WO2018171438A1 - 在多天线通信系统中发射分集的方法及装置 - Google Patents

在多天线通信系统中发射分集的方法及装置 Download PDF

Info

Publication number
WO2018171438A1
WO2018171438A1 PCT/CN2018/078470 CN2018078470W WO2018171438A1 WO 2018171438 A1 WO2018171438 A1 WO 2018171438A1 CN 2018078470 W CN2018078470 W CN 2018078470W WO 2018171438 A1 WO2018171438 A1 WO 2018171438A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofdm symbol
precoding
sub
subframe
subblocks
Prior art date
Application number
PCT/CN2018/078470
Other languages
English (en)
French (fr)
Inventor
赵锐
潘学明
苏昕
彭莹
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Publication of WO2018171438A1 publication Critical patent/WO2018171438A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Definitions

  • the present disclosure relates to the field of communications technologies, and more particularly to a method and apparatus for transmitting diversity in a multi-antenna communication system.
  • the terminal UE includes two channels when transmitting data, one control channel PSCCH for transmitting SA (Scheduling Assignment) information, and another data channel PSSCH for transmitting data information ( Data).
  • the receiving end firstly receives the SA information carried in the control channel, thereby receiving the data information according to the received control information.
  • the UE selects idle resources through a perceptual method in a system configuration or a pre-configured V2X resource pool; the other is a base station-assisted resource selection method when the vehicle is in network coverage.
  • the base station can schedule the V2V communication through the downlink control channel (PDCCH/EPDCCH).
  • the base station instructs the transmitting vehicle to transmit the resource locations of the SA and Data by transmitting a V2V grant (V2V grant message).
  • the subframe structure of the LTE Rel-14V2X is as shown in FIG. 1 and includes 14 OFDM (Orthogonal Frequency Division Multiplexing) symbols. Among them, 4 OFDM symbols are used to carry pilot symbols, that is, demodulation. With reference signal DMRS; 1 OFDM symbol user bears guard interval (GP, Guard Period); and the first OFDM symbol can be used for automatic gain control AGC adjustment.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the DMRS generation for SA and Data of LTE Rel-14V2X mainly includes the following methods:
  • the DMRS sequence used by the scheduling allocation information SA adopts a predefined initialization ID, and one of the predefined four cyclic shifts ⁇ 0, 3, 6, 9 ⁇ is randomly selected, and the receiving end needs to blindly detect the SA when accepting the SA.
  • the DMRS sequences on the OFDM symbols of different DMRSs are identical.
  • the DMRS initialization ID and the cyclic shift of the DMRS sequence used by the data information Data are both generated by the ID value obtained by the cyclic redundancy check CRC bits of the SA (N_ID), and the OFDM symbols of different DMRSs may be different.
  • N_ID mod 2 0, the DMRS sequence is the same.
  • N_ID mod 2 1, the DMRS sequence is different and is extended by [1, -1, 1, -1].
  • the receiving end can completely reconstruct the DMRS sequence of the entire data transmission according to the received SA information.
  • the existing LTE Rel-14V2X system only supports the single antenna transmission mode in the direct communication between the terminal UEs.
  • the single antenna transmission mode cannot be applied to the multi-antenna mode. .
  • the purpose of the present disclosure is to provide a method and apparatus for transmitting diversity in a multi-antenna communication system, which solves the problem that the data transmission mode of a single antenna in the related art cannot be applied to a multi-antenna communication system.
  • an embodiment of the present disclosure provides a method for transmitting diversity in a multi-antenna communication system, the multi-antenna communication system including an antenna port, and the method includes:
  • the transmission subframe into multiple precoding subblocks in a time domain; wherein, one precoding subblock includes at least one pilot symbol The first OFDM symbol occupied;
  • the precoding operation performed by the first OFDM symbol and the second OFDM symbol in the block is the same precoding operation.
  • the step of performing a precoding operation on the first OFDM symbol of the multiple precoding subblocks and the second OFDM symbol occupied by the data information to obtain the data to be sent includes:
  • Precoding operations are performed on the first OFDM symbol and the second OFDM symbol in the precoded subblock, respectively, using the selected precoding matrix.
  • the method further includes: before the dividing the transmission subframe into the plurality of precoding subblocks in the time domain, according to the orthogonal frequency division multiplexing OFDM symbol in the sending subframe, the method further includes:
  • step of dividing the sending subframe into multiple precoding subblocks in the time domain according to the orthogonal frequency division multiplexing OFDM symbols in the sending subframe including:
  • one precoding subblock includes at least one first Sub OFDM symbol.
  • the method further includes: before the dividing the transmission subframe into the plurality of precoding subblocks in the time domain, according to the orthogonal frequency division multiplexing OFDM symbol in the sending subframe, the method further includes:
  • step of dividing the sending subframe into multiple precoding subblocks in the time domain according to the orthogonal frequency division multiplexing OFDM symbols in the sending subframe including:
  • the transmit subframe And dividing, according to the first OFDM symbol and the second sub OFDM symbol in the transmitting subframe, the transmit subframe into multiple precoding subblocks in a time domain; wherein, one precoding subblock includes at least one first OFDM symbol.
  • the method further includes: before the dividing the transmission subframe into the plurality of precoding subblocks in the time domain, according to the orthogonal frequency division multiplexing OFDM symbol in the sending subframe, the method further includes:
  • step of dividing the sending subframe into multiple precoding subblocks in the time domain according to the orthogonal frequency division multiplexing OFDM symbols in the sending subframe including:
  • one precoding subblock includes at least one One sub OFDM symbol.
  • the method further includes:
  • Embodiments of the present disclosure also provide an apparatus for transmitting diversity in a multi-antenna communication system, the multi-antenna communication system including an antenna port, the apparatus comprising:
  • a first information determining module configured to determine data information of data to be sent, and a sending subframe of the data to be sent;
  • a dividing module configured to divide the transmitting subframe into multiple precoding subblocks in a time domain according to orthogonal frequency division multiplexing OFDM symbols in the transmitting subframe; wherein, one precoding subblock includes at least a first OFDM symbol occupied by pilot symbols;
  • a first precoding module configured to perform precoding operations on the first OFDM symbol of the multiple precoding subblocks and the second OFDM symbol occupied by the data information, respectively, and send the data information after the precoding operation by using the antenna port
  • the precoding operation on the first OFDM symbol and the second OFDM symbol in the same precoding subblock is the same precoding operation.
  • the first precoding module includes:
  • a matrix determining submodule configured to randomly select a precoding matrix for each precoding subblock from a preset precoding matrix set; or multiple precoding subblocks from a preset precoding matrix set in a pre-agreed order Select your own precoding matrix;
  • a precoding submodule configured to separately perform a precoding operation on the first OFDM symbol and the second OFDM symbol in the precoding subblock by using the selected precoding matrix.
  • the device further comprises:
  • a first splitting module configured to split the first OFDM symbol occupied by the pilot symbol into a plurality of first sub-OFDM symbols
  • the dividing module includes:
  • a first dividing submodule configured to divide the transmitting subframe into multiple precoding subblocks in a time domain according to the first sub OFDM symbol and the second OFDM symbol in the transmitting subframe; wherein, one pre The coded sub-block includes at least one first sub-OFDM symbol.
  • the device further comprises:
  • a second splitting module configured to split the second OFDM symbol occupied by the data information into multiple second sub-OFDM symbols
  • the dividing module includes:
  • a second dividing submodule configured to divide the transmitting subframe into multiple precoding subblocks in a time domain according to the first OFDM symbol and the second subframe OFDM symbol in the sending subframe; wherein, one pre The coded sub-block includes at least one first OFDM symbol.
  • the device further comprises:
  • a third splitting module configured to split the first OFDM symbol occupied by the pilot symbol into a plurality of first sub-OFDM symbols, and split the second OFDM symbol occupied by the data information into multiple second sub-OFDMs symbol;
  • the dividing module includes:
  • a third sub-module configured to divide the transmit subframe into multiple pre-coded sub-blocks in a time domain according to the first sub-OFDM symbol and the second sub-OFDM symbol in the transmit subframe;
  • the precoding sub-block includes at least one first sub-OFDM symbol.
  • the device further comprises:
  • a second information determining module configured to determine scheduling allocation information of data to be sent when the sending subframe is a short subframe
  • a second pre-coding module configured to perform a pre-coding operation on the first OFDM symbol of the multiple pre-coded sub-blocks and the third OFDM symbol occupied by the scheduled allocation information, and send the scheduling after the pre-coding operation by using the antenna port Allocating information; wherein the precoding operations performed on the first OFDM symbol and the third OFDM symbol in the same precoding subblock are the same precoding operation.
  • Embodiments of the present disclosure also provide an apparatus for transmitting diversity in a multi-antenna communication system, the multi-antenna communication system including an antenna port, the apparatus including a memory and a processor, wherein the memory is stored in the memory a program running on the processor, the processor executing the program, the following steps: determining data information of data to be sent, and transmitting a subframe of the data to be sent; according to the positive in the sending subframe Transmitting a OFDM symbol, dividing the transmission subframe into a plurality of precoding subblocks in a time domain; wherein, one precoding subblock includes at least one first OFDM symbol occupied by pilot symbols; respectively Performing a precoding operation on a first OFDM symbol of the plurality of precoded subblocks and a second OFDM symbol occupied by the data information, and transmitting, by using the antenna port, data information after the precoding operation; wherein, in the same precoding subblock
  • the processor is specifically configured to: randomly select, from a preset precoding matrix set, a precoding matrix for each precoding subblock; or multiple precoding subblocks from a preset in a predetermined order.
  • a precoding matrix of its own is selected in the precoding matrix set; the first OFDM symbol and the second OFDM symbol in the precoding subblock are respectively precoded by using the selected precoding matrix.
  • the processor is specifically configured to: split the first OFDM symbol occupied by the pilot symbol into a plurality of first sub-OFDM symbols; according to the first sub-OFDM symbol and the first in the transmitting subframe And a second OFDM symbol, the transmission subframe is divided into a plurality of precoding subblocks in a time domain; wherein, one precoding subblock includes at least one first sub OFDM symbol.
