI状态的方法1的一个示例中,可以通过DCI/MAC-CE等为一个PDSCH同时激活两个或更多个TCI状态,其中这些TCI状态中的每一个可以对应于用于用于重复传输的每个TRP的信道/波束信息。因此,特定的TCI状态可以用作代表TRP。即,可以从对应于特定TCI状态的码字计算代表TB大小。特定的TCI状态可以是例如激活的TCI状态中的最低/最高TCI状态索引或第一/最后TCI状态索引。
在码字索引的方法2的一个示例中,当在DCI中调度两个码字时,每个码字可以被解释为当满足特定条件时重复传输的码字。具体条件将在实施例五中详细说明。在这种情况下,可以使用与特定码字索引(即第一或第二码字)对应的TRP作为代表TRP,并且可以从对应的码字计算代表TB大小。
在DMRS端口/端口组/CDM组索引的方法3的一个示例中,当重复传输使用两个或更多个DMRS端口或CDM组时,可以在不同的TRP中使用不同的DMRS端口/端口组/CDM组。在这种情况下,对应于特定DMRS端口/端口组/CDM组索引(即最低/最高DMRS端口/端口组/CDM组索引)的TRP可以用作代表性TRP,并且可以从相应的码字计算代表TB大小。
在频率资源分配信息的方法4的一个示例中,在重复传输中,可以独立地分配每个重复传输的码字的频率资源。例如,可以重新解释NR DCI上的频域资源分配(分派)字段,并且可以使用n个码字的n个频域资源分配(分派)字段。或者,可以增加n-1个频域资源分配字段。在这种情况下,可以使用与特定频域资源分配字段(即最低或最高阶字段)对应的TRP作为代表TRP,并且可以从对应的码字计算代表TB大小。
在频率/时间资源模式的方法5的一个示例中,用于重复传输中的每个TRP的频率/时间资源可以遵循特定模式。例如,分配给第一TRP传输中的码字的频率/时间资源可以通过DCI动态指示或准静态确定,分配给在第二TRP传输的码字的频率/时间资源可以根据基于第一TRP的资源的特定偏移/模式被分配。或者,可以动态地指示或准静态地确定所有TRP的频率/时间资源,并且可以根据确定的资源内的特定模式来分配每个TRP的资源。在这种情况下,对应于特定模式顺序的TRP(例如在最低RB或第一符号/时隙中传输的TRP)可以用作代表性TRP,并且可以从对应的码字计算代表TB大小。
频率/时间资源模式可以如上述表16中那样进行配置。在这种情况下,可以使用与偶数PRG或奇数PRG对应的TRP作为代表TRP,并且可以从通过代表TRP传输的码字计算代表TB大小。
隐式配置代表性TRP的方法不限于以上示例。上述方法可以根据需要以两种或更多种的组合进行操作,并且这些方法之间可以有优先级。例如,当激活两个或更多个TCI状态时,总是根据TCI状态确定代表TRP,而当只有一个TCI状态激活时,可以根据重复传输的频率/时间资源模式确定代表TRP。
或者,基站可以通过DCI/MAC-CE等明确地指示代表TRP,终端可以根据在所指示的TRP中传输的码字计算代表TB大小。代表TRP的指示符可以是上述信息(例如激活的TCI状态索引、码字索引或它们的组合)之一。
同时,可以与通过代表TRP计算代表TB大小的方法类似地获得代表LDPC BG。
<实施例五:用于重复传输的DCI指示方法>
在通过多个TRP重复传输的情况下,可以通过上述实施例四的方法2),即通过设置DCI的第二码字,来配置重复传输和代表TRP。在这种情况下,终端可能需要确定传输的两个码字是现有NR中不同数据的码字还是重复传输的码字。为了确定这一点,终端可以使用以下方法。
在方法1的一个例子中,当高层配置了重传时,确定为重复传输;否则,确定为不同的数据传输。
在方法2的一个示例中,当多个TCI状态被激活时,确定为重复传输,而当只有一个TCI状态被激活时,确定为不同数据传输。
在方法3的一个示例中,当使用特定的MCS表,例如MCS表3时,确定为重复传输;否则,确定为不同的数据传输。
在方法4的一个示例中,当使用特定的RNTI(例如MCS-C-RNTI、用于NC-JT传输的RNTI或用于重复传输的RNTI)时,确定为重复传输;否则,确定为不同数据传输。
判断终端传输的两个码字是否为不同数据的码字或重复传输的码字的方法不限于上述方法,可以有其各种方法。另外,当确定为重复传输时,终端可能不会期望传输的两个码字可以是不同数据的码字。
当确定为重复传输时,因为终端可以不需要计算除代表TRP之外的TRP的码字中的TB大小,目标码率可以不需要在MCS中指示。因此,在码字中,可以指示上述MCS表中仅用于指示重传调制阶数的MCS索引,或者甚至指示初始传输使用的MCS索引时,该索引的目标码率信息可以被忽略,仅调制阶数被使用。或者,可以使用仅指示调制阶数的新MCS索引,并且由于在当前NR中指示多达四个不同的调制阶数,因此可能需要两个比特来指示对应的MCS索引。
