WO2018171474A1 - 数据传输的方法、设备和系统 - Google Patents

数据传输的方法、设备和系统 Download PDF

Info

Publication number
WO2018171474A1
WO2018171474A1 PCT/CN2018/078926 CN2018078926W WO2018171474A1 WO 2018171474 A1 WO2018171474 A1 WO 2018171474A1 CN 2018078926 W CN2018078926 W CN 2018078926W WO 2018171474 A1 WO2018171474 A1 WO 2018171474A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cbgs
cbg
group
groups
Prior art date
Application number
PCT/CN2018/078926
Other languages
English (en)
French (fr)
Inventor
彭金磷
董朋朋
陈盼
杨品露
王轶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18772162.6A priority Critical patent/EP3585022A4/en
Publication of WO2018171474A1 publication Critical patent/WO2018171474A1/zh
Priority to US16/579,853 priority patent/US11212036B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18545Arrangements for managing station mobility, i.e. for station registration or localisation
    • H04B7/18547Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station
    • H04B7/1855Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station using a telephonic control signal, e.g. propagation delay variation, Doppler frequency variation, power variation, beam identification

Definitions

  • the present application relates to wireless communication technologies, and in particular, to a communication method, device and system related to data transmission.
  • the baseband processing of the physical layer of a long term evolution (LTE) system may include scrambling, modulation, layer mapping, precoding, and resource mapping and orthogonal frequency division multiplexing for each physical antenna port. OFDM) Signal generation process.
  • the layer mapping implements the mapping of codewords to layers. According to the multiple input multiple output (MIMO) scheme, the corresponding layer mapping is specified for different number of codewords and the number of layers (layers). the rule of. Among them, a codeword can correspond to a transport block (TB).
  • MIMO multiple input multiple output
  • the present application describes a method, apparatus and system for data transmission.
  • an embodiment of the present application provides a data transmission method, including: a transmitting end mapping each of the CBGs to a layer included in a corresponding layer group according to a correspondence between the N coding block groups CBG and the N layer groups.
  • the number of layers included in each of the layer groups is at least one; N is a positive integer; the transmitting end sends data to the receiving end, and the transport block TB corresponding to the data includes the N CBGs.
  • an embodiment of the present application provides a data transmission method, including: receiving, by a receiving end, data sent by a transmitting end, where a data transmission block TB includes N coded block groups CBG;
  • the N CBGs are associated with the N tiers, and the N CBGs are obtained from the data; wherein each of the tiers includes at least one layer, and each of the CBGs is mapped to a corresponding layer.
  • the layer included in the group, N is a positive integer.
  • the mapping relationship between the CBG and the layer group is established, so that the transmission between different layer groups can improve the data receiving quality by using interference cancellation, and the adaptation and CBG-based retransmission feedback are optimized. Transmission performance of data transmission.
  • the N layer groups are configured according to the configured demodulation reference signal DMRS port group information, the transmitting and receiving point TRP or the TRP group information included in the sending end. And at least one of quasi-co-located QCL information between antenna ports corresponding to the layer and identification information of a beam sent by the transmitting end.
  • N>1 at least two CBGs are present in the N CBGs, and the two CBGs are respectively configured differently At least one of a modulation scheme, a different code rate, and a different precoding matrix.
  • each of the CBGs includes a coding block CB number or a number of bits and a layer included in the corresponding layer group The number is proportional; or each CBG includes a CB number or a number of bits that is proportional to at least one of a modulation order, a code rate, and a transmission rate of the corresponding layer group; or, each of the CBGs includes The CB number or the number of bits is determined according to at least one of the number of allocated resource blocks RB, the number of layers included in the corresponding layer group, and the modulation and coding mode MCS of each of the CBGs.
  • the CBG that needs to be retransmitted is mapped to a layer included in the same layer group as the initial transmission; or the CBG that needs to be retransmitted is mapped to a layer included in at least one of the N layer groups according to control signaling, the at least one The layer group is indicated by the control signaling; or the CBG that needs to be retransmitted is repeatedly mapped to the layer included in the M layer groups of the N layer groups by using a single frequency network SFN manner, and the number of repetitions is M times, 2 ⁇ M ⁇ N, M is a positive integer; or, the CBG that needs to be retransmitted is mapped to a layer included in at least one of the N layer groups according to an exchange flag indication.
  • an embodiment of the present invention provides a communication device, which has a function of implementing a behavior of a sender in the design of the foregoing method.
  • the function can be implemented by hardware, and the structure of the transmitting end includes a transceiver and a processor.
  • the corresponding software implementation can also be performed by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the device can be a base station or a terminal.
  • the embodiment of the present invention provides another communication device, which has the function of realizing the behavior of the receiving end in the actual method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the device can be a terminal or a base station.
  • an embodiment of the present invention provides a communication system, where the system includes the transmitting end and the receiving end described in the foregoing aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the transmitting end, which includes a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the receiving end, which includes a program designed to perform the above aspects.
  • FIG. 1(a) is a schematic diagram of a layer mapping relationship of an LTE system according to an embodiment of the present application
  • FIG. 1(b) is a schematic diagram of a layer mapping relationship of another LTE system according to an embodiment of the present application
  • FIG. 1(c) is a schematic diagram of a layer mapping relationship of another LTE system according to an embodiment of the present application.
  • FIG. 1(d) is a schematic diagram of a layer mapping relationship of another LTE system according to an embodiment of the present application
  • FIG. 2(a) is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 2(b) is another application scenario diagram provided by an embodiment of the present application.
  • FIG. 2(c) is still another application scenario diagram provided by the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a sending end according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a receiving end according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a method for data transmission according to an embodiment of the present application.
  • Figure 6 (a) is a diagram showing a correspondence relationship between a CBG and a layer group according to an embodiment of the present application
  • FIG. 6(b) is a diagram showing a correspondence relationship between another CBG and a layer group according to an embodiment of the present application.
  • FIG. 6(c) is a diagram showing correspondence between another CBG and a layer group according to an embodiment of the present application.
  • FIG. 6(d) is a diagram showing a correspondence relationship between another CBG and a layer group according to an embodiment of the present application.
  • FIG. 7(a) is a diagram showing a correspondence relationship between a CBG and a layer group according to an embodiment of the present application
  • FIG. 7(b) is a diagram showing a correspondence relationship between another CBG and a layer group according to an embodiment of the present application.
  • FIG. 7(c) is a diagram showing a correspondence relationship between another CBG and a layer group according to an embodiment of the present application.
  • FIG. 7(d) is a diagram showing a correspondence relationship between another CBG and a layer group according to an embodiment of the present application.
  • FIG. 8(a) is a diagram showing a correspondence relationship between a CBG and a layer group according to an embodiment of the present application
  • FIG. 8(b) is a diagram showing a correspondence relationship between another CBG and a layer group according to an embodiment of the present application.
  • FIG. 8(c) is a diagram showing a correspondence relationship between another CBG and a layer group according to an embodiment of the present application.
  • FIG. 8(d) is a diagram showing a correspondence relationship between another CBG and a layer group according to an embodiment of the present application.
  • FIG. 9(a) is a diagram showing a correspondence relationship between a CBG and a layer group according to an embodiment of the present application.
  • FIG. 9(b) is a diagram showing a correspondence relationship between another CBG and a layer group according to an embodiment of the present application.
  • FIG. 9(c) is a diagram showing a correspondence relationship between another CBG and a layer group according to an embodiment of the present application.
  • FIG. 9(d) is a diagram showing a correspondence relationship between another CBG and a layer group according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of CBG division according to an embodiment of the present application.
  • FIG. 11(a) is a schematic diagram of a retransmission mode based on an indication of an exchange flag according to an embodiment of the present application
  • FIG. 11(b) is a schematic diagram of another retransmission mode based on an indication of an exchange flag according to an embodiment of the present application
  • FIG. 12 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the baseband processing process of the physical layer may be: obtaining a TB to be transmitted from a media access control (MAC) layer, and a TB size (TBS) is allocated by the base station.
  • RB number, number of layers, and modulation and coding scheme (MCS) determination (refer to the 3rd generation partnership project (3GPP) technical specification (TS) 36.213 version 14.1.0 ( V14.1.0) Section 7.1.7 and Section 8.6); adding a cyclic redundancy check (CRC) to the TB; performing a segmentation operation on the TB according to the TBS, for example, if the TBS is greater than 6144 bits Dividing the TB into a plurality of code blocks (CBs) of substantially the same size and smaller than 6144 bits, and adding a CRC to each CB (refer to 3GPP TS 36.212, v 14.1.1, 5.1.2); Each CB coding, rate matching, and then scrambling, modulation, layer mapping, precoding, and resource mapping and
  • MCS
  • FIG. 1( a ) to FIG. 1( d ) are schematic diagrams of several possible layer mapping relationships in the existing LTE system.
  • one TB is scheduled for one data, and a single layer transmission is used, and one TB is mapped to the single layer.
  • two TBs are scheduled in one data, and in the manner of three layers, TB0 is mapped to layer 0, and TB1 is mapped to layer 1 and layer 2.
  • the 3GPP TS 36.211 v14.1.0 may be used.
  • Table 5.3.2A.2 Table 5.3.2A.2-1 and 6.3.3.2 Table 6.3.3.2-1 determine the mapping relationship between TB (or codeword) and layer.
  • transmission diversity only 1 TB (or codeword), using 2 or 4 antenna port transmission, corresponding to 2 layers or 4 layers. All modulation symbols of the TB (or codeword) are distributed on different layers one by one in a polling manner. Each bit of the plurality of CBs divided by the TB (or codeword) is sequentially mapped to a resource block (RB) in the order of the first spatial domain, the re-frequency domain, and the backward time domain.
  • RB resource block
  • Space division multiplexing There are 1 or 2 TB (or codeword), which can be mapped to layers 1-8.
  • mapping rules refer to Table 6.3.3.2-1 mentioned above.
  • CBG Concept of CBG is introduced (in which one CBG may include at least one CB), and hybrid automatic repeat request (HARQ) is performed in units of CBG instead of HARQ feedback in units of TB in the LTE system, thereby Improve the efficiency of transmission.
  • HARQ hybrid automatic repeat request
  • the technical solution of the present application is to establish a mapping relationship between a CBG and a layer group by grouping layers, so that transmission between different layer groups can improve the data receiving quality by using interference cancellation, and adapting to CBG-based.
  • the feedback is retransmitted to optimize the transmission performance of the entire communication system.
  • CDMA code division multiple access
  • frequency division multiple access frequency division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC single carrier-frequency division multiple access
  • 5G also known as new radio (NR)
  • FIG. 2(a), FIG. 2(b) and FIG. 2(c) show several possible application scenarios of the communication system in which the technical solution of the present application is located.
  • the application scenario of the present application is not limited to this.
  • the base station and the terminal can perform data or signaling transmission through the wireless interface, including uplink transmission and downlink transmission.
  • the base station and the terminal have multiple antenna ports, which can correspond to multiple layers and support MIMO transmission.
  • Figure 2 (b) shows a scenario of cooperative transmission, comprising two base stations and one terminal, which can schedule two base stations to simultaneously transmit data with one terminal through at least one physical downlink control channel (PDCCH).
  • PDCCH physical downlink control channel
  • the antenna ports corresponding to different base stations may be quasi co-location (QCL), and it can be said that the large-scale parameters corresponding to them are greatly different.
  • the number of base stations is not limited to two, and may be ⁇ 2.
  • the base station or the terminal can use multiple beams (analog beam or digital beam or hybrid beam) for data transmission. As shown in FIG. 2(c), the base station uses multiple beams. An example of sending data to a terminal. Each beam may have a beam identity (beam ID), and each beam corresponds to at least one antenna port. Optionally, the multi-beam can also use analog beam or hybrid beam scanning.
  • beam ID beam identity
  • the multi-beam can also use analog beam or hybrid beam scanning.
  • the antenna port and the layer have a corresponding relationship, and the correspondence relationship can be established by using a precoding matrix.
  • the terminal involved in the present application may be a device that provides voice and/or data connectivity to a user, including a wired terminal and a wireless terminal.
  • the wireless terminal can be a handheld device with wireless connectivity, or other processing device connected to a wireless modem, and a mobile terminal that communicates with one or more core networks via a wireless access network.
  • the wireless terminal can be a mobile phone, a computer, a tablet, a personal digital assistant (PDA), a mobile internet device (MID), a wearable device, and an e-book reader. Wait.
  • the wireless terminal can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • the wireless terminal can be a mobile station or an access point.
  • the user equipment is a type of terminal and is a name in the LTE system.
  • the above-mentioned devices are collectively referred to as terminals.
  • the base station involved in the present application is a device deployed in a radio access network (RAN) for providing wireless communication functions to terminals.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access point base station controllers, transmission and receiving points (TRPs), and the like.
  • TRPs transmission and receiving points
  • the specific name of the base station may be different.
  • an evolved NodeB eNB
  • gNB new radio node B
  • Layers referred to in this application may also be referred to as transport layers or transmission ranks, and each layer may correspond to a valid data stream for carrying modulated modulation symbols. Further, the concept of mapping a CBG to a layer can be understood as that a modulation symbol formed by modulating a bit included in a CBG is mapped to a resource of a layer.
  • the sender of the present application refers to the sender of the data.
  • the base station may be a base station.
  • the sender may be one or more base stations. It can be a terminal.
  • the receiving end of the present application refers to the receiving side of the data.
  • it may be a base station.
  • the receiving end may be one or more base stations; When transmitting, it can be a terminal.
  • the data and TB involved in the present application are related to the fact that the TB is formed by performing various processes of the baseband as described above. It can be said that there is a correspondence between them.
  • the transmitting end as described above may be used by the transmitting end 300 as shown in FIG. 3 for performing the method steps related to the transmitting end in various embodiments involved in the present application.
  • the transmitting end 300 includes a processing unit 310 and a transceiving unit 320.
  • the receiving end as described above may be the receiving end 400 as shown in FIG. 4 for performing the method steps associated with the receiving end in the various embodiments involved in the present application.
  • the receiving end 400 includes a processing unit 410 and a transceiving unit 420.
  • the operations performed by the processing unit 310 or the transceiver unit 320 can be regarded as the operation of the transmitting end 300, and the operations performed by the processing unit 410 or the transceiver unit 420 can be regarded as the receiving end 400.
  • the processing unit 410 in the receiving end 400 may be implemented by a processor of the receiving end 400, and the transceiver unit 420 may be implemented by a transceiver in the receiving end 400; the processing unit 310 in the transmitting end 300 may be configured by a transmitting end
  • the processor in 300 is implemented, and the transceiver unit 320 can be implemented by a transceiver in the transmitting end 300.
  • the transmitting end 300 can implement the method steps of the transmitting end of all embodiments described below; the receiving end 400 can implement the method steps of the receiving end in all embodiments described below.
  • FIG. 5 is a flowchart of a method for data transmission.
  • a transmitting end maps each of the CBGs to a corresponding layer according to a correspondence between N coding block groups CBG and N layer groups.
  • the group includes layers; wherein each of the layer groups includes at least one of the layers; N is a positive integer.
  • the sending end sends data to the receiving end, and the transport block TB corresponding to the data includes the N CBGs.
  • the receiving end receives data sent by the sending end.
  • the receiving end acquires the N CBGs from the data according to the correspondence between the N CBGs and the N layer groups.
  • This solution can be applied to a MIMO scenario and reveals how the CBG maps to the layer through the correspondence with the layer group.
