WO2021154062A1 - 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조 및 이의 제조방법 - Google Patents

친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조 및 이의 제조방법 Download PDF

Info

Publication number
WO2021154062A1
WO2021154062A1 PCT/KR2021/002982 KR2021002982W WO2021154062A1 WO 2021154062 A1 WO2021154062 A1 WO 2021154062A1 KR 2021002982 W KR2021002982 W KR 2021002982W WO 2021154062 A1 WO2021154062 A1 WO 2021154062A1
Authority
WO
WIPO (PCT)
Prior art keywords
curing
temperature
epoxy resin
resin composition
winding
Prior art date
Application number
PCT/KR2021/002982
Other languages
English (en)
French (fr)
Inventor
박종태
Original Assignee
제룡전기 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제룡전기 주식회사 filed Critical 제룡전기 주식회사
Publication of WO2021154062A1 publication Critical patent/WO2021154062A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • H01F27/14Expansion chambers; Oil conservators; Gas cushions; Arrangements for purifying, drying, or filling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/022Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/064Winding non-flat conductive wires, e.g. rods, cables or cords
    • H01F41/066Winding non-flat conductive wires, e.g. rods, cables or cords with insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/127Encapsulating or impregnating

Definitions

  • An embodiment of the present invention relates to a structure of a mold transformer winding to which an eco-friendly hybrid epoxy resin composition is applied and a method for manufacturing the same, and more particularly, to solve the occurrence of curing deviation due to a sudden change in curing temperature, high curing initial temperature and curing termination It is intended to solve the problem caused by temperature, remove moisture due to the filler drying operation, and thereby improve the quality and reliability of the winding structure of the molded transformer to increase the durability.
  • a molded transformer is a transformer that is embedded and hardened in electrical/electronic/resin, and its purpose is to prevent deterioration or failure of the transformer due to moisture or vibration, use
  • the molded transformer is a dry type transformer in which windings are hardened with epoxy resin and insulated, and has more moisture resistance than varnish-impregnated type H dry type transformers.
  • the insulation method there are a cast type with a convex shape and a prepreg type without a convex shape.
  • the above-described conventional mold transformer does not solve the occurrence of curing deviation due to rapid curing temperature change, does not solve the problems caused by the high curing initial temperature and curing end temperature, and has a large problem in that it cannot completely remove moisture due to the change of the curing agent. became
  • an abnormal acceleration reaction and cracks may proceed as shown in FIG. 2 due to high curing initial and termination temperatures, and due to the rapid curing temperature change cycle, the drying time for each temperature step is insufficient, so moisture cannot be properly discharged, so transformer insulation Performance degradation occurred.
  • the prior art used a highly reactive epichlorohydrin-based curing agent to react a large amount in a short time. This caused shrinkage (striped shape) in the product as shown in FIG. 3 due to rapid curing when the amount of some of the main agent was small, and moisture was not sufficiently discharged due to the rapid curing, resulting in deterioration of insulation performance.
  • the present invention has been devised to solve the problems of the prior art as described above, and has a first purpose to provide a molded transformer to which an eco-friendly hybrid epoxy resin composition is applied, and the second object of the present invention by the above-described technical configuration is to solve the occurrence of curing deviation due to rapid curing temperature change, to solve the problems caused by the high curing initial temperature and curing end temperature, and to remove moisture due to the filler drying operation.
  • a 9-step curing process was performed so that the temperature maintenance section was set for each curing temperature (eg, 70°C, 80°C, 100°C, 130°C, etc.) so that the complete curing reaction can proceed to a thick place in the corresponding temperature range.
  • the purpose of 4 is to increase the holding times of 80°C (holding time: 4 hours) where initial curing starts and 130°C (holding time: 5 hours), where main curing starts, compared to existing products and other temperature sections, so that complete curing can proceed.
  • the fifth purpose is to add a drying and preliminary reaction step to lower the initial curing temperature compared to the existing one and maintain it for a certain period of time to add an initial stabilization section to minimize intermolecular abnormality accelerating reaction and moisture
  • the sixth purpose is to end curing
  • the curing end temperature is also lowered compared to the prior art
  • the seventh purpose is to It uses a naphthalene-based curing agent that has low reactivity, is less affected by external factors, and that absorbs moisture and harmful substances contained in the main material and discharges moisture and harmful substances back to the outside due to the
  • the ninth purpose is to significantly improve the quality and reliability of the winding structure of the molded transformer.
  • a structure of a molded transformer winding to which an eco-friendly hybrid epoxy resin composition is applied so that durability can be increased and a method for manufacturing the same.