当前,在这种情况下,可以重新定义第二码字的有效载荷。当前,第二码字可以使用5比特的MCS字段、1比特的新数据指示符(NDI)字段和2比特的冗余版本(RV)字段。然而,当如上所述的MCS索引仅使用2比特时,可能会出现未使用的载荷,并且未使用的载荷可用于指示用于重复传输的第三码字信息。此外,当不考虑仅重传参与重复传输的TRP中的特定TRP的情况时,由于未使用第二码字的NDI字段,因此可以重新使用相应的载荷。
图14示出了根据本公开的实施例的在无线通信系统中在多个TRP的重复传输中重新定义DCI有效载荷的示例。参照图14,示出了为第二码字重新定义DCI载荷的方法的示例。在图14中,14-05是一种方法的例子,其中DCI的第二码字的字段被重新定义以同时指示TRP2和TRP 3的调制阶数和冗余版本(RV)。同时,在重复传输中,每个码字的RV可以通过高层配置半静态配置。在图14中,14-10是一种方法的例子,其中当每个码字的RV被半静态设置时,DCI的第二码字的字段被重新定义以同时指示TRP 2、TRP 3、TRP 4和TRP5的调制阶数。
<实施例六:LDPC BG配置方法>
虽然可以同样地计算上述重复传输中每个TRP传输的TB大小,但是根据MCS指示的目标码率值或者为重复传输的每个TRP分配的时间/频率资源量计算的码率值可能不同。因此,对于每个TRP,终端计算的LDPC BG可能不同。在这种情况下,由于接收信号的合并如上所述可能比较困难,因此在本公开的本实施例中如下提出了为每个TRP匹配LDPC BG的方法。
在方法1的一个示例中,当每个TRP的LDPC BG不同时,终端可以始终选择特定的LDPC BG(例如,BG2)。在这种情况下,当TRP之间没有回程延迟时间或回程延迟时间很小,从而可以在TRP之间共享信息时,在这种情况下可能是有效的,每个TRP可以通过一个DCI进行调度。在LDPC中使用的两个BG中,BG2可以用于较低的码率,而BG1可以用于较高的码率。同时,因为接收可靠性可以随着码率降低而增加,所以在可靠性方面假设当用于每个TRP的LDPC BG不同时选择BG2可能是方便的。
在方法1-1的一个实例中,当每个TRP的LDPC BG不同时,终端可以根据一定条件选择LDPC BG。在两个LDPC BG中,针对BG2,可以生成的单个码块的最大长度为3840,而针对BG1,其为8448。因此,码块的数量可以根据为特定TBS选择哪个LDPC BG而变化,这可能影响接收性能。例如,对于特定的码率范围,使用BG1向一个码块传输相同的TB可能比使用BG2向两个码块传输相同的TB在可靠性上更方便。因此,所选择的BG可以根据特定条件而不同,例如为每个TRP计算的TBS值和/或每个TRP的码率。例如,当TBS<=3824时,可能总是选择BG2;否则,可以选择BG1。
在方法2的一个示例中,当每个TRP的LDPC BG不同时,终端可以根据高层配置选择LDPC BG。当TRP之间没有回程或者它们之间的延迟时间长并且因此TRP之间的信息共享不容易时,根据高层配置选择LDPC BG可能是有效的。在这种情况下,每个TRP可以通过不同的DCI进行调度。当LDPC BG被配置为高层时,基站和终端可能期望根据高层配置选择的BG进行编码/解码,而不管TBS和码率。根据高层配置,可以始终如方法1中描述的方法中那样强制配置一个BG(例如BG2),并且可以如方法1-1中描述的方法中那样配置每个TBS范围的BG。
当按照上述方法配置LDPC BG时,可以根据对应的LDPC BG配置码块的最大长度和码块的数量。当在终端中配置了基于CBG的传输时,由于用于计算CBG的码块数量被改变,所使用的CBG的数量以及DCI的CBGTI字段的解释方法也可能发生改变。此外,当终端使用基于CBG的HARQ-ACK码本时,终端可以根据基于上述方法配置的LDPC BG生成与CBG的数量对应的HARQ-ACK码本。
或者,为了不改变现有硬件的操作,可以设置限制,在任意一个LDPC BG中计算相同数量的码块,码块数量可以为1。为此,终端计算的每个TRP传输的TBS可以限制在一个特定的值或更少,对应的值可以是3824,即LDPC BG1和LDPC BG2中进行码块分割的TB长度的最小值。通过应用以上限制,可以在不改变诸如CBG相关重新传输和HARQ-ACK码本生成等操作的情况下,为每个TRP匹配LDPC BG。
图15示出了根据本公开的实施例的无线通信系统中的终端的结构。
参照图15,终端可以包括收发器15-00、存储器15-05以及处理器15-10。终端的收发器15-00和处理器15-10可以根据上述终端的通信方法进行操作。然而,终端的组件不限于上述示例。例如,终端可以包括比上述组件更多或更少的组件。此外,收发器15-00、存储器15-05和处理器15-10可以实现为单个芯片。
收发器15-00可以与基站交换信号。在此,信号可以包括控制信息和数据。为此,收发器15-00可以包括例如用于上变频和放大发射信号的RF发射器,以及用于低噪声放大和下变频接收信号的RF接收器。然而,这仅仅是收发器15-00的实施例,并且收发器15-00的组件不限于RF发射器和RF接收器。