  • the transmitting end first maps the N CBGs that are subjected to the process of the scramble modulation and the like (these processes are optional) to the layers included in the corresponding layer group according to the correspondence between the N CBGs and the N layer groups.
  • the corresponding data is sent to the receiving end by using the foregoing precoding, resource mapping, and signal generation processing.
  • Receiving, by the receiving end, the data performing a series of inverse operations corresponding to the sending end, including: decoding from the data according to the correspondence between the N CBGs and the N layer groups
  • the mapping recovers the N CBGs, or reads out the contents of the data. This application focuses on the operation of layer mapping, including the correspondence between the N CBGs and N layer groups, which will be described in detail below.
  • the TB corresponding to the data in the present application includes N CBGs, and the layer that needs to perform the data transmission is divided into N layer groups, and each layer group includes one or more layers.
  • N is a positive integer.
  • the N CBGs correspond to the N layer groups, and each of the CBGs is mapped to a layer included in a corresponding layer group.
  • the feature is understood to be that each of the CBGs corresponds to one of the N layer groups. And mapping to the layers included in the one layer group, and the layer groups corresponding to each CBG are different from each other. It can also be understood that each of the CBGs cannot correspond to more than one layer group.
  • the layer that needs to perform the data transmission is four layers, namely layer 0, layer 1, layer 2 and layer 3.
  • layer 0, layer 1, layer 2 and layer 3 are divided into the same layer group, and the TB includes a CBG, which is CBG0, and then CBG0 is mapped to FIG.
  • layer 0 and layer 1 are divided into layer group 0, layer 2 and layer 3 are divided into layer group 1, the TB includes two CBGs, CBG0 and CBG1, then map CBG0 to layer 0 and layer 1 (corresponding layer group 0) as shown in Figure 6(b), and map CBG1 to layer 2 and layer 3 (corresponding layer group 1); or, as shown in Figure 6(c) As shown, layer 0 is divided into layer group 0, layer 1 is divided into layer group 1, layer 2 and layer 3 are divided into layer group 2, the TB includes three CBGs, CBG0, CBG1 and CBG2, as shown in the figure 6(c) map CBG0 to layer 0 (corresponding layer group 0), map CBG1 to layer 1 (corresponding layer group 1), and map CBG2 to laye2 and layer 3 (corresponding layer group 2); or, as shown in the figure 6(d), layer 0 is divided into layer group 0, layer 1 is divided into layer group 1, layer 2 is divided into layer group 2, layer
  • CBG0, CBG1, CBG2, and CBG3 then map CBG0 to layer 0 (corresponding layer group 0) as shown in Figure 6(d), map CBG1 to layer 1 (corresponding layer group 1), and map CBG2 to layer 2 (correspond to Group 2), and the CBG3 mapped to layer 3 (corresponding to layer 3 group).
  • the layer that needs to perform the data transmission can be flexibly determined, and the number of layers to be used can be determined according to the result of the channel measurement. It is generally defined that the number of layers is equal to the number of ranks.
  • CBG0 corresponds to layer group 0 including layer 0, and can also be understood as CBG0 corresponding layer group 0, which is mapped to layer 0 included in layer group 0.
  • a similar understanding may exist in the following descriptions, and will not be described again.
  • CBG0 corresponds to layer group 0 including layer
  • CBG1 corresponds to layer group 1 including layer 1 and layer 2.
  • CBG0 corresponds to layer group 0 including layer
  • CBG1 corresponds to layer group 1 including layer 1 and layer 2
  • CBG0 corresponds to layer group 0 including layer 0 and layer 1
  • CBG1 corresponds to layer 2 and layer 3 Layer group 1.
  • CBG0 corresponds to layer group 0 including layer
  • CBG1 corresponds to layer group 1 including layer 1
  • CBG2 corresponds to layer group 1 including layer 2 and layer 3.
  • the media access control control element (MAC CE) or the DCI dynamic notification terminal or, considering that the DMRS port grouping information and the like may have been known by the terminal through other processing procedures, for example, in the NR,
  • the base station has been instructed to notify the terminal of the DMRS port packet information, and the terminal can directly use the information without the base station re-notifying, thereby saving overhead.
  • Determine the number of CBs into which the TB is divided. For example, it can be: assume that the number of bits after TB plus CRC is B, and if the maximum number of bits Z limited by CB (such as 6144, or 8192 bits), add for each CB. If the number of CRC bits is L, the number of CBs divided by TB is: if B ⁇ Z, then the number of CBs is C 1; if B>Z, the number of CBs is among them, Round up the symbol.
  • the number of CBGs is m
  • m can be configured by the base station, and is indicated to the terminal, and can also be calculated according to the configured CBG granularity K (ie, the upper limit value of the number of CBs that can be included in each CBG).
  • N CBG_max is the upper limit of the value of m.
  • the number of bits of each CBG is the sum of the number of bits of the CB included therein.
  • the number of CBGs is m
  • m can be configured by the base station, and is indicated to the terminal, and can also be calculated according to the configured CBG granularity K (ie, the upper limit value of the number of CBs that can be included in each CBG).
  • K the upper limit value of the number of CBs that can be included in each CBG.
  • the number of CBs divided by TB is C
  • the number of CBs included in the i-th CBG is:
  • the number of CBs divided by TB is C
  • the number of CBs included in the i-th CBG is:
  • the number of CBGs is m
  • m may be configured by the base station and indicated to the terminal, or may be calculated according to the configured CBG granularity K (ie, the upper limit value of the number of bits that each CBG can contain).
  • K the upper limit value of the number of bits that each CBG can contain.
  • bits included in each CBG are sequentially determined according to the number of bits of each CBG determined above.
  • the embodiment is based on the above-mentioned first embodiment, and includes all the technical solutions of the first embodiment, and optionally may include the technical solutions of at least one of the foregoing embodiment 2 and the third embodiment.
  • the modulation modes, code rates, MCS or coding matrix of N CBGs are equal.
  • At least one of a modulation mode, a code rate, an MCS, and an encoding matrix of each CBG in the N CBGs is different from each other.
  • Different modulation modes, code rates, or precoding matrix modes, code rates, or precoding matrices are used for different CBGs, that is, different modulation modes, code rates, or precoding matrices can be configured according to channel qualities of resources in which different CBGs are located. Performance gain of the communication system.
  • the sending end may send control signaling to the receiving end, where the control signaling includes at least one of a CBG corresponding modulation mode, a code rate, an MCS, and an encoding mode, and the control information may further include each CBG. Redundancy version (RV) or new data indicator (NDI) and other information.
  • RV Redundancy version
  • NDI new data indicator
  • CBG (for example, CBG numbered 0) corresponds to at least one of modulation mode, code rate, MCS, RV, NDI, and coding mode, and other CBG modulation modes, code rates, MCS, RV, NDI, and coding modes. At least one of the types may be indicated by transmitting a corresponding difference value, which may save the overhead of the indication.
  • the data mapping of the CB in each CBG maps the resources on the layer in its own layer group in turn in one of the following ways:
  • Method 1 first frequency domain, then time domain, backspace domain
  • Mode 2 first frequency domain, then airspace, and later time domain
  • Mode 3 First airspace, then frequency domain, and later time domain.
  • Mode 2 and Mode 3 the order of the time domain is ranked last, and the data processing time of the transmitting end or the receiving end can be increased.
  • control signaling may be an MIB message, an SIB message, a MAC CE, or a DCI.
  • the transmitting end may use a technique of intra-symbol interleaving.
  • these CBs can introduce interleaving.
  • the bits included in the m CBs on the symbol may be divided into n pieces of bit data, and the first bit data of the m CBs on the symbol are first mapped to the symbol correspondingly.
  • the second bit data of the m CBs are sequentially mapped to the RE corresponding to the symbol, and so on, until all the bits included in the m CBs on the symbol are mapped. In this way, it can be ensured that the data of each CB is mapped to a wider frequency domain resource as much as possible to obtain frequency domain diversity and improve the reliability of transmission.
  • the mapped data may also be pre-encoded.
  • different CBGs may use different or the same precoding matrix, and each of the CBGs may be pre-coded independently.
  • the resource mapped data can be formed into an OFDM signal and transmitted to the receiving end.
  • the bit HARQ-ACK, L (an integer greater than or equal to 1) is a TB number, and Ni (an integer greater than or equal to 1) is the number of feedback bits corresponding to the i-th TB, optionally corresponding to one CBG decoding result per bit ( HARQ-ACK information), i is an integer of 1 ⁇ i ⁇ L.
  • the L TBs may be MIMO different layers, and/or different TRPs, and/or different carriers, and/or TBs transmitted over different time units (TTIs).
  • TTIs time units
  • Mode 2 The number of feedback bits Ni is determined according to the number of CBGs determined by the initial transmission.
  • Mode 3 The number of feedback bits of each TB is a fixed value.
  • the i-th TB regardless of its TB, regardless of the initial transmission/retransmission, has a feedback bit number of M and M is a fixed value (can be configured in a system, such as the maximum number of feedback bits per TB supported by the system).
  • M is a fixed value (can be configured in a system, such as the maximum number of feedback bits per TB supported by the system).
  • several of the i-th M bits correspond to the decoding result of each of the i-th TB CBGs. If a CBG is not in the retransmission data, the corresponding bit is optionally the last decoding result or the default ACK/NACK. If the CRC check of the TB does not pass, the corresponding first few bits or M bits of the LM bit are NACK. If at least 1 TB loss is detected (i.e., DTX or its scheduling information is not detected), the bit or M bit corresponding to each of the lost TBs in the LM bit is NACK.
  • the system can specify/predefine the above 1/multiple modes, or determine the mode used as needed or by signaling configuration. For example, modes 1 and 2 can be applied when there is no aggregation feedback. On the contrary, mode 3 is feasible.
  • This embodiment is based on the foregoing first embodiment, and includes all the technical solutions of the first embodiment, and may optionally include the technical solutions of at least one of the foregoing second embodiment to the sixth embodiment.
  • the transmitting end may perform HARQ feedback on the TB by using multiple bits, where each feedback bit corresponds to a CBG, and is used to indicate whether the CBG is correctly received by the receiving end.
  • Receive (optional reference to embodiment six).
  • the transmitting end After receiving the multi-bit feedback, the transmitting end only needs to retransmit the data corresponding to the CBG that is not correctly received (the number of CBGs that are not correctly received is at least one).
  • the retransmission may be performed in one of the following ways:
  • the CBG that needs to be retransmitted (that is, the CBG that is not correctly received) can be mapped to the layer in the same layer group as the initial transmission in the same way as the initial transmission for retransmission.
  • a CBG (assuming a number of one) that needs to be retransmitted is mapped to a layer in the first layer group, and the layer is also mapped to the layer in the first layer group.
  • the CBG that needs to be retransmitted (that is, the CBG that is not correctly received) is mapped to the layer included in the layer group indicated by the scheduling configuration for retransmission according to a scheduling configuration, for example, an indication of control signaling.
  • the control signaling may be physical layer signaling or high layer signaling, and is used to indicate the layer group corresponding to the retransmission.
  • the scheduling configuration is performed according to the transmission performance of the layer group, for example, selecting a layer group with the best transmission performance as a layer group corresponding to the retransmission.
  • the CBG (assuming a number of one) that needs to be retransmitted is mapped to the layer that is shot in the first layer group, and its retransmission can be mapped to the layer in the layer group with the best transmission performance, if the second The layer group is the layer group with the best performance, and the retransmission is mapped to the layer in the layer 2 group.
  • the CBG that needs to be retransmitted (that is, the CBG that is not correctly received) can be repeatedly mapped to multiple layer groups for retransmission using a single frequency network (SFN).
  • SFN single frequency network
  • a CBG (assuming one number) that needs to be retransmitted is mapped to a layer in the first layer group, and its retransmission can be mapped to a layer in multiple layer groups.
  • Each layer of the CBG carrying the CBG that needs to be retransmitted can repeat the data of the CBG, and the modulation method, RV, and the like used are the same.
  • the layer groups corresponding to CBG0 and CBG3 are exchanged, that is, CBG3 corresponds to the layer group including layer 0, CBG1 still corresponds to the layer group including layer 1, and CBG0 corresponds to the layer group including layer 3.
  • the data corresponding to CBG1 and CBG3 is still not correctly received, and the layer 3 transmission corresponding to the CBG0 can be completed by means of de-enablement.
  • CBG1 can correspond to the layer group including layer
  • the data corresponding to CBG1 and CBG3 is still not correctly received, and the layer 0 transmission corresponding to the CBG0 can be completed by means of de-enablement.
  • FIG. 12 A schematic structural diagram of a communication device 1200 provided by the implementation of the present application. As shown in FIG. 12, the communication device 1200 includes a transceiver 1201, a processor 1202, a memory 1203, and a bus system 1204.
  • Operation instructions include various operation instructions for implementing various operations.
  • Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 1202 controls the operation of the communication device 1200, which may also be referred to as a CPU (Central Processing Unit).
  • the various components of the communication device 1200 are coupled together by a bus system 1204.
  • the bus system 1204 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus.
  • various buses are labeled as bus system 1204 in the figure. For ease of representation, only the schematic drawing is shown in FIG.
  • Processor 1202 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1202 or an instruction in a form of software.
  • the processor 1202 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1203, and the processor 1202 reads the information in the memory 1203, and performs the method steps of the sending end according to any one of the foregoing Embodiments 1 to 7 in combination with the hardware thereof; or performs the foregoing Embodiments 1 to 7 in combination with the hardware thereof.
  • the method steps of the receiving end are located in the memory 1203, and the processor 1202 reads the information in the memory 1203, and performs the method steps of the sending end according to any one of the foregoing Embodiments 1 to 7 in combination with the hardware thereof; or performs the foregoing Embodiments 1 to 7 in combination with the hardware thereof. The method steps of the receiving end.
  • the mapping relationship between the CBG and the layer group is established by grouping layers, so that the transmission between different layer groups can improve the data receiving quality by using interference cancellation, and the adaptation is performed.
  • CBG-based retransmission feedback optimizes the transmission performance of the entire communication system.
  • the various illustrative logic blocks, modules and circuits described in the embodiments of the present application may be implemented by a general purpose processing unit, a digital signal processing unit, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic. Devices, discrete gate or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the functions described.
  • the general purpose processing unit may be a micro processing unit.
  • the general purpose processing unit may be any conventional processing unit, controller, microcontroller or state machine.
  • the processing unit may also be implemented by a combination of computing devices, such as a digital signal processing unit and a microprocessing unit, a plurality of microprocessing units, one or more microprocessing units in conjunction with a digital signal processing unit core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software module executed by a processing unit, or a combination of the two.
  • the software modules can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processing unit such that the processing unit can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processing unit.
  • the processing unit and the storage medium may be configured in an ASIC, and the ASIC may be configured in the user terminal. Alternatively, the processing unit and the storage medium may also be configured in different components in the user terminal.
  • the above-described functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions may be stored on a computer readable medium or transmitted as one or more instructions or code to a computer readable medium.
  • Computer readable media includes computer storage media and communication media that facilitates the transfer of computer programs from one place to another.
  • the storage medium can be any available media that can be accessed by any general or special computer.
  • Such computer-readable media can include, but is not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or any other device or data structure that can be used for carrying or storing Other media that can be read by a general purpose or special computer, or a general or special processing unit.
  • any connection can be appropriately defined as a computer readable medium, for example, if the software is from a website site, server or other remote source through a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or wirelessly transmitted in, for example, infrared, wireless, and microwave, is also included in the defined computer readable medium.
  • DSL digital subscriber line
  • the disks and discs include compact disks, laser disks, optical disks, DVDs, floppy disks, and Blu-ray disks. Disks typically replicate data magnetically, while disks typically optically replicate data with a laser. Combinations of the above may also be included in a computer readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据传输的方法,包括:发送端根据N个编码块组CBG与N个层组的对应关系,将每个所述CBG映射至对应层组包括的层;其中,每个所述层组包括的层数至少为一个;N为正整数;所述发送端向接收端发送数据,所述数据对应的传输块TB包括所述N个CBG。上述方法通过将层进行分组,建立CBG和层组之间的映射关系,使得不同层组之间的传输可以使用干扰消除的方式提高数据接收质量,并且适配与基于CBG的重传反馈,从而优化了整个通信系统的传输性能。