  • the processor is specifically configured to: split the second OFDM symbol occupied by the data information into a plurality of second sub OFDM symbols; according to the first OFDM symbol and the second sub An OFDM symbol, the transmission subframe is divided into a plurality of precoding subblocks in a time domain; wherein one precoding subblock includes at least one first OFDM symbol.
  • the processor is specifically configured to: split the first OFDM symbol occupied by the pilot symbol into a plurality of first sub OFDM symbols, and split the second OFDM symbol occupied by the data information into multiple a second sub-OFDM symbol; dividing the transmission subframe into a plurality of pre-coded sub-blocks in a time domain according to the first sub-OFDM symbol and the second sub-OFDM symbol in the transmission subframe; wherein, one pre- The coded sub-block includes at least one first sub-OFDM symbol.
  • the processor is specifically configured to: when the sending subframe is a short subframe, determine scheduling allocation information of data to be sent; respectively, first OFDM symbols and scheduled allocations of multiple precoding subblocks The third OFDM symbol occupied by the information is subjected to a precoding operation, and the scheduling allocation information after the precoding operation is transmitted through the antenna port; wherein the precoding of the first OFDM symbol and the third OFDM symbol in the same precoding subblock is performed The encoding operation is the same precoding operation.
  • the embodiment of the present disclosure further provides a computer readable storage medium having a program stored thereon, the program being executed by a processor to implement the steps in any of the above methods.
  • a OFDM symbol in a transmission subframe is divided into a plurality of precoding sub-blocks, and each pre-coding sub-block is pre-coded separately. Therefore, a data to be transmitted is subjected to multiple precoding processing, thereby improving the gain of antenna transmit diversity and precoding.
  • FIG. 1 is a schematic structural diagram of a normal subframe in the related art
  • FIG. 2 is a flow chart showing the steps of a method for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a transmission subframe according to an embodiment of the present disclosure.
  • FIG. 4 is a second schematic structural diagram of a transmission subframe according to an embodiment of the present disclosure.
  • FIG. 5 is a third schematic structural diagram of a transmission subframe according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram 4 of a transmission subframe according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram 5 of a transmission subframe according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a transmission subframe being a short subframe according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an apparatus for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram showing another structure of an apparatus for transmitting diversity in a multi-antenna communication system according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a method for transmitting diversity in a multi-antenna communication system, the multi-antenna communication system including an antenna port, and the method includes:
  • Step 21 Determine data information of data to be sent, and a sending subframe of the data to be sent;
  • Step 22 According to the orthogonal frequency division multiplexing OFDM symbol in the transmitting subframe, divide the transmitting subframe into multiple precoding subblocks in a time domain; wherein, one precoding subblock includes at least one The first OFDM symbol occupied by the pilot symbol; as shown in FIG. 3 is a schematic structural diagram of the transmission subframe. According to FIG. 3, the transmission subframe can be divided into four precoding sub-blocks;
  • Step 23 Perform a precoding operation on the first OFDM symbol of the multiple precoding subblocks and the second OFDM symbol occupied by the data information, and send the data information after the precoding operation through the antenna port; wherein, the same The precoding operation performed by the first OFDM symbol and the second OFDM symbol in the precoded subblock is the same precoding operation.
  • the method of transmitting diversity in a multi-antenna communication system is generally applied to a direct communication link between terminals (or vehicles).
  • the scheduling allocation information that is, the SA information
  • the scheduling allocation information is transmitted by using the method without precoding (that is, according to the scheme of the related art)
  • the other terminal can monitor the corresponding SA information.
  • the sending time of the same information to be sent is not later than the sending time of the data information data of the data to be sent.
  • FIG. 4 is a schematic structural diagram of a normal transmission subframe, where a subcarrier bandwidth is 15 kHz, and the transmission subframe includes 4 pilot symbols (ie, includes 4 first OFDM symbols), and the time domain can
  • the transmission subframe is divided into 4 precoding subblocks; the same precoding operation is performed on the first OFDM symbol of the pilot in the 4 precoding subblocks in FIG. 3 and the second OFDM symbol of the data, respectively, so that one
  • the data information of the data to be transmitted is subjected to four precoding processes to improve the diversity gain.
  • step 22 includes:
  • the precoding matrix included in the preset precoding matrix set may include but is not limited to the following matrix:
  • Precoding operations are performed on the first OFDM symbol and the second OFDM symbol in the precoded subblock, respectively, using the selected precoding matrix. That is, the first OFDM symbol and the second OFDM symbol in the precoded subblock are separately precoded by using any one of the above six matrices.
  • the above embodiment of the present disclosure adopts a method of splitting an OFDM symbol into a plurality of OFDM symbols to introduce a larger subcarrier bandwidth; for example, when a subcarrier bandwidth of 30 kHz is introduced, one OFDM symbol is split into two sub OFDM symbols.
  • Three splitting schemes are provided in embodiments of the present disclosure.
  • the first solution, before step 22, the embodiment of the present disclosure further includes:
  • Step 201 Split the first OFDM symbol occupied by the pilot symbol into a plurality of first sub-OFDM symbols
  • Step 22 includes: dividing the transmission subframe into a plurality of precoding subblocks in a time domain according to the first sub OFDM symbol and the second OFDM symbol in the transmission subframe; wherein, one precoding subblock At least one first sub OFDM symbol is included.
  • the first OFDM symbol of the pilot is split into two first OFDM symbols, and the second OFDM symbol of the data is not split.
  • the transmit subframe can be divided into a maximum of eight. Precoding sub-blocks, so that 8 independent precoding operations can be performed on the data information of the data to be transmitted, further improving the diversity gain.
  • pilot sequences of the two first sub-OFDM symbols obtained by splitting one first OFDM symbol may be the same or different, and the generation of the pilot sequence may be determined by the SA information indication.
  • the second solution, before step 22, the embodiment of the present disclosure further includes:
  • Step 202 Split the second OFDM symbol occupied by the data information into multiple second sub-OFDM symbols.
  • step 22 includes:
  • the transmit subframe And dividing, according to the first OFDM symbol and the second sub OFDM symbol in the transmitting subframe, the transmit subframe into multiple precoding subblocks in a time domain; wherein, one precoding subblock includes at least one first OFDM symbol.
  • the second OFDM symbol of the data is split into two second sub-OFDM symbols, and the first OFDM symbol of the pilot is not subjected to symbol splitting.
  • the transmit subframe may be divided into a maximum of Four precoding matrices, so that four independent precoding operations can be performed on the data information of the data to be transmitted. Since the second OFDM symbol of the data is split, a finer time domain resource granularity can be provided; the first OFDM symbol of the transmitting subframe is generally used as an automatic gain control AGC, and the last OFDM symbol is generally used as a guard interval.
  • the first sub-OFDM symbol after splitting can be used as the AGC, and the last sub-OFDM symbol can be used as the GP, thereby reducing the AGC. And GP overhead.
  • the third solution, before step 22, the embodiment of the present disclosure further includes:
  • Step 203 The first OFDM symbol occupied by the pilot symbol is split into a plurality of first sub-OFDM symbols, and the second OFDM symbol occupied by the data information is split into a plurality of second sub-OFDM symbols.
  • step 22 includes:
  • one precoding subblock includes at least one One sub OFDM symbol.
  • the transmission subframe is divided into a maximum of 8 precoding subblocks, so that 8 independent precoding operations can be performed on the data information of the data to be transmitted, thereby further improving the diversity gain; since the second OFDM symbol of the data is split, Provides finer time domain resource granularity; the first OFDM symbol of the simultaneous transmission subframe is generally used as an automatic gain control AGC, and the last OFDM symbol is generally used as a guard interval GP due to the first OFDM symbol and the last OFDM The symbols are split, and the first sub-OFDM symbol after splitting can be used as the AGC, and the last sub-OFDM symbol can be used as the GP, thereby reducing the overhead of the AGC and the GP.
  • the method provided by the embodiment of the present disclosure further includes:
  • Step 24 Determine scheduling allocation information of data to be sent
  • Step 25 Perform a precoding operation on the first OFDM symbol of the multiple precoding subblocks and the third OFDM symbol occupied by the scheduled allocation information, and send the scheduling allocation information after the precoding operation by using the antenna port, where The precoding operations performed on the first OFDM symbol and the third OFDM symbol in the same precoding subblock are the same precoding operation.
  • the SA information may be transmitted not only according to an existing transmission scheme but also by a precoding operation.
  • the third OFDM symbol occupied by the scheduling allocation information in the four precoding subblocks in FIG. 8 and the first OFDM symbol occupied by the pilot are respectively precoded, and then sent through the antenna port, thereby making scheduling
  • the allocation information is processed by 4 precodings to improve the diversity gain. Specifically, as shown in FIG.
  • the terminal performs SA and data transmission by referring to a short subframe, where the pilot sequence of the SA is generated by using a predefined sequence (including predefined The demodulation reference signal DMRS initialization ID and cyclic shift information), and the pilot sequence of the data information may generate a DMRS sequence according to the indication of the SA.
  • a predefined sequence including predefined
  • the method for transmitting diversity divides an OFDM symbol in a transmission subframe into a plurality of precoding subblocks, and performs precoding operations on each precoding subblock separately, thereby making one
  • the data to be transmitted is subjected to multiple precoding processing, thereby improving the gain of antenna transmit diversity and precoding; and further increasing the diversity gain by splitting the OFDM symbol into multiple OFDM symbols to increase the number of precoding subblocks, Reduce the overhead of AGC and GP.
  • an embodiment of the present disclosure further provides an apparatus for transmitting diversity in a multi-antenna communication system, the multi-antenna communication system including an antenna port, and the apparatus includes:
  • the first information determining module 91 is configured to determine data information of data to be sent, and a sending subframe of the data to be sent;