  • the present invention includes the steps of preparing a winding mold for mounting the mold on the winding machine after the mold cleaning state and counter check (S110); Then winding the conductor and insulating paper on the mold (S111); followed by drying the filler (S112); Thereafter, the step of blending an eco-friendly hybrid epoxy resin composition in which an epoxy base, a curing agent, and a filler are mixed (S113); Then, injecting the eco-friendly hybrid epoxy resin composition into the winding (S114); And thereafter, the step (S115) of hardening the windings injected with the eco-friendly hybrid epoxy resin composition with heat and curing them (S115).
  • the present invention includes a step (116) of cleaning the surface and applying a release agent after mashing the winding edges after the step of hardening with heat (116) ) may be further included, of course.
  • the present invention relates to a molded transformer winding structure made of the manufacturing method of each step, which solves the occurrence of a curing deviation due to a rapid curing temperature change, solves the problems caused by a high curing initial temperature and curing end temperature, and dries the filler It provides a structure of a molded transformer winding to which an eco-friendly hybrid epoxy resin composition is applied, characterized in that it removes moisture due to operation.
  • the present invention includes the steps of preparing a winding mold for mounting the mold on the winding machine after the mold cleaning state and counter check (S110); Then winding the conductor and insulating paper on the mold (S111); followed by drying the filler (S112); Thereafter, the step of blending an eco-friendly hybrid epoxy resin composition in which an epoxy base, a curing agent, and a filler are mixed (S113); Then, injecting the eco-friendly hybrid epoxy resin composition into the winding (S114); And thereafter, the step (S115) of hardening and curing the windings injected with the eco-friendly hybrid epoxy resin composition with heat provides a method of manufacturing a molded transformer winding structure to which the eco-friendly hybrid epoxy resin composition is applied, characterized in that it includes.
  • the present invention is such that a molded transformer to which an eco-friendly hybrid epoxy resin composition is applied is provided.
  • the present invention solves the occurrence of curing deviation due to a sudden change in curing temperature, solves problems caused by high curing initial temperature and curing end temperature, and removes moisture due to filler drying operation. will be.
  • the invention provides a 9-step curing process so that the complete curing reaction can proceed to a thick place in the temperature range by providing a temperature maintenance section for each curing temperature (eg, 70°C, 80°C, 100°C, 130°C, etc.). it was carried out
  • the present invention increases the holding time of 80 °C (holding time: 4 hours) at which initial curing starts and 130 °C (holding time: 5 hours) at which main curing starts compared to conventional products and other temperature sections for complete curing to proceed. made it possible
  • the present invention adds an initial stabilization section that minimizes intermolecular abnormality accelerating reaction and moisture by adding drying and preliminary reaction steps to lower the initial curing temperature compared to the existing ones and maintain it for a certain period of time.
  • the present invention lowers the curing end temperature compared to the prior art in order to solve the phenomenon that cracks are generated due to thermal shock caused by the difference between the curing furnace temperature and the room temperature when the winding is taken out of the curing furnace after curing is finished. It was.
  • the present invention has a low reactivity, is less affected by external factors, and absorbs moisture and harmful substances contained in the main material and volatilizes into gas when the temperature rises during curing.
  • a curing agent By using a curing agent, it is possible to reduce shrinkage caused by rapid curing and decrease insulation performance due to moisture and harmful substances.
  • the present invention added the moisture removal process of the filler because it is important to manage the moisture of the filler, which accounts for the largest proportion (60 to 70%) of the final epoxy resin formulation.
  • the present invention is a very useful invention that greatly improves the quality and reliability of the winding structure of a molded transformer due to the above-described effect, thereby increasing the durability.
  • Figure 2 is a crack foot caused by the temperature difference with the room in the process of taking out from the conventional curing furnace
  • FIG. 3 is a photograph showing a conventional case of shrinkage due to rapid curing.
  • FIG. 8 is a graph showing a curing process program of the conventional product and the product of the present invention.
  • the structure of the molded transformer winding to which the eco-friendly hybrid epoxy resin composition applied to the present invention is applied and the manufacturing method thereof are configured as shown in FIGS. 4 to 8 .
  • the present invention includes the steps of preparing a winding mold for mounting the mold on the winding machine after the mold cleaning state and counter check (S110); Then winding the conductor and insulating paper on the mold (S111); followed by drying the filler (S112); Thereafter, the step of blending an eco-friendly hybrid epoxy resin composition in which an epoxy base, a curing agent, and a filler are mixed (S113); Then, injecting the eco-friendly hybrid epoxy resin composition into the winding (S114); And thereafter, the step (S115) of hardening the windings injected with the eco-friendly hybrid epoxy resin composition with heat and curing them (S115).
  • the present invention includes a step (116) of cleaning the surface and applying a release agent after mashing the winding edges after the step of hardening with heat (116) ) may be further included, of course.
  • the present invention relates to a winding structure of a mold transformer 100 made of the manufacturing method of each step, and solves the occurrence of a curing deviation due to a sudden change in curing temperature, and solves problems caused by a high curing initial temperature and curing end temperature, , provides a structure of a molded transformer winding to which an eco-friendly hybrid epoxy resin composition is applied, characterized in that it removes moisture due to the implementation of the filler drying operation.
  • the epoxy subject applied to the present invention is mainly used as a bisphenol-based, bisphenol A or bisphenol F may be included.
  • the curing agent applied to the present invention may include a naphthalene-based.
  • the filler applied to the present invention may include lime powder or silica.
  • the present invention can be variously modified and can take various forms in applying the above-described components.
  • the present invention is to solve the occurrence of curing deviation due to a sudden change in curing temperature, to solve the problems caused by the high curing initial temperature and curing end temperature, and to remove moisture due to the filler drying operation.
  • FIG. 4 applied to the present invention is a flowchart showing a method of manufacturing a structure of a molded transformer winding to which an eco-friendly hybrid epoxy resin composition applied to the present invention is applied.
  • the present invention undergoes a step (S110) of preparing a winding mold for mounting the mold on the winding machine after the mold cleaning state and counter check.
  • the present invention goes through a step (S111) of winding the conductor and insulating paper on the mold.
  • the present invention goes through a step (S112) of drying the filler.
  • the present invention goes through a step (S114) of injecting the eco-friendly hybrid epoxy resin composition into the winding.
  • the present invention provides a method for manufacturing a winding structure of a molded transformer 100 to which an eco-friendly hybrid epoxy resin composition is applied through a step (S115) of hardening and curing the windings injected with the eco-friendly hybrid epoxy resin composition with heat.
  • the present invention may further include a step 116 of cleaning the surface and applying a release agent after the winding edge is mapped after the step of hardening with heat.
  • manufacture of a molded transformer winding structure to which an eco-friendly hybrid epoxy resin composition is applied characterized in that 15 to 25% by weight of the epoxy subject applied to the present invention, 10 to 20% by weight of the curing agent, and 60 to 70% by weight of the filler are included provide a way
  • the amount of the epoxy base is 15 wt% or less, the insulating properties are lowered, and when the amount of the epoxy base is 25 wt% or more, the amount of the epoxy base is preferably 15 to 25 wt% because the increase in man-hours and toxic substances increase due to the increase in curing time.
  • the curing agent when the amount of the curing agent is 10% by weight or less, the number of labor is increased due to the increase in curing time, and when the amount is 20% by weight or more, a shrinkage phenomenon occurs according to the rapid curing progress, so that the curing agent is preferably 10 to 20% by weight.
  • the filler content when the filler content is 60 wt% or less, mechanical strength is lowered, and when the filler content is 70 wt% or more, a shrinkage phenomenon occurs due to rapid curing due to an increase in viscosity, so that the filler is preferably 60 to 70 wt%.
  • the present invention has the following characteristics in the step of drying the filler.
  • the drying temperature of the present invention is 120 ⁇ 140 °C, and provides a method of manufacturing a molded transformer winding structure to which an eco-friendly hybrid epoxy resin composition is applied, characterized in that the drying time is 6 hours or more.
  • the drying temperature is 120 ° C or less, the drying performance is lowered due to the characteristics of hot air drying, and when the drying temperature is 140 ° C or more, the physical properties change beyond the heat resistance temperature of the filler, so the drying temperature is preferably 120 to 140 ° C.
  • the drying time is 6 hours or less, the drying time is preferably 6 hours or more because drying performance is deteriorated.
  • the step of hardening by heat of the present invention has the following characteristics.
  • the present invention is a mold transformer winding structure to which an eco-friendly hybrid epoxy resin composition is applied, characterized in that a 9-step curing process is performed so that a complete curing reaction can proceed from the corresponding temperature range to a thick place by providing a temperature maintenance section for each curing temperature. It provides a manufacturing method of
  • the 9-step curing process is as follows.
  • Step 1 is as follows.
  • the present invention is to preheat the air in the curing furnace to 65 ⁇ 75 °C in order to minimize thermal shock. At this time, when the temperature is 65 °C or less, the epoxy resin properties due to low temperature are reduced, and when it is 75 °C or more, preheating is not
  • the temperature is preferably 65 ⁇ 75 °C because the main curing proceeds rather than rapid curing occurs.