此外,收发器15-00可以通过无线信道接收信号并将该信号输出到处理器15-10,并且可以通过无线信道传输从处理器15-10输出的信号。
存储器15-05可以存储终端操作所需的程序和数据。此外,存储器15-05可以存储终端发送/接收的信号中包括的控制信息或数据。存储器15-05可以包括存储介质或存储介质的组合,例如ROM、RAM、硬盘、CD-ROM和DVD。此外,可以提供多个存储器15-05。
此外,处理器15-10可以控制一系列过程,使得终端可以根据本公开的上述实施例进行操作。例如,处理器15-10可以控制终端的组件接收包括两层的DCI以同时接收多个PDSCH。可以提供多个处理器15-10,并且处理器15-10可以通过执行存储在存储器15-05中的程序来控制终端的组件。
图16示出了根据本公开的实施例的在无线通信系统中的基站的结构。
参照图16,基站可以包括收发器16-00、存储器16-05以及处理器16-10。基站的收发器16-00和处理器16-10可以根据上述基站的通信方法进行操作。然而,基站的组件不限于上述示例。例如,基站可以包括比上述组件更多或更少的组件。此外,收发器16-00、存储器16-05和处理器16-10可以实现为单个芯片。
收发器16-00可以与终端交换信号。在此,信号可以包括控制信息和数据。为此,收发器16-00可以包括例如用于上变频和放大发射信号的RF发射器,以及用于低噪声放大和下变频接收信号的RF接收器。然而,这仅仅是收发器16-00的实施例,并且收发器16-00的组件不限于RF发射器和RF接收器。
此外,收发器16-00可以通过无线信道接收信号并将该信号输出到处理器16-10,并且可以通过无线信道发送从处理器16-10输出的信号。
存储器16-05可以存储基站操作所需的程序和数据。此外,存储器16-05可以存储基站发送/接收的信号中包括的控制信息或数据。存储器16-05可以包括存储介质或存储介质的组合,例如ROM、RAM、硬盘、CD-ROM和DVD。此外,可以提供多个存储器16-05。
此外,处理器16-10可以控制一系列过程,使得基站可以根据本公开的上述实施例进行操作。例如,处理器16-10可以控制基站的每个组件来配置和传送包括用于多个PDSCH的分配信息的两层DCI。可以提供多个处理器16-10,并且处理器16-10可以通过执行存储在存储器16-05中的程序来控制基站的组件。
根据说明书或权利要求中描述的本公开实施例的方法可以通过硬件、软件或其组合来实现。
当这些方法由软件实现时,可以提供计算机可读存储介质来存储一个或更多个程序(软件模块)。可以将存储在计算机可读存储介质中的一个或更多个程序配置为由电子设备内的一个或更多个处理器执行。该一个或更多个程序可以包括用于使电子设备执行根据在说明书或权利要求中描述的本公开的实施例的方法的指令。
这些程序(软件模块或软件)可以存储在随机存取存储器(RAM)、包括闪存的非易失性存储器、只读存储器(ROM)、电可擦除可编程ROM(EEPROM)、磁光盘存储设备、光盘(CD-ROM)、数字多功能光盘(DVD)、其他类型的光学存储设备或磁带中。此外,程序可以存储在由一些或所有这样的存储设备的组合配置的存储器中。此外,可以提供多个存储器中的每一个。
此外,程序可以存储在可通过诸如因特网、内联网、局域网(LAN)、广域网(WLAN)或存储区域网络(SAN)之类的通信网络或者通过它们的组合构成的通信网络访问的可连接存储设备中。这种存储设备可以通过外部端口连接到执行本公开的实施例的装置。此外,通信网络上的单独存储设备可以连接到执行本公开的实施例的装置。
根据本公开,当在无线通信系统中使用网络协同通信时,可以提高终端接收数据/控制信号的可靠性。
在本公开的上述特定实施例中,本公开所包括的组件根据本公开的特定实施例以单数或复数表示。然而,单数或复数的表述是根据提出的情况适当选择的以方便描述,本公开不限于单数或复数的组件,以复数表述的组件甚至可以配置为单数,或以单数表述的组件甚至可以配置为复数。
应当理解,此处描述的本公开实施例应该视为仅仅是描述性的,而不是出于限制的目的。即,本领域普通技术人员将理解,在不脱离本公开的范围的情况下,可以在本公开的实施例中进行形式和细节上的各种改变。此外,在必要时,本公开的实施例可以组合操作。例如,基站和终端可以根据本公开的实施例和另一实施例的部分的组合来操作。例如,基站和终端可以按照本发明实施例一和实施例二的部分组合进行操作。此外,虽然本公开的上述实施例是基于FDD LTE系统提出的,但是基于本公开实施例的技术精神的其他修改也可以在其他系统中实现,例如TDD LTE系统和5G或NR系统。
尽管已经利用各种实施例描述了本公开,但可以向本领域技术人员建议各种改变和修改。本公开旨在包括属于所附权利要求的范围内的这些改变和修改。