  • a dividing module 92 configured to divide the transmitting subframe into multiple precoding subblocks in a time domain according to orthogonal frequency division multiplexing OFDM symbols in the transmitting subframe; wherein, one precoding subblock includes At least one first OFDM symbol occupied by pilot symbols;
  • the first pre-encoding module 93 is configured to perform pre-coding operations on the first OFDM symbols of the multiple pre-coded sub-blocks and the second OFDM symbols occupied by the data information, and send the data after the pre-coding operation through the antenna port. Information; wherein the precoding operations performed on the first OFDM symbol and the second OFDM symbol in the same precoding subblock are the same precoding operation.
  • the first precoding module in the foregoing embodiment of the present disclosure includes:
  • a matrix determining submodule configured to randomly select a precoding matrix for each precoding subblock from a preset precoding matrix set; or multiple precoding subblocks from a preset precoding matrix set in a pre-agreed order Select your own precoding matrix;
  • a precoding submodule configured to separately perform a precoding operation on the first OFDM symbol and the second OFDM symbol in the precoding subblock by using the selected precoding matrix.
  • the device in the foregoing embodiment of the present disclosure further includes:
  • a first splitting module configured to split the first OFDM symbol occupied by the pilot symbol into a plurality of first sub-OFDM symbols
  • the dividing module includes:
  • a first dividing submodule configured to divide the transmitting subframe into multiple precoding subblocks in a time domain according to the first sub OFDM symbol and the second OFDM symbol in the transmitting subframe; wherein, one pre The coded sub-block includes at least one first sub-OFDM symbol.
  • the device in the foregoing embodiment of the present disclosure further includes:
  • a second splitting module configured to split the second OFDM symbol occupied by the data information into multiple second sub-OFDM symbols
  • the dividing module includes:
  • a second dividing submodule configured to divide the transmitting subframe into multiple precoding subblocks in a time domain according to the first OFDM symbol and the second subframe OFDM symbol in the sending subframe; wherein, one pre The coded sub-block includes at least one first OFDM symbol.
  • the device in the foregoing embodiment of the present disclosure further includes:
  • a third splitting module configured to split the first OFDM symbol occupied by the pilot symbol into a plurality of first sub-OFDM symbols, and split the second OFDM symbol occupied by the data information into multiple second sub-OFDMs symbol;
  • the dividing module includes:
  • a third sub-module configured to divide the transmit subframe into multiple pre-coded sub-blocks in a time domain according to the first sub-OFDM symbol and the second sub-OFDM symbol in the transmit subframe;
  • the precoding sub-block includes at least one first sub-OFDM symbol.
  • the device in the foregoing embodiment of the present disclosure further includes:
  • a second information determining module configured to determine scheduling allocation information of data to be sent when the sending subframe is a short subframe
  • a second pre-coding module configured to perform a pre-coding operation on the first OFDM symbol of the multiple pre-coded sub-blocks and the third OFDM symbol occupied by the scheduled allocation information, and send the scheduling after the pre-coding operation by using the antenna port Allocating information; wherein the precoding operations performed on the first OFDM symbol and the third OFDM symbol in the same precoding subblock are the same precoding operation.
  • the apparatus for transmitting diversity divides an OFDM symbol in a transmission subframe into a plurality of precoding subblocks, and performs a precoding operation on each precoding subblock, thereby making one
  • the data to be transmitted is subjected to multiple precoding processing, thereby improving the gain of antenna transmit diversity and precoding; and further increasing the diversity gain by splitting the OFDM symbol into multiple OFDM symbols to increase the number of precoding subblocks, Reduce the overhead of AGC and GP.
  • the apparatus for transmitting diversity in the multi-antenna communication system provided by the above-described embodiments of the present disclosure is a device capable of implementing the above-described method for transmitting diversity in a multi-antenna communication system, and the above-described transmission diversity in the multi-antenna communication system All of the embodiments of the method are applicable to the device and all achieve the same or similar benefits.
  • an embodiment of the present disclosure further provides an apparatus for transmitting diversity in a multi-antenna communication system, the apparatus comprising: a processor 100; a memory 120 connected to the processor 100 through a bus interface, and a transceiver interface 110 coupled to the processor 100; the memory for storing programs and data used by the processor in performing operations; transmitting control commands and the like through the transceiver 110;
  • the following functional modules are implemented:
  • a first information determining module configured to determine data information of data to be sent, and a sending subframe of the data to be sent;
  • a dividing module configured to divide the transmitting subframe into multiple precoding subblocks in a time domain according to orthogonal frequency division multiplexing OFDM symbols in the transmitting subframe; wherein, one precoding subblock includes at least a first OFDM symbol occupied by pilot symbols;
  • a first precoding module configured to perform precoding operations on the first OFDM symbol of the multiple precoding subblocks and the second OFDM symbol occupied by the data information, respectively, and send the data information after the precoding operation by using the antenna port
  • the precoding operation on the first OFDM symbol and the second OFDM symbol in the same precoding subblock is the same precoding operation.
  • the first precoding module includes:
  • a matrix determining submodule configured to randomly select a precoding matrix for each precoding subblock from a preset precoding matrix set; or multiple precoding subblocks from a preset precoding matrix set in a pre-agreed order Select your own precoding matrix;
  • a precoding submodule configured to separately perform a precoding operation on the first OFDM symbol and the second OFDM symbol in the precoding subblock by using the selected precoding matrix.
  • the device further includes:
  • a first splitting module configured to split the first OFDM symbol occupied by the pilot symbol into a plurality of first sub-OFDM symbols
  • the dividing module includes:
  • a first dividing submodule configured to divide the transmitting subframe into multiple precoding subblocks in a time domain according to the first sub OFDM symbol and the second OFDM symbol in the transmitting subframe; wherein, one pre The coded sub-block includes at least one first sub-OFDM symbol.
  • the device further includes:
  • a second splitting module configured to split the second OFDM symbol occupied by the data information into multiple second sub-OFDM symbols
  • the dividing module includes:
  • a second dividing submodule configured to divide the transmitting subframe into multiple precoding subblocks in a time domain according to the first OFDM symbol and the second subframe OFDM symbol in the sending subframe; wherein, one pre The coded sub-block includes at least one first OFDM symbol.
  • the device further includes:
  • a third splitting module configured to split the first OFDM symbol occupied by the pilot symbol into a plurality of first sub-OFDM symbols, and split the second OFDM symbol occupied by the data information into multiple second sub-OFDMs symbol;
  • the dividing module includes:
  • a third sub-module configured to divide the transmit subframe into multiple pre-coded sub-blocks in a time domain according to the first sub-OFDM symbol and the second sub-OFDM symbol in the transmit subframe;
  • the precoding sub-block includes at least one first sub-OFDM symbol.
  • the device further includes:
  • a second information determining module configured to determine scheduling allocation information of data to be sent when the sending subframe is a short subframe
  • a second pre-coding module configured to perform a pre-coding operation on the first OFDM symbol of the multiple pre-coded sub-blocks and the third OFDM symbol occupied by the scheduled allocation information, and send the scheduling after the pre-coding operation by using the antenna port Allocating information; wherein the precoding operations performed on the first OFDM symbol and the third OFDM symbol in the same precoding subblock are the same precoding operation.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 100 and various circuits of memory represented by memory 120.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 110 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 100 is responsible for managing the bus architecture and general processing, and the memory 120 can store data used by the processor 100 in performing operations.
  • the processor 100 is responsible for managing the bus architecture and general processing, and the memory 920 can store data used by the processor 100 in performing operations.
  • the apparatus for transmitting diversity divides an OFDM symbol in a transmission subframe into a plurality of precoding subblocks, and performs a precoding operation on each precoding subblock, thereby making one
  • the data to be transmitted is subjected to multiple precoding processing, thereby improving the gain of antenna transmit diversity and precoding; and further increasing the diversity gain by splitting the OFDM symbol into multiple OFDM symbols to increase the number of precoding subblocks, Reduce the overhead of AGC and GP.
  • the apparatus for transmitting diversity in the multi-antenna communication system provided by the above-described embodiments of the present disclosure is a device capable of implementing the above-described method for transmitting diversity in a multi-antenna communication system, and the above-described transmission diversity in the multi-antenna communication system All of the embodiments of the method are applicable to the device and all achieve the same or similar benefits.
  • the embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program (instruction), the program (instruction) being executed by the processor to implement the following steps:
  • the transmission subframe into multiple precoding subblocks in a time domain; wherein, one precoding subblock includes at least one pilot symbol The first OFDM symbol occupied;
  • the precoding operation performed by the first OFDM symbol and the second OFDM symbol in the block is the same precoding operation.
  • program can also implement the following steps when executed by the processor:
  • program can also implement the following steps when executed by the processor:
  • one precoding subblock includes at least one first Sub OFDM symbol.
  • program can also implement the following steps when executed by the processor:
  • the transmit subframe And dividing, according to the first OFDM symbol and the second sub OFDM symbol in the transmitting subframe, the transmit subframe into multiple precoding subblocks in a time domain; wherein, one precoding subblock includes at least one first OFDM symbol.
  • program can also implement the following steps when executed by the processor:
  • one precoding subblock includes at least one One sub OFDM symbol.
  • program can also implement the following steps when executed by the processor:
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data. Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically erasable programmable read only memory
  • flash memory or other memory technology
  • compact disk read only memory CD-ROM
  • DVD digital versatile disk
  • Magnetic tape cartridges magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开提供一种在多天线通信系统中发射分集的方法及装置,该方法包括:确定待发送数据的数据信息,以及所述待发送数据的发送子帧;根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个被导频符号占用的第一OFDM符号;分别对多个预编码子块的第一OFDM符号和被数据信息占用的第二OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的数据信息。