Description

数据传输的方法、设备和系统 技术领域
本申请涉及无线通信技术,尤其涉及一种与数据传输相关的通信方法、设备和系统。
背景技术
长期演进(long term evolution,LTE)系统物理层的基带处理过程可以包括加扰、调制、层映射、预编码以及针对各个物理天线端口的资源映射和正交频分复用(orthogonal frequency division multiplexing,OFDM)信号生成的过程。其中,层映射实现码字(codeword)向层的映射,根据多输入多输出(multiple input multiple output,MIMO)方案,针对不同的codeword数目以及层的数目(层数),规定了相应的层映射的规则。其中,一个codeword可以与一个传输块(transport block,TB)对应。
随着通信技术的发展,对数据传输性能提出了新的要求。基于此,需要调整现有的层映射规则、反馈方式和重传方式等,从而改变数据的传输方式以优化数据传输的性能。
发明内容
本申请描述了一种数据传输的方法、装置和系统。
一方面,本申请的实施例提供一种数据传输的方法,包括:发送端根据N个编码块组CBG与N个层组的对应关系,将每个所述CBG映射至对应层组包括的层;其中,每个所述层组包括的层数至少为一个;N为正整数;所述发送端向接收端发送数据,所述数据对应的传输块TB包括所述N个CBG。
另一方面,本申请的实施例提供一种数据传输的方法,包括:接收端接收发送端发送的数据,所述数据对应的传输块TB包括N个编码块组CBG;所述接收端根据所述N个CBG与N个层组的对应关系,从所述数据中获取所述N个CBG;其中,每个所述层组包括的层数至少为一个,每个所述CBG映射于对应层组包括的层,N为正整数。
通过将层进行分组,建立CBG和层组之间的映射关系,使得不同层组之间的传输可以使用干扰消除的方式提高数据接收质量,并且适配与基于CBG的重传反馈,从而优化了数据传输的传输性能。
结合上述方面中的任一个,在一种可能的设计中,所述N个层组根据配置的解调参考信号DMRS端口组信息、所述发送端所包括的发送与接收点TRP或者TRP组信息、所述层所对应天线端口之间的准共址QCL信息、所述发送端所发送波束的标识信息中的至少一种划分。
结合上述方面中的任一个,以及任何一种可能的设计,在另一种可能的设计中,N>1,所述N个CBG中至少存在两个CBG,所述两个CBG分别配置有不同的调制方式、不同的码率和不同的预编码矩阵中的至少一种。
结合上述方面中的任一个,以及至少一种上述可能的设计,在另一种可能的设计中,所述N个层组的总层数为1或者2时,N=1;或者,所述N个层组的总层数为3或者4时,N=1,或者N=2。
结合上述方面中的任一个,以及至少一种上述可能的设计,在另一种可能的设计中,每个所述CBG包含的编码块CB数或者比特数与所述对应层组所包括的层数成正比;或者,每个所述CBG包含的CB数或者比特数与所述对应层组的调制阶数、码率和传输速率中的至少一个成正比;或者,每个所述CBG包含的CB数或者比特数根据分配的资源块RB数、对应层组包括的层数和每个所述CBG的调制和编码方式MCS中的至少一个确定。
结合上述方面中的任一个,以及至少一种上述可能的设计,在另一种可能的设计中,若所述N个CBG中存在需要重传的CBG,则所述需要重传的CBG映射于与初传时相同的层组包括的层;或者,所述需要重传的CBG根据控制信令映射于所述N个层组中至少一个所述层组包括的层,所述至少一个所述层组由所述控制信令指示;或者,所述需要重传的CBG采用单频网SFN方式分别重复映射于所述N个层组中M个层组包括的层,所述重复的次数为M次,2≤M≤N,M为正整数;或者,所述需要重传的CBG根据交换标记指示映射于所述N个层组中至少一个层组包括的层。
另一方面,本发明实施例提供了一种通信设备,该设备具有实现上述方法设计中发送端行为的功能。所述功能可以通过硬件实现,发送端的结构中包括收发器和处理器。也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。该设备可以基站,也可以是终端。
另一方面,本发明实施例提供了另一种通信设备,该设备具有实现上述方法实际中接收端行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。该设备可以终端,也可以是基站。
又一方面,本发明实施例提供了一种通信系统,该系统包括上述方面所述的发送端和接收端。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述发送端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述接收端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
附图说明
图1(a)为本申请实施例提供的一种LTE系统的层映射关系示意图;
图1(b)为本申请实施例提供的另一种LTE系统的层映射关系示意图;
图1(c)为本申请实施例提供的另一种LTE系统的层映射关系示意图;
图1(d)为本申请实施例提供的又一种LTE系统的层映射关系示意图;
图2(a)为本申请实施例提供的一种应用场景图;
图2(b)为本申请实施例提供的另一种应用场景图;
图2(c)为本申请实施例提供的又一种应用场景图;
图3为本申请实施例提供的一种发送端的结构示意图;
图4为本申请实施例提供的一种接收端的结构示意图;
图5为本申请实施例提供的一种数据传输的方法的流程图;
图6(a)为本申请实施例提供的一种CBG与层组的对应关系图;
图6(b)为本申请实施例提供的另一种CBG与层组的对应关系图;
图6(c)为本申请实施例提供的另一种CBG与层组的对应关系图;
图6(d)为本申请实施例提供的另一种CBG与层组的对应关系图;
图7(a)为本申请实施例提供的一种CBG与层组的对应关系图;
图7(b)为本申请实施例提供的另一种CBG与层组的对应关系图;
图7(c)为本申请实施例提供的另一种CBG与层组的对应关系图;
图7(d)为本申请实施例提供的另一种CBG与层组的对应关系图;
图8(a)为本申请实施例提供的一种CBG与层组的对应关系图;
图8(b)为本申请实施例提供的另一种CBG与层组的对应关系图;
图8(c)为本申请实施例提供的另一种CBG与层组的对应关系图;
图8(d)为本申请实施例提供的另一种CBG与层组的对应关系图;
图9(a)为本申请实施例提供的一种CBG与层组的对应关系图;
图9(b)为本申请实施例提供的另一种CBG与层组的对应关系图;
图9(c)为本申请实施例提供的另一种CBG与层组的对应关系图;
图9(d)为本申请实施例提供的另一种CBG与层组的对应关系图;
图10为本申请实施例提供的一种CBG划分示意图;
图11(a)为本申请实施例提供的一种基于交换标记指示的重传方式示意图;
图11(b)为本申请实施例提供的另一种基于交换标记指示的重传方式示意图;
图12为本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
现有LTE技术中,物理层的基带处理过程具体可以是:从媒体接入控制层(media access control,MAC)层获得需要传输的TB,TB大小(TB Size,TBS)由基站为其分配的RB数、层数和调制与编码方案(modulation and coding scheme,MCS)确定(参考第三代合作伙伴项目(the 3rd generation partnership project,3GPP) 技术规范(technical specification,TS)36.213版本14.1.0(v14.1.0)7.1.7节以及8.6节);为该TB加上循环冗余校验(cyclic redundancy check,CRC);根据该TBS对该TB进行分段操作,例如,若TBS大于6144比特则将该TB分成多个大小基本一致且都小于6144比特的编码块(code block,CB),再为每个CB加上CRC(参考3GPP TS36.212,v14.1.1,5.1.2节);为每个CB编码、速率匹配,之后再进行加扰、调制、层映射、预编码以及针对各个物理天线端口的资源映射和正交频分复用(orthogonal frequency division multiplexing,OFDM)信号生成等操作后进行发射。
对于一次数据调度,可以只调度1个TB,也可以调度2个TB。该次传输可以采用MIMO方案,对应存在层映射过程。图1(a)至图1(d)为现有LTE系统中可能的几种层映射关系示意图。例如,图1(a)中,一次数据调度了1个TB,采用单层传输的方式,则一个TB即映射至该单层。又如,如图1(c)中,一次数据调度了两个TB,采用三层传输的方式,则TB0映射至层0,TB1映射至层1和层2。
进一步的,关于层映射的规则,在LTE系统中,在确定当前数据调度的TB数(1个或者2个)、根据当前信道的质量确定采用的层数后,可以根据3GPP TS36.211v14.1.0,5.3.2A.2节表5.3.2A.2-1以及6.3.3.2节表6.3.3.2-1确定TB(或者codeword)与层的映射关系。
LTE MIMO存在以下几种传输方式:
1、单天线端口传输:只有1个TB(或者codeword),只使用1个层,TB(或者codeword)直接映射到层上;
2、传输分集:只有1个TB(或者codeword),使用2或4天线端口传输,分别对应2个层或4个层。该TB(或者codeword)的所有调制符号按照轮询的方式逐一分布在不同的层上。TB(或者codeword)所分成的多个CB的每个比特依次按先空域、再频域、后时域、的顺序依次映射到资源块(resource block,RB)上。
3、空分复用:有1个或2个TB(或者codeword),可以被映射到第1~8层,具体映射的规则可参照前述提及的表6.3.3.2-1。
根据新无线电(new radio,NR)的讨论结果,未来的无线通信系统中,很可能支持如下场景:
对于1-4层支持1个TB(或者codeword)的传输;对于5-8层支持2个TB(或者codeword)的传输。
另外,引入CBG的概念(其中,一个CBG可以包括至少一个CB),以CBG为单位进行混合自动重传请求(hybrid automatic repeat request,HARQ)而非LTE系统中以TB为单位进行HARQ反馈,从而提高传输的效率。
基于如上不同于LTE系统的机制,有必要重新设计层映射的规则,来优化传输性能,确保与当前信道环境和传输场景相匹配。
本申请的技术方案,就是通过将层进行分组,建立CBG和层组之间的映射关系,使得不同层组之间的传输可以使用干扰消除的方式提高数据接收质量,并且 适配与基于CBG的重传反馈,从而优化了整个通信系统的传输性能。
下面介绍一下本申请的系统运行环境,本申请描述的技术可以采用各种无线接入技术的无线通信系统,例如采用码分多址(code division multiple access,CDMA),频分多址(frequency division multiple access,FDMA),时分多址(time division multiple access,TDMA),正交频分多址(orthogonal frequency division multiple access,OFDMA),单载波频分多址(single carrier-frequency division multiple access,SC-FDMA)等接入技术的系统,还适用于后续的演进系统,如第五代5G(还可以称为新无线电(new radio,NR))系统等。
图2(a)、图2(b)和图2(c)示出了本申请的技术方案所在的通信系统可能的几种应用场景。但是本申请的应用场景不限于此。
图2(a)中,基站和终端通过无线接口可以进行数据或者信令的传输,包括上行传输和下行传输。其中,所述基站和所述终端具有多个天线端口,可以对应到多个层,支持MIMO传输。
图2(b)示出了一种协作传输的场景,包含两个基站和一个终端,可以通过至少一个下行控制信道(physical downlink control channel,PDCCH)调度两个基站同时与一个终端传输数据。一般来说,基于信道测量的结果,不同基站分别对应的天线端口之间可能是非准共址(quasi co-location,QCL)的,可以说,与它们分别对应的大尺度参数有较大区别。另外,该场景下,基站的个数并不受限为2个,可以为≥2个。
图2(c)示出了一种MIMO传输的场景,基站或者终端可以采用多波束(模拟波束或者数字波束或者混合波束)进行数据传输,如图2(c)示出的是基站采用多波束向终端发送数据的例子。其中,每个波束都可以对应有一个波束标识(beam identity,beam ID),每个波束都与至少一个天线端口相对应。可选的,该多波束还可以采用模拟波束或者混合波束扫描。
本领域的技术人员可以理解的是,本申请中,一般来说天线端口与层之间是具有对应关系的,这种对应关系可以通过预编码矩阵来建立。
本申请所涉及到的终端可以为向用户提供语音和/或数据连通性的设备(device),包括有线终端和无线终端。无线终端可以是具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,经无线接入网与一个或多个核心网进行通信的移动终端。例如,无线终端可以为移动电话、计算机、平板电脑、个人数码助理(personal digital assistant,PDA)、移动互联网设备(mobile Internet device,MID)、可穿戴设备和电子书阅读器(e-book reader)等。又如,无线终端也可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动设备。再如,无线终端可以为移动站(mobile station)、接入点(access point)。另外,用户设备(user equipment,UE)为终端的一种,是在LTE系统中的称谓。为方便描述,本申请后续的描述中,上面提到的设备统称为终端。本申请所涉及到的基站是一种部署在无线接入网(radio access network,RAN)中用以为终端提供无线 通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点基站控制器,发送和接收点(transmission and receiving point,TRP)等等。在采用不同的无线接入技术的系统中,基站的具体名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB,eNB),在后续的演进系统中,还可以称为新无线节点B(new radio nodeB,gNB)。