Claims (15)

1.一种在无线通信系统中由用户设备(UE)执行的方法,所述方法包括:
接收与第一传输配置指示符(TCI)状态和第二TCI状态分别相关联的、携带相同的传输块(TB)的第一物理下行链路共享信道(PDSCH)传输和第二PDSCH传输;
确定所述第一PDSCH传输的第一传输块大小(TBS),其中,所确定的第一TBS被应用于所述第二PDSCH传输的第二TBS;以及
与所述相同的传输块相对应地,基于所确定的第一TBS识别用于所述第一TBS传输的第一低密度奇偶校验(LDPC)基图,并且基于所述第二TBS识别用于所述第二TBS传输的第二LDPC基图。
2.根据权利要求1所述的方法,其中,所述第一TCI状态和所述第二TCI状态是在下行链路控制信息(DCI)中指示的。
3.根据权利要求1所述的方法,其中,用于所述第一PDSCH传输的第一频率资源和用于所述第二PDSCH传输的第二频率资源彼此不交叠。
4.根据权利要求3所述的方法,其中,所述第一PDSCH传输和所述第二PDSCH传输是在相同的时间资源上执行的。
5.根据权利要求1所述的方法,其中,向所述第一PDSCH传输分配的第一资源元素的数量大于或等于向所述第二PDSCH传输分配的第二资源元素的数量。
6.根据权利要求1所述的方法,其中,所述第一PDSCH传输包括向所述第一PDSCH传输和所述第二PDSCH传输分配的资源块中最低的资源块。
7.根据权利要求1所述的方法,所述方法还包括确定所述第一PDSCH传输的第一调制阶数,
其中,所确定的第一PDSCH传输的第一调制阶数被应用于所述第二PDSCH传输的第二调制阶数。
8.根据权利要求1所述的方法,其中,所述第一PDSCH传输和所述第二PDSCH传输是以DCI中相同的传输层数调度的。
9.一种无线通信系统中的用户设备(UE),所述UE包括:
收发器;以及
至少一个处理器,所述至少一个处理器与所述收发器耦接并且被配置为:
接收与第一传输配置指示符(TCI)状态和第二TCI状态分别相关联的、携带相同的传输块(TB)的第一物理下行链路共享信道(PDSCH)传输和第二PDSCH;
确定所述第一PDSCH传输的第一传输块大小(TBS),其中,所确定的第一TBS被应用于所述第二PDSCH传输的第二TBS;以及
与所述相同的传输块相对应地,基于所确定的第一TBS识别用于所述第一TBS传输的第一低密度奇偶校验(LDPC)基图,并且基于所述第二TBS识别用于所述第二TBS传输的第二LDPC基图。
10.根据权利要求9所述的UE,其中,所述第一TCI状态和所述第二TCI状态是在下行链路控制信息(DCI)中指示的。
11.根据权利要求9所述的UE,其中,用于所述第一PDSCH传输的第一频率资源和用于所述第二PDSCH传输的第二频率资源彼此不交叠。
12.根据权利要求11所述的UE,其中,所述第一PDSCH传输和所述第二PDSCH传输是在相同的时间资源上执行的。
13.根据权利要求9所述的UE,其中,向所述第一PDSCH传输分配的第一资源元素的数量大于或等于向所述第二PDSCH传输分配的第二资源元素的数量。
14.根据权利要求9所述的UE,其中,所述第一PDSCH传输包括向所述第一PDSCH传输和所述第二PDSCH传输分配的资源块中最低的资源块。
15.根据权利要求9所述的UE,其中,所述至少一个处理器还被配置为确定所述第一PDSCH传输的第一调制阶数,以及
其中,所确定的第一PDSCH传输的第一调制阶数被应用于所述第二PDSCH传输的第二调制阶数。
CN202080025782.8A 2019-03-29 2020-03-27 用于网络协作通信的基于重复的数据传输的方法和装置 Pending CN113661675A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR20190037314 2019-03-29
KR10-2019-0037314 2019-03-29
KR20190052384 2019-05-03
KR10-2019-0052384 2019-05-03
KR10-2019-0110942 2019-09-06
KR1020190110942A KR102659488B1 (ko) 2019-03-29 2019-09-06 네트워크 협력통신을 위한 데이터 반복 전송 방법 및 장치
PCT/KR2020/004218 WO2020204492A1 (en) 2019-03-29 2020-03-27 Method and apparatus for repetition-based data transmission for network cooperative communication