Description

在多天线通信系统中发射分集的方法及装置
相关申请的交叉引用
本申请主张于2017年3月24日提交中国专利局、申请号为:201710183586.3的优先权,其全部内容据此通过引用并入本申请。
技术领域
本公开涉及通信技术领域,特别是指一种在多天线通信系统中发射分集的方法及装置。
背景技术
在LTE Rel-14V2X技术中,终端UE在传输数据的时候包含两种信道,一个控制信道PSCCH,用于传输调度分配(SA,Scheduling Assignment)信息;另一个数据信道PSSCH,用于传输数据信息(Data)。接收端首先通过检测控制信道中携带的SA信息,从而根据接收到的控制信息进行数据信息的接收。
在LTE Rel-14V2X技术中,存在两种资源选择的模式:
一种是终端UE自发的选择资源的方式,UE通过在系统配置或者预配置的V2X资源池中通过感知的方法选择空闲的资源;另一种是基站辅助的资源选择方法,当车辆在网络覆盖内的情况,基站可以通过下行控制信道(PDCCH/EPDCCH)对V2V通信进行调度,在这种情况下,基站通过发送V2V grant(V2V授权消息)指示发送车辆发送SA和Data的资源位置。
在LTE Rel-14V2X的子帧结构如图1所示,包括14个OFDM(正交频分复用,Orthogonal Frequency Division Multiplexing)符号;其中,4个OFDM符号用于承载导频符号,即解调用参考信号DMRS;1个OFDM符号用户承载保护间隔(GP,Guard Period);且第一个OFDM符号可以用于自动增益控制AGC的调整。
对于LTE Rel-14V2X的SA和Data的DMRS生成主要包含如下的方式:
调度分配信息SA采用的DMRS序列采用预先定义的初始化ID,以及预 定义的4个循环移位{0,3,6,9}中随机选择一个,接收端在接受SA的时候,需要盲检测SA使用的DMRS的循环移位。不同的DMRS的OFDM符号上的DMRS序列是相同的。
数据信息Data采用的DMRS序列的DMRS初始化ID和循环移位都是通过SA的循环冗余校验CRC比特获得的ID值产生的(N_ID),不同的DMRS的OFDM符号上的可以是不同的,当N_ID mod 2=0的时候,DMRS序列是相同的,当N_ID mod 2=1的时候,DMRS序列是不同的,通过[1,-1,1,-1]进行扩展。接收端根据接收到的SA信息可以完全重构整个data传输的DMRS序列。
但是,现有的LTE Rel-14V2X系统在终端UE之间直接通信的链路中目前仅支持单天线传输的方式,随着多天线技术的发展,单天线的传输方式已无法适用于多天线模式。
发明内容
本公开的目的在于提供一种在多天线通信系统中发射分集的方法及装置,解决了相关技术中单天线的数据传输方式无法适用于多天线通信系统的问题。
为了达到上述目的,本公开实施例提供一种在多天线通信系统中发射分集的方法,所述多天线通信系统包括一个天线端口,所述方法包括:
确定待发送数据的数据信息,以及所述待发送数据的发送子帧;
根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个被导频符号占用的第一OFDM符号;
分别对多个预编码子块的第一OFDM符号和被数据信息占用的第二OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的数据信息;其中,对同一预编码子块中的第一OFDM符号和第二OFDM符号进行的预编码操作为相同的预编码操作。
其中,所述分别对多个预编码子块的第一OFDM符号和被数据信息占用的第二OFDM符号进行预编码操作,得到待发送数据的步骤,包括:
从预设的预编码矩阵集合中随机为每个预编码子块选择预编码矩阵;或 者多个预编码子块按照预先约定的顺序从预设的预编码矩阵集合中选择自身的预编码矩阵;
利用选择的预编码矩阵对所述预编码子块中的第一OFDM符号和第二OFDM符号分别进行预编码操作。
其中,所述根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块之前,所述方法还包括:
将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号;
所述根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块的步骤,包括:
根据所述发送子帧中的第一子OFDM符号和第二OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
其中,所述根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块之前,所述方法还包括:
将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
所述根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块的步骤,包括:
根据所述发送子帧中的第一OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一OFDM符号。
其中,所述根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块之前,所述方法还包括:
将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号,将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
所述根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块的步骤,包括:
根据所述发送子帧中的第一子OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
其中,当所述发送子帧为短子帧时,
根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块之后,所述方法还包括:
确定待发送数据的调度分配信息;
分别对多个预编码子块的第一OFDM符号和被调度分配信息占用的第三OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的调度分配信息;其中,对同一预编码子块中的第一OFDM符号和第三OFDM符号进行的预编码操作为相同的预编码操作。
本公开实施例还提供一种在多天线通信系统中发射分集的装置,所述多天线通信系统包括一个天线端口,所述装置包括:
第一信息确定模块,用于确定待发送数据的数据信息,以及所述待发送数据的发送子帧;
划分模块,用于根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个被导频符号占用的第一OFDM符号;
第一预编码模块,用于分别对多个预编码子块的第一OFDM符号和被数据信息占用的第二OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的数据信息;其中,对同一预编码子块中的第一OFDM符号和第二OFDM符号进行的预编码操作为相同的预编码操作。
其中,所述第一预编码模块包括:
矩阵确定子模块,用于从预设的预编码矩阵集合中随机为每个预编码子块选择预编码矩阵;或者多个预编码子块按照预先约定的顺序从预设的预编码矩阵集合中选择自身的预编码矩阵;
预编码子模块,用于利用选择的预编码矩阵对所述预编码子块中的第一OFDM符号和第二OFDM符号分别进行预编码操作。
其中,所述装置还包括:
第一分裂模块,用于将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号;
所述划分模块包括:
第一划分子模块,用于根据所述发送子帧中的第一子OFDM符号和第二OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
其中,所述装置还包括:
第二分裂模块,用于将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
所述划分模块包括:
第二划分子模块,用于根据所述发送子帧中的第一OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一OFDM符号。
其中,所述装置还包括:
第三分裂模块,用于将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号,将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
所述划分模块包括:
第三划分子模块,用于根据所述发送子帧中的第一子OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
其中,所述装置还包括:
第二信息确定模块,用于当发送子帧为短子帧时,确定待发送数据的调度分配信息;
第二预编码模块,用于分别对多个预编码子块的第一OFDM符号和被调度分配信息占用的第三OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的调度分配信息;其中,对同一预编码子块中的第一OFDM符号和第三OFDM符号进行的预编码操作为相同的预编码操作。
本公开实施例还提供了一种在多天线通信系统中发射分集的装置,所述 多天线通信系统包括一个天线端口,所述装置包括存储器及处理器,其中,所述存储器上存储有可在所述处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:确定待发送数据的数据信息,以及所述待发送数据的发送子帧;根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个被导频符号占用的第一OFDM符号;分别对多个预编码子块的第一OFDM符号和被数据信息占用的第二OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的数据信息;其中,对同一预编码子块中的第一OFDM符号和第二OFDM符号进行的预编码操作为相同的预编码操作。
可选地,所述处理器具体用于:从预设的预编码矩阵集合中随机为每个预编码子块选择预编码矩阵;或者多个预编码子块按照预先约定的顺序从预设的预编码矩阵集合中选择自身的预编码矩阵;利用选择的预编码矩阵对所述预编码子块中的第一OFDM符号和第二OFDM符号分别进行预编码操作。
可选地,所述处理器具体用于:将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号;根据所述发送子帧中的第一子OFDM符号和第二OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
可选地,所述处理器具体用于:将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;根据所述发送子帧中的第一OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一OFDM符号。
可选地,所述处理器具体用于:将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号,将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;根据所述发送子帧中的第一子OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
可选地,所述处理器具体用于:当所述发送子帧为短子帧时,确定待发送数据的调度分配信息;分别对多个预编码子块的第一OFDM符号和被调度分配信息占用的第三OFDM符号进行预编码操作,并通过所述天线端口发送 预编码操作之后的调度分配信息;其中,对同一预编码子块中的第一OFDM符号和第三OFDM符号进行的预编码操作为相同的预编码操作。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现上述任一种方法中的步骤。
本公开的上述技术方案至少具有如下有益效果:
本公开实施例的在多天线通信系统中发射分集的方法及装置中,通过将发送子帧中的OFDM符号划分为多个预编码子块,并分别对每个预编码子块进行预编码操作,从而使得一个待发送数据会经过多次预编码的处理,从而提高了天线发射分集和预编码的增益。
附图说明
图1表示相关技术中普通子帧的结构示意图;
图2表示本公开实施例提供的在多天线通信系统中发射分集的方法的步骤流程图;
图3表示本公开实施例提供的发送子帧的结构示意图之一;
图4表示本公开实施例提供的发送子帧的结构示意图之二;
图5表示本公开实施例提供的发送子帧的结构示意图之三;
图6表示本公开实施例提供的发送子帧的结构示意图之四;
图7表示本公开实施例提供的发送子帧的结构示意图之五;
图8表示本公开实施例提供的发送子帧为短子帧的结构示意图;
图9表示本公开实施例提供的在多天线通信系统中发射分集的装置的结构示意图;
图10表示本公开实施例提供的在多天线通信系统中发射分集的装置的另一结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
如图2所示,本公开实施例提供一种在多天线通信系统中发射分集的方 法,所述多天线通信系统包括一个天线端口,所述方法包括:
步骤21,确定待发送数据的数据信息,以及所述待发送数据的发送子帧;
步骤22,根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个被导频符号占用的第一OFDM符号;如图3所示为发送子帧的结构示意图,根据图3可知,该发送子帧可划分为4个预编码子块;
步骤23,分别对多个预编码子块的第一OFDM符号和被数据信息占用的第二OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的数据信息;其中,对同一预编码子块中的第一OFDM符号和第二OFDM符号进行的预编码操作为相同的预编码操作。
本公开实施例提供的在多天线通信系统中发射分集的方法通常运用于终端(或车辆)之间的直接通信链路上。终端发送待发送数据的数据信息的同时还需发送该待发送数据的调度分配信息(即SA信息);该调度分配信息采用未进行预编码的方式传输(即按照相关技术的方案传输),则其他终端能够监听到相应的SA信息;需要说明的是,同一待发送数据的SA信息的发送时间需不晚于该待发送数据的数据信息data的发送时间。
如图4所示为一普通发送子帧的结构示意图,子载波带宽为15KHz,该发送子帧包括4个导频符号(即包括4个第一OFDM符号),则在时域上能够将该发送子帧划分为4个预编码子块;分别对图3中的4个预编码子块中的导频的第一OFDM符号和数据的第二OFDM符号进行相同的预编码操作,从而使得一个待发送数据的数据信息经过4次预编码的处理,提高了分集增益。
具体的,本公开的上述实施例中,步骤22包括:
从预设的预编码矩阵集合中随机为每个预编码子块选择预编码矩阵;或者多个预编码子块按照预先约定的顺序从预设的预编码矩阵集合中选择自身的预编码矩阵;若本申请的多天线通信系统包括两个天线,则预设的预编码矩阵集合中包含的预编码矩阵可以包含但不限于如下矩阵:
Figure PCTCN2018078470-appb-000001
利用选择的预编码矩阵对所述预编码子块中的第一OFDM符号和第二OFDM符号分别进行预编码操作。即利用上述6个矩阵中任意一个矩阵对预编码子块中的第一OFDM符号和第二OFDM符号分别进行预编码操作。
进一步,本公开的上述实施例采用将OFDM符号分裂为多个OFDM符号的方式来引入更大的子载波带宽;例如引入子载波带宽为30KHz的情况下,将一个OFDM符号分裂为两个子OFDM符号。本公开实施例中提供三种分裂方案。
第一种方案,步骤22之前,本公开实施例还包括:
步骤201,将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号;
则步骤22包括:根据所述发送子帧中的第一子OFDM符号和第二OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
如图5所示,将导频的第一OFDM符号分裂为2个第一子OFDM符号,而数据的第二OFDM符号不进行分裂,此种情况下,可以将该发送子帧最多划分为8个预编码子块,从而可以对待发送数据的数据信息进行8次独立的预编码操作,进一步提高分集增益。
需要说明的是,一个第一OFDM符号分裂得到的2个第一子OFDM符号的导频序列可以相同也可以不同,其导频序列的生成可通过SA信息指示确定。
第二种方案,步骤22之前,本公开实施例还包括:
步骤202,将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
则步骤22包括:
根据所述发送子帧中的第一OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一OFDM符号。
如图6所示,将数据的第二OFDM符号分裂为2个第二子OFDM符号,而导频的第一OFDM符号不进行符号分裂,此种情况下,可以将该发送子帧 最多划分为4个预编码矩阵,从而可以对待发送数据的数据信息进行4次独立的预编码操作。由于对数据的第二OFDM符号进行了分裂,可以提供更为精细的时域资源粒度;同时发送子帧的第一个OFDM符号一般用作自动增益控制AGC,最后一个OFDM符号一般用作保护间隔GP,由于对第一个OFDM符号和最后一个OFDM符号均作了分裂,则分裂后的第一个子OFDM符号可以被用作AGC,最后一个子OFDM符号可以被用作GP,从而降低了AGC和GP的开销。
第三种方案,步骤22之前,本公开实施例还包括:
步骤203,将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号,将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
则步骤22包括:
根据所述发送子帧中的第一子OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
如图7所示,该种方案中不仅将导频的第一OFDM符号分裂为2个第一子OFDM符号,还数据的第二OFDM符号分裂为2个第二子OFDM符号,此时,可以将该发送子帧最多划分为8个预编码子块,从而可以对待发送数据的数据信息进行8次独立的预编码操作,进一步提高分集增益;由于对数据的第二OFDM符号进行了分裂,可以提供更为精细的时域资源粒度;同时发送子帧的第一个OFDM符号一般用作自动增益控制AGC,最后一个OFDM符号一般用作保护间隔GP,由于对第一个OFDM符号和最后一个OFDM符号均作了分裂,则分裂后的第一个子OFDM符号可以被用作AGC,最后一个子OFDM符号可以被用作GP,从而降低了AGC和GP的开销。
进一步的,当所述发送子帧为短子帧时,例如slot-level TTI或者几个OFDM符号构成一个短子帧的情况下,本公开实施例提供的方法还包括:
步骤24,确定待发送数据的调度分配信息;
步骤25,分别对多个预编码子块的第一OFDM符号和被调度分配信息占用的第三OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作 之后的调度分配信息;其中,对同一预编码子块中的第一OFDM符号和第三OFDM符号进行的预编码操作为相同的预编码操作。
本公开的上述实施例中,SA信息不仅可以按照现有的传输方案进行发送,还可以采用预编码操作的方式进行发送。具体的,分别对图8中的4个预编码子块中的调度分配信息占用的第三OFDM符号和导频占用的第一OFDM符号分别进行预编码操作之后再通过天线端口发送,从而使得调度分配信息经过4次预编码的处理,提高了分集增益。具体的,如图8所示为,在短子帧的情况下,终端参照短子帧的方式进行SA和数据的传输,其中SA的导频序列是采用预定义的序列生成(包括预定义的解调参考信号DMRS初始化ID和循环移位的信息),而数据信息的导频序列可以根据SA的指示生成DMRS序列。
综上,本公开的上述实施例提供的发射分集的方法通过将发送子帧中的OFDM符号划分为多个预编码子块,并分别对每个预编码子块进行预编码操作,从而使得一个待发送数据会经过多次预编码的处理,从而提高了天线发射分集和预编码的增益;并通过将OFDM符号分裂为多个OFDM符号来增加预编码子块的数量,从而进一步提升分集增益,降低了AGC和GP的开销。
如图9所示,本公开实施例还提供一种在多天线通信系统中发射分集的装置,所述多天线通信系统包括一个天线端口,所述装置包括:
第一信息确定模块91,用于确定待发送数据的数据信息,以及所述待发送数据的发送子帧;
划分模块92,用于根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个被导频符号占用的第一OFDM符号;
第一预编码模块93,用于分别对多个预编码子块的第一OFDM符号和被数据信息占用的第二OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的数据信息;其中,对同一预编码子块中的第一OFDM符号和第二OFDM符号进行的预编码操作为相同的预编码操作。
具体的,本公开的上述实施例中所述第一预编码模块包括:
矩阵确定子模块,用于从预设的预编码矩阵集合中随机为每个预编码子 块选择预编码矩阵;或者多个预编码子块按照预先约定的顺序从预设的预编码矩阵集合中选择自身的预编码矩阵;
预编码子模块,用于利用选择的预编码矩阵对所述预编码子块中的第一OFDM符号和第二OFDM符号分别进行预编码操作。
具体的,本公开的上述实施例中所述装置还包括:
第一分裂模块,用于将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号;
所述划分模块包括:
第一划分子模块,用于根据所述发送子帧中的第一子OFDM符号和第二OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
具体的,本公开的上述实施例中所述装置还包括:
第二分裂模块,用于将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
所述划分模块包括:
第二划分子模块,用于根据所述发送子帧中的第一OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一OFDM符号。
具体的,本公开的上述实施例中所述装置还包括:
第三分裂模块,用于将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号,将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
所述划分模块包括:
第三划分子模块,用于根据所述发送子帧中的第一子OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
具体的,本公开的上述实施例中所述装置还包括:
第二信息确定模块,用于当发送子帧为短子帧时,确定待发送数据的调度分配信息;
第二预编码模块,用于分别对多个预编码子块的第一OFDM符号和被调度分配信息占用的第三OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的调度分配信息;其中,对同一预编码子块中的第一OFDM符号和第三OFDM符号进行的预编码操作为相同的预编码操作。
综上,本公开的上述实施例提供的发射分集的装置通过将发送子帧中的OFDM符号划分为多个预编码子块,并分别对每个预编码子块进行预编码操作,从而使得一个待发送数据会经过多次预编码的处理,从而提高了天线发射分集和预编码的增益;并通过将OFDM符号分裂为多个OFDM符号来增加预编码子块的数量,从而进一步提升分集增益,降低了AGC和GP的开销。
需要说明的是,本公开的上述实施例提供的在多天线通信系统中发射分集的装置是能够实现上述在多天线通信系统中发射分集的方法的装置,在上述在多天线通信系统中发射分集的方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
如图10所示,本公开实施例还提供一种在多天线通信系统中发射分集的装置,该装置包括:处理器100;通过总线接口与所述处理器100相连接的存储器120,以及通过总线接口与处理器100相连接的收发机110;所述存储器用于存储所述处理器在执行操作时所使用的程序和数据;通过所述收发机110发送控制命令等;当处理器调用并执行所述存储器中所存储的程序和数据时,实现如下的功能模块:
第一信息确定模块,用于确定待发送数据的数据信息,以及所述待发送数据的发送子帧;
划分模块,用于根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个被导频符号占用的第一OFDM符号;
第一预编码模块,用于分别对多个预编码子块的第一OFDM符号和被数据信息占用的第二OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的数据信息;其中,对同一预编码子块中的第一OFDM符号和第二OFDM符号进行的预编码操作为相同的预编码操作。
具体的,所述第一预编码模块包括:
矩阵确定子模块,用于从预设的预编码矩阵集合中随机为每个预编码子块选择预编码矩阵;或者多个预编码子块按照预先约定的顺序从预设的预编码矩阵集合中选择自身的预编码矩阵;
预编码子模块,用于利用选择的预编码矩阵对所述预编码子块中的第一OFDM符号和第二OFDM符号分别进行预编码操作。
具体的,所述装置还包括:
第一分裂模块,用于将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号;
所述划分模块包括:
第一划分子模块,用于根据所述发送子帧中的第一子OFDM符号和第二OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
具体的,所述装置还包括:
第二分裂模块,用于将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
所述划分模块包括:
第二划分子模块,用于根据所述发送子帧中的第一OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一OFDM符号。
具体的,所述装置还包括:
第三分裂模块,用于将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号,将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
所述划分模块包括:
第三划分子模块,用于根据所述发送子帧中的第一子OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
具体的,所述装置还包括:
第二信息确定模块,用于当发送子帧为短子帧时,确定待发送数据的调 度分配信息;
第二预编码模块,用于分别对多个预编码子块的第一OFDM符号和被调度分配信息占用的第三OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的调度分配信息;其中,对同一预编码子块中的第一OFDM符号和第三OFDM符号进行的预编码操作为相同的预编码操作。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器100代表的一个或多个处理器和存储器120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机110可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器100负责管理总线架构和通常的处理,存储器120可以存储处理器100在执行操作时所使用的数据。
处理器100负责管理总线架构和通常的处理,存储器920可以存储处理器100在执行操作时所使用的数据。
综上,本公开的上述实施例提供的发射分集的装置通过将发送子帧中的OFDM符号划分为多个预编码子块,并分别对每个预编码子块进行预编码操作,从而使得一个待发送数据会经过多次预编码的处理,从而提高了天线发射分集和预编码的增益;并通过将OFDM符号分裂为多个OFDM符号来增加预编码子块的数量,从而进一步提升分集增益,降低了AGC和GP的开销。
需要说明的是,本公开的上述实施例提供的在多天线通信系统中发射分集的装置是能够实现上述在多天线通信系统中发射分集的方法的装置,在上述在多天线通信系统中发射分集的方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序(指令),该程序(指令)被处理器执行时实现以下步骤:
确定待发送数据的数据信息,以及所述待发送数据的发送子帧;
根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个被导频符 号占用的第一OFDM符号;
分别对多个预编码子块的第一OFDM符号和被数据信息占用的第二OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的数据信息;其中,对同一预编码子块中的第一OFDM符号和第二OFDM符号进行的预编码操作为相同的预编码操作。
可选地,该程序(指令)被处理器执行时还可以实现以下步骤:
从预设的预编码矩阵集合中随机为每个预编码子块选择预编码矩阵;或者多个预编码子块按照预先约定的顺序从预设的预编码矩阵集合中选择自身的预编码矩阵;利用选择的预编码矩阵对所述预编码子块中的第一OFDM符号和第二OFDM符号分别进行预编码操作。
可选地,该程序(指令)被处理器执行时还可以实现以下步骤:
将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号;
根据所述发送子帧中的第一子OFDM符号和第二OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
可选地,该程序(指令)被处理器执行时还可以实现以下步骤:
将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
根据所述发送子帧中的第一OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一OFDM符号。
可选地,该程序(指令)被处理器执行时还可以实现以下步骤:
将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号,将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
根据所述发送子帧中的第一子OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
可选地,该程序(指令)被处理器执行时还可以实现以下步骤:
确定待发送数据的调度分配信息;
分别对多个预编码子块的第一OFDM符号和被调度分配信息占用的第三OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的调度分配信息;其中,对同一预编码子块中的第一OFDM符号和第三OFDM符号进行的预编码操作为相同的预编码操作。计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (19)

  1. 一种在多天线通信系统中发射分集的方法,所述多天线通信系统包括一个天线端口,所述方法包括:
    确定待发送数据的数据信息,以及所述待发送数据的发送子帧;
    根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个被导频符号占用的第一OFDM符号;
    分别对多个预编码子块的第一OFDM符号和被数据信息占用的第二OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的数据信息;其中,对同一预编码子块中的第一OFDM符号和第二OFDM符号进行的预编码操作为相同的预编码操作。
  2. 根据权利要求1所述的方法,其中,所述分别对多个预编码子块的第一OFDM符号和被数据信息占用的第二OFDM符号进行预编码操作,得到待发送数据的步骤,包括:
    从预设的预编码矩阵集合中随机为每个预编码子块选择预编码矩阵;或者多个预编码子块按照预先约定的顺序从预设的预编码矩阵集合中选择自身的预编码矩阵;
    利用选择的预编码矩阵对所述预编码子块中的第一OFDM符号和第二OFDM符号分别进行预编码操作。
  3. 根据权利要求1所述的方法,其中,所述根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块之前,所述方法还包括:
    将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号;
    所述根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块的步骤,包括:
    根据所述发送子帧中的第一子OFDM符号和第二OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
  4. 根据权利要求1所述的方法,其中,所述根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块之前,所述方法还包括:
    将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
    所述根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块的步骤,包括:
    根据所述发送子帧中的第一OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一OFDM符号。
  5. 根据权利要求1所述的方法,其中,所述根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块之前,所述方法还包括:
    将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号,将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
    所述根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块的步骤,包括:
    根据所述发送子帧中的第一子OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
  6. 根据权利要求1-5任一项所述的方法,其中,当所述发送子帧为短子帧时,
    根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块之后,所述方法还包括:
    确定待发送数据的调度分配信息;
    分别对多个预编码子块的第一OFDM符号和被调度分配信息占用的第三OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的调度分配信息;其中,对同一预编码子块中的第一OFDM符号和第三OFDM 符号进行的预编码操作为相同的预编码操作。
  7. 一种在多天线通信系统中发射分集的装置,所述多天线通信系统包括一个天线端口,所述装置包括:
    第一信息确定模块,用于确定待发送数据的数据信息,以及所述待发送数据的发送子帧;
    划分模块,用于根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个被导频符号占用的第一OFDM符号;
    第一预编码模块,用于分别对多个预编码子块的第一OFDM符号和被数据信息占用的第二OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的数据信息;其中,对同一预编码子块中的第一OFDM符号和第二OFDM符号进行的预编码操作为相同的预编码操作。
  8. 根据权利要求7所述的装置,其中,所述第一预编码模块包括:
    矩阵确定子模块,用于从预设的预编码矩阵集合中随机为每个预编码子块选择预编码矩阵;或者多个预编码子块按照预先约定的顺序从预设的预编码矩阵集合中选择自身的预编码矩阵;
    预编码子模块,用于利用选择的预编码矩阵对所述预编码子块中的第一OFDM符号和第二OFDM符号分别进行预编码操作。
  9. 根据权利要求7所述的装置,还包括:
    第一分裂模块,用于将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号;
    所述划分模块包括:
    第一划分子模块,用于根据所述发送子帧中的第一子OFDM符号和第二OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
  10. 根据权利要求7所述的装置,还包括:
    第二分裂模块,用于将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
    所述划分模块包括:
    第二划分子模块,用于根据所述发送子帧中的第一OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一OFDM符号。
  11. 根据权利要求7所述的装置,还包括:
    第三分裂模块,用于将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号,将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
    所述划分模块包括:
    第三划分子模块,用于根据所述发送子帧中的第一子OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
  12. 根据权利要求7-11任一项所述的装置,还包括:
    第二信息确定模块,用于当发送子帧为短子帧时,确定待发送数据的调度分配信息;
    第二预编码模块,用于分别对多个预编码子块的第一OFDM符号和被调度分配信息占用的第三OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的调度分配信息;其中,对同一预编码子块中的第一OFDM符号和第三OFDM符号进行的预编码操作为相同的预编码操作。
  13. 一种在多天线通信系统中发射分集的装置,所述多天线通信系统包括一个天线端口,所述装置包括所述装置包括存储器及处理器,其中,所述存储器上存储有可在所述处理器上运行的程序,所述处理器执行所述程序时实现如下步骤:
    确定待发送数据的数据信息,以及所述待发送数据的发送子帧;
    根据所述发送子帧中的正交频分复用OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个被导频符号占用的第一OFDM符号;
    分别对多个预编码子块的第一OFDM符号和被数据信息占用的第二OFDM符号进行预编码操作,并通过所述天线端口发送预编码操作之后的数据信息;其中,对同一预编码子块中的第一OFDM符号和第二OFDM符号 进行的预编码操作为相同的预编码操作。
  14. 根据权利要求13所述的装置,其中,所述处理器具体用于:
    从预设的预编码矩阵集合中随机为每个预编码子块选择预编码矩阵;或者多个预编码子块按照预先约定的顺序从预设的预编码矩阵集合中选择自身的预编码矩阵;
    利用选择的预编码矩阵对所述预编码子块中的第一OFDM符号和第二OFDM符号分别进行预编码操作。
  15. 根据权利要求13所述的装置,其中,所述处理器具体用于:
    将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号;
    根据所述发送子帧中的第一子OFDM符号和第二OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
  16. 根据权利要求13所述的装置,其中,所述处理器具体用于:
    将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
    根据所述发送子帧中的第一OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一OFDM符号。
  17. 根据权利要求13所述的装置,其中,所述处理器具体用于:
    将所述被导频符号占用的第一OFDM符号分裂为多个第一子OFDM符号,将所述被数据信息占用的第二OFDM符号分裂为多个第二子OFDM符号;
    根据所述发送子帧中的第一子OFDM符号和第二子OFDM符号,在时域上将所述发送子帧划分为多个预编码子块;其中,一个预编码子块包含至少一个第一子OFDM符号。
  18. 根据权利要求13-17任一项所述的装置,其中,所述处理器具体用于:当所述发送子帧为短子帧时,确定待发送数据的调度分配信息;分别对多个预编码子块的第一OFDM符号和被调度分配信息占用的第三OFDM符号进 行预编码操作,并通过所述天线端口发送预编码操作之后的调度分配信息;其中,对同一预编码子块中的第一OFDM符号和第三OFDM符号进行的预编码操作为相同的预编码操作。
  19. 一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1-6中任一项所述的方法中的步骤。
PCT/CN2018/078470 2017-03-24 2018-03-08 在多天线通信系统中发射分集的方法及装置 WO2018171438A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710183586.3A CN108631834B (zh) 2017-03-24 2017-03-24 一种在多天线通信系统中发射分集的方法及装置
CN201710183586.3 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018171438A1 true WO2018171438A1 (zh) 2018-09-27

Family

ID=63585002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078470 WO2018171438A1 (zh) 2017-03-24 2018-03-08 在多天线通信系统中发射分集的方法及装置

Country Status (2)

Country Link
CN (1) CN108631834B (zh)
WO (1) WO2018171438A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111181707B (zh) * 2018-11-09 2022-11-04 华为技术有限公司 数据传输的方法和通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102007747A (zh) * 2008-04-18 2011-04-06 皇家飞利浦电子股份有限公司 改进的双载波调制预编码
CN102160311A (zh) * 2008-09-18 2011-08-17 三菱电机株式会社 发送装置以及接收装置
CN103312396A (zh) * 2012-03-15 2013-09-18 中兴通讯股份有限公司 Mimo预编码的方法及基站
WO2016085383A1 (en) * 2014-11-24 2016-06-02 Telefonaktiebolaget Lm Ericsson (Publ) Using a precoded multi-carrier modulation scheme in a wireless communication network
CN106411794A (zh) * 2015-07-31 2017-02-15 上海贝尔股份有限公司 用于下行链路信道估计的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2990090A1 (fr) * 2012-04-27 2013-11-01 France Telecom Procede de communication sans-fil avec un recepteur a antennes multiples
CN103685118B (zh) * 2012-09-11 2018-04-27 株式会社Ntt都科摩 一种数据的发送方法及装置
CN105490787B (zh) * 2014-09-15 2019-06-14 中兴通讯股份有限公司 下行导频的发送方法、检测方法、装置及基站、终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102007747A (zh) * 2008-04-18 2011-04-06 皇家飞利浦电子股份有限公司 改进的双载波调制预编码
CN102160311A (zh) * 2008-09-18 2011-08-17 三菱电机株式会社 发送装置以及接收装置
CN103312396A (zh) * 2012-03-15 2013-09-18 中兴通讯股份有限公司 Mimo预编码的方法及基站
WO2016085383A1 (en) * 2014-11-24 2016-06-02 Telefonaktiebolaget Lm Ericsson (Publ) Using a precoded multi-carrier modulation scheme in a wireless communication network
CN106411794A (zh) * 2015-07-31 2017-02-15 上海贝尔股份有限公司 用于下行链路信道估计的方法

Also Published As

Publication number Publication date
CN108631834B (zh) 2020-12-04
CN108631834A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
WO2021043058A1 (zh) 数据传输方法、装置、传输接收节点、终端及介质
US20220312401A1 (en) Methods and apparatus for sending and receiving second stage sci, storage medium, sending ue, and receiving ue
US10334583B2 (en) Method for sending and receiving control information, apparatus and communication system
JP5501453B2 (ja) 単一ユーザおよびマルチユーザmimoのための伝送層を信号伝達する方法およびシステム
JP7072057B2 (ja) リソース割り当て特定方法、リソース割り当て指示方法、端末およびネットワーク側機器
US10924935B2 (en) Method and device for determining multi-user transmission mode
CN106455094B (zh) 探测参考信号的传输方法及网络侧设备、用户设备
WO2019029401A1 (zh) 参考信号信息的配置方法及装置
JP7201594B2 (ja) 動的調整ビームセットを用いる伝送方法、基地局、及び端末
WO2011150742A1 (zh) 非周期srs的传输方法和设备
WO2013068834A1 (en) Method and apparatus for transmitting and receiving downlink control information based on multi-user mimo transmission
EP3800945B1 (en) Power allocation method and related device
WO2012034527A1 (zh) Tdd系统中的非周期srs的传输方法和设备
US10368344B2 (en) User equipment, network side device and method for controlling user equipment
CN110831178B (zh) 时域资源配置方法
WO2016107330A1 (en) Transmission control methods and transmission control apparatus
CN109391402B (zh) 一种下行控制信息的传输方法、基站、终端及存储介质
WO2018171438A1 (zh) 在多天线通信系统中发射分集的方法及装置
WO2016182038A1 (ja) 端末装置および基地局装置
CN108631991B (zh) 一种在多天线通信系统中发射分集的方法及装置
US9265039B2 (en) Resource element mapping for wireless transmissions
US20160345354A1 (en) Method and apparatus for transmitting control signaling
WO2018201830A1 (zh) 资源配置方法、装置、存储介质及处理器
CN116847467A (zh) 调度方法、装置及设备
CN118283596A (zh) 多用户多输入多输出场景中的干扰处理方法及装置、介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770984

Country of ref document: EP

Kind code of ref document: A1