下面对本申请中涉及到的名词做一些说明。
本申请所涉及的层,也可被称为传输层或者传输秩(rank),每一层可以对应一条有效的数据流,用于承载经过调制的调制符号。进一步的,所谓将CBG映射至层的概念,可以理解为,CBG所包含的比特经过调制后形成的调制符号映射到层的资源上。
本申请所涉及的发送端,指的是数据的发送方,例如下行传输时,可以是基站,特别的在协作传输场景下,发送端可以是一个或者多个基站;又如在上行传输时,可以是终端。
本申请所涉及的接收端,指的是数据的接收方,例如,例如上行传输时,可以是基站,特别的在协作传输场景下,接收端端可以是一个或者多个基站;又如在下行传输时,可以是终端。
本申请所涉及的数据和TB,它们之间的关系为所述TB经过如前所述基带的各种处理后形成所述数据进行发送。可以说它们之间是对应的。
进一步的,如上所述的发送端可以如图3所示的发送端300,用于执行本申请所涉及的各种实施例中与发送端相关的方法步骤。如图3所示,发送端300包括处理单元310和收发单元320。如上所述的接收端可以是如图4所示的接收端400,用于执行本申请所涉及的各种实施例中与接收端相关的方法步骤。如图4所示,接收端400包括处理单元410和收发单元420。需要说明的是,处理单元310或者收发单元320所执行的操作都可以视为是发送端300的操作,所述处理单元410或者所述收发单元420所执行的操作都可以视为是接收端400的操作。所述接收端400中的处理单元410可以由接收端400的处理器实现,所述收发单元420可以由接收端400中的收发器实现;所述发送端300中的处理单元310可以由发送端300中的处理器实现,所述收发单元320可以由发送端300中的收发器实现。发送端300可以实现下述所有实施例发送端的方法步骤;接收端400可以实现下述所有实施例中接收端的方法步骤。
实施例一
图5为一种数据传输的方法的流程图,如图5所示,501部分,发送端根据N个编码块组CBG与N个层组的对应关系,将每个所述CBG映射至对应层组包括的层;其中,每个所述层组包括的层数至少为一个;N为正整数。502部分,所述发送端向接收端发送数据,所述数据对应的传输块TB包括所述N个CBG。所述接收端接收所述发送端发送的数据。505部分,所述接收端根据所述N个CBG与所 述N个层组的对应关系,从所述数据中获取所述N个CBG。
本方案可以应用于MIMO场景下,揭示了CBG如何通过与层组的对应关系,向层映射的方案。
所述发送端先将经过加扰调制等处理(这些处理为可选的)的N个CBG根据所述N个CBG和N个层组的对应关系,映射至对应层组中包括的层,可选的,再通过前述提及的预编码、资源映射和信号生成等处理将对应的数据发送给所述接收端。所述接收端先将所述数据接收下来,在进行和所述发送端对应的一系列逆操作,包括根据所述N个CBG和所述N个层组的对应关系,从所述数据中解映射恢复出所述N个CBG,或者说,读取出数据中的内容。本申请重点关注层映射的操作,包括所述N个CBG和N个层组的对应关系,下面将作出详细介绍。
本申请中所述数据对应的TB包括N个CBG,将需要进行所述数据传输的层划分成N个层组,每个层组中包括一个或者多个层。其中,N为正整数。
所述N个CBG与所述N个层组对应,且每个所述CBG映射于对应层组包括的层,该特征可以理解为每个所述CBG对应所述N个层组中一个层组,并映射至所述一个层组包括的层,且所述每个CBG对应的层组互不相同。还可以理解为每个所述CBG不能对应超过一个层组。例如,假设需要进行所述数据传输的层为四层,分别为层0,层1,层2和层3。如图6(a)所示,层0,层1,层2和层3被划分在了同一个层组,所述TB包括一个CBG,为CBG0,则如图6(a)将CBG0映射至这四个层;或者,如图6(b)所示,层0和层1被划分在层组0,层2和层3被划分在层组1,所述TB包括两个CBG,CBG0和CBG1,则如图6(b)将CBG0映射至层0和层1(对应层组0),以及将CBG1映射至层2和层3(对应层组1);或者,如图6(c)所示,层0被划分在层组0,层1被划分在层组1,层2和层3被划分在层组2,所述TB包括三个CBG,CBG0、CBG1和CBG2,则如图6(c)将CBG0映射至层0(对应层组0),将CBG1映射至层1(对应层组1),以及将CBG2映射至laye2和层3(对应层组2);或者,如图6(d)所示,层0被划分在层组0,层1被划分在层组1,层2被划分在层组2,层3被划分在层组3,所述TB包括四个CBG,CBG0、CBG1、CBG2和CBG3,则如图6(d)将CBG0映射至层0(对应层组0),将CBG1映射至层1(对应层组1),将CBG2映射至层2(对应层组2),以及将CBG3映射至层3(对应层组3)。
以上情况仅以4层为例,实际情况中,需要进行所述数据传输的层可以灵活确定,可以根据信道测量的结果决定采用的层数。一般定义所述层数与rank数相等。
具体的,可以参考如下实现方式一以及与其对应的附图,以使该对应关系更加清楚:
如图7(a)所示,所述数据传输的层数为1,N=1,可以分为一组:层0,CBG数为1;具体的对应关系有:N=1,CBG0对应包括层0的层组0。需要说明的是,CBG0对应包括层0的层组0,也可以理解为CBG0对应层组0,映射于层组0包括的层0上。下文存在类似的表述也可以存在类似的理解,不再赘述。
如图7(b)所示,所述数据传输的层数为2,N=1或N=2,可以分为一组或者两组,CBG数为1或者2;具体的对应关系有:N=1,CBG0对应包括层0和层1的层组0;N=2,CBG0对应包括层0的层组0,CBG1映射至包括层1的层组1;
如图7(c)所示,所述数据传输的层数为3,N=1、N=2或者N=3,可以分为一组、两组或者三组,CBG数为1、2或者3;具体的对应关系有:N=1,CBG0对应包括层0,层1和层3的层组0;N=2,CBG0对应包括层0的层组0,CBG1对应包括层1和层2的层组1;N=2,CBG0对应包括层0和层1的层组0,CBG1对应包括层2的层组1;N=3,CBG0对应包括层0的层组0,CBG1对应包括层1的层组1,CBG2对应包括层2的层组2。
如图7(d)所示,所述数据传输的层数为4,N=1、N=2、N=3或者N=4,可以分为一组、两组、三组或者四组,CBG数为1、2、3或者4;具体的对应关系有:N=1,CBG0对应包括层0,层1,层2和层3的层组0;N=2,CBG0对应包括层0的层组0,CBG1对应包括层1,层2和层3的层组1;N=2,CBG0对应包括层0,层1,层2的层组0,CBG1对应包括层3的层组1;N=2,CBG0对应包括层0和层1的层组0,CBG1对应包括层2和层3的层组1;N=3,CBG0对应包括层0的层组0,CBG1对应包括层1的层组1,CBG2对应包括层2和层3的层组2;N=3,CBG0对应包括层0的层组0,CBG1对应包括层1和层2的层组1,CBG2对应包括层3的层组2;N=3,CBG0对应包括层0和层1的层组0,CBG1对应包括层2的层组1,CBG2对应包括层3的层组2;N=4,CBG0对应包括层0的层组0,CBG1对应包括层1的层组1,CBG2对应包括层2的层组2,CBG3对应包括层3的层组3。
可选的,为了减少可能的映射关系,降低映射规则的复杂度,还可以进一步的引入限定形成不同的实现方式:
限制为:层组进行编号,使得编号较小的层组包括的层数≤编号较大的层组包括的层数。对应的实现方式二:
如图8(a)所示,所述数据传输的层数为1,N=1,可以分为一组,CBG数为1;因为只有一个层组0,加上该限定后的技术方案相较于实现方式一并无差异。
如图8(b)所示,所述数据传输的层数为2,N=1或N=2,可以分为一组或者两组,CBG数为1或者2;加上该限定后的技术方案相较于实现方式一并无差异。
如图8(c)所示,所述数据传输的层数为3,N=1,N=2或N=3,可以分为一组、两组或者三组,CBG数为1、2或者3。N=1或者N=3时,加上该限定后的技术方案相较于实现方式一并无差异。特别的,当N=2时,假设CBG0对应的层组编号为0,CBG1对应的层组编号为1,因为要保证“编号较小的层组包括的层数≤编号较大的层组包括的层数”,所以,相较于图7(c)对应少了一种对应方式。此时CBG0对应包括层0的层组0,CBG1对应包括层1和层2的层组1。
如图8(d)所示,所述数据传输的层数为4,N=1、N=2、N=3或者N=4,可以分为一组、两组、三组或者四组,CBG数为1、2、3或者4;N=1或者N=4时,加上该限定后的技术方案相较于实现方式一并无差异特别的。当N=2时,假设 CBG0映射至的层组编号为0,CBG1映射至的层组编号为1,因为要保证“编号较小的层组包括的层数≤编号较大的层组包括的层数”,所以,相较于图7(d)少了一种对应方式。此时,CBG0对应包括层0的层组0,CBG1对应包括层1和层2的层组1,或者,CBG0对应包括层0和层1的层组0,CBG1对应包括层2和层3的层组1。N=3时,假设CBG0对应的层组编号为0,CBG1对应的层组编号为1,CBG2对应的层组编号为2,因为要保证“编号较小的层组包括的层数≤编号较大的层组包括的层数”,所以,相较于图7(d)对应少了两种映射方式。此时,CBG0对应包括层0的层组0,CBG1对应包括层1的层组1,CBG2对应包括层2和层3的层组1。
或者,限制为:所述数据传输的层数,即N个层组的总层数为1或者2时,N=1;所述数据传输的层数为3或者4时,N=1,或者N=2。之所以当所述数据传输的层数为2时直接将所述两个层划分成一组,是因为此时,采用干扰消除的方式对不同的层分别进行解码。或者说采用先进接收机进行数据接收的方式并不能带来明显的增益。对应的实现方式三:
如图9(a)所示,所述数据传输的层数为1,N=1,可以分为一组,CBG数为1;因为只有一个层组,加上该限定后的技术方案相较于实现方式一并无差异。
如图9(b)所示,所述数据传输的层数为2,因为“所述数据传输的层数为1或者2时,N=1”的限制,则N=1,CBG数为1,只存在一种映射的可能。即CBG0对应包括层0和层1的层组。
如图9(c)所示,所述数据传输的层数为3,因为“所述数据传输的层数为3或者4时,N=1,或者N=2”的限制,N=1或N=2,可以分为一组或者两组,CBG数为1或者2。则映射方式有:N=1,CBG0对应包括层0、层1和层2的层组;N=2,CBG0对应包括层0的层组,CBG1对应包括层1和层2的层组;N=2,CBG0对应包括层0和层1的层组,CBG1对应包括层2的层组。
如图9(d)所示,所述数据传输的层数为4,因为“所述数据传输的层数为3或者4时,N=1,或者N=2”的限制,N=1,或者N=2,可以分为一组或者两组,CBG数为1或者2。则映射的方式有:N=1,CBG0对应包括层0至层4的层组;N=2,CBG0对应包括层0的层组,CBG1对应包括层0至层3的层组;N=2,CBG0对应包括层0至层2的层组,CBG1对应包括层3的层组;N=2,CBG0对应包括层0和层1的层组,CBG1对应包括层1和层2的层组。
或者,限制为:N≤2;也即,当层数≤4时,只将层划分为1组或者两组,对应的CBG数为1个或者2个。这么做的好处是,当基于CBG进行HARQ反馈时,只需要两个比特位,可以减少反馈的开销。
对应的实现方式三,与实现方式二的区别在于当所述数据传输层数为2时,多了一种映射方式,即N=2,CBG0对应包括层0的层组,CBG1对应包括层1的层组,其它是相同的。
需要说明的是,在以上几种实现方式中,层数还可以进一步增加,例如,当所述数据对应到2个TB时,还可以存在5-8的层数。一般来说,一个TB最多可以分散在4个层上传输,在所述数据对应两个TB的情况下,另外一个TB在5-8层上 只需重复如上第一个TB在1-4层的所有可能的划分和映射方式即可,此处不再赘述。
可选地,如果层数大于4且一次调度的数据对应两个TB,可以使得每个TB都只包括1个CBG,以减少HARQ反馈的开销。
可选的,上述各个实施例中,每个层组中若包括≥2个的层,它们的编号是连续的,实际情况中,每个层组中若包括≥2个的层,它们的编号可以不连续,例如,所述数据传输的层数为3,N=2,其中一个层组包括的层可以是层0和层2。层编号是否连续,可以基于层所对应的天线端口的信道传输质量决定。
另外,考虑到1个层组上可能会承载较大的数据量,例如,承载的比特数超过10万比特,可选的,结合上述任一实现方式,可以将原有的CBG(CBG0、CBG1、CBG2,或者CBG3等)进一步再进行划分,该种划分可以是在时域或者频域上的划分,举例而言,如图10所示,所述数据传输的层数为2,N=2,CBG0对应包括层0的层组,CBG1对应包括层1的层组,还可以将CBG1进一步划分为CBG10和CBG11,当然CBG1还可以划分为更多个CBG,此时可以理解为1个CBG不能对应超过1个层组(即1个CBG不能映射到超过1个层组的层上)。通过这种举例,本领域的技术人员可以了解并实现相类似的划分方式,本申请不再赘述。
实施例二
本实施例是基于实施例一并且包括了实施例一所有的技术方案,本实施例中,介绍了几种实施例一中的层组划分的依据。
实现方式一:所述发送端和所述接收端,即所述基站和所述终端之间可以通过预先约定的方式知晓实施一例中各种可能的对应关系,例如通过协议约定映射关系表格。这种方式可以省去通知信令的开销。
实现方式二:基站可以通过信令指示所述终端实施例一中涉及的各种可能的对应关系。
进一步的,可根据一些信息对层进行组的划分。
可选的,可以根据层所对应天线端口或解调参考信号(demodulation reference signal,DMRS)端口的QCL参数信息对层进行分组。一般来说,每个层都会对应到具体的天线端口,如果一个天线端口就经历的信道对应的大尺度特性可以通过另外一个天线端口经历的信道的大尺度特性获取得到,则称这两个天线端口满足QCL要求。其中大尺度特性包括平均时延、平均功率、多普勒扩展、多普勒频偏、以及空域信息,如到达角、接收天线相关性等。如果两个天线端口之间是QCL的,那么使用它们传输数据时的信道质量可以是相近的(或者大尺度参数相近)。如果层所对应的天线端口之间QCL的,那么将它们划分于一个层组内,否则,不能位于同一个层组。例如,所述数据传输的层为层1、层2、层3以及层4,分别对应天线端口1,天线端口2,天线端口3和天线端口4,如果天线端口1和天线端口2之间是QCL的,天线端口3和其它端口之间都是非QCL的,天线端口4和其它端口之间都是非QCL的,那么将层1和层2划分为1组,层3自成一组,层4,自成一组, 即分为N=3的三组。这样在进行数据传输时,同一层组中的层所对应的天线端口进行数据传输时的信道质量是相近的,因为每个CBG都对应映射到其中一组,那么接收端可以分别对每个CBG各自进行解调和译码。此时,还能够使用先进接收机进行联合译码,消除在信道质量差的信道上传输的CBG对在信道质量好的信道上传输的CBG的干扰,也即可以对不同的CBG的接收采用干扰消除的技术,提高数据传输的正确率。另外这种做法也有利于以CBG为单位独立进行HARQ反馈和后续的重传。