Publications (1)

Publication Number Publication Date
CN113661675A true CN113661675A (zh) 2021-11-16

Family

ID=72884646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080025782.8A Pending CN113661675A (zh) 2019-03-29 2020-03-27 用于网络协作通信的基于重复的数据传输的方法和装置

Country Status (4)

Country Link
US (1) US11990995B2 (zh)
EP (1) EP3928460A4 (zh)
KR (1) KR102659488B1 (zh)
CN (1) CN113661675A (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11910416B2 (en) * 2019-10-11 2024-02-20 Qualcomm Incorporated Default quasi-colocation for single downlink control information-based multiple transmission reception points
WO2022151394A1 (en) 2021-01-15 2022-07-21 Zte Corporation Methods and systems for coverage enhancement in wireless networks
US11824803B2 (en) * 2021-03-25 2023-11-21 Telefonaktiebolaget Lm Ericsson (Publ) Phase tracking reference signaling for a wireless communication network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101682470A (zh) * 2007-06-18 2010-03-24 诺基亚西门子通信公司 用于动态解释传输块尺寸的方法
WO2016018079A1 (ko) * 2014-08-01 2016-02-04 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
CN107211234A (zh) * 2014-10-20 2017-09-26 高通股份有限公司 传输块大小确定
US20190037437A1 (en) * 2017-07-28 2019-01-31 Qualcomm Incorporated Techniques and apparatuses for low density parity check base graph determination and indication
WO2019031850A1 (ko) * 2017-08-11 2019-02-14 한국전자통신연구원 하향링크 제어 채널의 송수신 방법 및 이를 이용하는 장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MA47865B1 (fr) 2017-08-24 2020-09-30 Ericsson Telefon Ab L M Sélection de graphe de base pour une nouvelle radio 3gpp
US10939321B2 (en) * 2017-09-11 2021-03-02 Apple Inc. Power boosting and transport block size (TBS) design in a new radio (NR) system
WO2019199070A1 (ko) * 2018-04-13 2019-10-17 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 정보를 이용하여, 전송 블록을 전송하는 방법 및 이를 위한 장치
US11277756B2 (en) * 2018-06-01 2022-03-15 Qualcomm Incorporated Transmission of aggregated slots via multiple beamformed channels
US20200092068A1 (en) * 2018-09-19 2020-03-19 Qualcomm Incorporated Acknowledgement codebook design for multiple transmission reception points
CN113273244A (zh) * 2019-01-09 2021-08-17 松下电器(美国)知识产权公司 基站、终端、发送方法及接收方法
WO2020146853A1 (en) * 2019-01-11 2020-07-16 Apple Inc. User equipment processing time relaxation for multi-dci nc-jt pdsch reception
US11212763B2 (en) 2019-01-22 2021-12-28 Lg Electronics Inc. Method for transmitting, by a UE, sidelink synchronization block in wireless communication system and device for same
US10945281B2 (en) 2019-02-15 2021-03-09 At&T Intellectual Property I, L.P. Facilitating improved performance of multiple downlink control channels in advanced networks
US20200358557A1 (en) 2019-05-10 2020-11-12 Samsung Electronics Co., Ltd. Method and apparatus for data transmission in wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101682470A (zh) * 2007-06-18 2010-03-24 诺基亚西门子通信公司 用于动态解释传输块尺寸的方法
WO2016018079A1 (ko) * 2014-08-01 2016-02-04 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
CN107211234A (zh) * 2014-10-20 2017-09-26 高通股份有限公司 传输块大小确定
US20190037437A1 (en) * 2017-07-28 2019-01-31 Qualcomm Incorporated Techniques and apparatuses for low density parity check base graph determination and indication
WO2019031850A1 (ko) * 2017-08-11 2019-02-14 한국전자통신연구원 하향링크 제어 채널의 송수신 방법 및 이를 이용하는 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "E nhancements on multi-TRP/Panel transmission", 《3GPP TSG RAN WG1 #96》, pages 1 - 7 *

