WO2017193399A1 - 一种上行控制信息的传输方法和装置 - Google Patents

一种上行控制信息的传输方法和装置 Download PDF

Info

Publication number
WO2017193399A1
WO2017193399A1 PCT/CN2016/082123 CN2016082123W WO2017193399A1 WO 2017193399 A1 WO2017193399 A1 WO 2017193399A1 CN 2016082123 W CN2016082123 W CN 2016082123W WO 2017193399 A1 WO2017193399 A1 WO 2017193399A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
subframe
terminal device
information
mcs
Prior art date
Application number
PCT/CN2016/082123
Other languages
English (en)
French (fr)
Inventor
郑娟
官磊
闫志宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680085043.1A priority Critical patent/CN109076569B/zh
Priority to EP16901354.7A priority patent/EP3448108B1/en
Priority to BR112018073358-0A priority patent/BR112018073358B1/pt
Priority to PCT/CN2016/082123 priority patent/WO2017193399A1/zh
Priority to JP2018559807A priority patent/JP6867410B2/ja
Publication of WO2017193399A1 publication Critical patent/WO2017193399A1/zh
Priority to US16/188,507 priority patent/US11212823B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and an apparatus for transmitting uplink control information.
  • the Licensed-Assisted Access using Long Term Evolution (LAA-LTE) system can extend the existing LTE service by using the 5 GHz unlicensed spectrum (also called unlicensed spectrum).
  • the licensed spectrum carries part of the data services in the LTE system.
  • Resource sharing on the unlicensed spectrum means that the use of a specific spectrum only specifies the limits of the transmit power and out-of-band leakage to ensure that the basic coexistence requirements are met between multiple devices sharing the band, and the radio is not limited. Technology, operating companies and years of use, but does not guarantee the quality of the business.
  • the LAA-LTE system can be configured by using Carrier Aggregation (CA) technology in the existing LTE (Long-term Evolution) system, and configuring carriers (referred to as licensed carriers) on the carrier-licensed band for communication. Carriers on multiple unlicensed bands (referred to as unlicensed carriers), and communicate with unlicensed carriers with the help of licensed carriers.
  • the LTE device may use the licensed carrier as a primary component carrier (PCC) or a primary cell (PCell) in a CA manner, and use the unlicensed carrier as a secondary component carrier (SCC) or a secondary cell.
  • PCC primary component carrier
  • PCell primary cell
  • SCC secondary component carrier
  • the LTE device can inherit the traditional advantages of the LTE device for wireless communication through the licensed carrier, for example, in terms of mobility, security, quality of service, and simultaneous handling of multi-user scheduling, and can also utilize
  • the license-free carrier achieves the purpose of network capacity offload, thereby reducing the load of the licensed carrier.
  • the LAA system uses unlicensed band resources, it is subject to local regulations for the use of unlicensed bands.
  • LBT Listen before talk
  • TPC Transmit Power Control
  • DFS Dynamic Frequency Selection
  • LBT Listen before talk
  • CCA Clear Channel Assessment
  • the communication device does not need to perform idle evaluation on the channel; if it is detected that the channel is occupied, the communication device cannot currently transmit data on the channel. Whether the channel is idle or not can be realized by signal detection, energy detection, and the like.
  • the access network device may determine the downlink data transmission duration according to the downlink traffic load and/or the uplink traffic load, or other considerations. / or the length of the uplink data transmission.
  • the uplink data transmission in the LTE system is generally based on scheduling.
  • the user equipment in the LTE system is used as an example.
  • the time-frequency resources occupied by the physical uplink shared channel (PUSCH) are used.
  • the (time resource and/or frequency resource) is indicated by the access network device, for example, the base station, and is indicated to the user equipment by, for example, an uplink grant (UL grant) control information.
  • the multi-subframe scheduling signaling can be used to schedule the terminal device to transmit uplink data in multiple uplink subframes, as shown in FIG. 1 .
  • the base station may trigger the same terminal device (for example, user equipment, User Equipment, UE) in the subframe n+4/n+5/n+6/n+ by one or more UL grants carried in the subframe n. 7 Transfer uplink data.
  • the access network device and the terminal device use the unlicensed band resource for data transmission, before the data transmission, generally, the access network device and/or the terminal device are required to pass.
  • a competition mechanism such as LBT determines whether data can be transmitted using unlicensed band resources.
  • the terminal device can feed back channel state information (CSI) or transmit a sounding reference signal (SRS), and the access network device detects the CSI or the SRS. Can determine the access network equipment and the end
  • the channel quality between the end devices can be configured according to the channel quality, and the data transmission mode between the access network device and the terminal device is configured, for example, a suitable Modulation Coding Scheme (MCS) is set, thereby ensuring reliable data. Improve data transfer efficiency as much as possible in the case of transmission.
  • MCS Modulation Coding Scheme
  • HARQ Hybrid Automatic Repeat Request
  • the network access device feeds back an Acknowledgement (ACK) or a Non-Acknowledgement (NACK).
  • the access network may determine whether the downlink data corresponding to the feedback information is correctly received, so that the subsequent data transmission operation may be correctly performed. Since the data transmission of the LTE system on the unlicensed band is opportunistic, in order to ensure data transmission efficiency, it is important to maintain the transmission of CSI, SRS, and HARQ-ACK (including ACK and NACK) on the unlicensed band.
  • the transmission of the CSI, the SRS, and the HARQ-ACK may be carried in a scheduled uplink shared channel (UL-SCH), and at least two uplink subframes may be scheduled due to the uplink scheduling information.
  • the uplink subframe includes the UL-SCH. Therefore, how the terminal device determines the transmission location of the uplink control information of the CSI/SRS/HARQ-ACK is a problem to be considered.
  • the embodiment of the invention provides a method for transmitting uplink control information, which can ensure the reporting opportunity of the uplink control information in a multi-subframe scheduling scenario.
  • a method for transmitting uplink control information including:
  • the terminal device receives the scheduling information and the triggering information from the access network device, where the scheduling information is used to indicate that the terminal device transmits the uplink data scheduled by the scheduling information on the M uplink subframes, where M is not less than 2. a positive integer; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the terminal device determines, in the M uplink subframes, an uplink subframe for carrying the uplink control information, where the determined uplink subframe is another subframe of the M uplink subframes except the first subframe, The first subframe is the first uplink subframe in the timing of the M uplink subframes;
  • the terminal device sends uplink control information on the determined uplink subframe.
  • the uplink control information includes at least one of channel state information, a sounding reference signal, and a hybrid automatic repeat request acknowledgement response.
  • the scheduling information is carried in the same downlink control information as the trigger information.
  • the scheduling information and the trigger information are all carried in the UL grant.
  • a terminal device including:
  • a receiving unit configured to receive scheduling information and trigger information from the access network device, where the scheduling information is used to indicate that the terminal device transmits uplink data scheduled by the scheduling information on the M uplink subframes, where M is not less than 2 a positive integer; the trigger information is used to indicate that the terminal device sends uplink control information;
  • a determining unit configured to determine, in the M uplink subframes, an uplink subframe for carrying the uplink control information; the determined uplink subframe is another subframe of the M uplink subframes except the first subframe The first subframe is the first uplink subframe of the M uplink subframes;
  • a sending unit configured to send uplink control information on the determined uplink subframe.
  • the uplink subframe determined by the determining unit is the last subframe in the timing of the M uplink subframes, or the second last subframe in the timing.
  • the receiving unit receives the scheduling information in the subframe n; the determining unit is configured to determine a last or a second uplink subframe in the uplink burst included in the M uplink subframes, as the bearer An uplink subframe of the uplink control information; the uplink burst refers to a plurality of uplink subframes continuously occupied in time; the uplink burst is followed by a downlink burst including the subframe n and next to the downlink burst including the subframe n hair.
  • the number of OFDM symbols used by the determining unit for the uplink information transmission is not less than a set threshold.
  • the scheduling information is carried in the same downlink control information as the trigger information.
  • the uplink control information includes at least one of channel state information, a sounding reference signal, and a hybrid automatic repeat request acknowledgement response.
  • the embodiment of the present invention may be applied to the system of the unlicensed spectrum.
  • the uplink subframe that carries the uplink control information is a subframe other than the first uplink subframe, and the terminal device may at least transmit the uplink control information.
  • the CCA is executed before the two uplink subframes, and the terminal device can send the uplink control information in the determined uplink subframe as long as one CCA is successful. In this way, the transmission opportunity of the uplink control information can be guaranteed as much as possible, thereby ensuring reliable and effective data transmission on the unlicensed frequency band. lose.
  • a method for transmitting uplink control information including:
  • the terminal device receives the scheduling information and the triggering information from the access network device, where the scheduling information is used to indicate that the terminal device transmits the uplink data scheduled by the scheduling information on the M uplink subframes, where M is a positive integer not less than 2.
  • the trigger information is used to indicate that the terminal device sends uplink control information;
  • the device on the terminal sends uplink control information on the at least two uplink subframes.
  • the uplink control information carried by the at least two uplink subframes is the same.
  • the at least two uplink subframes include the first uplink subframe and the second uplink subframe, and the uplink control information carried by the first uplink subframe is different from the uplink control information carried by the second uplink subframe.
  • a terminal device including:
  • a receiving unit configured to receive scheduling information and trigger information from the access network device, where the scheduling information is used to indicate that the terminal device transmits uplink data scheduled by the scheduling information on the M uplink subframes, where M is not less than 2 a positive integer; the trigger information is used to indicate that the terminal device sends uplink control information;
  • a processing unit configured to determine, in the M uplink subframes, at least two uplink subframes for carrying uplink control information
  • a sending unit configured to send uplink control information on the at least two uplink subframes.
  • the uplink control information carried by the at least two uplink subframes is the same.
  • the at least two uplink subframes include the first uplink subframe and the second uplink subframe, and the uplink control information carried by the first uplink subframe is different from the uplink control information carried by the second uplink subframe.
  • An embodiment of the present invention can be applied to an unlicensed spectrum system. Since the uplink control information is carried in at least two subframes in the M uplink subframes in which the uplink data is transmitted, the uplink control information can be fed back as early as possible; The uplink control information is respectively carried in multiple uplink subframes, which can avoid occupying more uplink resources for uplink data transmission in one scheduled uplink subframe.
  • the present invention provides an embodiment of a method for transmitting uplink information.
  • a method for transmitting uplink control information including:
  • the terminal device receives the scheduling information and the triggering information from the access network device, where the scheduling information is used to indicate that the terminal device transmits the uplink data scheduled by the scheduling information on the M uplink subframes, where the uplink data includes the first uplink data and a second uplink data, where M is a positive integer not less than 2; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the M uplink subframes include a first uplink subframe set and a second uplink subframe set, where the first uplink subframe set and the second uplink subframe set respectively include at least one uplink subframe, the first uplink The subframe in the subframe set is used to transmit the first uplink data; the subframe in the second uplink subframe set is used to transmit the uplink control information and the second uplink data;
  • the terminal device transmits the first uplink data corresponding to the first MCS or the first RB in the first uplink subframe set, and the second uplink data and the uplink corresponding to the second MCS or the second RB in the second uplink subframe set. Control information.
  • a terminal device including:
  • a receiving unit configured to receive scheduling information and trigger information from the access network device, where the scheduling information is used to indicate that the terminal device transmits uplink data scheduled by the scheduling information on the M uplink subframes, where the uplink data includes the first Uplink data and second uplink data; wherein M is a positive integer not less than 2; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the M uplink subframes include a first uplink subframe set and a second uplink subframe set, where the first uplink subframe set and the second uplink subframe set respectively include at least one uplink subframe, the first uplink The subframe in the subframe set is used to transmit the first uplink data; the subframe in the second uplink subframe set is used to transmit the uplink control information and the second uplink data;
  • a determining unit configured to determine a first MCS or a first RB corresponding to the first uplink subframe set, and determine a second MCS or a second RB corresponding to the second uplink set;
  • a sending unit configured to: in the first uplink subframe set, transmit the first uplink data corresponding to the first MCS or the first RB, and transmit the second uplink data corresponding to the second MCS or the second RB in the second uplink subframe set And the uplink control information.
  • a method for transmitting uplink control information including:
  • the access network device sends scheduling information and trigger information to the terminal device, where the scheduling information is used to indicate the
  • the terminal device transmits the scheduled uplink data on the M uplink subframes, where the uplink data includes the first uplink data and the second uplink data, where M is a positive integer not less than 2; the trigger information is used to indicate that the terminal device sends Uplink control information;
  • the M uplink subframes include a first uplink subframe set and a second uplink subframe set, where the first uplink subframe set and the second uplink subframe set respectively include at least one uplink subframe, the first uplink The subframe in the subframe set is used to transmit the first uplink data; the subframe in the second uplink subframe set is used to transmit the uplink control information and the second uplink data;
  • the access network device determines a first MCS or a first RB corresponding to the first uplink subframe set, and determines a second MCS or a second RB corresponding to the second uplink set;
  • the access network device receives the first uplink data corresponding to the first MCS or the first RB on the first uplink subframe set, and transmits the uplink control information corresponding to the second MCS or the second RB in the second uplink subframe set. Second uplink data.
  • an access network device including:
  • a sending unit configured to send scheduling information and trigger information to the terminal device, where the scheduling information is used to indicate that the terminal device transmits uplink data scheduled by the scheduling information on the M uplink subframes, where the uplink data includes the first uplink data and a second uplink data, where M is a positive integer not less than 2; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the M uplink subframes include a first uplink subframe set and a second uplink subframe set, where the first uplink subframe set and the second uplink subframe set respectively include at least one uplink subframe, the first uplink The subframe in the subframe set is used to transmit the first uplink data; the subframe in the second uplink subframe set is used to transmit the uplink control information and the second uplink data;
  • a processing unit configured to determine a first MCS or a first RB corresponding to the first uplink subframe set, and determine a second MCS or a second RB corresponding to the second uplink set;
  • a receiving unit configured to receive first uplink data corresponding to the first MCS or the first RB on the first uplink subframe set, and transmit second uplink data corresponding to the second MCS or the second RB in the second uplink subframe set The uplink control information.
  • different MCSs or RBs may be determined according to actual resource sizes used for transmitting uplink data in different uplink subframes, so that signaling overhead of multi-subframe scheduling is saved.
  • the uplink resource usage efficiency of the uplink subframe that only carries the uplink data can be guaranteed.
  • FIG. 1 is a schematic diagram of multi-subframe scheduling
  • FIG. 2 is a schematic flowchart of an uplink control information transmission method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a multi-subframe scheduling next seed frame relationship
  • FIG. 4 is a schematic diagram of another seed frame relationship in multi-subframe scheduling
  • 5 is a schematic diagram of another seed frame relationship in multi-subframe scheduling
  • FIG. 6 is a schematic diagram of another seed frame relationship in multi-subframe scheduling
  • FIG. 7 is a schematic diagram of another seed frame relationship in multi-subframe scheduling
  • FIG. 8 is a schematic diagram of another seed frame relationship in multi-subframe scheduling
  • FIG. 9 is a schematic diagram of another seed frame relationship in multi-subframe scheduling.
  • FIG. 10 is a schematic structural diagram of an embodiment of a terminal device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another embodiment of a terminal device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart diagram of an uplink control information transmission method according to another embodiment of the present invention.
  • 13 is a schematic diagram of another seed frame relationship in multi-subframe scheduling
  • FIG. 14 is a schematic diagram of a subframe uplink information resource mapping
  • FIG. 15 is a schematic structural diagram of another embodiment of a terminal device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of another embodiment of a terminal device according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic flowchart diagram of an uplink control information transmission method according to another embodiment of the present invention.
  • 18 is a schematic diagram of another seed frame relationship in multi-subframe scheduling
  • 19 is a schematic diagram of another seed frame relationship in multi-subframe scheduling
  • FIG. 20 is a schematic structural diagram of another embodiment of a terminal device according to an embodiment of the present disclosure.
  • 21-23 are schematic structural diagrams of an embodiment of a determining unit in a terminal device according to an embodiment of the present disclosure.
  • FIG. 24 is a schematic structural diagram of another embodiment of a terminal device according to an embodiment of the present disclosure.
  • FIG. 25 is a schematic flowchart of an uplink control information transmission method according to another embodiment of the present invention.
  • FIG. 26 is a schematic structural diagram of another embodiment of a terminal device according to an embodiment of the present disclosure.
  • FIG. 27 is a schematic structural diagram of another embodiment of a terminal device according to an embodiment of the present disclosure.
  • FIG. 28 is a schematic flowchart diagram of an uplink control information transmission method according to another embodiment of the present invention.
  • FIG. 29 is a schematic structural diagram of an embodiment of an access network device according to an embodiment of the present disclosure.
  • FIG. 30 is a schematic structural diagram of an embodiment of an access network device according to an embodiment of the present disclosure.
  • FIG. 31 is a schematic diagram of another seed frame relationship in multi-subframe scheduling.
  • the LTE system is taken as an example in the foregoing background, the person skilled in the art should know that the present invention is not only applicable to the LTE system, but also applicable to other wireless communication systems, such as the Global System for Global System (Global System for Mobile System). Mobile Communication, GSM), Universal Mobile Telecommunications System (UMTS), Code Division Multiple Access (CDMA) system, and new network systems.
  • GSM Global System for Global System
  • UMTS Universal Mobile Telecommunications System
  • CDMA Code Division Multiple Access
  • the LTE system with licensed frequency band assisted access refers to an LTE system that uses licensed and unlicensed frequency bands together by CA or non-CA (for example, DC).
  • the mainstream deployment scenario of the LTE system in the licensed band is the scenario in which the licensed band and the unlicensed band are jointly used by the carrier aggregation CA.
  • the carrier included in the licensed band or the licensed band or the cell working in the licensed band is used as the primary cell.
  • the carrier included in the unlicensed band or the unlicensed band or the cell working on the unlicensed band is used as the secondary cell, wherein the primary cell and the secondary cell may be deployed in a co-site or a non-co-site deployment, and the two cells are ideal. Return path.
  • the present invention is not limited to the scenario of the foregoing CA.
  • Other deployment scenarios include a scenario where there is no ideal backhaul path between two cells (the primary cell and the secondary cell), such as a large backhaul delay, resulting in two There is no quick coordination of information between cells. For example, a DC scene.
  • one or more carriers, licensed bands and unlicensed bands for carrier aggregation may be included in the present invention, and may include one or more carrier and unlicensed bands included in the licensed band.
  • Carrier aggregation is performed on one or more carriers.
  • the cell mentioned may be a cell corresponding to the base station, and the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell, where the small cell may include: a metro cell and a micro cell. (Micro cell), Pico cell, Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • a carrier in an LTE system multiple cells can work at the same frequency at the same time.
  • the concept of a carrier and a cell in an LTE system can be considered to be equivalent.
  • the carrier index of the secondary carrier and the cell identifier (Cell ID) of the secondary cell working in the secondary carrier are carried in the same manner.
  • the carrier is equivalent to the concept of a cell, for example, the UE accessing one carrier and accessing one cell are equivalent.
  • DC and standalone U-LTE can also be based on this understanding.
  • the concept of a cell will be introduced.
  • the network element involved in the embodiment of the present invention includes an access network device and a terminal device that can work on an unlicensed frequency band.
  • the present invention describes various embodiments in connection with a terminal device.
  • the terminal device may also be referred to as a User Equipment (UE), a mobile station, an access terminal, a subscriber unit, a subscriber station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user. Agent or user device, etc.
  • the terminal device may be a STA (STAION) in a Wireless Local Area Networks (WLAN), and may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, or a WLL (Wireless Local Loop). Local loop) station, PDA (Personal Digital Assistant), handheld device with wireless communication function, computing device or other processing device connected to wireless modem, vehicle set Standby, wearable devices, and mobile stations in future 5G networks or terminal devices in future evolved PLMN networks.
  • STAION Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • the terminal device may further include a relay, other devices capable of performing data communication with an access network device (for example, a base station), and the like.
  • an access network device for example, a base station
  • the present invention describes various embodiments in connection with access network devices.
  • the access network device may be a device for communicating with the mobile station, and the access network device may be an AP (ACCESS POINT, Access Point) in WLAN (Wireless Local Area Networks), GSM or CDMA (Code Division Multiple)
  • the BTS Base Transceiver Station
  • NB NodeB, Base Station
  • WCDMA Code Division Multiple Access
  • eNB NodeB
  • eNodeB Long Term Evolution
  • LTE Long Term Evolution
  • Node B evolved base station
  • a relay station or an access point or an in-vehicle device, a wearable device, and an access network device in a future 5G network or an access network device in a future evolved PLMN network.
  • the uplink control information related to the embodiment of the present invention refers to control information that the terminal device feeds back to the access network device.
  • the uplink control information may include: channel state information CSI, sounding reference signal SRS or Hybrid Automatic Repeat Request Acknowledgement (HARQ-ACK), where the HARQ-ACK includes an acknowledgement ACK (Acknowledgement) or a negative acknowledgement NACK. (Negative Acknowledgement) may also include Discontinuous Transmission (DTX).
  • the channel state information CSI may preferably refer to a non-periodic CSI, and of course the periodic CSI is not excluded.
  • the CSI may specifically include at least one of a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), and a Rank Indicator (RI).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • the CSI can be used to reflect the channel quality between the access network device and the terminal device.
  • the access network device can also determine the channel quality between the access network device and the terminal device by detecting the received SRS, and determining the channel quality between the access network device and the terminal device. After the channel quality, the appropriate transmission mode can be set according to the channel quality, and the data transmission efficiency is improved while ensuring reliable data transmission with the terminal device; the access network device can receive the HARQ-ACK fed back by the terminal device.
  • the access network device may perform transmission of new data, if it is determined that the scheduled data is not correctly received, then The access network device can retransmit the data, so as to ensure reliable transmission of the scheduled downlink data.
  • the length of time of one subframe is 1 millisecond (1 millisecond, 1 millisecond).
  • One subframe includes 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols for a normal cyclic prefix case, and 12 OFDM symbols for an extended cyclic prefix case, and certainly does not exclude an LTE system or other that will continue to evolve in the future.
  • the wireless system uses shorter subframes, such as the length of the future subframes that is comparable to the length of time of the current OFDM symbol.
  • one subframe can be understood as one slot representation, or one or more (for example, less than A positive integer number of 7 or a positive integer number less than 6) OFDM symbol representation.
  • a sub-frame can be understood as a basic time unit of scheduling.
  • a meaning of a transmission time interval (TTI) of a subframe having a length of N OFDM symbols and a time length of N OFDM symbols may be consistent.
  • N may be no greater than 14
  • N may be no greater than 12.
  • the length of time for information transmission in one subframe may be equal to the length of time of one subframe, or may be less than the length of time of one subframe.
  • the length of a downlink subframe is 1 ms
  • the length of time for downlink information transmission in the subframe may be equal to 1 ms or less than 1 ms.
  • the length of an uplink subframe is 1 ms
  • the length of time for uplink information transmission in the subframe may be equal to 1 ms or less than 1 ms.
  • the uplink information may also be included in the subframe.
  • the conversion time for uplink and downlink conversion is also included in the subframe.
  • the uplink and downlink transition time can be understood as the transition time between the downlink transmission and the uplink reception.
  • the uplink and downlink transition time can be understood as the transition between the downlink reception and the uplink transmission. time.
  • the time lengths of the downlink subframe and the uplink subframe may be the same or different.
  • the uplink information corresponds to information sent by the terminal device to the access network device.
  • the uplink information includes uplink data, an uplink reference signal, uplink control information, and information carried in a Physical Random Access Channel (PRACH).
  • the uplink data may correspond to data carried in the UL-SCH (also can be understood as uplink service data), and the uplink reference signal Including the uplink demodulation reference signal (DMRS).
  • the uplink control information includes at least one of the following: Channel State Information (CSI), Scheduling Request (SR), HARQ-ACK, and Sounding Reference Signal (SRS).
  • CSI Channel State Information
  • SR Scheduling Request
  • SRS Sounding Reference Signal
  • the SRS can be understood as one type of uplink control information.
  • the uplink control information may be carried in a Physical Uplink Control Channel (PUCCH) or in a Physical Uplink Shared Channel (PUSCH).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the downlink information corresponds to information sent by the access network device, for example, an LTE base station, to the terminal device.
  • the downlink information may include data carried in the downlink physical channel, and/or a downlink reference signal.
  • the downlink physical channel includes at least one of the following: a Physical Downlink Shared Channel (PDSCH), a Physical Broadcast Channel (PBCH), a Physical Multicast Channel (PMCH), and a physical control format.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PMCH Physical Multicast Channel
  • PCFICH Physical Control Format Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • PHICH Physical Hybrid ARQ Indicator Channel
  • EPDCCH Enhanced Physical Down
  • the downlink reference signal includes at least one of the following: a Cell-specific Reference Signal (CRS), and a Multimedia Broadcast Multicast Service Single Frequency Network Reference Signal (MBSFNRS).
  • CRS Cell-specific Reference Signal
  • MSFNRS Multimedia Broadcast Multicast Service Single Frequency Network Reference Signal
  • a user equipment specific reference signal (DM-RS) for demodulating PDSCH bearer data a reference signal (DeModulation Reference Signal, DM-RS) for demodulating EPDCCH or MPDCCH bearer data
  • DM-RS DeModulation Reference Signal
  • PRS Positioning Reference Signal
  • CSI Reference Signal channel status information reference signal
  • Uplink data transmission under LTE systems is generally based on scheduling.
  • the terminal device in the LTE system when the physical uplink shared channel (PUSCH) transmits data, the occupied time-frequency resources (time resources and/or frequency resources) are access network devices, for example. Indicated by the base station.
  • the base station indicates the time-frequency resource occupied by the terminal device when transmitting the uplink data to the terminal device by using an uplink grant (UL grant) control information.
  • the access network device may schedule the terminal device to transmit uplink data in multiple uplink subframes through multi-subframe scheduling signaling.
  • the base station may transmit uplink data on the PUSCH included in the multiple subframes by using one or more UL grant scheduling terminal devices in the subframe n.
  • the base station can trigger the same terminal device (such as User Equipment, User Equipment) in subframe n+4/n+5/n+6/ by one or more UL grants carried in subframe n.
  • n+7 transmits uplink data.
  • the base station may instruct the user equipment to feed back the uplink control information by using the trigger information included in the uplink scheduling signaling (for example, the UL grant).
  • the scheduling signaling can schedule at least two uplink subframes, when the terminal device transmits the uplink control information on the subframe in which the uplink data is transmitted, how to determine the transmission uplink control in the at least two uplink subframes
  • the sub-frame of information is a problem to be solved.
  • the above line control information is an aperiodic CSI as an example.
  • a subframe that carries a non-periodic CSI has a pre-configured time relationship with a subframe that carries trigger information for triggering aperiodic CSI reporting.
  • FDD Frequency Division Duplex
  • the UE receives the aperiodic CSI triggering indication information in the subframe n, and the aperiodic CSI triggering indication information may be carried in a Physical Downlink Control Channel (PDCCH) or an Enhanced Physical Downlink Control Channel (EPDCCH).
  • PDCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • the UE reports the aperiodic CSI in the subframe n+4, and the aperiodic CSI It is carried in the uplink resource indicated by the UL grant.
  • the UE receives the uplink scheduling indication information (bearing in the UL grant) in the subframe n, and the indication information includes the aperiodic CSI trigger information,
  • the UE reports aperiodic CSI in the subframe n+k, where k is a positive integer, and the value of k is related to the uplink-downlink ratio of the TDD system and the value of n.
  • Table 1 the TDD ratio 0 is taken as an example. If the UE receives the aperiodic CSI trigger signaling in the subframe 0, the UE reports the aperiodic CSI in the subframe 4.
  • Table 1 The k value corresponding to TDD ratio 0-6
  • the uplink subframe that reports the CSI is in the pre-configured uplink subframe position, and the pre-configured uplink subframe is the subframe in the sub-frame after n+4 and n+4.
  • the most recent uplink subframe of frame n is the most recent uplink subframe of frame n.
  • the access network device and the terminal device use the unlicensed band resource for data transmission, before the data transmission, generally, the access network device and/or the terminal device are required to pass a competition mechanism such as CCA. To determine if data can be transferred using unlicensed band resources.
  • the UE transmits the aperiodic CSI using the PUSCH resource in the subframe n+4.
  • the UE does not compete for the unlicensed band resource in subframe n+4, according to the prior art, even if the UE still has a scheduled uplink in subsequent subframes (eg, subframe n+5/n+6/n+7) Resources, and can not transmit aperiodic CSI, which will affect the efficiency of downlink data transmission.
  • the present invention provides an embodiment of a method for transmitting uplink control information, which can be applied to U-LTE (LTE over unlicensed spectrum), in order to improve the efficiency of downlink data transmission from the unlicensed band.
  • U-LTE LTE over unlicensed spectrum
  • the U-LTE system refers to an LTE system operating in an unlicensed band, and may include an LTE system (LAA-LTE system) that uses licensed band resources and unlicensed band resources in a CA manner, and may also include
  • the LTE system in which the licensed band resources and the unlicensed band resources are jointly used in Dual Connectivity (DC) mode may also include an LTE system (standalone U-LTE) that is independently deployed in the unlicensed band resources.
  • DC Dual Connectivity
  • an embodiment of a method for transmitting uplink control information provided by the present invention is applicable to an LTE system operating in an unlicensed frequency band, and the method includes the following steps:
  • the terminal device receives the scheduling information and the triggering information from the access network device, where the scheduling information is used to indicate that the terminal device transmits the uplink data scheduled by the scheduling information on the M uplink subframes, where M is not less than a positive integer of 2; the triggering information is used to indicate that the terminal device sends uplink control information;
  • the terminal device determines, in the M uplink subframes, an uplink subframe that is used to carry the uplink control information, where the determined uplink subframe is another subframe of the M uplink subframes except the first subframe.
  • the first subframe is the first uplink subframe in the timing of the M uplink subframes;
  • S203 The terminal device sends uplink control information on the determined uplink subframe.
  • the access network device transmits the downlink information in the unlicensed frequency band, or the terminal device is in the Before using the unlicensed band to transmit uplink information, it is generally necessary to use the Clear Channel Assessment (CCA) to determine whether the unlicensed band resources are available.
  • CCA Clear Channel Assessment
  • the drawings referred to in the embodiments of the present invention are only for explaining the implementation of the CCA, but do not limit the location of the specific CCA. In addition, the drawings referred to in the embodiments of the present invention are only for illustrating the use of the embodiment of the present invention.
  • the uplink subframe position of the uplink control information so the location of the CCA is ignored, but in practice, it may be necessary to perform CCA or not to perform CCA.
  • the scheduling information is used to indicate that the terminal device transmits the uplink data scheduled by the scheduling information on the M uplink subframes, and the scheduling information is used to indicate the terminal.
  • the device transmits uplink data on the M uplink subframes, where the uplink data is scheduled by the scheduling information.
  • the scheduling information is also used to indicate that the terminal device transmits the uplink of the scheduling information scheduling.
  • the data which is specifically transmitted on several uplink subframes and/or specifically on which uplink subframes, may be indicated by using the scheduling information, and other methods may also be used.
  • the scheduling information may be used to indicate at least one of the following: the transmission format corresponding to the scheduled uplink data, for example, when the scheduled uplink data is transmitted on the corresponding time-frequency resource, whether the location on the frequency is Requires frequency hopping, resource allocation corresponding to the scheduled uplink data, power control information corresponding to the scheduled uplink data, or new transmission or retransmission information corresponding to the scheduled uplink data, and corresponding uplink data of the scheduled uplink data.
  • the number of uplink subframes corresponding to the scheduled uplink data of the MCS or the like may correspond to M in the embodiment of the present invention.
  • the scheduling information may be some or some information fields included in the Downlink Control Information (DCI), or may be all information fields included in the DCI, and the scheduling information may be carried in the downlink physical.
  • the control channel Physical Downlink Control Channel, PDCCH
  • the enhanced downlink physical control channel EPDCCH
  • the scheduling information may be user-specific (UE specific) indication information, for example, only valid for a certain terminal device or a certain terminal device group, and the scheduling information may also be cell-specific (Cell).
  • UE specific user-specific
  • Cell-specific Cell
  • the indication information of the specific is valid for all link-mode terminal devices in the cell or all terminal devices (including link states and idle state terminal devices) that use the cell as a serving cell.
  • the scheduling information may be an information field included in the uplink grant (UL grant) control information
  • the scheduling information may include at least one of the following: a carrier indicator, a hop Frequency hopping flag, resource block assignment and hopping resource allocation, Modulation Coding Scheme (MCS), Redundancy version (RV) indication, uplink demodulation Reference Signal (DMRS) corresponding to Cyclic Shift (CS) and Orthogonal Cover Code (OCC), New Data Indicator (NDI).
  • MCS Modulation Coding Scheme
  • RV Redundancy version
  • DMRS uplink demodulation Reference Signal
  • CS Cyclic Shift
  • OCC Orthogonal Cover Code
  • the scheduling information includes an information field included in control information transmitted in DCI format 0 (DCI Format 0) or in DCI format 4 (DCI Format 4), and may further include a DCI format enhanced based on DCI format 0 (in order to For convenience of description, it may be referred to as DCI format 0 enhanced format) or an information field included in control information transmitted based on the DCI format 4 enhanced DCI format (samely, for convenience of description, may be referred to as DCI format 4 enhanced format).
  • a Frequency Division Duplex (FDD) system is used as an example, and DCI Format 0 is used to indicate that a terminal device schedules transmission of DCI format 0 in an uplink subframe.
  • Uplink data the uplink data corresponds to a transmission block (TB) or a corresponding codeword (Codeword); the DCI Format 4 is used to indicate that the terminal device transmits the uplink data information scheduled by the DCI format 4 in an uplink subframe.
  • the uplink data corresponds to two transport blocks TB or two corresponding codewords.
  • the DCI Format 0 enhanced format it can be understood that based on DCI Format 0, the necessary information fields are added to support simultaneous scheduling of multiple uplink UL subframes with one scheduling information.
  • the DCI Format 4 enhanced format It is understood that, based on DCI format 4, the necessary information fields are added to support scheduling multiple uplink subframes simultaneously with one scheduling information, wherein each uplink subframe can support transmission of two transport blocks.
  • the determined uplink subframe includes at most one subframe. Determining at most one uplink subframe for carrying the uplink control information may save resource overhead of uplink control information.
  • the scheduling information is carried in the same downlink control information as the trigger information.
  • the scheduling information and the trigger information are all carried in the UL grant.
  • the scheduling information and the trigger information are carried in the same Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the scheduling information and the trigger information are carried in a UL grant, where the UL grant is used to indicate that the terminal device transmits uplink data and uplink control information, and the trigger information may be an aperiodic CSI included in the UL grant. Request (CSI request).
  • the uplink control information is an SRS
  • the trigger information may be an SRS request (SRS request) included in the UL grant.
  • the uplink control information is a HARQ-ACK
  • the trigger information may be understood as downlink data corresponding to the HARQ-ACK or PDSCH transmission corresponding to the HARQ-ACK.
  • the terminal device may send the HARQ-ACK corresponding to the downlink data in the subframe n+4.
  • the downlink data received by the subframe n or the PDSCH detected in the subframe n may be used.
  • the transmission is understood as "trigger information for instructing the terminal device to transmit uplink control information (HARQ-ACK)".
  • the trigger information may also be understood as a downlink control channel corresponding to the HARQ-ACK, and the downlink control channel is defined as follows: by detecting the downlink control channel, the terminal device may The downlink data is received in the downlink data channel scheduled for the detected downlink control information.
  • the trigger information corresponding to the HARQ-ACK is not excluded from other forms of indication information, and the HARQ timing relationship is not excluded by signaling.
  • the scheduling information is carried in the same downlink subframe as the trigger information.
  • the trigger information for indicating that the terminal device sends the uplink control information is carried in the same subframe as the scheduling information.
  • the subframe including the trigger information is in time series before the subframe including the scheduling information, and of course, the subframe including the trigger information is included in the timing. After the subframe of the degree information and before the first uplink subframe of the M uplink subframes.
  • the uplink control information includes at least one of channel state information, a sounding reference signal, and a hybrid automatic repeat request acknowledgement response.
  • scheduling information such as a UL grant, is sent on the downlink subframe n.
  • the terminal device receives the trigger information in the subframe n, and the trigger information indicates that the terminal device sends the uplink control information, such as the Channel State Information (CSI), and the terminal device can determine the subframe n.
  • the trigger information such as the Channel State Information (CSI)
  • the uplink subframe used for transmitting the CSI may be sent by the terminal device in the uplink subframe of the sub-frame n+5, the sub-frame n+6, and the sub-frame n+7. It is a subframe other than the first uplink subframe in the subframe n+4 to the subframe n+7, that is, the subframe n+5, the subframe n+6, and the subframe n+7 in FIG. Any one of them can be used as an uplink subframe carrying uplink control information.
  • the other subframes except the first subframe are used to carry the uplink control information, and the terminal device may be at least two uplinks before transmitting the uplink control information.
  • the CCA is performed before the frame; or the terminal device can perform CCA before at least one uplink subframe in the uplink subframe including the uplink shared channel (UL-SCH), as long as one CCA succeeds, the terminal device
  • the uplink control information can be sent in the determined uplink subframe. In this way, the transmission opportunity of the uplink control information can be guaranteed as much as possible, thereby ensuring reliable and effective data transmission on the unlicensed frequency band. For example, as shown in FIG.
  • the terminal device may at least be in multiple uplink subframes before determining to compete for the unlicensed frequency band.
  • a CCA is previously performed. For example, even if the terminal device does not compete for the unlicensed band resource in the subframe n+4, the subframe n+5, and the subframe n+6, the CCA can be executed before the subframe n+7 to determine whether The uplink control information may be transmitted in the subframe n+7, so that the transmission of the uplink control information can be ensured as much as possible by increasing the chance that the terminal device competes for the unlicensed spectrum resource before transmitting the uplink control information.
  • the terminal device performs CCA in front of at least one of the multiple uplink subframes before the uplink control information is sent in the determined uplink subframe, where the multiple uplink subframes are included in the M uplink subframes.
  • At least two uplink subframes For example, in the foregoing example, if the terminal device determines that the subframe n+7 is a subframe carrying the uplink control information, the terminal device may be at least one uplink subframe of the subframe n+4, the subframe n+5, and the subframe n+6. Do CCA before the frame.
  • the terminal device may determine an uplink subframe that carries the uplink control information in the M uplink subframes in multiple manners.
  • Implementation 1 The terminal device determines the last subframe in the sequence of the M uplink subframes, or the second-to-last subframe in the sequence, as the uplink subframe that carries the uplink control information.
  • the terminal device receives a UL grant sent by the access network device in the subframe n, and the UL grant indicates that the terminal device is in the subframe n+4, the subframe n+5, and the subframe n+. 6.
  • the subframe n+7 transmits the uplink data, the uplink data is carried in the PUSCH, and further, the aperiodic CSI request (CSI request) included in the UL grant, and the CSI request instructs the terminal device to transmit the aperiodic CSI.
  • the terminal device may transmit the aperiodic CSI in the subframe n+7 or the aperiodic CSI in the subframe n+6. If the terminal device passes the CCA, it may determine that the subframe n+6 or the subframe n +7 Compete to unlicensed band resources.
  • the advantage of the last subframe in the timing used to transmit the uplink control information is that the transmission opportunity of the uplink control information can be guaranteed as much as possible. Because even if the terminal device does not compete for the unlicensed band resource in the first scheduled uplink subframe, it can continue to evaluate whether the unlicensed band resource is available before the subsequent uplink subframe data transmission. In this case, The scheme is configured to configure, as far as possible, the subframes that are reported by the aperiodic CSI to be sent to the subframes that are reported by the aperiodic CSI. The CCA opportunity, in turn, ensures the transmission of aperiodic CSI reports as much as possible.
  • the second-to-last subframe in the timing used to transmit the uplink control information is that, in some cases, the lossless transmission of the uplink control information can be guaranteed.
  • the M uplink subframes may be followed by one downlink subframe.
  • the access network device needs to perform CCA before performing downlink information transmission.
  • CCA is performed during this part of the time, so that the downlink information can be transmitted from the first OFDM symbol of one downlink subframe.
  • the aperiodic CSI may be carried in the penultimate subframe of the M uplink subframes, for example, subframe n+6 in FIG.
  • the scheduling information is used to indicate that the terminal device transmits the uplink data scheduled by the scheduling information on the M uplink subframes
  • the scheduling information may be used to indicate The terminal device transmits uplink information in a length of time for uplink information transmission in the M uplink subframes.
  • the terminal device receives the scheduling information in the subframe n, and the terminal device determines the last or the second-to-last uplink subframe in the uplink burst as the uplink subframe that carries the uplink control information.
  • the uplink burst refers to multiple uplink subframes that are consecutively occupied in time in the M uplink subframes; the uplink bursts after the downlink burst including the subframe n and immediately adjacent to the subframe n Downward burst.
  • the terminal device determines any one of the uplink subframes as the uplink subframe that carries the uplink control information, where the any one uplink subframe is not the M uplink subframes.
  • the first uplink subframe in .
  • the implementation manner is as follows: the terminal device receives the scheduling information in the subframe n; the terminal device determines the last or the second last uplink subframe in the sequence of the first uplink burst, as the bearer The uplink subframe of the uplink control information.
  • the uplink subframe set consisting of the M uplink subframes includes a first uplink burst and a second uplink burst, where the first uplink burst is followed by a downlink burst including subframe n and includes a subframe The downlink burst of n.
  • the terminal device determines any uplink subframe in the first uplink burst timing, which is an uplink subframe that carries uplink control information, where the any one uplink subframe does not include M uplinks.
  • the first uplink subframe in the subframe is an uplink subframe that carries uplink control information, where the any one uplink subframe does not include M uplinks.
  • an uplink burst includes a plurality of uplink subframes that are continuously occupied in time.
  • the multiple uplink subframes may include a time zone for CCA (such as shown in FIG. 5), or may not include a time zone for CCA (for example, as shown in FIG. 6), where In Figure 6, the free time unit can be used for at least other terminal devices for CCA.
  • the downlink burst refers to multiple downlink subframes that are continuously occupied in time.
  • the base station for example, an eNB or a cell (Cell) under the base station does not need to perform data transmission by using the unlicensed spectrum resource through a contention mechanism such as CCA after preempting the unlicensed spectrum resource.
  • the time length of a downlink burst is not greater than the maximum time that the base station (or the cell) can continuously transmit through the contention mechanism on the unlicensed spectrum resource, and the maximum time may also be referred to as a maximum.
  • Maximum Channel Occupied Time MCOT
  • MCOT can be related to geographical regulations. For example, in Japan, MCOT can be equal to 4ms.
  • MCOT can be equal to 8ms, or 10ms, or 13ms.
  • MCOT can also be related to the competition mechanism used by listening devices (such as base stations and user equipment). In general, the shorter the listening time, the shorter the MCOT; the length of the MCOT can also be related to the service level of the data transmission. For example, taking the Internet telephony service as an example, if the service has a higher priority, the general MCOT can be 2 ms. Alternatively, after the base station competes for the unlicensed spectrum resource, it can occupy 2 milliseconds continuously. Taking the data transmission service as an example, if the service priority is low, the base station can generally occupy 8 or 10 milliseconds continuously.
  • the terminal device receives the scheduling information sent by the access network device in the subframe n+3, where the scheduling information indicates that the terminal device is in the subframe n+7, the subframe n+8, and the subframe n+12.
  • Subframe n+13 transmits uplink data.
  • the uplink burst where the subframe n+7 and the subframe n+8 are located is the uplink burst immediately below the downlink burst where the subframe n+3 is located, and the uplink subframe where the subframe n+12 and the subframe n+13 are located
  • the uplink subframe that is in the downlink burst where the subframe n+3 is located is not the next.
  • the uplink subframe carrying the uplink control information may be the subframe n+8.
  • the subframe n+x may be used to indicate a subframe having a specific relative relationship with the subframe n, that is, the subframe n+x indicates that the subframe n is delayed backward by x sub-frames.
  • the advantage of implementing the second method is that the uplink control information is carried in the uplink burst closest to the downlink burst where the subframe n+3 (the subframe carrying the scheduling information) is located, so that the access network device can be obtained as soon as possible.
  • This feedback information because in general, the uplink burst is followed by a downlink burst, so if the access network device receives the uplink control information fed back by the terminal device in subframe n+7 or subframe n+8, According to the uplink control information, an appropriate MCS can be set for the downlink data in the next downlink burst, thereby improving the downlink data transmission efficiency of the unlicensed band resource.
  • Embodiment 3 The terminal device determines, as the uplink subframe that carries the uplink control information, the subframe in which the number of OFDM symbols for the uplink information transmission in the other subframes is not less than the set threshold.
  • the other subframes are subframes other than the first subframe among the M uplink subframes.
  • the set threshold may include not less than the number of OFDM symbols that can carry uplink control information. Taking the aperiodic CSI as an example, the set threshold may include 14 OFDM symbols. The advantage of doing this is that It can ensure the transmission efficiency of the uplink control information, and can also make the transmission control of the uplink control information to the LTE system design criteria, simplifying the system design.
  • the terminal device may use the last uplink subframe in the sequence of the multiple uplink subframes as the uplink subframe that carries the uplink control information. For example, if the last uplink subframe in the M uplink subframes (such as subframe n+7 in FIG.
  • the subframe is an uplink subframe that carries the uplink control information.
  • the terminal device may determine, by using scheduling information or other indication information, the number of OFDM symbols that can be used for uplink information transmission in each uplink subframe that is scheduled, and then determine OFDM for uplink information transmission. The relationship between the number of symbols and the set threshold. If the determined number of OFDM symbols is not less than a set threshold, the corresponding uplink subframe may be used to transmit uplink information. Further, the terminal device may use the determined uplink subframe as an uplink subframe for transmitting uplink control information according to the time sequence (ie, the timing relationship), and the first uplink subframe that satisfies the set threshold relationship is used.
  • the advantage is that the access network device can obtain the channel state information earlier; or the terminal device can also use the determined uplink subframe as the uplink subframe that satisfies the set threshold relationship according to the time sequence.
  • the uplink subframe used for transmitting the uplink control information has the advantage that, as described above, the transmission opportunity of the uplink control information can be guaranteed.
  • the access network device sends the scheduling information through the subframe n, it can be assumed that the terminal device can compete for the unlicensed band resource before the subframe n+4. Therefore, the access network device is for the subframe n+5 ⁇ n.
  • the scheduling information sent by +7, the scheduled uplink data may be transmitted on 14 OFDM symbols, and after receiving the scheduling information or the indication information, the terminal device may determine that the subframe n+5 to the subframe n+7 are used for the uplink information.
  • the number of transmitted OFDM symbols is not less than a set threshold (for example, 14 OFDM symbols). In this case, any one of subframes n+5 to n+7 may be used as an embodiment of the present invention.
  • the access network device when the access network device sends the scheduling information through the subframe n, it can be assumed that the terminal device can compete for the unlicensed band resource before the subframe n+4, and considers the access network after considering the subframe n+7.
  • the device needs to send downlink information, so subframe n+7 is used for uplink information transmission.
  • the number of OFDM symbols is less than 14 OFDM symbols. Therefore, for the scheduling information sent by the access network device for subframe n+5 and subframe n+6, the scheduled uplink data may be transmitted on 14 OFDM symbols, but for the sub- The scheduling information sent by frame n+7, the scheduled uplink data can only be transmitted on a part of OFDM symbols.
  • the terminal device may determine that the number of OFDM symbols used for uplink information transmission in subframe n+5 and subframe n+6 is not less than a set threshold, but subframe n+7 is used for uplink information.
  • the transmitted OFDM symbol is smaller than the set threshold.
  • the terminal device may determine the subframe n+6 as an uplink subframe carrying the uplink control information.
  • the set threshold may be a standard protocol specification or a high layer signaling, and the high layer signaling includes Radio Resource Control (RRC) signaling, and media intervention control (Medium Access). Control, MAC) signaling. It is also not excluded to use physical layer signaling to signal this threshold.
  • RRC Radio Resource Control
  • MAC media intervention control
  • Implementation 4 The terminal device receives the scheduling information in the subframe n, and the terminal device determines that the M subframes are excluded from the first subframe and are in the same maximum channel occupation time as the subframe n ( Any one of the uplink subframes in the Maximum Channel Occupancy Time (MCOT) is an uplink subframe that carries the uplink control information.
  • MCOT Maximum Channel Occupancy Time
  • the terminal device may determine, as the bearer, the last one or the second last uplink subframe of the M uplink subframes except the first subframe that is in the same MCOT as the subframe n An uplink subframe of the uplink control information; or, optionally, the terminal device may determine that the M subframes are other than the first subframe and are in the same MCOT as the subframe n and are used for The number of OFDM symbols transmitted by the uplink information is not less than the last one or the second last uplink subframe in the uplink subframe of the set threshold, and is used as the uplink subframe carrying the uplink control information.
  • the time range of the MCOT includes the subframe start boundary of the subframe n.
  • the subframe start boundary of subframe n+8 ends.
  • the terminal device receives the scheduling information in the subframe n+2, and the scheduling information indicates that the terminal device transmits the uplink data in the subframe n+6, the subframe n+7, the subframe n+8, and the subframe n+9.
  • the terminal device may determine that the subframe n+7 is an uplink subframe that carries uplink control information.
  • the implementation method 4 is adopted because the terminal device can adopt the CCA with high priority in the MCOT, so it is easier to compete for the unlicensed band resources, thereby ensuring the transmission of the uplink control information.
  • a CCA with a higher priority is more likely to compete with an unlicensed band resource than a CCA with a lower priority.
  • a CCA with a higher priority may be a parameter that does not include a random backoff parameter.
  • LBT such as one-shot LBT.
  • Implementation 5 The terminal device receives the scheduling information in the subframe n, and the terminal device determines any one subframe except the first subframe in the M uplink subframes, and does not need the idle channel assessment (CCA). An uplink subframe carrying the uplink control information. Optionally, the determined uplink subframe used to carry the uplink control information is removed from the first subframe except the M subframes, and the first uplink in the uplink of the CCA uplink subframe is not required.
  • CCA idle channel assessment
  • the terminal device receives, in subframe n+3, scheduling information sent by the access network device, where the scheduling information indicates that the terminal device is in subframe n+7, subframe n+8, and subframe n+12. Subframe n+13 transmits uplink data.
  • the time difference between the time end boundaries of the transmission downlink information is less than a specific threshold (for example, the specific threshold may be 16 microseconds), and the terminal device may directly use the CCA without transmitting the scheduled uplink data when the subframe n+12 transmits the scheduled uplink data.
  • the licensed band resource transmits uplink information.
  • the length of time for uplink information transmission without CCA is generally limited, for example, 1 ms. Therefore, when the terminal device transmits the scheduled uplink data in the subframe n+13, the unlicensed band resource needs to be determined by the CCA. it's usable or not.
  • the terminal device may determine that the uplink subframe n+12 is an uplink subframe that carries uplink control information.
  • the advantage of this is that the terminal device does not need to determine whether the uplink information can be transmitted in the subframe n+12 through the CCA.
  • the uplink control information can be directly transmitted through the subframe n+12, thereby ensuring the transmission opportunity of the uplink control information.
  • the CCA corresponding to the uplink subframe n+8 is not included, whether the CCA corresponding to the uplink subframe n+8 exists depends on whether the terminal device can compete in the uplink subframe n+7.
  • the CCA corresponding to the uplink subframe n+8 does not exist; conversely, if the terminal device does not compete in the subframe n+8 Unlicensed band resources, then the CCA corresponding to the uplink subframe n+8 exists. That is to say, the CCA corresponding to the uplink subframe n+8 does not exist at a certain probability.
  • the CCA corresponding to the uplink subframe used for carrying the uplink control information is determined to be absent. Therefore, in the implementation manner 5, the uplink subframe n+8 is not applicable to the bearer uplink control.
  • the uplink subframe of the message indicates that the terminal device needs to determine whether the unlicensed band resource is available through the CCA before transmitting the uplink information in the uplink subframe.
  • the CCA of the corresponding uplink subframe does not exist, and the terminal device does not need to determine that the unlicensed band resource is available through the CCA before transmitting the uplink information in the uplink subframe, and can directly use the unlicensed band resource.
  • implementation manner 1 or implementation manner 2 or implementation manner 4 or implementation manner 5 may be used in combination with implementation manner 3.
  • the uplink control may be carried.
  • the uplink subframe of the message when the number of OFDM symbols used for uplink information transmission is not less than a set threshold, the last subframe or the second-to-last uplink subframe in the uplink burst may be used as an uplink subframe that carries the uplink control information.
  • any subframe other than the first subframe is removed, and the number of OFDM symbols used for uplink information transmission is not less than
  • the threshold can be used as an uplink subframe that carries the uplink control information.
  • the threshold may be used as an uplink subframe that carries the uplink control information.
  • the hidden node includes a terminal device that needs to perform CCA before transmitting uplink information to the access network device, and the data that the terminal device cannot detect in the process of performing CCA (the node is transmitting data) is sent to the access network device. If the uplink information sent by the terminal device is received, if the receiving interference is caused, the node can be regarded as a hidden node of the terminal device.
  • the access network device may send indication information, where the indication information indicates an uplink subframe for carrying uplink control information, where the uplink subframe is other than the first subframe of the M uplink subframes. Other sub-frames.
  • the uplink subframe has the features defined by the embodiments of the terminal device described above.
  • the present invention provides a terminal device, which can be applied to a multi-subframe scheduling scenario in a U-LTE system, and the terminal device can perform various steps in the foregoing method embodiments.
  • the terminal device includes:
  • the receiving unit 1001 is configured to receive scheduling information and trigger information from the access network device, where the scheduling information is used to indicate that the terminal device transmits the uplink data scheduled by the scheduling information on the M uplink subframes, where M is not less than a positive integer of 2; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the determining unit 1002 is configured to determine, in the M uplink subframes, an uplink subframe that is used to carry the uplink control information, where the determined uplink subframe is other than the first subframe in the M uplink subframes. a frame, where the first subframe is the first uplink subframe of the M uplink subframes;
  • the sending unit 1003 is configured to send uplink control information on the determined uplink subframe.
  • the uplink subframe determined by the determining unit is the last subframe in the timing of the M uplink subframes, or the second to last subframe in the sequence.
  • the receiving unit receives the scheduling information in the subframe n; the determining unit is configured to determine a last or a second uplink subframe in the uplink burst included in the M uplink subframes, as a bearer.
  • the number of OFDM symbols used by the determining unit for the uplink information transmission is not less than a set threshold.
  • the scheduling information is carried in the same downlink control information as the trigger information.
  • the uplink control information includes at least one of channel state information, a sounding reference signal, and a hybrid automatic repeat request acknowledgement response.
  • the scheduling information For the definition and function of the scheduling information, the triggering information, the uplink control information, and the M uplink subframes involved in the embodiment of the terminal device, refer to the related description of the foregoing method embodiments.
  • the scheduling information For specific implementation details of determining an uplink subframe for carrying the uplink control information in the M uplink subframes involved in the embodiment of the terminal device, reference may be made to the related description of the foregoing method embodiments.
  • the terminal device includes:
  • a receiver 1101 configured to receive scheduling information and trigger information from an access network device, where the scheduling The information is used to indicate that the terminal device transmits the uplink data scheduled by the scheduling information on the M uplink subframes, where M is a positive integer not less than 2; the trigger information is used to indicate that the terminal device sends the uplink control information;
  • the processor 1102 is configured to determine, in the M uplink subframes, an uplink subframe that is used to carry the uplink control information, where the determined uplink subframe is other than the first subframe in the M uplink subframes. a frame, where the first subframe is the first uplink subframe of the M uplink subframes;
  • the transmitter 1103 is configured to send uplink control information on the determined uplink subframe.
  • the uplink subframe determined by the determining unit is the last subframe in the timing of the M uplink subframes, or the second to last subframe in the sequence.
  • the receiving unit receives the scheduling information in the subframe n; the determining unit is configured to determine a last or a second uplink subframe in the uplink burst included in the M uplink subframes, as a bearer.
  • the number of OFDM symbols used by the determining unit for the uplink information transmission is not less than a set threshold.
  • the scheduling information is carried in the same downlink control information as the trigger information.
  • the uplink control information includes at least one of channel state information, a sounding reference signal, and a hybrid automatic repeat request acknowledgement response.
  • the scheduling information For the definition and function of the scheduling information, the triggering information, the uplink control information, and the M uplink subframes involved in the embodiment of the terminal device, refer to the related description of the foregoing method embodiments.
  • the scheduling information For specific implementation details of determining an uplink subframe for carrying the uplink control information in the M uplink subframes involved in the embodiment of the terminal device, reference may be made to the related description of the foregoing method embodiments.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the present invention provides an embodiment of a method for transmitting uplink control information, which can be applied to U-LTE (LTE over unlicensed spectrum), in order to improve the efficiency of downlink data transmission from the unlicensed band.
  • U-LTE LTE over unlicensed spectrum
  • the U-LTE system refers to an LTE system operating in an unlicensed band, and may include an LTE system (LAA-LTE system) that uses a licensed band resource and an unlicensed band resource in a CA mode. It may also include an LTE system that uses licensed band resources and unlicensed band resources in a dual connectivity (Dual Connectivity, DC) manner, or may include an LTE system (standalone U-LTE) that is independently deployed in an unlicensed band resource.
  • LAA-LTE system LTE system
  • DC Dual Connectivity
  • an embodiment of a method for transmitting uplink control information provided by the present invention is applicable to an LTE system operating in an unlicensed frequency band, and the method includes the following steps:
  • the terminal device receives the scheduling information and the trigger information from the access network device, where the scheduling information is used to indicate that the terminal device transmits the uplink data scheduled by the scheduling information on the M uplink subframes, where M is not less than 2. a positive integer; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the terminal device determines, in the M uplink subframes, that at least two uplink subframes are used to carry uplink control information.
  • S1203 The device on the terminal sends uplink control information on the at least two uplink subframes.
  • the scheduling information For the definition and function of the scheduling information, the triggering information, and the uplink control information in this embodiment, reference may be made to the related description in the first embodiment, and details are not described herein.
  • the scheduling information is carried in the same downlink control information as the trigger information.
  • the scheduling information and the trigger information are all carried in the UL grant.
  • the scheduling information is carried in the same downlink subframe as the trigger information.
  • the trigger information for indicating that the terminal device sends the uplink control information is carried in the same subframe as the scheduling information.
  • the subframe including the trigger information is temporally before the subframe including the scheduling information, and of course, the subframe including the trigger information is not temporally after the subframe including the scheduling information and Before the first uplink subframe in the M uplink subframes.
  • the uplink control information is used to carry the uplink control information as early as possible in the M uplink subframes in which the uplink data is transmitted, and/or the uplink control information is respectively carried in the uplink control information.
  • the uplink control information is respectively carried in the uplink control information.
  • the terminal device receives the uplink scheduling grant UL grant information sent by the access network device in the subframe n, and the information is scheduled by the terminal device in the subframe n+4, the subframe n+5, the subframe n+6, and the subframe n. +7 sends the scheduled uplink data, which is carried in the PUSCH. Then any two subframes of subframe n+4, subframe n+5, subframe n+6, and subframe n+7 can be used to transmit uplink control information.
  • the terminal device may further determine whether the content of the unlicensed band resource is contending in the subframe n+5, thereby determining whether the uplink control information can be transmitted in the subframe n+5; on the other hand, if the terminal device competes in the subframe n+4 The unlicensed band resource, then the terminal device can transmit uplink control information in subframe n+4, and the terminal device continues to transmit uplink control information in subframe n+5.
  • the terminal device before the uplink information is sent by any one of the M uplink subframes, the terminal device needs to determine whether the UE can compete for the unlicensed band resource by using the CCA; or, the terminal device Before the uplink information is transmitted in the first uplink subframe of the M uplink subframes, it is determined by the CCA whether the content of the unlicensed frequency band can be contend, except for the first uplink subframe in the M uplink subframes. Whether the other uplink subframes need to be determined by the CCA to compete for the unlicensed band resources depends on whether the CCA corresponding to the uplink subframes before the other uplink subframes competes for the unlicensed band resources. For example, with FIG.
  • whether the terminal device needs to determine that the unlicensed band resource is available through the CCA before the subframe n+5 transmits the uplink information depending on whether the terminal device competes for the unlicensed band resource in the subframe n+4. If the terminal device competes for the unlicensed band resource before the subframe n+4 transmits the uplink information (it may be understood that the terminal device contends to the unlicensed band resource in the subframe n+4), the terminal device transmits in the subframe n+5.
  • the terminal device Before the uplink information, it is not necessary to compete for the unlicensed band resource through the CCA; otherwise, if the terminal device transmits the uplink information in the subframe n+4, it does not compete for the unlicensed band resource (it can be understood that the terminal device is in the subframe n+) 5 There is no competition to the unlicensed band resource), then the terminal device needs to compete for the unlicensed band resource through the CCA before the subframe n+5 transmits the uplink information. Similarly, whether the terminal device needs to determine the availability of the unlicensed band resource through the CCA before the subframe n+6 transmits the uplink information, may depend on whether the terminal device competes in the subframe n+4 and/or the subframe n+5. Licensed band resources.
  • the terminal device may determine, in the M uplink subframes, at least two uplink subframes that carry the uplink control information in multiple manners.
  • Embodiment 1 The at least two uplink subframes include at least one of a last subframe in the timing of the M uplink subframes and a second last subframe in the timing.
  • Embodiment 2 the terminal device receives the scheduling information in the subframe n; the at least two uplink subframes include at least one of a last uplink subframe and a second last uplink subframe in the uplink burst;
  • the uplink burst refers to multiple consecutively occupied times included in the M uplink subframes. Row subframe; the uplink burst follows the downlink burst including subframe n and immediately following the downlink burst including subframe n.
  • the terminal device determines any two uplink subframes in the uplink burst, and is an uplink subframe included in the at least two uplink subframes, where any two of the uplink subframes One is not the first uplink subframe of the M uplink subframes.
  • Embodiment 3 The at least two uplink subframes include a first subframe in the timing of the M uplink subframes.
  • Implementation 4 The number of OFDM symbols used for uplink information transmission by at least two uplink subframes is not less than a set threshold.
  • Implementation 5 The terminal device receives the scheduling information in the subframe n, where the at least two uplink subframes include M uplink subframes, and the same maximum channel occupation time (Maximum Channel Occupancy Time, Any one of the uplink subframes within MCOT).
  • the at least two uplink subframes include the last one or the second last uplink subframe in the same MCOT of the M subframes, and the uplink subframe that carries the uplink control information.
  • the terminal device may determine that the number of OFDM symbols in the M uplink subframes that are in the same MCOT as the subframe n and is used for uplink information transmission is not less than a preset threshold.
  • the last or the second-to-last uplink subframe in the sequence is used as the uplink subframe carrying the uplink control information.
  • Implementation 6 The terminal device receives the scheduling information in a subframe n, where the at least two uplink subframes include any one of the M uplink subframes that does not require a clear channel assessment (CCA).
  • the at least two uplink subframes include: the M uplink subframes do not need the first uplink subframe in the uplink subframe of the CCA; optionally, the at least two uplink subframes include,
  • the CCA is not required in the M uplink subframes, and the number of OFDM symbols used for uplink information transmission is not less than the first uplink subframe in time series in the uplink subframe in which the threshold is set.
  • the method for determining the at least two uplink subframes in this embodiment is similar to the method for determining the uplink subframe in which the uplink control information is carried in the first embodiment except the implementation manner 4.
  • the implementation manner 4 For the specific details of the foregoing implementation manners 1 to 3, and the implementation manners 5 to 6, the reference may be made to the related description in the first embodiment, and details are not described herein.
  • the uplink control information carried by each of the at least two uplink subframes may be the same content.
  • the at least two uplink subframes include a first uplink subframe and a second uplink subframe, and the uplink control information carried by the first uplink subframe is different from the uplink control information carried by the second subframe.
  • the uplink control information carried by the first uplink subframe does not overlap with the content of the uplink control information carried by the second subframe, or the content of the control information carried by the first uplink subframe includes the second subframe bearer. The content of the upstream control information.
  • the following line control information is an aperiodic CSI as an example, and illustrates an embodiment of the present invention.
  • the transmission criteria of the CSI including periodic and aperiodic
  • the scheduled uplink resource which can be understood as CSI bearer in the PUSCH
  • the FDD system is taken as an example for illustration. It should be noted that, in the CSI transmission, the difference between the TDD system and the FDD system is mainly that not all subframes in the TDD system are uplink subframes for transmitting uplink information, which may result in different time positions of CSI transmission.
  • the CSI includes the periodic CSI and the aperiodic CSI.
  • the periodic CSI can be carried in the physical uplink control channel (PUCCH) or in the PUSCH.
  • the aperiodic CSI is carried in the PUSCH.
  • the aperiodic CSI triggers the indication information to trigger. In the embodiment of the present invention, the case where the CSI is carried on the PUSCH is mainly considered.
  • the terminal device transmits data only to the access network device through the CC1, and may include sending data to the access network device through the CC1, and may also include receiving data sent by the access network device through the CC1. If the terminal device receives the uplink scheduling information (UL grant) sent by the access network device in the subframe k-4, the terminal device may transmit the scheduled uplink data in the subframe k.
  • UL grant uplink scheduling information
  • the terminal device needs to feed back CSI information in the subframe k
  • the UL grant information received in the subframe k-4 includes CSI trigger information (correspondingly, the bit corresponding to the CSI request word field may be set to 1)
  • the UE may use the scheduled uplink resource in the subframe k to transmit the CSI.
  • the terminal device can transmit data to the access network device through multiple carriers.
  • the terminal device can simultaneously transmit data with the access network device through CC1, CC2, CC3, and CC4.
  • the terminal device feeds back CSI information of the corresponding carrier or serving cell according to a preset rule. If the terminal device receives the uplink scheduling information (UL grant) sent by the access network device in the subframe k-4 of the CC1, the terminal device may transmit the uplink data in the subframe k of the CC1.
  • UL grant uplink scheduling information
  • the terminal device is scheduled in the subframe k according to a preset rule (for example, as described in Table 1 below).
  • the CSI of the serving cell corresponding to the CSI request indication information is transmitted in the uplink resource.
  • the CSI request field may include 2 bits, and different combinations of 2 bits may indicate four different states. For example, when the bit included in the CSI request field is set to the state "11", the terminal is combined with the above example.
  • the device may transmit the CSI corresponding to each serving cell included in the second group of serving cells in the subframe k of the CC1.
  • a first set of serving cells includes CC1 and CC2
  • a second set of serving cells includes CC3 and CC4, and when the CSI request field includes
  • the terminal device transmits the CSI corresponding to CC3 and CC4 in the subframe k.
  • the terminal device determines whether the PUCCH and the PUSCH are transmitted simultaneously (that is, whether the terminal device can transmit the uplink control information by using the PUCCH and the uplink information can be transmitted by using the PUSCH), If the terminal device needs to simultaneously transmit the periodic CSI and the UL data carried in the PUSCH, the terminal device needs to transmit the periodic CSI by using the scheduled uplink resource (for example, the PUSCH resource carrying the UL data).
  • the feedback period of each downlink carrier or CSI corresponding to a serving cell is independently configured.
  • the terminal device transmits CSI on the determined carrier or serving cell according to a preset rule, for example, the terminal device selects according to a preset rule.
  • the terminal device may determine which CSIs of the serving cells are reported by using the correspondence between the bit status and the serving cell included in the CSI request field (CSI request field).
  • the device may also determine which CSIs corresponding to the CSI process are reported by the correspondence between the bit status of the CSI process field and the CSI process (es), or determine the CSI for the specific serving cell.
  • the CSI corresponding to the CSI process of the cell; or the terminal device may also pass the CSI process (es) and/or ⁇ CSI process(es), CSI subframe set ⁇ -pair(s) of the CSI request field included in the CSI request field.
  • the correspondence between the CSI processes (es) and/or ⁇ CSI process(es), CSI subframe set ⁇ -pair(s) is determined.
  • the resource multiplexing diagram is as shown in FIG. 10, where the UCI may include HARQ-ACK and CSI, where the HARQ-ACK includes an ACK or NACK, CSI includes CQI, PMI, RI.
  • a PRB pair is taken as an example for description.
  • a PRB pair is a time-frequency resource composed of resource elements (Resource Element, RE) included in 12 subcarriers in time and frequency.
  • RE resource elements
  • OFDMMA Orthogonal Frequency Division Multiplexing Access
  • time-frequency resources are divided into OFDM symbols in a time domain dimension and OFDM subcarriers in a frequency domain dimension.
  • the smallest resource granularity is called an RE, which means an OFDM symbol in the time domain and a time-frequency grid point of an OFDM subcarrier on the frequency domain.
  • the number of resource elements occupied by the CSI in the scheduled uplink resource may be indicated by an offset configured by the upper layer and the number of time-frequency resources allocated to the uplink data transmission.
  • the number of information bits of the uplink data transmission and the number of information bits that the CSI needs to transmit are determined.
  • the offset indication of the high-level configuration, for the RI may include or The terminal device can determine through the index Value, which in turn determines the number of time-frequency resources that the RI needs to occupy; for CQI (including PMI), it can include or The terminal device can determine by using the index indication The value, in turn, determines the number of time-frequency resources that need to be used to transmit CQI (including PMI). Combined with the location of the scheduled uplink resources by the CSI in FIG. 14, it can be determined on which REs the CSI should be transmitted.
  • the CSI When the CSI is carried in the scheduled uplink resource, the CSI is in the rate matching manner, and the uplink service data transmitted by the terminal device is used for resource multiplexing in the scheduled uplink resource, so the uplink data for resource multiplexing with the CSI is implemented.
  • MCS Modulation Coding Scheme
  • the uplink control information carried by each of the at least two uplink subframes may be the same content.
  • the terminal device determines that the subframe n+6 and the subframe n+7 are used for transmitting CSI.
  • the uplink control information carried on the two subframes is the same. For example, for multi-carrier, in combination with Table 1, if the terminal device determines that the CSI corresponding to the second group of serving cells needs to be fed back according to the indication of the CSI request field, then in the subframe n+6 and the subframe n+7, the terminal device is The CSI corresponding to the second group of serving cells is fed back.
  • a UL grant included in one downlink subframe may schedule a terminal device to transmit scheduled uplink data on at least two uplink subframes, and some information fields included in the UL grant are saved in order to save signaling overhead.
  • the information may be multiplexed, that is, an information field is used, for example, a resource assignment included in the UL grant, a cyclic shift corresponding to the demodulation reference signal DMRS, and an MCS. , corresponding to different scheduled uplink subframes may be the same.
  • the resources for uplink data transmission in the uplink subframe including CSI are less than the uplink subframes not including CSI.
  • the MCS needs to set the uplink resource actually used for the uplink data transmission in the uplink subframe including the CSI, so that those uplink subframes that do not include the CSI transmission are actually used for the uplink data transmission.
  • CSI may be included in a plurality of scheduled uplink subframes.
  • This problem is also valid for the uplink control information SRS/HARQ-ACK, that is, in the uplink subframes that are scheduled, the uplink subframe including the SRS is used for the uplink time-frequency resource of the uplink data transmission and the uplink subframe that does not include the SRS.
  • the uplink time-frequency resources used for the uplink data transmission are different, and the uplink time-frequency resources for the uplink data transmission of the uplink subframe of the HARQ-ACK and the uplink time-frequency resources for the uplink data transmission of the uplink subframe not including the HARQ-ACK are used. different.
  • the at least two uplink subframes include a first uplink subframe and a second uplink subframe, and the uplink control information carried by the first uplink subframe is different from the uplink control information carried by the second subframe, and The uplink control information carried by the first uplink subframe does not coincide with the uplink control information carried by the second subframe.
  • the advantage of adopting this method is that not only can the control signaling overhead be small, but also The same CSI information is allocated in different uplink subframes. Therefore, the resources reserved for CSI transmission in the uplink subframe including CSI transmission can be relatively small, and the uplink resource waste can be further reduced.
  • the CSI of the transmission includes at least one of the following: the CSI content of the transmission is different, the serving cell corresponding to the transmitted CSI is different, the CSI process corresponding to the transmitted CSI is different, and the subframe set corresponding to the transmitted CSI is different.
  • the transmitted CSI content includes at least one of the following: CQI, PMI, RI.
  • the CSI information that is transmitted does not overlap, and the uplink control information carried in the first uplink subframe is completely different from the uplink control information carried in the second uplink subframe.
  • the terminal device determines to transmit the CSI in the subframe n+6 and the subframe n+7.
  • the following specific implementation manners are used. It should be noted that the embodiments of the present invention are not limited thereto.
  • the embodiments of the present invention are not limited thereto.
  • the terminal device can transmit the following one in the subframe n+6 and the subframe n+7: RI, CQI/PMI, and the terminal device is
  • the CSI information transmitted by subframe n+6 and subframe n+7 is different.
  • the CQI/PMI is transmitted in the subframe n+6, and the RI is transmitted in the subframe n+7; or the RI is transmitted in the subframe n+6 in consideration of the priority of the uplink control information included in the CSI, in the subframe n+ 7 Transfer CQI.
  • the terminal device In the case of multi-carrier, that is, the terminal device is configured (or activated) with multiple carriers, for example, the terminal device can simultaneously transmit data with the access network device through CC1/CC2/CC3/CC4, and through high-level configuration,
  • the first set of serving cells includes CC1 and CC2, and the second set of serving cells includes CC3 and CC4.
  • Table 1 when the bit included in the CSI request field is set to the state "11" The terminal device may determine that the CSI corresponding to the second group of serving cells needs to be fed back.
  • the terminal device may feed back CSI corresponding to CC3 in the first uplink subframe (for example, subframe n+6), and feed back CSI corresponding to CC4 in the second uplink subframe (for example, subframe n+7); or The terminal device may feed back CSI corresponding to CC3 and CC4 in the first uplink subframe, and feed back CSI corresponding to CC1 and CC2 in the second uplink subframe; or, the terminal device may also use the RI corresponding to CC3 and CC4 in the first uplink.
  • the CQI/PMI corresponding to CC3 and CC4 is fed back in the second uplink subframe; or, the terminal device may feed back the RI corresponding to CC1-CC4 in the first uplink subframe, and the CQI/PMI corresponding to CC1-CC4 is The second uplink subframe feedback.
  • the terminal device may separately carry the CSIs corresponding to the CSI processes that are triggered to be reported in different CSI processes.
  • the terminal device may determine that the CSI process corresponding to the different CSI request field is reported according to the corresponding relationship specified in Table 3. Assuming that the CSI request field is '100', the terminal device determines that the CSI corresponding to the third group of CSI processes (es) needs to be reported according to the correspondence relationship of Table 3.
  • the terminal device may process each CSI process included in the third group of CSI processes or according to other criteria (for example, the third group)
  • the CSI process performs grouping, where a group includes at least two CSI processes, which are carried in different uplink subframes, and another method is to transmit the set of RIs corresponding to each CSI process in the first uplink subframe.
  • the CQI/PMI corresponding to each CSI process is transmitted in the second uplink subframe; the other method is to first transmit the CSI corresponding to the third group of CSI processes in one uplink subframe, and then another The uplink subframe transmits the CSI corresponding to the CSI process of the other group according to a preset rule.
  • the CSI corresponding to the fourth group of CSI processes may be transmitted in another uplink subframe.
  • the at least two uplink subframes include a first uplink subframe and a second uplink subframe, and the uplink control information carried by the first uplink subframe is different from the uplink control information carried by the second uplink subframe.
  • the content of the control information carried by the first uplink subframe includes the content of the uplink control information carried by the second uplink subframe.
  • the content of the control information carried by the first uplink subframe includes the content of the uplink control information carried by the second subframe, where the CSI information carried by the second uplink subframe is the first A true subset of CSI information carried by the uplink subframe.
  • the terminal device determines to transmit the CSI in the subframe n+6 and the subframe n+7.
  • the following specific implementation manners are used. It should be noted that the embodiments of the present invention are not limited thereto.
  • the terminal device can transmit the RI in one subframe (corresponding to the second uplink subframe) of the subframe n+6 and the subframe n+7.
  • the RI and CQI/PMI are transmitted in another subframe (corresponding to the first uplink subframe).
  • the terminal device In the case of multi-carrier, that is, the terminal device is configured (or activated) with multiple carriers, for example, the terminal device can simultaneously transmit data with the access network device through CC1/CC2/CC3/CC4, and through high-level configuration,
  • the first set of serving cells includes CC1 and CC2, and the second set of serving cells includes CC3 and CC4.
  • Table 1 when the bit included in the CSI request field is set to the state "11" The terminal device may determine that the CSI corresponding to the second group of serving cells needs to be fed back.
  • the terminal device may feed back CSI corresponding to CC3 and CC4 in one of the determined uplink subframes (corresponding to the first uplink subframe), and in another uplink subframe (corresponding to The second uplink subframe may be used to feed back the CSI corresponding to CC3 or CC4.
  • the terminal device may also feed back part of the CSI information corresponding to CC3 and CC4 in one of the determined multiple subframes (corresponding to the second uplink subframe).
  • the terminal device may be in one of the determined multiple subframes (corresponding to the second uplink subframe)
  • the frame feeds back all CSI information corresponding to CC3 and CC4, and feeds back all CSI information corresponding to CC1-CC4 in another uplink subframe (corresponding to the first uplink subframe).
  • the terminal device may carry the CSI information corresponding to a part of the CSI processes in the determined CSI process according to the indication information (for example, the CSI process indicated by the CSI request field field). In one of the uplink subframes, all that will be determined The CSI information corresponding to the CSI process is carried in another uplink subframe. Or, based on Table 3, if the CSI request field is set to '110', the terminal device may feed back the CSI corresponding to the fifth group CSI process in one of the uplink subframes, and feed back the fifth group and other groups of CSIs in another uplink subframe.
  • the CSI corresponding to the process wherein the CSI request field corresponding to the other group CSI process has an offset relationship with the CSI request field carried in the UL grant, and the offset relationship is implicitly indicated, for example, a pre-configured (such as a standard protocol specification).
  • the explicit signaling indication may be indicated by the explicit signaling, and the explicit signaling indication may be the high layer signaling or the physical layer signaling, which is not specifically limited in the embodiment of the present invention.
  • the advantage of adopting this embodiment is that the waste of resources is minimized, and if the terminal device does not compete for the unlicensed band resources in the uplink subframe corresponding to the transmission CSI due to the CCA, the terminal device does not lose too much CSI. information.
  • more CSI information may be transmitted in the uplink subframe that is later in time.
  • the at least two uplink subframes include a first uplink subframe and a second uplink subframe, and the uplink control information carried by the first uplink subframe is different from the uplink control information carried by the second uplink subframe.
  • the part of the content of the control information carried by the first uplink subframe is the same as the content of the uplink control information carried by the second uplink subframe.
  • the same part of the content may be uplink control information with higher priority, such as RI.
  • determining which subframes are used for transmitting CSI information, and which content is included in the determined CSI transmitted in each subframe may be pre-configured, or may be signaling, in the embodiment of the present invention. No specific restrictions are made.
  • the uplink control information carried by each of the at least two uplink subframes is the same, and can be understood as the time position occupied by the SRSs of the at least two uplink subframes (which can be represented by an OFDM symbol index).
  • the frequency resource location and the adopted sequence are the same; the at least two uplink subframes include the first uplink subframe and the second uplink subframe, and the uplink control information carried by the first uplink subframe and the second uplink subframe is different.
  • the SRS transmitted by the terminal device in the first uplink subframe and the second uplink subframe includes at least one of the following differences: a time position occupied by the SRS (which can be represented by an OFDM symbol index), and a frequency resource occupied by the transmission SRS.
  • the sequence, the sequence used by the SRS is also understood to be: the frequency resource occupied by the terminal device in the first uplink subframe transmission SRS includes the frequency resource occupied by the terminal device in the second uplink subframe transmission SRS.
  • the above described embodiment is equally applicable to a hybrid automatic repeat request acknowledgement (HARQ-ACK) when the uplink control information is a hybrid automatic repeat request acknowledgement response.
  • the HARQ-ACK fed back by the terminal device may be for multiple uplink subframes and multiple serving cells.
  • the uplink control information carried by each of the at least two uplink subframes is the same as the HARQ-ACK carried by each uplink subframe included in the at least two uplink subframes.
  • the information is the same; the at least two uplink subframes include the first uplink subframe and the second uplink subframe, and the uplink control information carried by the first uplink subframe and the second uplink subframe is different, which can be understood as the terminal device.
  • the HARQ-ACK transmitted in the first uplink subframe and the second uplink subframe includes at least one of the following differences: the uplink subframe corresponding to the HARQ-ACK is different, and the serving cell corresponding to the HARQ-ACK is different; the at least two uplink subframes
  • the frame includes the first uplink subframe and the second uplink subframe, and the uplink control information carried by the first uplink subframe and the second uplink subframe is different, and can also be understood as: the terminal device transmits in the first uplink subframe.
  • the downlink subframe corresponding to the HARQ-ACK includes a downlink subframe corresponding to the HARQ-ACK transmitted by the terminal device in the second uplink subframe, and/or a HARQ-ACK corresponding to the terminal device transmitted in the first uplink subframe.
  • the access network device may send the indication information, where the indication information indicates an uplink subframe for carrying uplink control information, where the uplink subframe is at least two uplink subframes of the M uplink subframes.
  • the uplink subframe has the features defined in the foregoing implementation manners one to six.
  • the access network device may further send the indication information to the terminal device, where the indication information is used to indicate which uplink control information is specifically carried by the uplink subframe that carries the uplink control information.
  • the present invention provides a terminal device, which can be applied to a multi-subframe scheduling scenario in a U-LTE system, and the terminal device can perform various steps in the foregoing method embodiments.
  • the present invention provides a terminal device, which can be applied to a multi-subframe scheduling scenario in a U-LTE system, and the terminal device can perform various steps in the foregoing method embodiments.
  • the terminal device includes:
  • the receiving unit 1501 is configured to receive scheduling information and trigger information from the access network device, where the scheduling information is used to indicate that the terminal device transmits the uplink scheduled by the scheduling information on the M uplink subframes. Data, where M is a positive integer not less than 2; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the processing unit 1502 is configured to determine, in the M uplink subframes, at least two uplink subframes for carrying uplink control information;
  • the sending unit 1503 is configured to send uplink control information on the at least two uplink subframes.
  • the at least two uplink subframes include at least one of a last subframe in the timing of the M uplink subframes and a second last subframe in the timing.
  • the receiving unit receives the scheduling information in the subframe n; the at least two uplink subframes include the last uplink subframe and the second last uplink in the uplink burst included in the M uplink subframes. At least one of the subframes; the uplink burst refers to a plurality of uplink subframes continuously occupied in time; the uplink burst is after the downlink burst including the subframe n and next to the downlink burst including the subframe n .
  • the at least two uplink subframes include a first subframe in the M uplink subframes.
  • the number of OFDM symbols used for uplink control information transmission in each of the at least two uplink subframes is not less than a set threshold.
  • the scheduling information is carried in the same downlink control information as the trigger information.
  • the uplink control information includes at least one of channel state information, a sounding reference signal, and a hybrid automatic repeat request acknowledgement response.
  • the uplink control information carried by each of the at least two uplink subframes is the same.
  • the at least two uplink subframes include a first uplink subframe and a second uplink subframe, and the uplink control information carried by the first uplink subframe is different from the uplink control information carried by the second uplink subframe.
  • the uplink control information carried by the first uplink subframe does not coincide with the content of the uplink control information carried by the second uplink subframe, or the content of the control information carried by the first uplink subframe includes the second uplink.
  • the content of the uplink control information carried by the frame does not coincide with the content of the uplink control information carried by the second uplink subframe, or the content of the control information carried by the first uplink subframe includes the second uplink.
  • the scheduling information For the definition and function of the scheduling information, the triggering information, the uplink control information, and the M uplink subframes involved in the embodiment of the terminal device, refer to the related description of the foregoing method embodiments.
  • the specific implementation details of determining the uplink control information of the at least two uplink subframes in the M uplink subframes in the embodiment of the terminal device may be referred to the related description of the foregoing method embodiments.
  • the terminal device includes:
  • the receiver 1601 is configured to receive scheduling information and trigger information from the access network device, where the scheduling information is used to indicate that the terminal device transmits uplink data scheduled by the scheduling information on the M uplink subframes, where M is not less than a positive integer of 2; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the processor 1602 is configured to determine, in the M uplink subframes, at least two uplink subframes for carrying uplink control information;
  • the transmitter 1603 is configured to send uplink control information on the at least two uplink subframes.
  • the at least two uplink subframes include at least one of a last subframe in the timing of the M uplink subframes and a second last subframe in the timing.
  • the receiving unit receives the scheduling information in the subframe n; the at least two uplink subframes include the last uplink subframe and the second last uplink in the uplink burst included in the M uplink subframes. At least one of the subframes; the uplink burst refers to a plurality of uplink subframes continuously occupied in time; the uplink burst is after the downlink burst including the subframe n and next to the downlink burst including the subframe n .
  • the at least two uplink subframes include a first subframe in the M uplink subframes.
  • the number of OFDM symbols used for uplink control information transmission in each of the at least two uplink subframes is not less than a set threshold.
  • the scheduling information is carried in the same downlink control information as the trigger information.
  • the uplink control information includes at least one of channel state information, a sounding reference signal, and a hybrid automatic repeat request acknowledgement response.
  • the uplink control information carried by each of the at least two uplink subframes is the same.
  • the at least two uplink subframes include a first uplink subframe and a second uplink subframe, and the uplink control information carried by the first uplink subframe is different from the uplink control information carried by the second uplink subframe.
  • the uplink control information carried by the first uplink subframe does not coincide with the content of the uplink control information carried by the second uplink subframe, or the content of the control information carried by the first uplink subframe includes the second uplink.
  • the content of the uplink control information carried by the frame does not coincide with the content of the uplink control information carried by the second uplink subframe, or the content of the control information carried by the first uplink subframe includes the second uplink.
  • Scheduling information, trigger information, uplink control information, and M devices involved in the embodiment of the terminal device For the definition and function of the uplink subframe, reference may be made to the related description of the foregoing method embodiments.
  • the specific implementation details of determining the uplink control information of the at least two uplink subframes in the M uplink subframes in the embodiment of the terminal device may be referred to the related description of the foregoing method embodiments.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • scheduling information corresponding to multiple uplink subframes that are scheduled is the same, such as resource allocation.
  • the number of information bits used for resource allocation may be large, so if different scheduled uplink subframes can use the same resource allocation indication, the control signaling overhead smaller.
  • the uplink resource size that is actually used for transmitting the uplink data in the uplink subframe that includes the uplink control information, such as the CSI transmission is generally smaller than the uplink resource size, which is not included in the uplink subframe, such as the CSI transmission, for transmitting uplink data. Uplink resource transmission efficiency is low.
  • the uplink resource size of the uplink subframe including the SRS or the HARQ-ACK transmission, which is actually used for transmitting the uplink data is generally smaller than the uplink subframe, which does not include the SRS or the HARQ-ACK transmission, for transmitting the uplink data.
  • the uplink resource size also causes the uplink resource transmission efficiency to be low.
  • the present invention provides an embodiment of a method for transmitting uplink information, which can be applied to a multi-subframe scheduling scenario in a U-LTE system.
  • an embodiment of a method for transmitting uplink information includes the following steps:
  • the terminal device receives scheduling information and trigger information from the access network device, where the scheduling information is used to indicate that the terminal device transmits uplink data scheduled by the scheduling information on the M uplink subframes, where the uplink data includes the first uplink. Data and second uplink data; where M is a positive integer not less than 2; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the M uplink subframes include a first uplink subframe set and a second uplink subframe set, where the first uplink subframe set and the second uplink subframe set respectively include at least one uplink subframe, the first uplink The subframe in the subframe set is used to transmit the first uplink data; the subframe in the second uplink subframe set is used to transmit the uplink control information and the second uplink data;
  • the terminal device determines a first MCS or a first RB corresponding to the first uplink subframe set, and determines a second MCS or a second RB corresponding to the second uplink set.
  • the terminal device transmits the first MCS or the first RB corresponding to the first uplink subframe set. And transmitting, by the first uplink data, the second uplink data and the uplink control information corresponding to the second MCS or the second RB in the second uplink subframe set.
  • the scheduling information For the definition and function of the scheduling information, the triggering information, and the uplink control information in this embodiment, reference may be made to the related description in the first embodiment, and details are not described herein.
  • FIG. 18 illustrates a relationship between a first subframe set and a second subframe set.
  • the scheduling information indicates that the terminal device transmits uplink data in four uplink subframes. If the terminal device determines that the last uplink subframe in the four uplink subframes includes uplink control information, then the four uplink subframes
  • the first, second, and third uplink subframes are uplink subframes included in the first uplink subframe set; and the fourth uplink subframe is an uplink subframe included in the second uplink subframe set.
  • FIG. 19 illustrates another relationship of the first subframe set and the second subframe set.
  • the terminal device receives the scheduling information and the trigger information sent by the access network device in the subframe n, where the scheduling information indicates that the terminal device is in the subframe n+4, the subframe n+5, and the subframe n+6.
  • the subframe n+7 transmits the uplink data, where the subframe n+4 is the first uplink subframe immediately following the last downlink subframe of the downlink burst, and the terminal device transmits the uplink information in the subframe n+4.
  • the terminal device may determine that the subframe n+4 is an uplink subframe that includes uplink control information, where the uplink control information is information that the terminal device indicates, by using the trigger information, the terminal device, by using the CCA. .
  • the second uplink subframe set includes a subframe n+4
  • the first uplink subframe set includes a subframe n+5 to a subframe n+7.
  • different MCSs or RBs may be determined according to actual resource sizes used for transmitting uplink data in different uplink subframes, so that signaling overhead of multi-subframe scheduling is saved.
  • the uplink resource usage efficiency of the uplink subframe that only carries the uplink data can be guaranteed.
  • the terminal device may determine the second uplink subframe set in the M uplink subframes in multiple manners.
  • the second subframe set includes at least one of the last subframe in the timing of the M uplink subframes and the second last subframe in the timing.
  • Embodiment 2 the terminal device receives the scheduling information in the subframe n; the second subframe set includes at least one of a last uplink subframe and a second last uplink subframe in the uplink burst; the uplink burst Refers to a plurality of uplink subframes that are continuously occupied in time; the uplink burst is after the downlink burst including subframe n and next to the downlink burst including subframe n.
  • Embodiment 3 The number of OFDM symbols used for uplink information transmission in the uplink subframe of the second subframe set is not less than a set threshold.
  • Implementation 4 The terminal device receives the scheduling information in subframe n, where the second subframe set includes the largest maximum channel except the first subframe in the M uplink subframes and is the same as the subframe n Any one of the uplink subframes in the Maximum Channel Occupancy Time (MCOT).
  • the second subframe set includes a last one or a second last uplink subframe of the M uplink subframes except the first subframe and being in the same MCOT as the subframe n.
  • Implementation 5 The terminal device receives the scheduling information in the subframe n, where the second subframe set includes any one of the M uplink subframes except the first subframe, and does not need the idle channel assessment (CCA).
  • a frame is an uplink subframe that carries the uplink control information.
  • the second subframe set includes M uplink subframes except the first subframe, and does not require the first uplink subframe of the CCA.
  • the determining manner of the uplink subframe included in the second uplink subframe set in this embodiment is similar to the determining method of determining the uplink subframe carrying the uplink control information in the first embodiment.
  • the method for determining the uplink subframe included in the second uplink subframe set is similar to the method for determining the uplink subframe that is configured to carry the uplink control information in the second embodiment. For specific details, refer to the related description in the first embodiment, and details are not described herein.
  • the terminal device may determine, by using multiple manners, the first MCS or the first RB corresponding to the first uplink subframe set:
  • the terminal device receives the first indication information from the access network device, where the first indication information includes indication information of the first MCS or the first RB, and the terminal device determines, according to the first indication information, the first MCS or the first One RB.
  • the first indication information may be physical layer signaling, for example, may be carried in scheduling signaling that the scheduling terminal device transmits uplink data in M uplink subframes, or high-level information, for example, by Radio Resource Control (RRC).
  • RRC Radio Resource Control
  • Signaling bearer The advantage of the bearer in the scheduling signaling is that the MCS indication information or the RB indication information included in the existing scheduling information (for example, the UL grant) can be multiplexed to make the design simple; the advantage of being carried in the high layer signaling is that the physical layer can be saved. Signaling overhead.
  • the terminal device obtains an MCS offset or an RB offset; the terminal device determines the first MCS according to the second MCS and the MCS offset; or, the terminal device according to the second RB and the The RB offset determines the first RB.
  • the MCS offset or the RB offset may be a signaling indication, and the signaling indication may be used, or the physical layer signaling indication may be used, or the RRC signaling indication may be used.
  • the value of the MCS offset or the value of the RB offset may be directly indicated by signaling; or, alternatively, the MCS offset or the RB offset may also be indicated by signaling.
  • the corresponding index value is then obtained by the correspondence between the index value and the MCS offset or the RB offset, and the MCS offset or the RB offset is obtained.
  • the advantage of using the physical layer signaling indication is that the MCS or the occupied frequency resource corresponding to the uplink data of the terminal device can be flexibly adjusted according to the channel quality between the access network device and the terminal device to ensure effective data transmission;
  • the advantage of the signaling indication is that if the channel change characteristic between the access network and the terminal device is relatively stable, the MCS offset or the RB offset can be set through RRC signaling, so that not only the access network device and the terminal can be adapted. Channel changes between devices, and can also save physical layer signaling overhead.
  • the MCS offset or RB offset may also be pre-configured, such as by a standard protocol specification. In this way, the signaling overhead is minimal.
  • the change of the first MCS or the first RB may be obtained by a change of the second MCS or the second RB.
  • the second MCS or the second RB may be signaled.
  • the signaling may be physical layer signaling, for example, may be carried in scheduling signaling in which the scheduling terminal device transmits uplink data in M uplink subframes, or may also be RRC signaling.
  • the advantage of the bearer in the scheduling signaling is that the MCS indication information or the RB indication information included in the existing scheduling information (for example, the UL grant) can be multiplexed to make the design simple; the benefit of the RRC signaling is that the physical layer can be saved. Signaling overhead.
  • the terminal device determines the second MCS or the second RB, and the first MCS may be determined according to the second MCS and the MCS offset, and the first RB may be determined according to the second RB and the RB offset.
  • the terminal device may determine the second MCS or the second RB corresponding to the second row subframe set in multiple manners:
  • the terminal device receives the second indication information from the access network device, where the second indication information includes the indication information of the second MCS or the second RB, and the terminal device determines the second MCS or the second according to the second indication information. Two RBs.
  • the indication information may be physical layer signaling, for example, may be carried in scheduling signaling that the scheduling terminal device transmits uplink data in M uplink subframes, or high layer information, such as RRC signaling bearer.
  • the advantage of carrying in scheduling signaling is that it can be reused in existing scheduling information (such as UL grant).
  • the MCS indication information or the RB indication information makes the design simple; the advantage of carrying the high layer signaling is that the physical layer signaling overhead can be saved.
  • the first indication information and the second indication information may be carried in the same signaling.
  • the first indication information and the second indication information may be carried in the same downlink control information.
  • the first indication information and the second indication information may be carried in different downlink control information.
  • the first indication information and the second indication information are carried in the same or different downlink subframes.
  • the terminal device obtains an MCS offset or an RB offset; the terminal device determines the second MCS according to the first MCS and the MCS offset; or the terminal device according to the first RB and the RB offset The quantity determines the second RB.
  • the MCS offset or the RB offset may be a signaling indication, and the signaling indication may be used, or the physical layer signaling indication may be used, or the RRC signaling indication may be used.
  • the value of the MCS offset or the value of the RB offset may be directly indicated by signaling; or, alternatively, the MCS offset or the RB offset may also be indicated by signaling.
  • the corresponding index value is then obtained by the correspondence between the index value and the MCS offset or the RB offset, and the MCS offset or the RB offset is obtained.
  • the advantage of using the physical layer signaling indication is that the MCS or the occupied frequency resource corresponding to the uplink data of the terminal device can be flexibly adjusted according to the channel quality between the access network device and the terminal device to ensure effective data transmission;
  • the advantage of the signaling indication is that if the channel change characteristic between the access network and the terminal device is relatively stable, the MCS offset or the RB offset can be set through RRC signaling, so that not only the access network device and the terminal can be adapted. Channel changes between devices, and can also save physical layer signaling overhead.
  • the MCS offset or RB offset may also be pre-configured, such as by a standard protocol specification. In this way, the signaling overhead is minimal.
  • the change of the second MCS or the second RB may be obtained by a change of the first MCS or the first RB.
  • the signaling may be physical layer signaling, for example, may be carried in scheduling signaling in which the scheduling terminal device transmits uplink data in M uplink subframes, or may also be RRC signaling.
  • the advantage of carrying in scheduling signaling is that existing scheduling can be reused.
  • the MCS indication information or the RB indication information included in the information (for example, UL grant) makes the design simple; the advantage of being carried in the RRC signaling is that the physical layer signaling overhead can be saved.
  • the above method of determining the first MCS or the first RB may be used in combination with determining the second MCS or the second RB method.
  • determining the first MCS as an example, specifically determining a method for determining the first MCS and the second MCS.
  • one of the MCSs can be determined by the MCS indication information included in the existing UL grant.
  • the other MCS may indicate the second MCS by displaying a signaling indication, for example, by adding a new bit in the UL grant.
  • the indication manner is that the newly added bit can directly indicate the result corresponding to the MCS, for example, as shown in Table 4.
  • Modulation Order and/or Transmission Block Size (TBS) another indication is that the added bit can indicate the MCS index, through the index and modulation mode, and the Transmission Block Size (TBS).
  • TBS Transmission Block Size
  • the offset of the second MCS relative to the first MCS may be indicated by the added bit (corresponding to the MCS offset in the embodiment of the present invention).
  • different index information may be indicated by different states of the added bit, and different index information has a one-to-one correspondence with different offsets, where the set of different offsets may be semi-statically configured.
  • it can be configured by RRC signaling, or it can be statically configured, for example, by a standard protocol specification.
  • different bits can directly indicate different biases. the amount.
  • the first MCS may indicate by the control information included in the UL grant that the MCS offset between the second MCS or the second MCS and the first MCS is pre-configured, such as a standard protocol specification, the terminal device
  • the second MCS can be determined based on the first MCS and the pre-configured MCS offset.
  • the above description manner is also applicable to the determination of the first RB and the second RB.
  • the RB offset may also be understood as increasing or decreasing the RB size indicated by the RB offset and the RB position on the basis of the first RB.
  • determine the second RB determines the second RB.
  • the RB offset may also be understood as increasing or decreasing the RB size indicated by the RB offset and the RB position on the basis of the second RB. , determine the first RB.
  • the first RB (or the second RB) includes the following One less item: the size of the first RB (or the second RB) and the location of the frequency resource occupied by the first RB (or the second RB).
  • the first MCS (or the second MCS) may include at least one of the following: a modulation order, a transport block size.
  • the present invention provides a terminal device, which can be applied to a multi-subframe scheduling scenario in a U-LTE system, and the terminal device can perform various steps in the foregoing method embodiments.
  • the terminal device includes:
  • the receiving unit 2001 is configured to receive scheduling information and trigger information from the access network device, where the scheduling information is used to indicate that the terminal device transmits the uplink data scheduled by the scheduling information on the M uplink subframes, where the uplink data includes An uplink data and a second uplink data, where M is a positive integer not less than 2; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the M uplink subframes include a first uplink subframe set and a second uplink subframe set, where the first uplink subframe set and the second uplink subframe set respectively include at least one uplink subframe, the first uplink The subframe in the subframe set is used to transmit the first uplink data; the subframe in the second uplink subframe set is used to transmit the uplink control information and the second uplink data;
  • a determining unit 2002 configured to determine a first MCS or a first RB corresponding to the first uplink subframe set, and determine a second MCS or a second RB corresponding to the second uplink set;
  • the sending unit 2003 is configured to: in the first uplink subframe set, transmit the first uplink data corresponding to the first MCS or the first RB, and transmit the second uplink corresponding to the second MCS or the second RB in the second uplink subframe set. Data and the uplink control information.
  • the second subframe set includes at least one of a last subframe in the timing of the M uplink subframes and a second last subframe in the timing.
  • the terminal device receives the scheduling information in the subframe n.
  • the second subframe set includes the last uplink subframe and the second last uplink in the uplink burst included in the M uplink subframes. At least one of the subframes; the uplink burst refers to a plurality of uplink subframes continuously occupied in time; the uplink burst is after the downlink burst including the subframe n and next to the downlink burst including the subframe n .
  • the number of OFDM symbols used for uplink information transmission in the uplink subframe of the second subframe set is not less than a set threshold.
  • the scheduling information is carried in the same downlink control information as the trigger information.
  • the uplink control information includes at least one of channel state information, a sounding reference signal, and a hybrid automatic repeat request acknowledgement response.
  • the receiving unit is further configured to receive first indication information from an access network device, where the first indication information is used to indicate the first MCS or indicate the first RB;
  • the determining unit includes a first determining unit 2101, configured to determine the first MCS or the first RB according to the first indication information; and
  • a second determining unit 2102 configured to obtain an MCS offset or an RB offset, according to the first Determining the second MCS by the MCS and the MCS offset; or determining the second RB according to the first RB and the RB offset; the MCS offset is the first MCS and the second MCS The offset between the RB and the RB is the offset between the first RB and the second RB.
  • the receiving unit is further configured to receive first indication information and second indication information from the access network device, where the first indication information is used to indicate the first MCS or indicate the first RB;
  • the determining unit includes a first determining unit 2101, configured to determine the first MCS or the first RB according to the first indication information; and
  • a third determining unit configured to determine the second MCS or the second RB according to the second indication information.
  • the receiving unit is further configured to receive second indication information from the access network device, where the second indication information is used to indicate the second MCS or indicate the second RB;
  • the determining unit includes:
  • a third determining unit, 2301 configured to determine the second MCS or the second RB according to the second indication information
  • a fourth determining unit 2302 configured to obtain an MCS offset or an RB offset; and determine the first MCS according to the second MCS and the MCS offset; or, the terminal device according to the second RB and the RB offset, determining the first RB; the MCS offset is an offset between the first MCS and the second MCS, where the RB offset is between the first RB and the second RB The offset.
  • the scheduling information For the definition and function of the scheduling information, the triggering information, the uplink control information, and the M uplink subframes involved in the embodiment of the terminal device, refer to the related description of the foregoing method embodiments.
  • the method for determining the uplink subframe set and the method for obtaining the first MCS, the second MCS, the first RB, and the second RB may be referred to the related description of the foregoing method embodiments.
  • the terminal device includes:
  • the receiver 2401 is configured to receive scheduling information and trigger information from the access network device, where the scheduling information is used to indicate that the terminal device transmits uplink data scheduled by the scheduling information on the M uplink subframes, where the uplink data includes An uplink data and a second uplink data, where M is a positive integer not less than 2; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the M uplink subframes include a first uplink subframe set and a second uplink subframe set, where the first uplink subframe set and the second uplink subframe set respectively include at least one uplink subframe, the first uplink The subframe in the subframe set is used to transmit the first uplink data; the subframe in the second uplink subframe set For transmitting uplink control information and second uplink data;
  • the processor 2402 is configured to determine a first MCS or a first RB corresponding to the first uplink subframe set, and determine a second MCS or a second RB corresponding to the second uplink set;
  • the transmitter 2403 is configured to: in the first uplink subframe set, transmit the first uplink data corresponding to the first MCS or the first RB, and transmit the second uplink corresponding to the second MCS or the second RB in the second uplink subframe set. Data and the uplink control information.
  • the specific implementation function of the processor in the terminal device is similar to that of the determining unit 2002 in the previous embodiment.
  • the specific processing reference may be made to the related description of the previous embodiment.
  • the scheduling information For the definition and function of the scheduling information, the triggering information, the uplink control information, and the M uplink subframes involved in the embodiment of the terminal device, refer to the related description of the foregoing method embodiments.
  • the specific implementation details may refer to the related description of the foregoing method embodiments.
  • the second subframe set is used to transmit uplink control information and uplink data.
  • the second set of subframes may only transmit uplink control information.
  • an embodiment of a method for transmitting uplink information includes the following steps:
  • the terminal device receives scheduling information and trigger information from the access network device, where the scheduling information is used to indicate that the terminal device transmits the scheduled uplink data on the M uplink subframes, where M is a positive integer not less than 2.
  • the trigger information is used to indicate that the terminal device sends uplink control information.
  • the M uplink subframes include a first uplink subframe set and a second uplink subframe set, where the first uplink subframe set and the second uplink subframe set respectively include at least one uplink subframe, the first uplink The subframe in the subframe set is used to transmit uplink data; the subframe in the second uplink subframe set is used to transmit uplink control information;
  • the terminal device determines a first MCS or a first RB corresponding to the first uplink subframe set, and determines a second MCS or a second RB corresponding to the second uplink set.
  • the terminal device transmits the uplink data corresponding to the first MCS or the first RB in the first uplink subframe set, and the uplink control information corresponding to the second MCS or the second RB in the second uplink subframe set.
  • the definition and function of the scheduling information, the trigger information, and the uplink control information in this embodiment may be referred to The related description in the first embodiment will not be described herein.
  • the method for determining the second subframe set, the method for determining the first MCS or the first RB, and the method for determining the second MCS or the second RB are similar to the previous embodiment, and are not described herein.
  • the uplink subframe in the second uplink subframe set is only used to transmit the uplink control information, there is no problem that the uplink subframe including the uplink data has a waste of resources in order to save the signaling overhead.
  • the uplink control information overhead transmitted by the terminal device is relatively large, for example, it is required to feed back CSI corresponding to multiple serving cells or multiple CSI processes; and/or, feedback needs to correspond to multiple serving cells.
  • the uplink subframe in the second uplink subframe set can be used only for transmitting the uplink control information, so that not only the benefits described above can be obtained (ie, the reduction is included only)
  • the resource waste problem of the uplink subframe of the uplink data also reduces the resource waste problem of the uplink subframe including only the uplink control data.
  • the present invention provides a terminal device, which can be applied to a multi-subframe scheduling scenario in a U-LTE system, and the terminal device can perform various steps in the foregoing method embodiments.
  • the terminal device includes:
  • the receiving unit 2601 is configured to receive scheduling information and trigger information from the access network device, where the scheduling information is used to indicate that the terminal device transmits the scheduled uplink data on the M uplink subframes, where M is not less than 2 An integer; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the M uplink subframes include a first uplink subframe set and a second uplink subframe set, where the first uplink subframe set and the second uplink subframe set respectively include at least one uplink subframe, the first uplink The subframe in the subframe set is used to transmit uplink data; the subframe in the second uplink subframe set is used to transmit uplink control information;
  • a determining unit 2602 configured to determine a first MCS or a first RB corresponding to the first uplink subframe set, and determine a second MCS or a second RB corresponding to the second uplink set;
  • the sending unit 2603 is configured to: in the first uplink subframe set, transmit the uplink data corresponding to the first MCS or the first RB, and transmit the uplink control information corresponding to the second MCS or the second RB in the second uplink subframe set.
  • the scheduling information For the definition and function of the scheduling information, the triggering information, and the uplink control information in this embodiment, reference may be made to the related description in the first embodiment, and details are not described herein.
  • the terminal device includes:
  • the receiver 2701 is configured to receive scheduling information and trigger information from the access network device, where the scheduling information is used to indicate that the terminal device transmits the scheduled uplink data on the M uplink subframes, where M is not less than 2 An integer; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the M uplink subframes include a first uplink subframe set and a second uplink subframe set, where the first uplink subframe set and the second uplink subframe set respectively include at least one uplink subframe, the first uplink The subframe in the subframe set is used to transmit uplink data; the subframe in the second uplink subframe set is used to transmit uplink control information;
  • a determiner 2702 configured to determine a first MCS or a first RB corresponding to the first uplink subframe set, and determine a second MCS or a second RB corresponding to the second uplink set;
  • the transmitter 2703 is configured to: in the first uplink subframe set, transmit the uplink data corresponding to the first MCS or the first RB, and transmit the uplink control information corresponding to the second MCS or the second RB in the second uplink subframe set.
  • the scheduling information For the definition and function of the scheduling information, the triggering information, and the uplink control information in this embodiment, reference may be made to the related description in the first embodiment, and details are not described herein.
  • the method for determining the second subframe set, the method for determining the first MCS or the first RB, and the method for determining the second MCS or the second RB are similar to the previous embodiment, and are not described herein.
  • the present invention provides an embodiment of a method for transmitting uplink control information, which can be applied to a multi-subframe scheduling scenario in a U-LTE system.
  • an embodiment of a method for transmitting uplink control information includes the following steps:
  • the access network device sends scheduling information and trigger information to the terminal device, where the scheduling information is used to indicate that the terminal device transmits the scheduled uplink data on the M uplink subframes, where the uplink data includes the first uplink data and the second Uplink data; where M is a positive integer not less than 2; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the M uplink subframes include a first uplink subframe set and a second uplink subframe set, where the first uplink subframe set and the second uplink subframe set respectively include at least one uplink subframe, the first uplink The subframe in the subframe set is used to transmit the first uplink data; the subframe in the second uplink subframe set is used to transmit the uplink control information and the second uplink data;
  • the access network device determines a first MCS or a first RB corresponding to the first uplink subframe set, and determines a second MCS or a second RB corresponding to the second uplink set.
  • the access network device receives the first uplink data corresponding to the first MCS or the first RB on the first uplink subframe set, and the uplink control corresponding to the second MCS or the second RB in the second uplink subframe set. Information and second uplink data.
  • the scheduling information For the definition and function of the scheduling information, the triggering information, and the uplink control information in this embodiment, reference may be made to the related description in the first embodiment, and details are not described herein.
  • the first MCS or the first RB and the second MCS or the second RB may be pre-configured in the access network device, or notified to the terminal device after the access network device selects the determination.
  • the access network device may notify the terminal device of the first MCS or the first RB and the second MCS or the second RB in multiple manners.
  • the access network device may send the first indication information and the second indication information to the terminal device, where the first indication information includes indication information of the first MCS or the first RB, and the second indication information includes the first Indicates information of the second MCS or the second RB.
  • the first indication information and the second indication information may be carried in the same message.
  • the access network device device may send one of the first indication information and the second indication information to the terminal device, and send the offset information.
  • the first indication information includes indication information of the first MCS or the first RB
  • the second indication information includes indication information of the second MCS or the second RB.
  • the offset information refers to an offset between the first MCS and the second MCS or an offset between the first PR and the second RB.
  • the indication information and the offset information may be carried in the same message.
  • the terminal device sends uplink information in the subframe n, and considering the propagation delay between the terminal device and the access network device, the time for the access network device to receive the uplink information is delayed.
  • the access network device receives the uplink information in the subframe n for the convenience of description.
  • the present invention provides an access network device, which can be applied to a multi-subframe scheduling scenario in a LAA-LTE system, where the access network device can perform various steps in the foregoing method embodiments. .
  • the access network device includes:
  • the sending unit 2901 is configured to send scheduling information and trigger information to the terminal device, where the scheduling information is used to indicate that the terminal device transmits uplink data scheduled by the scheduling information on the M uplink subframes, where the uplink data includes the first uplink data. And a second uplink data, where M is a positive integer not less than 2; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the M uplink subframes include a first uplink subframe set and a second uplink subframe set, where the first uplink subframe set and the second uplink subframe set respectively include at least one uplink subframe, the first uplink The subframe in the subframe set is used to transmit the first uplink data; the subframe in the second uplink subframe set is used to transmit the uplink control information and the second uplink data;
  • the processing unit 2902 is configured to determine a first MCS or a first RB corresponding to the first uplink subframe set, and determine a second MCS or a second RB corresponding to the second uplink set;
  • the receiving unit 2903 is configured to receive the first uplink data corresponding to the first MCS or the first RB on the first uplink subframe set, and the second uplink data corresponding to the second MCS or the second RB in the second uplink subframe set. And the uplink control information.
  • the second subframe set includes at least one of a last subframe in the timing of the M uplink subframes and a second last subframe in the timing.
  • the access network device sends the scheduling information in subframe n; the second subframe set includes at least one of a last uplink subframe and a second last uplink subframe in an uplink burst;
  • the uplink burst refers to a plurality of uplink subframes that are continuously occupied in time; the uplink burst is after the downlink burst including subframe n and next to the downlink burst including subframe n.
  • the number of OFDM symbols used for uplink information transmission in the uplink subframe of the second subframe set is not less than a set threshold.
  • the scheduling information is carried in the same downlink control information as the trigger information.
  • the uplink control information includes at least one of channel state information, a sounding reference signal, and a hybrid automatic repeat request acknowledgement response.
  • the sending unit is further configured to send the first indication information to the terminal device, where the first indication information is used to indicate the first MCS or the first RB.
  • the sending unit is further configured to send the second indication information to the terminal device, where the second indication information is used to indicate the indication information of the second MCS or the second RB.
  • the sending unit is further configured to send an MCS offset or an RB offset to the terminal device.
  • the shift amount is an offset between the first MCS and the second MCS
  • the RB offset is an offset between the first RB and the second RB.
  • the trigger information, the uplink control information, and the M uplink subframes in this embodiment refer to the related description of the foregoing method embodiments.
  • the method for determining the second uplink subframe set and the method for obtaining the first MCS, the second MCS, the first RB, and the second RB refer to the related description of the foregoing method embodiments.
  • the access network device includes:
  • the transmitter 3001 is configured to send scheduling information and trigger information to the terminal device, where the scheduling information is used to indicate that the terminal device transmits uplink data scheduled by the scheduling information on the M uplink subframes, where the uplink data includes the first uplink data. And a second uplink data, where M is a positive integer not less than 2; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the M uplink subframes include a first uplink subframe set and a second uplink subframe set, where the first uplink subframe set and the second uplink subframe set respectively include at least one uplink subframe, the first uplink The subframe in the subframe set is used to transmit the first uplink data; the subframe in the second uplink subframe set is used to transmit the uplink control information and the second uplink data;
  • the processor 3002 is configured to determine a first MCS or a first RB corresponding to the first uplink subframe set, and determine a second MCS or a second RB corresponding to the second uplink set;
  • the receiver 3003 is configured to receive the first uplink data corresponding to the first MCS or the first RB on the first uplink subframe set, and the second uplink data corresponding to the second MCS or the second RB in the second uplink subframe set. And the uplink control information.
  • the specific functions of the transmitter, the processor, and the receiver in this embodiment are similar to those of the transmitting unit, the processing unit, and the receiving unit in the previous embodiment.
  • the trigger information, the uplink control information, and the M uplink subframes in this embodiment refer to the related description of the foregoing method embodiments.
  • the method for determining the second uplink subframe set and the method for obtaining the first MCS, the second MCS, the first RB, and the second RB refer to the related description of the foregoing method embodiments.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the terminal device receives scheduling information and trigger information from the access network device, where the scheduling information is used Instructing the terminal device to transmit uplink data scheduled by the scheduling information on the M uplink subframes, where M is a positive integer not less than 2; the trigger information is used to indicate that the terminal device sends uplink control information;
  • the terminal device sends uplink control information on the determined uplink subframe.
  • the terminal device may determine, by using the scheduling information, that the uplink data is transmitted in the uplink subframe n to the uplink subframe n+3. As shown in Figure 31.
  • the terminal device if the terminal device contends to the unlicensed band resource through the CCA in the subframe n, the terminal device transmits the uplink control information in the subframe n, if the terminal device does not compete for the unlicensed band resource in the subframe n but is in the sub-frame If the frame n+1 contends to the unlicensed band resource, the terminal device may transmit the uplink control information in the subframe n+1. Further, the subframe n to the subframe n+3 can be used as an uplink subframe in which uplink control information can be transmitted.
  • the uplink control information can also be reported in multiple candidate locations, thereby ensuring the transmission opportunity of the uplink control information.
  • the terminal device receives the scheduling information from the access network device, where the scheduling information is used to indicate that the terminal device transmits the uplink data scheduled by the scheduling information on the M uplink subframes, where the uplink data includes the first uplink data and the second Uplink data;
  • M is a positive integer not less than 2
  • the M uplink subframes include a first uplink subframe and a second uplink subframe, and the first uplink subframe is used to transmit resource elements of uplink data (Resource Element , the number of REs is different from the number of resource elements RE used to transmit uplink data in the second uplink subframe;
  • the terminal device transmits the first uplink data corresponding to the first MCS or the first RB in the first uplink subframe, and transmits the second uplink data corresponding to the second MCS or the second RB in the second uplink subframe.
  • the SRS is transmitted in the downlink subframe
  • the HARQ-ACK is transmitted in the uplink subframe, which causes the number of resource elements included in the at least two uplink subframes of the scheduled M uplink subframes to be used for uplink data transmission to be different, considering Multiple user multiplexing and/or reserving a CCA interval in a subframe may also result in the number of resource elements included in at least two uplink subframes of the scheduled M uplink subframes for uplink data transmission. Differently, the representation of the number of resource elements is different.
  • the number of OFDM symbols used for transmitting uplink information in different uplink subframes is different, or is used to include blank OFDM symbols in different uplink subframes.
  • the situation, or the case of specifically including several blank OFDM symbols, is different.
  • the number of OFDM symbols used for uplink information transmission in subframe n+7 is smaller than other subframes (eg, subframe n+4, subframe n+).
  • subframe n + 6 the number of OFDM symbols used for uplink information transmission, or, in subframe n + 7 for the uplink information transmission, there is a blank OFDM symbol, in this case, through the pair
  • the uplink data transmission carried by different uplink subframes and the corresponding MCS or RB can ensure data transmission efficiency.
  • the terminal device may directly determine the first MCS or the first RB, and directly determine the second MCS or the second RB; or directly determine the first MCS or the first RB, and then pass the first MCS and the second MCS.
  • the MCS offset between the MCS and the second MCS determines the first MCS, and determines the first RB by the RB offset between the first RB and the second RB.
  • the first MCS, the second MCS, the first RB, the second RB, and the MCS offset between the first MCS and the second MCS, and the RB between the first RB and the second RB are determined.
  • the implementation of the offset is the same as described above, and will not be described here.
  • the access network device sends scheduling information to the terminal device, where the scheduling information is used to instruct the terminal device to transmit uplink data scheduled by the scheduling information on the M uplink subframes, where the uplink data is sent.
  • the data includes a first uplink data and a second uplink data, where M is a positive integer not less than 2, and the M uplink subframes include a first uplink subframe and a second uplink subframe, and the first uplink subframe is used for
  • the number of resource elements (RE elements) for transmitting uplink data is different from the number of resource elements RE for transmitting uplink data in the second uplink subframe;
  • the access network device determines a first MCS or a first RB corresponding to the first uplink subframe, and determines a second MCS or a second RB corresponding to the second uplink subframe;
  • the access network device receives the first uplink data corresponding to the first MCS or the first RB in the first uplink subframe, and receives the second uplink data corresponding to the second MCS or the second RB in the second uplink subframe.
  • RRC signaling can be understood as high layer signaling.
  • the terminal device receives a scheduling information sent by the access network device in the subframe n, or receives a UL grant indication information, where the scheduling information indicates that the terminal device is at least two.
  • the uplink subframe transmits uplink data scheduled by the scheduling information.
  • the terminal device receives multiple scheduling information sent by the access network device in the subframe n, and the multiple scheduling information may be carried in different DCIs, but may be carried in the same In the subframe, or when multiple UL grant indication information is received, the uplink subframe corresponding to the multiple scheduling information may be regarded as M uplink subframes.
  • the uplink subframe corresponding to the scheduling information is used to indicate that the terminal device transmits uplink data in the uplink subframe.
  • the terminal device determines The uplink subframe used for carrying the uplink control information is located in multiple uplink subframes scheduled by the scheduling information in the same DCI as the trigger information.
  • the M uplink subframes may be consecutive in timing; optionally, the M uplink subframes may also be non-contiguous in timing.
  • the uplink subframe that carries the uplink control information may be indicated by the signaling, or may be determined according to the pre-configuration criteria, and the pre-configuration criteria may include, for example, the foregoing various implementation manners.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling or communication connection may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above receivers and transmitters can be physically integrated on one module, such as a transceiver or an antenna.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种上行控制信息的传输方法和装置。本发明实施例的上行控制信息的传输方法包括:终端设备接收来自接入网设备的调度信息和触发信息,所述调度信息用于指示所述终端设备在M个上行子帧上传输所述调度信息所调度的上行数据,其中M为不小于2的正整数;所述触发信息用于指示所述终端设备发送上行控制信息;所述终端设备在所述M个上行子帧中确定一个上行子帧用于承载所述上行控制信息;所述确定的上行子帧为所述M个上行子帧中除第一子帧外的其他子帧,所述第一子帧为M个上行子帧中第一个上行子帧;所述终端设备在所述确定的上行子帧上发送上行控制信息。

Description

一种上行控制信息的传输方法和装置 技术领域
本发明涉及无线通信领域,尤其涉及上行控制信息的传输方法和装置。
背景技术
授权辅助接入的长期演进(Licensed-Assisted Access using Long Term Evolution,简称:LAA-LTE)系统可以利用5GHz免许可频谱(也称为:非授权频谱)来扩展现有的LTE服务,即使用免许可频谱承载LTE系统中的部分数据业务。免许可频谱上的资源共享是指对特定频谱的使用只规定发射功率、带外泄露等指标上的限制,以保证共同使用该频段的多个设备之间满足基本的共存要求,而不限定无线电技术、运营企业和使用年限,但也不保证其上的业务质量。
LAA-LTE系统可以利用现有LTE(Long-term Evolution,长期演进)系统中的载波聚合(Carrier Aggregation,CA)技术,配置运营商许可频段上的载波(简称许可载波)进行通信为基础,配置多个免许可频段上的载波(简称免许可载波),并以许可载波为辅助利用免许可载波进行通信。LTE设备可以通过CA的方式,将许可载波作为主成员载波(Primary Component Carrier,PCC)或主小区(Primary Cell,PCell),将免许可载波作为辅成员载波(Secondary Component Carrier,SCC)或辅小区(Secondary Cell,SCell),这样LTE设备既可以通过许可载波继承LTE设备用于无线通信的传统优势,例如在移动性、安全性、服务质量以及同时处理多用户调度方面的优势,又可以通过利用免许可载波达到网络容量分流的目的,从而减小许可载波的负载。当LAA系统使用免许可频段资源时,需要遵从各地对免许可频段使用制定的规范。
当LAA系统使用免许可频段资源时,需要遵从各地对免许可频段使用制定的规范。共存规范包括TPC(TPC:Transmit Power Control),DFS(DFS:Dynamic Frequency Selection),信道占用带宽和LBT(LBT:Listen before talk)等等。LBT的基本思想为:每个通信设备在某个信道上发送数据之前,需要先检测当前信道是否空闲,即是否可以检测到附近节点正在占用所述信道发送 数据,这一检测过程被称为空闲信道评测(Clear Channel Assessment,CCA);如果在一段时间内检测到信道空闲,那么该通信设备就可以发送数据,并且一般而言,在该信道上发送数据的时间是有限制的,在此限制的时间范围内,该通信设备不需要对该信道进行空闲评测;如果检测到信道被占用,那么该通信设备当前就无法在该信道上传输数据。检测信道是否空闲可以通过信号检测、能量检测等方式来实现。
对于LTE系统而言,无论是发送下行数据的LTE基站,还是发送上行数据的LTE用户设备,一般而言,在使用免许可频段进行数据传输之前,都需要先进行侦听,这就使得LTE设备(包括基站和/或用户设备)在免许可频段上的数据传输是机会性的。为了能够更好地适应上下行数据传输的业务需求,接入网设备在竞争到免许可频段资源之后,可以根据下行业务负载和/或上行业务负载,或者其他考虑因素,决定下行数据传输时长和/或上行数据传输时长。
LTE系统下的上行数据传输一般而言都是基于调度的,例如以LTE系统下的用户设备为例,在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输数据时,所占用的时频资源(时间资源和/或频率资源)是接入网设备例如基站指示的,例如通过上行准许(Uplink Grant,UL grant)控制信息指示给用户设备。
从节省下行控制信令开销和/或适应业务传输灵活性角度,可以通过多子帧调度信令,调度终端设备在多个上行子帧内传输上行数据,如图1所示。图1中,基站可以通过子帧n承载的一个或者多个UL grant触发同一个终端设备(例如用户设备,User Equipment,UE)在子帧n+4/n+5/n+6/n+7传输上行数据。需要说明的是,在本发明实施例中,如果接入网设备和终端设备利用免许可频段资源进行数据传输,那么在数据传输之前,一般而言,需要接入网设备和/或终端设备通过竞争机制例如LBT来确定是否可以使用免许可频段资源进行数据传输。
另一方面,在现有的LTE系统中,终端设备可以反馈信道状态信息(Channel State Information,CSI),或者传输探测参考信号(Sounding Reference Signal,SRS),接入网设备通过检测CSI或者SRS,可以确定接入网设备和终 端设备之间的信道质量,进而可以根据该信道质量,配置接入网设备和终端设备之间的数据传输方式,例如设置合适的调制编码方案(Modulation Coding Scheme,MCS),从而在保证数据可靠传输的情况下尽可能提升数据传输效率。此外,基于混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)机制,在现有的LTE系统中,终端设备在接收物理下行共享信道(Physical Downlink Shared Channel,PDSCH)包括的下行数据之后,向接入网设备反馈确认应答(Acknowledgement,ACK)或非确认应答(Non-Acknowledgement,NACK)。接入网接收到此反馈信息之后,可以确定与该反馈信息对应的下行数据是否正确接收,从而可以正确执行后续的数据传输操作。由于LTE系统在免许可频段上的数据传输是机会性的,为了保证数据传输效率,在免许可频段上保持CSI、SRS、以及HARQ-ACK(包括ACK和NACK)的传输就显得至关重要。
一般而言,CSI、SRS以及HARQ-ACK的传输可以承载在被调度的上行共享信道(Uplink Shared Channel,UL-SCH)中,由于上行调度信息可以调度至少2个上行子帧,该至少2个上行子帧中都包括UL-SCH,因此终端设备如何确定CSI/SRS/HARQ-ACK这些上行控制信息的传输位置,是需要考虑的问题。
发明内容
本发明实施例提供一种上行控制信息的传输方法,在多子帧调度场景下能保证上行控制信息的上报机会。
根据本发明的一实施例,提供一种上行控制信息的传输方法,包括:
终端设备接收来自接入网设备的调度信息和触发信息,所述调度信息用于指示该终端设备在M个上行子帧上传输所述调度信息所调度的上行数据,其中M为不小于2的正整数;所述触发信息用于指示所述终端设备发送上行控制信息;
该终端设备在该M个上行子帧中确定一个上行子帧用于承载该上行控制信息;该确定的上行子帧为该M个上行子帧中除第一子帧外的其他子帧,该第一子帧为M个上行子帧中时序上的第一个上行子帧;
该终端设备在该确定的上行子帧上发送上行控制信息。
可选的,上行控制信息包括信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
一个实施例中,该调度信息与该触发信息承载在相同的下行控制信息中,例如,调度信息和触发信息都承载在UL grant中。
根据本发明的另一实施例,提供一种终端设备,包括:
接收单元,用于接收来自接入网设备的调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输该调度信息所调度的上行数据,其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
确定单元,用于在该M个上行子帧中确定一个上行子帧用于承载该上行控制信息;该确定的上行子帧为该M个上行子帧中除第一子帧外的其他子帧,该第一子帧为M个上行子帧中第一个上行子帧;
发送单元,用于在该确定的上行子帧上发送上行控制信息。
可选的,该确定单元确定的上行子帧为该M个上行子帧中时序上的最后一个子帧,或者,时序上的倒数第二个子帧。
可选的,该接收单元在子帧n接收该调度信息;该确定单元用于确定该M个上行子帧包含的上行突发中时序上最后一个或倒数第二个上行子帧,作为承载该上行控制信息的上行子帧;该上行突发指在时间上连续占用的多个上行子帧;该上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
可选的,该确定单元确定的上行子帧用于上行信息传输的OFDM符号个数不小于设定阈值。
可选的,该调度信息与该触发信息承载在相同的下行控制信息中。
可选的,该上行控制信息包括:信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
本发明实施例可以应用于免许可频谱的系统中,由于承载该上行控制信息的上行子帧为第一个上行子帧之外的其他子帧,终端设备在传输该上行控制信息之前,可以至少在两个上行子帧之前执行CCA,只要有一个CCA成功,终端设备就可以在确定的上行子帧中发送该上行控制信息。这样,就可以尽可能地保证上行控制信息的传输机会,进而保证了免许可频段上可靠有效的数据传 输。
根据本发明的一实施例,提供一种上行控制信息的传输方法,包括:
终端设备接收来自接入网设备的调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输该调度信息所调度的上行数据,其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
该终端设备在该M个上行子帧中确定至少两个上行子帧用于承载上行控制信息;
该终端上设备在该至少两个上行子帧上发送上行控制信息。
可选的,该至少两个上行子帧承载的上行控制信息相同。
可选的,该至少两个上行子帧中包含第一上行子帧和第二上行子帧,第一上行子帧承载的上行控制信息与第二上行子帧承载的上行控制信息不同。
根据本发明的另一实施例,提供一种终端设备,包括:
接收单元,用于接收来自接入网设备的调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输该调度信息所调度的上行数据,其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
处理单元,用于在该M个上行子帧中确定至少两个上行子帧用于承载上行控制信息;
发送单元,用于在该至少两个上行子帧上发送上行控制信息。
可选的,该至少两个上行子帧承载的上行控制信息相同。
可选的,该至少两个上行子帧中包含第一上行子帧和第二上行子帧,第一上行子帧承载的上行控制信息与第二上行子帧承载的上行控制信息不同。
本发明一个实施例可以应用于免许可频谱的系统中,由于在传输上行数据的M个上行子帧中,使用至少2个子帧承载上行控制信息,可以使上行控制信息尽可能早地反馈;由于将上行控制信息分别承载在多个上行子帧中,可以避免对一个被调度的上行子帧中用于上行数据传输的上行资源占用较多。
为了提高资源传输效率,本发明提供了一个上行信息的传输方法的实施例。
根据本发明的一实施例,提供一种上行控制信息的传输方法,包括:
终端设备接收来自接入网设备的调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输该调度信息所调度的上行数据,该上行数据包括第一上行数据和第二上行数据;其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
其中,该M个上行子帧包括第一上行子帧集合和第二上行子帧集合,该第一上行子帧集合和该第二上行子帧集合分别包括至少一个上行子帧,该第一上行子帧集合中的子帧用于传输该第一上行数据;该第二上行子帧集合中的子帧用于传输上行控制信息和第二上行数据;
该终端设备确定该第一上行子帧集合对应的第一MCS或第一RB,以及确定该第二上行集合对应的第二MCS或第二RB;
该终端设备在第一上行子帧集合传输第一MCS或第一RB对应的该第一上行数据以及在第二上行子帧集合传输第二MCS或第二RB对应的该第二上行数据和上行控制信息。
根据本发明的另一实施例,提供一种终端设备,包括:
接收单元,用于接收来自接入网设备的调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输该调度信息所调度的上行数据,该上行数据包括第一上行数据和第二上行数据;其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
其中,该M个上行子帧包括第一上行子帧集合和第二上行子帧集合,该第一上行子帧集合和该第二上行子帧集合分别包括至少一个上行子帧,该第一上行子帧集合中的子帧用于传输第一上行数据;该第二上行子帧集合中的子帧用于传输上行控制信息和第二上行数据;
确定单元,用于确定该第一上行子帧集合对应的第一MCS或第一RB,以及确定该第二上行集合对应的第二MCS或第二RB;
发送单元,用于在第一上行子帧集合传输第一MCS或第一RB对应的该第一上行数据以及在第二上行子帧集合传输第二MCS或第二RB对应的该第二上行数据和该上行控制信息。
相应的,根据本发明的另一实施例,提供一种上行控制信息的传输方法,包括:
接入网设备向终端设备发送调度信息和触发信息,该调度信息用于指示该 终端设备在M个上行子帧上传输所调度的上行数据,该上行数据包括第一上行数据和第二上行数据;其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
其中,该M个上行子帧包括第一上行子帧集合和第二上行子帧集合,该第一上行子帧集合和该第二上行子帧集合分别包括至少一个上行子帧,该第一上行子帧集合中的子帧用于传输该第一上行数据;该第二上行子帧集合中的子帧用于传输上行控制信息和第二上行数据;
该接入网设备确定该第一上行子帧集合对应的第一MCS或第一RB,以及确定该第二上行集合对应的第二MCS或第二RB;
接入网设备在第一上行子帧集合上接收第一MCS或第一RB对应的该第一上行数据;在第二上行子帧集合传输第二MCS或第二RB对应的该上行控制信息和第二上行数据。
根据本发明的另一实施例,提供一种接入网设备,包括:
发送单元,用于向终端设备发送调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输该调度信息所调度的上行数据,该上行数据包括第一上行数据和第二上行数据;其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
其中,该M个上行子帧包括第一上行子帧集合和第二上行子帧集合,该第一上行子帧集合和该第二上行子帧集合分别包括至少一个上行子帧,该第一上行子帧集合中的子帧用于传输第一上行数据;该第二上行子帧集合中的子帧用于传输上行控制信息和第二上行数据;
处理单元,用于确定该第一上行子帧集合对应的第一MCS或第一RB,以及确定该第二上行集合对应的第二MCS或第二RB;
接收单元,用于在第一上行子帧集合上接收第一MCS或第一RB对应的第一上行数据;在第二上行子帧集合传输第二MCS或第二RB对应的第二上行数据和该上行控制信息。
本实施例中,在多子帧调度的情况下,可以根据不同上行子帧分别用于传输上行数据的实际资源大小,确定不同的MCS或者RB,这样在节省多子帧调度的信令开销的同时,还可以保证只承载上行数据的上行子帧的上行资源使用效率。
附图说明
图1为多子帧调度示意图;
图2为本发明一个实施例提供的一个上行控制信息传输方法的流程示意图;
图3为多子帧调度下一种子帧关系的示意图;
图4为多子帧调度下另一种子帧关系的示意图;
图5为多子帧调度下另一种子帧关系的示意图;
图6为多子帧调度下另一种子帧关系的示意图;
图7为多子帧调度下另一种子帧关系的示意图;
图8为多子帧调度下另一种子帧关系的示意图;
图9为多子帧调度下另一种子帧关系的示意图;
图10为本发明实施例提供的终端设备一个实施例的结构示意图;
图11为本发明实施例提供的终端设备另一个实施例的结构示意图;
图12为本发明另一个实施例提供的一个上行控制信息传输方法的流程示意图;
图13为多子帧调度下另一种子帧关系的示意图;
图14为一个子帧上行信息资源映射的示意图;
图15为本发明实施例提供的终端设备另一个实施例的结构示意图;
图16为本发明实施例提供的终端设备另一个实施例的结构示意图;
图17为本发明另一个实施例提供的一个上行控制信息传输方法的流程示意图;
图18为多子帧调度下另一种子帧关系的示意图;
图19为多子帧调度下另一种子帧关系的示意图;
图20为本发明实施例提供的终端设备另一个实施例的结构示意图;
图21-23为本发明实施例提供的终端设备中的确定单元实施例的结构示意图;
图24为本发明实施例提供的终端设备另一个实施例的结构示意图;
图25为本发明另一个实施例提供的一个上行控制信息传输方法的流程示意图;
图26为本发明实施例提供的终端设备另一个实施例的结构示意图;
图27为本发明实施例提供的终端设备另一个实施例的结构示意图;
图28为本发明另一个实施例提供的一个上行控制信息传输方法的流程示意图;
图29为本发明实施例提供的接入网设备一个实施例的结构示意图;
图30为本发明实施例提供的接入网设备一个实施例的结构示意图;
图31为多子帧调度下另一种子帧关系的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
虽然在前述背景技术部分以LTE系统为例进行了介绍,但本领域技术人员应当知晓,本发明不仅仅适用于LTE系统,也可以适用于其他无线通信系统,例如全球移动通信系统(Global System for Mobile Communication,GSM),移动通信系统(Universal Mobile Telecommunications Systemc,UMTS),码分多址接入(Code Division Multiple Access,CDMA)系统,以及新的网络系统等。下面以LTE系统为例进行具体实施例的介绍。
许可频段辅助接入的LTE系统是指将许可频段和免许可频段通过CA或者非CA的方式(例如DC)在一起使用的LTE系统。
许可频段辅助接入的LTE系统的主流部署场景是将许可频段和免许可频段通过载波聚合CA联合使用的场景,即将许可频段或许可频段包括的载波或工作在许可频段上的小区作为主小区,将免许可频段或免许可频段包括的载波或工作在免许可频段上的小区作为辅小区,其中主小区和辅小区可以共站部署,也可以是非共站部署,两个小区之间有理想的回传路径。
但本发明也不限于上述CA的场景,其他部署场景,还包括两个小区(主小区和辅小区)之间没有理想回传路径的场景,比如回传延迟较大,导致两个 小区之间无法快速的协调信息。例如DC场景。
此外,还可以考虑独立部署的工作在免许可频段上的小区,即此时工作在免许可频段上的服务小区直接可以提供独立接入功能,不需要通过工作在许可频段上小区的辅助,例如standalone LTE over unlicensed spectrum(Standalone U-LTE)系统。
无论是许可频段,还是免许可频段,在本发明中,都可以包括一个或多个载波,许可频段和非许可频段进行载波聚合,可以包括许可频段包括的一个或多个载波与非许可频段包括的一个或多个载波进行载波聚合。
本发明中,提到的小区可以是基站对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
LTE系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为LTE系统中的载波与小区的概念等同。例如在CA场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(Cell Indentify,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。DC以及standalone U-LTE也可以基于这种理解。本发明中将以小区的概念来介绍。
本发明实施例涉及的网元包括可以工作在免许可频段上的接入网设备和终端设备。
本发明结合终端设备描述了各个实施例。终端设备也可以称为用户设备(UE,User Equipment)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN(Wireless Local Area Networks,无线局域网)中的ST(STAION,站点),可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设 备、可穿戴设备以及未来5G网络中的移动台或者未来演进的PLMN网络中的终端设备等。
此外,在本发明实施例中,终端设备还可以包括中继(Relay),其他能够和接入网设备(例如,基站)进行数据通信的设备,等。
本发明结合接入网设备描述了各个实施例。接入网设备可以是用于与移动台通信的设备,接入网设备可以是WLAN(Wireless Local Area Networks,无线局域网)中的AP(ACCESS POINT,接入点),GSM或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的接入网设备或者未来演进的PLMN网络中的接入网设备等。
本发明实施例所涉及的上行控制信息指终端设备向接入网设备反馈的控制信息。上行控制信息可以包括:信道状态信息CSI,探测参考信号SRS或混合自动重传请求确认应答(Hybrid Automatic Repeat Request Acknowledgement,HARQ-ACK),其中HARQ-ACK包括确认应答ACK(Acknowledgement)或否认应答NACK(Negative Acknowledgement),还可以包括非连续发送DTX(Discontinuous Transmission)。其中信道状态信息CSI优选地,可以指非周期CSI,当然也不排除周期CSI。CSI具体又可以包括信道质量指示(Channel Quality Indicator,CQI)、预编码指示(Precoding Matrix Indicator,PMI)、秩指示(Rank Indicator,RI)中的至少一种。CSI可以用于反映接入网设备与终端设备之间的信道质量,接入网设备通过检测接收到的SRS,也可以确定接入网设备与终端设备之间的信道质量,接入网设备确定该信道质量之后,可以根据该信道质量,设置合适的传输方式,在保证与终端设备之间可靠的数据传输同时,提升数据传输效率;接入网设备通过接收终端设备反馈的HARQ-ACK,可以确定调度给该终端设备的下行数据是否被该终端设备正确接收,如果确定调度的数据被正确接收,那么该接入网设备可以执行新数据的传输,如果确定调度的数据没有被正确接收,那么该接入网设备可以重传该数据,这样可以保证被调度的下行数据的可靠传输。
需要说明的是,在本发明实施例中,一个子帧的时间长度为1毫秒(1ms,1 millisecond)。一个子帧对于正常循环前缀情况包括14个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,对于扩展循环前缀情况包括12个OFDM符号,当然也不排除将来继续演进的LTE系统或其他无线系统采用更短的子帧,比如将来的子帧的时间长度与当前一个OFDM符号的时间长度相当。例如,对于支持短传输间隔(Short Transmission Time Interval,S-TTI)的LTE系统而言,可以将1个子帧理解为1个时隙(Slot)表示,也可以用一个或多个(例如,小于7的正整数个或小于6的正整数个)OFDM符号表示。一个子帧可以理解为调度的一个基本时间单位。在本发明实施例中,一个时间长度为N个OFDM符号的子帧与一个时间长度为N个OFDM符号的传输时间间隔(Transmission Time Interval,TTI)表达的含义可以一致。对于正常循环前缀情况,N可以不大于14,对于扩展循环前缀,N可以不大于12。
在本发明实施例中,一个子帧中用于信息传输的时间长度可以等于一个子帧的时间长度,也可以小于一个子帧的时间长度。例如,如果一个下行子帧的时间长度为1ms,那么该子帧中用于下行信息传输的时间长度可以等于1ms,也可以小于1ms。又例如,如果一个上行子帧的时间长度为1ms,那么该子帧中用于上行信息传输的时间长度可以等于1ms,也可以小于1ms。可选地,如果一个子帧的时间长度为1ms,当1个子帧中用于下行信息传输的时间长度小于1ms时,该子帧中还可以包括上行信息。此外,该子帧中还包括用于上下行转换的转换时间。例如,对于接入网设备而言,上下行转换时间可以理解为下行发送和上行接收之间的转换时间;对于终端设备而言,上下行转换时间可以理解为下行接收和上行发送之间的转换时间。
在本发明实施例中,下行子帧和上行子帧的时间长度可以相同,也可以不同。
在本发明实施例中,上行信息对应的是由终端设备发送给接入网设备的信息。上行信息包括上行数据、上行参考信号、上行控制信息、承载在物理随机接入信道(Physical Random Access Channel,PRACH)中的信息。上行数据可以对应UL-SCH中承载的数据(也可以理解为上行业务数据),上行参考信号 包括上行解调参考信号(Demodulation Reference Signal,DMRS)。上行控制信息包括以下至少一项:信道状态信息(Channel State Information,CSI)、调度请求(Scheduling Request,SR),HARQ-ACK,探测参考信号(Sounding Reference Signal,SRS)。在本发明实施例中,可以将SRS理解为上行控制信息的一种。上行控制信息可以承载在物理上行控制信道(Physical Uplink Control Channel,PUCCH)中,也可以承载在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)中。
在本发明实施例中,下行信息对应的是由接入网设备例如LTE基站发送给终端设备的信息。下行信息可以包括承载在下行物理信道中的数据,和/或下行参考信号。所述下行物理信道包括以下至少一项:物理下行共享信道(Physical Downlink Shared Channel,PDSCH),物理广播信道(Physical Broadcast Channel,PBCH),物理多播信道(Physical Multicast Channel,PMCH),物理控制格式指示信道(Physical Control Format Indicator Channel,PCFICH),物理下行控制信道(Physical Downlink Control Channel,PDCCH),物理混合自动重传请求指示信道(Physical Hybrid ARQ Indicator Channel,PHICH),增强物理下行控制信道(Enhanced Physical Downlink Control Channel,EPDCCH),MTC物理下行控制信道(MTC Physical Downlink Control Channel,MPDCCH)。所述下行参考信号包括以下至少一项:小区特定参考信号(Cell-specific Reference Signal,CRS),多媒体广播多播服务单频网络参考信号(Multimedia Broadcast Multicast Service Single Frequency Network Reference Signal,MBSFNRS),用于解调PDSCH承载数据的用户设备特定参考信号(UE-specific Reference Signal,DM-RS),用于解调EPDCCH或MPDCCH承载数据的参考信号(DeModulation Reference Signal,DM-RS),定位参考信号(Positioning Reference Signal,PRS),信道状态信息参考信号(CSI Reference Signal,CSI-RS)。
LTE系统下的上行数据传输一般是基于调度的。以LTE系统下的终端设备为例,在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输数据时,所占用的时频资源(时间资源和/或频率资源)是接入网设备例如 基站指示的。例如,基站通过上行准许(Uplink Grant,UL grant)控制信息将终端设备传输上行数据时所占用的时频资源指示给终端设备。多子帧调度场景,接入网设备可以通过多子帧调度信令,调度终端设备在多个上行子帧内传输上行数据。例如,基站可以在子帧n通过一个或多个UL grant调度终端设备在多个子帧中包括的PUSCH上传输上行数据。如图1所示,基站可以通过子帧n承载的一个或者多个UL grant触发同一个终端设备(例如用户设备,User Equipment,UE)在子帧n+4/n+5/n+6/n+7传输上行数据。基站可以通过上行调度信令(例如UL grant)中包括的触发信息,指示用户设备反馈上行控制信息。在多子帧调度情况下,由于调度信令可以调度至少两个上行子帧,当终端设备在传输上行数据的子帧上传输上行控制信息,如何在至少两个上行子帧中确定传输上行控制信息的子帧,是待解决的问题。
以上行控制信息为非周期CSI为例。现有技术中,承载非周期CSI的子帧与承载触发非周期CSI上报的触发信息的子帧之间具有预配置的时间关系,例如,对于频分双工(Frequency Division Duplex,FDD)系统,假设UE在子帧n接收非周期CSI触发指示信息,该非周期CSI触发指示信息可以承载在物理下行控制信道(Physical Downlink Control Channel,PDCCH)或者增强物理下行控制信道(Enhanced Physical Downlink Control Channel,EPDCCH)中,该非周期CSI触发指示信息可以理解为PDCCH或EPDCCH中承载的CSI请求域(CSI request field)中包含的信息,则该UE在子帧n+4上报非周期CSI,该非周期CSI承载在UL grant指示的上行资源中。又例如,对于时分双工(Time Division Duplex,TDD)系统,仍然假设UE在子帧n接收到上行调度指示信息(承载在UL grant中),并且该指示信息中包括非周期CSI触发信息,则该UE在子帧n+k上报非周期CSI,其中k为正整数,且k的取值与TDD系统的上下行配比以及n的取值有关。具体的,例如如下表1所示。表1中,以TDD配比0为例,如果UE在子帧0接收到非周期CSI触发信令,则UE在子帧4上报非周期CSI。
表1 TDD配比0-6对应的k值
Figure PCTCN2016082123-appb-000001
基于上述描述,可以观察到,利用现有技术,上报CSI的上行子帧在预配置的上行子帧位置,该预配置的上行子帧是n+4以及n+4之后的子帧中距离子帧n最近的上行子帧。
在多子帧调度技术中,如果接入网设备和终端设备利用免许可频段资源进行数据传输,那么在数据传输之前,一般而言,需要接入网设备和/或终端设备通过竞争机制例如CCA来确定是否可以使用免许可频段资源进行数据传输。按照现有技术,如果子帧n承载的UL grant中包括非周期CSI触发指示信息,则UE在子帧n+4利用PUSCH资源传输非周期CSI。如果UE在子帧n+4没有竞争到免许可频段资源,则根据现有技术,即使UE在后续子帧(例如子帧n+5/n+6/n+7)还存在被调度的上行资源,也无法传输非周期CSI,从而会影响下行数据传输的效率。
上述问题对于SRS传输,以及HARQ-ACK传输同样存在,在此不做赘述。
实施例一
为了保证上行控制信息的上报机会,提高从免许可频段下行数据传输的效率,本发明提供了一个上行控制信息的传输方法的实施例,该实施例可以应用于U-LTE(LTE over unlicensed spectrum)系统中的多子帧调度场景。需要说明的是,U-LTE系统是指工作在免许可频段的LTE系统,可以包括将许可频段资源和免许可频段资源以CA方式联合使用的LTE系统(LAA-LTE系统),也可以包括将许可频段资源和免许可频段资源以双连接(Dual Connectivity,DC)方式联合使用的LTE系统,也可以包括独立部署在免许可频段资源的LTE系统(standalone U-LTE)。
参考图2,本发明提供的一个上行控制信息的传输方法的实施例,该方法可以应用于工作在免许可频段的LTE系统,该方法包括如下步骤:
S201:终端设备接收来自接入网设备的调度信息和触发信息,所述调度信息用于指示该终端设备在M个上行子帧上传输所述调度信息所调度的上行数据,其中M为不小于2的正整数;所述触发信息用于指示所述终端设备发送上行控制信息;
S202:该终端设备在该M个上行子帧中确定一个上行子帧用于承载该上行控制信息;该确定的上行子帧为该M个上行子帧中除第一子帧外的其他子帧,该第一子帧为M个上行子帧中时序上的第一个上行子帧;
S203:该终端设备在该确定的上行子帧上发送上行控制信息。
需要说明的是,在本发明实施例中,如果接入网设备和终端设备之间的数据传输承载在免许可频段,则接入网设备在使用免许可频段传输下行信息之前,或者终端设备在使用免许可频段传输上行信息之前,一般需要使用空闲信道评估(Clear Channel Assessment,CCA)确定免许可频段资源是否可用。本发明实施例中涉及的附图只是为了说明执行CCA,但不限定具体CCA的位置;此外,本发明实施例中涉及的附图有的只是为了说明采用本发明实施例,确定的用于承载上行控制信息的上行子帧位置,所以忽略了CCA的位置,但实际中,可能需要执行CCA,或者不需要执行CCA。
在本发明实施例中,所述调度信息用于指示所述终端设备在M个上行子帧上传输所述调度信息所调度的上行数据,可以理解为:所述调度信息用于指示所述终端设备在M个上行子帧上传输上行数据,所述上行数据是被所述调度信息所调度的;也可以理解为:所述调度信息用于指示所述终端设备传输所述调度信息调度的上行数据,具体在几个上行子帧上和/或具体在哪几个上行子帧上传输可以使用该调度信息指示,也可以采用其他方式。
在本发明实施例中,调度信息可以用于指示以下至少一项:被调度的上行数据对应的的传输格式例如被调度的上行数据在对应的时频资源上传输时,在频率上的位置是否需要跳频、被调度的上行数据对应的资源分配(Resource Allocation)、被调度的上行数据对应的功率控制信息或被调度的上行数据对应的新传或重传信息、被调度的上行数据对应的MCS等、被调度的上行数据对应的上行子帧个数可以对应本发明实施例中的M。
在本发明实施例中,调度信息可以是下行控制信息(Downlink Control Information,DCI)中包括的某个或某些信息字段,也可以就是DCI中包括的全部信息字段,调度信息可以承载在下行物理控制信道(Physical Downlink Control Channel,PDCCH)和/或增强下行物理控制信道(Enhanced PDCCH,EPDCCH)中,也可以承载在其他信道,本发明不做具体限定。
在本发明实施例中,所述调度信息可以是用户特定(UE specific)的指示信息,例如只对某个终端设备或者某个终端设备群组有效,所述调度信息还可以是小区特定(Cell specific)的指示信息,例如对小区内所有链接态的终端设备或者所有将该小区作为服务小区的终端设备(包括链接态和空闲态的终端设备)有效。
可选地,在本发明实施例中,调度信息可以是上行准许(Uplink Grant,UL grant)控制信息中包括的信息字段,例如调度信息可以包括以下至少一项:载波指示(Carrier Indicator),跳频标志(Frequency hopping flag),资源块分配和跳跃资源分配(Resource block assignment and hopping resource allocation),调制编码方案(Modulation Coding Scheme,MCS),冗余版本(Redundancy version,RV)指示,上行解调参考信号(Demodulation Reference Signal,DMRS)对应的循环移位(Cyclic shift,CS)和正交扩频码(Orthogonal Cover Code,OCC),新数据指示(New data indicator,NDI)。进一步可选地,调度信息包括以DCI格式0(DCI Format 0)或者以DCI格式4(DCI Format 4)传输的控制信息中包括的信息字段,还可以包括基于DCI格式0增强的DCI格式(为了便于描述,可以称为DCI格式0增强格式)或者基于DCI格式4增强的DCI格式(同理,为了便于描述,可以称为DCI格式4增强格式)传输的控制信息中包括的信息字段。需要说明的是,按照现有技术,一般而言,以频分双工(Frequency Division Duplex,FDD)系统为例,DCI Format 0用于指示终端设备在一个上行子帧传输DCI format 0所调度的上行数据,该上行数据对应一个传输块(Transmission Block,TB)或者说对应一个码字(Codeword);DCI Format 4用于指示终端设备在一个上行子帧传输DCI format 4所调度的上行数据信息,该上行数据对应两个传输块TB或对应两个码字。这里的DCI Format 0增强格式,可以理解,以DCI Format 0为基础,增添必要的信息字段,以支持采用1个调度信息同时调度多个上行UL子帧。对于DCI Format 4增强格式,可 以理解,以DCI format 4为基础,增添必要的信息字段,以支持采用1个调度信息同时调度多个上行子帧,其中每个上行子帧可以支持对两个传输块的传输。
该实施例中,该确定的上行子帧至多包括一个子帧。确定至多一个上行子帧用于承载所述上行控制信息,可以节省上行控制信息的资源开销。
一个实施例中,该调度信息与该触发信息承载在相同的下行控制信息中,例如,调度信息和触发信息都承载在UL grant中。
在本发明实施例中,所述调度信息与所述触发信息承载在相同的下行控制信息(Downlink Control Information,DCI)中。例如,所述调度信息和所述触发信息承载在一个UL grant中,所述UL grant用于指示该终端设备传输上行数据和上行控制信息,所述触发信息可以是UL grant中包括的非周期CSI请求(CSI request)。需要说明的是,当上行控制信息为SRS时,所述触发信息可以是UL grant中包括的SRS请求(SRS request)。需要说明的是,当上行控制信息为HARQ-ACK时,所述触发信息可以理解为对应该HARQ-ACK的下行数据或该HARQ-ACK对应的PDSCH传输。例如,假设终端设备在子帧n接收到接入网设备发送的下行数据(承载在PDSCH中的下行业务数据)或者说在子帧n检测到接入网设备发送的PDSCH传输,按照预配置的HARQ定时关系,该终端设备可以在子帧n+4发送对应该下行数据的HARQ-ACK,在本发明实施例中,可以将子帧n接收到的下行数据或者在子帧n检测到的PDSCH传输,理解为“用于指示该终端设备发送上行控制信息(HARQ-ACK)的触发信息”。需要说明的是,当上行控制信息为HARQ-ACK时,所述触发信息还可以理解为对应该HARQ-ACK的下行控制信道,该下行控制信道限定如下:终端设备通过检测该下行控制信道,可以在检测到的下行控制信息调度的下行数据信道中接收下行数据。在本发明实施例中,也不排除HARQ-ACK对应的触发信息为其他形式的指示信息,也不排除HARQ定时关系是通过信令指示的。
一个实施例中,该调度信息与该触发信息承载在相同的下行子帧中。在本发明实施例中,用于指示终端设备发送上行控制信息的触发信息,与调度信息承载在相同的子帧。或者可选地,包括该触发信息的子帧在时序上在包括该调度信息的子帧之前,当然也不排除包括该触发信息的子帧在时序上在包括该调 度信息的子帧之后且在M个上行子帧中的第一个上行子帧之前。
一个实施例中,上行控制信息包括信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
参考图3中的多子帧调度下子帧关系的示意图,下行子帧n上发送调度信息,例如UL grant。子帧n+4、子帧n+5、子帧n+6、子帧n+7为下行子帧n调度的上行子帧(即M=4)。以CSI为例,终端设备在子帧n接收到触发信息,该触发信息指示该终端设备发送上行控制信息例如非周期信道状态信息(Channel State Information,CSI),那么终端设备可以确定在子帧n+4、子帧n+5、子帧n+6、子帧n+7中的一个上行子帧中发送CSI,在本发明实施例中,终端设备确定的用于传输CSI的上行子帧可以是子帧n+4~子帧n+7中除第一个上行子帧之外的其他子帧,即图3中的子帧n+5、子帧n+6、子帧n+7中的任意一个都可以作为承载上行控制信息的上行子帧。
该实施例中,在传输上行数据的M个上行子帧中,使用除第一子帧外的其他子帧承载上行控制信息,终端设备在传输该上行控制信息之前,可以至少在两个上行子帧之前执行CCA;或者说,终端设备可以在多个包括上行共享信道(Uplink Shared Channel,UL-SCH)的上行子帧中的至少一个上行子帧之前做CCA,只要有一个CCA成功,终端设备就可以在确定的上行子帧中发送该上行控制信息。这样,就可以尽可能地保证上行控制信息的传输机会,进而保证了免许可频段上可靠有效的数据传输。例如,如图3所示,如果终端设备将子帧n+7确定为承载上行控制信息的上行子帧,则该终端设备可以在确定竞争到免许可频段之前,在多个上行子帧的至少一个前面做CCA,例如即使该终端设备在子帧n+4、子帧n+5、子帧n+6没有竞争到免许可频段资源,仍然可以在子帧n+7之前执行CCA,确定是否可以在子帧n+7传输上行控制信息,这样通过增加在传输上行控制信息之前,终端设备竞争免许可频谱资源的机会,可以尽可能地保证上行控制信息的传输。
可选地,该终端设备在该确定的上行子帧上发送上行控制信息之前,在多个上行子帧的至少一个前面做CCA,其中多个上行子帧是指M个上行子帧中包括的至少两个上行子帧。例如前例中,如果终端设备确定子帧n+7为承载上行控制信息的子帧,那么终端设备可以在子帧n+4、子帧n+5、子帧n+6中的至少一个上行子帧前面做CCA。
该实施例中,该终端设备可以通过多种方式在该M个上行子帧中确定承载该上行控制信息的上行子帧。
实现方式一:终端设备确定M个上行子帧中时序上的最后一个子帧,或者,时序上的倒数第二个子帧,作为承载该上行控制信息的上行子帧。
以图3为例,假设终端设备在子帧n接收到接入网设备发送的一个UL grant,该UL grant指示所述终端设备在子帧n+4、子帧n+5、子帧n+6、子帧n+7传输上行数据,该上行数据承载在PUSCH中,进一步地,该UL grant中包括的非周期CSI请求(CSI request),且该CSI request指示该终端设备传输非周期CSI。采用实现方式一,终端设备可以在子帧n+7传输非周期CSI,或者在子帧n+6传输非周期CSI,如果该终端设备通过CCA,可以确定在子帧n+6或者子帧n+7竞争到免许可频段资源。
时序上的最后一个子帧用来传输上行控制信息的好处是,可以尽可能保证上行控制信息的传输机会。因为即使该终端设备在第一个被调度的上行子帧没有竞争到免许可频段资源,也可以在后续上行子帧数据传输之前继续评估免许可频段资源是否可用,在这种情况下,通过本方案,将承载非周期CSI上报的子帧尽可能配置在或指示在被调度的多个上行子帧中较为靠后的位置,相当于为承载该非周期CSI上报的子帧提供了更多的CCA机会,进而尽可能地保证了非周期CSI上报的传输。
时序上的倒数第二个子帧用来传输上行控制信息的好处是,在某些情况下,可以保证上行控制信息的无损传输。考虑到如下情况,M个上行子帧之后可能是一个下行子帧,如图4所示,一般而言,接入网设备在进行下行信息传输之前,需要先执行CCA。为了保证下行信息的传输可以从下行子帧中包括的第一个OFDM符号开始,该下行子帧之前的最后一个上行子帧的一部分时间不能用于传输上行信息,以便于接入网设备可以在这部分时间内进行CCA,从而保证下行信息可以从一个下行子帧的第一个OFDM符号开始传输。在这种情况下,由于最后一个上行子帧的一部分时间不能用于上行信息传输,所以在这种情况下,如果仍将非周期CSI信息承载在所述M个上行子帧中的最后一个子帧,会影响非周期CSI的传输性能。所以基于这种情况,可以将非周期CSI承载在所述M个上行子帧中的倒数第二个子帧,例如图4中的子帧n+6。
需要说明的是,在本发明实施例中,所述调度信息用于指示所述终端设备在M个上行子帧上传输所述调度信息所调度的上行数据,可以包括所述调度信息用于指示所述终端设备在M个上行子帧中用于上行信息传输的时间长度内传输上行信息。
实现方式二:终端设备在子帧n接收所述调度信息,终端设备确定上行突发中时序上最后一个或倒数第二个上行子帧,作为承载该上行控制信息的上行子帧。其中,该上行突发指M个上行子帧中包含的在时间上连续占用的多个上行子帧;该上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
更为一般地,在本发明实施例中,终端设备确定该上行突发中任意一个上行子帧,作为承载该上行控制信息的上行子帧,其中该任意一个上行子帧不是M个上行子帧中的第一个上行子帧。
或者,实现方式二,也可以理解为:所述终端设备在子帧n接收所述调度信息;终端设备确定第一上行突发中时序上最后一个或倒数第二个上行子帧,作为承载该上行控制信息的上行子帧。其中所述M个上行子帧组成的上行子帧集合包括第一上行突发和第二上行突发,其中第一上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
更为一般地,在本发明实施例中,终端设备确定第一上行突发时序上任意一个上行子帧,为承载上行控制信息的上行子帧,其中该任意一个上行子帧不包括M个上行子帧中的第一个上行子帧。
在本发明实施例中,上行突发(Uplink Burst,UL burst)包括,在时间上连续占用的多个上行子帧。在本发明实施例中,这多个上行子帧中可以包括用于CCA的时间区域(例如图5所示),也可以不包括用于CCA的时间区域(例如如图6所示),其中图6中,空闲的时间单位至少可以用于其他终端设备进行CCA。
在本发明实施例中,下行突发是指时间上连续占用的多个下行子帧。具体的,基站(例如eNB)或基站下的小区(Cell)在抢占到非授权频谱资源之后,不需要再通过竞争机制例如CCA而利用该非授权频谱资源进行的数据传输。一个下行突发的时间长度不大于该基站(或该小区)在该非授权频谱资源上不需要再通过竞争机制而可以连续传输的最大时间,该最大时间也可以称为最大 信道占用时间(Maximum Channel Occupied Time,MCOT)。MCOT可以与地域法规约束有关,例如在日本,MCOT可以等于4ms,在欧洲,MCOT可以等于8ms,或者10ms,或者13ms;MCOT也可以与侦听设备(例如基站、用户设备)采用的竞争机制有关,一般而言,侦听时间越短,MCOT就越短;MCOT的长度还可以与数据传输的业务等级有关,例如以互联网电话业务为例,该业务优先级较高,则一般MCOT可以为2ms或者基站在竞争到免授权频谱资源之后,可以连续占用2毫秒;以数传业务为例,该业务优先级较低,则一般可以连续占用8或10毫秒。
以图7为例,终端设备在子帧n+3接收到接入网设备发送的调度信息,该调度信息指示该终端设备在子帧n+7、子帧n+8、子帧n+12、子帧n+13传输上行数据。其中子帧n+7和子帧n+8所在的上行突发是紧挨着子帧n+3所在的下行突发的上行突发,子帧n+12、子帧n+13所在的上行突发不是紧挨着子帧n+3所在的下行突发的上行突发,在实现方式二中,承载该上行控制信息的上行子帧可以为子帧n+8。
需要说明的是,在本发明实施例中,子帧n+x可以用来表示与子帧n之间具有特定相对关系的子帧,即子帧n+x表示子帧n向后延迟x个子帧对应的子帧。具体子帧n+x对应的子帧索引号,可以通过n+x对10取模得到。例如假设n=4,x=7,那么子帧n+x表示的是子帧4所在的无线帧之后的第一个无线帧中子帧索引号为1的子帧。
采用实现方式二的好处在于,将上行控制信息承载在距离子帧n+3(承载调度信息的子帧)所在的下行突发最近的上行突发的好处在于,可以使接入网设备尽早获得此反馈信息,因为一般而言,该上行突发之后会跟着一个下行突发,因此如果接入网设备在子帧n+7或者子帧n+8就接收到终端设备反馈的上行控制信息,就可以根据此上行控制信息,为下一个下行突发中的下行数据设置合适的MCS,从而提升免许可频段资源的下行数据传输效率。
实现方式三:终端设备确定其他子帧中用于上行信息传输的OFDM符号个数不小于设定阈值的子帧,作为承载该上行控制信息的上行子帧。其中,其他子帧为M个上行子帧中除第一子帧外的子帧。
设定阈值可以包括不小于可以承载上行控制信息的OFDM符号个数。以非周期CSI为例,设定阈值可以包括14个OFDM符号。这样做的好处在于, 可以保证上行控制信息的传输效率,还可以令上行控制信息的传输复用现在LTE系统设计准则,简化系统设计。
可选地,在M个上行子帧中,除第一子帧之外,如果包括多个上行子帧满足如下条件:用于上行信息传输的OFDM符号个数不小于设定阈值的子帧,那么终端设备可以将这多个上行子帧中在时序上的最后一个上行子帧,作为承载该上行控制信息的上行子帧。例如,如果M个上行子帧中在时序上的最后一个上行子帧(如图4中的子帧n+7)用于上行信息传输的OFDM符号个数小于14个OFDM符号,而M个上行子帧中在时序上的倒数第二个上行子帧用于上行信息传输的OFDM符号个数等于14个OFDM符号,那么终端设备可以确定M个上行子帧中在时序上的倒数第二个上行子帧,为承载该上行控制信息的上行子帧。
在本发明实施例中,终端设备可以通过调度信息或其他指示信息,确定被调度的每个上行子帧中可以用于上行信息传输的OFDM符号个数,进而可以确定用于上行信息传输的OFDM符号个数与设定阈值之间的关系。如果确定的OFDM符号个数不小于设定阈值,则对应的上行子帧可以用于传输上行信息。进一步的,终端设备可以将确定出的上行子帧按照时间前后顺序(即时序关系),将第一个满足与设定阈值关系的上行子帧作为用于传输上行控制信息的上行子帧,这样做的好处在于,可以使得接入网设备较早获得信道状态信息;或者,终端设备也可以将确定出的上行子帧按照时间前后顺序,将最后一个满足与设定阈值关系的上行子帧作为用于传输上行控制信息的上行子帧,这样做的好处在于,同前所述,可以保证上行控制信息的传输机会。结合图3,接入网设备通过子帧n发送调度信息时,可以假设终端设备在子帧n+4之前可以竞争到免许可频段资源,因此,接入网设备针对子帧n+5~n+7发送的调度信息,调度的上行数据可以是在14个OFDM符号上传输,终端设备接收到此调度信息或指示信息之后,可以确定子帧n+5~子帧n+7用于上行信息传输的OFDM符号个数不小于设定阈值(例如14个OFDM符号个数),在此情况下,子帧n+5~子帧n+7中的任何一个子帧都可以作为本发明实施例中用于承载上行控制信息的上行子帧。再结合图4,接入网设备通过子帧n发送调度信息时,可以假设终端设备在子帧n+4之前可以竞争到免许可频段资源,同时考虑到子帧n+7之后由于接入网设备需要发送下行信息,因此子帧n+7用于上行信息传输 的OFDM符号个数小于14个OFDM符号,因此,接入网设备针对子帧n+5和子帧n+6发送的调度信息,调度的上行数据可以是在14个OFDM符号上传输,但针对子帧n+7发送的调度信息,调度的上行数据只能在一部分OFDM符号上传输。终端设备收到此调度信息或指示信息后,可以确定子帧n+5和子帧n+6用于上行信息传输的OFDM符号个数不小于设定阈值,但子帧n+7用于上行信息传输的OFDM符号小于设定阈值,在这种情况下,终端设备可以将子帧n+6确定为承载上行控制信息的上行子帧。
在本发明实施例中,设定阈值可以是标准协议规范的,或者是高层信令通知的,高层信令包括无线资源控制(Radio Resource Control,RRC)信令,也包括媒体介入控制(Medium Access Control,MAC)信令。也不排除采用物理层信令通知此阈值。
实现方式四:终端设备在子帧n接收所述调度信息,终端设备确定M个上行子帧中除去第一个子帧之外的,且与所述子帧n在相同的最大信道占用时间(Maximum Channel Occupancy Time,MCOT)内的任意一个上行子帧,为承载该上行控制信息的上行子帧。可选地,终端设备可以确定M个上行子帧中除去第一个子帧之外的,且与所述子帧n在相同的MCOT内的最后一个或者倒数第二个上行子帧,作为承载该上行控制信息的上行子帧;或者,可选地,终端设备可以确定M个上行子帧中除去第一个子帧之外的,且与所述子帧n在相同的MCOT内且用于上行信息传输的OFDM符号个数不小于设定阈值的上行子帧中在时序上的最后一个或者倒数第二个上行子帧,作为承载该上行控制信息的上行子帧
如图8所示,假设接入网设备在子帧n开始传输下行信息,且该免许可频段上MCOT设置为8ms,那么该MCOT包括的时间范围从子帧n的子帧起始边界开始到子帧n+8的子帧起始边界结束。进一步假设终端设备在子帧n+2接收到调度信息,该调度信息指示该终端设备在子帧n+6、子帧n+7、子帧n+8、子帧n+9传输上行数据,则采用该实现方式四,终端设备可以确定子帧n+7为承载上行控制信息的上行子帧。采用实现方式四,是因为在MCOT内,终端设备可以采用优先级高的CCA,因此更容易竞争到免许可频段资源,进而保证上行控制信息的传输。优先级高的CCA相对于优先级低的CCA,更容易竞争到免许可频段资源,优先级高的CCA例如可以为不包括随机回退参数的 LBT,例如one-shot LBT。
实现方式五:终端设备在子帧n接收所述调度信息,终端设备确定M个上行子帧中除去第一个子帧之外,且不需要空闲信道评估(CCA)的任意一个子帧,为承载该上行控制信息的上行子帧。可选地,确定的用于承载该上行控制信息的上行子帧,为M个上行子帧除去第一个子帧之外,且不需要CCA的上行子帧中在时序上的第一个上行子帧;可选地,确定的用于承载该上行控制信息的上行子帧,为M个上行子帧除去第一个子帧之外,且不需要CCA且用于上行信息传输的OFDM符号个数不小于设定阈值的上行子帧中在时序上的的第一个上行子帧。如图9所示,终端设备在子帧n+3接收到接入网设备发送的调度信息,该调度信息指示该终端设备在子帧n+7、子帧n+8、子帧n+12、子帧n+13传输上行数据。其中对于上行子帧n+12,由于其紧挨着一个下行突发的最后一个下行子帧,并且如果该上行子帧中用于传输上行信息的时间起始边界与最后一个下行子帧用于传输下行信息的时间结束边界之间的时间差小于特定阈值(例如特定阈值可以为16微秒),则终端设备在子帧n+12传输被调度的上行数据时,可以不通过CCA而直接使用免许可频段资源传输上行信息。进一步地,对于不通过CCA进行上行信息传输的时间长度一般而言有限制,例如为1ms,因此,终端设备在子帧n+13传输被调度的上行数据时,需要通过CCA确定免许可频段资源是否可用。
通过实现方式五,终端设备可以确定上行子帧n+12为承载上行控制信息的上行子帧。这样做的好处在于:由于终端设备不需要通过CCA确定在子帧n+12是否可以传输上行信息,相反地,可以直接利用子帧n+12传输上行控制信息,可以保证上行控制信息的传输机会。需要说明的是,在图9中,尽管没有包括对应上行子帧n+8的CCA,但对应上行子帧n+8的CCA是否存在,取决于终端设备在上行子帧n+7是否可以竞争到免许可频段资源,如果终端设备在子帧n+7竞争到免许可频段资源,那么对应上行子帧n+8的CCA不存在;相反地,如果终端设备在子帧n+8没有竞争到免许可频段资源,那么对应上行子帧n+8的CCA存在。也就是说,对应上行子帧n+8的CCA在一定概率上不存在。在实现方式五中,强调的是,用于承载上行控制信息的上行子帧对应的CCA是确定不存在的,因此,在实现方式五中,上行子帧n+8不适用于作为承载上行控制信息的上行子帧。需要说明的是,在本发明实施例中,对应上 行子帧的CCA存在,是指终端设备在该上行子帧传输上行信息之前,需要先通过CCA确定免许可频段资源是否可用。对应上行子帧的CCA不存在,是指终端设备在该上行子帧传输上行信息之前,不需要通过CCA确定免许可频段资源可用,而可以直接使用免许可频段资源。
应该指出,以上实现方式一或实现方式二或实现方式四或实现方式五可以与实现方式三组合使用。例如,M个上行子帧中时序上的最后一个子帧,或者,时序上的倒数第二个子帧,用于上行信息传输的OFDM符号个数不小于设定阈值时,可以作为承载该上行控制信息的上行子帧。例如,上行突发中时序上最后一个或倒数第二个上行子帧,用于上行信息传输的OFDM符号个数不小于设定阈值时,可以作为承载该上行控制信息的上行子帧。又例如,与包括调度信息的下行子帧在相同MCOT内的M个上行子帧中除去第一个子帧之外的其他任意一个子帧,用于上行信息传输的OFDM符号个数不小于设定阈值时,可以作为承载该上行控制信息的上行子帧。又例如,除去M个上行子帧中的第一个上行子帧之外,且不需要空闲信道评估(CCA)的任意一个子帧,当用于上行信息传输的OFDM符号个数不小于设定阈值时,可以作为承载该上行控制信息的上行子帧。
需要说明的是,通过实现方式一~实现方式五确定的承载上行控制信息的上行子帧,由于上行子帧位置确定,即使免许可频段上存在隐藏节点引入的干扰,接入网设备和终端设备之间也不会对承载上行控制信息的上行子帧有不同的理解,从而保证了上行控制信息的准确传输。这里的隐藏节点,包括终端设备在向接入网设备发送上行信息之前需要做CCA,终端设备在执行CCA过程中侦听不到的节点(该节点正在发送数据)的数据发送对接入网设备接收该终端设备发送的上行信息如果造成接收干扰,那么该节点就可以看为终端设备的隐藏节点。
以上实施例从终端设备的角度进行描述。在此实施例下,接入网设备可以发送指示信息,该指示信息指示用于承载上行控制信息的上行子帧,其中,该上行子帧为M个上行子帧中除第一子帧之外的其他子帧。可选地,该上行子帧具有上述终端设备的实施例所限定的特征。
对应于上述方法,本发明提供一种终端设备,该终端设备可以应用于U-LTE系统中的多子帧调度场景,该终端设备可以执行上述方法实施例中的各个步骤。
参考图10,一个实施例中,该终端设备包括:
接收单元1001,用于接收来自接入网设备的调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输该调度信息所调度的上行数据,其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
确定单元1002,用于在该M个上行子帧中确定一个上行子帧用于承载该上行控制信息;该确定的上行子帧为该M个上行子帧中除第一子帧外的其他子帧,该第一子帧为M个上行子帧中第一个上行子帧;
发送单元1003,用于在该确定的上行子帧上发送上行控制信息。
一个实施例中,该确定单元确定的上行子帧为该M个上行子帧中时序上的最后一个子帧,或者,时序上的倒数第二个子帧。
一个实施例中,该接收单元在子帧n接收该调度信息;该确定单元用于确定该M个上行子帧包含的上行突发中时序上最后一个或倒数第二个上行子帧,作为承载该上行控制信息的上行子帧;该上行突发指在时间上连续占用的多个上行子帧;该上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
一个实施例中,该确定单元确定的上行子帧用于上行信息传输的OFDM符号个数不小于设定阈值。
一个实施例中,该调度信息与该触发信息承载在相同的下行控制信息中。
一个实施例中,该上行控制信息包括:信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
该终端设备实施例中涉及的调度信息、触发信息、上行控制信息和M个上行子帧的定义和作用,可以参考上述方法实施例的相关描述。该终端设备实施例中涉及的M个上行子帧中确定一个上行子帧用于承载该上行控制信息的具体实现细节,可以参考上述方法实施例的相关描述。
参考图11,另一个实施例中,该终端设备包括:
接收器1101,用于接收来自接入网设备的调度信息和触发信息,该调度 信息用于指示该终端设备在M个上行子帧上传输该调度信息所调度的上行数据,其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
处理器1102,用于在该M个上行子帧中确定一个上行子帧用于承载该上行控制信息;该确定的上行子帧为该M个上行子帧中除第一子帧外的其他子帧,该第一子帧为M个上行子帧中第一个上行子帧;
发送器1103,用于在该确定的上行子帧上发送上行控制信息。
一个实施例中,该确定单元确定的上行子帧为该M个上行子帧中时序上的最后一个子帧,或者,时序上的倒数第二个子帧。
一个实施例中,该接收单元在子帧n接收该调度信息;该确定单元用于确定该M个上行子帧包含的上行突发中时序上最后一个或倒数第二个上行子帧,作为承载该上行控制信息的上行子帧;该上行突发指在时间上连续占用的多个上行子帧;该上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
一个实施例中,该确定单元确定的上行子帧用于上行信息传输的OFDM符号个数不小于设定阈值。
一个实施例中,该调度信息与该触发信息承载在相同的下行控制信息中。
一个实施例中,该上行控制信息包括:信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
该终端设备实施例中涉及的调度信息、触发信息、上行控制信息和M个上行子帧的定义和作用,可以参考上述方法实施例的相关描述。该终端设备实施例中涉及的M个上行子帧中确定一个上行子帧用于承载该上行控制信息的具体实现细节,可以参考上述方法实施例的相关描述。
实施例二:
为了保证上行控制信息的上报机会,提高从免许可频段下行数据传输的效率,本发明提供了一个上行控制信息的传输方法的实施例,该实施例可以应用于U-LTE(LTE over unlicensed spectrum)系统中的多子帧调度场景。需要说明的是,U-LTE系统是指工作在免许可频段的LTE系统,可以包括将许可频段资源和免许可频段资源以CA方式联合使用的LTE系统(LAA-LTE系统), 也可以包括将许可频段资源和免许可频段资源以双连接(Dual Connectivity,DC)方式联合使用的LTE系统,也可以包括独立部署在免许可频段资源的LTE系统(standalone U-LTE)。
参考图12,本发明提供的一个上行控制信息的传输方法的实施例,该方法可以应用于工作在免许可频段的LTE系统,该方法包括如下步骤:
S1201:终端设备接收来自接入网设备的调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输该调度信息所调度的上行数据,其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
S1202:该终端设备在该M个上行子帧中确定至少两个上行子帧用于承载上行控制信息;
S1203:该终端上设备在该至少两个上行子帧上发送上行控制信息。
本实施例中,调度信息、触发信息和上行控制信息的定义和作用,可以参考实施例一中的相关描述,在此不做赘述。
一个实施例中,该调度信息与该触发信息承载在相同的下行控制信息中,例如,调度信息和触发信息都承载在UL grant中。
一个实施例中,该调度信息与该触发信息承载在相同的下行子帧中。在本发明实施例中,用于指示终端设备发送上行控制信息的触发信息,与调度信息承载在相同的子帧。或者可选地,包括该触发信息的子帧在时序上在包括该调度信息的子帧之前,当然也不排除包括该触发信息的子帧在时序上在包括该调度信息的子帧之后且在M个上行子帧中的第一个上行子帧之前。
该实施例中,在传输上行数据的M个上行子帧中,使用至少2个子帧承载上行控制信息,可以使上行控制信息尽可能早地反馈,和/或,由于将上行控制信息分别承载在多个上行子帧中,可以避免对一个被调度的上行子帧中用于上行数据传输的上行资源占用较多。
以图13中示出的多子帧调度的子帧关系图为例说明本发明实施例的具体实现。假设终端设备在子帧n接收到接入网设备发送的上行调度准许UL grant信息,该信息调度该终端设备在子帧n+4、子帧n+5、子帧n+6、子帧n+7发送被调度的上行数据,该上行数据承载在PUSCH中。那么子帧n+4、子帧n+5、子帧n+6、子帧n+7中的任意两个子帧都可以用于传输上行控制信息。可选地, 假设子帧n+4、子帧n+5为可以用于传输上行控制信息的子帧,那么在本发明实施例中,如果终端设备在子帧n+4没有竞争到免许可频段资源,那么该终端设备还可以在子帧n+5判断是否竞争到了免许可频段资源,进而确定是否可以在子帧n+5传输上行控制信息;另一方面,如果终端设备在子帧n+4竞争到免许可频段资源,那么该终端设备可以在子帧n+4传输上行控制信息,并且,该终端设备继续在子帧n+5传输上行控制信息。
可选地,在该方案下,终端设备在所述M个上行子帧中的任何一个上行子帧传输上行信息之前,都需要通过CCA确定是否可以竞争到免许可频段资源;或者说,终端设备在所述M个上行子帧中的第一个上行子帧传输上行信息之前,需要通过CCA确定是否可以竞争到免许可频段资源,对于M个上行子帧中除该第一上行子帧之外的其他上行子帧,是否需要通过CCA确定是否可以竞争到免许可频段资源,取决于该其他上行子帧之前的上行子帧对应的CCA是否竞争到免许可频段资源。例如,以图13为例,终端设备在子帧n+5传输上行信息之前,是否需要通过CCA确定免许可频段资源可用,取决于终端设备在子帧n+4是否竞争到免许可频段资源,如果终端设备在子帧n+4传输上行信息之前,竞争到免许可频段资源(可以理解为终端设备在子帧n+4竞争到免许可频段资源),那么终端设备在子帧n+5传输上行信息之前,可以不需要再通过CCA竞争免许可频段资源;反之,如果终端设备在子帧n+4传输上行信息之前,没有竞争到免许可频段资源(可以理解为终端设备在子帧n+5没有竞争到免许可频段资源),那么终端设备在子帧n+5传输上行信息之前,需要再通过CCA竞争免许可频段资源。同理,终端设备在子帧n+6传输上行信息之前,是否需要通过CCA确定免许可频段资源可用,可以取决于终端设备在子帧n+4和/或子帧n+5是否竞争到免许可频段资源。
该实施例中,该终端设备可以通过多种方式在该M个上行子帧中确定承载该上行控制信息的至少两个上行子帧。
实现方式一:该至少两个上行子帧包括该M个上行子帧中时序上的最后一个子帧和时序上的倒数第二个子帧中的至少一个。
实现方式二:该终端设备在子帧n接收该调度信息;该至少两个上行子帧包括上行突发中时序上最后一个上行子帧和倒数第二个上行子帧中的至少一个;其中,该上行突发指M个上行子帧中包含的在时间上连续占用的多个上 行子帧;该上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
更为一般地,在本发明实施例中,终端设备确定上行突发中任意两个上行子帧,为该至少两个上行子帧包括的上行子帧,其中任意两个上行子帧中的任何一个都不是M个上行子帧中的第一个上行子帧。
实现方式三:该至少两个上行子帧包括该M个上行子帧中时序上第一个子帧。
实现方式四:至少两个上行子帧用于上行信息传输的OFDM符号个数不小于设定阈值。
实现方式五:终端设备在子帧n接收所述调度信息,该至少两个上行子帧包括M个上行子帧中,与所述子帧n在相同的最大信道占用时间(Maximum Channel Occupancy Time,MCOT)内的任意一个上行子帧。可选地,该至少两个上行子帧包括M个上行子帧中与所述子帧n在相同的MCOT内的最后一个或者倒数第二个上行子帧,作为承载该上行控制信息的上行子帧;或者,可选地,终端设备可以确定M个上行子帧中与所述子帧n在相同的MCOT内且用于上行信息传输的OFDM符号个数不小于设定阈值的上行子帧中在时序上的最后一个或者倒数第二个上行子帧,作为承载该上行控制信息的上行子帧.
实现方式六:终端设备在子帧n接收所述调度信息,该至少两个上行子帧包括M个上行子帧中不需要空闲信道评估(CCA)的任意一个子帧。可选地,该至少两个上行子帧包括,M个上行子帧不需要CCA的上行子帧中在时序上的第一个上行子帧;可选地,该至少两个上行子帧包括,M个上行子帧中不需要CCA且用于上行信息传输的OFDM符号个数不小于设定阈值的上行子帧中在时序上的的第一个上行子帧。
应该指出,以上实现方式一到实现方式六可以组合使用。
本实施例中的确定至少两个上行子帧的方法中除实现方式四外,与实施例一中确定承载上行控制信息的上行子帧的确定方法类似。上述实现方式一到实现方式三,以及实现方式五到实现方式六中的具体细节,可以参考实施例一中的相关描述,在此不予赘述。
一个实施例中,该至少两个上行子帧中每一个上行子帧承载的上行控制信息可以内容相同。
另一个实施例中,该至少两个上行子帧中包含第一上行子帧和第二上行子帧,第一上行子帧承载的上行控制信息与第二子帧承载的上行控制信息不同。可选的,第一上行子帧承载的上行控制信息与第二子帧承载的上行控制信息内容上不重合或者所述第一上行子帧承载的控制信息的内容包含所述第二子帧承载的上行控制信息的内容。
以下以上行控制信息为非周期CSI为例,说明本发明实施例,
为了更好地描述该实施例方案,首先,介绍一下,现有技术中CSI(包括周期和非周期)在被调度的上行资源(可以理解为,CSI承载在PUSCH)中的传输准则。为了便于描述,以FDD系统为例说明。需要说明的是,在CSI传输上,TDD系统与FDD系统的区别主要在于,TDD系统下不是所有的子帧都是用于传输上行信息的上行子帧,这会导致CSI传输的时间位置不同。
其次,CSI包括周期CSI和非周期CSI两种,其中周期CSI可以承载在物理上行控制信道(Physical Uplink Control Channel,PUCCH)中,也可以承载在PUSCH中,非周期CSI是承载在PUSCH中,通过非周期CSI触发指示信息来触发。本发明实施例,主要考虑CSI承载在PUSCH上的情况。
单载波情况,假设终端设备只通过CC1与接入网设备传输数据,可以包括通过CC1向接入网设备发送数据,也可以包括接收接入网设备通过CC1发送的数据。如果在子帧k-4,该终端设备接收到接入网设备发送的上行调度信息(UL grant),则该终端设备可以在子帧k传输被调度的上行数据。进一步地,如果该终端设备需要在子帧k反馈CSI信息,例如在子帧k-4接收到的UL grant信息中包括CSI触发信息(对应地,CSI request字域对应的bit可以置为1),或者按照接入网设备配置的周期CSI反馈时序,确定在子帧k需要反馈CSI信息,那么该UE可以在子帧k中利用被调度的上行资源,传输CSI。
多载波情况,假设终端设备可以通过多个载波与接入网设备传输数据,例如终端设备可以通过CC1、CC2、CC3、CC4同时与接入网设备传输数据。对于非周期CSI的情况,终端设备按照预设规则,反馈对应载波或服务小区的CSI信息。如果终端设备在CC1的子帧k-4,接收到接入网设备发送的上行调度信息(UL grant),则该终端设备可以在CC1的子帧k,传输上行数据。进一步地,如果该UL grant指示信息中包括CSI request字段,并且该字段指示终端设备传输上行控制信息,那么该终端设备按照预设的规则(例如如下表1所述),在子帧k被调度的上行资源中传输与CSI request指示信息对应的服务小区的CSI。需要说明的是,在本发明实施例中,服务小区与载波的概念一致。表1中,CSI request字段可以包括2个比特,通过2个bit的不同组合,可以指示4种不同的状态,例如当CSI request field包括的bit置为状态“11“时,结合上例,终端设备可以在CC1的子帧k传输第二组服务小区中包括的各个服务小区对应的CSI。例如通过高层配置,在本例中,第一组服务小区(1st set of serving cells)包括CC1和CC2,第二组服务小区(2nd set of serving cells)包括CC3和CC4,则当CSI request field包括的bit置为状态“11”时,该终端设备在子帧k传输CC3和CC4对应的CSI。
表2 非周期CSI请求字段与CSI上报之间的对应关系
Figure PCTCN2016082123-appb-000002
多载波情况下,对于周期CSI反馈,对于终端设备而言,无论是否配置了PUCCH和PUSCH同传(即,终端设备是否可以在利用PUCCH传输上行控制信息的同时还可以利用PUSCH传输上行信息),如果终端设备需要同时传输周期CSI和承载在PUSCH中的UL data,那么该终端设备需要利用被调度的上行资源(例如承载UL data的PUSCH资源)传输周期CSI。对于周期CSI,每个下行载波或称为服务小区(例如上例中的CC1/CC2/CC3/CC4)对应的CSI的反馈周期是独立配置的。在传输周期CSI的时刻,如果有多个载波上都有被调度的UL data,那么终端设备会按照预设规则,在确定的载波或服务小区上传输CSI,例如终端设备根据预设规则,选择被配置的小区索引(Cell Index)最小的服务小区,传输CSI。
此外,除了上述介绍的多载波情况下,终端设备可以通过非周期CSI触发指示信息(CSI request field)包括的bit状态与服务小区之间的对应关系,确定上报哪些服务小区的CSI之外,终端设备还可以通过CSI request field包括的bit状态与高层配置的CSI进程(CSI process(es))之间的对应关系,确定上报哪些CSI进程对应的CSI,或者确定针对特定的服务小区,上报该服务小区的CSI进程对应的CSI;或者,终端设备还可以通过CSI request field包括的bit状态与高层配置的CSI process(es)和/或{CSI process(es),CSI subframe set}-pair(s)之间的对应关系,确定上报哪些CSI process(es)和/或{CSI process(es),CSI subframe set}-pair(s)对应的CSI。
其次,当上行控制信息(Uplink Control Information,UCI)与PUSCH资源复用的时候,其资源复用示意图,如图10所示,这里UCI可以包括HARQ-ACK和CSI,其中HARQ-ACK包括ACK或NACK,CSI包括CQI、PMI、RI。
参考图14,以一个物理资源块(Physical Resource Block,PRB)对为例进行说明。一个PRB对是由时间上一个子帧和频率上12个子载波包括的资源元素(Resource Element,RE)组成的时频资源。在基于正交频分复用多址接入(Orthogonal Frequency Division Multiplexing Access,OFDMA)技术的LTE系统中,时频资源被划分成时间域维度上的OFDM符号和频率域维度上的OFDM子载波,而最小的资源粒度叫做一个RE,即表示时间域上的一个OFDM符号和频率域上的一个OFDM子载波的时频格点。
具体的,当CSI与上行数据复用被调度的上行资源时,CSI在被调度的上行资源中占用的资源元素数目大小可以通过高层配置的偏移指示、分配给上行数据传输的时频资源数目、上行数据传输的信息bit数以及CSI需要传输的信息bit数确定。其中高层配置的偏移指示,对于RI而言,可以包括
Figure PCTCN2016082123-appb-000003
Figure PCTCN2016082123-appb-000004
,终端设备可以通过该索引,可以确定
Figure PCTCN2016082123-appb-000005
的值,进而确定传输RI需要占用的时频资源数目;对于CQI(包括PMI)而言,可以包括
Figure PCTCN2016082123-appb-000006
Figure PCTCN2016082123-appb-000007
,终端设备通过该索引指示,可以确定
Figure PCTCN2016082123-appb-000008
的值,进而确定传输CQI(包括PMI)需要占用的时频资源数目。再结合图14中的CSI在被调度的上行资源的位置,就可以确定CSI应该传输在哪些RE上。
由于当CSI承载在被调度的上行资源时,CSI是通过速率匹配的方式,与终端设备传输的上行业务数据在被调度的上行资源实现资源复用,因此对于与CSI实现资源复用的上行数据而言,为了保证其正确的传输,至少其对应的调制编码方案(Modulation Coding Scheme,MCS)要与该终端设备用于传输上行数据的上行资源相对应。
一种实施方式下,该至少两个上行子帧中每一个上行子帧承载的上行控制信息可以内容相同。
以图14为例,假设终端设备确定子帧n+6和子帧n+7用于传输CSI,那么在该实施方式下,这两个子帧上承载的上行控制信息相同。例如对于多载波而言,结合表1,假如终端设备根据CSI request field的指示,确定需要反馈第二组服务小区对应的CSI,那么在子帧n+6和子帧n+7,该终端设备都反馈第二组服务小区对应的CSI。
对于多子帧调度,例如一个下行子帧中包括的UL grant可以调度终端设备在至少两个上行子帧上传输被调度的上行数据,为了节省信令开销,UL grant中包括的某些信息字段对于被调度的多个上行子帧,可以复用,即采用一份信息字段,例如UL grant中包括的资源分配(resource assignment)、解调参考信号DMRS对应的循环移位(Cyclic shift),MCS,对应不同的被调度的上行子帧可以是一样的。根据上述描述的CSI与上行数据资源复用的原理,在多子帧调度相同资源分配指示的情况下,包括CSI的上行子帧中用于上行数据传输的资源要少于不包括CSI的上行子帧中用于上行数据传输的资源。为了保证上行数据的正确传输,MCS需要按照包括CSI的上行子帧中实际用于上行数据传输的上行资源设置,这样对于不包括CSI传输的那些上行子帧而言,由于实际用于上行数据传输的上行资源较多,因此在相同的MCS情况下,不包括CSI传输的上行子帧中存在冗余的上行资源,从而造成上行资源浪费。在这种情况下,为了尽可能减少控制信令开销以及减少资源浪费,可以在被调度的多个上行子帧中都包括CSI。这个问题对于上行控制信息SRS/HARQ-ACK同样有效,即在被调度的多个上行子帧中,包括SRS的上行子帧用于上行数据传输的上行时频资源与不包括SRS的上行子帧用于上行数据传输的上行时频资源不同,包括HARQ-ACK的上行子帧用于上行数据传输的上行时频资源与不包括HARQ-ACK的上行子帧用于上行数据传输的上行时频资源不同。
另一个实施例中,该至少两个上行子帧中包含第一上行子帧和第二上行子帧,第一上行子帧承载的上行控制信息与第二子帧承载的上行控制信息不同,且第一上行子帧承载的上行控制信息与第二子帧承载的上行控制信息内容上不重合。
采用这种方式的优势在于,不仅可以保证控制信令开销较小,而且由于不 同的CSI信息分摊在不同的上行子帧中,所以可以实现包括CSI传输的上行子帧中预留给CSI传输的资源可以比较少,可以进一步减小上行资源浪费。
在本发明实施例中,传输的CSI不同至少包括以下至少一项:传输的CSI内容不同,传输的CSI对应的服务小区不同,传输的CSI对应的CSI process不同,传输的CSI对应的子帧集合不同。在这里,传输的CSI内容包括以下至少一项:CQI,PMI,RI。
传输的CSI信息内容不重合,是指在第一上行子帧承载的上行控制信息与第二上行子帧承载的上行控制信息是完全不同的。
以图14为例,假设终端设备确定在子帧n+6、子帧n+7传输CSI,那么在本发明实施例中,用如下几个具体的实施方式进行说明。需要说明的是,本发明实施方式不限于此。可选地,
(1)在单载波情况,即终端设备只被配置了单个载波,那么该终端设备可以在子帧n+6、子帧n+7传输以下一项:RI、CQI/PMI,且终端设备在子帧n+6和子帧n+7传输的CSI信息不同。例如在子帧n+6传输CQI/PMI,在子帧n+7传输RI;或者考虑到CSI包括的上行控制信息的优先级,也可以在子帧n+6传输RI,在子帧n+7传输CQI。
(2)在多载波情况下,即终端设备被配置(或激活)了多个载波,例如,终端设备可以同时通过CC1/CC2/CC3/CC4与接入网设备传输数据,且通过高层配置,第一组服务小区(1st set of serving cells)包括CC1和CC2,第二组服务小区(2nd set of serving cells)包括CC3和CC4,结合表1,当CSI request field包括的bit置为状态“11”时,该终端设备可以确定需要反馈第二组服务小区对应的CSI。在该实施方式下,终端设备可以在第一上行子帧(例如子帧n+6)反馈CC3对应的CSI,在第二上行子帧(例如子帧n+7)反馈CC4对应的CSI;或者,终端设备可以在第一上行子帧反馈CC3和CC4对应的CSI,在第二上行子帧反馈CC1和CC2对应的CSI;或者,终端设备也可以将CC3和CC4对应的RI在第一上行子帧反馈,将CC3和CC4对应的CQI/PMI在第二上行子帧反馈;或者,终端设备可以将CC1-CC4对应的RI在第一上行子帧反馈,将CC1-CC4对应的CQI/PMI在第二上行子帧反馈。
(3)又例如,假设终端设备被配置了多个CSI进程(CSI processes),那么终端设备可以将被触发上报的CSI processes对应的CSI分别承载在不同的 上行子帧上。例如,假设终端设备被高层配置了6个CSI进程,那么终端设备可以根据表3规定的对应关系,确定不同的CSI request field指示对应的CSI进程上报。假设CSI request field为’100’,那么根据表3的对应关系,终端设备确定需要上报第三组CSI process(es)对应的CSI。一种方式是,如果第三组CSI process(es)包括的CSI process多于1个,那么该终端设备可以将第三组CSI process包括的每个CSI process或按照其他准则(例如将第三组CSI process进行分组,其中一组至少包括两个CSI process),承载在不同的上行子帧中;另外一种方式是,是将每个CSI process对应的RI组成的集合在第一上行子帧传输,将每个CSI process对应的CQI/PMI组成的集合在第二上行子帧传输;另外一种方式是,是先在一个上行子帧传输第三组CSI process对应的CSI,然后再在另外一个上行子帧按照预设规则传输其他组的CSI process对应的CSI,例如可以在另外一个上行子帧传输第四组CSI process对应的CSI。
表3 非周期CSI请求字段与CSI上报之间的对应关系
Figure PCTCN2016082123-appb-000009
另一个实施例中,该至少两个上行子帧中包含第一上行子帧和第二上行子帧,第一上行子帧承载的上行控制信息与第二上行子帧承载的上行控制信息不同。且所述第一上行子帧承载的控制信息的内容包含所述第二上行子帧承载的上行控制信息的内容。
在这种实施方式下,所述第一上行子帧承载的控制信息的内容包含所述第二子帧承载的上行控制信息的内容,包括:其中第二上行子帧承载的CSI信息是第一上行子帧承载的CSI信息的真子集。
以图14为例,假设终端设备确定在子帧n+6、子帧n+7传输CSI,那么在本发明实施例中,具体,用如下几个具体的实施方式进行说明。需要说明的是,本发明实施方式不限于此。可选地,
(1)在单载波情况,即终端设备只被配置了单个载波,那么该终端设备可以在子帧n+6和子帧n+7中的一个子帧(对应第二上行子帧)传输RI,在另外一个子帧(对应第一上行子帧)传输RI和CQI/PMI。
(2)在多载波情况下,即终端设备被配置(或激活)了多个载波,例如,终端设备可以同时通过CC1/CC2/CC3/CC4与接入网设备传输数据,且通过高层配置,第一组服务小区(1st set of serving cells)包括CC1和CC2,第二组服务小区(2nd set of serving cells)包括CC3和CC4,结合表1,当CSI request field包括的bit置为状态“11”时,该终端设备可以确定需要反馈第二组服务小区对应的CSI。在这种可选的实施方式下,终端设备可以在确定的多个子帧中的其中一个上行子帧(对应第一上行子帧)反馈CC3和CC4对应的CSI,在另外一个上行子帧(对应第二上行子帧)反馈CC3或者CC4对应的CSI;或者,终端设备也可以在确定的多个子帧中的其中一个上行子帧(对应第二上行子帧)反馈CC3和CC4对应的部分CSI信息,在另外一个上行子帧反馈CC3和CC4对应的全部CSI信息(对应第一上行子帧);又或者,终端设备可以在确定的多个子帧中的其中一个上行子帧(对应第二上行子帧)反馈CC3和CC4对应的全部CSI信息,在另外一个上行子帧(对应第一上行子帧)反馈CC1-CC4对应的全部CSI信息。
(3)如果终端设备被配置了多个CSI进程,那么终端设备可以根据指示信息(例如CSI request field字段指示的CSI进程),将确定的CSI进程中的其中一部分CSI进程对应的CSI信息承载在其中一个上行子帧中,将确定的全部 CSI进程对应的CSI信息承载在另外一个上行子帧中。或者,基于表3,如果CSI request field置为‘110’,则终端设备可以在其中一个上行子帧反馈第五组CSI process对应的CSI,在另外一个上行子帧反馈第五组和其他组CSI process对应的CSI,其中其他组CSI process对应的CSI request field与UL grant中承载的CSI request field具有偏移关系,该偏移关系或者是隐式指示的,例如预配置的(比如标准协议规范),也可以通过显式信令指示,所述显式信令指示可以是高层信令,也可以是物理层信令,在本发明实施例中不做具体限定。
采用该实施例的好处在于,尽可能减少了资源浪费,并且保证了如果由于CCA,终端设备在对应传输CSI的上行子帧没有竞争到免许可频段资源,那么终端设备不会丢失太多CSI的信息。可选地,为了减少CCA侦听结果对上行控制传输信息的影响,可以使用时间上靠后的上行子帧传输更多的CSI信息。
另一个实施例中,该至少两个上行子帧中包含第一上行子帧和第二上行子帧,第一上行子帧承载的上行控制信息与第二上行子帧承载的上行控制信息不同。且所述第一上行子帧承载的控制信息的部分内容与所述第二上行子帧承载的上行控制信息的部分内容相同。可选地,相同的部分内容,可以是优先级较高的上行控制信息,例如RI。采用该实施例的好处在于,尽可能减少资源浪费,同时保证了优先级高的上行控制信息的传输。
在上述方式中,具体确定哪些子帧用于传输CSI信息,以及在确定的每个子帧上传输的CSI包括哪些内容,可以是预配置的,也可以是信令通知的,在本发明实施例中不做具体限定。
当上行控制信息为探测参考信号时,上述描述的实施方式同样适用于SRS。需要说明的是,所述至少两个上行子帧中每一个上行子帧承载的上行控制信息相同,可以理解为至少两个上行子帧传输的SRS占用的时间位置(可以用OFDM符号索引表示)、频率资源位置和采用的序列都相同;所述至少两个上行子帧中包含第一上行子帧和第二上行子帧,第一上行子帧和第二上行子帧承载的上行控制信息不同,可以理解为,该终端设备在第一上行子帧和第二上行子帧传输的SRS包括以下至少一项不同:SRS占用的时间位置(可以用OFDM符号索引表示)、传输SRS占用的频率资源位置、SRS采用的序列;也可以理解为:该终端设备在第一上行子帧传输SRS占用的频率资源包含该终端设备在第二上行子帧传输SRS占用的频率资源。
当上行控制信息为混合自动重传请求确认应答时,上述描述的实施方式同样适用于混合自动重传请求确认应答(HARQ-ACK)。终端设备反馈的HARQ-ACK,可以针对多个上行子帧和多个服务小区。需要说明的是,所述至少两个上行子帧中每一个上行子帧承载的上行控制信息相同,可以理解为所述至少两个上行子帧中包括的每个上行子帧承载的HARQ-ACK信息相同;所述至少两个上行子帧中包含第一上行子帧和第二上行子帧,第一上行子帧和第二上行子帧承载的上行控制信息不同,可以理解为,该终端设备在第一上行子帧和第二上行子帧传输的HARQ-ACK包括以下至少一项不同:HARQ-ACK对应的上行子帧不同,HARQ-ACK对应的服务小区不同;所述至少两个上行子帧中包含第一上行子帧和第二上行子帧,第一上行子帧和第二上行子帧承载的上行控制信息不同,还可以理解为:所述终端设备在第一上行子帧传输的HARQ-ACK对应的下行子帧包含所述终端设备在第二上行子帧传输的HARQ-ACK对应的下行子帧,和/或所述终端设备在第一上行子帧传输的HARQ-ACK对应的服务小区包含所述终端设备在第二上行子帧传输的HARQ-ACK对应的服务小区。
以上实施例从终端设备的角度进行描述。在此实施例下,接入网设备可以发送指示信息,该指示信息指示用于承载上行控制信息的上行子帧,其中,该上行子帧为M个上行子帧中的至少两个上行子帧。可选地,该上行子帧具有上述实现方式一~六所限定的特征。此外,接入网设备还可以向终端设备发送指示信息,该指示信息用于指示承载上行控制信息的上行子帧具体承载哪些上行控制信息。
对应于上述方法,本发明提供一种终端设备,该终端设备可以应用于U-LTE系统中的多子帧调度场景,该终端设备可以执行上述方法实施例中的各个步骤。
对应于上述方法,本发明提供一种终端设备,该终端设备可以应用于U-LTE系统中的多子帧调度场景,该终端设备可以执行上述方法实施例中的各个步骤。
参考图15,一个实施例中,该终端设备包括:
接收单元1501,用于接收来自接入网设备的调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输该调度信息所调度的上行 数据,其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
处理单元1502,用于在该M个上行子帧中确定至少两个上行子帧用于承载上行控制信息;
发送单元1503,用于在该至少两个上行子帧上发送上行控制信息。
一个实施例中,该至少两个上行子帧包括该M个上行子帧中时序上的最后一个子帧和时序上的倒数第二个子帧中的至少一个。
一个实施例中,该接收单元在子帧n接收该调度信息;该至少两个上行子帧包括该M个上行子帧包含的上行突发中时序上最后一个上行子帧和倒数第二个上行子帧中的至少一个;该上行突发指在时间上连续占用的多个上行子帧;该上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
一个实施例中,该至少两个上行子帧包括该M个上行子帧中时序上第一个子帧。
一个实施例中,该至少两个上行子帧中每个子帧用于上行控制信息传输的OFDM符号个数不小于设定阈值。
一个实施例中,该调度信息与该触发信息承载在相同的下行控制信息中。
一个实施例中,该上行控制信息包括:信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
一个实施例中,该至少两个上行子帧中每一个上行子帧承载的上行控制信息相同。
另一个实施例中,该至少两个上行子帧中包含第一上行子帧和第二上行子帧,第一上行子帧承载的上行控制信息与第二上行子帧承载的上行控制信息不同。
一个实施例中,该第一上行子帧承载的上行控制信息与第二上行子帧承载的上行控制信息内容上不重合或者该第一上行子帧承载的控制信息的内容包含该第二上行子帧承载的上行控制信息的内容。
该终端设备实施例中涉及的调度信息、触发信息、上行控制信息和M个上行子帧的定义和作用,可以参考上述方法实施例的相关描述。该终端设备实施例中涉及的M个上行子帧中确定至少两个上行子帧用于承载该上行控制信息的具体实现细节,可以参考上述方法实施例的相关描述。
参考图16,另一个实施例中,该终端设备包括:
接收器1601,用于接收来自接入网设备的调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输该调度信息所调度的上行数据,其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
处理器1602,用于在该M个上行子帧中确定至少两个上行子帧用于承载上行控制信息;
发送器1603,用于在该至少两个上行子帧上发送上行控制信息。
一个实施例中,该至少两个上行子帧包括该M个上行子帧中时序上的最后一个子帧和时序上的倒数第二个子帧中的至少一个。
一个实施例中,该接收单元在子帧n接收该调度信息;该至少两个上行子帧包括该M个上行子帧包含的上行突发中时序上最后一个上行子帧和倒数第二个上行子帧中的至少一个;该上行突发指在时间上连续占用的多个上行子帧;该上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
一个实施例中,该至少两个上行子帧包括该M个上行子帧中时序上第一个子帧。
一个实施例中,该至少两个上行子帧中每个子帧用于上行控制信息传输的OFDM符号个数不小于设定阈值。
一个实施例中,该调度信息与该触发信息承载在相同的下行控制信息中。
一个实施例中,该上行控制信息包括:信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
一个实施例中,该至少两个上行子帧中每一个上行子帧承载的上行控制信息相同。
另一个实施例中,该至少两个上行子帧中包含第一上行子帧和第二上行子帧,第一上行子帧承载的上行控制信息与第二上行子帧承载的上行控制信息不同。
一个实施例中,该第一上行子帧承载的上行控制信息与第二上行子帧承载的上行控制信息内容上不重合或者该第一上行子帧承载的控制信息的内容包含该第二上行子帧承载的上行控制信息的内容。
该终端设备实施例中涉及的调度信息、触发信息、上行控制信息和M个 上行子帧的定义和作用,可以参考上述方法实施例的相关描述。该终端设备实施例中涉及的M个上行子帧中确定至少两个上行子帧用于承载该上行控制信息的具体实现细节,可以参考上述方法实施例的相关描述。
实施例三:
针对多子帧调度,为了节省信令开销,往往被调度的多个上行子帧对应的调度信息是相同的,例如资源分配等。需要说明的是,由于在多子帧调度中,用于资源分配的信息bit数量可能是较大的,因此不同的被调度的上行子帧如果可以用相同的资源分配指示,则控制信令开销比较小。但是由于包括上行控制信息例如CSI传输的上行子帧实际用于传输上行数据的上行资源大小一般小于不包括上行控制信息例如CSI传输的上行子帧用于传输上行数据的上行资源大小,因此会导致上行资源传输效率低。同理,在多子帧调度下,包括SRS或HARQ-ACK传输的上行子帧实际用于传输上行数据的上行资源大小一般小于不包括SRS或HARQ-ACK传输的上行子帧用于传输上行数据的上行资源大小,也会导致上行资源传输效率低。
为了提高资源传输效率,本发明提供了一个上行信息的传输方法的实施例,该实施例可以应用于U-LTE系统中的多子帧调度场景。
参考图17,本发明提供的一个上行信息的传输方法的实施例,包括如下步骤:
S1701:终端设备接收来自接入网设备的调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输该调度信息所调度的上行数据,该上行数据包括第一上行数据和第二上行数据;其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
其中,该M个上行子帧包括第一上行子帧集合和第二上行子帧集合,该第一上行子帧集合和该第二上行子帧集合分别包括至少一个上行子帧,该第一上行子帧集合中的子帧用于传输该第一上行数据;该第二上行子帧集合中的子帧用于传输上行控制信息和第二上行数据;
S1702:该终端设备确定该第一上行子帧集合对应的第一MCS或第一RB,以及确定该第二上行集合对应的第二MCS或第二RB;
S1703:该终端设备在第一上行子帧集合传输第一MCS或第一RB对应的 该第一上行数据以及在第二上行子帧集合传输第二MCS或第二RB对应的该第二上行数据和上行控制信息。
本实施例中的调度信息、触发信息、上行控制信息的定义与作用可以参考实施例一中的相关描述,在此不做赘述。
图18示例了第一子帧集合与第二子帧集合的一种关系。参考图18,假设调度信息指示终端设备在4个上行子帧传输上行数据,如果终端设备确定4个上行子帧中的最后一个上行子帧包括上行控制信息,那么该4个上行子帧中的第一个、第二个和第三个上行子帧为第一上行子帧集合中包括的上行子帧;第四个上行子帧为第二上行子帧集合包括的上行子帧。
图19示例了第一子帧集合与第二子帧集合的另一种关系。参考图19,假设终端设备在子帧n接收到接入网设备发送的调度信息和触发信息,所述调度信息指示终端设备在子帧n+4、子帧n+5、子帧n+6、子帧n+7传输上行数据,其中,子帧n+4为紧跟着下行突发最后一个下行子帧的第一个上行子帧,终端设备在子帧n+4传输上行信息之前,可能不需要通过CCA确定免许可频段资源是否可用,因此终端设备可以将子帧n+4确定为包括上行控制信息的上行子帧,其中上行控制信息为终端设备通过触发信息指示终端设备发送的信息。在这种情况下,第二上行子帧集合包括子帧n+4,第一上行子帧集合包括子帧n+5~子帧n+7。
本实施例中,在多子帧调度的情况下,可以根据不同上行子帧分别用于传输上行数据的实际资源大小,确定不同的MCS或者RB,这样在节省多子帧调度的信令开销的同时,还可以保证只承载上行数据的上行子帧的上行资源使用效率。
该实施例中,该终端设备可以通过多种方式在该M个上行子帧中确定第二上行子帧集合。
实现方式一:第二子帧集合包括该M个上行子帧中时序上的最后一个子帧和时序上的倒数第二个子帧中的至少一个。
实现方式二:终端设备在子帧n接收该调度信息;该第二子帧集合包括上行突发中时序上最后一个上行子帧和倒数第二个上行子帧中的至少一个;该上行突发指在时间上连续占用的多个上行子帧;该上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
实现方式三:第二子帧集合的上行子帧用于上行信息传输的OFDM符号个数不小于设定阈值。
实现方式四:终端设备在子帧n接收所述调度信息,第二子帧集合包括M个上行子帧中除去第一个子帧之外的,且与所述子帧n在相同的最大信道占用时间(Maximum Channel Occupancy Time,MCOT)内的任意一个上行子帧。可选地,第二子帧集合包括M个上行子帧中除去第一个子帧之外的,且与所述子帧n在相同的MCOT内的最后一个或者倒数第二个上行子帧。
实现方式五:终端设备在子帧n接收所述调度信息,第二子帧集合包括M个上行子帧中除去第一个子帧之外,且不需要空闲信道评估(CCA)的任意一个子帧,为承载该上行控制信息的上行子帧。可选地,第二子帧集合包括M个上行子帧除去第一个子帧之外,且不需要CCA的第一个上行子帧。
应该指出,以上实现方式一到实现方式五可以组合使用。本实施例中第二上行子帧集合包括的上行子帧的确定方式与实施例一中确定承载上行控制信息的上行子帧的确定方法类似。本实施例中实现方式一到实现方式五的具体细节可以参考实施例一中的相关描述,在此不予赘述。此外,本实施例中第二上行子帧集合包括的上行子帧的确定方法与实施例二中确定承载上行控制信息的上行子帧的确定方法类似,本实施例中实现方式一到实现方式五的具体细节可以参考实施例一中的相关描述,在此不予赘述。
终端设备可以通过多种方式来确定第一上行子帧集合对应的第一MCS或第一RB:
1.终端设备接收来自接入网设备的第一指示信息,该第一指示信息包含该第一MCS或第一RB的指示信息,该终端设备根据该第一指示信息确定该第一MCS或第一RB。
该第一指示信息可以是物理层信令,例如可以承载在调度终端设备在M个上行子帧传输上行数据的调度信令中,或者高层信息,例如通过无线资源控制(Radio Resource Control,RRC)信令承载。承载在调度信令中的好处在于:可以复用现有调度信息(例如UL grant)中包括的MCS指示信息或者RB指示信息,使设计简单;承载在高层信令的好处在于:可以节省物理层信令开销。
2.终端设备获得MCS偏移量或RB偏移量;终端设备根据该第二MCS和该MCS偏移量,确定该第一MCS;或者,该终端设备根据该第二RB和该 RB偏移量,确定该第一RB。
其中,MCS偏移量或者RB偏移量可以是信令指示,采用信令指示,可以采用物理层信令指示,也可以采用RRC信令指示。采用信令指示,可选地,可以通过信令直接指示MCS偏移量的值或者RB偏移量的值;或者,可选地,也可以通过信令指示MCS偏移量或RB偏移量对应的索引值,然后通过该索引值与MCS偏移量或RB偏移量之间的对应关系,获得MCS偏移量或RB偏移量。采用物理层信令指示的好处在于,可以根据接入网设备与终端设备之间的信道质量,灵活地调整终端设备传输上行数据对应的MCS或者占用的频率资源,保证有效地数据传输;采用RRC信令指示的好处在于,如果接入网与终端设备之间的信道变化特性比较平稳,则可以通过RRC信令设置MCS偏移量或者RB偏移量,这样不仅可以适应接入网设备与终端设备之间的信道变化,而且还可以节省物理层信令开销。
或者,MCS偏移量或者RB偏移量也可以是预配置的,例如通过标准协议规范。采用该种方式,信令开销最小。第一MCS或者第一RB的变化可以通过第二MCS或者第二RB的变化获得。
在这种方式下,第二MCS或第二RB可以是信令指示的。该信令可以是物理层信令,例如可以承载在调度终端设备在M个上行子帧传输上行数据的调度信令中,或者也可以是RRC信令。承载在调度信令中的好处在于:可以复用现有调度信息(例如UL grant)中包括的MCS指示信息或者RB指示信息,使设计简单;承载在RRC信令的好处在于:可以节省物理层信令开销。
终端设备确定第二MCS或第二RB,根据第二MCS和MCS偏移量可以确定第一MCS,根据第二RB和RB偏移量,可以确定第一RB。
终端设备可以通过多种方式来确定第二行子帧集合对应的第二MCS或第二RB:
1.终端设备接收来自接入网设备的第二指示信息,该第二指示信息包含该第二MCS或第二RB的指示信息,该终端设备根据该第二指示信息确定该第二MCS或第二RB。
该指示信息可以是物理层信令,例如可以承载在调度终端设备在M个上行子帧传输上行数据的调度信令中,或者高层信息,例如RRC信令承载。承载在调度信令中的好处在于:可以复用现有调度信息(例如UL grant)中包括 的MCS指示信息或者RB指示信息,使设计简单;承载在高层信令的好处在于:可以节省物理层信令开销。
一种实现方式中,第一指示信息和第二指示信息可以承载在同一条信令中。
一种实现方式中,第一指示信息和第二指示信息可以承载相同的下行控制信息中。
一种实现方式中,第一指示信息和第二指示信息可以承载在不同的下行控制信息中。
一种实现方式中,第一指示信息和第二指示信息承载在相同或不同的下行子帧中。
2.终端设备获得MCS偏移量或RB偏移量;终端设备根据该第一MCS和该MCS偏移量,确定该第二MCS;或者,该终端设备根据该第一RB和该RB偏移量,确定该第二RB。
其中,MCS偏移量或者RB偏移量可以是信令指示,采用信令指示,可以采用物理层信令指示,也可以采用RRC信令指示。采用信令指示,可选地,可以通过信令直接指示MCS偏移量的值或者RB偏移量的值;或者,可选地,也可以通过信令指示MCS偏移量或RB偏移量对应的索引值,然后通过该索引值与MCS偏移量或RB偏移量之间的对应关系,获得MCS偏移量或RB偏移量。采用物理层信令指示的好处在于,可以根据接入网设备与终端设备之间的信道质量,灵活地调整终端设备传输上行数据对应的MCS或者占用的频率资源,保证有效地数据传输;采用RRC信令指示的好处在于,如果接入网与终端设备之间的信道变化特性比较平稳,则可以通过RRC信令设置MCS偏移量或者RB偏移量,这样不仅可以适应接入网设备与终端设备之间的信道变化,而且还可以节省物理层信令开销。
或者,MCS偏移量或者RB偏移量也可以是预配置的,例如通过标准协议规范。采用该种方式,信令开销最小。第二MCS或者第二RB的变化可以通过第一MCS或者第一RB的变化获得。
在这种方式下,第一MCS可以是信令指示的。该信令可以是物理层信令,例如可以承载在调度终端设备在M个上行子帧传输上行数据的调度信令中,或者也可以是RRC信令。承载在调度信令中的好处在于:可以复用现有调度 信息(例如UL grant)中包括的MCS指示信息或者RB指示信息,使设计简单;承载在RRC信令的好处在于:可以节省物理层信令开销。
需要指出的是,上述确定第一MCS或第一RB的方法可以与确定第二MCS或第二RB方法组合使用。
可选地,以确定第一MCS为例,具体说明确定第一MCS与第二MCS的确定方法。
在该实施方式下,其中一个MCS例如第一MCS,可以通过已有的UL grant中包括的MCS指示信息来确定。另外一个MCS可以通过显示信令指示,例如通过UL grant中新增的比特来指示第二MCS,一种指示方式是,新增的bit可以直接指示MCS对应的结果,例如如表4所对应的Modulation Order和/或传输块大小(Transmission Block Size,TBS);另外一种指示方式是,新增的bit可以指示MCS索引,通过该索引与调制方式以及传输块大小(Transmission Block Size,TBS)之间的对应关系,确定MCS以及TBS;另外一种指示方式是,可以通过新增的bit指示第二MCS相对于第一MCS的偏移量(对应本发明实施例中的MCS偏移量),例如,可以通过新增的bit的不同状态指示不同的索引信息,不同的索引信息与不同的偏移量之间有一一对应关系,这里不同的偏移量构成的集合可以是半静态配置的,例如通过RRC信令配置,也可以是静态配置的,例如通过标准协议规范;又例如,也可以通过新增的bit直接指示不同的偏移量。
还有一种方式时,例如第一MCS可以通过UL grant中包括的控制信息指示,第二MCS或者第二MCS与第一MCS之间MCS偏移是预配置的,例如标准协议规范的,终端设备根据第一MCS与预配置的MCS偏移就可以确定第二MCS。
需要说明的是,上述描述方式同样适用于第一RB、第二RB的确定。可选地,当通过第一RB和RB偏移量确定第二RB时,RB偏移量还可以理解为在第一RB的基础上,增加或减少RB偏移量指示的RB大小以及RB位置,确定第二RB。可选地,当通过第二RB和RB偏移量确定第二RB时,RB偏移量还可以理解为在第二RB的基础上,增加或减少RB偏移量指示的RB大小以及RB位置,确定第一RB。
需要说明的是,在本发明实施例中,第一RB(或第二RB)包括以下至 少一项:第一RB(或第二RB)的大小、第一RB(或第二RB)占用的频率资源位置。
需要说明的是,在本发明实施例中,第一MCS(或第二MCS)可以包括以下至少一项:调制阶数、传输块大小。
表4 PUSCH的调制(Modulation),传输块大小(TBS)索引
Figure PCTCN2016082123-appb-000010
对应于上述方法,本发明提供一种终端设备,该终端设备可以应用于U-LTE系统中的多子帧调度场景,该终端设备可以执行上述方法实施例中的各个步骤。
参考图20,一个实施例中,该终端设备包括:
接收单元2001,用于接收来自接入网设备的调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输该调度信息所调度的上行数据,该上行数据包括第一上行数据和第二上行数据;其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
其中,该M个上行子帧包括第一上行子帧集合和第二上行子帧集合,该第一上行子帧集合和该第二上行子帧集合分别包括至少一个上行子帧,该第一上行子帧集合中的子帧用于传输第一上行数据;该第二上行子帧集合中的子帧用于传输上行控制信息和第二上行数据;
确定单元2002,用于确定该第一上行子帧集合对应的第一MCS或第一RB,以及确定该第二上行集合对应的第二MCS或第二RB;
发送单元2003,用于在第一上行子帧集合传输第一MCS或第一RB对应的该第一上行数据以及在第二上行子帧集合传输第二MCS或第二RB对应的该第二上行数据和该上行控制信息。
一个实施例中,该第二子帧集合包括该M个上行子帧中时序上的最后一个子帧和时序上的倒数第二个子帧中的至少一个。
另一个实施例中,该终端设备在子帧n接收该调度信息;该第二子帧集合包括该M个上行子帧包含的上行突发中时序上最后一个上行子帧和倒数第二个上行子帧中的至少一个;该上行突发指在时间上连续占用的多个上行子帧;该上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
另一个实施例中,该第二子帧集合的上行子帧用于上行信息传输的OFDM符号个数不小于设定阈值。
一个实施例中,该调度信息与该触发信息承载在相同的下行控制信息中。
一个实施例中,该上行控制信息包括:信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
参考图21,一个实施例中,该接收单元还用于接收来自接入网设备的第一指示信息,该第一指示信息用于指示该第一MCS或指示该第一RB;
该确定单元包括第一确定单2101,用于根据该第一指示信息确定该第一MCS或第一RB;和
第二确定单元2102,用于获得MCS偏移量或RB偏移量,根据该第一 MCS和该MCS偏移量,确定该第二MCS;或者,根据该第一RB和该RB偏移量,确定该第二RB;该MCS偏移量为该第一MCS与该第二MCS之间的偏移量,该RB偏移量为该第一RB与该第二RB之间的偏移量。
参考图22,该接收单元还用于接收来自接入网设备的第一指示信息和第二指示信息,该第一指示信息用于指示该第一MCS或指示该第一RB;
该确定单元包括第一确定单2101,用于根据该第一指示信息确定该第一MCS或第一RB;和
第三确定单元,第三确定单元用于根据该第二指示信息确定该第二MCS或第二RB。
参考图23,另一个实施例中,该接收单元,还用于接收来自接入网设备的第二指示信息,该第二指示信息用于指示该第二MCS或指示第二RB;
该确定单元包括:
第三确定单,2301,用于根据该第二指示信息确定该第二MCS或第二RB;和
第四确定单元2302,用于获得MCS偏移量或RB偏移量;并根据该第二MCS和该MCS偏移量,确定该第一MCS;或者,该终端设备根据该第二RB和该RB偏移量,确定该第一RB;该MCS偏移量为该第一MCS与该第二MCS之间的偏移量,该RB偏移量为该第一RB与该第二RB之间的偏移量。
该终端设备实施例中涉及的调度信息、触发信息、上行控制信息和M个上行子帧的定义和作用,可以参考上述方法实施例的相关描述。该终端设备实施例中涉及的上行子帧集合的确定方法和第一MCS、第二MCS、第一RB、第二RB的获得方法,具体实现细节可以参考上述方法实施例的相关描述。
参考图24,另一个实施例中,该终端设备包括:
接收器2401,用于接收来自接入网设备的调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输该调度信息所调度的上行数据,该上行数据包括第一上行数据和第二上行数据;其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
其中,该M个上行子帧包括第一上行子帧集合和第二上行子帧集合,该第一上行子帧集合和该第二上行子帧集合分别包括至少一个上行子帧,该第一上行子帧集合中的子帧用于传输第一上行数据;该第二上行子帧集合中的子帧 用于传输上行控制信息和第二上行数据;
处理器2402,用于确定该第一上行子帧集合对应的第一MCS或第一RB,以及确定该第二上行集合对应的第二MCS或第二RB;
发送器2403,用于在第一上行子帧集合传输第一MCS或第一RB对应的该第一上行数据以及在第二上行子帧集合传输第二MCS或第二RB对应的该第二上行数据和该上行控制信息。
该终端设备中处理器的具体实现功能与上一个实施例中的确定单元2002的功能类似,具体处理的实现细节可以参考上一个实施例的相关描述。
该终端设备实施例中涉及的调度信息、触发信息、上行控制信息和M个上行子帧的定义和作用,可以参考上述方法实施例的相关描述。该终端设备实施例中涉及的第二上行子帧集合的确定方法和第一MCS、第二MCS、第一RB、第二RB的获得方法,具体实现细节可以参考上述方法实施例的相关描述。
上述实施例中,第二子帧集合用于传输上行控制信息和上行数据。在另一个实施例中,第二子帧集合可以仅传输上行控制信息。
参考图25,本发明提供的一个上行信息的传输方法的实施例,包括如下步骤:
S2501:终端设备接收来自接入网设备的调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输所调度的上行数据,其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
其中,该M个上行子帧包括第一上行子帧集合和第二上行子帧集合,该第一上行子帧集合和该第二上行子帧集合分别包括至少一个上行子帧,该第一上行子帧集合中的子帧用于传输上行数据;该第二上行子帧集合中的子帧用于传输上行控制信息;
S2502:该终端设备确定该第一上行子帧集合对应的第一MCS或第一RB,以及确定该第二上行集合对应的第二MCS或第二RB;
S2503:该终端设备在第一上行子帧集合传输第一MCS或第一RB对应的该上行数据以及在第二上行子帧集合传输第二MCS或第二RB对应的该上行控制信息。
本实施例中的调度信息、触发信息、上行控制信息的定义与作用可以参考 实施例一中的相关描述,在此不做赘述。
本实施例中第二子帧集合的确定方法、第一MCS或第一RB的确定方法以及第二MCS或第二RB的确定方法与上一个实施例类似,在此不做赘述。
本实施例中,由于第二上行子帧集合中的上行子帧只用于传输上行控制信息,因此不存在为了节省信令开销,使得只包括上行数据的上行子帧存在资源浪费的问题。在本实施例中,可选地,当终端设备传输的上行控制信息开销比较大时,例如需要反馈对应多个服务小区或者多个CSI process的CSI;和/或,需要反馈对应多个服务小区和/或多个下行子帧对应的HARQ-ACK时,可以令第二上行子帧集合中的上行子帧只用于传输上行控制信息,这样不仅可以获得上述描述的好处(即减少了只包括上行数据的上行子帧的资源浪费问题),还减小了只包括上行控制数据的上行子帧的资源浪费问题。
对应于上述方法,本发明提供一种终端设备,该终端设备可以应用于U-LTE系统中的多子帧调度场景,该终端设备可以执行上述方法实施例中的各个步骤。
参考图26,一个实施例中,该终端设备包括:
接收单元2601,用于接收来自接入网设备的调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输所调度的上行数据,其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
其中,该M个上行子帧包括第一上行子帧集合和第二上行子帧集合,该第一上行子帧集合和该第二上行子帧集合分别包括至少一个上行子帧,该第一上行子帧集合中的子帧用于传输上行数据;该第二上行子帧集合中的子帧用于传输上行控制信息;
确定单元2602,用于确定该第一上行子帧集合对应的第一MCS或第一RB,以及确定该第二上行集合对应的第二MCS或第二RB;
发送单元2603,用于在第一上行子帧集合传输第一MCS或第一RB对应的该上行数据以及在第二上行子帧集合传输第二MCS或第二RB对应的该上行控制信息。
本实施例中的调度信息、触发信息、上行控制信息的定义与作用可以参考实施例一中的相关描述,在此不做赘述。
本实施例中第二子帧集合的确定方法、第一MCS或第一RB的确定方法 以及第二MCS或第二RB的确定方法与上一个实施例类似,在此不做赘述。
参考图26,另一个实施例中,该终端设备包括:
接收器2701,用于接收来自接入网设备的调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输所调度的上行数据,其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
其中,该M个上行子帧包括第一上行子帧集合和第二上行子帧集合,该第一上行子帧集合和该第二上行子帧集合分别包括至少一个上行子帧,该第一上行子帧集合中的子帧用于传输上行数据;该第二上行子帧集合中的子帧用于传输上行控制信息;
确定器2702,用于确定该第一上行子帧集合对应的第一MCS或第一RB,以及确定该第二上行集合对应的第二MCS或第二RB;
发送器2703,用于在第一上行子帧集合传输第一MCS或第一RB对应的该上行数据以及在第二上行子帧集合传输第二MCS或第二RB对应的该上行控制信息。
本实施例中的调度信息、触发信息、上行控制信息的定义与作用可以参考实施例一中的相关描述,在此不做赘述。
本实施例中第二子帧集合的确定方法、第一MCS或第一RB的确定方法以及第二MCS或第二RB的确定方法与上一个实施例类似,在此不做赘述。
为了提高资源传输效率,本发明提供了一个上行控制信息的传输方法的实施例,该实施例可以应用于U-LTE系统中的多子帧调度场景。
参考图28,本发明提供的一个上行控制信息的传输方法的实施例,包括如下步骤:
S2801:接入网设备向终端设备发送调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输所调度的上行数据,该上行数据包括第一上行数据和第二上行数据;其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
其中,该M个上行子帧包括第一上行子帧集合和第二上行子帧集合,该第一上行子帧集合和该第二上行子帧集合分别包括至少一个上行子帧,该第一上行子帧集合中的子帧用于传输该第一上行数据;该第二上行子帧集合中的子帧用于传输上行控制信息和第二上行数据;
S2802:该接入网设备确定该第一上行子帧集合对应的第一MCS或第一RB,以及确定该第二上行集合对应的第二MCS或第二RB;
S2803:接入网设备在第一上行子帧集合上接收第一MCS或第一RB对应的该第一上行数据;在第二上行子帧集合传输第二MCS或第二RB对应的该上行控制信息和第二上行数据。
本实施例中的调度信息、触发信息、上行控制信息的定义与作用可以参考实施例一中的相关描述,在此不做赘述。
第一MCS或第一RB以及第二MCS或第二RB可以是接入网设备中预配置的,或者接入网设备选择确定后通知给终端设备。接入网设备可以采用多种方式向终端设备通知第一MCS或第一RB以及第二MCS或第二RB。
一个实施例中,接入网设备可以向终端设备发送第一指示信息和第二指示信息,该第一指示信息包含该第一MCS或第一RB的指示信息;该第二指示信息包含该第二MCS或第二RB的指示信息。可选的,第一指示信息和第二指示信息可以承载在同一条消息中。
另一个实施例中,接入网设备设备可以向终端设备发送第一指示信息和第二指示信息中的一个,以及发送偏移量信息。其中,第一指示信息包含该第一MCS或第一RB的指示信息;该第二指示信息包含该第二MCS或第二RB的指示信息。偏移量信息指第一MCS与第二MCS之间的偏移量或第一PR与第二RB之间的偏移量。可选的,指示信息和偏移量信息可以承载在同一条消息中。
需要说明的是,在本发明实施例中,终端设备在子帧n发送上行信息,考虑到终端设备到接入网设备之间的传播时延,接入网设备接收该上行信息的时间要滞后于子帧n的子帧起始边界,但为了便于描述,在本发明实施例中,也描述为接入网设备在子帧n接收上行信息。
本实施例中涉及的第二上行子帧集合的确定方法和第一MCS、第二MCS、第一RB、第二RB的获得方法,可以参考实施例三中终端设备对应的方法实施例的相关描述,在此不做赘述。
对应于上述方法,本发明提供一种接入网设备,该接入网设备可以应用于LAA-LTE系统中的多子帧调度场景,该接入网设备可以执行上述方法实施例中的各个步骤。
参考图29,一个实施例中,该接入网设备包括:
发送单元2901,用于向终端设备发送调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输该调度信息所调度的上行数据,该上行数据包括第一上行数据和第二上行数据;其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
其中,该M个上行子帧包括第一上行子帧集合和第二上行子帧集合,该第一上行子帧集合和该第二上行子帧集合分别包括至少一个上行子帧,该第一上行子帧集合中的子帧用于传输第一上行数据;该第二上行子帧集合中的子帧用于传输上行控制信息和第二上行数据;
处理单元2902,用于确定该第一上行子帧集合对应的第一MCS或第一RB,以及确定该第二上行集合对应的第二MCS或第二RB;
接收单元2903,用于在第一上行子帧集合上接收第一MCS或第一RB对应的第一上行数据;在第二上行子帧集合传输第二MCS或第二RB对应的第二上行数据和该上行控制信息。
一个实施例中,该第二子帧集合包括该M个上行子帧中时序上的最后一个子帧和时序上的倒数第二个子帧中的至少一个。
一个实施例中,该接入网设备在子帧n发送该调度信息;该第二子帧集合包括上行突发中时序上最后一个上行子帧和倒数第二个上行子帧中的至少一个;该上行突发指在时间上连续占用的多个上行子帧;该上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
一个实施例中,该第二子帧集合的上行子帧用于上行信息传输的OFDM符号个数不小于设定阈值。
一个实施例中,该调度信息与该触发信息承载在相同的下行控制信息中。
一个实施例中,该上行控制信息包括:信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
一个实施例中,该发送单元还用于向终端设备发送第一指示信息,该第一指示信息用于指示该第一MCS或第一RB。
一个实施例中,该发送单元还用于向终端设备发送第二指示信息,该第二指示信息用于指示该第二MCS或第二RB的指示信息。
一个实施例中,该发送单元还用于向终端设备发送MCS偏移量或RB偏 移量,该MCS偏移量为该第一MCS与该第二MCS之间的偏移量,该RB偏移量为该第一RB与该第二RB之间的偏移量。
本实施例中涉及的调度信息、触发信息、上行控制信息和M个上行子帧的定义和作用,可以参考上述方法实施例的相关描述。该终端设备实施例中涉及的第二上行子帧集合的确定方法和第一MCS、第二MCS、第一RB、第二RB的获得方法,可以参考上述方法实施例的相关描述。
参考图30,另一个实施例中,该接入网设备包括:
发送器3001,用于向终端设备发送调度信息和触发信息,该调度信息用于指示该终端设备在M个上行子帧上传输该调度信息所调度的上行数据,该上行数据包括第一上行数据和第二上行数据;其中M为不小于2的正整数;该触发信息用于指示该终端设备发送上行控制信息;
其中,该M个上行子帧包括第一上行子帧集合和第二上行子帧集合,该第一上行子帧集合和该第二上行子帧集合分别包括至少一个上行子帧,该第一上行子帧集合中的子帧用于传输第一上行数据;该第二上行子帧集合中的子帧用于传输上行控制信息和第二上行数据;
处理器3002,用于确定该第一上行子帧集合对应的第一MCS或第一RB,以及确定该第二上行集合对应的第二MCS或第二RB;
接收器3003,用于在第一上行子帧集合上接收第一MCS或第一RB对应的第一上行数据;在第二上行子帧集合传输第二MCS或第二RB对应的第二上行数据和该上行控制信息。
本实施例中的发送器、处理器、接收器的具体功能分别与上一个实施例中的发送单元、处理单元、接收单元类似。
本实施例中涉及的调度信息、触发信息、上行控制信息和M个上行子帧的定义和作用,可以参考上述方法实施例的相关描述。该终端设备实施例中涉及的第二上行子帧集合的确定方法和第一MCS、第二MCS、第一RB、第二RB的获得方法,可以参考上述方法实施例的相关描述。
实施例四:
终端设备接收来自接入网设备的调度信息和触发信息,所述调度信息用于 指示所述终端设备在M个上行子帧上传输所述调度信息所调度的上行数据,其中M为不小于2的正整数;所述触发信息用于指示所述终端设备发送上行控制信息;
所述终端设备在所述M个上行子帧中确定一个上行子帧用于承载所述上行控制信息;所述确定的为所述M个上行子帧中的第一个竞争到免许可频段资源的上行子帧;
所述终端设备在所述确定的上行子帧上发送上行控制信息。
在本发明实施例中,终端设备可以通过调度信息,确定在上行子帧n~上行子帧n+3传输上行数据。如图31所示。
图31中,如果终端设备在子帧n通过CCA竞争到免许可频段资源,那么该终端设备在子帧n传输上行控制信息,如果终端设备在子帧n没有竞争到免许可频段资源但在子帧n+1竞争到免许可频段资源,则终端设备可以在子帧n+1传输上行控制信息。进一步地,子帧n到子帧n+3都可以作为可以传输上行控制信息的上行子帧。
采用本发明实施例的方法,上行控制信息也可以在多个备选位置上报,从而保证了上行控制信息的传输机会。
实施例五
终端设备接收来自接入网设备的调度信息,该调度信息用于指示所述终端设备在M个上行子帧上传输该调度信息所调度的上行数据,该上行数据包括第一上行数据和第二上行数据;其中M为不小于2的正整数,该M个上行子帧中包括第一上行子帧和第二上行子帧,并且第一上行子帧用于传输上行数据的资源元素(Resource Element,RE)数目与第二上行子帧用于传输上行数据的资源元素RE数目不同;
该终端设备确定第一上行子帧对应的第一MCS或第一RB,以及确定第二上行子帧对应的第二MCS或第二RB;
该终端设备在第一上行子帧中传输第一MCS或第一RB对应的第一上行数据,在第二上行子帧中传输第二MCS或第二RB对应的第二上行数据。
在多子帧调度下,除了上述实施例中提到的在上行子帧中传输CSI,在上 行子帧中传输SRS,在上行子帧中传输HARQ-ACK,会导致被调度的M个上行子帧中至少有两个上行子帧包括的用于上行数据传输的资源元素数目不同,考虑到多用户复用和/或在子帧中预留CCA间隔(CCA gap),也会导致被调度的M个上行子帧中至少有两个上行子帧包括的用于上行数据传输的资源元素数目不同,可选地,资源元素数目不同的一种表现形式为不同的上行子帧用于传输上行信息的OFDM符号个数不同,或者说,用于不同的上行子帧中是否包括空白OFDM符号的情况、或者具体包括几个空白OFDM符号的情况不同。例如,如图4所示,在被调度的4个上行子帧中,子帧n+7用于上行信息传输的OFDM符号个数小于其他子帧(如子帧n+4、子帧n+5、子帧n+6)用于上行信息传输的OFDM符号个数,或者说,在子帧n+7中对于上行信息传输而言,存在空白的OFDM符号,在这种情况下,通过对不同的上行子帧承载的上行数据传输设置与其对应的MCS或RB,可以保证数据传输效率。
同上述描述,终端设备可以直接确定第一MCS或第一RB,以及直接确定第二MCS或第二RB;也可以直接确定第一MCS或第一RB,然后再通过第一MCS与第二MCS之间的MCS偏移量,确定第二MCS,通过第一RB与第二RB之间的偏移量,确定第二RB;或者,可以直接确定第二MCS或第二RB,再通过第一MCS与第二MCS之间的MCS偏移量,确定第一MCS,通过第一RB和第二RB之间的RB偏移量,确定第一RB。
在这种方式下,确定第一MCS、第二MCS、第一RB、第二RB以及确定第一MCS与第二MCS之间的MCS偏移量、第一RB与第二RB之间的RB偏移量的实现方式同前所述,在此不做赘述。
对应的,在这种实施方式下,接入网设备向终端设备发送调度信息,该调度信息用于指示所述终端设备在M个上行子帧上传输该调度信息所调度的上行数据,该上行数据包括第一上行数据和第二上行数据;其中M为不小于2的正整数,该M个上行子帧中包括第一上行子帧和第二上行子帧,并且第一上行子帧用于传输上行数据的资源元素(Resource Element,RE)数目与第二上行子帧用于传输上行数据的资源元素RE数目不同;
该接入网设备确定第一上行子帧对应的第一MCS或第一RB,以及确定第二上行子帧对应的第二MCS或第二RB;
该接入网设备在第一上行子帧中接收第一MCS或第一RB对应的第一上行数据,在第二上行子帧中接收第二MCS或第二RB对应的第二上行数据。
需要说明的是,在本发明实施例中,RRC信令可以理解为高层信令。
需要说明的是,在本发明实施例中,终端设备在子帧n接收到接入网设备发送的一个调度信息,或者说接收到一个UL grant指示信息,该调度信息指示终端设备在至少两个上行子帧传输该调度信息所调度的上行数据。在本发明实施例中,可选地,终端设备在子帧n接收到接入网设备发送的多个调度信息,所述多个调度信息可以承载在不同的DCI中,但可以承载在相同的子帧中,或者说接收到多个UL grant指示信息,那么上述多个调度信息所对应的上行子帧可以看为M个上行子帧。其中,调度信息所对应的上行子帧,是指,该调度信息用于指示终端设备在该上行子帧传输上行数据。
需要说明的是,在本发明实施例中,如果终端设备在子帧n接收到接入网设备发送的多个调度信息,所述多个调度信息承载在不同的DCI中,那么终端设备确定的用于承载上行控制信息的上行子帧,位于与触发信息在相同的DCI中的调度信息所调度的多个上行子帧中。
在本发明实施例中,可选地,M个上行子帧在时序上,可以是连续的;可选地,M个上行子帧在时序上也可以是非连续的。
需要说明的是,在本发明实施例中,承载上行控制信息的上行子帧可以是信令指示的,也可以是根据预配置准则确定的,预配置准则例如可以包括上述各种实现方式。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直 接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。例如,上文的接收器和发送器可在物理上可以集成在一个模块上,例如为收发器或者天线。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
总之,以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (70)

  1. 一种上行控制信息的传输方法,其特征在于,包括:
    终端设备接收来自接入网设备的调度信息和触发信息,所述调度信息用于指示所述终端设备在M个上行子帧上传输所述调度信息所调度的上行数据,其中M为不小于2的正整数;所述触发信息用于指示所述终端设备发送上行控制信息;
    所述终端设备在所述M个上行子帧中确定一个上行子帧用于承载所述上行控制信息;所述确定的上行子帧为所述M个上行子帧中除第一子帧外的其他子帧,所述第一子帧为M个上行子帧中第一个上行子帧;
    所述终端设备在所述确定的上行子帧上发送上行控制信息。
  2. 根据权利要求1所述的方法,其特征在于,所述确定的上行子帧为所述M个上行子帧中时序上的最后一个子帧,或者,时序上的倒数第二个子帧。
  3. 根据权利要求1所述的方法,其特征在于,所述终端设备在子帧n接收所述调度信息;所述确定的上行子帧为所述M个上行子帧包含的上行突发中时序上最后一个或倒数第二个上行子帧;所述上行突发指在时间上连续占用的多个上行子帧;所述上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
  4. 根据权利要求1-3所述的任一方法,其特征在于,所述确定的上行子帧用于上行信息传输的OFDM符号个数不小于设定阈值。
  5. 根据权利要求1-4所述的任一方法,其特征在于,所述调度信息与所述触发信息承载在相同的下行控制信息中。
  6. 根据权利要求1-5所述的方法,其特征在于,所述上行控制信息包括:信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
  7. 一种终端设备,其特征在于,包括:
    接收单元,用于接收来自接入网设备的调度信息和触发信息,所述调度信息用于指示所述终端设备在M个上行子帧上传输所述调度信息所调度的上行数据,其中M为不小于2的正整数;所述触发信息用于指示所述终端设备发送上行控制信息;
    确定单元,用于在所述M个上行子帧中确定一个上行子帧用于承载所述上行控制信息;所述确定的上行子帧为所述M个上行子帧中除第一子帧外的其他子帧,所述第一子帧为M个上行子帧中第一个上行子帧;
    发送单元,用于在所述确定的上行子帧上发送上行控制信息。
  8. 根据权利要求7所述的终端设备,其特征在于,所述确定单元确定的上行子帧为所述M个上行子帧中时序上的最后一个子帧,或者,时序上的倒数第二个子帧。
  9. 根据权利要求7所述的终端设备,其特征在于,所述接收单元在子帧n接收所述调度信息;所述确定单元用于确定所述M个上行子帧包含的上行突发中时序上最后一个或倒数第二个上行子帧,作为承载所述上行控制信息的上行子帧;所述上行突发指在时间上连续占用的多个上行子帧;所述上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
  10. 根据权利要求7-9所述的任一终端设备,其特征在于,所述确定单元确定的上行子帧用于上行信息传输的OFDM符号个数不小于设定阈值。
  11. 根据权利要求7-10所述的任一终端设备,其特征在于,所述调度信息与所述触发信息承载在相同的下行控制信息中。
  12. 根据权利要求7-11所述的终端设备,其特征在于,所述上行控制信息包括:信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
  13. 一种上行控制信息的传输方法,其特征在于,包括:
    终端设备接收来自接入网设备的调度信息和触发信息,所述调度信息用于指示所述终端设备在M个上行子帧上传输所述调度信息所调度的上行数据,其中M为不小于2的正整数;所述触发信息用于指示所述终端设备发送上行控制信息;
    所述终端设备在所述M个上行子帧中确定至少两个上行子帧用于承载上行控制信息;
    所述终端设备在所述至少两个上行子帧上发送上行控制信息。
  14. 根据权利要求13所述的方法,其特征在于,所述至少两个上行子帧包括所述M个上行子帧中时序上的最后一个子帧和时序上的倒数第二个子帧中的至少一个。
  15. 根据权利要求13所述的方法,其特征在于,所述终端设备在子帧n接收所述调度信息;所述至少两个上行子帧包括所述M个上行子帧包含的上行突发中时序上最后一个上行子帧和倒数第二个上行子帧中的至少一个;所述上行突发指在时间上连续占用的多个上行子帧;所述上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
  16. 根据权利要求13-15所述的任一方法,其特征在于,所述至少两个上行子帧包括所述M个上行子帧中时序上第一个子帧。
  17. 根据权利要求13-16所述的任一方法,其特征在于,所述至少两个上行子帧用于上行控制信息传输的OFDM符号个数不小于设定阈值。
  18. 根据权利要求13-17所述的任一方法,其特征在于,所述调度信息与所述触发信息承载在相同的下行控制信息中。
  19. 根据权利要求13-18所述的方法,其特征在于,所述上行控制信息包括:信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
  20. 根据权利要求13-19所述的任一方法,其特征在于,所述至少两个上行子帧中每一个上行子帧承载的上行控制信息相同。
  21. 根据权利要求13-19所述的任一方法,其特征在于,所述至少两个上行子帧中包含第一上行子帧和第二上行子帧,第一上行子帧承载的上行控制信息与第二上行子帧承载的上行控制信息不同。
  22. 根据权利要求21所述的方法,其特征在于,所述第一上行子帧承载的上行控制信息与第二上行子帧承载的上行控制信息内容上不重合或者所述第一上行子帧承载的控制信息的内容包含所述第二上行子帧承载的上行控制信息的内容。
  23. 一种终端设备,其特征在于,包括:
    接收单元,用于接收来自接入网设备的调度信息和触发信息,所述调度信息用于指示所述终端设备在M个上行子帧上传输所述调度信息所调度的上行数据,其中M为不小于2的正整数;所述触发信息用于指示所述终端设备发送上行控制信息;
    处理单元,用于在所述M个上行子帧中确定至少两个上行子帧用于承载上行控制信息;
    发送单元,用于在所述至少两个上行子帧上发送上行控制信息。
  24. 根据权利要求23所述的终端设备,其特征在于,所述至少两个上行子帧包括所述M个上行子帧中时序上的最后一个子帧和时序上的倒数第二个子帧中的至少一个。
  25. 根据权利要求23所述的终端设备,其特征在于,所述接收单元在子帧n接收所述调度信息;所述至少两个上行子帧包括所述M个上行子帧包含的上行突发中时序上最后一个上行子帧和倒数第二个上行子帧中的至少一个;所述上行突发指在时间上连续占用的多个上行子帧;所述上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
  26. 根据权利要求23-25所述的任一终端设备,其特征在于,所述至少两 个上行子帧包括所述M个上行子帧中时序上第一个子帧。
  27. 根据权利要求23-26所述的任一终端设备,其特征在于,所述至少两个上行子帧中每个子帧用于上行控制信息传输的OFDM符号个数不小于设定阈值。
  28. 根据权利要求23-27所述的任一终端设备,其特征在于,所述调度信息与所述触发信息承载在相同的下行控制信息中。
  29. 根据权利要求23-28所述的终端设备,其特征在于,所述上行控制信息包括:信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
  30. 根据权利要求23-29所述的任一终端设备,其特征在于,所述至少两个上行子帧中每一个上行子帧承载的上行控制信息相同。
  31. 根据权利要求23-29所述的任一终端设备,其特征在于,所述至少两个上行子帧中包含第一上行子帧和第二上行子帧,第一上行子帧承载的上行控制信息与第二上行子帧承载的上行控制信息不同。
  32. 根据权利要求31所述的终端设备,其特征在于,所述第一上行子帧承载的上行控制信息与第二上行子帧承载的上行控制信息内容上不重合或者所述第一上行子帧承载的控制信息的内容包含所述第二上行子帧承载的上行控制信息的内容。
  33. 一种上行控制信息的传输方法,其特征在于,包括:
    终端设备接收来自接入网设备的调度信息和触发信息,所述调度信息用于指示所述终端设备在M个上行子帧上传输所述调度信息所调度的上行数据,所述上行数据包括第一上行数据和第二上行数据;其中M为不小于2的正整数;所述触发信息用于指示所述终端设备发送上行控制信息;
    其中,所述M个上行子帧包括第一上行子帧集合和第二上行子帧集合,所述第一上行子帧集合和所述第二上行子帧集合分别包括至少一个上行子帧, 所述第一上行子帧集合中的子帧用于传输第一上行数据;所述第二上行子帧集合中的子帧用于传输上行控制信息和第二上行数据;
    所述终端设备确定所述第一上行子帧集合对应的第一MCS或第一RB,以及确定所述第二上行集合对应的第二MCS或第二RB;
    所述终端设备在第一上行子帧集合传输第一MCS或第一RB对应的所述第一上行数据以及在第二上行子帧集合传输第二MCS或第二RB对应的所述第二上行数据和所述上行控制信息。
  34. 根据权利要求33所述的方法,其特征在于,所述第二子帧集合包括所述M个上行子帧中时序上的最后一个子帧和时序上的倒数第二个子帧中的至少一个。
  35. 根据权利要求33所述的方法,其特征在于,所述终端设备在子帧n接收所述调度信息;所述第二子帧集合包括所述M个上行子帧包含的上行突发中时序上最后一个上行子帧和倒数第二个上行子帧中的至少一个;所述上行突发指在时间上连续占用的多个上行子帧;所述上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
  36. 根据权利要求33-35所述的任一方法,其特征在于,所述第二子帧集合的上行子帧用于上行信息传输的OFDM符号个数不小于设定阈值。
  37. 根据权利要求33-36所述的任一方法,其特征在于,所述调度信息与所述触发信息承载在相同的下行控制信息中。
  38. 根据权利要求33-37所述的方法,其特征在于,所述上行控制信息包括:信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
  39. 根据权利要求33-38所述的任一方法,其特征在于,所述终端设备确定所述第一上行子帧集合对应的第一MCS或第一RB包括:
    所述终端设备接收来自接入网设备的第一指示信息,所述第一指示信息用 于指示所述第一MCS或指示所述第一RB,所述终端设备根据所述第一指示信息确定所述第一MCS或第一RB。
  40. 根据权利要求39的方法,其特征在于,所述终端设备确定所述第二上行子帧集合对应的第二MCS或第二RB:包括
    所述终端设备获得MCS偏移量或RB偏移量;所述MCS偏移量为所述第一MCS与所述第二MCS之间的偏移量,所述RB偏移量为所述第一RB与所述第二RB之间的偏移量;
    所述终端设备根据所述第一MCS和所述MCS偏移量,确定所述第二MCS;或者,所述终端设备根据所述第一RB和所述RB偏移量,确定所述第二RB。
  41. 根据权利要求33-39所述的任一方法,其特征在于,所述终端设备确定所述第二上行集合对应的第二MCS或第二RB包括:
    所述终端设备接收来自接入网设备的第二指示信息,所述第二指示信息用于指示所述第二MCS或指示第二RB,所述终端设备根据所述第二指示信息确定所述第二MCS或第二RB。
  42. 根据权利要求33-38的方法,其特征在于,所述终端设备确定所述第二上行集合对应的第二MCS或第二RB包括:
    所述终端设备接收来自接入网设备的第二指示信息,所述第二指示信息用于指示所述第二MCS或指示第二RB,所述终端设备根据所述第二指示信息确定所述第二MCS或第二RB;
    所述终端设备确定所述第一上行子帧集合对应的第一MCS或第一RB包括:
    所述终端设备获得MCS偏移量或RB偏移量;所述MCS偏移量为所述第一MCS与所述第二MCS之间的偏移量,所述RB偏移量为所述第一RB与所述第二RB之间的偏移量;
    所述终端设备根据所述第二MCS和所述MCS偏移量,确定所述第一MCS;或者,所述终端设备根据所述第二RB和所述RB偏移量,确定所述第一RB。
  43. 一种终端设备,其特征在于,包括:
    接收单元,用于接收来自接入网设备的调度信息和触发信息,所述调度信息用于指示所述终端设备在M个上行子帧上传输所述调度信息所调度的上行数据,所述上行数据包括第一上行数据和第二上行数据;其中M为不小于2的正整数;所述触发信息用于指示所述终端设备发送上行控制信息;
    其中,所述M个上行子帧包括第一上行子帧集合和第二上行子帧集合,所述第一上行子帧集合和所述第二上行子帧集合分别包括至少一个上行子帧,所述第一上行子帧集合中的子帧用于传输第一上行数据;所述第二上行子帧集合中的子帧用于传输上行控制信息和第二上行数据;
    确定单元,用于确定所述第一上行子帧集合对应的第一MCS或第一RB,以及确定所述第二上行集合对应的第二MCS或第二RB;
    发送单元,用于在第一上行子帧集合传输第一MCS或第一RB对应的所述第一上行数据以及在第二上行子帧集合传输第二MCS或第二RB对应的所述第二上行数据和所述上行控制信息。
  44. 根据权利要求33所述的终端设备,其特征在于,所述第二子帧集合包括所述M个上行子帧中时序上的最后一个子帧和时序上的倒数第二个子帧中的至少一个。
  45. 根据权利要求43所述的终端设备,其特征在于,所述终端设备在子帧n接收所述调度信息;所述第二子帧集合包括所述M个上行子帧包含的上行突发中时序上最后一个上行子帧和倒数第二个上行子帧中的至少一个;所述上行突发指在时间上连续占用的多个上行子帧;所述上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
  46. 根据权利要求43-45所述的任一终端设备,其特征在于,所述第二子帧集合的上行子帧用于上行信息传输的OFDM符号个数不小于设定阈值。
  47. 根据权利要求43-46所述的任一终端设备,其特征在于,所述调度 信息与所述触发信息承载在相同的下行控制信息中。
  48. 根据权利要求43-47所述的终端设备,其特征在于,所述上行控制信息包括:信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
  49. 根据权利要求43-48所述的任一终端设备,其特征在于,所述接收单元还用于接收来自接入网设备的第一指示信息,所述第一指示信息用于指示所述第一MCS或指示所述第一RB;
    所述确定单元包括第一确定单元,第一确定单元用于根据所述第一指示信息确定所述第一MCS或第一RB。
  50. 根据权利要求49的终端设备,其特征在于,所述确定单元还包括第二确定单元,所述第二确定单元用于获得MCS偏移量或RB偏移量,根据所述第一MCS和所述MCS偏移量,确定所述第二MCS;或者,根据所述第一RB和所述RB偏移量,确定所述第二RB;所述MCS偏移量为所述第一MCS与所述第二MCS之间的偏移量,所述RB偏移量为所述第一RB与所述第二RB之间的偏移量。
  51. 根据权利要求43-49所述的任一终端设备,其特征在于,所述接收单元还用于接收来自接入网设备的第二指示信息,所述第二指示信息用于指示所述第二MCS或指示第二RB;
    所述确定单元包括第三确定单元,第三确定单元用于根据所述第二指示信息确定所述第二MCS或第二RB。
  52. 根据权利要求43-48所述的任一终端设备,其特征在于,所述接收单元,还用于接收来自接入网设备的第二指示信息,所述第二指示信息用于指示所述第二MCS或指示第二RB;
    所述确定单元包括:
    第三确定单元,用于根据所述第二指示信息确定所述第二MCS或第二RB;
    第四确定单元,用于获得MCS偏移量或RB偏移量;并根据所述第二MCS和所述MCS偏移量,确定所述第一MCS;或者,所述终端设备根据所述第二RB和所述RB偏移量,确定所述第一RB;所述MCS偏移量为所述第一MCS与所述第二MCS之间的偏移量,所述RB偏移量为所述第一RB与所述第二RB之间的偏移量。
  53. 一种上行控制信息的传输方法,其特征在于,包括:
    接入网设备向终端设备发送调度信息和触发信息,所述调度信息用于指示所述终端设备在M个上行子帧上传输所述调度信息所调度的上行数据,所述上行数据包括第一上行数据和第二上行数据;其中M为不小于2的正整数;所述触发信息用于指示所述终端设备发送上行控制信息;
    其中,所述M个上行子帧包括第一上行子帧集合和第二上行子帧集合,所述第一上行子帧集合和所述第二上行子帧集合分别包括至少一个上行子帧,所述第一上行子帧集合中的子帧用于传输第一上行数据;所述第二上行子帧集合中的子帧用于传输上行控制信息和第二上行数据;
    接入网设备确定该第一上行子帧集合对应的第一MCS或第一RB,以及确定该第二上行集合对应的第二MCS或第二RB;
    接入网设备在第一上行子帧集合上接收第一MCS或第一RB对应的第一上行数据;在第二上行子帧集合传输第二MCS或第二RB对应的第二上行数据和所述上行控制信息。
  54. 根据权利要求53所述的方法,其特征在于,所述第二子帧集合包括所述M个上行子帧中时序上的最后一个子帧和时序上的倒数第二个子帧中的至少一个。
  55. 根据权利要求53所述的方法,其特征在于,所述接入网设备在子帧n发送所述调度信息;所述第二子帧集合包括上行突发中时序上最后一个上行子帧和倒数第二个上行子帧中的至少一个;所述上行突发指在时间上连续占用的多个上行子帧;所述上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
  56. 根据权利要求53-55所述的任一方法,其特征在于,所述第二子帧集合的上行子帧用于上行信息传输的OFDM符号个数不小于设定阈值。
  57. 根据权利要求53-56所述的任一方法,其特征在于,所述调度信息与所述触发信息承载在相同的下行控制信息中。
  58. 根据权利要求53-57所述的方法,其特征在于,所述上行控制信息包括:信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
  59. 根据权利要求53-58所述的任一方法,其特征在于,还包括:
    所述接入网设备向终端设备发送第一指示信息,所述第一指示信息用于指示所述第一MCS或第一RB。
  60. 根据权利要求53-59所述的任一方法,其特征在于,还包括:
    所述接入网设备向终端设备发送第二指示信息,所述第二指示信息用于指示所述第二MCS或第二RB的指示信息。
  61. 根据权利要求59或60所述的方法,其特征在于,还包括:
    所述接入网设备向终端设备发送MCS偏移量或RB偏移量,所述MCS偏移量为所述第一MCS与所述第二MCS之间的偏移量,所述RB偏移量为所述第一RB与所述第二RB之间的偏移量。
  62. 一种接入网设备,其特征在于,包括:
    发送单元,用于向终端设备发送调度信息和触发信息,所述调度信息用于指示所述终端设备在M个上行子帧上传输所述调度信息所调度的上行数据,所述上行数据包括第一上行数据和第二上行数据;其中M为不小于2的正整数;所述触发信息用于指示所述终端设备发送上行控制信息;
    其中,所述M个上行子帧包括第一上行子帧集合和第二上行子帧集合,所述第一上行子帧集合和所述第二上行子帧集合分别包括至少一个上行子帧, 所述第一上行子帧集合中的子帧用于传输第一上行数据;所述第二上行子帧集合中的子帧用于传输上行控制信息和第二上行数据;
    处理单元,用于确定该第一上行子帧集合对应的第一MCS或第一RB,以及确定该第二上行集合对应的第二MCS或第二RB;
    接收单元,用于在第一上行子帧集合上接收第一MCS或第一RB对应的第一上行数据;在第二上行子帧集合传输第二MCS或第二RB对应的第二上行数据和所述上行控制信息。
  63. 根据权利要求62所述的接入网设备,其特征在于,所述第二子帧集合包括所述M个上行子帧中时序上的最后一个子帧和时序上的倒数第二个子帧中的至少一个。
  64. 根据权利要求62所述的接入网设备,其特征在于,所述接入网设备在子帧n发送所述调度信息;所述第二子帧集合包括上行突发中时序上最后一个上行子帧和倒数第二个上行子帧中的至少一个;所述上行突发指在时间上连续占用的多个上行子帧;所述上行突发在包括子帧n的下行突发之后且紧挨着包括子帧n的下行突发。
  65. 根据权利要求62-64所述的任一接入网设备,其特征在于,所述第二子帧集合的上行子帧用于上行信息传输的OFDM符号个数不小于设定阈值。
  66. 根据权利要求62-65所述的任一接入网设备,其特征在于,所述调度信息与所述触发信息承载在相同的下行控制信息中。
  67. 根据权利要求62-66所述的接入网设备,其特征在于,所述上行控制信息包括:信道状态信息,探测参考信号和混合自动重传请求确认应答中的至少一种。
  68. 根据权利要求62-67所述的任一接入网设备,其特征在于,所述发送单元还用于向终端设备发送第一指示信息,所述第一指示信息用于指示所述第一MCS或第一RB。
  69. 根据权利要求62-68所述的任一接入网设备,其特征在于,所述发送单元还用于向终端设备发送第二指示信息,所述第二指示信息用于指示所述第二MCS或第二RB的指示信息。
  70. 根据权利要求59或60所述的接入网设备,其特征在于,所述发送单元还用于向终端设备发送MCS偏移量或RB偏移量,所述MCS偏移量为所述第一MCS与所述第二MCS之间的偏移量,所述RB偏移量为所述第一RB与所述第二RB之间的偏移量。
PCT/CN2016/082123 2016-05-13 2016-05-13 一种上行控制信息的传输方法和装置 WO2017193399A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680085043.1A CN109076569B (zh) 2016-05-13 2016-05-13 一种上行控制信息的传输方法和装置
EP16901354.7A EP3448108B1 (en) 2016-05-13 2016-05-13 Method and apparatus for transmitting uplink control information
BR112018073358-0A BR112018073358B1 (pt) 2016-05-13 2016-05-13 Método para transmitir informação de controle de enlace ascendente, dispositivo de terminal, dispositivo de acesso e meio de armazenamento legível por computador
PCT/CN2016/082123 WO2017193399A1 (zh) 2016-05-13 2016-05-13 一种上行控制信息的传输方法和装置
JP2018559807A JP6867410B2 (ja) 2016-05-13 2016-05-13 アップリンク制御情報を伝送するための方法および装置
US16/188,507 US11212823B2 (en) 2016-05-13 2018-11-13 Method and apparatus for transmitting uplink control information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082123 WO2017193399A1 (zh) 2016-05-13 2016-05-13 一种上行控制信息的传输方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/188,507 Continuation US11212823B2 (en) 2016-05-13 2018-11-13 Method and apparatus for transmitting uplink control information

Publications (1)

Publication Number Publication Date
WO2017193399A1 true WO2017193399A1 (zh) 2017-11-16

Family

ID=60266966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082123 WO2017193399A1 (zh) 2016-05-13 2016-05-13 一种上行控制信息的传输方法和装置

Country Status (6)

Country Link
US (1) US11212823B2 (zh)
EP (1) EP3448108B1 (zh)
JP (1) JP6867410B2 (zh)
CN (1) CN109076569B (zh)
BR (1) BR112018073358B1 (zh)
WO (1) WO2017193399A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021073507A1 (zh) * 2019-10-15 2021-04-22 中兴通讯股份有限公司 上行控制信息复用方法和装置
CN113273275A (zh) * 2019-01-08 2021-08-17 高通股份有限公司 为共享射频谱中的通信配置上行链路控制信道资源
US20220167212A1 (en) * 2019-03-28 2022-05-26 Panasonic Intellectual Property Corporation Of America Mobile station, base station, reception method, and transmission method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11044638B2 (en) * 2015-10-29 2021-06-22 Sharp Kabushiki Kaisha Terminal device, base station device, communication method, and integrated circuit
US10397906B2 (en) * 2015-11-13 2019-08-27 Lg Electronics Inc. Method for transmitting wireless signals and apparatus therefor
CN112437492A (zh) * 2016-12-29 2021-03-02 华为技术有限公司 一种多载波中传输数据的方法、终端设备和网络设备
US11057926B2 (en) * 2017-02-04 2021-07-06 Qualcomm Incorporated Physical uplink shared channel coverage enhancements
KR102301319B1 (ko) 2017-04-20 2021-09-13 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 주기적 업링크 정보/신호의 전송 방법, 장치 및 시스템
WO2019074437A1 (en) * 2017-10-12 2019-04-18 Telefonaktiebolaget Lm Ericsson (Publ) METHODS AND APPARATUS FOR TRIGGERING CONTROL INFORMATION IN WIRELESS NETWORKS
WO2019159515A1 (ja) * 2018-02-13 2019-08-22 ソニー株式会社 通信装置及び通信方法
US11540257B2 (en) 2018-03-23 2022-12-27 Qualcomm Incorporated Uplink control information transmission on autonomous uplink in new radio-unlicensed (NR-U)
US11445387B2 (en) * 2018-08-09 2022-09-13 Lenovo (Singapore) Pte. Ltd. Downlink assignments for downlink control channels
CN111447162B (zh) * 2019-01-17 2022-11-25 全球能源互联网研究院有限公司 一种长期演进通信系统中的传输方法及系统
US20220191899A1 (en) * 2019-03-29 2022-06-16 Lg Electronics Inc. Method for transmitting or receiving signals for multiple transport block scheduling, and apparatus therefor
CN111867118B (zh) * 2019-04-30 2022-04-26 华为技术有限公司 一种资源调度的方法及通信装置
US20220256535A1 (en) * 2019-07-25 2022-08-11 Panasonic Intellectual Property Corporation Of America Terminal and transmission method
CN112583531B (zh) * 2019-09-27 2022-06-24 维沃移动通信有限公司 一种上行控制信息的传输方法、终端设备和网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105129A (zh) * 2013-04-12 2014-10-15 北京三星通信技术研究有限公司 Lte系统中的非周期csi报告方法和用户设备
CN104113924A (zh) * 2013-04-17 2014-10-22 中兴通讯股份有限公司 一种多子帧调度方法、装置及系统
CN104253677A (zh) * 2013-06-25 2014-12-31 北京三星通信技术研究有限公司 一种处理上行传输的方法和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104619035B (zh) * 2012-01-20 2016-11-16 华为终端有限公司 基于跨载波调度的数据传输方法、用户设备和基站
US9980257B2 (en) * 2014-09-26 2018-05-22 Qualcomm Incorporated Ultra-low latency LTE reference signal transmission
US10187186B2 (en) * 2014-09-30 2019-01-22 Qualcomm Incorporated Uplink grant management for LTE in unlicensed spectrum
US10349401B2 (en) * 2015-01-30 2019-07-09 Telefonaktiebolaget Lm Ericsson (Publ) Burst slot numbering for licensed assisted access
CN106658742B (zh) * 2015-11-03 2020-07-03 中兴通讯股份有限公司 数据调度及传输的方法、装置及系统
US10368372B2 (en) * 2016-01-12 2019-07-30 Qualcomm Incorporated Listen-before-talk techniques for uplink transmissions
US10187187B2 (en) * 2016-02-01 2019-01-22 Ofinno Technologies, Llc Sounding reference signal configuration in a wireless network
CA3039429A1 (en) 2016-03-29 2017-10-05 Ofinno Technologies, Llc Sounding reference signal transmission in a wireless network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105129A (zh) * 2013-04-12 2014-10-15 北京三星通信技术研究有限公司 Lte系统中的非周期csi报告方法和用户设备
CN104113924A (zh) * 2013-04-17 2014-10-22 中兴通讯股份有限公司 一种多子帧调度方法、装置及系统
CN104253677A (zh) * 2013-06-25 2014-12-31 北京三星通信技术研究有限公司 一种处理上行传输的方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussion on multi-subframe scheduling for ULLAA", 3GPPTSG RAN WG1 MEETING #84 RL-160557, 19 February 2016 (2016-02-19), XP051064215, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84/Docs/> *
See also references of EP3448108A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113273275A (zh) * 2019-01-08 2021-08-17 高通股份有限公司 为共享射频谱中的通信配置上行链路控制信道资源
US20220167212A1 (en) * 2019-03-28 2022-05-26 Panasonic Intellectual Property Corporation Of America Mobile station, base station, reception method, and transmission method
WO2021073507A1 (zh) * 2019-10-15 2021-04-22 中兴通讯股份有限公司 上行控制信息复用方法和装置

Also Published As

Publication number Publication date
US20190082452A1 (en) 2019-03-14
US11212823B2 (en) 2021-12-28
CN109076569A (zh) 2018-12-21
BR112018073358B1 (pt) 2024-01-09
EP3448108B1 (en) 2024-05-22
JP6867410B2 (ja) 2021-04-28
CN109076569B (zh) 2021-07-16
JP2019520734A (ja) 2019-07-18
EP3448108A1 (en) 2019-02-27
BR112018073358A2 (pt) 2019-03-06
EP3448108A4 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
WO2017193399A1 (zh) 一种上行控制信息的传输方法和装置
US11778598B2 (en) Framing, scheduling, and synchronization in wireless systems
JP6970725B2 (ja) 電力制御実行方法及びユーザ装置
US10631279B2 (en) Uplink transmission method and uplink transmission device
US10219255B2 (en) Time domain multiplexing UL transmission on multiple serving cells for a mobile station with single transmitter
US10834763B2 (en) Method and apparatus for handling overlap of different channels in wireless communication system
US10750494B2 (en) Management of dynamic transmission time interval scheduling for low latency communications
JP2020080564A (ja) 送信制御実行方法及びユーザ装置
KR102004544B1 (ko) 무선 통신 시스템에서 채널측정 기준신호 전송 방법 및 장치
WO2014068891A1 (en) Systems and methods for carrier aggregation
EP3366071A1 (en) Flexible time division duplexing (tdd) subframe structure with latency reduction
CN108886455B (zh) 用于持续时间减小的传输时间间隔的自包含上行链路
US20130003664A1 (en) Scheduling of a User Equipment in a Radio Communication System
CN107637004B (zh) 报告信道状态信息的方法和使用该方法的设备
US10880053B2 (en) Wireless device, a network node and methods therein for handling transmissions in a wireless communications network
KR20170108202A (ko) Short TTI 프레임 구조 기반 자원 할당 방법 및 그 장치
CN112492613B (zh) 在支持未授权带的无线接入系统中执行cca的方法及其装置
KR20180004392A (ko) 짧은 전송 시간 간격 프레임 구조에서 상향링크 제어 채널을 설정하는 방법 및 그 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018559807

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016901354

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018073358

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016901354

Country of ref document: EP

Effective date: 20181119

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018073358

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181113