此时,所述基站可以根据当前的调度,确定传输数据需要的层数以及对应的天线端口的QCL组划分情况。
可选的,可以根据DMRS端口分组(DMRS port grouping)情况对层进行分组。也即,如果所述数据传输的层对应到的DMRS端口是属于同一个DMRS端口组的,则它们被划分到一个层组内,否则就属于不同的层组。因为同一DMRS端口组中的端口是QCL的,不同DMRS端口组中的端口是非QCL的,所以该技术方案的好处和根据层所对应天线端口的QCL参数信息对层进行分组类似。
可选的,可以根据基站分组情况对层进行分组,一般来说,进行协同操作的基站(TRP)个数为2个,基站1(TRP1)和基站2(TRP2),则自成两组,那么与通过基站1(TRP 1)的所需要映射到的层被分在一组,基站2(TRP 2)所需要映射到的层被分在一组。这种分组方式也是考虑到同一基站(TRP)内数据需要映射到的层所对应的天线端口的传输性能、质量是相近的。当然基站(TRP)的个数还可以大于2个,此时可以先根据传输性能或QCL信息将基站(TRP)进行分组,再将同一组基站(TRP)需要映射到的层分在一组。
可选的,对应于图2(c)的场景,可以根据beam ID对层进行分组。也即每个层对应的天线端口若具有同一个beam ID(即属于同一beam或者构成1个beam),则将它们分为一组,否则令它们在不同的组。这样可以保证每个CBG都映射到一个或多个beam上,每个beam上所承载的数据不会来自不同的CBG。
以上几种情况,可以通过信令向终端进行指示QCL分组信息、DMRS端口分组信息、beam ID等信息中的至少一种,以便终端获知层的分组情况,即哪些层被划分在了一组。例如,通过无线资源控制(radio resource control,RRC)配置或者通过主信息块(master information block,MIB)消息、系统信息块(system information block,SIB)消息无线资源控制(radio resource control,RRC)信令、媒体接入控制控制元素(media access control control element,MAC CE)或者DCI动态通知终端;或者,考虑到DMRS端口分组信息等信息可能已经通过其它处理流程被终端获知,例如,在NR中,已经支持基站必然会向终端通知DMRS端口分组信息,那么终端就可以直接使用该信息,而无需基站再次通知,从而节省开销。
可选的,根据某些场景下,不论层数为多少,都将所有的层划分在一组内,也即,根据场景条件对层进行分组。例如,对于自包含self contain的HARQ业务的场景,由于不能有较大的时延,需要在同一个传输时间单元内进行确认或者否 认应答反馈,因此无法或者无需使用干扰消除对数据进行处理;或者对于对抗超高可靠低时延通信(ultra-reliable low latency communication,URLLC)抢占的场景,CBG边界按照符号、迷你时隙(mini-slot)、或者时隙slot边界限定in the box的约定,可更好的对抗URLLC抢占,即只需重传被URLLC抢占符号、mini-slot、slot上的CBG,而无需将层分为多个组。在以上两种场景下,可以都令N=1,即只有一个层组。
实施例三
本实施例是基于上述实施例一,并且包括了实施例一的所有技术方案,可选地可以包括上述实施例二的技术方案,本实施例中,介绍了如何确定CBG大小的几种方式。
方式一:可以根据为TB分配的RB数、层数和MCS中的至少一种确定TBS,然后确定将TB分为的CB数,再确定每个CBG所包含的CB数,这样每个CBG的大小就是所包含的CB的比特数之和。
确定将TB分为的CB数,例如,可以是:假设为TB加上CRC后的比特数为B,若CB限制的最大比特数Z(比如6144,或者8192比特),为每个CB加的CRC比特数为L,则TB划分的CB数为:若B≤Z,那么CB数为C=1;若B>Z,则CB数为
Figure PCTCN2018078926-appb-000001
其中,
Figure PCTCN2018078926-appb-000002
为向上取整符号。
确定每个CBG所包含的CB数可以采用如下两种原则进行:
原则1:保证每个CBG包含的CB数或者比特数相等或者相近(即在无法整除的情况下每个CBG之间保证基本或者尽量一致)。
这种方式比较简单,各CBG所包含的CB数比较均衡。
作为一种实现方式,CBG的数目为m,m可以由基站配置,并指示给终端,也可以根据配置的CBG粒度K(即每个CBG所能包含的CB数的上限值)计算得到,即
Figure PCTCN2018078926-appb-000003
其中,N CBG_max为m的取值上限。m个CBG中,前N +个CBG所包含的CB数为C +,后N -个CBG所包含的CB数为C -,则,
Figure PCTCN2018078926-appb-000004
Figure PCTCN2018078926-appb-000005
其中
Figure PCTCN2018078926-appb-000006
为向上取整符号,
Figure PCTCN2018078926-appb-000007
为向下取整符号。
N +=C-mC -(可以是前N +个CBG,也可以是后N +个CBG);N -=m-N + (对应的,可以是后N -个CBG,也可以是前N -个CBG)。
例如,根据TBS得出的CB数为C=15;CBG数为m=4;可以得到C +=4,C -=3,N +=3,N -=1,即3个CBG的CB数为4,1个CB组的CB数为3。4个CBG含的CB编号(假设TB的15个CB编号为CB0~CB14)分别为{CB0,CB1,CB2,CB3},{CB4,CB5,CB6,CB7},{CB8,CB9,CB10,CB11},{CB12,CB13,CB14}或者{CB0,CB1,CB2},{CB3,CB4,CB5,CB6,},{CB7,CB8,CB9,CB10},{CB11,CB12,CB13,CB14}。进一步的,各CBG的比特数为其包含的CB的比特数之和。
原则2:保证每个CBG的CB数或者比特数和每个CBG的MCS,或者层数成正比。
这种方式,考虑到了层组中包含层数越多能够承载的CB数或者比特数越多,可以提高通信系统的传输性能。
作为一种实现方式,CBG的数目为m,m可以由基站配置,并指示给终端,也可以根据配置的CBG粒度K(即每个CBG所能包含的CB数的上限值)计算得到,即
Figure PCTCN2018078926-appb-000008
假设第i个CBG映射至的层数(或者RE数)为L i,该次调度分配的总层数(或者总RE数)为L total,1≤i≤m。
如前所述,TB划分的CB数为C,则第i个CBG所包含的CB数为:
Figure PCTCN2018078926-appb-000009
i=1,…m-1;i=m时,
Figure PCTCN2018078926-appb-000010
或者,
Figure PCTCN2018078926-appb-000011
i=2,…m;i=1时,
Figure PCTCN2018078926-appb-000012
进一步的,可以按CB编号、以上确定的CBG所包含的CB数,确定CBG所包含的CB。
其中
Figure PCTCN2018078926-appb-000013
为向上取整符号,
Figure PCTCN2018078926-appb-000014
为向下取整符号。
作为另一种实现方式,CBG的数目为m,m可以由基站配置,并指示给终端,也可以根据配置的CBG粒度K(即每个CBG所能包含的CB数的上限值)计算得到,即
Figure PCTCN2018078926-appb-000015
假设第i个CBG映射的层数(或者RE数)为L i,第j层采用的调制阶数、码率或者传输效率或者MCS值为Q j,该次调度分配的总层数(或者总RE数)为L total
如前所述,TB划分的CB数为C,则第i个CBG所包含的CB数为:
Figure PCTCN2018078926-appb-000016
i=1,…m-1;i=m时,
Figure PCTCN2018078926-appb-000017
或者,
Figure PCTCN2018078926-appb-000018
i=2,…m;i=1时,
Figure PCTCN2018078926-appb-000019
进一步的,可以按CB编号、以上确定的CBG所包含的CB数,确定CBG所包含的CB。
其中
Figure PCTCN2018078926-appb-000020
为向上取整符号,
Figure PCTCN2018078926-appb-000021
为向下取整符号。
方式二:可以根据为TB分配的RB数、层数和MCS确定TBS,然后根据方式一中的两个原则中的任一一个确定每个CBG的比特数。可选的,再确定每个CBG所包含的CB数。
作为一种实现方式,CBG的数目为m,m可以由基站配置,并指示给终端,也可以根据配置的CBG粒度K(即每个CBG所能包含的比特数的上限值)计算得到,根据上述原则1,m个CBG中,令前m-1个CBG所包含的比特数为B+,最后一个CBG所包含的比特数为B-;或者,m个CBG中,后m-1个CBG所包含的比特数为B+,第一个CBG所包含的比特数为B-。令
Figure PCTCN2018078926-appb-000022
和B -=B-mC +
作为另一种实现方式,CBG的数目为m,m可以由基站配置,并指示给终端,也可以根据配置的CBG粒度K(即每个CBG所能包含的比特数的上限值)计算得到,即
Figure PCTCN2018078926-appb-000023
第i个CBG映射的层数(或者RE数)为L i,该次调度分配的总层数(或者总RE数)为L total
如前所述,TB的比特数为B(可以含TB的CRC),根据原则2,第i个CBG所包含的比特数为:
Figure PCTCN2018078926-appb-000024
i=1,…m-1;i=m时,
Figure PCTCN2018078926-appb-000025
或者,
Figure PCTCN2018078926-appb-000026
i=2,…m;i=1时,
Figure PCTCN2018078926-appb-000027
进一步的,根据以上确定的各CBG的比特数,依次确定各CBG所包含的比特。
其中
Figure PCTCN2018078926-appb-000028
为向上取整符号,
Figure PCTCN2018078926-appb-000029
为向下取整符号。
作为又一种实现方式,CBG的数目为m,m可以由基站配置,并指示给终端,也可以根据配置的CBG粒度K(即每个CBG所能包含的比特数的上限值)计算得到
Figure PCTCN2018078926-appb-000030
第i个CBG映射的层数(或者RE数)为L i,第j层采用的调制阶数、码率或者传输效率或者MCS值为Q j,该次调度分配的总层数(或者总RE数)为L total
如前所述,TB的比特数为B(可以含TB的CRC),根据原则2,则第i个CBG所包含的比特数为:
Figure PCTCN2018078926-appb-000031
i=1,…m-1;i=m时,
Figure PCTCN2018078926-appb-000032
或者,
Figure PCTCN2018078926-appb-000033
i=2,…m;i=1时,
Figure PCTCN2018078926-appb-000034
进一步的,根据以上确定的各CBG的比特数,依次确定各CBG所包含的比特。
其中
Figure PCTCN2018078926-appb-000035
为向上取整符号,
Figure PCTCN2018078926-appb-000036
为向下取整符号。
方式三:可以根据每个CBG分配有的RB数、对应的层组包括的层数、每个CBG的MCS中的至少一种确定每个CBG的大小,然后确定TBS,可选地为TB所包含的每个CBG的大小之和。
可选的,可以为每个CBG加上CRC,还可以为TB加上CRC。
可选的,每个CBG的大小确定后(比如,确定每个CBG比特数后),还能 对CBG进一步做CB划分:
例如,假设确定的CBG的比特数为B(可选地为CBG加CRC,则B为包含CRC后的比特数),CB最大比特数Z(比如6144比特,或者8192比特),为每个CB加的CRC比特数为L,则CBG划分的CB数为:若B≤Z,那么CB数为C=1;若B>Z,则CB数为
Figure PCTCN2018078926-appb-000037
其中
Figure PCTCN2018078926-appb-000038
为向上取整符号。
实施例四
本实施例是基于上述实施例一,并且包括了实施例一的所有技术方案,可选地可以包括上述实施例二和实施例三中至少一种的技术方案。
本实施例中,前述实施例中每个CBG的配置的调制方式、码率、MCS或者编码矩阵等可以存在如下几种可能的情况:
1、N个CBG的调制方式、码率、MCS或者编码矩阵等均相等。
2、N个CBG中各个CBG的调制方式、码率、MCS和编码矩阵等中至少一种互不相同。
3、N个CBG中至少存在两个CBG,它们具有不同的调制方式、不同的码率和不同的预编码矩阵中的至少一种。
4、至少存在两个层,它们具有不同的调制方式、不同的码率和不同的预编码矩阵中的至少一种。
对不同CBG使用不同的调制的调制方式、码率或者预编码矩阵方式、码率或者预编码矩阵,即可以根据不同CBG所在资源的信道质量配置不同的调制方式、码率或者预编码矩阵,实现通信系统的性能增益。
上述N≥1。
所述发送端可以发送控制信令给接收端来,所述控制信令包括每个CBG对应调制方式、码率、MCS和编码方式等中至少一个信息,该控制信息还能够包括每个CBG的冗余版本(redundancy version,RV)或者新数据指示符(new data indicator,NDI)等信息。
当采用第1种情况时,所述发送端可以通过发送一份控制信息,包括调制方式、码率、MCS、RV、NDI、预编码方式中至少一个的信息。
当不同CBG采用不同的调制方式、码率、MCS或者编码矩阵时,可以发送各CBG对应的调制方式、码率、MCS、RV、NDI、预编码方式中至少一个的信息;也可以发送其中一个CBG(例如编号为0的CBG)对应的调制方式、码率、MCS、RV、NDI和编码方式的至少一种的信息,其余CBG的调制方式、码率、MCS、RV、NDI和编码方式的至少一种可以通过发送对应的差异值的形式来指示,这样可以节省指示的开销。
实施例五
本实施例是基于上述实施例一,并且包括了实施例一的所有技术方案,可选地可以包括上述实施例二、实施例三和实施例四中至少一种的技术方案。
本实施例中,对CBG的资源映射做了相关的介绍。
所述发送端可以将上述实施例中各CBG的CB经过信道编码,速率匹配,可选地加扰,调制后资源映射到由“空域(对应层或者天线端口)、频域(对应子载波),时域(对应符号)”构成的资源上。资源映射规则如下:
每个CBG内CB的数据映射按以下方式之一依次映射满其所属层组中的层上的资源:
方式1:先频域,再时域,后空域;
方式2:先频域,再空域,后时域;
方式3:先空域,再频域,后时域。
方式2和方式3,把时域的顺序排在最后,可以增加发射端或者接收端的数据处理时间。
可选地,以上方式可通过预定义的方式实现,或者通过控制信令灵活配置,例如所述控制信令可以为MIB消息、SIB消息、MAC CE或者DCI等
进一步的,细化到每个CBG的情况:假设该CBG调制后的符号序列为d(0),...,d(M symb-1),M symb为该CBG总的调制符号数。将该CBG映射到可用于数据传输的RE上。该RE可以对应x v(k,l):v,k,l分别代表三个维度,具体的,v代表层的索引(取值范围为该CBG映射的层);k代表时域符号的索引,k代表子载波的索引(取值范围可以取决于分配的RB)。可以通过以上三种方式对应的顺序实现映射。
可选地,在映射过程中,所述发送端可以使用符号内交织的技术。例如,1个符号所承载的数据存在大于1个CB的数据量时,这些CB可以引入交织。交织的方式,简单来说,例如可以是,将该符号上的m个CB所包括的比特分成n份比特数据,先将该符号上的m个CB的第一份比特数据依次映射到符号对应的RE上,接着将m个CB的第二份比特数据依次映射到符号对应的RE上,依次类推,直至将该符号上的m个CB所包括的比特全部映射完。如此,可以确保每个CB的数据尽可能的映射到更宽的频域资源上,以获得频域分集,提高传输的可靠性。
可选地,交织与否或者具体交织方式可预定义或者通过控制信令灵活配置。例如,还可以预定义或者配置交织范围的符号数。以上例子可以为1个符号内交织,对译码时延不影响。但对于高速场景,由于信道时变快且要借助处于时间调度单元中间或尾部符号的参考信号做信道估计,因此可以使用多个符号内交织。此外,交织的粒度(即每几比特交织或者上文中的n份比特数据中每份的粒度或者份数n)也是可预定义或者通过控制信令灵活配置的。所述控制信令可以为 MIB消息、SIB消息、MAC CE或者DCI等。
可选地,发送端执行完以上映射之后,还可以对映射后的数据进行预编码操作。如实施例四所述,不同CBG可以采用不同或相同的预编码矩阵,各自独立地进行预编码,也可以使这些CBG共同进行与编码,此处不做限定。
经过以上处理后,可以将资源映射后的数据形成OFDM信号向接收端进行发送。
实施例六
本实施例中,介绍了接收端收到数据后如何反馈各CBG的HARQ-ACK信息给发送端。可选地,可以包括上述实施例一至实施例五中至少一种技术方案。
假设接收端在同一个(上行)控制信息/时间单元上反馈
Figure PCTCN2018078926-appb-000039
比特HARQ-ACK,L(大于等于1的整数)为TB数,Ni(大于等于1的整数)为第i个TB对应的反馈比特数,可选地每比特对应1个CBG的译码结果(HARQ-ACK信息),i为1≤i≤L的整数。L个TB可以是MIMO不同层,和/或,不同TRP,和/或,不同载波,和/或,不同时间单元(TTI)上传输的TB。Ni确定方式如下:
方式1:根据当前传输的CBG数确定反馈比特数Ni。
例如第i个TB,根据其TB大小等因素确定了CBG的个数为4(过程可参考但不限定为实施例三,或采用其它方法比如信令配置),则Ni=4;假设后续传输只重传2个CBG,则后续反馈Ni=2即可。每比特对应1个CBG是否译码正确。
或者根据以上方法确定Ni后,可选地再添加1比特或1状态值用于指示该TB的CRC是否校验通过。所谓状态值可以是反馈比特构成的数值索引或者是控制信息/信道采用的资源等。本发明不做限定。
方式2:根据初传确定的CBG数确定反馈比特数Ni。
例如第i个TB,根据其TB大小等因素确定CBG的个数为4(过程可参考但不限定为实施例3,或采用其它方法比如信令配置),则Ni=4;后续传输中尽管只重传2个CBG,Ni也为4。每比特对应1个CBG是否译码正确。如果某个CBG不在重传数据中,则其对应的反馈比特可选的为上一次的译码结果或为默认的ACK/NACK。如果TB的CRC校验不通过,则其Ni比特上的信息都为NACK。
方式3:各TB的反馈比特数为固定值。
例如第i个TB,不管其TB多大,也不管初传/重传,其反馈比特数为M,M为1个固定值(可以系统配置,比如系统支持的每TB最大反馈比特数)。可选地第i个M比特中的几比特对应第i个TB各CBG的译码结果。如果某个CBG不在重传数据中则该对应的比特可选地为上一次的译码结果或为默认的ACK/NACK。如果TB的CRC校验不通过,则LM比特中其对应的前几比特或者M比特都为NACK。如果检测到至少1个TB丢失(即DTX或其调度信息没 被检测出来),则LM比特中各所述丢失TB对应的比特或者M比特都为NACK。
系统可以规定/预定义以上1/多种方式,或者按需或者由信令配置确定所采用的方式。比如不存在汇聚反馈时方式1和2可以适用。相反,方式3可行。
实施例七
本实施例是基于上述实施例一,并且包括了实施例一的所有技术方案,可选地可以包括上述实施例二至实施例六中至少一种的技术方案。
本实施例中,介绍了当存在CBG未被接收端正确接收,所述发送端需要重传所述CBG场景下的相关技术方案。
结合HARQ反馈的原理和对TB划分CBG的方案,所述发送端可以使用多比特对所述TB进行HARQ反馈,其中,每个反馈的比特对应一个CBG,用于指示该CBG是否被接收端正确接收(可选参考实施例六)。发送端在收到所述多比特反馈后,只需要重传未被正确接收的CBG对应的数据(所述未被正确接收的CBG个数为至少一个)。具体的,可以采用如下几种方式的一种进行所述重传:
方式一:需要重传的CBG(即未被正确接收的CBG)可以采用和初传同样方式映射到与初传相同的层组中的层进行重传。例如,需要重传的CBG(假设个数为一个)初传映射到第1个层组中的层,则重传同样映射到所述第1个层组中的层。
方式二:需要重传的CBG(即未被正确接收的CBG)根据调度配置,例如控制信令的指示,映射到所述调度配置所指示的层组包括的层进行重传。所述控制信令可以是物理层信令,或者高层信令,用于指示所述重传对应的层组。可选的,所述调度配置根据所述层组的传输性能,例如挑选传输性能最佳的层组为所述重传对应的层组。需要重传的CBG(假设个数为一个)初传映射到射到第1个层组中的层,则其重传可以映射到传输性能最佳的层组中的层上,若第2个层组为性能最佳的层组,则重传映射到所述第2层组中的层。
方式三:需要重传的CBG(即未被正确接收的CBG)可以采用单频网(single frequency network,SFN)方式重复映射到多个层组进行重传。例如需要重传的CBG(假设个数为一个)初传映射到第1个层组中的层,则其重传可以映射到多个层组中的层上。各承载该需要重传的CBG的层组可以重复该CBG的数据,使用的调制方式,RV等都一样。
方式四:需要重传的CBG(即未被正确接收的CBG)根据交换标记(swap flag)指示映射到层组中的层进行重传。其中,swap flag=1可以对应“交换”,swap flag=0可以对应“不交换”。例如,N=4,初传CBG0,CBG1和CBG3对应的数据未被正确接收,可以通过去使能的方式使得CBG2对应的层2完成传输,若swap flag=1,如图11(a),则在第一次重传时,CBG0和CBG3对应的层组进行交换,即CBG3对应包括层0的层组,CBG1仍对应包括层1的层组,CBG0对应到包括层3的层组。此次重传,CBG1和CBG3对应的数据仍未被正确接收,可以通过去使能的方式完成此次CBG0对应的层3的传输。同时第二次重传时, 因为swap flag=1,再次进行交换,CBG1可以对应包括层0的层组,CBG3可以对应包括层组1的层组;若swap flag=0,则对应的,如图11(b),在第一次重传时,即CBG0仍对应包括层0的层组,CBG1仍对应包括层1的层组,CBG3仍对应包括层3的层组。此次重传,CBG1和CBG3对应的数据仍未被正确接收,可以通过去使能的方式完成此次CBG0对应的层0的传输。同时第二次重传时,因为swap flag=0,CBG1可以对应包括层组1的层组,CBG3可以对应包括层组3的层组。另外,也可以不通过swap flag进行指示,而预定义规则,或者顺序交换供发送端执行。
方式二、方式二和方式四都增加了重传被接收端正确接收的机率。
实施例八
本申请实施提供的一种通信设备1200的结构示意图。如图12所示,该通信设备1200包括收发器1201、处理器1202、存储器1203和总线系统1204;
其中,存储器1203,用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器1203可能为随机存取存储器(random access memory,RAM),也可能为非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。图中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。存储器1203也可以是处理器1202中的存储器。
存储器1203存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
处理器1202控制通信设备1200的操作,处理器1202还可以称为CPU(Central Processing Unit,中央处理单元)。具体的应用中,通信设备1200的各个组件通过总线系统1204耦合在一起,其中总线系统1204除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统1204。为便于表示,图12中仅是示意性画出。
上述实施例一至七任一揭示的发送端的方法;或者上述实施例一至七任一揭示的接收端的方法可以应用于处理器1202中,或者由处理器1202实现。处理器1202可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1202中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1202可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。 软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1203,处理器1202读取存储器1203中的信息,结合其硬件执行上述实施例一至七任一所述的发送端的方法步骤;或者结合其硬件执行上述实施例一至七任一所述的接收端的方法步骤。
通过本实施例提供的通信设备1200,通过将层进行分组,建立CBG和层组之间的映射关系,使得不同层组之间的传输可以使用干扰消除的方式提高数据接收质量,并且适配与基于CBG的重传反馈,从而优化了整个通信系统的传输性能。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。为清楚展示硬件和软件的可替换性(interchangeability),上述的各种说明性部件(illustrative components)和步骤已经通用地描述了它们的功能。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本发明实施例保护的范围。
本申请实施例中所描述的各种说明性的逻辑块,模块和电路可以通过通用处理单元,数字信号处理单元,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理单元可以为微处理单元,可选地,该通用处理单元也可以为任何传统的处理单元、控制器、微控制器或状态机。处理单元也可以通过计算装置的组合来实现,例如数字信号处理单元和微处理单元,多个微处理单元,一个或多个微处理单元联合一个数字信号处理单元核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理单元执行的软件模块、或者这两者的结合。软件模块可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理单元连接,以使得处理单元可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理单元中。处理单元和存储媒介可以配置于ASIC中,ASIC可以配置于用户终端中。可选地,处理单元和存储媒介也可以配置于用户终端中的不同的部件中。
在一个或多个示例性的设计中,本发明实施例所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用 媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理单元读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、DVD、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本发明说明书的上述描述可以使得本领域技术任何可以利用或实现本发明的内容,任何基于所公开内容的修改都应该被认为是本领域显而易见的,本发明所描述的基本原则可以应用到其它变形中而不偏离本发明的发明本质和范围。因此,本发明所公开的内容不仅仅局限于所描述的实施例和设计,还可以扩展到与本发明原则和所公开的新特征一致的最大范围。

Claims (24)

  1. 一种数据传输的方法,其特征在于,所述方法包括:
    发送端根据N个编码块组CBG与N个层组的对应关系,将每个所述CBG映射至对应层组包括的层;其中,每个所述层组包括的层数至少为一个;N为正整数;
    所述发送端向接收端发送数据,所述数据对应的传输块TB包括所述N个CBG。
  2. 如权利要求1所述的方法,其特征在于,所述N个层组根据配置的解调参考信号DMRS端口组信息、所述发送端所包括的发送与接收点TRP或者TRP组信息、所述层所对应天线端口之间的准共址QCL信息、所述发送端所发送波束的标识信息中的至少一种划分。
  3. 如权利要求1或者2所述的方法,其特征在于,N>1,所述N个CBG中至少存在两个CBG,所述两个CBG分别配置有不同的调制方式、不同的码率和不同的预编码矩阵中的至少一种。
  4. 如权利要求1或者2所述的方法,其特征在于,
    所述N个层组的总层数为1或者2时,N=1;或者,
    所述N个层组的总层数为3或者4时,N=1,或者N=2。
  5. 如权利要求1-4任一所述的方法,其特征在于,
    每个所述CBG包含的编码块CB数或者比特数与所述对应层组所包括的层数成正比;或者,
    每个所述CBG包含的CB数或者比特数与所述对应层组的调制阶数、码率和传输速率中的至少一个成正比;或者,
    每个所述CBG包含的CB数或者比特数根据分配的资源块RB数、对应层组包括的层数和每个所述CBG的调制和编码方式MCS中的至少一个确定。
  6. 如权利要求1-5任一所述的方法,其特征在于,若所述N个CBG中存在需要重传的CBG,
    则所述需要重传的CBG映射于与初传时相同的层组包括的层;或者,
    所述需要重传的CBG根据控制信令映射于所述N个层组中至少一个所述层组包括的层,所述至少一个所述层组由所述控制信令指示;或者,
    所述需要重传的CBG采用单频网SFN方式分别重复映射于所述N个层组中M个层组包括的层,所述重复的次数为M次,2≤M≤N,M为正整数;或者,
    所述需要重传的CBG根据交换标记指示映射于所述N个层组中至少一个层组包括的层。
  7. 一种数据传输的方法,其特征在于,所述方法包括:
    接收端接收发送端发送的数据,所述数据对应的传输块TB包括N个编码块组CBG;
    所述接收端根据所述N个CBG与N个层组的对应关系,从所述数据中获 取所述N个CBG;其中,每个所述层组包括的层数至少为一个,每个所述CBG映射于对应层组包括的层,N为正整数。
  8. 如权利要求7所述的方法,其特征在于,所述N个层组根据配置的解调参考信号DMRS端口组信息、所述发送端所包括的发送与接收点TRP或者TRP组信息、所述层所对应天线端口之间的准共址QCL信息、所述发送端所发送波束的标识信息中的至少一种划分。
  9. 如权利要求7或者8所述的方法,其特征在于,N>1,所述N个CBG中至少存在两个CBG,所述两个CBG分别配置有不同的调制方式、不同的码率和不同的预编码矩阵中的至少一种。
  10. 如权利要求7或者8所述的方法,其特征在于,
    所述N个层组的总层数为1或者2时,N=1;或者,
    所述N个层组的总层数为3或者4时,N=1,或者N=2。
  11. 如权利要求7-10任一所述的方法,其特征在于,
    每个所述CBG包含的编码块CB数或者比特数与所述对应层组所包括的层数成正比;或者,
    每个所述CBG包含的CB数或者比特数与所述对应层组的调制阶数、码率和传输速率中的至少一个成正比;或者,
    每个所述CBG包含的CB数或者比特数根据分配的资源块RB数、对应层组包括的层数和每个所述CBG的调制和编码方式MCS中的至少一个确定。
  12. 如权利要求7-11任一所述的方法,其特征在于,若所述N个CBG中存在需要重传的CBG,
    则所述需要重传的CBG映射于与初传时相同的层组包括的层;或者,
    所述需要重传的CBG根据控制信令映射于所述N个层组中至少一个所述层组包括的层,所述至少一个所述层组由所述控制信令指示;或者,
    所述需要重传的CBG采用单频网SFN方式分别重复映射于所述N个层组中M个层组包括的层,所述重复的次数为M次,2≤M≤N,M为正整数;或者,所述需要重传的CBG根据交换标记指示映射于所述N个层组中至少一个层组包括的层。
  13. 一种数据传输装置,其特征在于,包括:
    处理器,根据N个编码块组CBG与N个层组的对应关系,将每个所述CBG映射至对应层组包括的层;其中,每个所述层组包括的层数至少为一个;N为正整数;
    收发器,用于向接收端发送数据,所述数据对应的传输块TB包括所述N个CBG。
  14. 如权利要求13所述的装置,其特征在于,所述N个层组根据配置的解调参考信号DMRS端口组信息、所述发送端所包括的发送与接收点TRP或者TRP组信息、所述层所对应天线端口之间的准共址QCL信息、所述发送端所发送波束的标识信息中的至少一种划分。
  15. 如权利要求13或者14所述的装置,其特征在于,N>1,所述N个CBG中至少存在两个CBG,所述两个CBG分别配置有不同的调制方式、不同的码率和不同的预编码矩阵中的至少一种。
  16. 如权利要求13或者14所述的装置,其特征在于,
    所述N个层组的总层数为1或者2时,N=1;或者,
    所述N个层组的总层数为3或者4时,N=1,或者N=2。
  17. 如权利要求13-16任一所述的装置,其特征在于,
    每个所述CBG包含的编码块CB数或者比特数与所述对应层组所包括的层数成正比;或者,
    每个所述CBG包含的CB数或者比特数与所述对应层组的调制阶数、码率和传输速率中的至少一个成正比;或者,
    每个所述CBG包含的CB数或者比特数根据分配的资源块RB数、对应层组包括的层数和每个所述CBG的调制和编码方式MCS中的至少一个确定。
  18. 如权利要求13-17任一所述的装置,其特征在于,若所述N个CBG中存在需要重传的CBG,
    则所述需要重传的CBG映射于与初传时相同的层组包括的层;或者,
    所述需要重传的CBG根据控制信令映射于所述N个层组中至少一个所述层组包括的层,所述至少一个所述层组由所述控制信令指示;或者,
    所述需要重传的CBG采用单频网SFN方式分别重复映射于所述N个层组中M个层组包括的层,所述重复的次数为M次,2≤M≤N,M为正整数;或者,所述需要重传的CBG根据交换标记指示映射于所述N个层组中至少一个层组包括的层。
  19. 一种数据传输装置,其特征在于,包括:
    收发器,用于接收发送端发送的数据,所述数据对应的传输块TB包括N个编码块组CBG;
    处理器,用于根据所述N个CBG与N个层组的对应关系,从所述数据中获取所述N个CBG;其中,每个所述层组包括的层数至少为一个,每个所述CBG映射于对应层组包括的层,N为正整数。
  20. 如权利要求19所述的装置,其特征在于,所述N个层组根据配置的解调参考信号DMRS端口组信息、所述发送端所包括的发送与接收点TRP或者TRP组信息、所述层所对应天线端口之间的准共址QCL信息、所述发送端所发送波束的标识信息中的至少一种划分。
  21. 如权利要求19或者20所述的装置,其特征在于,N>1,所述N个CBG中至少存在两个CBG,所述两个CBG分别配置有不同的调制方式、不同的码率和不同的预编码矩阵中的至少一种。
  22. 如权利要求19或者20所述的装置,其特征在于,
    所述N个层组的总层数为1或者2时,N=1;或者,
    所述N个层组的总层数为3或者4时,N=1,或者N=2。
  23. 如权利要求19-22任一所述的装置,其特征在于,
    每个所述CBG包含的编码块CB数或者比特数与所述对应层组所包括的层数成正比;或者,
    每个所述CBG包含的CB数或者比特数与所述对应层组的调制阶数、码率和传输速率中的至少一个成正比;或者,
    每个所述CBG包含的CB数或者比特数根据分配的资源块RB数、对应层组包括的层数和每个所述CBG的调制和编码方式MCS中的至少一个确定。
  24. 如权利要求19-23任一所述的装置,其特征在于,若所述N个CBG中存在需要重传的CBG,
    则所述需要重传的CBG映射于与初传时相同的层组包括的层;或者,
    所述需要重传的CBG根据控制信令映射于所述N个层组中至少一个所述层组包括的层,所述至少一个所述层组由所述控制信令指示;或者,
    所述需要重传的CBG采用单频网SFN方式分别重复映射于所述N个层组中M个层组包括的层,所述重复的次数为M次,2≤M≤N,M为正整数;或者,
    所述需要重传的CBG根据交换标记指示映射于所述N个层组中至少一个层组包括的层。
PCT/CN2018/078926 2017-03-24 2018-03-14 数据传输的方法、设备和系统 WO2018171474A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18772162.6A EP3585022A4 (en) 2017-03-24 2018-03-14 DATA TRANSFER METHOD, DEVICE AND SYSTEM
US16/579,853 US11212036B2 (en) 2017-03-24 2019-09-24 Data communication method, device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184891.4 2017-03-24
CN201710184891.4A CN108632192B (zh) 2017-03-24 2017-03-24 数据传输的方法、设备和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/579,853 Continuation US11212036B2 (en) 2017-03-24 2019-09-24 Data communication method, device, and system

Publications (1)

Publication Number Publication Date
WO2018171474A1 true WO2018171474A1 (zh) 2018-09-27

Family

ID=63585891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078926 WO2018171474A1 (zh) 2017-03-24 2018-03-14 数据传输的方法、设备和系统

Country Status (4)

Country Link
US (1) US11212036B2 (zh)
EP (1) EP3585022A4 (zh)
CN (2) CN111447048B (zh)
WO (1) WO2018171474A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112771801A (zh) * 2018-10-02 2021-05-07 高通股份有限公司 用于新无线电免许可操作中的混合自动接收请求过程的时变码块组粒度
EP3913834A4 (en) * 2019-01-18 2022-10-12 ZTE Corporation METHOD AND DEVICE FOR TRANSMITTING INFORMATION

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019095190A1 (en) * 2017-11-16 2019-05-23 Qualcomm Incorporated Reduced overhead error detection code design for decoding a codeword
CN109936401A (zh) 2017-12-15 2019-06-25 索尼公司 电子装置、无线通信方法以及计算机可读介质
US20190313382A1 (en) * 2018-04-04 2019-10-10 Apple Inc. Control Data for Code Block Group-Based Retransmission
WO2019199515A1 (en) 2018-04-09 2019-10-17 Google Llc Fifth generation new radio uplink multiplexing assisted by shared grant-free transmission
US11096172B2 (en) * 2018-04-27 2021-08-17 Qualcomm Incorporated Spatial diversity for data transmissions using multiple beams
CN111431572B (zh) * 2019-01-10 2021-10-01 成都华为技术有限公司 数据传输方法及装置
CN113439399B (zh) * 2019-02-15 2023-07-25 上海诺基亚贝尔股份有限公司 无线网络中的无线电链路自适应
CN110535556A (zh) * 2019-03-29 2019-12-03 中兴通讯股份有限公司 一种资源调度方法、装置和存储介质
WO2021016832A1 (en) * 2019-07-30 2021-02-04 Qualcomm Incorporated Layer modulation of coded and unencoded bits
EP4285528A1 (en) * 2021-01-31 2023-12-06 Telefonaktiebolaget LM Ericsson (publ) Data signaling for wireless communication networks
US20230188250A1 (en) * 2021-12-09 2023-06-15 Qualcomm Incorporated Feedback for transport blocks with multiple modulation and coding schemes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010105564A1 (en) * 2009-03-17 2010-09-23 Huawei Technologies Co., Ltd. System and method for multiple input, multiple output layer mapping
CN104124987A (zh) * 2013-04-28 2014-10-29 国际商业机器公司 用于并行处理数据的方法和装置
CN105281868A (zh) * 2014-07-10 2016-01-27 普天信息技术有限公司 一种基于码块分组的发送方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8331308B1 (en) 2007-11-09 2012-12-11 Research In Motion Limited Systems and methods for network MIMO
CN101465718B (zh) * 2009-01-21 2013-11-06 中兴通讯股份有限公司 多输入多输出系统中码字流到层的映射方法与装置
KR101644434B1 (ko) * 2009-02-22 2016-08-01 엘지전자 주식회사 하향링크 mimo시스템에 있어서, 하향링크 신호 생성 방법
KR101633326B1 (ko) * 2009-02-27 2016-06-24 엘지전자 주식회사 전송 방법
US9178658B2 (en) * 2009-05-06 2015-11-03 Futurewei Technologies, Inc. System and method for channel interleaver and layer mapping in a communications system
WO2011056043A2 (ko) 2009-11-09 2011-05-12 엘지전자 주식회사 다중 안테나 전송 기법을 지원하기 위한 효율적인 제어정보 전송 방법 및 장치
KR101769376B1 (ko) 2010-03-29 2017-08-30 엘지전자 주식회사 상향링크 다중 안테나 전송을 지원하기 위한 효율적인 제어정보 전송 방법 및 장치
US20140112312A1 (en) * 2011-05-11 2014-04-24 Lg Electronics Inc. Method for transmitting signal using plurality of codewords in wireless communication system and transmission end for same
TWI575933B (zh) * 2011-11-04 2017-03-21 杜比實驗室特許公司 階層式視覺動態範圍編碼中之層分解技術
US11050518B2 (en) * 2017-03-08 2021-06-29 Lg Electronics Inc. Method for transmitting and receiving signal between terminal and base station in wireless communication system, and apparatus for supporting same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010105564A1 (en) * 2009-03-17 2010-09-23 Huawei Technologies Co., Ltd. System and method for multiple input, multiple output layer mapping
CN104124987A (zh) * 2013-04-28 2014-10-29 国际商业机器公司 用于并行处理数据的方法和装置
CN105281868A (zh) * 2014-07-10 2016-01-27 普天信息技术有限公司 一种基于码块分组的发送方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3585022A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112771801A (zh) * 2018-10-02 2021-05-07 高通股份有限公司 用于新无线电免许可操作中的混合自动接收请求过程的时变码块组粒度
CN112771801B (zh) * 2018-10-02 2023-10-03 高通股份有限公司 用于新无线电免许可操作中的混合自动接收请求过程的时变码块组粒度
EP3913834A4 (en) * 2019-01-18 2022-10-12 ZTE Corporation METHOD AND DEVICE FOR TRANSMITTING INFORMATION

Also Published As

Publication number Publication date
CN108632192A (zh) 2018-10-09
US20200028618A1 (en) 2020-01-23
CN111447048B (zh) 2021-12-03
EP3585022A1 (en) 2019-12-25
EP3585022A4 (en) 2020-03-11
US11212036B2 (en) 2021-12-28
CN108632192B (zh) 2020-04-03
CN111447048A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2018171474A1 (zh) 数据传输的方法、设备和系统
CN109392152B (zh) 通信方法和通信装置
US20220312401A1 (en) Methods and apparatus for sending and receiving second stage sci, storage medium, sending ue, and receiving ue
CN110419186A (zh) 用于上行链路超高可靠和低延迟通信的下行链路控制通道
RU2684580C1 (ru) Способ передачи и способ приема информации управления восходящей линией и соответствующее устройство
JP7221866B2 (ja) 伝送方法及び装置
US11394400B2 (en) Wireless communication data processing method and apparatus for reducing bit error rate
WO2017054625A1 (zh) 支持低空口延迟的ue、基站中的方法和设备
CN110169000A (zh) 用于上行链路超高可靠低延迟通信的信令、过程、用户设备和基站
CN106550445B (zh) 无线通信中的一种低延迟的方法和装置
CN107846707B (zh) 一种免授予的ue、基站中的方法和装置
KR20210006884A (ko) 비-지상 네트워크용 하이브리드 자동 반복 요청(harq) 기술
WO2018081989A1 (zh) 传输上行控制信息的方法、终端设备和网络设备
WO2018228596A1 (zh) 一种数据处理方法及数据处理装置
US10615923B2 (en) Method and apparatus for processing hybrid automatic repeat request process in communication system
JP2022046754A (ja) チャネル符号化に用いるユーザー装置、基地局における方法及び装置
JP2023099023A (ja) 基地局、通信方法及び集積回路
TWI759507B (zh) 回饋應答訊息的傳輸方法、裝置及系統
WO2017028606A1 (zh) 一种上行控制信息的发送方法及装置
CN110445595B (zh) 一种低延时的无线通信方法和装置
WO2021147214A1 (zh) 通信方法和通信装置
KR20220050766A (ko) 통신 시스템에서의 브로드캐스트 신호의 송수신 방법 및 장치
CN109983818B (zh) 用于发送/接收调度命令的方法和设备
KR20180098139A (ko) 통신 시스템에서 harq 프로세스의 처리를 위한 방법 및 장치
WO2022206579A1 (zh) 一种上行控制信息传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018772162

Country of ref document: EP

Effective date: 20190918