Also Published As

Publication number Publication date
EP3928460A1 (en) 2021-12-29
KR102659488B1 (ko) 2024-04-23
KR20200114988A (ko) 2020-10-07
US20220029737A1 (en) 2022-01-27
EP3928460A4 (en) 2022-04-20
US11990995B2 (en) 2024-05-21

Similar Documents

Publication Publication Date Title
US20230254939A1 (en) Method and apparatus for performing cooperative communication in wireless communication system
US10742349B2 (en) Apparatus and method for encoding and decoding channel in communication or broadcasting system
US11882569B2 (en) Method and apparatus for data transmission and reception for network coordinated communication
CN110612693B (zh) 用于在无线通信系统中传输下行链路控制信道的方法和装置
CN112449746B (zh) 发送/接收下行链路控制信道的方法和设备
CN113676268A (zh) 用于在移动通信系统中报告信道状态信息的方法和设备
KR102629352B1 (ko) 무선 셀룰라 통신 시스템에서 상향링크 데이터 및 제어신호 전송 타이밍 결정 방법 및 장치
US20220124740A1 (en) Method and apparatus for reporting channel state information for network cooperative communication
US11057176B2 (en) DM-RS transmission method and device in wireless mobile communication system
CN113169843A (zh) 用于在无线通信系统中发送和接收harq-ack反馈的方法和设备
US11139912B2 (en) Method and apparatus for repetition-based data transmission for network cooperative communication
US20210105809A1 (en) Method and apparatus for transmitting and receiving data in wireless communication network
US11990995B2 (en) Method and apparatus for repetition-based data transmission for network cooperative communication
CN114946151A (zh) 无线通信系统中发送和接收下行链路控制信息的方法和装置
CN115134062A (zh) 无线蜂窝通信系统中设置多个dmrs结构的方法和设备
US11553441B2 (en) Uplink transmission power control method and device in wireless cellular communication system
CN116057880A (zh) 用于在无线协作通信系统中发射/接收控制信息的方法和装置
CN114503635A (zh) 用于针对无线通信传输数据的方法和设备
CN117099453A (zh) 无线通信系统中发送上行信道的方法及装置
US10986619B2 (en) Method and apparatus for determining uplink transmission timing in wireless communication system
US20220329353A1 (en) Method and apparatus for transmitting uplink channel in wireless communication system
US20220029682A1 (en) Method and apparatus for reporting channel state information for network cooperative communication
CN113383602B (zh) 无线通信系统中的发送和接收数据的方法和设备
KR20210040762A (ko) 무선 통신 네트워크에서의 데이터 송수신 방법 및 장치
KR20220098325A (ko) 통신 또는 방송 시스템에서 채널 부호화/복호화 방법 및 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination