WO2024065326A1 - 一种数据传输方法、装置及电子设备 - Google Patents

一种数据传输方法、装置及电子设备 Download PDF

Info

Publication number
WO2024065326A1
WO2024065326A1 PCT/CN2022/122313 CN2022122313W WO2024065326A1 WO 2024065326 A1 WO2024065326 A1 WO 2024065326A1 CN 2022122313 W CN2022122313 W CN 2022122313W WO 2024065326 A1 WO2024065326 A1 WO 2024065326A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
channel
downlink
time
frequency resources
Prior art date
Application number
PCT/CN2022/122313
Other languages
English (en)
French (fr)
Inventor
周雷
孔磊
Original Assignee
新华三技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新华三技术有限公司 filed Critical 新华三技术有限公司
Priority to PCT/CN2022/122313 priority Critical patent/WO2024065326A1/zh
Priority to CN202280003417.6A priority patent/CN117941313A/zh
Publication of WO2024065326A1 publication Critical patent/WO2024065326A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of communications, and in particular to a data transmission method, device and electronic equipment.
  • TDD Time Division Duplex
  • the frame structure is divided into DL (DownLink) time slot, UL (UpLink) time slot and S (Special) time slot.
  • DL time slot includes multiple DL symbols, and the time domain resources corresponding to these DL symbols process downlink data.
  • UL time slot includes multiple UL symbols, and the time domain resources corresponding to these UL symbols process uplink data.
  • F time slot includes at least one F (Flexible) symbol
  • F symbol can be used for DL, that is, the time domain resources corresponding to the F symbol process downlink data
  • F symbol can also be used for UL, that is, the time domain resources corresponding to the F symbol process uplink data
  • F symbol can also be used for GP (Guard Period), that is, the time domain resources corresponding to the F symbol are protected for uplink and downlink switching.
  • TDD system can work in HD (Half Duplex) mode, that is, at the same time, the same time domain resources can only be used for UL or DL.
  • the present application provides a data transmission method, which is applied to a base station device, comprising: if an SBFD time-frequency resource is set as uplink transmission or Flexible transmission, allocating available time-frequency resources from the SBFD time-frequency resources; and receiving uplink data corresponding to at least one uplink channel on the available time-frequency resources.
  • the present application provides a data transmission method, which is applied to a full-duplex UE, comprising: if an SBFD time-frequency resource is set as uplink transmission or Flexible transmission by a base station device, obtaining an available time-frequency resource allocated by the base station device to the full-duplex UE from the SBFD time-frequency resource; for each uplink channel, based on the positional relationship between the uplink resource occupied by the uplink channel and the SBFD time-frequency resource, sending uplink data corresponding to the uplink channel on the available time-frequency resource.
  • the present application provides a data transmission method, which is applied to a half-duplex UE, comprising: if an SBFD time-frequency resource is set as uplink transmission or Flexible transmission by a base station device, obtaining an available time-frequency resource allocated by the base station device to the half-duplex UE from the SBFD time-frequency resource; for each uplink channel, based on the positional relationship between the uplink resource occupied by the uplink channel and the SBFD time-frequency resource, sending uplink data corresponding to the uplink channel on the available time-frequency resource.
  • the present application provides a data transmission device, which is applied to a base station device, including: an allocation module, which is used to allocate available time-frequency resources from the SBFD time-frequency resources if the SBFD time-frequency resources are set as uplink transmission or Flexible transmission; and a transmission module, which is used to receive uplink data corresponding to at least one uplink channel on the available time-frequency resources.
  • the present application provides a data transmission device, which is applied to a full-duplex UE, including: an acquisition module, which is used to obtain the available time-frequency resources allocated by the base station device to the full-duplex UE from the SBFD time-frequency resources if the SBFD time-frequency resources are set by the base station device as uplink transmission or Flexible transmission; a transmission module, which is used to send the uplink data corresponding to the uplink channel on the available time-frequency resources for each uplink channel based on the positional relationship between the uplink resources occupied by the uplink channel and the SBFD time-frequency resources.
  • the present application provides a data transmission device, which is applied to a half-duplex UE, including: an acquisition module, which is used to obtain the available time-frequency resources allocated by the base station device to the half-duplex UE from the SBFD time-frequency resources if the SBFD time-frequency resources are set by the base station device as uplink transmission or Flexible transmission; a transmission module, which is used to send the uplink data corresponding to the uplink channel on the available time-frequency resources for each uplink channel based on the positional relationship between the uplink resources occupied by the uplink channel and the SBFD time-frequency resources.
  • the present application provides an electronic device, including a processor and a machine-readable storage medium, wherein the machine-readable storage medium stores machine-executable instructions that can be executed by the processor; the processor is used to execute the machine-executable instructions to implement the above-disclosed data transmission method.
  • the uplink data corresponding to the uplink channel can be transmitted on the SBFD (Sub-Band Full Duplex) time-frequency resources, thereby more effectively utilizing the SBFD time-frequency resources, improving resource utilization, and improving network coverage and network capacity, while reducing the uplink transmission delay.
  • SBFD Sub-Band Full Duplex
  • FIG. 1A, 1B and 1C are schematic flow diagrams of a data transmission method in an example of the present application.
  • 2A-2G are schematic diagrams of scheduling uplink channels when SBFD time-frequency resources are semi-statically configured
  • FIG3 is a schematic diagram of a conflict between an uplink channel and a downlink channel within a SBFD time-frequency resource
  • FIG4 is a schematic diagram showing a conflict between an uplink channel within a SBFD time-frequency resource and an SSB outside of the SBFD time-frequency resource;
  • FIG5 is a schematic diagram showing a conflict between an uplink channel within the SBFD time-frequency resource and a downlink channel outside the SBFD time-frequency resource;
  • FIG6 is a schematic diagram of dynamically scheduling uplink channels when dynamically configuring SBFD time-frequency resources
  • FIG7 is a schematic diagram of configuring a license-free CG PUSCH based on semi-static SBFD time-frequency resources
  • 8A-8D are flowcharts of small data transmission based on random access process
  • FIG9 is a schematic diagram showing a conflict between an uplink channel within a SBFD time-frequency resource and an SSB outside of the SBFD time-frequency resource;
  • Figure 10 is a schematic diagram of unlicensed CG PUSCH transmission based on semi-static/dynamic SBFD time-frequency resources in idle/non-connected state.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” used can be interpreted as "at the time of” or "when” or "in response to determination”.
  • the frame structure is divided into a DL time slot, a UL time slot, and an F time slot.
  • a DL time slot includes multiple DL symbols, and the time domain resources corresponding to these DL symbols process downlink data.
  • a UL time slot includes multiple UL symbols, and the time domain resources corresponding to these UL symbols process uplink data.
  • An F time slot includes at least one F symbol, and an F symbol can be used for DL, UL, or GP.
  • a TDD system can operate in HD mode, that is, at the same time, the same time domain resources can only be used for UL or DL.
  • a TDD system can also operate in FD (Full-Duplex) mode, that is, at the same time, the same time domain resources are used for both UL and DL, that is, uplink data and downlink data are processed simultaneously on the same time domain resources.
  • FD Full-Duplex
  • the user equipment can send and receive data according to the frame structure, and the frame structure is divided into DL time slots, UL time slots and F time slots.
  • the base station equipment schedules the user equipment to send or receive according to the frame structure.
  • the base station equipment schedules the user equipment to send, receive or send and receive at the same time according to the frame structure.
  • the base station device can configure the frame structure and notify the frame structure to the user equipment so that the user equipment can know the frame structure and can correctly send and receive data.
  • the user equipment knows the frame structure, it can also know the possible interference between user equipments, so that some interference elimination technologies can be used to reduce the interference caused by other user equipments and improve the reliability of communication.
  • DL time slots are usually configured, which results in fewer UL time slots, thereby limiting the uplink transmission rate and increasing the transmission delay of uplink data, resulting in a longer delay in uplink transmission and failure to utilize uplink services.
  • a data transmission method which can transmit uplink data corresponding to an uplink channel on an SBFD time-frequency resource, that is, it can use a downlink time slot or an F time slot to transmit the uplink data corresponding to the uplink channel, thereby improving the uplink transmission rate and reducing the transmission delay of the uplink data.
  • a data transmission method is proposed, which can be applied to a base station device.
  • the method may include:
  • Step 111 If the SBFD time-frequency resources are set as uplink transmission or Flexible transmission (ie, F transmission), available time-frequency resources are allocated from the SBFD time-frequency resources.
  • Flexible transmission ie, F transmission
  • Step 112 Receive uplink data corresponding to at least one uplink channel on available time-frequency resources.
  • the SBFD time-frequency resource may be a semi-statically configured SBFD time-frequency resource; or, the SBFD time-frequency resource may be a dynamically configured SBFD time-frequency resource.
  • each uplink channel may be a dynamically scheduled PUSCH (Physical Uplink Shared Channel) or PUCCH (Physical Uplink Control Channel); or, each uplink channel may be a semi-statically scheduled PUSCH or PUCCH.
  • the uplink data corresponding to each uplink channel may be initially transmitted uplink data; or, the uplink data corresponding to each uplink channel may be the Kth repeatedly transmitted uplink data, where K is a positive integer. For example, if there are 3 repeatedly transmitted uplink data in total, the uplink data corresponding to the uplink channel may be the first repeatedly transmitted uplink data, the second repeatedly transmitted uplink data, or the third repeatedly transmitted uplink data.
  • the uplink data is uplink data in a connected state; or, the uplink data is uplink data in an idle state or an inactive state; or, the uplink data is uplink data in a random access process; or, the uplink data is uplink data that has completed the random access process but has not completed the reconfiguration process.
  • the uplink data corresponding to the uplink channel can be transmitted on the SBFD time-frequency resources, thereby more effectively utilizing the SBFD time-frequency resources, improving resource utilization, and improving network coverage and network capacity, while reducing transmission delays, such as reducing uplink transmission delays.
  • a data transmission method is proposed, which can be applied to a full-duplex UE.
  • the user equipment if the user equipment reports that the FD capability supports the FD mode, the user equipment is a full-duplex UE.
  • FIG. 1B which is a flow chart of the data transmission method, the method may include:
  • Step 121 If the SBFD time-frequency resources are set by the base station device as uplink transmission or Flexible transmission, obtain the available time-frequency resources allocated by the base station device to the full-duplex UE from the SBFD time-frequency resources.
  • Step 122 For each uplink channel, based on the positional relationship between the uplink resources occupied by the uplink channel and the SBFD time-frequency resources, uplink data corresponding to the uplink channel is sent on the available time-frequency resources.
  • the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources.
  • uplink data corresponding to the uplink channel can be sent on uplink resources other than the SBFD time-frequency resources.
  • the uplink resource occupied by the uplink channel may be prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources.
  • the uplink resource occupied by the uplink channel may be prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources.
  • the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources.
  • the initial uplink data corresponding to the uplink channel can be rate matched to obtain the target uplink data, and the target uplink data can be sent on the available time-frequency resources.
  • the initial uplink data corresponding to the uplink channel is rate matched to obtain the target uplink data, which may include but is not limited to: selecting part of the initial uplink data as the target uplink data; or, performing high channel coding code rate processing on the initial uplink data to obtain the target uplink data; or, performing high-order modulation processing on the initial uplink data to obtain the target uplink data.
  • the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is prohibited from being received through the SBFD time-frequency resources.
  • the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel can be received through the SBFD time-frequency resources.
  • the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel can be received through the downlink resources.
  • sending uplink data corresponding to an uplink channel on available time-frequency resources may include, but is not limited to: obtaining multiple configured uplink channels; wherein the multiple uplink channels may include uplink channels located in SBFD time-frequency resources and/or uplink channels located in uplink time-frequency resources.
  • An SSB set and an SSB ratio configuration may be obtained from a base station device, the SSB set may include multiple SSBs, and the SSB ratio configuration may include a ratio relationship among the multiple SSBs.
  • a target SSB corresponding to the uplink channel may be determined based on the SSB set and the SSB ratio configuration, and the uplink data corresponding to the uplink channel may be sent on the available time-frequency resources based on a matching beam corresponding to the target SSB.
  • the SBFD time-frequency resource may be a semi-statically configured SBFD time-frequency resource; or, the SBFD time-frequency resource may be a dynamically configured SBFD time-frequency resource.
  • each uplink channel may be a dynamically scheduled PUSCH or PUCCH; or, each uplink channel may be a semi-statically scheduled PUSCH or PUCCH.
  • the uplink data corresponding to each uplink channel may be initially transmitted uplink data; or, the uplink data corresponding to each uplink channel may be K-th repeatedly transmitted uplink data, where K is a positive integer.
  • the uplink data is uplink data in a connected state; or, the uplink data is uplink data in an idle state or an inactive state; or, the uplink data is uplink data in a random access process; or, the uplink data is uplink data that has completed the random access process but has not completed the reconfiguration process.
  • the uplink data corresponding to the uplink channel can be transmitted on the SBFD time-frequency resources, thereby more effectively utilizing the SBFD time-frequency resources, improving resource utilization, and improving network coverage and network capacity, while reducing transmission delays, such as reducing uplink transmission delays.
  • a data transmission method is proposed, which can be applied to a half-duplex UE.
  • the user equipment if the FD capability of the user equipment is not to support the FD mode, the user equipment is a half-duplex UE.
  • FIG. 1C a flow chart of the data transmission method is shown, and the method may include:
  • Step 131 If the SBFD time-frequency resources are set by the base station device as uplink transmission or Flexible transmission, obtain the available time-frequency resources allocated by the base station device to the half-duplex UE from the SBFD time-frequency resources.
  • Step 132 For each uplink channel, based on the positional relationship between the uplink resources occupied by the uplink channel and the SBFD time-frequency resources, send the uplink data corresponding to the uplink channel on the available time-frequency resources.
  • the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources.
  • uplink data corresponding to the uplink channel can be sent on uplink resources other than the SBFD time-frequency resources.
  • the uplink resource occupied by the uplink channel may be prohibited to send uplink data corresponding to the uplink channel on the available time-frequency resources.
  • the uplink resource occupied by the uplink channel may be prohibited to send uplink data corresponding to the uplink channel on the available time-frequency resources.
  • the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources.
  • rate matching is performed on the initial uplink data corresponding to the uplink channel to obtain the target uplink data, and the target uplink data is sent on the available time-frequency resources.
  • rate matching is performed on the initial uplink data corresponding to the uplink channel to obtain target uplink data, which may include but is not limited to: selecting part of the data from the initial uplink data as the target uplink data; or, performing high channel coding code rate processing on the initial uplink data to obtain the target uplink data; or, performing high-order modulation processing on the initial uplink data to obtain the target uplink data.
  • the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is prohibited from being received through the SBFD time-frequency resources.
  • the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel can be prohibited from being received through the SBFD time-frequency resources; or, the uplink data corresponding to the uplink channel can be prohibited from being sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel can be received through the SBFD time-frequency resources.
  • a target uplink resource not occupied by the downlink resource can be selected from the uplink resources, and the uplink data corresponding to the uplink channel can be sent on the target uplink resource; a target downlink resource not occupied by the uplink resource can be selected from the downlink resources, and the downlink data corresponding to the downlink channel can be received on the target downlink resource.
  • the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is prohibited from being received through the SBFD time-frequency resources; or, if the channel processing priority corresponding to the channel type of the uplink channel is less than the channel processing priority corresponding to the channel type of the downlink channel, the uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is received through the SBFD time-frequency resources.
  • the channel type of the uplink channel is a PUSCH type or a PUCCH type
  • the channel type of the downlink channel is an SSB (Synchronization Signal Block) type or a PDCCH (Physical Downlink Control Channel) type
  • SSB Synchronization Signal Block
  • PDCCH Physical Downlink Control Channel
  • the channel type of the uplink channel is a PUCCH type
  • the channel type of the downlink channel is a CSI-RS (Channel State Information-Reference Signal) type or a PDSCH (Physical Downlink Shared Channel) type
  • the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources.
  • the channel type of the uplink channel is the PUSCH type and the channel type of the downlink channel is the CSI-RS type
  • uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency resources, and downlink data corresponding to the downlink channel is received through the SBFD time-frequency resources.
  • the channel type of the uplink channel is the PUSCH type and the channel type of the downlink channel is the PDSCH type
  • the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is prohibited from being received through the SBFD time-frequency resources.
  • the uplink channel is semi-statically scheduled and the downlink channel is dynamically scheduled, the uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is received through the SBFD time-frequency resources.
  • both the uplink channel and the downlink channel are dynamically scheduled, or both the uplink channel and the downlink channel are semi-statically scheduled, if the service priority corresponding to the uplink channel is greater than the service priority corresponding to the downlink channel, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is prohibited from being received through the SBFD time-frequency resources; if the service priority corresponding to the uplink channel is less than the service priority corresponding to the downlink channel, the uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is received through the SBFD time-frequency resources.
  • the service priority corresponding to the uplink channel is equal to the service priority corresponding to the downlink channel, then: if the time sequence corresponding to the uplink channel is earlier than the time sequence corresponding to the downlink channel, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is prohibited from being received through the SBFD time-frequency resources; if the time sequence corresponding to the uplink channel is later than the time sequence corresponding to the downlink channel, the uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is received through the SBFD time-frequency resources.
  • the uplink data corresponding to the uplink channel may be sent on the available time-frequency resources based on a random order, and the downlink data corresponding to the downlink channel may be prohibited from being received through the SBFD time-frequency resources; alternatively, the uplink data corresponding to the uplink channel may be prohibited from being sent on the available time-frequency resources based on a random order, and the downlink data corresponding to the downlink channel may be received through the SBFD time-frequency resources.
  • the uplink resources occupied by the uplink channel are within the SBFD time-frequency resources, the downlink resources occupied by the downlink channel are outside the SBFD time-frequency resources, and the downlink resources occupied by the downlink channel overlap with the SBFD time-frequency resources, then based on the channel type of the uplink channel and the channel type of the downlink channel, the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel can be prohibited from being received through the downlink resources; alternatively, the sending of the uplink data corresponding to the uplink channel on the available time-frequency resources can be prohibited, and the downlink data corresponding to the downlink channel can be received through the downlink resources.
  • the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources, the downlink resources occupied by the downlink channel are outside the SBFD time-frequency resources, and the downlink resources occupied by the downlink channel overlap with the SBFD time-frequency resources, then a target uplink resource not occupied by the downlink resource can be selected from the uplink resources, and the uplink data corresponding to the uplink channel can be sent on the target uplink resource; and a target downlink resource not occupied by the uplink resource can be selected from the downlink resources, and the downlink data corresponding to the downlink channel can be received on the target downlink resource.
  • sending uplink data corresponding to an uplink channel on a target uplink resource may include, but is not limited to: performing rate matching on initial uplink data corresponding to the uplink channel to obtain target uplink data, and sending the target uplink data on the target uplink resource.
  • the channel processing priority corresponding to the channel type of the uplink channel is greater than the channel processing priority corresponding to the channel type of the downlink channel, uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and receiving downlink data corresponding to the downlink channel through the downlink resources is prohibited; or, if the channel processing priority corresponding to the channel type of the uplink channel is less than the channel processing priority corresponding to the channel type of the downlink channel, sending uplink data corresponding to the uplink channel on the available time-frequency resources is prohibited, and downlink data corresponding to the downlink channel is received through the downlink resources.
  • the channel type of the uplink channel is a PUSCH type or a PUCCH type
  • the channel type of the downlink channel is an SSB type or a PDCCH type
  • the channel type of the uplink channel is a PUCCH type
  • the channel type of the downlink channel is a CSI-RS type or a PDSCH type
  • the channel type of the uplink channel is a PUSCH type, and the channel type of the downlink channel is a CSI-RS type, it is possible to prohibit sending uplink data corresponding to the uplink channel on available time-frequency resources, and receive downlink data corresponding to the downlink channel through downlink resources.
  • the channel type of the uplink channel is the PUSCH type and the channel type of the downlink channel is the PDSCH type
  • the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel can be prohibited from being received through the downlink resources.
  • the uplink data corresponding to the uplink channel can be prohibited from being sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel can be received through the downlink resources.
  • both the uplink channel and the downlink channel are dynamically scheduled, or both the uplink channel and the downlink channel are semi-statically scheduled, if the service priority corresponding to the uplink channel is greater than the service priority corresponding to the downlink channel, the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel can be prohibited from being received through the downlink resources; if the service priority corresponding to the uplink channel is less than the service priority corresponding to the downlink channel, the uplink data corresponding to the uplink channel can be prohibited from being sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel can be received through the downlink resources.
  • the service priority corresponding to the uplink channel is equal to the service priority corresponding to the downlink channel
  • the time sequence corresponding to the uplink channel is earlier than the time sequence corresponding to the downlink channel
  • the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel can be prohibited from being received through the downlink resources
  • the time sequence corresponding to the uplink channel is later than the time sequence corresponding to the downlink channel
  • the uplink data corresponding to the uplink channel can be prohibited from being sent on the available time-frequency resources
  • the downlink data corresponding to the downlink channel can be received through the downlink resources.
  • the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources based on a random order, and the downlink data corresponding to the downlink channel can be prohibited from being received through the downlink resources; alternatively, the uplink data corresponding to the uplink channel can be prohibited from being sent on the available time-frequency resources based on a random order, and the downlink data corresponding to the downlink channel can be received through the downlink resources.
  • the uplink resources occupied by the uplink channel are within the SBFD time-frequency resources, the downlink resources occupied by the SSB are outside the SBFD time-frequency resources, and the downlink resources occupied by the SSB overlap with the SBFD time-frequency resources, it is possible to prohibit sending the uplink data corresponding to the uplink channel on the available time-frequency resources, and receive the SSB corresponding to the downlink channel through the downlink resources.
  • the uplink resources occupied by the uplink channel are within the SBFD time-frequency resources, the downlink resources occupied by the SSB are outside the SBFD time-frequency resources, and the downlink resources occupied by the SSB overlap with the SBFD time-frequency resources, the SSB corresponding to the downlink channel can be received through the downlink resources; when there is no need to receive the SSB through the downlink resources, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources.
  • sending uplink data corresponding to an uplink channel on available time-frequency resources may include, but is not limited to: obtaining multiple configured uplink channels; wherein the multiple uplink channels may include uplink channels located in SBFD time-frequency resources and/or uplink channels located in uplink time-frequency resources.
  • An SSB set and an SSB ratio configuration may be obtained from a base station device, the SSB set may include multiple SSBs, and the SSB ratio configuration may include a ratio relationship among the multiple SSBs.
  • a target SSB corresponding to the uplink channel may be determined based on the SSB set and the SSB ratio configuration, and based on a matching beam corresponding to the target SSB, uplink data corresponding to the uplink channel may be sent on available time-frequency resources.
  • the SBFD time-frequency resource may be a semi-statically configured SBFD time-frequency resource; or, the SBFD time-frequency resource may be a dynamically configured SBFD time-frequency resource.
  • each uplink channel may be a dynamically scheduled PUSCH or PUCCH; or, each uplink channel may be a semi-statically scheduled PUSCH or PUCCH.
  • the uplink data corresponding to each uplink channel may be initially transmitted uplink data; or, the uplink data corresponding to each uplink channel may be K-th repeatedly transmitted uplink data, where K is a positive integer.
  • the uplink data is uplink data in a connected state; or, the uplink data is uplink data in an idle state or an inactive state; or, the uplink data is uplink data in a random access process; or, the uplink data is uplink data that has completed the random access process but has not completed the reconfiguration process.
  • the uplink data corresponding to the uplink channel can be transmitted on the SBFD time-frequency resources, thereby more effectively utilizing the SBFD time-frequency resources, improving resource utilization, and improving network coverage and network capacity, while reducing transmission delays, such as reducing uplink transmission delays.
  • the frame structure of TDD can be completed by semi-static configuration plus dynamic indication.
  • multiple SFCs Slot Format Combination
  • SFI Slot Format Indicator
  • the base station equipment can select the time slot format that meets the business needs and add these time slot formats to the SFC.
  • some time slot formats can be seen in Table 1, D represents DL symbol, U represents UL symbol, and F represents flexible symbol.
  • SFC it is identified by a fixed ID and contains one or more time slot format types.
  • the base station device can send multiple time slot format combinations to the user equipment in the RRC (Radio Resource Control) signaling. After configuring multiple time slot format combinations through RRC signaling, the base station device can inform the user equipment of the index of the currently used SFC in the DCI (Downlink Control Information) format 2_0 through periodic PDCCH. After correctly receiving the information in DCI format 2_0, the user equipment determines the time slot format of each time slot within a certain period according to the value of the indicated SFC index. At this point, the base station device and the user equipment complete the configuration of the frame structure through dynamic indication, and normal uplink and downlink data transmission can be carried out.
  • RRC Radio Resource Control
  • Time domain resource allocation The Time domain resource assignment field in the DCI indicates the time domain position of the downlink channel. This field has a total of 4 bits, with values of 0-15. Assuming the value is m, then m+1 indicates the row index of the time domain resource allocation table. The information in this row indicates the time domain resources of the PDSCH.
  • Frequency domain resource allocation The Frequency domain resource assignment field in DCI indicates the frequency domain resource allocation of the downlink channel.
  • PDSCH frequency domain resource allocation can be divided into two types: Type 0 and Type 1.
  • Type 0 supports non-continuous resource allocation to obtain frequency diversity gain
  • Type 1 supports continuous resource allocation, which can reduce the number of bits required for this field.
  • DCI format1_0 only supports Type 1.
  • Type 0 For non-contiguous resource allocation type, an RBG is a VRB group, which consists of P consecutive VRBs, and the number is determined by the high-level parameters rbg-Size and BWP bandwidth. Under the resource allocation type of Type 0, Frequency domain resource assignment is used as a bitmap to indicate which RBGs are allocated to the downlink channel. Each bit in the bitmap represents an RBG, and the highest bit corresponds to RBG0, and so on. A bit of 1 indicates that the RBG is allocated to the downlink channel, and a bit of 0 indicates that it is not a downlink channel resource.
  • Type 1 The frequency domain resource indication field will not be used as a bitmap, but will indicate a RIV (Resource Indicator Value) value, through which the user equipment calculates the starting RB and the number of occupied RBs of the downlink channel.
  • RIV Resource Indicator Value
  • the frame structure can be divided into UL time slot, DL time slot and F time slot according to the time slot.
  • the symbols in the F time slot can be configured as UL symbols, DL symbols and flexible (F: Flexible) symbols.
  • F symbols can be used for UL, DL or GP.
  • the uplink data corresponding to the uplink channel can be transmitted in the UL time slot, or in the UL symbol or F symbol in the F time slot.
  • the uplink data corresponding to the uplink channel cannot be transmitted in the DL time slot, nor can it be transmitted in the DL symbol in the F time slot.
  • SBFD time-frequency resources can be configured in time-frequency resources (such as UL time slots, DL time slots, and F time slots).
  • time-frequency resources such as UL time slots, DL time slots, and F time slots.
  • data in a different direction from other time-frequency resources can be transmitted.
  • SBFD time-frequency resources are configured in the DL time slot, and the uplink data corresponding to the uplink channel is transmitted through the SBFD time-frequency resources, so that the uplink data corresponding to the uplink channel is transmitted in the DL time slot.
  • SBFD time-frequency resources are configured in the DL symbol of the F time slot, and the uplink data corresponding to the uplink channel is transmitted through the SBFD time-frequency resources, so that the uplink data corresponding to the uplink channel is transmitted in the DL symbol of the F time slot.
  • an SBFD symbol is defined as a symbol with an SBFD sub-band that can be configured for a base station device and a user device.
  • SBFD time-frequency resources On the SBFD sub-band of these SBFD symbols (referred to as SBFD time-frequency resources), the base station device and the user device can perform full-duplex communication, that is, uplink transmission, downlink transmission, or simultaneous uplink and downlink transmission can be performed on the SBFD time-frequency resources.
  • the SBFD time-frequency resources may be explicitly indicated as uplink, downlink or Flexible.
  • the uplink or downlink may be flexibly scheduled on the SBFD time-frequency resources.
  • SBFD time-frequency resources can be configured in DL symbols, F symbols, and UL symbols, and a time slot configured with SBFD time-frequency resources can also be called an SBFD time slot.
  • SBFD time-frequency resources are configured in the DL symbol of a DL time slot
  • the DL time slot is also called an SBFD time slot.
  • SBFD time-frequency resources are configured in the UL symbol of a UL time slot
  • the UL time slot is also called an SBFD time slot.
  • SBFD time-frequency resources are configured in the DL symbol, UL symbol, or F symbol of an F time slot
  • the F time slot is also called an SBFD time slot.
  • uplink transmission, downlink transmission, or uplink and downlink transmission can be performed on SBFD time-frequency resources.
  • the following uses user equipment with SBFD capability as an example.
  • uplink data corresponding to an uplink channel may be transmitted in SBFD time-frequency resources.
  • SBFD time-frequency resources may be configured in a DL time slot, and uplink data corresponding to an uplink channel may be transmitted through the SBFD time-frequency resources, thereby scheduling an uplink channel in the SBFD time-frequency resources of the DL time slot.
  • SBFD time-frequency resources may be configured in an F time slot, and uplink data corresponding to an uplink channel may be transmitted through the SBFD time-frequency resources, thereby scheduling an uplink channel in the SBFD time-frequency resources of the F time slot.
  • uplink transmission based on SBFD time-frequency resources may be implemented in a TDD system, thereby improving the overall performance of the TDD system.
  • proposeing a transmission criterion for uplink data it is ensured that the transmission of uplink data does not affect existing data transmission.
  • the base station device can set the SBFD time-frequency resources to uplink transmission or Flexible transmission (ie, F transmission). If the SBFD time-frequency resources are set to uplink transmission or Flexible transmission, the base station device can allocate available time-frequency resources from the SBFD time-frequency resources.
  • the full-duplex UE can obtain the available time-frequency resources allocated by the base station device from the SBFD time-frequency resources, and send the uplink data corresponding to the uplink channel on the available time-frequency resources. In this way, the base station device can receive the uplink data corresponding to the uplink channel on the available time-frequency resources.
  • the semi-full-duplex UE can obtain the available time-frequency resources allocated by the base station device from the SBFD time-frequency resources, and send the uplink data corresponding to the uplink channel on the available time-frequency resources. In this way, the base station device can receive the uplink data corresponding to the uplink channel on the available time-frequency resources.
  • the SBFD time-frequency resource may be a semi-statically configured SBFD time-frequency resource, such as semi-statically configured SBFD time-frequency resource through RRC signaling, or a dynamically configured SBFD time-frequency resource, such as dynamically configured SBFD time-frequency resource through DCI signaling.
  • the uplink channel may be a PUSCH or a PUCCH, for example, a dynamically scheduled PUSCH or a PUCCH; or a semi-statically scheduled PUSCH or a PUCCH.
  • the uplink data corresponding to the uplink channel may be initially transmitted uplink data; or, the uplink data corresponding to the uplink channel may also be repeatedly transmitted uplink data.
  • the uplink data may be uplink data in a connected state; or the uplink data may be uplink data in an idle state or an inactive state; or the uplink data may be uplink data in a random access process; or the uplink data may be uplink data that has completed a random access process but has not completed a reconfiguration process.
  • the above are just a few examples, and the type of uplink data is not limited.
  • Case 1 In the FD mode of TDD, for the transmission process of uplink data in the connected state, the uplink data corresponding to the uplink channel (PUSCH/PUCCH) can be transmitted in the semi-statically configured SBFD time-frequency resources.
  • the base station equipment can configure the semi-static SBFD time-frequency resources through broadcast signaling (such as RRC signaling), and set the SBFD time-frequency resources to uplink transmission or Flexible transmission, that is, the SBFD time-frequency resources can be used for uplink transmission or Flexible transmission.
  • broadcast signaling such as RRC signaling
  • the full-duplex UE can use the SBFD time-frequency resources to send uplink data corresponding to the uplink channel, and the full-duplex UE does not need to consider whether the downlink channel overlaps with the uplink channel in the time domain resources, nor does it need to consider the DL/UL switching time.
  • the half-duplex UE can use the SBFD time-frequency resources to send the uplink data corresponding to the uplink channel.
  • the base station device can use the SBFD time-frequency resources to receive the uplink data corresponding to the uplink channel.
  • a full-duplex UE or a half-duplex UE uses SBFD time-frequency resources to send uplink data corresponding to an uplink channel
  • the uplink data corresponding to the uplink channel can be sent on the SBFD time-frequency resources.
  • a full-duplex UE or a half-duplex UE can obtain available time-frequency resources allocated by the base station device from the SBFD time-frequency resources, and send uplink data corresponding to the uplink channel on the available time-frequency resources.
  • the uplink data corresponding to the uplink channel can be sent on uplink resources other than the SBFD time-frequency resources (i.e., the uplink resources occupied by the uplink channel).
  • a full-duplex UE or a half-duplex UE uses SBFD time-frequency resources to send uplink data corresponding to an uplink channel, if all uplink resources occupied by the uplink channel are not in the SBFD time-frequency resources and these uplink resources are located in downlink symbols, the uplink data corresponding to the uplink channel cannot be sent.
  • a full-duplex UE or a half-duplex UE uses SBFD time-frequency resources to send uplink data corresponding to an uplink channel
  • the uplink data corresponding to the uplink channel cannot be sent, that is, it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources of the SBFD time-frequency resources.
  • the uplink data corresponding to the uplink channel is sent, such as sending the uplink data corresponding to the uplink channel (i.e., part of the uplink data) on the available time-frequency resources of the SBFD time-frequency resources, and sending the uplink data corresponding to the uplink channel (i.e., the remaining part of the uplink data) on the uplink symbol.
  • a full-duplex UE or a half-duplex UE uses the SBFD time-frequency resources to send uplink data corresponding to an uplink channel
  • the uplink data corresponding to the uplink channel cannot be sent, that is, it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources of the SBFD time-frequency resources.
  • a full-duplex UE or a half-duplex UE uses the SBFD time-frequency resources to send uplink data corresponding to an uplink channel
  • the uplink data corresponding to the uplink channel is sent, such as sending the uplink data corresponding to the uplink channel (i.e., part of the uplink data) on the available time-frequency resources of the SBFD time-frequency resources, and sending the uplink data corresponding to the uplink channel (i.e., the remaining part of the uplink data) on the F symbol.
  • the initial uplink data corresponding to the uplink channel i.e., the uplink data to be sent
  • the target uplink data corresponding to the uplink channel can be sent on the available time-frequency resources of the SBFD time-frequency resources.
  • the initial uplink data corresponding to the uplink channel i.e., the uplink data to be sent
  • the target uplink data corresponding to the uplink channel can be sent on the available time-frequency resources of the SBFD time-frequency resources.
  • a full-duplex UE or a half-duplex UE can perform rate matching based on available time-frequency resources.
  • rate matching can be performed in the following manner: select part of the data from the initial uplink data as the target uplink data.
  • the data size that can be transmitted can be determined based on the available time-frequency resources, and select part of the data from the initial uplink data as the target uplink data based on the data size, that is, the available time-frequency resources can carry the target uplink data.
  • the initial uplink data is processed by a higher channel coding code rate, thereby compressing the initial uplink data so that the available time-frequency resources can carry the target uplink data.
  • the initial uplink data is processed by high-order modulation so that the available time-frequency resources can carry the target uplink data.
  • uplink data corresponding to one or more uplink channels can be sent in the SBFD time-frequency resources.
  • the uplink channel can be a dynamically scheduled PUSCH or PUCCH; the uplink channel can also be a semi-statically scheduled PUSCH or PUCCH.
  • the uplink data corresponding to the uplink channel can be initially transmitted uplink data or repeatedly transmitted uplink data.
  • a transmission diagram of PUSCH/PUCCH with rep type A (the number of repetitions can be configured by RRC parameter numberOfRepetitios (number of repetitions) or pusch-AggregationFactor (physical uplink shared channel-aggregation factor) to indicate the number of repeated transmissions) is dynamically scheduled when SBFD time-frequency resources are semi-statically configured, and Slot represents a time slot.
  • PUSCH/PUCCH0 Since PUSCH/PUCCH0 is in the SBFD time-frequency resources, it can be sent normally.
  • PUSCH/PUCCH0Rep#1 is partially in the SBFD time-frequency resources and partially in the DL resources
  • two processing methods can be adopted: the first is to not allow sending, and the second is to allow the use of SBFD time-frequency resources to send the uplink data corresponding to PUSCH/PUCCH0Rep#1.
  • rate matching can be performed according to the available time-frequency resources of the SBFD time-frequency resources.
  • PUSCH/PUCCH0Rep#2 is partially in the SBFD time-frequency resources and partially in the Flexible resources, three processing methods can be adopted: the first is not allowing transmission, the second is allowing transmission, and the third is allowing the use of SBFD time-frequency resources to send the uplink data corresponding to PUSCH/PUCCH0Rep#2, but rate matching is required based on the available time-frequency resources of the SBFD time-frequency resources.
  • FIG. 2B another transmission diagram of dynamically scheduling PUSCH/PUCCH when SBFD time-frequency resources are semi-statically configured is shown. The principle is similar to that of FIG. 2A , and will not be repeated here.
  • FIG2C is a schematic diagram of dynamically scheduling PUSCH/PUCCH transmission with rep type B when SBFD time-frequency resources are semi-statically configured.
  • the base station device uses DCI to schedule the user equipment to send uplink data corresponding to PUSCH/PUCCH on the SBFD time-frequency resources.
  • PUSCH/PUCCH0Rep#1 should occupy 3 symbols. However, since occupying 3 symbols requires crossing slot#N and slot#N+1, and since rep type B does not support cross-slot transmission, PUSCH/PUCCH0Rep#1 can occupy the last two symbols of Slot#N for transmission.
  • FIG. 2D another transmission diagram of dynamically scheduling PUSCH/PUCCH when SBFD time-frequency resources are semi-statically configured is shown. The principle is similar to that of FIG. 2C , and will not be repeated here.
  • FIG. 2E is a schematic diagram of transmission of unlicensed (i.e., non-dynamically scheduled) PUSCH/semi-statically scheduled PUCCH with rep type A when SBFD time-frequency resources are semi-statically configured.
  • 2F is another transmission diagram of unlicensed PUSCH/semi-statically scheduled PUCCH when SBFD time-frequency resources are semi-statically configured. The principle is similar to that of FIG. 2E and will not be repeated here.
  • FIG. 2G is a schematic diagram of transmission of unlicensed (i.e., non-dynamically scheduled) PUSCH/semi-statically scheduled PUCCH with rep type B when SBFD time-frequency resources are semi-statically configured.
  • Mode 1 When the SBFD time-frequency resources are set to UL, downlink channels are not allowed to be transmitted in the SBFD time-frequency resources.
  • Mode 1 for full-duplex UEs, uplink data corresponding to uplink channels are sent on available time-frequency resources of the SBFD time-frequency resources, and downlink data corresponding to downlink channels are prohibited from being received through the SBFD time-frequency resources.
  • uplink data corresponding to uplink channels are sent on available time-frequency resources of the SBFD time-frequency resources, and downlink data corresponding to downlink channels are prohibited from being received through the SBFD time-frequency resources.
  • Mode 2 For different user equipment, when one user equipment transmits uplink data corresponding to an uplink channel (such as PUSCH/PUCCH) and another user equipment transmits downlink data corresponding to a downlink channel (such as PDSCH/PDCCH/CSI-RS), the base station equipment can ensure through scheduling that there is no interference between the uplink and downlink or the interference is controllable. Therefore, the uplink channel and the downlink channel are allowed to be transmitted simultaneously. That is to say, one user equipment sends the uplink data corresponding to the uplink channel on the available time-frequency resources of the SBFD time-frequency resources, and the other user equipment receives the downlink data corresponding to the downlink channel on the available time-frequency resources of the SBFD time-frequency resources.
  • an uplink channel such as PUSCH/PUCCH
  • a downlink channel such as PDSCH/PDCCH/CSI-RS
  • Mode 3 For the same user equipment, if the user equipment has uplink data and downlink data transmission at the same time, and the base station equipment allows the user equipment to transmit uplink data and downlink data within the SBFD time-frequency resources, then for the full-duplex UE, uplink data and downlink data are allowed to be transmitted simultaneously, that is, the full-duplex UE can send the uplink data corresponding to the uplink channel on the available time-frequency resources of the SBFD time-frequency resources, and the full-duplex UE can receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources.
  • Mode 4 For the same user equipment, if the user equipment has uplink data and downlink data transmission at the same time, and the base station equipment allows the user equipment to transmit uplink data and downlink data within the SBFD time-frequency resources, then, for half-duplex UE, based on the channel type of the uplink channel and the channel type of the downlink channel, the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources of the SBFD time-frequency resources, and the downlink data corresponding to the downlink channel can be prohibited from being received through the SBFD time-frequency resources; or, based on the channel type of the uplink channel and the channel type of the downlink channel, the uplink data corresponding to the uplink channel can be prohibited from being sent on the available time-frequency resources of the SBFD time-frequency resources, and the downlink data corresponding to the downlink channel can be received through the SBFD time-frequency resources.
  • the channel processing priority corresponding to the channel type of the uplink channel can be configured, and the channel processing priority corresponding to the channel type of the downlink channel can be configured. Based on this, if the channel processing priority corresponding to the channel type of the uplink channel is greater than the channel processing priority corresponding to the channel type of the downlink channel, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is prohibited from being received through the SBFD time-frequency resources; if the channel processing priority corresponding to the channel type of the uplink channel is less than the channel processing priority corresponding to the channel type of the downlink channel, the uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is received through the SBFD time-frequency resources.
  • the channel processing priorities corresponding to different channel types can be configured based on experience, and there is no restriction on this channel processing priority.
  • the priority order of the channel processing priorities corresponding to each channel type can be SSB>PDCCH>PUCCH>CSI-RS>PDSCH/PUSCH, or the priority order can be PDCCH>PUCCH>SSB>CSI-RS>PDSCH/PUSCH, or the priority order can be PDCCH>PUCCH>CSI-RS>PDSCH>SSB>PUSCH.
  • the above are just a few examples of the priority order, and there is no restriction on this priority order, which can be configured based on experience.
  • the channel type of the uplink channel is PUSCH type or PUCCH type
  • the channel type of the downlink channel is SSB type or PDCCH type
  • the channel type of the uplink channel is PUCCH type, and the channel type of the downlink channel is CSI-RS type or PDSCH type, it is possible to send the uplink data corresponding to the uplink channel on the available time-frequency resources of the SBFD time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources.
  • the channel type of the uplink channel is PUSCH type, and the channel type of the downlink channel is CSI-RS type, it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources of the SBFD time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources.
  • PDSCH/PUSCH means that the channel processing priorities of PDSCH and PUSCH are the same.
  • the order of PDSCH and PUSCH can also be determined in the following manner:
  • the channel type of the uplink channel is the PUSCH type and the channel type of the downlink channel is the PDSCH type, then: when the uplink channel is dynamically scheduled and the downlink channel is semi-statically scheduled, the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources of the SBFD time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources.
  • the uplink channel is semi-statically scheduled and the downlink channel is dynamically scheduled, it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources of the SBFD time-frequency resources, and receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources.
  • the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources of the SBFD time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources.
  • the first service priority corresponding to the uplink channel is less than the second service priority corresponding to the downlink channel, it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources of the SBFD time-frequency resources, and the downlink data corresponding to the downlink channel is received through the SBFD time-frequency resources.
  • the first service priority is the PHY channel priority
  • the second service priority is the PHY channel priority
  • the first service priority is the MAC channel priority
  • the second service priority is the MAC channel priority.
  • the uplink data corresponding to the uplink channel is sent on the available time-frequency resources of the SBFD time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources.
  • the time sequence corresponding to the uplink channel is later than the time sequence corresponding to the downlink channel, such as the first symbol occupied by the uplink channel is after the first symbol occupied by the downlink channel, then it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources of the SBFD time-frequency resources, and receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources.
  • one channel can be randomly selected from the uplink channel and the downlink channel. If the uplink channel is selected, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources of the SBFD time-frequency resources, and the downlink data corresponding to the downlink channel is prohibited from being received through the SBFD time-frequency resources. If the downlink channel is selected, the uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency resources of the SBFD time-frequency resources, and the downlink data corresponding to the downlink channel is received through the SBFD time-frequency resources.
  • Mode 5 For the same user equipment, if the user equipment has uplink data and downlink data transmission at the same time, and the base station equipment allows the user equipment to transmit uplink data and downlink data within the SBFD time-frequency resources, for half-duplex UE, if the uplink resources occupied by the uplink channel and the downlink resources occupied by the downlink channel are both in the SBFD time-frequency resources, a target uplink resource not occupied by the downlink resource can be selected from the uplink resources (i.e., the uplink resources in the available time-frequency resources of the SBFD time-frequency resources), and the uplink data corresponding to the uplink channel can be sent on the target uplink resource; a target downlink resource not occupied by the uplink resource can be selected from the downlink resources (i.e., the downlink resources in the SBFD time-frequency resources), and the downlink data corresponding to the downlink channel can be received on the target downlink resource.
  • overlapping resources of uplink resources and downlink resources can be determined, and the overlapping resources can be excluded from the uplink resources.
  • the uplink resources after excluding the overlapping resources are the target uplink resources, and the uplink data corresponding to the uplink channel can be sent through the target uplink resources.
  • the initial uplink data corresponding to the uplink channel can be rate matched to obtain the target uplink data after rate matching, and the target uplink data corresponding to the uplink channel can be sent on the target uplink resource.
  • part of the data can be selected from the initial uplink data as the target uplink data, or the initial uplink data can be coded at a high channel rate to obtain the target uplink data, or the initial uplink data can be high-order modulated to obtain the target uplink data.
  • the overlapping resources of uplink resources and downlink resources can be determined and excluded from the downlink resources.
  • the downlink resources after excluding the overlapping resources are the target downlink resources.
  • the half-duplex UE can receive downlink data corresponding to the downlink channel in the target downlink resources.
  • Mode 1 For full-duplex UEs, uplink data and downlink data are allowed to be transmitted simultaneously, that is, full-duplex UEs can send uplink data corresponding to uplink channels on available time-frequency resources of SBFD time-frequency resources, and full-duplex UEs can receive SSBs through downlink resources other than SBFD time-frequency resources. As shown in Figure 4, for full-duplex UEs, uplink data corresponding to PUSCH/PUCCH0 and PUSCH/PUCCH0Rep#1 can be sent through SBFD time-frequency resources, and SSBs can be received simultaneously.
  • Method 2 For half-duplex UE, if the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources, the downlink resources occupied by the SSB are outside the SBFD time-frequency resources, and the downlink resources occupied by the SSB overlap with the SBFD time-frequency resources, then it is possible to prohibit sending the uplink data corresponding to the uplink channel on the available time-frequency resources of the SBFD time-frequency resources, and receive the SSB corresponding to the downlink channel through the downlink resources.
  • the half-duplex UE receives SSB but does not send uplink data on the uplink channel.
  • the uplink data corresponding to PUSCH/PUCCH0 and PUSCH/PUCCH0Rep#1 will not be sent through the SBFD time-frequency resources, but SSB can be received.
  • Mode 3 For half-duplex UE, if the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources, the downlink resources occupied by the SSB are outside the SBFD time-frequency resources, and the downlink resources occupied by the SSB overlap with the SBFD time-frequency resources, then the SSB can be received first. When it is not necessary to receive the SSB, uplink data can be sent on the uplink channel, and the base station equipment is required to perform blind decoding on the uplink data corresponding to the uplink channel.
  • the SSB corresponding to the downlink channel can be received through the downlink resources; when it is not necessary to receive the SSB through the downlink resources, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources of the SBFD time-frequency resources. As shown in Figure 4, when it is not necessary to receive the SSB through the downlink resources, the uplink data corresponding to the PUSCH/PUCCH0 and PUSCH/PUCCH0Rep#1 are sent through the SBFD time-frequency resources.
  • the uplink resources occupied by the uplink channel there is a conflict between the uplink resources occupied by the uplink channel and the downlink resources occupied by the downlink channel (the time domain resources overlap).
  • the SBFD time-frequency resources are set to UL
  • the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources
  • the downlink resources occupied by the downlink channel are outside the SBFD time-frequency resources
  • the downlink resources occupied by the downlink channel overlap with the SBFD time-frequency resources occupied by the uplink channel (that is, the time slots of the two are the same).
  • FIG5 is a schematic diagram of a conflict between an uplink channel in the SBFD time-frequency resources and a downlink channel outside the SBFD time-frequency resources. Then, in order to handle the conflict between the uplink resources occupied by the uplink channel and the downlink resources occupied by the downlink channel, the following method can be used:
  • Mode 1 For different user equipments, when one user equipment transmits uplink data corresponding to an uplink channel (such as PUSCH/PUCCH) and another user equipment transmits downlink data corresponding to a downlink channel (such as PDSCH/PDCCH/CSI-RS), the base station equipment can ensure through scheduling that there is no interference between the uplink and downlink or that the interference is controllable. Therefore, the uplink channel and the downlink channel are allowed to transmit data simultaneously. That is to say, one user equipment can send uplink data corresponding to the uplink channel on the available time-frequency resources of the SBFD time-frequency resources, and another user equipment can receive downlink data corresponding to the downlink channel on the downlink resources.
  • an uplink channel such as PUSCH/PUCCH
  • a downlink channel such as PDSCH/PDCCH/CSI-RS
  • Mode 2 For the same user equipment, if the user equipment has uplink data and downlink data transmission at the same time, then for full-duplex UE, uplink data and downlink data are allowed to be transmitted simultaneously, that is, the full-duplex UE can send uplink data corresponding to the uplink channel on the available time-frequency resources of the SBFD time-frequency resources, and the full-duplex UE can receive downlink data corresponding to the downlink channel through the downlink resources.
  • Mode 3 For the same user equipment, if the user equipment has uplink data and downlink data transmission at the same time, then, for half-duplex UE, based on the channel type of the uplink channel and the channel type of the downlink channel, the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources of the SBFD time-frequency resources, and the downlink data corresponding to the downlink channel can be prohibited from being received through the downlink resources; or, based on the channel type of the uplink channel and the channel type of the downlink channel, the uplink data corresponding to the uplink channel can be prohibited from being sent on the available time-frequency resources of the SBFD time-frequency resources, and the downlink data corresponding to the downlink channel can be received through the downlink resources.
  • the channel processing priority corresponding to the channel type of the uplink channel can be configured, and the channel processing priority corresponding to the channel type of the downlink channel can be configured. Based on this, if the channel processing priority corresponding to the channel type of the uplink channel is greater than the channel processing priority corresponding to the channel type of the downlink channel, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is prohibited from being received through the downlink resources; if the channel processing priority corresponding to the channel type of the uplink channel is less than the channel processing priority corresponding to the channel type of the downlink channel, the uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is received through the downlink resources.
  • the channel processing priorities corresponding to different channel types can be configured based on experience, and there is no restriction on the channel processing priorities.
  • the priority order of the channel processing priorities corresponding to each channel type can be SSB>PDCCH>PUCCH>CSI-RS>PDSCH/PUSCH, or the priority order can be PDCCH>PUCCH>SSB>CSI-RS>PDSCH/PUSCH, or the priority order can be PDCCH>PUCCH>CSI-RS>PDSCH>SSB>PUSCH.
  • the channel type of the uplink channel is PUSCH type or PUCCH type
  • the channel type of the downlink channel is SSB type or PDCCH type
  • the channel type of the uplink channel is PUCCH type, and the channel type of the downlink channel is CSI-RS type or PDSCH type
  • the uplink data corresponding to the uplink channel is sent on the available time-frequency resources of the SBFD time-frequency resources, and the downlink data corresponding to the downlink channel is prohibited from being received through the downlink resources.
  • the channel type of the uplink channel is PUSCH type, and the channel type of the downlink channel is CSI-RS type, it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources of the SBFD time-frequency resources, and the downlink data corresponding to the downlink channel is received through the downlink resources.
  • PDSCH/PUSCH means that the channel processing priority of PDSCH and PUSCH is the same.
  • the order of PDSCH and PUSCH can be determined in the following way: If the channel type of the uplink channel is PUSCH type and the channel type of the downlink channel is PDSCH type, when the uplink channel is dynamically scheduled and the downlink channel is semi-statically scheduled, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources of the SBFD time-frequency resources, and the downlink data corresponding to the downlink channel is prohibited from being received through the downlink resources.
  • the uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency resources of the SBFD time-frequency resources, and the downlink data corresponding to the downlink channel is received through the downlink resources.
  • both the uplink channel and the downlink channel are dynamically scheduled, or both the uplink channel and the downlink channel are semi-statically scheduled, if the first service priority corresponding to the uplink channel is greater than the second service priority corresponding to the downlink channel, the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources of the SBFD time-frequency resources, and the downlink data corresponding to the downlink channel is prohibited from being received through the downlink resources.
  • the uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency resources of the SBFD time-frequency resources, and the downlink data corresponding to the downlink channel is received through the downlink resources.
  • the first service priority is the PHY channel priority
  • the second service priority is the PHY channel priority
  • the first service priority is the MAC channel priority
  • the second service priority is the MAC channel priority.
  • the uplink data corresponding to the uplink channel is sent on the available time-frequency resources of the SBFD time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the downlink resources.
  • the time sequence corresponding to the uplink channel is later than the time sequence corresponding to the downlink channel, for example, the first symbol occupied by the uplink channel is after the first symbol occupied by the downlink channel, then it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources of the SBFD time-frequency resources, and receive the downlink data corresponding to the downlink channel through the downlink resources.
  • one channel can be randomly selected from the uplink channel and the downlink channel. If the uplink channel is selected, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources of the SBFD time-frequency resources, and the downlink data corresponding to the downlink channel is prohibited from being received through the downlink resources. If the downlink channel is selected, the uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency resources of the SBFD time-frequency resources, and the downlink data corresponding to the downlink channel is received through the downlink resources.
  • Method 4 For the same user equipment, if the user equipment has uplink data and downlink data transmission, for half-duplex UE, select the target uplink resource not occupied by the downlink resource from the uplink resources occupied by the uplink channel (located within the SBFD time-frequency resources), and send the uplink data corresponding to the uplink channel on the target uplink resource; select the target downlink resource not occupied by the uplink resource from the downlink resources occupied by the downlink channel (located outside the SBFD time-frequency resources), and receive the downlink data corresponding to the downlink channel on the target downlink resource.
  • overlapping resources of uplink resources and downlink resources can be determined, and the overlapping resources can be excluded from the uplink resources.
  • the uplink resources after excluding the overlapping resources are the target uplink resources, and the uplink data corresponding to the uplink channel can be sent through the target uplink resources.
  • the initial uplink data corresponding to the uplink channel can be rate matched to obtain the target uplink data after rate matching, and the target uplink data corresponding to the uplink channel can be sent on the target uplink resource.
  • part of the data can be selected from the initial uplink data as the target uplink data, or the initial uplink data can be coded at a high channel rate to obtain the target uplink data, or the initial uplink data can be high-order modulated to obtain the target uplink data.
  • the overlapping resources of uplink resources and downlink resources can be determined and excluded from the downlink resources.
  • the downlink resources after excluding the overlapping resources are the target downlink resources.
  • the half-duplex UE can receive downlink data corresponding to the downlink channel in the target downlink resources.
  • uplink data corresponding to PUSCH/PUCCH0 and PUSCH/PUCCH0Rep#1, and downlink data corresponding to PDCCH/PDSCH can be sent and received simultaneously.
  • PDCCH is received, and for PDSCH and PUSCH/PUCCH0Rep#1, the judgment basis of PDSCH/PUSCH (dynamic>semi-static) can be used. If both are dynamic or semi-static, they are processed according to PHY channel priority and MAC channel priority, or circumvented by base station equipment scheduling.
  • the base station equipment configures dynamic SBFD time-frequency resources through DCI signaling, and sets the SBFD time-frequency resources to uplink transmission or Flexible transmission, that is, the SBFD time-frequency resources are used for uplink transmission or Flexible transmission.
  • the full-duplex UE uses the SBFD time-frequency resources to send uplink data corresponding to the uplink channel.
  • the full-duplex UE does not need to consider whether the downlink channel overlaps with the uplink channel in the time domain resources, nor does it need to consider the DL/UL switching time.
  • the half-duplex UE For half-duplex UEs that support SBFD time-frequency resources, if no downlink channel overlaps with the uplink channel in the time domain resources (the time slots in the SBFD time-frequency resources do not overlap with the time slots in the downlink time-frequency resources, that is, the two time slots are different), or, when the DL/UL switching time allows, the half-duplex UE uses the SBFD time-frequency resources to send the uplink data corresponding to the uplink channel.
  • the base station equipment uses the SBFD time-frequency resources to receive the uplink data corresponding to the uplink channel.
  • case 2 The implementation process of case 2 is similar to that of case 1, and will not be repeated here.
  • FIG6 it is a schematic diagram of dynamically scheduling uplink channels when dynamically configuring SBFD time-frequency resources.
  • the dynamically configured SBFD time-frequency resources and the dynamically scheduled PUSCH i.e., uplink channels
  • different DCIs can also be used for scheduling, and there is no restriction on this.
  • the 4 repeated transmissions corresponding to PUSCH/PUCCH are all in the SBFD time-frequency resources, so all 4 repeated transmissions corresponding to PUSCH/PUCCH can be transmitted.
  • Case 3 In the FD mode of TDD, for the transmission of uplink data in the idle state/non-connected state, the uplink data corresponding to the uplink channel (PUSCH/PUCCH) is transmitted in the semi-statically configured SBFD time-frequency resources.
  • the base station equipment configures the semi-static SBFD time-frequency resources for the user equipment, it can be configured through SIB (RRC broadcast message)/RRC release message (RRC dedicated signaling)/DCI, and the transmission resources for the unlicensed CG PUSCH are configured at the same time. If the transmission resources configured for the unlicensed CG PUSCH fall within the SBFD time-frequency resources, and the SBFD time-frequency resources are set to UL, then the user equipment can use the unlicensed CG PUSCH within the SBFD time-frequency resources to transmit uplink data.
  • SIB RRC broadcast message
  • RRC release message RRC dedicated signaling
  • the base station equipment when the base station equipment performs retransmission scheduling for the uplink data corresponding to the unlicensed CG PUSCH, it can also schedule the uplink data corresponding to the retransmitted PUSCH within the SBFD time-frequency resources, so that the uplink transmission delay can be reduced.
  • RRC broadcast message means RRC broadcast message
  • RRC release message means RRC release message
  • RRC dedicated signaling means RRC dedicated signaling
  • Figure 7 is a schematic diagram of configuring the unlicensed CG PUSCH based on the semi-static SBFD time-frequency resources.
  • PUSCH#1 corresponds to SSB#1
  • PUSCH#2 corresponds to SSB#2
  • PUSCH#1 and PUSCH#2 are both in the SBFD time-frequency resources
  • PUSCH#1 and PUSCH#2 are both valid unlicensed CG PUSCH transmission resources.
  • the base station device When the base station device fails to successfully receive the uplink data corresponding to PUSCH#1, the base station device can schedule the retransmission of the data on PUSCH#1 through DCI, and the retransmitted PUSCH can use the SBFD time-frequency resources.
  • uplink data corresponding to the uplink channel is sent on the SBFD time-frequency resources, and multiple uplink channels can be obtained.
  • the multiple uplink channels can include uplink channels located in the SBFD time-frequency resources and/or uplink channels located in the uplink time-frequency resources. That is, when matching the mapping relationship between the uplink channel and the SSB, it is not necessary to distinguish whether the uplink channel belongs to the SBFD time-frequency resources or the uplink time-frequency resources, and all uplink channels can be found in sequence.
  • the SSB set and SSB ratio configuration can be obtained from the base station device.
  • the SSB set can include multiple SSBs, such as SSB1 and SSB2, and the SSB ratio configuration can include a ratio relationship between multiple SSBs, such as 1:2.
  • the target SSB corresponding to the uplink channel can be determined based on the SSB set and SSB ratio configuration. For example, when the SSB set includes SSB1 and SSB2 and the SSB ratio is configured as 1:2, all uplink channels correspond to SSB1, SSB2, SSB2, SSB1, SSB2, SSB2, and so on. Therefore, the first uplink channel corresponds to SSB1, the second uplink channel corresponds to SSB2, the third uplink channel corresponds to SSB2, the fourth uplink channel corresponds to SSB1, the fifth uplink channel corresponds to SSB2, the sixth uplink channel corresponds to SSB2, and so on.
  • these uplink channels there may be uplink channels located in SBFD time-frequency resources, and there may also be uplink channels located in uplink time-frequency resources, and there is no restriction on this.
  • the uplink data corresponding to the uplink channel can be sent on the available time-frequency resources based on the matching beam corresponding to the target SSB corresponding to the uplink channel. This process will not be described in detail.
  • FIG. 8A is a small data transmission flow chart based on the 4-step random access process.
  • the user equipment receives broadcast signaling with SBFD, which is used to semi-statically configure the SBFD time-frequency resources.
  • SBFD broadcast signaling
  • Msg1, Msg2, Msg3 and Msg4 in Figure 8A. If the uplink channel corresponding to Msg3 is located in the SBFD time-frequency resources, Msg3 can be transmitted through the SBFD time-frequency resources.
  • the user equipment can use the SBFD time-frequency resources for downlink data/uplink data transmission, that is, when the uplink channel scheduled by the base station device is located in the SBFD time-frequency resources, the user equipment can use the SBFD time-frequency resources to transmit uplink data.
  • the base station device can also schedule PDSCH/PUSCH on DL/UL symbols similar to legacy UE behavior.
  • FIG. 8B is a small data transmission flow chart based on the two-step random access process.
  • the user equipment receives broadcast signaling with SBFD, which is used to semi-statically configure the SBFD time-frequency resources.
  • SBFD broadcast signaling
  • MsgA and MsgB a two-step random access process is performed, namely MsgA and MsgB in Figure 8B. If the uplink channel corresponding to MsgA is located in the SBFD time-frequency resources, MsgA can be transmitted through the SBFD time-frequency resources.
  • the user equipment can use the SBFD time-frequency resources for downlink data/uplink data transmission, that is, when the uplink channel scheduled by the base station device is located in the SBFD time-frequency resources, the user equipment can use the SBFD time-frequency resources to transmit uplink data.
  • the base station device can also schedule PDSCH/PUSCH on DL/UL symbols similar to legacy UE behavior.
  • FIG. 8C is a small data transmission flow chart based on the 2-step random access process.
  • the user equipment receives the broadcast signaling with SBFD and performs a 2-step random access process, namely MsgA and MsgB in Figure 8C. If the uplink channel corresponding to MsgA is located in the SBFD time-frequency resources, MsgA is transmitted through the SBFD time-frequency resources. After the 2-step random access is successful, if the uplink channel scheduled by the base station equipment is located in the SBFD time-frequency resources, the user equipment uses the SBFD time-frequency resources to transmit uplink data.
  • the base station equipment can schedule PDSCH/PUSCH on DL/UL symbols similar to the legacy UE behavior.
  • FIG. 8D is a small data transmission flow chart based on the 4-step random access process.
  • the user equipment receives the broadcast signaling with SBFD and performs a 4-step random access process, namely Msg1, Msg2, Msg3 and Msg4 in Figure 8D. If the uplink channel corresponding to Msg3 is located in the SBFD time-frequency resources, Msg3 is transmitted through the SBFD time-frequency resources. After the 4-step random access is successful, if the uplink channel is located in the SBFD time-frequency resources, the user equipment uses the SBFD time-frequency resources to transmit uplink data.
  • the base station equipment can schedule PDSCH/PUSCH on DL/UL symbols similar to the legacy UE behavior.
  • the uplink resources occupied by the uplink channel there is a conflict between the uplink resources occupied by the uplink channel and the downlink resources occupied by the downlink channel (the time domain resources overlap). For example, if the SBFD time-frequency resources are set to UL, the uplink resources occupied by the uplink channel (PUSCH/PUCCH) are in the SBFD time-frequency resources, and the downlink resources occupied by the downlink channel (such as SSB, etc.) are outside the SBFD time-frequency resources, and the downlink resources occupied by the downlink channel overlap with the SBFD time-frequency resources occupied by the uplink channel (that is, the time slots of the two are the same).
  • the uplink resources occupied by the uplink channel PUSCH/PUCCH
  • the downlink resources occupied by the downlink channel such as SSB, etc.
  • the uplink data and SSB corresponding to the uplink channel can be sent and received simultaneously.
  • SSB can be received but uplink data corresponding to the uplink channel will not be sent, or SSB can be received first.
  • uplink data corresponding to the uplink channel can be sent on SBFD time-frequency resources.
  • the base station device can perform blind decoding on the uplink data on the uplink channel.
  • the uplink data corresponding to the uplink channel (PUSCH/PUCCH) and the downlink data corresponding to the downlink channel (PDSCH/PDCCH) are sent and received simultaneously.
  • the uplink data corresponding to the uplink channel is sent on the SBFD time-frequency resources, or the downlink data corresponding to the downlink channel is received on the downlink resources.
  • the base station equipment configures dynamic SBFD time-frequency resources for the user equipment, it can be configured through SIB (RRC broadcast message)/RRC release message (RRC dedicated signaling)/DCI.
  • the base station equipment configures the unlicensed CG PUSCH transmission resources. If the unlicensed CG PUSCH transmission resources fall within the SBFD time-frequency resources, and the SBFD time-frequency resources are set to UL, the user equipment can send the uplink data corresponding to the unlicensed CG PUSCH within the SBFD time-frequency resources.
  • the base station equipment performs retransmission scheduling for the uplink data corresponding to the unlicensed CG PUSCH, it can schedule the retransmitted PUSCH within the SBFD time-frequency resources, which can reduce the uplink transmission delay.
  • FIG. 10 is a schematic diagram of unlicensed CG PUSCH transmission based on semi-static/dynamic SBFD time-frequency resources in idle/non-connected state.
  • PUSCH#1 corresponds to SSB#1
  • PUSCH#2 corresponds to SSB#2
  • PUSCH#1 and PUSCH#2 are both in SBFD time-frequency resources
  • PUSCH#1 and PUSCH#2 are both valid unlicensed CG PUSCH transmission resources.
  • the base station device fails to successfully receive the uplink data corresponding to PUSCH#1, it can schedule the retransmission of uplink data on PUSCH#1 through DCI, and configure the SBFD time-frequency resources for PUSCH transmission at the same time.
  • the user equipment uses the dynamically configured SBFD time-frequency resources to retransmit the uplink data.
  • the uplink data corresponding to the uplink channel can be transmitted on the SBFD time-frequency resources, so as to more effectively utilize the SBFD time-frequency resources, improve resource utilization, improve network coverage and network capacity, and reduce transmission delay, such as reducing uplink transmission delay.
  • using SBFD time-frequency domain resources for uplink data transmission can increase uplink data resources, thereby increasing uplink throughput and cell coverage, and reducing transmission delay.
  • the transmission criteria for uplink data/control channels are given, the transmission behavior of base station equipment and user equipment is determined, and the blind detection of base station equipment and user equipment is reduced, which effectively increases the uplink transmission opportunities and improves the uplink transmission reliability.
  • a data transmission device corresponding to the above-mentioned data transmission method, as well as a base station device, a full-duplex UE and a half-duplex UE are also provided. Since the principles of solving the problems by the base station device, the full-duplex UE and the half-duplex UE are similar to the data transmission method of the above-mentioned example, the implementation of the base station device, the full-duplex UE and the half-duplex UE can refer to the implementation of the method, and the repeated parts will not be repeated.
  • an example of the present application proposes a data transmission device, which is applied to a base station device.
  • the device may include: an allocation module, which is used to allocate available time-frequency resources from the SBFD time-frequency resources if the SBFD time-frequency resources are set to uplink transmission or Flexible transmission; a transmission module, which is used to receive uplink data corresponding to at least one uplink channel on the available time-frequency resources.
  • the SBFD time-frequency resource is a semi-statically configured SBFD time-frequency resource; or, the SBFD time-frequency resource is a dynamically configured SBFD time-frequency resource.
  • each uplink channel is a dynamically scheduled PUSCH or PUCCH; or, each uplink channel is a semi-statically scheduled PUSCH or PUCCH.
  • the uplink data corresponding to each uplink channel is initially transmitted uplink data; or, the uplink data corresponding to each uplink channel is K-th repeatedly transmitted uplink data, where K is a positive integer.
  • the uplink data is uplink data in a connected state; or, the uplink data is uplink data in an idle state or an inactive state; or, the uplink data is uplink data in a random access process; or, the uplink data is uplink data that has completed a random access process but has not completed a reconfiguration process.
  • an example of the present application proposes a data transmission device, which is applied to a full-duplex UE.
  • the device may include: an acquisition module, which is used to obtain the available time-frequency resources allocated by the base station device to the full-duplex UE from the SBFD time-frequency resources if the sub-band full-duplex SBFD time-frequency resources are set by the base station device as uplink transmission or flexible transmission; a transmission module, which is used to send the uplink data corresponding to the uplink channel on the available time-frequency resources for each uplink channel based on the positional relationship between the uplink resources occupied by the uplink channel and the SBFD time-frequency resources.
  • the transmission module is specifically used to send the uplink data corresponding to the uplink channel on the available time-frequency resources based on the positional relationship between the uplink resources occupied by the uplink channel and the SBFD time-frequency resources: if all the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources, then the uplink data corresponding to the uplink channel is sent on the available time-frequency resources.
  • the transmission module is also used for: if all uplink resources occupied by the uplink channel are not in the SBFD time-frequency resources, and the uplink resources are located in uplink symbols or F symbols, then the uplink data corresponding to the uplink channel is sent on the uplink resources outside the SBFD time-frequency resources.
  • the transmission module is also used to: for each uplink channel, if part of the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources and the remaining part of the uplink resources are located in the F symbol, then it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources.
  • the transmission module is specifically used to send the uplink data corresponding to the uplink channel on the available time-frequency resources based on the positional relationship between the uplink resources occupied by the uplink channel and the SBFD time-frequency resources: if part of the uplink resources occupied by the uplink channel is in the SBFD time-frequency resources and the remaining part of the uplink resources is located in the F symbol, then the uplink data corresponding to the uplink channel is sent on the available time-frequency resources.
  • the transmission module is further used to prohibit sending uplink data corresponding to the uplink channel on the available time-frequency resources if part of the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources and the remaining part of the uplink resources are located in downlink symbols.
  • the transmission module is specifically used to send the uplink data corresponding to the uplink channel on the available time-frequency resources based on the positional relationship between the uplink resources occupied by the uplink channel and the SBFD time-frequency resources: if part of the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources and the remaining part of the uplink resources are in the downlink symbols, rate matching is performed on the initial uplink data corresponding to the uplink channel to obtain target uplink data, and the target uplink data is sent on the available time-frequency resources.
  • the transmission module performs rate matching on the initial uplink data corresponding to the uplink channel to obtain the target uplink data, and is specifically used to: select part of the data from the initial uplink data as the target uplink data; or, perform high channel coding code rate processing on the initial uplink data to obtain the target uplink data; or, perform high-order modulation processing on the initial uplink data to obtain the target uplink data.
  • the transmission module is also used to: send the uplink data corresponding to the uplink channel on the available time-frequency resources; and prohibit receiving the downlink data corresponding to the downlink channel through the SBFD time-frequency resources.
  • the transmission module is also used to: send uplink data corresponding to the uplink channel on the available time-frequency resources; and receive downlink data corresponding to the downlink channel through the SBFD time-frequency resources.
  • the transmission module is further used to: send the uplink data corresponding to the uplink channel on the available time-frequency resources; and receive the downlink data corresponding to the downlink channel through the downlink resources.
  • the transmission module when it sends the uplink data corresponding to the uplink channel on the available time-frequency resources, it is specifically used to: obtain multiple configured uplink channels; wherein the multiple uplink channels include uplink channels located in SBFD time-frequency resources and/or uplink channels located in uplink time-frequency resources; obtain an SSB set and an SSB ratio configuration from a base station device, the SSB set includes multiple SSBs, and the SSB ratio configuration includes a ratio relationship between multiple SSBs; for each uplink channel, determine the target SSB corresponding to the uplink channel based on the SSB set and the SSB ratio configuration, and send the uplink data corresponding to the uplink channel on the available time-frequency resources based on the matching beam corresponding to the target SSB.
  • the SBFD time-frequency resource is a semi-statically configured SBFD time-frequency resource; or, the SBFD time-frequency resource is a dynamically configured SBFD time-frequency resource.
  • each uplink channel is a dynamically scheduled PUSCH or PUCCH; or, each uplink channel is a semi-statically scheduled PUSCH or PUCCH.
  • the uplink data corresponding to each uplink channel is initially transmitted uplink data; or, the uplink data corresponding to each uplink channel is K-th repeatedly transmitted uplink data, where K is a positive integer.
  • the uplink data is uplink data in a connected state; or, the uplink data is uplink data in an idle state or an inactive state; or, the uplink data is uplink data in a random access process; or, the uplink data is uplink data that has completed a random access process but has not completed a reconfiguration process.
  • an example of the present application proposes a data transmission device, which is applied to half-duplex UE.
  • the device may include: an acquisition module, which is used to obtain the available time-frequency resources allocated by the base station device to the half-duplex UE from the SBFD time-frequency resources if the SBFD time-frequency resources are set by the base station device as uplink transmission or Flexible transmission; a transmission module, which is used to send the uplink data corresponding to the uplink channel on the available time-frequency resources for each uplink channel based on the positional relationship between the uplink resources occupied by the uplink channel and the SBFD time-frequency resources.
  • the transmission module is specifically used to send the uplink data corresponding to the uplink channel on the available time-frequency resources based on the positional relationship between the uplink resources occupied by the uplink channel and the SBFD time-frequency resources: if all uplink resources occupied by the uplink channel are in the SBFD time-frequency resources, and the time slots in the SBFD time-frequency resources do not overlap with the time slots in the downlink time-frequency resources, then the uplink data corresponding to the uplink channel is sent on the available time-frequency resources.
  • the transmission module is also used for: if all uplink resources occupied by the uplink channel are not in the SBFD time-frequency resources, and the uplink resources are located in uplink symbols or F symbols, then the uplink data corresponding to the uplink channel is sent on the uplink resources outside the SBFD time-frequency resources.
  • the transmission module is further used to: if part of the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources and the remaining part of the uplink resources are located in the F symbol, then it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources.
  • the transmission module is specifically used to send the uplink data corresponding to the uplink channel on the available time-frequency resources based on the positional relationship between the uplink resources occupied by the uplink channel and the SBFD time-frequency resources: if part of the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources, and the remaining part of the uplink resources are located in the F symbol, and the time slot in the SBFD time-frequency resources does not overlap with the time slot in the downlink time-frequency resources, then the uplink data corresponding to the uplink channel is sent on the available time-frequency resources.
  • the transmission module is further used to prohibit sending uplink data corresponding to the uplink channel on the available time-frequency resources if part of the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources and the remaining part of the uplink resources are located in downlink symbols.
  • the transmission module is specifically used to send the uplink data corresponding to the uplink channel on the available time-frequency resources based on the positional relationship between the uplink resources occupied by the uplink channel and the SBFD time-frequency resources: if part of the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources, and the remaining part of the uplink resources are located in the downlink symbols, and the time slot in the SBFD time-frequency resources does not overlap with the time slot in the downlink time-frequency resources, then rate matching is performed on the initial uplink data corresponding to the uplink channel to obtain target uplink data, and the target uplink data is sent on the available time-frequency resources.
  • the transmission module performs rate matching on the initial uplink data corresponding to the uplink channel to obtain the target uplink data, and is specifically used to: select part of the data from the initial uplink data as the target uplink data; or, perform high channel coding code rate processing on the initial uplink data to obtain the target uplink data; or, perform high-order modulation processing on the initial uplink data to obtain the target uplink data.
  • the transmission module is also used to: send the uplink data corresponding to the uplink channel on the available time-frequency resources; and prohibit receiving the downlink data corresponding to the downlink channel through the SBFD time-frequency resources.
  • the transmission module is further used to: based on the channel type of the uplink channel and the channel type of the downlink channel, send the uplink data corresponding to the uplink channel on the available time-frequency resources, and prohibit receiving the downlink data corresponding to the downlink channel through the SBFD time-frequency resources; or, prohibit sending the uplink data corresponding to the uplink channel on the available time-frequency resources, and receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources; or, select a target uplink resource that is not occupied by downlink resources from the uplink resources, and send the uplink data corresponding to the uplink channel on the target uplink resource; select a target downlink resource that is not occupied by uplink resources from the downlink resources, and receive the downlink data corresponding to the downlink channel on the target downlink resource.
  • the transmission module sends the uplink data corresponding to the uplink channel on the available time-frequency resources based on the channel type of the uplink channel and the channel type of the downlink channel, and prohibits receiving the downlink data corresponding to the downlink channel through the SBFD time-frequency resources; or prohibits sending the uplink data corresponding to the uplink channel on the available time-frequency resources, and receives the downlink data corresponding to the downlink channel through the SBFD time-frequency resources, specifically for: if the channel processing priority corresponding to the channel type of the uplink channel is greater than the channel processing priority corresponding to the channel type of the downlink channel, then the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is prohibited from being received through the SBFD time-frequency resources; if the channel processing priority corresponding to the channel type of the uplink channel is less than the channel processing priority corresponding to the channel type of the downlink channel, then the uplink data corresponding to the uplink channel is prohibited
  • the transmission module is also used for: if the channel type of the uplink channel is PUSCH type or PUCCH type, and the channel type of the downlink channel is SSB type or PDCCH type, then it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources, and the downlink data corresponding to the downlink channel is received through the SBFD time-frequency resources; if the channel type of the uplink channel is PUCCH type, and the channel type of the downlink channel is CSI-RS type or PDSCH type, then the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources; if the channel type of the uplink channel is PUSCH type, and the channel type of the downlink channel is CSI-RS type, then it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources, and the downlink data corresponding to the downlink channel
  • the transmission module is further used to: when the uplink channel is dynamically scheduled and the downlink channel is semi-statically scheduled, send the uplink data corresponding to the uplink channel on the available time-frequency resources, and prohibit receiving the downlink data corresponding to the downlink channel through the SBFD time-frequency resources; when the uplink channel is semi-statically scheduled and the downlink channel is dynamically scheduled, prohibit sending the uplink data corresponding to the uplink channel on the available time-frequency resources, and receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources; when both the uplink channel and the downlink channel are dynamically scheduled, or both the uplink channel and the downlink channel are semi-statically scheduled, if the service priority corresponding to the uplink channel is greater than the service priority corresponding to the downlink channel, send the uplink data corresponding to the uplink channel on the available time-frequency resources, and prohibit receiving
  • the transmission module is also used to: if the time sequence corresponding to the uplink channel is earlier than the time sequence corresponding to the downlink channel, then the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources; if the time sequence corresponding to the uplink channel is later than the time sequence corresponding to the downlink channel, then it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources, and receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources; or, based on a random order, send the uplink data corresponding to the uplink channel on the available time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources; or, based on a random order, it is prohibited to
  • the transmission module is further used to: based on the channel type of the uplink channel and the channel type of the downlink channel, send the uplink data corresponding to the uplink channel on the available time-frequency resources, and prohibit receiving the downlink data corresponding to the downlink channel through the downlink resources; or, prohibit sending the uplink data corresponding to the uplink channel on the available time-frequency resources, and receive the downlink data corresponding to the downlink channel through the downlink resources; or, select a target uplink resource that is not occupied by the downlink resource from the uplink resource, and send the uplink data corresponding to the uplink channel on the target uplink resource; select a target downlink resource that is not occupied by the uplink resource from the downlink resource, and receive the downlink data
  • the transmission module when the transmission module sends uplink data corresponding to an uplink channel on a target uplink resource, it is specifically used to: perform rate matching on initial uplink data corresponding to the uplink channel to obtain target uplink data, and send the target uplink data on the target uplink resource.
  • the transmission module sends the uplink data corresponding to the uplink channel on the available time-frequency resources based on the channel type of the uplink channel and the channel type of the downlink channel, and prohibits receiving the downlink data corresponding to the downlink channel through the downlink resources; or prohibits sending the uplink data corresponding to the uplink channel on the available time-frequency resources, and receives the downlink data corresponding to the downlink channel through the downlink resources, specifically for: if the channel processing priority corresponding to the channel type of the uplink channel is greater than the channel processing priority corresponding to the channel type of the downlink channel, then the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is prohibited from being received through the downlink resources; if the channel processing priority corresponding to the channel type of the uplink channel is less than the channel processing priority corresponding to the channel type of the downlink channel, then the uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency
  • the transmission module is also used for: if the channel type of the uplink channel is a PUSCH type or a PUCCH type, and the channel type of the downlink channel is an SSB type or a PDCCH type, then sending the uplink data corresponding to the uplink channel on the available time-frequency resources is prohibited, and the downlink data corresponding to the downlink channel is received through the downlink resources; if the channel type of the uplink channel is a PUCCH type, and the channel type of the downlink channel is a CSI-RS type or a PDSCH type, then sending the uplink data corresponding to the uplink channel on the available time-frequency resources is prohibited, and receiving the downlink data corresponding to the downlink channel through the downlink resources is prohibited; if the channel type of the uplink channel is a PUSCH type, and the channel type of the downlink channel is a CSI-RS type, then sending the uplink data corresponding to the uplink channel on the available time-frequency resources is prohibited, and receiving the downlink data
  • the transmission module is further used to: when the uplink channel is dynamically scheduled and the downlink channel is semi-statically scheduled, send the uplink data corresponding to the uplink channel on the available time-frequency resources, and prohibit receiving the downlink data corresponding to the downlink channel through the downlink resources; when the uplink channel is semi-statically scheduled and the downlink channel is dynamically scheduled, prohibit sending the uplink data corresponding to the uplink channel on the available time-frequency resources, and receive the downlink data corresponding to the downlink channel through the downlink resources; when both the uplink channel and the downlink channel are dynamically scheduled, or both the uplink channel and the downlink channel are semi-statically scheduled, if the service priority corresponding to the uplink channel is greater than the service priority corresponding to the downlink channel, send the uplink data corresponding to the uplink channel on the available time-frequency resources, and prohibit receiving the downlink data corresponding
  • the transmission module is also used to: if the time sequence corresponding to the uplink channel is earlier than the time sequence corresponding to the downlink channel, then the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the downlink resources; if the time sequence corresponding to the uplink channel is later than the time sequence corresponding to the downlink channel, then it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources, and receive the downlink data corresponding to the downlink channel through the downlink resources; or, based on a random order, send the uplink data corresponding to the uplink channel on the available time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the downlink resources; or, based on a random order, it is prohibited to send the uplink data corresponding to the uplink channel through the downlink resources; or, based on a random order, it is prohibited to send the uplink data
  • the transmission module is also used to: prohibit sending uplink data corresponding to the uplink channel on the available time-frequency resources; and receive the SSB corresponding to the downlink channel through the downlink resources.
  • the transmission module is also used to: receive the SSB corresponding to the downlink channel through the downlink resources; and when it is not necessary to receive the SSB through the downlink resources, send the uplink data corresponding to the uplink channel on the available time-frequency resources.
  • the transmission module sends the uplink data corresponding to the uplink channel on the available time-frequency resources, and is specifically used to: obtain multiple configured uplink channels; wherein the multiple uplink channels include uplink channels located in SBFD time-frequency resources and/or uplink channels located in uplink time-frequency resources; obtain an SSB set and an SSB ratio configuration from a base station device, the SSB set includes multiple SSBs, and the SSB ratio configuration includes a ratio relationship between multiple SSBs; for each uplink channel, determine the target SSB corresponding to the uplink channel based on the SSB set and the SSB ratio configuration, and send the uplink data corresponding to the uplink channel on the available time-frequency resources based on the matching beam corresponding to the target SSB.
  • the SBFD time-frequency resource is a semi-statically configured SBFD time-frequency resource; or, the SBFD time-frequency resource is a dynamically configured SBFD time-frequency resource.
  • each uplink channel is a dynamically scheduled PUSCH or PUCCH; or, each uplink channel is a semi-statically scheduled PUSCH or PUCCH.
  • the uplink data corresponding to each uplink channel is initially transmitted uplink data; or, the uplink data corresponding to each uplink channel is K-th repeatedly transmitted uplink data, where K is a positive integer.
  • the uplink data is uplink data in a connected state; or, the uplink data is uplink data in an idle state or an inactive state; or, the uplink data is uplink data in a random access process; or, the uplink data is uplink data that has completed a random access process but has not completed a reconfiguration process.
  • an electronic device (such as the base station device, full-duplex UE, and half-duplex UE in the above example) is proposed in an example of the present application.
  • the electronic device includes a processor and a machine-readable storage medium, and the machine-readable storage medium stores machine-executable instructions that can be executed by the processor; the processor is used to execute the machine-executable instructions to implement the data transmission method disclosed in the above example of the present application.
  • the machine-readable instructions also perform the following processing when executed by the processor: if the sub-band full-duplex SBFD time-frequency resources are set to uplink transmission or flexible transmission, available time-frequency resources are allocated from the SBFD time-frequency resources; and uplink data corresponding to at least one uplink channel is received on the available time-frequency resources.
  • the machine-readable instructions also perform the following processing when executed by the processor: if the SBFD time-frequency resources are set by the base station device as uplink transmission or Flexible transmission, obtain the available time-frequency resources allocated by the base station device to the full-duplex UE from the SBFD time-frequency resources; for each uplink channel, based on the positional relationship between the uplink resources occupied by the uplink channel and the SBFD time-frequency resources, send the uplink data corresponding to the uplink channel on the available time-frequency resources.
  • uplink data corresponding to the uplink channel is sent on the available time-frequency resources.
  • the following processing is also performed: if all uplink resources occupied by the uplink channel are not in the SBFD time-frequency resources, and the uplink resources are located in uplink symbols or F symbols, then the uplink data corresponding to the uplink channel is sent on the uplink resources outside the SBFD time-frequency resources.
  • the following processing is also performed: for each uplink channel, if part of the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources and the remaining part of the uplink resources are located in the F symbol, then it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources.
  • the uplink data corresponding to the uplink channel is sent on the available time-frequency resources.
  • the following processing is also performed: if part of the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources, and the remaining part of the uplink resources are located in the downlink symbols, then it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources.
  • the initial uplink data corresponding to the uplink channel is rate matched to obtain the target uplink data, and the target uplink data is sent on the available time-frequency resources.
  • the initial uplink data corresponding to the uplink channel is rate matched to obtain the target uplink data, including: selecting part of the data from the initial uplink data as the target uplink data; or, performing high channel coding code rate processing on the initial uplink data to obtain the target uplink data; or, performing high-order modulation processing on the initial uplink data to obtain the target uplink data.
  • the following processing is also performed: if the uplink resources occupied by the uplink channel and the downlink resources occupied by the downlink channel are both in the SBFD time-frequency resources, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources; and the downlink data corresponding to the downlink channel is prohibited from being received through the SBFD time-frequency resources.
  • the following processing is also performed: if the uplink resources occupied by the uplink channel and the downlink resources occupied by the downlink channel are both in the SBFD time-frequency resources, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources; and the downlink data corresponding to the downlink channel is received through the SBFD time-frequency resources.
  • the following processing is also performed: if the uplink resources occupied by the uplink channel are within the SBFD time-frequency resources, the downlink resources occupied by the downlink channel are outside the SBFD time-frequency resources, and the downlink resources occupied by the downlink channel overlap with the SBFD time-frequency resources, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources; and the downlink data corresponding to the downlink channel is received through the downlink resources.
  • the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, including: obtaining multiple configured uplink channels; wherein the multiple uplink channels include uplink channels located in SBFD time-frequency resources and/or uplink channels located in uplink time-frequency resources; obtaining an SSB set and an SSB ratio configuration from a base station device, the SSB set including multiple SSBs, and the SSB ratio configuration including a ratio relationship between the multiple SSBs; for each uplink channel, determining a target SSB corresponding to the uplink channel based on the SSB set and the SSB ratio configuration, and sending the uplink data corresponding to the uplink channel on the available time-frequency resources based on a matching beam corresponding to the target SSB.
  • the following processing is also performed: if the SBFD time-frequency resources are set as uplink transmission or Flexible transmission by the base station device, obtain the available time-frequency resources allocated by the base station device for the half-duplex UE from the SBFD time-frequency resources; for each uplink channel, based on the positional relationship between the uplink resources occupied by the uplink channel and the SBFD time-frequency resources, send the uplink data corresponding to the uplink channel on the available time-frequency resources.
  • the processor in the processing performed by the processor, if all the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources, and the time slots in the SBFD time-frequency resources do not overlap with the time slots in the downlink time-frequency resources, then send the uplink data corresponding to the uplink channel on the available time-frequency resources.
  • the following processing is also performed: if all uplink resources occupied by the uplink channel are not in the SBFD time-frequency resources, and the uplink resources are located in uplink symbols or F symbols, then the uplink data corresponding to the uplink channel is sent on the uplink resources outside the SBFD time-frequency resources.
  • the following processing is also performed: if part of the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources, and the remaining part of the uplink resources are located in the F symbol, then the uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency resources.
  • the processing performed by the processor if part of the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources, and the remaining part of the uplink resources are located in the F symbol, and the time slots in the SBFD time-frequency resources do not overlap with the time slots in the downlink time-frequency resources, then the uplink data corresponding to the uplink channel is sent on the available time-frequency resources.
  • the following processing is also performed: if part of the uplink resources occupied by the uplink channel are in the SBFD time-frequency resources, and the remaining part of the uplink resources are located in the downlink symbol, then the uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency resources.
  • rate matching is performed on the initial uplink data corresponding to the uplink channel to obtain target uplink data, and the target uplink data is sent on the available time-frequency resources.
  • rate matching is performed on the initial uplink data corresponding to the uplink channel to obtain target uplink data, including: selecting part of the data from the initial uplink data as the target uplink data; or, performing high channel coding code rate processing on the initial uplink data to obtain the target uplink data; or, performing high-order modulation processing on the initial uplink data to obtain the target uplink data.
  • the following processing is also performed: if the uplink resources occupied by the uplink channel and the downlink resources occupied by the downlink channel are both in the SBFD time-frequency resources, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources; and the downlink data corresponding to the downlink channel is prohibited from being received through the SBFD time-frequency resources.
  • the following processing is also performed: if the uplink resources occupied by the uplink channel and the downlink resources occupied by the downlink channel are both in the SBFD time-frequency resources, based on the channel type of the uplink channel and the channel type of the downlink channel, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources; or, it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources, and the downlink data corresponding to the downlink channel is received through the SBFD time-frequency resources; or, a target uplink resource that is not occupied by downlink resources is selected from the uplink resources, and the uplink data corresponding to the uplink channel is sent on the target uplink resource; a target downlink resource that is not occupied by uplink resources is selected from the downlink resources, and the downlink data corresponding to the downlink downlink
  • uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and receiving downlink data corresponding to the downlink channel through the SBFD time-frequency resources is prohibited; or, uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency resources, and downlink data corresponding to the downlink channel is received through the SBFD time-frequency resources, including: if the channel processing priority corresponding to the channel type of the uplink channel is greater than the channel processing priority corresponding to the channel type of the downlink channel, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and receiving downlink data corresponding to the downlink channel through the SBFD time-frequency resources is prohibited; if the channel processing priority corresponding to the channel type of the uplink channel is less than the channel processing priority corresponding to the channel type of the downlink channel, sending the uplink data corresponding to the uplink channel on the
  • the channel type of the uplink channel is a PUSCH type or a PUCCH type, and the channel type of the downlink channel is an SSB type or a PDCCH type, then it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources, and the downlink data corresponding to the downlink channel is received through the SBFD time-frequency resources; if the channel type of the uplink channel is a PUCCH type, and the channel type of the downlink channel is a CSI-RS type or a PDSCH type, then the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources; if the channel type of the uplink channel is a PUSCH type, and the channel type of the downlink channel is a CSI-RS type, then it is prohibited to send the uplink data corresponding to the uplink channel on the available
  • the channel type of the uplink channel is the PUSCH type and the channel type of the downlink channel is the PDSCH type
  • uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and it is prohibited to receive downlink data corresponding to the downlink channel through the SBFD time-frequency resources
  • the uplink channel is semi-statically scheduled and the downlink channel is dynamically scheduled, it is prohibited to send uplink data corresponding to the uplink channel on the available time-frequency resources, and receive downlink data corresponding to the downlink channel through the SBFD time-frequency resources
  • both the uplink channel and the downlink channel are dynamically scheduled, or both the uplink channel and the downlink channel are semi-statically scheduled, if the service priority corresponding to the uplink channel is greater than the service priority corresponding to the downlink channel, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources
  • the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources; if the time sequence corresponding to the uplink channel is later than the time sequence corresponding to the downlink channel, it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources, and receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources; or, based on a random order, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources; or, based on a random order, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the SBFD time-frequency resources; or, based on a random order, the uplink data corresponding to the uplink channel
  • the following processing is also performed: if the uplink resources occupied by the uplink channel are within the SBFD time-frequency resources, the downlink resources occupied by the downlink channel are outside the SBFD time-frequency resources, and the downlink resources occupied by the downlink channel overlap with the SBFD time-frequency resources, based on the channel type of the uplink channel and the channel type of the downlink channel, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is prohibited from being received through the downlink resources; or, the uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency resources, and the downlink data corresponding to the downlink channel is received through the downlink resources; or, a target uplink resource that is not occupied by a downlink resource is selected from the uplink resources, and the uplink data corresponding to the uplink channel is sent on the target uplink resource; a target downlink resource that
  • sending the uplink data corresponding to the uplink channel on the target uplink resource includes: performing rate matching on the initial uplink data corresponding to the uplink channel to obtain the target uplink data, and sending the target uplink data on the target uplink resource.
  • uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and receiving downlink data corresponding to the downlink channel through the downlink resources is prohibited; or, uplink data corresponding to the uplink channel is prohibited from being sent on the available time-frequency resources, and downlink data corresponding to the downlink channel is received through the downlink resources, including: if the channel processing priority corresponding to the channel type of the uplink channel is greater than the channel processing priority corresponding to the channel type of the downlink channel, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and receiving downlink data corresponding to the downlink channel through the downlink resources is prohibited; if the channel processing priority corresponding to the channel type of the uplink channel is less than the channel processing priority corresponding to the channel type of the downlink channel, sending the uplink data corresponding to the uplink channel on the available time-frequency resources is prohibited, and
  • the channel type of the uplink channel is a PUSCH type or a PUCCH type, and the channel type of the downlink channel is an SSB type or a PDCCH type, then sending uplink data corresponding to the uplink channel on the available time-frequency resources is prohibited, and the downlink data corresponding to the downlink channel is received through the downlink resources; if the channel type of the uplink channel is a PUCCH type, and the channel type of the downlink channel is a CSI-RS type or a PDSCH type, then sending uplink data corresponding to the uplink channel on the available time-frequency resources is prohibited, and receiving downlink data corresponding to the downlink channel through the downlink resources is prohibited; if the channel type of the uplink channel is a PUSCH type, and the channel type of the downlink channel is a CSI-RS type, then sending uplink data corresponding to the uplink channel on the available time-frequency resources is prohibited, and receiving downlink data corresponding to the downlink data corresponding to the downlink resources if the channel
  • the channel type of the uplink channel is the PUSCH type and the channel type of the downlink channel is the PDSCH type
  • uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and it is prohibited to receive downlink data corresponding to the downlink channel through the downlink resources
  • the uplink channel is semi-statically scheduled and the downlink channel is dynamically scheduled, it is prohibited to send uplink data corresponding to the uplink channel on the available time-frequency resources, and receive downlink data corresponding to the downlink channel through the downlink resources
  • both the uplink channel and the downlink channel are dynamically scheduled, or both the uplink channel and the downlink channel are semi-statically scheduled, if the service priority corresponding to the uplink channel is greater than the service priority corresponding to the downlink channel, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and it is prohibited to
  • the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the downlink resources; if the time sequence corresponding to the uplink channel is later than the time sequence corresponding to the downlink channel, then it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources, and the downlink data corresponding to the downlink channel is received through the downlink resources; or, based on a random order, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources, and it is prohibited to receive the downlink data corresponding to the downlink channel through the downlink resources; or, based on a random order, it is prohibited to send the uplink data
  • the following processing is also performed: if the uplink resources occupied by the uplink channel are within the SBFD time-frequency resources, the downlink resources occupied by the SSB are outside the SBFD time-frequency resources, and the downlink resources occupied by the SSB overlap with the SBFD time-frequency resources, it is prohibited to send the uplink data corresponding to the uplink channel on the available time-frequency resources; and the SSB corresponding to the downlink channel is received through the downlink resources.
  • the following processing is also performed: if the uplink resources occupied by the uplink channel are within the SBFD time-frequency resources, the downlink resources occupied by the SSB are outside the SBFD time-frequency resources, and the downlink resources occupied by the SSB overlap with the SBFD time-frequency resources, the SSB corresponding to the downlink channel is received through the downlink resources; when it is not necessary to receive the SSB through the downlink resources, the uplink data corresponding to the uplink channel is sent on the available time-frequency resources.
  • uplink data corresponding to the uplink channel is sent on the available time-frequency resources, including: obtaining multiple configured uplink channels; the multiple uplink channels include uplink channels located in SBFD time-frequency resources and/or uplink channels located in uplink time-frequency resources; obtaining an SSB set and an SSB ratio configuration from a base station device, the SSB set including multiple SSBs, and the SSB ratio configuration including a ratio relationship between the multiple SSBs; for each uplink channel, determining a target SSB corresponding to the uplink channel based on the SSB set and the SSB ratio configuration, and sending the uplink data corresponding to the uplink channel on the available time-frequency resources based on a matching beam corresponding to the target SSB.
  • an example of the present application also provides a machine-readable storage medium, on which a number of computer instructions are stored.
  • the computer instructions are executed by the processor, the data transmission method disclosed in the above example of the present application can be implemented.
  • the above-mentioned machine-readable storage medium can be any electronic, magnetic, optical or other physical storage device, which can contain or store information, such as executable instructions, data, etc.
  • the machine-readable storage medium can be: RAM (Radom Access Memory), volatile memory, non-volatile memory, flash memory, storage drive (such as hard disk drive), solid state drive, any type of storage disk (such as optical disk, DVD, etc.), or similar storage medium, or a combination thereof.
  • a typical implementation device is a computer, which may be in the form of a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email transceiver, a game console, a tablet computer, a wearable device or a combination of any of these devices.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the embodiments of the present application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • these computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a product including an instruction device, which realizes the function specified in one flow chart or multiple flows and/or one box or multiple boxes of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据传输方法、装置及电子设备,该方法包括:若SBFD时频资源被设置为上行传输或者Flexible传输,则从所述SBFD时频资源中分配可用时频资源;在所述可用时频资源上接收至少一个上行信道对应的上行数据。通过本申请的技术方案,能够提高资源利用率。

Description

一种数据传输方法、装置及电子设备 技术领域
本申请涉及通信领域,尤其涉及一种数据传输方法、装置及电子设备。
背景技术
TDD(Time Division Duplex,时分双工)系统被广泛应用于移动通信系统中,如5G系统等。在TDD系统中,帧结构被分成DL(DownLink,下行)时隙、UL(UpLink,上行)时隙和S(Special,特殊)时隙。DL时隙包括多个DL符号,在这些DL符号对应的时域资源处理下行数据。UL时隙包括多个UL符号,在这些UL符号对应的时域资源处理上行数据。F时隙包括至少一个F(Flexible,灵活)符号,F符号可以用于DL,即在该F符号对应的时域资源处理下行数据,F符号也可以用于UL,即在该F符号对应的时域资源处理上行数据,F符号也可以用于GP(Guard Period,保护周期),即在该F符号对应的时域资源进行上下行切换的保护。TDD系统可以工作在HD(Half Duplex,半双工)模式中,即在同一个时刻,相同时域资源仅能用于UL或者DL。
发明内容
本申请提供一种数据传输方法,应用于基站设备,包括:若SBFD时频资源被设置为上行传输或者Flexible传输,则从所述SBFD时频资源中分配可用时频资源;在所述可用时频资源上接收至少一个上行信道对应的上行数据。
本申请提供一种数据传输方法,应用于全双工UE,包括:若SBFD时频资源被基站设备设置为上行传输或Flexible传输,则从所述SBFD时频资源中获取基站设备为所述全双工UE分配的可用时频资源;针对每个上行信道,基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据。
本申请提供一种数据传输方法,应用于半双工UE,包括:若SBFD时频资源被基站设备设置为上行传输或Flexible传输,则从所述SBFD时频资源中获取基站设备为所述半双工UE分配的可用时频资源;针对每个上行信道,基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据。
本申请提供一种数据传输装置,应用于基站设备,包括:分配模块,用于若SBFD时频资源被设置为上行传输或者Flexible传输,则从所述SBFD时频资源中分配可用时频资源;传输模块,用于在所述可用时频资源上接收至少一个上行信道对应的上行数据。
本申请提供一种数据传输装置,应用于全双工UE,包括:获取模块,用于若SBFD时频资源被基站设备设置为上行传输或Flexible传输,则从所述SBFD时频资源中获取基站设备为所述全双工UE分配的可用时频资源;传输模块,用于针对每个上行信道,基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据。
本申请提供一种数据传输装置,应用于半双工UE,包括:获取模块,用于若SBFD时频资源被基站设备设置为上行传输或Flexible传输,则从所述SBFD时频资源中获取基站设备为所述半双工UE分配的可用时频资源;传输模块,用于针对每个上行信道,基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据。
本申请提供一种电子设备,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令;所述处理器用于执行机器可执行指令,以实现上述公开的数据传输方法。
由以上技术方案可见,可以在SBFD(Sub-Band Full Duplex,子带全双工)时频资源上传输上行信道对应的上行数据,从而更加有效的利用SBFD时频资源,提高资源利用率,能够提高网络覆盖和网络容量,同时降低上行传输时延。
附图说明
图1A、图1B和图1C是本申请一个例子中的数据传输方法的流程示意图;
图2A-图2G是半静态配置SBFD时频资源时,调度上行信道的示意图;
图3是SBFD时频资源内的上行信道和下行信道发生冲突的示意图;
图4是SBFD时频资源内的上行信道和SBFD时频资源外的SSB发生冲突的示意图;
图5是SBFD时频资源内的上行信道和SBFD时频资源外的下行信道发生冲突的示意图;
图6是动态配置SBFD时频资源时动态调度上行信道的示意图;
图7是基于半静态的SBFD时频资源配置免授权CG PUSCH的示意图;
图8A-图8D是基于随机接入流程的小数据传输流程图;
图9是SBFD时频资源内的上行信道和SBFD时频资源外的SSB发生冲突的示意图;
图10是空闲态/非连接态下,基于半静态/动态的SBFD时频资源,免授权CG PUSCH的传输示意图。
具体实施方式
在本申请实施例使用的术语仅仅是出于描述特定实施例的目的,而非限制本申请。本申请和权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其它含义。还应当理解,本文中使用的术语“和/或”是指包含一个或多个相关联的列出项目的任何或所有可能组合。应当理解,尽管在本申请实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,此外,所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在TDD系统中,帧结构被分成DL时隙、UL时隙和F时隙,DL时隙包括多个DL符号,在这些DL符号对应的时域资源处理下行数据,UL时隙包括多个UL符号,在这些UL符号对应的时域资源处理上行数据,F时隙包括至少一个F符号,F符号可以用于DL,也可以用于UL,还可以用于GP。当前,TDD系统可以工作在HD模式,即在同一个时刻,相同时域资源仅能用于UL或者DL。为了更加灵活的使用时域资源,并提高资源利用率,TDD系统也可以工作在FD(Full-Duplex,全双工)模式,即在同一个时刻,相同时域资源同时用于UL和DL,也就是,在相同时域资源上同时处理上行数据和下行数据。
在TDD系统下,帧结构一旦确定,用户设备就可以按照帧结构进行数据收发,而帧结构被分成DL时隙、UL时隙和F时隙。对于采用HD模式的用户设备,基站设备根据帧结构调度用户设备进行发送或者接收。对于采用FD模式的用户设备,基站设备根据帧结构调度用户设备的发送、接收或同时发送和接收。
综上所述,基站设备可以配置帧结构,并将帧结构通知给用户设备,以使用户设备能够获知帧结构,从而能够正确地进行数据收发。从另一个角度,用户设备获知帧结构之后,还可以获知可能存在的用户设备间干扰,从而可以采用一些干扰消除技术来减轻其它用户设备造成的干扰,提高通信的可靠性。
在一个例子中,在TDD系统下,针对以下行传输为主的帧结构,通常DL时隙配置较多,这就造成UL时隙变少,从而导致上行传输速率受限,并增加上行数据的传输时延,导致上行传输的时延变大,不利用上行业务。
本申请的一个例子中,提出一种数据传输方法,可以在SBFD时频资源上传输上行信道对应的上行数据,即能够利用下行时隙或者F时隙传输上行信道对应的上行数据,从而能够提高上行传输速率,减少上行数据的传输时延。
本申请一个例子中提出一种数据传输方法,可以应用于基站设备,参见图1A所示,为数据传输方法的流程示意图,该方法可以包括:
步骤111、若SBFD时频资源被设置为上行传输或者Flexible传输(即F传输),则从SBFD时频资源中分配可用时频资源。
步骤112、在可用时频资源上接收至少一个上行信道对应的上行数据。
一个例子中,SBFD时频资源可以为半静态配置的SBFD时频资源;或者,SBFD时频资源可以为动态配置的SBFD时频资源。
一个例子中,每个上行信道可以为动态调度的PUSCH(Physical Uplink Shared Channel,物理上行共享信道)或者PUCCH(Physical Uplink Control Channel,物理上行控制信道);或者,每个上行信道可以为半静态调度的PUSCH或者PUCCH。每个上行信道对应的上行数据可以为初传的上行数据;或,每个上行信道对应的上行数据可以为第K个重复传输的上行数据,K为正整数,如共存在3个重复传输的上行数据,该上行信道对应的上行数据为第1个重复传输的上行数据、第2个重复传输的上行数据、或第3个重复传输的上行数据。
一个例子中,上行数据为连接态的上行数据;或者,上行数据为空闲态或非激活态的上行数据;或者,上行数据为随机接入过程中的上行数据;或者,上行数据为已完成随机接入过程、但未完成重配置过程的上行数据。
由以上技术方案可见,可以在SBFD时频资源上传输上行信道对应的上行数据,从而更加有效的利用SBFD时频资源,提高资源利用率,能够提高网络覆盖和网络容量,同时降低传输时延,如可以降低上行传输时延。
本申请一个例子中提出一种数据传输方法,可以应用于全双工UE,针对用户设备来说,若用户设备上报FD能力为支持FD模式,则用户设备为全双工UE,参见图1B所示,为数据传输方法的流程示意图,该方法可以包括:
步骤121、若SBFD时频资源被基站设备设置为上行传输或Flexible传输,则从SBFD时频资源中获取基站设备为本全双工UE分配的可用时频资源。
步骤122、针对每个上行信道,基于该上行信道占用的上行资源与SBFD时频资源的位置关系,在可用时频资源上发送该上行信道对应的上行数据。
一个例子中,若该上行信道占用的全部上行资源均在SBFD时频资源中,则可以在可用时频资源上发送该上行信道对应的上行数据。
一个例子中,若该上行信道占用的全部上行资源均不在SBFD时频资源中、且上行资源位于上行符号或者F符号中,则可以在SBFD时频资源以外的上行资源上发送该上行信道对应的上行数据。
一个例子中,若该上行信道占用的部分上行资源在SBFD时频资源中、且该上行资源的剩余部分位于下行符号中,则可以禁止在可用时频资源上发送该上行信道对应的上行数据。
一个例子中,若该上行信道占用的部分上行资源在SBFD时频资源中、且该上行资源的剩余部分位于F符号中,则可以禁止在可用时频资源上发送该上行信道对应的上行数据。
一个例子中,若该上行信道占用的部分上行资源在SBFD时频资源中、且该上行资源的剩余部分位于F符号中,则可以在可用时频资源上发送该上行信道对应的上行数据。
一个例子中,若该上行信道占用的部分上行资源在SBFD时频资源中、且该上行资源的剩余部分位于下行符号中,则可以对该上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,并在可用时频资源上发送目标上行数据。其中,对上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,可以包括但不限于:从初始上行数据中选取部分数据作为目标上行数据;或者,对初始上行数据进行高信道编码码率处理,得到目标上行数据;或者,对初始上行数据进行高阶调制处理,得到目标上行数据。
一个例子中,若上行信道占用的上行资源和下行信道占用的下行资源均在SBFD时频资源中,则可以在可用时频资源上发送上行信道对应的上行数据,并禁止通过SBFD时频资源接收下行信道对应的下行数据。
一个例子中,若上行信道占用的上行资源和下行信道占用的下行资源均在SBFD时频资源中,则可以在可用时频资源上发送上行信道对应的上行数据,并通过SBFD时频资源接收下行信道对应的下行数据。
一个例子中,若上行信道占用的上行资源在SBFD时频资源中、下行信道占用的下行资源在SBFD时频资源之外、且下行信道占用的下行资源与SBFD时频资源重合,则可以在可用时频资源上发送上行信道对应的上行数据,并通过下行资源接收下行信道对应的下行数据。
一个例子中,在可用时频资源上发送上行信道对应的上行数据,可以包括但不限于:获取已配置的多个上行信道;其中,多个上行信道可以包括位于SBFD时频资源的上行信道和/或位于上行时频资源的上行信道。可以从基站设备获取SSB集合和SSB比率配置,SSB集合可以包括多个SSB,SSB比率配置可以包括所述多个SSB的比率关系。其中,针对每个上行信道,可以基于SSB集合和SSB比率配置确定该上行信道对应的目标SSB,并基于目标SSB对应的匹配波束,在可用时频资源上发送该上行信道对应的上行数据。
一个例子中,SBFD时频资源可以为半静态配置的SBFD时频资源;或者,SBFD时频资源可以为动态配置的SBFD时频资源。
一个例子中,每个上行信道可以为动态调度的PUSCH或者PUCCH;或者,每个上行信道可以为半静态调度的PUSCH或者PUCCH。每个上行信道对应的上行数据可以为初传的上行数据;或,每个上行信道对应的上行数据可以为第K个重复传输的上行数据,K为正整数。
一个例子中,上行数据为连接态的上行数据;或者,上行数据为空闲态或非激活态的上行数据;或者,上行数据为随机接入过程中的上行数据;或者,上行数据为已完成随机接入过程、但未完成重配置过程的上行数据。
由以上技术方案可见,可以在SBFD时频资源上传输上行信道对应的上行数据,从而更加有效的利用SBFD时频资源,提高资源利用率,能够提高网络覆盖和网络容量,同时降低传输时延,如可以降低上行传输时延。
本申请一个例子中提出一种数据传输方法,可以应用于半双工UE,针对用户设备来说,若用户设备的FD能力为不支持FD模式,则用户设备为半双工UE,参见图1C所示,为数据传输方法的流程示意图,该方法可以包括:
步骤131、若SBFD时频资源被基站设备设置为上行传输或Flexible传输,则从SBFD时频资源中获取基站设备为本半双工UE分配的可用时频资源。
步骤132、针对每个上行信道,基于该上行信道占用的上行资所述SBFD时频资源的位置关系,在可用时频资源上发送该上行信道对应的上行数据。
一个例子中,若该上行信道占用的全部上行资源均在SBFD时频资源中,且SBFD时频资源中的时隙与下行时频资源中的时隙不重合,则可以在可用时频资源上发送该上行信道对应的上行数据。
一个例子中,若该上行信道占用的全部上行资源均不在SBFD时频资源中、且该上行资源位于上行符号或者F符号中,则可以在SBFD时频资源以外的上行资源上发送该上行信道对应的上行数据。
一个例子中,若该上行信道占用的部分上行资源在SBFD时频资源中、且该上行资源的剩余部分位于下行符号中,则可以禁止在可用时频资源上发送上行信道对应的上行数据。
一个例子中,若该上行信道占用的部分上行资源在SBFD时频资源中、且该上行资源的剩余部分位于F符号中,则可以禁止在可用时频资源上发送上行信道对应的上行数据。
一个例子中,若该上行信道占用的部分上行资源在SBFD时频资源中、且该上行资源的剩余部分位于F符号中、且SBFD时频资源中的时隙与下行时频资源中的时隙不重合(即二者的时隙不同),则可以在可用时频资源上发送该上行信道对应的上行数据。
一个例子中,若该上行信道占用的部分上行资源在SBFD时频资源中、且该上行资源的剩余部分位于下行符号中、且SBFD时频资源中的时隙与下行时频资源中的时隙不重合,对上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,在可用时频资源上发送目标上行数据。
一个例子中,对上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,可以包括但不限于:从初始上行数据中选取部分数据作为目标上行数据;或者,对初始上行数据进行高信道编码码率处理,得到目标上行数据;或者,对初始上行数据进行高阶调制处理,得到目标上行数据。
一个例子中,若上行信道占用的上行资源和下行信道占用的下行资源均在SBFD时频资源中, 则可以在可用时频资源上发送上行信道对应的上行数据,并禁止通过SBFD时频资源接收下行信道对应的下行数据。
一个例子中,若上行信道占用的上行资源和下行信道占用的下行资源均在SBFD时频资源中,基于上行信道的信道类型和下行信道的信道类型,可以在可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收下行信道对应的下行数据;或者,禁止在可用时频资源上发送上行信道对应的上行数据,通过SBFD时频资源接收下行信道对应的下行数据。
一个例子中,若上行信道占用的上行资源和下行信道占用的下行资源均在SBFD时频资源中,则可以从上行资源中选取下行资源未占用的目标上行资源,在目标上行资源上发送上行信道对应的上行数据;从下行资源中选取上行资源未占用的目标下行资源,在目标下行资源接收下行信道对应的下行数据。
一个例子中,若上行信道的信道类型对应的信道处理优先级大于下行信道的信道类型对应的信道处理优先级,则在可用时频资源上发送上行信道对应的上行数据,并禁止通过SBFD时频资源接收下行信道对应的下行数据;或者,若上行信道的信道类型对应的信道处理优先级小于下行信道的信道类型对应的信道处理优先级,则禁止在可用时频资源上发送上行信道对应的上行数据,并通过SBFD时频资源接收下行信道对应的下行数据。
一个例子中,若上行信道的信道类型为PUSCH类型或PUCCH类型,下行信道的信道类型为SSB(Synchronization Signal Block,同步信号块)类型或PDCCH(Physical Downlink Control Channel,物理下行控制信道)类型,则禁止在可用时频资源上发送上行信道对应的上行数据,通过SBFD时频资源接收下行信道对应的下行数据。若上行信道的信道类型为PUCCH类型,下行信道的信道类型为CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)类型或PDSCH(Physical Downlink Shared Channel,下行共享信道)类型,则在可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收下行信道对应的下行数据。若上行信道的信道类型为PUSCH类型,下行信道的信道类型为CSI-RS类型,则禁止在可用时频资源上发送上行信道对应的上行数据,通过SBFD时频资源接收下行信道对应的下行数据。
一个例子中,若上行信道的信道类型为PUSCH类型,下行信道的信道类型为PDSCH类型,那么:在上行信道为动态调度、且下行信道为半静态调度时,可以在可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收下行信道对应的下行数据。在上行信道为半静态调度、且下行信道为动态调度时,禁止在可用时频资源上发送上行信道对应的上行数据,通过SBFD时频资源接收下行信道对应的下行数据。在上行信道和下行信道均为动态调度,或上行信道和下行信道均为半静态调度时,若上行信道对应的业务优先级大于下行信道对应的业务优先级,则在可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收下行信道对应的下行数据;若上行信道对应的业务优先级小于下行信道对应的业务优先级,则禁止在可用时频资源上发送上行信道对应的上行数据,通过SBFD时频资源接收下行信道对应的下行数据。
一个例子中,若上行信道对应的业务优先级等于下行信道对应的业务优先级,那么:若上行信道对应的时间顺序早于下行信道对应的时间顺序,则在可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收下行信道对应的下行数据;若上行信道对应的时间顺序晚于下行信道对应的时间顺序,则禁止在可用时频资源上发送上行信道对应的上行数据,通过SBFD时频资源接收下行信道对应的下行数据。或者,可以基于随机顺序,在可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收下行信道对应的下行数据;或者,可以基于随机顺序,禁止在可用时频资源上发送上行信道对应的上行数据,通过SBFD时频资源接收下行信道对应的下行数据。
一个例子中,若上行信道占用的上行资源在SBFD时频资源中、下行信道占用的下行资源在SBFD时频资源之外、且下行信道占用的下行资源与SBFD时频资源重合,则可以基于上行信道的信道类型和下行信道的信道类型,在可用时频资源上发送上行信道对应的上行数据,并禁止通过下行资源接收下行信道对应的下行数据;或者,可以禁止在可用时频资源上发送上行信道对应的上行数据,通过下行资源接收下行信道对应的下行数据。
一个例子中,若上行信道占用的上行资源在SBFD时频资源中、下行信道占用的下行资源在SBFD时频资源之外、且下行信道占用的下行资源与SBFD时频资源重合,则可以从上行资源中选取下行资源未占用的目标上行资源,在目标上行资源上发送上行信道对应的上行数据;从下行资源 中选取上行资源未占用的目标下行资源,在目标下行资源接收下行信道对应的下行数据。
一个例子中,在目标上行资源上发送上行信道对应的上行数据,可以包括但不限于:可以对上行信道对应的初始上行数据进行速率匹配,从而得到目标上行数据,并在目标上行资源上发送目标上行数据。
一个例子中,若上行信道的信道类型对应的信道处理优先级大于下行信道的信道类型对应的信道处理优先级,则在可用时频资源上发送上行信道对应的上行数据,并禁止通过下行资源接收下行信道对应的下行数据;或者,若上行信道的信道类型对应的信道处理优先级小于下行信道的信道类型对应的信道处理优先级,则禁止在可用时频资源上发送上行信道对应的上行数据,并通过下行资源接收下行信道对应的下行数据。
一个例子中,若上行信道的信道类型为PUSCH类型或PUCCH类型,下行信道的信道类型为SSB类型或PDCCH类型,则可以禁止在可用时频资源上发送上行信道对应的上行数据,通过下行资源接收下行信道对应的下行数据。若上行信道的信道类型为PUCCH类型,下行信道的信道类型为CSI-RS类型或PDSCH类型,则可以在可用时频资源上发送上行信道对应的上行数据,禁止通过下行资源接收下行信道对应的下行数据。若上行信道的信道类型为PUSCH类型,下行信道的信道类型为CSI-RS类型,则可以禁止在可用时频资源上发送上行信道对应的上行数据,通过下行资源接收下行信道对应的下行数据。
一个例子中,若上行信道的信道类型为PUSCH类型,下行信道的信道类型为PDSCH类型,那么:在上行信道为动态调度、且下行信道为半静态调度时,在可以可用时频资源上发送上行信道对应的上行数据,并禁止通过下行资源接收下行信道对应的下行数据。在上行信道为半静态调度、且下行信道为动态调度时,可以禁止在可用时频资源上发送上行信道对应的上行数据,并通过下行资源接收下行信道对应的下行数据。在上行信道和下行信道均为动态调度,或上行信道和下行信道均为半静态调度时,若上行信道对应的业务优先级大于下行信道对应的业务优先级,则可以在可用时频资源上发送上行信道对应的上行数据,并禁止通过下行资源接收下行信道对应的下行数据;若上行信道对应的业务优先级小于下行信道对应的业务优先级,则可以禁止在可用时频资源上发送上行信道对应的上行数据,并通过下行资源接收下行信道对应的下行数据。
一个例子中,若上行信道对应的业务优先级等于下行信道对应的业务优先级,那么,若上行信道对应的时间顺序早于下行信道对应的时间顺序,则可以在可用时频资源上发送上行信道对应的上行数据,并禁止通过下行资源接收下行信道对应的下行数据;若上行信道对应的时间顺序晚于下行信道对应的时间顺序,则可以禁止在可用时频资源上发送上行信道对应的上行数据,并通过下行资源接收下行信道对应的下行数据。或者,可以基于随机顺序,在可用时频资源上发送上行信道对应的上行数据,并禁止通过下行资源接收下行信道对应的下行数据;或者,可以基于随机顺序,禁止在可用时频资源上发送上行信道对应的上行数据,并通过下行资源接收下行信道对应的下行数据。
一个例子中,若上行信道占用的上行资源在SBFD时频资源中、SSB占用的下行资源在SBFD时频资源之外、且该SSB占用的下行资源与SBFD时频资源重合,则可以禁止在可用时频资源上发送上行信道对应的上行数据,并通过下行资源接收下行信道对应的SSB。
一个例子中,若上行信道占用的上行资源在SBFD时频资源中、SSB占用的下行资源在SBFD时频资源之外、且SSB占用的下行资源与SBFD时频资源重合,可以通过下行资源接收下行信道对应的SSB;在不需要通过下行资源接收SSB时,在可用时频资源上发送上行信道对应的上行数据。
一个例子中,在可用时频资源上发送上行信道对应的上行数据,可以包括但不限于:获取已配置的多个上行信道;其中,多个上行信道可以包括位于SBFD时频资源的上行信道和/或位于上行时频资源的上行信道。可以从基站设备获取SSB集合和SSB比率配置,SSB集合可以包括多个SSB,SSB比率配置可以包括所述多个SSB的比率关系。针对每个上行信道,可以基于SSB集合和SSB比率配置确定该上行信道对应的目标SSB,并基于目标SSB对应的匹配波束,可以在可用时频资源上发送上行信道对应的上行数据。
一个例子中,SBFD时频资源可以为半静态配置的SBFD时频资源;或者,SBFD时频资源可以为动态配置的SBFD时频资源。
一个例子中,每个上行信道可以为动态调度的PUSCH或者PUCCH;或者,每个上行信道可以为半静态调度的PUSCH或者PUCCH。每个上行信道对应的上行数据可以为初传的上行数据;或者,每个上行信道对应的上行数据可以为第K个重复传输的上行数据,K为正整数。
一个例子中,上行数据为连接态的上行数据;或者,上行数据为空闲态或非激活态的上行数据;或者,上行数据为随机接入过程中的上行数据;或者,上行数据为已完成随机接入过程、但未完成重配置过程的上行数据。
由以上技术方案可见,可以在SBFD时频资源上传输上行信道对应的上行数据,从而更加有效的利用SBFD时频资源,提高资源利用率,能够提高网络覆盖和网络容量,同时降低传输时延,如可以降低上行传输时延。
以下结合例子,对本申请的上述技术方案进行说明。
TDD的帧结构可以通过半静态配置加动态指示的方式来完成。在高层信令中通过SFI(Slot Format Indicator,时隙格式指示)定义多个SFC(Slot Format Combination,时隙格式组合),比如说,基站设备可以选出满足业务需求的时隙格式,并将这些时隙格式添加到SFC中。其中,部分时隙格式可以参见表1所示,D表示DL符号,U表示UL符号,F表示灵活(Flexible)符号。对于每个SFC,由固定ID来标识,并且包含一个或者多个时隙格式类型。
表1
Figure PCTCN2022122313-appb-000001
在完成SFI配置之后,基站设备可以在RRC(Radio Resource Control,无线资源控制)信令中将多个时隙格式组合发送给用户设备。在通过RRC信令配置完多个时隙格式组合之后,基站设备可以通过周期性的PDCCH在DCI(Downlink Control Information,下行控制信息)格式2_0中,将当前使用SFC的索引告知用户设备。用户设备在正确接收到DCI格式2_0的信息之后,按照指示的SFC索引的值确定一定周期内每个时隙的时隙格式。至此,基站设备和用户设备通过动态指示完成帧结构的配置,可以进行正常的上下行数据传输。
对于资源分配,可以分为时域资源分配和频域资源分配(以下行信道的资源分配为例)。时域资源分配:DCI中的Time domain resource assignment(时域资源分配)字段指示下行信道的时域位置,该字段共4个bit,值为0-15,假设值为m,则m+1指示时域资源分配表格的行索引,该行中的信息指示PDSCH的时域资源。指示的方式有两种:一种是指示三个信息:PDSCH和调度该PDSCH的PDCCH之间的时隙偏移、PDSCH在时隙中的起始符号、PDSCH持续的符号长度。另一种是指示PDSCH和调度该PDSCH的PDCCH之间的时隙偏移、一个SLIV值,用户设备根据SLIV值计算PDSCH的起始符号和持续的符号个数。
频域资源分配:DCI中的Frequency domain resource assignment(频域资源分配)字段指示下行信道的频域资源分配,PDSCH频域资源分配可以分为Type 0和Type 1等两种类型,Type 0支持非连续资源分配,获得频率分集增益,Type 1支持连续资源分配,可以减少该字段所需bit数,DCI format1_0只支持Type 1。
Type 0:对于非连续资源分配类型,一个RBG是一个VRB group,由P个连续VRB组成,个数由高层参数rbg-Size和BWP带宽决定。在Type 0的资源分配类型下,Frequency domain resource assignment作为一个bitmap来指示哪些RBG是分配给下行信道,bitmap中每个bit代表一个RBG,最高bit对应RBG0,以此类推,bit为1表示RBG分配给下行信道,bit为0表示不是下行信道资源。
Type 1:频域资源指示字段不会作为bitmap,而是指示一个RIV(Resource Indicator Value,资源指示值)值,用户设备通过该值计算下行信道的起始RB和所占RB数量。
在TDD系统下,帧结构按照时隙可以分为UL时隙、DL时隙和F时隙,F时隙中的符号可以被配置成UL符号、DL符号和灵活(F:Flexible)符号,F符号可以用于UL、DL或者GP。其中, 上行信道对应的上行数据可以在UL时隙传输,也可以在F时隙中的UL符号或者F符号传输,但是,上行信道对应的上行数据无法在DL时隙传输,也无法在F时隙中的DL符号传输。
在TDD系统下,可以在时频资源(如UL时隙、DL时隙和F时隙)中配置SBFD时频资源,在SBFD时频资源上,可以传输与其它时频资源不同方向的数据。比如说,在DL时隙中配置SBFD时频资源,通过SBFD时频资源传输上行信道对应的上行数据,使得上行信道对应的上行数据在DL时隙传输。又例如,在F时隙的DL符号配置SBFD时频资源,通过SBFD时频资源传输上行信道对应的上行数据,使得上行信道对应的上行数据在F时隙的DL符号传输。
在一个例子中,SBFD符号被定义为基站设备和用户设备可以配置有SBFD子带(sub-band)的符号,在这些SBFD符号的SBFD子带上(称为SBFD时频资源),基站设备和用户设备可以进行全双工通信,也就是说,在SBFD时频资源上,可以进行上行传输、下行传输、或者上下行同时传输。
SBFD时频资源可以被明确的指示为上行、下行或者Flexible,当SBFD时频资源被指示为Flexible时,可以在SBFD时频资源灵活的调度上行或者下行。
SBFD时频资源可以配置在DL符号、F符号和UL符号中,配置有SBFD时频资源的时隙也可以称为SBFD时隙。比如说,在DL时隙的DL符号中配置SBFD时频资源时,DL时隙也称为SBFD时隙。在UL时隙的UL符号中配置SBFD时频资源时,UL时隙也称为SBFD时隙。在F时隙的DL符号、UL符号、或F符号中配置SBFD时频资源时,F时隙也称为SBFD时隙。
对于不具备SBFD能力的用户设备来说,会忽略所有SBFD配置。对于具备SBFD能力的用户设备来说,可以在SBFD时频资源上进行上行传输、下行传输、或者上下行同时传输,后续以具备SBFD能力的用户设备为例。
对于具备SBFD能力的用户设备,一种是支持SBFD能力的半双工UE,即可以在SBFD时频资源上进行发送或者接收,但在同一时刻,仅能进行发送或者接收。另一种是支持SBFD能力的全双工UE,即在SBFD时频资源上进行发送和接收,即在同一时刻可以在SBFD时频资源上同时进行发送和接收。
在一个例子中,可以在SBFD时频资源传输上行信道对应的上行数据,比如说,在DL时隙中配置SBFD时频资源,通过SBFD时频资源传输上行信道对应的上行数据,从而在DL时隙的SBFD时频资源中调度上行信道。或者,在F时隙中配置SBFD时频资源,通过SBFD时频资源传输上行信道对应的上行数据,从而在F时隙的SBFD时频资源中调度上行信道。通过明确基站设备和用户设备在SBFD时频资源中对上行信道的调度策略,可以在TDD系统中实现基于SBFD时频资源的上行传输,提高TDD系统的整体性能。通过提出上行数据的传输准则,保证在传输上行数据的同时不对已有数据传输造成影响。
在一个例子中,基站设备可以将SBFD时频资源设置为上行传输或者Flexible传输(即F传输),若SBFD时频资源被设置为上行传输或者Flexible传输,则基站设备可以从SBFD时频资源中分配可用时频资源。
对于全双工UE来说,若SBFD时频资源被基站设备设置为上行传输或Flexible传输,则全双工UE可以从SBFD时频资源中获取基站设备分配的可用时频资源,并在可用时频资源上发送上行信道对应的上行数据,这样,基站设备可以在可用时频资源上接收上行信道对应的上行数据。
对于半双工UE来说,若SBFD时频资源被基站设备设置为上行传输或Flexible传输,则半全双工UE可以从SBFD时频资源中获取基站设备分配的可用时频资源,并在可用时频资源上发送上行信道对应的上行数据,这样,基站设备可以在可用时频资源上接收上行信道对应的上行数据。
在一个例子中,SBFD时频资源可以为半静态配置的SBFD时频资源,如通过RRC信令半静态配置SBFD时频资源。或者,SBFD时频资源也可以为动态配置的SBFD时频资源,如通过DCI信令动态配置SBFD时频资源。
在一个例子中,上行信道可以为PUSCH或者PUCCH,比如说,动态调度的PUSCH或者PUCCH;或者,半静态调度的PUSCH或者PUCCH。
在一个例子中,上行信道对应的上行数据可以为初传的上行数据;或者,上行信道对应的上行数据也可以为重复传输的上行数据。
在一个例子中,上行数据可以为连接态的上行数据;或者,上行数据可以为空闲态或非激活态的上行数据;或者,上行数据可以为随机接入过程中的上行数据;或者,上行可以数据为已完成随机接入过程、但未完成重配置过程的上行数据。当然,上述只是几个示例,对此上行数据的类型不作限制。
在一个例子中,为了在SBFD时频资源传输上行数据,可以包括如下情况:
情况一、TDD的FD模式下,针对连接态的上行数据的传输过程,可以在半静态配置的SBFD时频资源传输上行信道(PUSCH/PUCCH)对应的上行数据。
1、上行信道(PUSCH/PUCCH)的传输准则。
基站设备可以通过广播信令(如RRC信令)配置半静态的SBFD时频资源,并将SBFD时频资源设置为上行传输或者Flexible传输,即SBFD时频资源可以用于上行发送或者Flexible发送。其中,对于支持SBFD时频资源的全双工UE,全双工UE可以利用SBFD时频资源发送上行信道对应的上行数据,全双工UE不需要考虑是否有下行信道与该上行信道在时域资源上重合,也无需考虑DL/UL切换时间。此外,对于支持SBFD时频资源的半双工UE,如果没有下行信道与该上行信道在时域资源上重合(且SBFD时频资源中的时隙与下行时频资源中的时隙不重合,即二者的时隙不相同),或者,在DL/UL切换时间允许的情况下,则半双工UE可以利用SBFD时频资源发送上行信道对应的上行数据。全双工UE或者半双工UE利用SBFD时频资源发送上行信道对应的上行数据时,基站设备可以利用SBFD时频资源接收上行信道对应的上行数据。
全双工UE或者半双工UE利用SBFD时频资源发送上行信道对应的上行数据时,若上行信道占用的全部上行资源均在SBFD时频资源(用于UL)中,则可以在SBFD时频资源上发送上行信道对应的上行数据。
比如说,全双工UE或者半双工UE可以从SBFD时频资源中获取基站设备分配的可用时频资源,并在可用时频资源上发送上行信道对应的上行数据。
全双工UE或者半双工UE利用SBFD时频资源发送上行信道对应的上行数据时,若上行信道占用的全部上行资源均不在SBFD时频资源中,并且这些上行资源位于上行符号或者F符号中,则可以在SBFD时频资源以外的上行资源(即上行信道占用的上行资源)上发送上行信道对应的上行数据。
全双工UE或者半双工UE利用SBFD时频资源发送上行信道对应的上行数据时,若上行信道占用的全部上行资源均不在SBFD时频资源中,并且这些上行资源位于下行符号中,则不能发送上行信道对应的上行数据。
全双工UE或者半双工UE利用SBFD时频资源发送上行信道对应的上行数据时,若上行信道占用的部分上行资源在SBFD时频资源中、且上行信道占用的剩余上行资源位于下行符号中,则不能发送上行信道对应的上行数据,即禁止在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据。
全双工UE或者半双工UE利用SBFD时频资源发送上行信道对应的上行数据时,若上行信道占用的部分上行资源在SBFD时频资源中、且上行信道占用的剩余上行资源位于上行符号中,则发送上行信道对应的上行数据,如在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据(即部分上行数据),并在上行符号上发送上行信道对应的上行数据(即剩余部分上行数据)。
全双工UE或者半双工UE利用SBFD时频资源发送上行信道对应的上行数据时,若上行信道占用的部分上行资源在SBFD时频资源中、且上行信道占用的剩余上行资源位于F符号中,则不能发送上行信道对应的上行数据,即禁止在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据。
全双工UE或者半双工UE利用SBFD时频资源发送上行信道对应的上行数据时,若上行信道占用的部分上行资源在SBFD时频资源中、且上行信道占用的剩余上行资源位于F符号中,则发送上行信道对应的上行数据,如在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据(即部分上行数据),并在F符号上发送上行信道对应的上行数据(即剩余部分上行数据)。
全双工UE或者半双工UE利用SBFD时频资源发送上行信道对应的上行数据时,若上行信道占用的部分上行资源在SBFD时频资源中、且上行信道占用的剩余上行资源位于下行符号中,则 可以对上行信道对应的初始上行数据(即待发送的上行数据)进行速率匹配,得到速率匹配后的目标上行数据,并在SBFD时频资源的可用时频资源上发送上行信道对应的目标上行数据。
全双工UE或者半双工UE利用SBFD时频资源发送上行信道对应的上行数据时,若上行信道占用的部分上行资源在SBFD时频资源中、且上行信道占用的剩余上行资源位于F符号中,则可以对上行信道对应的初始上行数据(即待发送的上行数据)进行速率匹配,得到速率匹配后的目标上行数据,并在SBFD时频资源的可用时频资源上发送上行信道对应的目标上行数据。
在一个例子中,全双工UE或者半双工UE可以根据可用时频资源进行速率匹配,比如说,可以采用如下方式进行速率匹配:从初始上行数据中选取部分数据作为目标上行数据,例如,可以基于可用时频资源确定能够传输的数据大小,基于该数据大小从初始上行数据中选取部分数据作为目标上行数据,即可用时频资源能够承载目标上行数据。或者,对初始上行数据进行高信道编码码率,得到目标上行数据,例如,通过更高的信道编码码率对初始上行数据进行处理,从而对初始上行数据进行压缩,使得可用时频资源能够承载目标上行数据。或者,对初始上行数据进行高阶调制,得到目标上行数据,例如,通过高阶调制对初始上行数据进行处理,使得可用时频资源能够承载目标上行数据。
在一个例子中,全双工UE或者半双工UE利用SBFD时频资源发送上行信道对应的上行数据时,可以在SBFD时频资源发送一个或者多个上行信道对应的上行数据。针对每个上行信道,该上行信道可以为动态调度的PUSCH或者PUCCH;该上行信道也可以为半静态调度的PUSCH或者PUCCH。该上行信道对应的上行数据可以为初传的上行数据,也可以为重复传输的上行数据。
参见图2A所示,为半静态配置SBFD时频资源时,动态调度PUSCH/PUCCH的带有rep typeA(repetition个数可以通过RRC参数numberOfRepetitios(重复次数)或者pusch-AggregationFactor(物理上行共享信道-聚合因子)配置,用于指示重复传输的个数)的传输示意图,Slot表示时隙。基站设备利用DCI调度用户设备在SBFD时频资源上发送PUSCH/PUCCH对应的上行数据,PUSCH/PUCCH带有TypeA重复传输机制(重复传输次数为M=3次)。
由于PUSCH/PUCCH0在SBFD时频资源中,因此,可以正常发送。
由于PUSCH/PUCCH0Rep#1部分在SBFD时频资源中,部分在DL资源中,因此,可以采用两种处理方式:第一种是不允许发送,第二种是允许利用SBFD时频资源发送PUSCH/PUCCH0Rep#1对应的上行数据,但是,在发送上行数据时,可以根据SBFD时频资源的可用时频资源进行速率匹配。
由于PUSCH/PUCCH0Rep#2部分在SBFD时频资源中,部分在Flexible资源中,因此,可以采用三种处理方式:第一种是不允许发送,第二种是允许发送,第三种是允许利用SBFD时频资源发送PUSCH/PUCCH0Rep#2对应的上行数据,但需要根据SBFD时频资源的可用时频资源进行速率匹配。
参见图2B所示,为半静态配置SBFD时频资源时,动态调度PUSCH/PUCCH的另一个传输示意图,其原理与图2A类似,在此不再重复赘述。
参见图2C所示,为半静态配置SBFD时频资源时,动态调度PUSCH/PUCCH的带有rep typeB的传输示意图。基站设备利用DCI调度用户设备在SBFD时频资源上发送PUSCH/PUCCH对应的上行数据,PUSCH/PUCCH带有TypeB的重复传输机制(重复传输次数为M=4次)。显然,由于PUSCH/PUCCH0的所有4次重复传输都在SBFD时频资源中,因此,这些上行数据全部可以发送。
在图2C中,PUSCH/PUCCH0Rep#1应该占用3个符号,但是,由于占用3个符号时需要跨slot#N和slot#N+1,又由于rep typeB不支持跨slot传输,因此,PUSCH/PUCCH0Rep#1可以占用Slot#N的最后两个符号进行发送。
参见图2D所示,为半静态配置SBFD时频资源时,动态调度PUSCH/PUCCH的另一个传输示意图,其原理与图2C类似,在此不再重复赘述。
参见图2E所示,为半静态配置SBFD时频资源时,免授权(即非动态调度)PUSCH/半静态调度PUCCH的带有rep typeA的传输示意图。用户设备在SBFD时频资源上发送免授权(非动态调度)PUSCH/半静态PUCCH对应的上行数据,且PUSCH/PUCCH带有TypeA的重复传输机制(重复传输次数为M=4次)。由于PUSCH/PUCCH0(PUSCH/PUCCH的第0个发送资源)的所有4次 重复传输都在SBFD时频资源以及UL符号中,因此,这些上行数据全部可以发送。
参见图2F所示,为半静态配置SBFD时频资源时,免授权PUSCH/半静态调度PUCCH的另一个传输示意图,其原理与图2E类似,在此不再重复赘述。
参见图2G所示,为半静态配置SBFD时频资源时,免授权(即非动态调度)PUSCH/半静态调度PUCCH的带有rep typeB的传输示意图。用户设备在SBFD时频资源上发送免授权(非动态调度)PUSCH/半静态PUCCH对应的上行数据,且PUSCH/PUCCH带有TypeB的重复传输机制(重复传输次数为M=4次)。
由于PUSCH/PUCCH0的所有4次重复传输都在SBFD时频资源以及UL符号中,因此,这些PUSCH/PUCCH对应的上行数据全部可以发送。
2、上行信道占用的上行资源和下行信道占用的下行资源存在冲突(时域资源有重叠),比如说,若SBFD时频资源被设置为UL,且上行信道占用的上行资源和下行信道占用的下行资源均在SBFD时频资源中,参见图3所示,为SBFD时频资源内的上行信道和下行信道发生冲突的示意图,那么,为了处理上行信道占用的上行资源与下行信道占用的下行资源冲突,可以采用如下方式:
方式1:在SBFD时频资源被设置为UL时,不允许下行信道在SBFD时频资源内传输。在方式1中,针对全双工UE,在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收下行信道对应的下行数据。针对半双工UE,在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收下行信道对应的下行数据。
方式2:对于不同用户设备,一个用户设备传输上行信道(如PUSCH/PUCCH)对应的上行数据,另一个用户设备传输下行信道(如PDSCH/PDCCH/CSI-RS)对应的下行数据时,基站设备可以通过调度保证上下行不存在干扰或者干扰可控,因此,允许上行信道和下行信道同时传输,也就是说,一个用户设备在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,另一个用户设备在SBFD时频资源的可用时频资源上接收下行信道对应的下行数据。
方式3:对于同一用户设备,如果用户设备同时有上行数据和下行数据传输,且基站设备允许用户设备在SBFD时频资源内传输上行数据和下行数据,那么,针对全双工UE,允许同时传输上行数据和下行数据,也就是说,全双工UE可以在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,且全双工UE可以通过SBFD时频资源接收下行信道对应的下行数据。
方式4:对于同一用户设备,如果用户设备同时有上行数据和下行数据传输,且基站设备允许用户设备在SBFD时频资源内传输上行数据和下行数据,那么,针对半双工UE,可以基于上行信道的信道类型和下行信道的信道类型,在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收下行信道对应的下行数据;或者,可以基于上行信道的信道类型和下行信道的信道类型,禁止在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,通过SBFD时频资源接收下行信道对应的下行数据。
一个例子中,可以配置上行信道的信道类型对应的信道处理优先级,配置下行信道的信道类型对应的信道处理优先级,基于此,若上行信道的信道类型对应的信道处理优先级大于下行信道的信道类型对应的信道处理优先级,则在可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收下行信道对应的下行数据;若上行信道的信道类型对应的信道处理优先级小于下行信道的信道类型对应的信道处理优先级,则禁止在可用时频资源上发送上行信道对应的上行数据,通过SBFD时频资源接收下行信道对应的下行数据。
在一个例子中,关于不同信道类型对应的信道处理优先级,可以根据经验配置,对此信道处理优先级不做限制,比如说,各信道类型对应的信道处理优先级的优先级顺序可以是SSB>PDCCH>PUCCH>CSI-RS>PDSCH/PUSCH,或者,优先级顺序可以是PDCCH>PUCCH>SSB>CSI-RS>PDSCH/PUSCH,或者,优先级顺序可以是PDCCH>PUCCH>CSI-RS>PDSCH>SSB>PUSCH,当然,上述只是优先级顺序的几个示例,对此优先级顺序不作限制,可以根据经验进行配置。
以SSB>PDCCH>PUCCH>CSI-RS>PDSCH/PUSCH的优先级顺序为例进行说明,那么,若上行信道的信道类型为PUSCH类型或PUCCH类型,下行信道的信道类型为SSB类型或PDCCH类型,则禁止在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,并通过SBFD时频资源接收下行信道对应的下行数据。若上行信道的信道类型为PUCCH类型,下行信道的信道类型 为CSI-RS类型或PDSCH类型,则可以在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收下行信道对应的下行数据。若上行信道的信道类型为PUSCH类型,下行信道的信道类型为CSI-RS类型,则禁止在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,并通过SBFD时频资源接收下行信道对应的下行数据。
在上述优先级顺序中,PDSCH/PUSCH表示PDSCH和PUSCH的信道处理优先级相同,还可以采用如下方式确定PDSCH和PUSCH的顺序:
若上行信道的信道类型为PUSCH类型,下行信道的信道类型为PDSCH类型,那么:在上行信道为动态调度、且下行信道为半静态调度时,可以在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收下行信道对应的下行数据。在上行信道为半静态调度、且下行信道为动态调度时,禁止在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,通过SBFD时频资源接收下行信道对应的下行数据。
在上行信道和下行信道均为动态调度,或上行信道和下行信道均为半静态调度时,若上行信道对应的第一业务优先级大于下行信道对应的第二业务优先级,则可以在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收下行信道对应的下行数据。若上行信道对应的第一业务优先级小于下行信道对应的第二业务优先级,则禁止在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,通过SBFD时频资源接收下行信道对应的下行数据。其中,第一业务优先级为PHY信道优先级,第二业务优先级为PHY信道优先级,或者,第一业务优先级为MAC信道优先级,第二业务优先级为MAC信道优先级。
一个例子中,若上行信道对应的第一业务优先级等于下行信道对应的第二业务优先级,那么:若上行信道对应的时间顺序早于下行信道对应的时间顺序,如上行信道占用的第一个符号位于下行信道占用的第一个符号之前,则在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收下行信道对应的下行数据。若上行信道对应的时间顺序晚于下行信道对应的时间顺序,如上行信道占用的第一个符号位于下行信道占用的第一个符号之后,则禁止在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,并通过SBFD时频资源接收下行信道对应的下行数据。
另一个例子中,可以基于随机顺序,即从上行信道和下行信道随机选择一个,若选择的是上行信道,则在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收下行信道对应的下行数据。若选择的是下行信道,则禁止在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,通过SBFD时频资源接收下行信道对应的下行数据。
方式5:对于同一用户设备,如果用户设备同时有上行数据和下行数据传输,且基站设备允许用户设备在SBFD时频资源内传输上行数据和下行数据,针对半双工UE,若上行信道占用的上行资源和下行信道占用的下行资源均在SBFD时频资源中,可以从上行资源(即SBFD时频资源的可用时频资源中上行资源)中选取下行资源未占用的目标上行资源,并在目标上行资源上发送上行信道对应的上行数据;从下行资源(即SBFD时频资源中下行资源)中选取上行资源未占用的目标下行资源,在目标下行资源接收下行信道对应的下行数据。
一个例子中,可以确定上行资源和下行资源的重合资源,并从上行资源中排除该重合资源,而排除重合资源后的上行资源就是目标上行资源,可以通过目标上行资源发送上行信道对应的上行数据。在发送上行信道对应的上行数据时,可以对上行信道对应的初始上行数据进行速率匹配,得到速率匹配后的目标上行数据,并在目标上行资源发送上行信道对应的目标上行数据。
在对上行信道对应的初始上行数据进行速率匹配时,可以从初始上行数据中选取部分数据作为目标上行数据,或,对初始上行数据进行高信道编码码率,得到目标上行数据,或,对初始上行数据进行高阶调制,得到目标上行数据。
一个例子中,可以确定上行资源和下行资源的重合资源,并从下行资源中排除该重合资源,而排除重合资源后的下行资源就是目标下行资源,在此基础上,半双工UE可以在目标下行资源接收下行信道对应的下行数据。
3、上行信道占用的上行资源和下行信道占用的下行资源存在冲突(时域资源有重叠),比如说,若SBFD时频资源被设置为UL,上行信道(PUSCH/PUCCH)占用的上行资源在SBFD时频资源中,下行信道(如SSB等)占用的下行资源在SBFD时频资源之外,参见图4所示,为SBFD时频资源内的上行信道和SBFD时频资源外的SSB发生冲突的示意图,那么,为了处理上行信道占 用的上行资源与SSB占用的下行资源之间的冲突,可以采用如下方式:
方式1:针对全双工UE,允许同时传输上行数据和下行数据,也就是说,全双工UE可以在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,且全双工UE可以通过SBFD时频资源之外的下行资源接收SSB。参见图4所示,针对全双工UE,可以通过SBFD时频资源发送PUSCH/PUCCH0以及PUSCH/PUCCH0Rep#1对应的上行数据,并可以同时接收SSB。
方式2:针对半双工UE,若上行信道占用的上行资源在SBFD时频资源中、SSB占用的下行资源在SBFD时频资源之外、且该SSB占用的下行资源与SBFD时频资源重合,那么,可以禁止在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,并通过下行资源接收下行信道对应的SSB。
在方式2中,半双工UE接收SSB而不会在上行信道上发送上行数据,参见图4所示,针对半双工UE,不会通过SBFD时频资源发送PUSCH/PUCCH0以及PUSCH/PUCCH0Rep#1对应的上行数据,但是可以接收SSB。
方式3:针对半双工UE,若上行信道占用的上行资源在SBFD时频资源中、SSB占用的下行资源在SBFD时频资源之外、且该SSB占用的下行资源与SBFD时频资源重合,那么,可以优先接收SSB,当不需要接收SSB时,可以在上行信道发送上行数据,且需要基站设备对上行信道对应的上行数据进行盲解。比如说,可以通过下行资源接收下行信道对应的SSB;在不需要通过下行资源接收SSB时,在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据。参见图4所示,在不需要通过下行资源接收SSB时,通过SBFD时频资源发送PUSCH/PUCCH0以及PUSCH/PUCCH0Rep#1对应的上行数据。
4、上行信道占用的上行资源和下行信道占用的下行资源存在冲突(时域资源有重叠),比如说,若SBFD时频资源被设置为UL,上行信道占用的上行资源在SBFD时频资源中、下行信道占用的下行资源在SBFD时频资源之外,且下行信道占用的下行资源与上行信道占用的SBFD时频资源重合(即二者的时隙相同),参见图5所示,为SBFD时频资源内的上行信道和SBFD时频资源外的下行信道发生冲突的示意图,那么,为了处理上行信道占用的上行资源与下行信道占用的下行资源冲突,可以采用如下方式:
方式1:对不同用户设备,一个用户设备传输上行信道(如PUSCH/PUCCH)对应的上行数据,另一个用户设备传输下行信道(如PDSCH/PDCCH/CSI-RS)对应的下行数据时,基站设备可以通过调度保证上下行不存在干扰或者干扰可控,因此,允许上行信道和下行信道同时传输数据,也就是说,一个用户设备可以在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,另一个用户设备可以在下行资源上接收下行信道对应的下行数据。
方式2:对于同一用户设备,如果用户设备同时有上行数据和下行数据传输,那么,针对全双工UE,允许同时传输上行数据和下行数据,也就是说,全双工UE可以在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,且全双工UE可以通过下行资源接收下行信道对应的下行数据。
方式3:对于同一用户设备,如果用户设备同时有上行数据和下行数据传输,那么,针对半双工UE,可以基于上行信道的信道类型和下行信道的信道类型,在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,禁止通过下行资源接收下行信道对应的下行数据;或者,可以基于上行信道的信道类型和下行信道的信道类型,禁止在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,通过下行资源接收下行信道对应的下行数据。
一个例子中,可以配置上行信道的信道类型对应的信道处理优先级,配置下行信道的信道类型对应的信道处理优先级,基于此,若上行信道的信道类型对应的信道处理优先级大于下行信道的信道类型对应的信道处理优先级,则在可用时频资源上发送上行信道对应的上行数据,禁止通过下行资源接收下行信道对应的下行数据;若上行信道的信道类型对应的信道处理优先级小于下行信道的信道类型对应的信道处理优先级,则禁止在可用时频资源上发送上行信道对应的上行数据,通过下行资源接收下行信道对应的下行数据。
一个例子中,关于不同信道类型对应的信道处理优先级,可以根据经验配置,对此信道处理优先级不做限制,比如说,各信道类型对应的信道处理优先级的优先级顺序可以是SSB>PDCCH>PUCCH>CSI-RS>PDSCH/PUSCH,或者,优先级顺序可以是PDCCH>PUCCH>SSB>CSI-RS>PDSCH/PUSCH,或者,优先级顺序可以是 PDCCH>PUCCH>CSI-RS>PDSCH>SSB>PUSCH。
以SSB>PDCCH>PUCCH>CSI-RS>PDSCH/PUSCH的优先级顺序为例,若上行信道的信道类型为PUSCH类型或PUCCH类型,下行信道的信道类型为SSB类型或PDCCH类型,禁止在SBFD时频资源的可用时频资源发送上行信道对应的上行数据,通过下行资源接收下行信道对应的下行数据。若上行信道的信道类型为PUCCH类型,下行信道的信道类型为CSI-RS类型或PDSCH类型,在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,禁止通过下行资源接收下行信道对应的下行数据。若上行信道的信道类型为PUSCH类型,下行信道的信道类型为CSI-RS类型,禁止在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,通过下行资源接收下行信道对应的下行数据。
PDSCH/PUSCH表示PDSCH和PUSCH的信道处理优先级相同,可以采用如下方式确定PDSCH和PUSCH的顺序:若上行信道的信道类型为PUSCH类型,下行信道的信道类型为PDSCH类型,在上行信道为动态调度、且下行信道为半静态调度时,在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,禁止通过下行资源接收下行信道对应的下行数据。在上行信道为半静态调度、且下行信道为动态调度时,禁止在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,通过下行资源接收下行信道对应的下行数据。
在上行信道和下行信道均为动态调度,或上行信道和下行信道均为半静态调度时,若上行信道对应的第一业务优先级大于下行信道对应的第二业务优先级,则可以在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,禁止通过下行资源接收下行信道对应的下行数据。若上行信道对应的第一业务优先级小于下行信道对应的第二业务优先级,则禁止在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,通过下行资源接收下行信道对应的下行数据。其中,第一业务优先级为PHY信道优先级,第二业务优先级为PHY信道优先级,或者,第一业务优先级为MAC信道优先级,第二业务优先级为MAC信道优先级。
在一个例子中,若上行信道对应的第一业务优先级等于下行信道对应的第二业务优先级,那么:若上行信道对应的时间顺序早于下行信道对应的时间顺序,比如说,上行信道占用的第一个符号位于下行信道占用的第一个符号之前,则在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,禁止通过下行资源接收下行信道对应的下行数据。若上行信道对应的时间顺序晚于下行信道对应的时间顺序,比如说,上行信道占用的第一个符号位于下行信道占用的第一个符号之后,则禁止在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,并通过下行资源接收下行信道对应的下行数据。
另一个例子中,可以基于随机顺序,即从上行信道和下行信道随机选择一个,若选择的是上行信道,则在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,禁止通过下行资源接收下行信道对应的下行数据。若选择的是下行信道,则禁止在SBFD时频资源的可用时频资源上发送上行信道对应的上行数据,通过下行资源接收下行信道对应的下行数据。
方式4:对于同一用户设备,如果用户设备有上行数据和下行数据传输,针对半双工UE,从上行信道占用的上行资源(位于SBFD时频资源内)中选取下行资源未占用的目标上行资源,并在目标上行资源上发送上行信道对应的上行数据;从下行信道占用的下行资源(位于SBFD时频资源外)中选取上行资源未占用的目标下行资源,在目标下行资源接收下行信道对应的下行数据。
一个例子中,可以确定上行资源和下行资源的重合资源,并从上行资源中排除该重合资源,而排除重合资源后的上行资源就是目标上行资源,可以通过目标上行资源发送上行信道对应的上行数据。在发送上行信道对应的上行数据时,可以对上行信道对应的初始上行数据进行速率匹配,得到速率匹配后的目标上行数据,并在目标上行资源发送上行信道对应的目标上行数据。
在对上行信道对应的初始上行数据进行速率匹配时,可以从初始上行数据中选取部分数据作为目标上行数据,或,对初始上行数据进行高信道编码码率,得到目标上行数据,或,对初始上行数据进行高阶调制,得到目标上行数据。
一个例子中,可以确定上行资源和下行资源的重合资源,并从下行资源中排除该重合资源,而排除重合资源后的下行资源就是目标下行资源,在此基础上,半双工UE可以在目标下行资源接收下行信道对应的下行数据。
参见图5所示,对于全双工UE,PUSCH/PUCCH0和PUSCH/PUCCH0Rep#1对应的上行数据、PDCCH/PDSCH对应的下行数据,可以同时发送和接收。对于半双工UE,接收PDCCH,对 PDSCH与PUSCH/PUCCH0Rep#1,可以利用PDSCH/PUSCH的判断依据(动态>半静态),如果都是动态或半静态,根据PHY信道优先级和MAC信道优先级进行处理,或者,通过基站设备调度来规避。
情况二、TDD的FD模式下,针对连接态的上行数据的传输过程,可以在动态配置的SBFD时频资源传输上行信道(PUSCH/PUCCH)对应的上行数据。
基站设备通过DCI信令配置动态的SBFD时频资源,将SBFD时频资源设置为上行传输或Flexible传输,即SBFD时频资源用于上行发送或者Flexible发送。对于支持SBFD时频资源的全双工UE,全双工UE利用SBFD时频资源发送上行信道对应的上行数据,全双工UE不需要考虑是否有下行信道与该上行信道在时域资源上重合,也无需考虑DL/UL切换时间。对于支持SBFD时频资源的半双工UE,若没有下行信道与该上行信道在时域资源上重合(SBFD时频资源中的时隙与下行时频资源中的时隙不重合,即二者时隙不相同),或,在DL/UL切换时间允许的情况下,半双工UE利用SBFD时频资源发送上行信道对应的上行数据。全双工UE或者半双工UE利用SBFD时频资源发送上行信道对应的上行数据时,基站设备利用SBFD时频资源接收上行信道对应的上行数据。
情况二的实现过程与情况一的实现过程类似,在此不再重复赘述。
参见图6所示,为动态配置SBFD时频资源时,动态调度上行信道的示意图,动态配置的SBFD时频资源和动态调度的PUSCH(即上行信道),可以是同一个DCI,当然,也可以利用不同的DCI进行调度,对此不作限制。其中,针对上行信道来说,PUSCH/PUCCH对应的4次重复传输都在SBFD时频资源中,因此,PUSCH/PUCCH对应的所有4次重复传输均可以进行传输。
情况三、TDD的FD模式下,针对空闲态/非连接态的上行数据的传输,在半静态配置的SBFD时频资源传输上行信道(PUSCH/PUCCH)对应的上行数据。
1、上行信道(PUSCH/PUCCH)的传输准则。
针对免授权CG PUSCH传输准则。在空闲态/非连接态下,基站设备给用户设备配置半静态的SBFD时频资源时,则可以通过SIB(RRC broadcast message)/RRC release message(RRC dedicated signaling)/DCI进行配置,并同时配置免授权CG PUSCH的传输资源。如果配置免授权CG PUSCH的传输资源落在SBFD时频资源内,且SBFD时频资源被设置为UL,那么,用户设备可以利用SBFD时频资源内的免授权CG PUSCH传输上行数据。另外,基站设备针对免授权CG PUSCH对应的上行数据进行重传调度时,还可以在SBFD时频资源内调度重传的PUSCH对应的上行数据,这样,可以减少上行传输时延。
其中,RRC broadcast message表示RRC广播消息,RRC release message表示RRC释放消息,RRC dedicated signaling表示RRC专用信令。
在空闲态/非连接态下,参见图7所示,为基于半静态的SBFD时频资源配置免授权CG PUSCH的示意图,在免授权CG PUSCH的配置中,PUSCH#1与SSB#1对应,PUSCH#2与SSB#2对应,PUSCH#1和PUSCH#2都在SBFD时频资源中,PUSCH#1和PUSCH#2都是有效的免授权CG PUSCH传输资源。当基站设备没有成功接收PUSCH#1对应的上行数据时,基站设备可以通过DCI调度PUSCH#1上的数据重传,重传的PUSCH可以利用SBFD时频资源。
一个例子中,针对全双工UE和半双工UE来说,在SBFD时频资源上发送上行信道对应的上行数据,还可以获取多个上行信道,多个上行信道可以包括位于SBFD时频资源的上行信道和/或位于上行时频资源的上行信道,也就是说,在匹配上行信道与SSB的映射关系时,不需要区分上行信道属于SBFD时频资源还是上行时频资源,可以按照顺序依次找到所有的上行信道。可以从基站设备获取SSB集合和SSB比率配置,该SSB集合可以包括多个SSB,如SSB1和SSB2等,该SSB比率配置可以包括多个SSB的比率关系,如1:2等。
针对每个上行信道,可以基于SSB集合和SSB比率配置确定该上行信道对应的目标SSB,比如说,SSB集合包括SSB1和SSB2,SSB比率配置为1:2时,所有上行信道依次对应SSB1、SSB2、SSB2、SSB1、SSB2、SSB2、以此类推,因此,第1个上行信道对应SSB1,第2个上行信道对应SSB2,第3个上行信道对应SSB2,第4个上行信道对应SSB1,第5个上行信道对应SSB2,第6个上行信道对应SSB2,以此类推。这些上行信道中可能存在位于SBFD时频资源的上行信道,也可能存在位于上行时频资源的上行信道,对此不作限制。
针对每个上行信道,可以基于该上行信道对应的目标SSB对应的匹配波束,在可用时频资 源上发送该上行信道对应的上行数据,对此过程不再赘述。
针对基于随机接入的PUSCH/PUCCH传输。基于半静态配置的SBFD时频资源,参见图8A所示,为基于4步随机接入流程的小数据传输流程图。首先,用户设备接收带有SBFD的广播信令,该广播信令用于半静态配置SBFD时频资源。然后,进行4步随机接入流程,即图8A中的Msg1、Msg2、Msg3和Msg4,如果Msg3对应的上行信道位于SBFD时频资源,则可以通过SBFD时频资源传输Msg3。然后,在4步随机接入成功之后,用户设备可以利用SBFD时频资源进行下行数据/上行数据传输,即基站设备调度的上行信道位于SBFD时频资源时,用户设备就可以利用SBFD时频资源传输上行数据。基站设备也可以在DL/UL符号上调度PDSCH/PUSCH类似legacy UE行为。
基于半静态配置的SBFD时频资源,参见图8B所示,为基于2步随机接入流程的小数据传输流程图。首先,用户设备接收带有SBFD的广播信令,该广播信令用于半静态配置SBFD时频资源。然后,进行2步随机接入流程,即图8B的MsgA和MsgB,如果MsgA对应的上行信道位于SBFD时频资源,则可以通过SBFD时频资源传输MsgA。然后,在2步随机接入成功之后,用户设备可以利用SBFD时频资源进行下行数据/上行数据传输,即基站设备调度的上行信道位于SBFD时频资源时,用户设备可以利用SBFD时频资源传输上行数据。基站设备也可以在DL/UL符号上调度PDSCH/PUSCH类似legacy UE行为。
基于动态配置的SBFD时频资源,参见图8C所示,为基于2步随机接入流程的小数据传输流程图。用户设备接收带有SBFD的广播信令,进行2步随机接入流程,即图8C的MsgA和MsgB,若MsgA对应的上行信道位于SBFD时频资源,则通过SBFD时频资源传输MsgA。2步随机接入成功之后,若基站设备调度的上行信道位于SBFD时频资源,用户设备利用SBFD时频资源传输上行数据。基站设备可在DL/UL符号上调度PDSCH/PUSCH类似legacy UE行为。
基于动态配置的SBFD时频资源,参见图8D所示,为基于4步随机接入流程的小数据传输流程图。用户设备接收带有SBFD的广播信令,进行4步随机接入流程,即图8D的Msg1、Msg2、Msg3和Msg4,若Msg3对应的上行信道位于SBFD时频资源,则通过SBFD时频资源传输Msg3。4步随机接入成功之后,若上行信道位于SBFD时频资源,用户设备利用SBFD时频资源传输上行数据。基站设备可在DL/UL符号上调度PDSCH/PUSCH类似legacy UE行为。
2、上行信道占用的上行资源和下行信道占用的下行资源存在冲突(时域资源有重叠),比如说,若SBFD时频资源被设置为UL,上行信道(PUSCH/PUCCH)占用的上行资源在SBFD时频资源中,下行信道(如SSB等)占用的下行资源在SBFD时频资源之外,且下行信道占用的下行资源与上行信道占用的SBFD时频资源重合(即二者的时隙相同)参见图9所示,为SBFD时频资源内的上行信道和SBFD时频资源外的SSB发生冲突的示意图。为了处理上行信道占用的上行资源与SSB占用的下行资源之间的冲突,对于全双工UE,上行信道对应的上行数据和SSB可以同时发送和接收。对于半双工UE,可以接收SSB但是不会发送上行信道对应的上行数据,或者,优先接收SSB,当不需要接收SSB时,可以在SBFD时频资源上发送上行信道对应的上行数据,在半双工UE发送上行信道对应的上行数据时,基站设备可以对上行信道上的上行数据进行盲解。
3、上行信道占用的上行资源和下行信道占用的下行资源存在冲突(时域资源有重叠),比如说,若SBFD时频资源被设置为UL,上行信道(PUSCH/PUCCH)占用的上行资源在SBFD时频资源中、下行信道(如SSB/PDSCH/PDCCH)占用的下行资源在SBFD时频资源之外,且下行信道占用的下行资源与上行信道占用的SBFD时频资源重合,参见图9所示,为SBFD时频资源内的上行信道和SBFD时频资源外的下行信道发生冲突的示意图。为了处理上行信道占用的上行资源与下行信道占用的下行资源之间的冲突,对于全双工UE,上行信道(PUSCH/PUCCH)对应的上行数据和下行信道(PDSCH/PDCCH)对应的下行数据同时发送和接收。对于半双工UE,根据SSB>PDCCH>PUCCH>CSI-RS>PDSCH/PUSCH的优先级顺序以及PDSCH/PUSCH的判断依据(动态>半静态,都是动态或半静态时根据PHY和MAC信道优先级比较),在SBFD时频资源发送上行信道对应的上行数据,或在下行资源接收下行信道对应的下行数据。
情况三的实现过程与情况一的实现过程类似,在此不再重复赘述。
情况四、TDD的FD模式下,针对空闲态/非连接态的上行数据的传输,在动态配置的SBFD时频资源传输上行信道(PUSCH/PUCCH)对应的上行数据。
在空闲态/非连接态下,基站设备给用户设备配置动态SBFD时频资源时,可以通过SIB(RRC broadcast message)/RRC release message(RRC dedicated signaling)/DCI进行配置。同时, 基站设备配置免授权CG PUSCH传输资源,如果免授权CG PUSCH传输资源落在SBFD时频资源中,且SBFD时频资源被设置为UL,则用户设备可以在SBFD时频资源内发送免授权CG PUSCH对应的上行数据。基站设备针对免授权CG PUSCH对应的上行数据进行重传调度时,可以在SBFD时频资源内调度重传的PUSCH,这样可以减少上行传输时延。
参见图10所示,为空闲态/非连接态下,基于半静态/动态的SBFD时频资源,免授权CG PUSCH的传输示意图。在免授权CG PUSCH的配置中,PUSCH#1与SSB#1对应,PUSCH#2与SSB#2对应,PUSCH#1和PUSCH#2都在SBFD时频资源中,PUSCH#1和PUSCH#2都是有效的免授权CG PUSCH传输资源,当基站设备没有成功接收PUSCH#1对应的上行数据时,可以通过DCI调度PUSCH#1上的上行数据重传,同时配置用于PUSCH传输的SBFD时频资源,用户设备利用动态配置的SBFD时频资源进行上行数据的重传。
情况四的实现过程与情况一的实现过程类似,在此不再重复赘述。
由以上技术方案可见,可以在SBFD时频资源上传输上行信道对应的上行数据,从而更加有效的利用SBFD时频资源,提高资源利用率,能够提高网络覆盖和网络容量,同时降低传输时延,如可以降低上行传输时延。在不影响5G系统的情况下,使用SBFD时频域资源进行上行数据传输,可以增加上行数据资源,从而增加上行吞吐率以及小区覆盖,减少传输时延。给出上行数据/控制信道的传输准则,确定基站设备和用户设备的传输行为,减少基站设备和用户设备的盲检,有效增加了上行传输机会,提高了上行传输可靠性。
基于同一发明构思,还提供了与上述数据传输方法对应的数据传输装置,及基站设备、全双工UE和半双工UE,由于基站设备、全双工UE和半双工UE解决问题的原理与上述例子的数据传输方法相似,因此,基站设备、全双工UE和半双工UE的实施可以参见方法的实施,重复之处不再赘述。
基于与上述方法同样的申请构思,本申请一个例子提出一种数据传输装置,应用于基站设备,所述装置可以包括:分配模块,用于若SBFD时频资源被设置为上行传输或者Flexible传输,则从所述SBFD时频资源中分配可用时频资源;传输模块,用于在所述可用时频资源上接收至少一个上行信道对应的上行数据。
一个例子中,所述SBFD时频资源为半静态配置的SBFD时频资源;或,所述SBFD时频资源为动态配置的SBFD时频资源。
一个例子中,每个上行信道为动态调度的PUSCH或者PUCCH;或者,每个上行信道为半静态调度的PUSCH或者PUCCH。
一个例子中,每个上行信道对应的上行数据为初传的上行数据;或者,每个上行信道对应的上行数据为第K个重复传输的上行数据,K为正整数。
一个例子中,所述上行数据为连接态的上行数据;或,所述上行数据为空闲态或非激活态的上行数据;或,所述上行数据为随机接入过程中的上行数据;或,所述上行数据为已完成随机接入过程、但未完成重配置过程的上行数据。
基于与上述方法同样的申请构思,本申请一个例子提出一种数据传输装置,应用于全双工UE,所述装置可以包括:获取模块,用于若子带全双工SBFD时频资源被基站设备设置为上行传输或灵活Flexible传输,则从所述SBFD时频资源中获取基站设备为所述全双工UE分配的可用时频资源;传输模块,用于针对每个上行信道,基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,所述传输模块基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据时具体用于:若所述上行信道占用的全部上行资源均在所述SBFD时频资源中,则在所述可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,所述传输模块还用于:若所述上行信道占用的全部上行资源均不在所述SBFD时频资源中、且所述上行资源位于上行符号或者F符号中,则在所述SBFD时频资源以外的所述上行资源上发送上行信道对应的上行数据。
一个例子中,所述传输模块还用于:针对每个上行信道,若所述上行信道占用的部分上行 资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于F符号中,则禁止在所述可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,所述传输模块基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据时具体用于:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于F符号中,则在所述可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,所述传输模块还用于:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于下行符号中,则禁止在所述可用时频资源上发送所述上行信道对应的上行数据。
所述传输模块基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据时具体用于:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于下行符号中,则对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,在所述可用时频资源上发送目标上行数据。
所述传输模块对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据时具体用于:从所述初始上行数据中选取部分数据作为所述目标上行数据;或,对所述初始上行数据进行高信道编码码率处理,得到所述目标上行数据;或,对所述初始上行数据进行高阶调制处理,得到所述目标上行数据。
若上行信道占用的上行资源和下行信道占用的下行资源均在所述SBFD时频资源中,所述传输模块还用于:在所述可用时频资源上发送所述上行信道对应的上行数据;禁止通过SBFD时频资源接收所述下行信道对应的下行数据。
若上行信道占用的上行资源和下行信道占用的下行资源均在所述SBFD时频资源中,所述传输模块还用于:在所述可用时频资源上发送所述上行信道对应的上行数据;通过所述SBFD时频资源接收所述下行信道对应的下行数据。
若上行信道占用的上行资源在所述SBFD时频资源中、下行信道占用的下行资源在所述SBFD时频资源之外、下行信道占用的下行资源与所述SBFD时频资源重合,所述传输模块还用于:在所述可用时频资源上发送所述上行信道对应的上行数据;通过所述下行资源接收所述下行信道对应的下行数据。
一个例子中,所述传输模块在所述可用时频资源上发送所述上行信道对应的上行数据时具体用于:获取已配置的多个上行信道;其中,所述多个上行信道包括位于SBFD时频资源的上行信道和/或位于上行时频资源的上行信道;从基站设备获取SSB集合和SSB比率配置,所述SSB集合包括多个SSB,所述SSB比率配置包括多个SSB的比率关系;针对每个上行信道,基于所述SSB集合和所述SSB比率配置确定所述上行信道对应的目标SSB,并基于所述目标SSB对应的匹配波束,在所述可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,所述SBFD时频资源为半静态配置的SBFD时频资源;或,所述SBFD时频资源为动态配置的SBFD时频资源。
一个例子中,每个上行信道为动态调度的PUSCH或者PUCCH;或者,每个上行信道为半静态调度的PUSCH或者PUCCH。
一个例子中,每个上行信道对应的上行数据为初传的上行数据;或者,每个上行信道对应的上行数据为第K个重复传输的上行数据,K为正整数。
一个例子中,所述上行数据为连接态的上行数据;或,所述上行数据为空闲态或非激活态的上行数据;或,所述上行数据为随机接入过程中的上行数据;或,所述上行数据为已完成随机接入过程、但未完成重配置过程的上行数据。
基于与上述方法同样的申请构思,本申请一个例子提出一种数据传输装置,应用于半双工UE,所述装置可以包括:获取模块,用于若SBFD时频资源被基站设备设置为上行传输或Flexible传输,则从所述SBFD时频资源中获取基站设备为所述半双工UE分配的可用时频资源;传输模块,用于针对每个上行信道,基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,所述传输模块基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据时具体用于:若所述上行信道占用的全部上行资源均在所述SBFD时频资源中,且所述SBFD时频资源中的时隙与下行时频资源中的时隙不重合,则在所述可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,所述传输模块还用于:若所述上行信道占用的全部上行资源均不在所述SBFD时频资源中、且所述上行资源位于上行符号或者F符号中,则在所述SBFD时频资源以外的所述上行资源上发送上行信道对应的上行数据。
一个例子中,所述传输模块还用于:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于F符号中,则禁止在所述可用时频资源上发送所述上行信道对应的上行数据。
所述传输模块基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据时具体用于:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于F符号中、且所述SBFD时频资源中的时隙与下行时频资源中的时隙不重合,则在可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,所述传输模块还用于:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于下行符号中,则禁止在所述可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,所述传输模块基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据时具体用于:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于下行符号中、且所述SBFD时频资源中的时隙与下行时频资源中的时隙不重合,则对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,在所述可用时频资源上发送所述目标上行数据。
所述传输模块对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据时具体用于:从所述初始上行数据中选取部分数据作为所述目标上行数据;或,对所述初始上行数据进行高信道编码码率处理,得到所述目标上行数据;或,对所述初始上行数据进行高阶调制处理,得到所述目标上行数据。
若上行信道占用的上行资源和下行信道占用的下行资源均在所述SBFD时频资源中,所述传输模块还用于:在所述可用时频资源上发送所述上行信道对应的上行数据;禁止通过SBFD时频资源接收所述下行信道对应的下行数据。
若上行信道占用的上行资源和下行信道占用的下行资源均在所述SBFD时频资源中,所述传输模块还用于:基于所述上行信道的信道类型和所述下行信道的信道类型,在可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收所述下行信道对应的下行数据;或,禁止在可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据;或者,从所述上行资源中选取下行资源未占用的目标上行资源,在目标上行资源上发送上行信道对应的上行数据;从所述下行资源中选取上行资源未占用的目标下行资源,在目标下行资源接收下行信道对应的下行数据。
一个例子中,所述传输模块基于所述上行信道的信道类型和所述下行信道的信道类型,在可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收所述下行信道对应的下行数据;或,禁止在可用时频资源上发送上行信道对应的上行数据,通过SBFD时频资源接收所述下行信道对应的下行数据时具体用于:若所述上行信道的信道类型对应的信道处理优先级大于所述下行信道的信道类型对应的信道处理优先级,则在可用时频资源上发送上行信道对应的上行数据,禁止通过SBFD时频资源接收所述下行信道对应的下行数据;若所述上行信道的信道类型对应的信道处理优先级小于所述下行信道的信道类型对应的信道处理优先级,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据。
一个例子中,所述传输模块还用于:若上行信道的信道类型为PUSCH类型或PUCCH类型,下行信道的信道类型为SSB类型或PDCCH类型,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据;若上行信道的信道类型为PUCCH类型,下行信道的信道类型为CSI-RS类型或PDSCH类型,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;若 上行信道的信道类型为PUSCH类型,下行信道的信道类型为CSI-RS类型,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据。
一个例子中,若上行信道的信道类型为PUSCH类型,下行信道的信道类型为PDSCH类型,所述传输模块还用于:在上行信道为动态调度、且下行信道为半静态调度时,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;在上行信道为半静态调度、且下行信道为动态调度时,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据;在上行信道和下行信道均为动态调度,或上行信道和下行信道均为半静态调度时,若上行信道对应的业务优先级大于下行信道对应的业务优先级,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;若上行信道对应的业务优先级小于下行信道对应的业务优先级,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据。
一个例子中,若上行信道对应的业务优先级等于下行信道对应的业务优先级,所述传输模块还用于:若上行信道对应的时间顺序早于下行信道对应的时间顺序,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;若上行信道对应的时间顺序晚于下行信道对应的时间顺序,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据;或者,基于随机顺序,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;或者,基于随机顺序,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据。
一个例子中,若上行信道占用的上行资源在所述SBFD时频资源中、下行信道占用的下行资源在所述SBFD时频资源之外、下行信道占用的下行资源与所述SBFD时频资源重合,所述传输模块还用于:基于所述上行信道的信道类型和所述下行信道的信道类型,在可用时频资源上发送上行信道对应的上行数据,禁止通过下行资源接收所述下行信道对应的下行数据;或,禁止在可用时频资源上发送上行信道对应的上行数据,通过下行资源接收所述下行信道对应的下行数据;或者,从所述上行资源中选取下行资源未占用的目标上行资源,在目标上行资源上发送上行信道对应的上行数据;从所述下行资源中选取上行资源未占用的目标下行资源,在目标下行资源接收下行信道对应的下行数据。
一个例子中,所述传输模块在目标上行资源上发送上行信道对应的上行数据时具体用于:对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,并在所述目标上行资源上发送所述目标上行数据。
一个例子中,所述传输模块基于所述上行信道的信道类型和所述下行信道的信道类型,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;或,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据时具体用于:若所述上行信道的信道类型对应的信道处理优先级大于所述下行信道的信道类型对应的信道处理优先级,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;若所述上行信道的信道类型对应的信道处理优先级小于所述下行信道的信道类型对应的信道处理优先级,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据。
一个例子中,所述传输模块还用于:若上行信道的信道类型为PUSCH类型或PUCCH类型,下行信道的信道类型为SSB类型或PDCCH类型,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据;若上行信道的信道类型为PUCCH类型,下行信道的信道类型为CSI-RS类型或PDSCH类型,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;若上行信道的信道类型为PUSCH类型,下行信道的信道类型为CSI-RS类型,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据。
一个例子中,若上行信道的信道类型为PUSCH类型,下行信道的信道类型为PDSCH类型,所述传输模块还用于:在上行信道为动态调度、且下行信道为半静态调度时,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;在上行信道为半静态调度、且下行信道为动态调度时,禁止在所述可用时频资源上发送上行信道对应的 上行数据,通过所述下行资源接收所述下行信道对应的下行数据;在上行信道和下行信道均为动态调度,或上行信道和下行信道均为半静态调度时,若上行信道对应的业务优先级大于下行信道对应的业务优先级,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;若上行信道对应的业务优先级小于下行信道对应的业务优先级,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据。
一个例子中,若上行信道对应的业务优先级等于下行信道对应业务的优先级,所述传输模块还用于:若上行信道对应的时间顺序早于下行信道对应的时间顺序,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;若上行信道对应的时间顺序晚于下行信道对应的时间顺序,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据;或者,基于随机顺序,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;或者,基于随机顺序,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据。
一个例子中,若上行信道占用的上行资源在所述SBFD时频资源中、SSB占用的下行资源在所述SBFD时频资源之外、SSB占用的下行资源与所述SBFD时频资源重合,所述传输模块还用于:禁止在所述可用时频资源上发送上行信道对应的上行数据;通过所述下行资源接收所述下行信道对应的所述SSB。
一个例子中,若上行信道占用的上行资源在所述SBFD时频资源中、SSB占用的下行资源在所述SBFD时频资源之外、SSB占用的下行资源与所述SBFD时频资源重合,所述传输模块还用于:通过所述下行资源接收所述下行信道对应的所述SSB;在不需要通过所述下行资源接收所述SSB时,则在所述可用时频资源上发送上行信道对应的上行数据。
一个例子中,所述传输模块在所述可用时频资源上发送所述上行信道对应的上行数据,时具体用于:获取已配置的多个上行信道;其中,所述多个上行信道包括位于SBFD时频资源的上行信道和/或位于上行时频资源的上行信道;从基站设备获取SSB集合和SSB比率配置,所述SSB集合包括多个SSB,所述SSB比率配置包括多个SSB的比率关系;针对每个上行信道,基于所述SSB集合和所述SSB比率配置确定所述上行信道对应的目标SSB,并基于所述目标SSB对应的匹配波束,在所述可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,所述SBFD时频资源为半静态配置的SBFD时频资源;或,所述SBFD时频资源为动态配置的SBFD时频资源。
一个例子中,每个上行信道为动态调度的PUSCH或者PUCCH;或者,每个上行信道为半静态调度的PUSCH或者PUCCH。
一个例子中,每个上行信道对应的上行数据为初传的上行数据;或者,每个上行信道对应的上行数据为第K个重复传输的上行数据,K为正整数。
一个例子中,所述上行数据为连接态的上行数据;或,所述上行数据为空闲态或非激活态的上行数据;或,所述上行数据为随机接入过程中的上行数据;或,所述上行数据为已完成随机接入过程、但未完成重配置过程的上行数据。
基于与上述方法同样的申请构思,本申请一个例子中提出一种电子设备(如上述例子的基站设备、全双工UE、半双工UE),电子设备包括处理器和机器可读存储介质,机器可读存储介质存储有能够被处理器执行的机器可执行指令;处理器用于执行机器可执行指令,以实现本申请上述示例公开的数据传输方法。
一个例子中,针对电子设备为基站设备的情况,机器可读指令被处理器执行时还执行如下处理:若子带全双工SBFD时频资源被设置为上行传输或者灵活Flexible传输,则从所述SBFD时频资源中分配可用时频资源;在所述可用时频资源上接收至少一个上行信道对应的上行数据。
一个例子中,针对电子设备为全双工UE的情况,机器可读指令被处理器执行时还执行如下处理:若SBFD时频资源被基站设备设置为上行传输或Flexible传输,从所述SBFD时频资源中获取基站设备为所述全双工UE分配的可用时频资源;针对每个上行信道,基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上 行数据。
处理器执行的处理中,若所述上行信道占用的全部上行资源均在所述SBFD时频资源中,则在所述可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,机器可读指令被处理器执行时还执行如下处理:若所述上行信道占用的全部上行资源均不在所述SBFD时频资源中、且所述上行资源位于上行符号或者F符号中,则在所述SBFD时频资源以外的所述上行资源上发送上行信道对应的上行数据。
一个例子中,机器可读指令被处理器执行时还执行如下处理:针对每个上行信道,若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于F符号中,则禁止在所述可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,处理器执行的处理中,若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于F符号中,则在所述可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,机器可读指令被处理器执行时还执行如下处理:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于下行符号中,则禁止在所述可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,处理器执行的处理中,若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于下行符号中,则对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,在所述可用时频资源上发送所述目标上行数据。
一个例子中,处理器执行的处理中,所述对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,包括:从所述初始上行数据中选取部分数据作为所述目标上行数据;或者,对所述初始上行数据进行高信道编码码率处理,得到所述目标上行数据;或者,对所述初始上行数据进行高阶调制处理,得到所述目标上行数据。
一个例子中,机器可读指令被处理器执行时还执行如下处理:若上行信道占用的上行资源和下行信道占用的下行资源均在所述SBFD时频资源中,在所述可用时频资源上发送所述上行信道对应的上行数据;禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据。
一个例子中,机器可读指令被处理器执行时还执行如下处理:若上行信道占用的上行资源和下行信道占用的下行资源均在所述SBFD时频资源中,在所述可用时频资源上发送所述上行信道对应的上行数据;通过所述SBFD时频资源接收所述下行信道对应的下行数据。
一个例子中,机器可读指令被处理器执行时还执行如下处理:若上行信道占用的上行资源在所述SBFD时频资源中、下行信道占用的下行资源在所述SBFD时频资源之外、下行信道占用的下行资源与所述SBFD时频资源重合,在所述可用时频资源上发送所述上行信道对应的上行数据;通过所述下行资源接收所述下行信道对应的下行数据。
一个例子中,处理器执行的处理中,所述在所述可用时频资源上发送所述上行信道对应的上行数据,包括:获取已配置的多个上行信道;其中,所述多个上行信道包括位于SBFD时频资源的上行信道和/或位于上行时频资源的上行信道;从基站设备获取SSB集合和SSB比率配置,所述SSB集合包括多个SSB,所述SSB比率配置包括所述多个SSB的比率关系;针对每个上行信道,基于所述SSB集合和所述SSB比率配置确定所述上行信道对应的目标SSB,并基于所述目标SSB对应的匹配波束,在所述可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,针对电子设备为半双工UE的情况,机器可读指令被处理器执行时还执行如下处理:若SBFD时频资源被基站设备设置为上行传输或Flexible传输,从所述SBFD时频资源中获取基站设备为所述半双工UE分配的可用时频资源;针对每个上行信道,基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据。一个例子中,处理器执行的处理中,若所述上行信道占用的全部上行资源均在所述SBFD时频资源中,且所述SBFD时频资源中的时隙与下行时频资源中的时隙不重合,则在所述可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,机器可读指令被处理器执行时还执行如下处理:若所述上行信道占用的全部上行资源均不在所述SBFD时频资源中、且所述上行资源位于上行符号或者F符号中,则在所述SBFD 时频资源以外的所述上行资源上发送上行信道对应的上行数据。
一个例子中,机器可读指令被处理器执行时还执行如下处理:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于F符号中,则禁止在所述可用时频资源上发送所述上行信道对应的上行数据。一个例子中,处理器执行的处理中,若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于F符号中、且所述SBFD时频资源中的时隙与下行时频资源中的时隙不重合,则在所述可用时频资源上发送所述上行信道对应的上行数据。一个例子中,机器可读指令被处理器执行时还执行如下处理:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于下行符号中,则禁止在所述可用时频资源上发送所述上行信道对应的上行数据。
一个例子中,处理器执行的处理中,若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于下行符号中、且所述SBFD时频资源中的时隙与下行时频资源中的时隙不重合,则对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,在所述可用时频资源上发送所述目标上行数据。一个例子中,处理器执行的处理中,所述对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,包括:从所述初始上行数据中选取部分数据作为所述目标上行数据;或者,对所述初始上行数据进行高信道编码码率处理,得到所述目标上行数据;或者,对所述初始上行数据进行高阶调制处理,得到所述目标上行数据。
一个例子中,机器可读指令被处理器执行时还执行如下处理:若上行信道占用的上行资源和下行信道占用的下行资源均在所述SBFD时频资源中,在所述可用时频资源上发送所述上行信道对应的上行数据;禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据。
一个例子中,机器可读指令被处理器执行时还执行如下处理:若上行信道占用的上行资源和下行信道占用的下行资源均在所述SBFD时频资源中,基于所述上行信道的信道类型和所述下行信道的信道类型,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;或,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据;或者,从所述上行资源中选取下行资源未占用的目标上行资源,在目标上行资源上发送上行信道对应的上行数据;从所述下行资源中选取上行资源未占用的目标下行资源,在目标下行资源接收下行信道对应的下行数据。
一个例子中,处理器执行的处理中,所述基于所述上行信道的信道类型和所述下行信道的信道类型,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;或,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据,包括:若所述上行信道的信道类型对应的信道处理优先级大于所述下行信道的信道类型对应的信道处理优先级,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;若所述上行信道的信道类型对应的信道处理优先级小于所述下行信道的信道类型对应的信道处理优先级,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据。
一个例子中,处理器执行的处理中,若上行信道的信道类型为PUSCH类型或PUCCH类型,下行信道的信道类型为SSB类型或PDCCH类型,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据;若上行信道的信道类型为PUCCH类型,下行信道的信道类型为CSI-RS类型或PDSCH类型,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;若上行信道的信道类型为PUSCH类型,下行信道的信道类型为CSI-RS类型,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据。
一个例子中,处理器执行的处理中,若上行信道的信道类型为PUSCH类型,下行信道的信道类型为PDSCH类型,在上行信道为动态调度、且下行信道为半静态调度时,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;在上行信道为半静态调度、且下行信道为动态调度时,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据;在上行信道和下行信道均为动态调度,或上行信道和下行信道均为半静态调度时,若上行信道对应的业务优先级大于下行信道对应的业务优先级,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;若上行信道对应的业务优先级小于下行 信道对应的业务优先级,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据。
一个例子中,处理器执行的处理中,若上行信道对应的业务优先级等于下行信道对应的业务优先级,若上行信道对应的时间顺序早于下行信道对应的时间顺序,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;若上行信道对应的时间顺序晚于下行信道对应的时间顺序,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据;或者,基于随机顺序,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;或者,基于随机顺序,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据。
一个例子中,机器可读指令被处理器执行时还执行如下处理:若上行信道占用的上行资源在所述SBFD时频资源中、下行信道占用的下行资源在所述SBFD时频资源之外、下行信道占用的下行资源与所述SBFD时频资源重合,基于所述上行信道的信道类型和所述下行信道的信道类型,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;或,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据;或者,从所述上行资源中选取下行资源未占用的目标上行资源,在目标上行资源上发送上行信道对应的上行数据;从所述下行资源中选取上行资源未占用的目标下行资源,在目标下行资源接收下行信道对应的下行数据。一个例子中,处理器执行的处理中,所述在目标上行资源上发送上行信道对应的上行数据,包括:对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,并在所述目标上行资源上发送所述目标上行数据。
一个例子中,处理器执行的处理中,所述基于所述上行信道的信道类型和所述下行信道的信道类型,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;或,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据,包括:若所述上行信道的信道类型对应的信道处理优先级大于所述下行信道的信道类型对应的信道处理优先级,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;若所述上行信道的信道类型对应的信道处理优先级小于所述下行信道的信道类型对应的信道处理优先级,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据。一个例子中,处理器执行的处理中,若上行信道的信道类型为PUSCH类型或PUCCH类型,下行信道的信道类型为SSB类型或PDCCH类型,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据;若上行信道的信道类型为PUCCH类型,下行信道的信道类型为CSI-RS类型或PDSCH类型,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;若上行信道的信道类型为PUSCH类型,下行信道的信道类型为CSI-RS类型,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据。
一个例子中,处理器执行的处理中,若上行信道的信道类型为PUSCH类型,下行信道的信道类型为PDSCH类型,在上行信道为动态调度、且下行信道为半静态调度时,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;在上行信道为半静态调度、且下行信道为动态调度时,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据;在上行信道和下行信道均为动态调度,或上行信道和下行信道均为半静态调度时,若上行信道对应的业务优先级大于下行信道对应的业务优先级,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;若上行信道对应的业务优先级小于下行信道对应的业务优先级,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据。
一个例子中,处理器执行的处理中,若上行信道对应的业务优先级等于下行信道对应业务的优先级,若上行信道对应的时间顺序早于下行信道对应的时间顺序,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;若上行信道对应的时间顺序晚于下行信道对应的时间顺序,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据;或者,基于随机顺序,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下 行数据;或者,基于随机顺序,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据。
一个例子中,机器可读指令被处理器执行时还执行如下处理:若上行信道占用的上行资源在所述SBFD时频资源中、SSB占用的下行资源在所述SBFD时频资源之外、SSB占用的下行资源与所述SBFD时频资源重合,禁止在所述可用时频资源上发送上行信道对应的上行数据;通过所述下行资源接收所述下行信道对应的所述SSB。
一个例子中,机器可读指令被处理器执行时还执行如下处理:若上行信道占用的上行资源在所述SBFD时频资源中、SSB占用的下行资源在所述SBFD时频资源之外、SSB占用的下行资源与所述SBFD时频资源重合,通过所述下行资源接收所述下行信道对应的所述SSB;在不需要通过所述下行资源接收所述SSB时,则在所述可用时频资源上发送上行信道对应的上行数据。
一个例子中,处理器执行的处理中,在所述可用时频资源上发送所述上行信道对应的上行数据,包括:获取已配置的多个上行信道;所述多个上行信道包括位于SBFD时频资源的上行信道和/或位于上行时频资源的上行信道;从基站设备获取SSB集合和SSB比率配置,所述SSB集合包括多个SSB,所述SSB比率配置包括所述多个SSB的比率关系;针对每个上行信道,基于所述SSB集合和所述SSB比率配置确定所述上行信道对应的目标SSB,并基于所述目标SSB对应的匹配波束,在所述可用时频资源上发送所述上行信道对应的上行数据。
基于与上述方法同样的申请构思,本申请一个例子还提供一种机器可读存储介质,所述机器可读存储介质上存储有若干计算机指令,所述计算机指令被处理器执行时,能够实现本申请上述示例公开的数据传输方法。其中,上述机器可读存储介质可以是任何电子、磁性、光学或其它物理存储装置,可以包含或存储信息,如可执行指令、数据,等等。例如,机器可读存储介质可以是:RAM(Radom Access Memory,随机存取存储器)、易失存储器、非易失性存储器、闪存、存储驱动器(如硬盘驱动器)、固态硬盘、任何类型的存储盘(如光盘、dvd等),或者类似的存储介质,或者它们的组合。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机,计算机的具体形式可以是个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件收发设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任意几种设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可以由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其它可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其它可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。而且,这些计算机程序指令也可以存储在能引导计算机或其它可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或者多个流程和/或方框图一个方框或者多个方框中指定的功能。这些计算机程序指令也可装载到计算机或其它可编程数据处理设备上,使得在计算机或者其它可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其它可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (97)

  1. 一种数据传输方法,其特征在于,应用于基站设备,包括:
    若子带全双工SBFD时频资源被设置为上行传输或者灵活Flexible传输,则从所述SBFD时频资源中分配可用时频资源;
    在所述可用时频资源上接收至少一个上行信道对应的上行数据。
  2. 根据权利要求1所述的方法,其特征在于,
    所述SBFD时频资源为半静态配置的SBFD时频资源;或,
    所述SBFD时频资源为动态配置的SBFD时频资源。
  3. 根据权利要求1所述的方法,其特征在于,
    每个上行信道为动态调度的PUSCH或者PUCCH;或者,
    每个上行信道为半静态调度的PUSCH或者PUCCH。
  4. 根据权利要求1所述的方法,其特征在于,
    每个上行信道对应的上行数据为初传的上行数据;或者,每个上行信道对应的上行数据为第K个重复传输的上行数据,K为正整数。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,
    所述上行数据为连接态的上行数据;或者,
    所述上行数据为空闲态或非激活态的上行数据;或者,
    所述上行数据为随机接入过程中的上行数据;或者,
    所述上行数据为已完成随机接入过程、但未完成重配置过程的上行数据。
  6. 一种数据传输方法,其特征在于,应用于全双工UE,包括:
    若子带全双工SBFD时频资源被基站设备设置为上行传输或灵活Flexible传输,则从所述SBFD时频资源中获取基站设备为所述全双工UE分配的可用时频资源;
    针对每个上行信道,基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据。
  7. 根据权利要求6所述的方法,其特征在于,
    所述基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据,包括:
    若所述上行信道占用的全部上行资源均在所述SBFD时频资源中,则在所述可用时频资源上发送所述上行信道对应的上行数据。
  8. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    若所述上行信道占用的全部上行资源均不在所述SBFD时频资源中、且所述上行资源位于上行符号或者F符号中,则在所述SBFD时频资源以外的所述上行资源上发送上行信道对应的上行数据。
  9. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    针对每个上行信道,若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于F符号中,则禁止在所述可用时频资源上发送所述上行信道对应的上行数据。
  10. 根据权利要求6所述的方法,其特征在于,
    所述基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据,包括:
    若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于F符号中,则在所述可用时频资源上发送所述上行信道对应的上行数据。
  11. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于下行符号中,则禁止在所述可用时频资源上发送所述上行信道对应的上行数据。
  12. 根据权利要求6所述的方法,其特征在于,
    所述基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据,包括:
    若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于下行符号中,则对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,在所述可用时频资源上发送所述目标上行数据。
  13. 根据权利要求12所述的方法,其特征在于,所述对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,包括:
    从所述初始上行数据中选取部分数据作为所述目标上行数据;或者,
    对所述初始上行数据进行高信道编码码率处理,得到所述目标上行数据;或者,
    对所述初始上行数据进行高阶调制处理,得到所述目标上行数据。
  14. 根据权利要求6所述的方法,其特征在于,若上行信道占用的上行资源和下行信道占用的下行资源均在所述SBFD时频资源中,所述方法还包括:
    在所述可用时频资源上发送所述上行信道对应的上行数据;
    禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据。
  15. 根据权利要求6所述的方法,其特征在于,若上行信道占用的上行资源和下行信道占用的下行资源均在所述SBFD时频资源中,所述方法还包括:
    在所述可用时频资源上发送所述上行信道对应的上行数据;
    通过所述SBFD时频资源接收所述下行信道对应的下行数据。
  16. 根据权利要求6所述的方法,其特征在于,若上行信道占用的上行资源在所述SBFD时频资源中、下行信道占用的下行资源在所述SBFD时频资源之外、下行信道占用的下行资源与所述SBFD时频资源重合,所述方法还包括:
    在所述可用时频资源上发送所述上行信道对应的上行数据;
    通过所述下行资源接收所述下行信道对应的下行数据。
  17. 根据权利要求6-16任一所述的方法,其特征在于,
    所述在所述可用时频资源上发送所述上行信道对应的上行数据,包括:
    获取已配置的多个上行信道;其中,所述多个上行信道包括位于SBFD时频资源的上行信道和/或位于上行时频资源的上行信道;
    从基站设备获取SSB集合和SSB比率配置,所述SSB集合包括多个SSB,所述SSB比率配置包括所述多个SSB的比率关系;
    针对每个上行信道,基于所述SSB集合和所述SSB比率配置确定所述上行信道对应的目标SSB,并基于所述目标SSB对应的匹配波束,在所述可用时频资源上发送所述上行信道对应的上行数据。
  18. 根据权利要求6-16任一所述的方法,其特征在于,
    所述SBFD时频资源为半静态配置的SBFD时频资源;或,
    所述SBFD时频资源为动态配置的SBFD时频资源。
  19. 根据权利要求6-16任一所述的方法,其特征在于,
    每个上行信道为动态调度的PUSCH或者PUCCH;或者,
    每个上行信道为半静态调度的PUSCH或者PUCCH。
  20. 根据权利要求6-16任一所述的方法,其特征在于,
    每个上行信道对应的上行数据为初传的上行数据;或者,每个上行信道对应的上行数据为第K个重复传输的上行数据,K为正整数。
  21. 根据权利要求6-16任一项所述的方法,其特征在于,
    所述上行数据为连接态的上行数据;或者,
    所述上行数据为空闲态或非激活态的上行数据;或者,
    所述上行数据为随机接入过程中的上行数据;或者,
    所述上行数据为已完成随机接入过程、但未完成重配置过程的上行数据。
  22. 一种数据传输方法,其特征在于,应用于半双工UE,包括:
    若子带全双工SBFD时频资源被基站设备设置为上行传输或灵活Flexible传输,则从所述SBFD时频资源中获取基站设备为所述半双工UE分配的可用时频资源;
    针对每个上行信道,基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据。
  23. 根据权利要求22所述的方法,其特征在于,
    所述基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据,包括:
    若所述上行信道占用的全部上行资源均在所述SBFD时频资源中,且所述SBFD时频资源中的时隙与下行时频资源中的时隙不重合,则在所述可用时频资源上发送所述上行信道对应的上行数据。
  24. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    若所述上行信道占用的全部上行资源均不在所述SBFD时频资源中、且所述上行资源位于上行符号或者F符号中,则在所述SBFD时频资源以外的所述上行资源上发送上行信道对应的上行数据。
  25. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于F符号中,则禁止在所述可用时频资源上发送所述上行信道对应的上行数据。
  26. 根据权利要求22所述的方法,其特征在于,
    基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据,包括:
    若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于F符号中、且所述SBFD时频资源中的时隙与下行时频资源中的时隙不重合,则在所述可用时频资源上发送所述上行信道对应的上行数据。
  27. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于下行符号中,则禁止在所述可用时频资源上发送所述上行信道对应的上行数据。
  28. 根据权利要求22所述的方法,其特征在于,
    所述基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据,包括:
    若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于下行符号中、且所述SBFD时频资源中的时隙与下行时频资源中的时隙不重合,则对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,在所述可用时频资源上发送所述目标上行数据。
  29. 根据权利要求28所述的方法,其特征在于,所述对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,包括:
    从所述初始上行数据中选取部分数据作为所述目标上行数据;或者,
    对所述初始上行数据进行高信道编码码率处理,得到所述目标上行数据;或者,
    对所述初始上行数据进行高阶调制处理,得到所述目标上行数据。
  30. 根据权利要求22所述的方法,其特征在于,若上行信道占用的上行资源和下行信道占用的下行资源均在所述SBFD时频资源中,所述方法还包括:
    在所述可用时频资源上发送所述上行信道对应的上行数据;
    禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据。
  31. 根据权利要求22所述的方法,其特征在于,若上行信道占用的上行资源和下行信道占用的下行资源均在所述SBFD时频资源中,所述方法还包括:
    基于所述上行信道的信道类型和所述下行信道的信道类型,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;或,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据;
    或者,从所述上行资源中选取下行资源未占用的目标上行资源,在目标上行资源上发送上行信道对应的上行数据;从所述下行资源中选取上行资源未占用的目标下行资源,在目标下行资源接收下行信道对应的下行数据。
  32. 根据权利要求31所述的方法,其特征在于,所述基于所述上行信道的信道类型和所述下行信道的信道类型,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;或,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据,包括:
    若所述上行信道的信道类型对应的信道处理优先级大于所述下行信道的信道类型对应的信道处理优先级,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;
    若所述上行信道的信道类型对应的信道处理优先级小于所述下行信道的信道类型对应的信道处理优先级,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据。
  33. 根据权利要求32所述的方法,其特征在于,
    若上行信道的信道类型为PUSCH类型或PUCCH类型,下行信道的信道类型为SSB类型或PDCCH类型,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据;
    若上行信道的信道类型为PUCCH类型,下行信道的信道类型为CSI-RS类型或PDSCH类型,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;
    若上行信道的信道类型为PUSCH类型,下行信道的信道类型为CSI-RS类型,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据。
  34. 根据权利要求33所述的方法,其特征在于,若上行信道的信道类型为PUSCH类型,下行信道的信道类型为PDSCH类型,所述方法还包括:
    在上行信道为动态调度、且下行信道为半静态调度时,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;在上行信道为半静态调度、且下行信道为动态调度时,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据;
    在上行信道和下行信道均为动态调度,或上行信道和下行信道均为半静态调度时,若上行信道对应的业务优先级大于下行信道对应的业务优先级,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;若上行信道对应的业务优先级小于下行信道对应的业务优先级,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据。
  35. 根据权利要求34所述的方法,其特征在于,若上行信道对应的业务优先级等于下行信道对应的业务优先级,所述方法还包括:
    若上行信道对应的时间顺序早于下行信道对应的时间顺序,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;若上行信道对应的时间顺序晚于下行信道对应的时间顺序,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据;或者,
    基于随机顺序,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;或者,基于随机顺序,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据。
  36. 根据权利要求22所述的方法,其特征在于,若上行信道占用的上行资源在所述SBFD时频资源中、下行信道占用的下行资源在所述SBFD时频资源之外、下行信道占用的下行资源与所述SBFD时频资源重合,所述方法还包括:
    基于所述上行信道的信道类型和所述下行信道的信道类型,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;或,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据;
    或者,从所述上行资源中选取下行资源未占用的目标上行资源,在目标上行资源上发送上行信道对应的上行数据;从所述下行资源中选取上行资源未占用的目标下行资源,在目标下行资源接收下行信道对应的下行数据。
  37. 根据权利要求31或36所述的方法,其特征在于,
    所述在目标上行资源上发送上行信道对应的上行数据,包括:
    对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,并在所述目标上行资源上发送所述目标上行数据。
  38. 根据权利要求36所述的方法,其特征在于,
    所述基于所述上行信道的信道类型和所述下行信道的信道类型,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;或,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据,包括:
    若所述上行信道的信道类型对应的信道处理优先级大于所述下行信道的信道类型对应的信道处理优先级,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;
    若所述上行信道的信道类型对应的信道处理优先级小于所述下行信道的信道类型对应的信道处理优先级,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据。
  39. 根据权利要求38所述的方法,其特征在于,
    若上行信道的信道类型为PUSCH类型或PUCCH类型,下行信道的信道类型为SSB类型或PDCCH类型,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据;
    若上行信道的信道类型为PUCCH类型,下行信道的信道类型为CSI-RS类型或PDSCH类型,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;
    若上行信道的信道类型为PUSCH类型,下行信道的信道类型为CSI-RS类型,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据。
  40. 根据权利要求39所述的方法,其特征在于,若上行信道的信道类型为PUSCH类型,下行信道的信道类型为PDSCH类型,所述方法还包括:
    在上行信道为动态调度、且下行信道为半静态调度时,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;在上行信道为半静态调度、且下行信道为动态调度时,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据;
    在上行信道和下行信道均为动态调度,或上行信道和下行信道均为半静态调度时,若上行信道对应的业务优先级大于下行信道对应的业务优先级,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;若上行信道对应的业务优先级小于下行信道对应的业务优先级,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据。
  41. 根据权利要求40所述的方法,其特征在于,若上行信道对应的业务优先级等于下行信道对应业务的优先级,所述方法还包括:
    若上行信道对应的时间顺序早于下行信道对应的时间顺序,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;若上行信道对应的时间顺序晚于下行信道对应的时间顺序,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据;或者,
    基于随机顺序,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;或者,基于随机顺序,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据。
  42. 根据权利要求22所述的方法,其特征在于,若上行信道占用的上行资源在所述SBFD时频资源中、SSB占用的下行资源在所述SBFD时频资源之外、SSB占用的下行资源与所述SBFD时频资源重合,所述方法还包括:
    禁止在所述可用时频资源上发送上行信道对应的上行数据;
    通过所述下行资源接收所述下行信道对应的所述SSB。
  43. 根据权利要求22所述的方法,其特征在于,若上行信道占用的上行资源在所述SBFD时频资源中、SSB占用的下行资源在所述SBFD时频资源之外、SSB占用的下行资源与所述SBFD时频资源重合,所述方法还包括:
    通过所述下行资源接收所述下行信道对应的所述SSB;
    在不需要通过所述下行资源接收所述SSB时,则在所述可用时频资源上发送上行信道对应的上行数据。
  44. 根据权利要求22-43任一所述的方法,其特征在于,
    所述在所述可用时频资源上发送所述上行信道对应的上行数据,包括:
    获取已配置的多个上行信道;其中,所述多个上行信道包括位于SBFD时频资源的上行信道和/或位于上行时频资源的上行信道;
    从基站设备获取SSB集合和SSB比率配置,所述SSB集合包括多个SSB,所述SSB比率配置包括所述多个SSB的比率关系;
    针对每个上行信道,基于所述SSB集合和所述SSB比率配置确定所述上行信道对应的目标SSB,并基于所述目标SSB对应的匹配波束,在所述可用时频资源上发送所述上行信道对应的上行数据。
  45. 根据权利要求22-43任一所述的方法,其特征在于,
    所述SBFD时频资源为半静态配置的SBFD时频资源;或,
    所述SBFD时频资源为动态配置的SBFD时频资源。
  46. 根据权利要求22-43任一所述的方法,其特征在于,
    每个上行信道为动态调度的PUSCH或者PUCCH;或者,
    每个上行信道为半静态调度的PUSCH或者PUCCH。
  47. 根据权利要求22-43任一所述的方法,其特征在于,
    每个上行信道对应的上行数据为初传的上行数据;或者,每个上行信道对应的上行数据为第K个重复传输的上行数据,K为正整数。
  48. 根据权利要求22-43任一项所述的方法,其特征在于,
    所述上行数据为连接态的上行数据;或者,
    所述上行数据为空闲态或非激活态的上行数据;或者,
    所述上行数据为随机接入过程中的上行数据;或者,
    所述上行数据为已完成随机接入过程、但未完成重配置过程的上行数据。
  49. 一种数据传输装置,其特征在于,应用于基站设备,包括:
    分配模块,用于若子带全双工SBFD时频资源被设置为上行传输或者灵活Flexible传输,则从所述SBFD时频资源中分配可用时频资源;
    传输模块,用于在所述可用时频资源上接收至少一个上行信道对应的上行数据。
  50. 根据权利要求49所述的装置,其特征在于,
    所述SBFD时频资源为半静态配置的SBFD时频资源;或,
    所述SBFD时频资源为动态配置的SBFD时频资源。
  51. 根据权利要求49所述的装置,其特征在于,
    每个上行信道为动态调度的PUSCH或者PUCCH;或者,
    每个上行信道为半静态调度的PUSCH或者PUCCH。
  52. 根据权利要求49所述的装置,其特征在于,
    每个上行信道对应的上行数据为初传的上行数据;或者,每个上行信道对应的上行数据为第K个重复传输的上行数据,K为正整数。
  53. 根据权利要求49-52任一项所述的装置,其特征在于,
    所述上行数据为连接态的上行数据;或者,
    所述上行数据为空闲态或非激活态的上行数据;或者,
    所述上行数据为随机接入过程中的上行数据;或者,
    所述上行数据为已完成随机接入过程、但未完成重配置过程的上行数据。
  54. 一种数据传输装置,其特征在于,应用于全双工UE,包括:
    获取模块,用于若子带全双工SBFD时频资源被基站设备设置为上行传输或灵活Flexible传输,则从所述SBFD时频资源中获取基站设备为所述全双工UE分配的可用时频资源;
    传输模块,用于针对每个上行信道,基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据。
  55. 根据权利要求54所述的装置,其特征在于,
    所述传输模块基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据时具体用于:若所述上行信道占用的全部上行资源均在所述SBFD时频资源中,则在所述可用时频资源上发送所述上行信道对应的上行数据。
  56. 根据权利要求54所述的装置,其特征在于,
    所述传输模块还用于:若所述上行信道占用的全部上行资源均不在所述SBFD时频资源中、且所述上行资源位于上行符号或者F符号中,则在所述SBFD时频资源以外的所述上行资源上发送上行信道对应的上行数据。
  57. 根据权利要求54所述的装置,其特征在于,
    所述传输模块还用于:针对每个上行信道,若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于F符号中,则禁止在所述可用时频资源上发送所述上行信道对应的上行数据。
  58. 根据权利要求54所述的装置,其特征在于,所述传输模块基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据时具体用于:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于F符号中,则在所述可用时频资源上发送所述上行信道对应的上行数据。
  59. 根据权利要求54所述的装置,其特征在于,
    所述传输模块还用于:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于下行符号中,则禁止在所述可用时频资源上发送所述上行信道对应的上行数据。
  60. 根据权利要求54所述的装置,其特征在于,所述传输模块基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据时具体用于:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于下行符号中,则对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,在所述可用时频资源上发送所述目标上行数据。
  61. 根据权利要求60所述的装置,其特征在于,所述传输模块对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据时具体用于:
    从所述初始上行数据中选取部分数据作为所述目标上行数据;或者,对所述初始上行数据进行高信道编码码率处理,得到所述目标上行数据;或者,对所述初始上行数据进行高阶调制处理,得到所述目标上行数据。
  62. 根据权利要求54所述的装置,其特征在于,若上行信道占用的上行资源和下行信道占用的下行资源均在所述SBFD时频资源中,所述传输模块还用于:在所述可用时频资源上发送所述上行信道对应的上行数据;禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据。
  63. 根据权利要求54所述的装置,其特征在于,若上行信道占用的上行资源和下行信道占用的下行资源均在所述SBFD时频资源中,所述传输模块还用于:在所述可用时频资源上发送所述上行信道对应的上行数据;通过所述SBFD时频资源接收所述下行信道对应的下行数据。
  64. 根据权利要求54所述的装置,其特征在于,若上行信道占用的上行资源在所述SBFD时频资源中、下行信道占用的下行资源在所述SBFD时频资源之外、下行信道占用的下行资源与所述SBFD时频资源重合,所述传输模块还用于:在所述可用时频资源上发送所述上行信道对应的上行数据;通过所述下行资源接收所述下行信道对应的下行数据。
  65. 根据权利要求54-64任一所述的装置,其特征在于,
    所述传输模块在所述可用时频资源上发送所述上行信道对应的上行数据时具体用于:获取已配置的多个上行信道;其中,所述多个上行信道包括位于SBFD时频资源的上行信道和/或位于上行时频资源的上行信道;从基站设备获取SSB集合和SSB比率配置,所述SSB集合包括多个SSB,所述SSB比率配置包括所述多个SSB的比率关系;针对每个上行信道,基于所述SSB集合和所述SSB比率配置确定所述上行信道对应的目标SSB,并基于所述目标SSB对应的匹配波束,在所述可用时频资源上发送所述上行信道对应的上行数据。
  66. 根据权利要求54-64任一所述的装置,其特征在于,
    所述SBFD时频资源为半静态配置的SBFD时频资源;或,
    所述SBFD时频资源为动态配置的SBFD时频资源。
  67. 根据权利要求54-64任一所述的装置,其特征在于,
    每个上行信道为动态调度的PUSCH或者PUCCH;或者,
    每个上行信道为半静态调度的PUSCH或者PUCCH。
  68. 根据权利要求54-64任一所述的装置,其特征在于,
    每个上行信道对应的上行数据为初传的上行数据;或者,每个上行信道对应的上行数据为第K个重复传输的上行数据,K为正整数。
  69. 根据权利要求54-64任一项所述的装置,其特征在于,
    所述上行数据为连接态的上行数据;或者,
    所述上行数据为空闲态或非激活态的上行数据;或者,
    所述上行数据为随机接入过程中的上行数据;或者,
    所述上行数据为已完成随机接入过程、但未完成重配置过程的上行数据。
  70. 一种数据传输装置,其特征在于,应用于半双工UE,包括:
    获取模块,用于若子带全双工SBFD时频资源被基站设备设置为上行传输或灵活Flexible传输,则从所述SBFD时频资源中获取基站设备为所述半双工UE分配的可用时频资源;
    传输模块,用于针对每个上行信道,基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据。
  71. 根据权利要求70所述的装置,其特征在于,
    所述传输模块基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据时具体用于:若所述上行信道占用的全部上行资源均在所述SBFD时频资源中,且所述SBFD时频资源中的时隙与下行时频资源中的时隙不重合,则在所述可用时频资源上发送所述上行信道对应的上行数据。
  72. 根据权利要求70所述的装置,其特征在于,
    所述传输模块还用于:若所述上行信道占用的全部上行资源均不在所述SBFD时频资源中、且所述上行资源位于上行符号或者F符号中,则在所述SBFD时频资源以外的所述上行资源上发送上行信道对应的上行数据。
  73. 根据权利要求70所述的装置,其特征在于,
    所述传输模块还用于:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于F符号中,则禁止在所述可用时频资源上发送所述上行信道对应的上行数据。
  74. 根据权利要求70所述的装置,其特征在于,所述传输模块基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据时具体用于:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于F符号中、且所述SBFD时频资源中的时隙与下行时频资源中的时隙不重合,则在所述可 用时频资源上发送所述上行信道对应的上行数据。
  75. 根据权利要求70所述的装置,其特征在于,
    所述传输模块还用于:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于下行符号中,则禁止在所述可用时频资源上发送所述上行信道对应的上行数据。
  76. 根据权利要求70所述的装置,其特征在于,
    所述传输模块基于所述上行信道占用的上行资源与所述SBFD时频资源的位置关系,在所述可用时频资源上发送所述上行信道对应的上行数据时具体用于:若所述上行信道占用的部分上行资源在所述SBFD时频资源中、且所述上行资源的剩余部分位于下行符号中、且所述SBFD时频资源中的时隙与下行时频资源中的时隙不重合,则对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,在所述可用时频资源上发送所述目标上行数据。
  77. 根据权利要求76所述的装置,其特征在于,所述传输模块对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据时具体用于:
    从所述初始上行数据中选取部分数据作为所述目标上行数据;或者,对所述初始上行数据进行高信道编码码率处理,得到所述目标上行数据;或者,对所述初始上行数据进行高阶调制处理,得到所述目标上行数据。
  78. 根据权利要求70所述的装置,其特征在于,若上行信道占用的上行资源和下行信道占用的下行资源均在所述SBFD时频资源中,所述传输模块还用于:在所述可用时频资源上发送所述上行信道对应的上行数据;禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据。
  79. 根据权利要求70所述的装置,其特征在于,若上行信道占用的上行资源和下行信道占用的下行资源均在所述SBFD时频资源中,所述传输模块还用于:基于所述上行信道的信道类型和所述下行信道的信道类型,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;或,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据;
    或者,从所述上行资源中选取下行资源未占用的目标上行资源,在目标上行资源上发送上行信道对应的上行数据;从所述下行资源中选取上行资源未占用的目标下行资源,在目标下行资源接收下行信道对应的下行数据。
  80. 根据权利要求79所述的装置,其特征在于,所述传输模块基于所述上行信道的信道类型和所述下行信道的信道类型,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;或,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据时具体用于:
    若所述上行信道的信道类型对应的信道处理优先级大于所述下行信道的信道类型对应的信道处理优先级,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;
    若所述上行信道的信道类型对应的信道处理优先级小于所述下行信道的信道类型对应的信道处理优先级,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据。
  81. 根据权利要求80所述的装置,其特征在于,所述传输模块还用于:
    若上行信道的信道类型为PUSCH类型或PUCCH类型,下行信道的信道类型为SSB类型或PDCCH类型,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据;
    若上行信道的信道类型为PUCCH类型,下行信道的信道类型为CSI-RS类型或PDSCH类型,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;
    若上行信道的信道类型为PUSCH类型,下行信道的信道类型为CSI-RS类型,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据。
  82. 根据权利要求81所述的装置,其特征在于,若上行信道的信道类型为PUSCH类型,下行信道的信道类型为PDSCH类型,所述传输模块还用于:
    在上行信道为动态调度、且下行信道为半静态调度时,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;在上行信道为半静态调度、且下行信道为动态调度时,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据;
    在上行信道和下行信道均为动态调度,或上行信道和下行信道均为半静态调度时,若上行信道对应的业务优先级大于下行信道对应的业务优先级,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;若上行信道对应的业务优先级小于下行信道对应的业务优先级,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据。
  83. 根据权利要求82所述的装置,其特征在于,若上行信道对应的业务优先级等于下行信道对应的业务优先级,所述传输模块还用于:
    若上行信道对应的时间顺序早于下行信道对应的时间顺序,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;若上行信道对应的时间顺序晚于下行信道对应的时间顺序,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据;或者,
    基于随机顺序,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述SBFD时频资源接收所述下行信道对应的下行数据;或者,基于随机顺序,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述SBFD时频资源接收所述下行信道对应的下行数据。
  84. 根据权利要求70所述的装置,其特征在于,若上行信道占用的上行资源在所述SBFD时频资源中、下行信道占用的下行资源在所述SBFD时频资源之外、下行信道占用的下行资源与所述SBFD时频资源重合,所述传输模块还用于:基于所述上行信道的信道类型和所述下行信道的信道类型,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;或,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据;
    或者,从所述上行资源中选取下行资源未占用的目标上行资源,在目标上行资源上发送上行信道对应的上行数据;从所述下行资源中选取上行资源未占用的目标下行资源,在目标下行资源接收下行信道对应的下行数据。
  85. 根据权利要求79或84所述的装置,其特征在于,
    所述传输模块在目标上行资源上发送上行信道对应的上行数据时具体用于:
    对所述上行信道对应的初始上行数据进行速率匹配,得到目标上行数据,并在所述目标上行资源上发送所述目标上行数据。
  86. 根据权利要求84所述的装置,其特征在于,所述传输模块基于所述上行信道的信道类型和所述下行信道的信道类型,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;或,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据时具体用于:
    若所述上行信道的信道类型对应的信道处理优先级大于所述下行信道的信道类型对应的信道处理优先级,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;
    若所述上行信道的信道类型对应的信道处理优先级小于所述下行信道的信道类型对应的信道处理优先级,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据。
  87. 根据权利要求86所述的装置,其特征在于,所述传输模块还用于:
    若上行信道的信道类型为PUSCH类型或PUCCH类型,下行信道的信道类型为SSB类型或PDCCH类型,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据;
    若上行信道的信道类型为PUCCH类型,下行信道的信道类型为CSI-RS类型或PDSCH类型,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;
    若上行信道的信道类型为PUSCH类型,下行信道的信道类型为CSI-RS类型,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据。
  88. 根据权利要求87所述的装置,其特征在于,若上行信道的信道类型为PUSCH类型,下行信道的信道类型为PDSCH类型,所述传输模块还用于:
    在上行信道为动态调度、且下行信道为半静态调度时,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;在上行信道为半静态调度、且下行信道为动态调度时,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据;
    在上行信道和下行信道均为动态调度,或上行信道和下行信道均为半静态调度时,若上行信道 对应的业务优先级大于下行信道对应的业务优先级,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;若上行信道对应的业务优先级小于下行信道对应的业务优先级,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据。
  89. 根据权利要求88所述的装置,其特征在于,若上行信道对应的业务优先级等于下行信道对应业务的优先级,所述传输模块还用于:
    若上行信道对应的时间顺序早于下行信道对应的时间顺序,则在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;若上行信道对应的时间顺序晚于下行信道对应的时间顺序,则禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据;或者,
    基于随机顺序,在所述可用时频资源上发送上行信道对应的上行数据,禁止通过所述下行资源接收所述下行信道对应的下行数据;或者,基于随机顺序,禁止在所述可用时频资源上发送上行信道对应的上行数据,通过所述下行资源接收所述下行信道对应的下行数据。
  90. 根据权利要求70所述的装置,其特征在于,若上行信道占用的上行资源在所述SBFD时频资源中、SSB占用的下行资源在所述SBFD时频资源之外、SSB占用的下行资源与所述SBFD时频资源重合,所述传输模块还用于:
    禁止在所述可用时频资源上发送上行信道对应的上行数据;
    通过所述下行资源接收所述下行信道对应的所述SSB。
  91. 根据权利要求70所述的装置,其特征在于,若上行信道占用的上行资源在所述SBFD时频资源中、SSB占用的下行资源在所述SBFD时频资源之外、SSB占用的下行资源与所述SBFD时频资源重合,所述传输模块还用于:
    通过所述下行资源接收所述下行信道对应的所述SSB;
    在不需要通过所述下行资源接收所述SSB时,则在所述可用时频资源上发送上行信道对应的上行数据。
  92. 根据权利要求70-91任一所述的装置,其特征在于,所述传输模块在所述可用时频资源上发送所述上行信道对应的上行数据,时具体用于:
    获取已配置的多个上行信道;其中,所述多个上行信道包括位于SBFD时频资源的上行信道和/或位于上行时频资源的上行信道;
    从基站设备获取SSB集合和SSB比率配置,所述SSB集合包括多个SSB,所述SSB比率配置包括所述多个SSB的比率关系;
    针对每个上行信道,基于所述SSB集合和所述SSB比率配置确定所述上行信道对应的目标SSB,并基于所述目标SSB对应的匹配波束,在所述可用时频资源上发送所述上行信道对应的上行数据。
  93. 根据权利要求70-91任一所述的装置,其特征在于,
    所述SBFD时频资源为半静态配置的SBFD时频资源;或,
    所述SBFD时频资源为动态配置的SBFD时频资源。
  94. 根据权利要求70-91任一所述的装置,其特征在于,
    每个上行信道为动态调度的PUSCH或者PUCCH;或者,
    每个上行信道为半静态调度的PUSCH或者PUCCH。
  95. 根据权利要求70-91任一所述的装置,其特征在于,
    每个上行信道对应的上行数据为初传的上行数据;或者,每个上行信道对应的上行数据为第K个重复传输的上行数据,K为正整数。
  96. 根据权利要求70-91任一所述的装置,其特征在于,
    所述上行数据为连接态的上行数据;或者,
    所述上行数据为空闲态或非激活态的上行数据;或者,
    所述上行数据为随机接入过程中的上行数据;或者,
    所述上行数据为已完成随机接入过程、但未完成重配置过程的上行数据。
  97. 一种电子设备,其特征在于,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令;所述处理器用于执行机器可执行指令,以实现权利要求1-5任一项所述的方法,或,实现权利要求6-21任一项所述的方法,或,实现权利要求22-48任一项所述的方法。
PCT/CN2022/122313 2022-09-28 2022-09-28 一种数据传输方法、装置及电子设备 WO2024065326A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/122313 WO2024065326A1 (zh) 2022-09-28 2022-09-28 一种数据传输方法、装置及电子设备
CN202280003417.6A CN117941313A (zh) 2022-09-28 2022-09-28 一种数据传输方法、装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122313 WO2024065326A1 (zh) 2022-09-28 2022-09-28 一种数据传输方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2024065326A1 true WO2024065326A1 (zh) 2024-04-04

Family

ID=90475312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122313 WO2024065326A1 (zh) 2022-09-28 2022-09-28 一种数据传输方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN117941313A (zh)
WO (1) WO2024065326A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210360670A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Frame structure for subband full duplex slot formats
US20220007395A1 (en) * 2020-07-02 2022-01-06 Qualcomm Incorporated Slot format indicator (sfi) enhancement for sub-band full-duplex
CN114731250A (zh) * 2019-12-06 2022-07-08 高通股份有限公司 具有双模式半双工时分双工和全双工频分双工能力的用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114731250A (zh) * 2019-12-06 2022-07-08 高通股份有限公司 具有双模式半双工时分双工和全双工频分双工能力的用户设备
US20210360670A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Frame structure for subband full duplex slot formats
US20220007395A1 (en) * 2020-07-02 2022-01-06 Qualcomm Incorporated Slot format indicator (sfi) enhancement for sub-band full-duplex

Also Published As

Publication number Publication date
CN117941313A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
CN108810905B (zh) 传输上行信道的方法和装置及传输下行信道的方法和装置
WO2017076157A1 (zh) 数据调度及传输的方法、装置及系统
US20170230974A1 (en) Method and apparatus for operating subframe and transmitting channel information for controlling interference in communication system
US20210274494A1 (en) Uplink control information transmission method and apparatus
CN110999365B (zh) 传输数据的方法和终端设备
WO2017193399A1 (zh) 一种上行控制信息的传输方法和装置
JP2015537449A (ja) 情報送信方法、ユーザ装置及び基地局
RU2682916C1 (ru) Способ и устройство передачи данных
CN111615861B (zh) 多比特调度请求
AU2019460320B2 (en) Sharing HARQ processes by multiple configured grants resources
CN104471998B (zh) 用于分配上行链路子帧的资源的方法和网络节点
US9042280B2 (en) Methods and apparatus for half duplex scheduling
CN112787772A (zh) Sps pdsch的harq反馈方法、装置及存储介质
CN108293245B (zh) 一种数据通信的方法、终端设备及网络设备
CN115885495A (zh) 一种通信方法与装置
WO2021147002A1 (en) Downlink frequency hopping communication for reduced capability user equipment
US20180310291A1 (en) Control signal sending method and apparatus
EP3823397A1 (en) Traffic-dependent transmission for interference reduction
WO2010110284A1 (ja) 無線基地局及び移動通信方法
WO2013111524A1 (ja) 端末装置、基地局装置、受信方法及び送信方法
WO2014024304A1 (ja) 基地局装置、移動局装置、通信システム及び通信方法
WO2022237611A1 (zh) 一种信息确认方法、装置及通信设备
WO2024065326A1 (zh) 一种数据传输方法、装置及电子设备
CN117678248A (zh) 无线通信中的动态资源调度
CN115315930B (zh) 保护间隔的确定方法、设备及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280003417.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022959969

Country of ref document: EP

Effective date: 20240529