  • Step 2 is as follows.
  • the present invention is to preheat the temperature to 65 to 75 °C for 2 to 4 hours by pre-curing (product preheating), at this time, when the temperature is 65 °C or less, the epoxy resin properties due to low temperature decrease, and 75 °C or more
  • the temperature is preferably 65 to 75°C.
  • the product is not sufficiently preheated to cause a decrease in reactivity during main curing. ⁇ 4 hours is preferred.
  • Step 3 is as follows.
  • the present invention is to preheat the curing temperature to 75 ⁇ 85 °C in the first temperature raising step. At this time, if the temperature is 75 °C or less, the reactivity decrease occurs because it cannot reach the primary curing temperature, and if it is 85 °C or more Since the main curing proceeds rather than the initial curing reaction to cause rapid curing, the curing temperature is preferably 75 to 85°C.
  • the temperature rise time of the third step is 30 minutes to 1 hour and 30 minutes. At this time, when the temperature rise time is 30 minutes or less, a thermal shock occurs due to a sudden temperature change, and when 1 hour and 30 minutes have passed, the curing time is excessive. Since the unit price increases due to an increase in the entire process time of the furnace, the temperature rise time is preferably 30 minutes to 1 hour and 30 minutes.
  • Step 4 is as follows.
  • the present invention is to preheat the curing temperature to 75 ⁇ 85 °C by starting the reaction between the epoxy resin and the curing agent, which is the primary curing. , when the temperature is above 85°C, the curing temperature is preferably 75 to 85°C because the main curing proceeds rather than the initial curing reaction and rapid curing occurs.
  • the temperature holding time in step 4 is 3 to 5 hours. In this case, when the temperature holding time is 3 hours or less, the curing time is insufficient, and a decrease in the temporal reactivity of the epoxy resin occurs, and when it is 5 hours or more, the curing time is excessive. Since the unit price increases due to an increase in the total process time, the temperature holding time is preferably 3 to 5 hours.
  • Step 5 is as follows.
  • the present invention is a secondary temperature rise, and the curing temperature is preheated to 95 to 105 ° C. At this time, when the temperature is 95 ° C or less, the reactivity cannot be reached until the secondary curing temperature is lowered, and when it is 105 ° C or more Since rapid hardening of thin parts by high temperature occurs (stress accumulation), it is preferable to preheat the curing temperature to 95 ⁇ 105°C.
  • the temperature holding time of the five steps is 30 minutes to 1 hour and 30 minutes. At this time, when the temperature rise time is 30 minutes or less, a thermal shock occurs due to a sudden temperature change, and when 1 hour and 30 minutes have passed, the curing time is excessive. Since the unit price increases due to an increase in the entire process time of the furnace, the temperature rise time is preferably 30 minutes to 1 hour and 30 minutes.
  • Step 6 is as follows.
  • the present invention is to proceed with primary solidification (semi-solid state) to prevent agglomeration of fillers with a large specific gravity due to secondary curing, and the curing temperature is preheated to 95 ⁇ 105 °C, at this time the temperature is When the temperature is 95° C. or less, filler precipitation occurs due to a delay in the secondary curing rate, and when it is 105° C. or more, the curing temperature is preferably preheated to 95 to 105° C.
  • the temperature holding time in step 6 is preferably 2 to 4 hours.
  • the temperature rise time is less than 2 hours, the curing time is insufficient due to the lack of curing time, and the curing progress rate of the epoxy resin is lowered. Since the unit price increases due to an increase in the overall process time, the temperature holding time is preferably 2 to 4 hours.
  • Step 7 is as follows.
  • the secondary temperature rises and the curing temperature is preheated to 125 to 135 ° C.
  • the temperature is below 125 ° C, the reactivity cannot be reached until the tertiary curing temperature is lowered, and when it is 135 ° C or more, Since rapid hardening of the thin part occurs (stress accumulation) by high temperature, it is preferable to preheat the curing temperature to 125 to 135°C.
  • the temperature holding time in step 7 is 1 to 3 hours. In this case, when the temperature holding time is 1 hour or less, a thermal shock occurs due to a sudden temperature change. Since the unit price increases by
  • Step 8 is as follows.
  • the present invention is tertiary curing and the entire solidification proceeds (completely solid state), and the curing temperature is preheated to 125 to 135 ° C. Stress is accumulated at the interface due to the occurrence of curing deviation, and when it is 135° C. or higher, the curing temperature is preferably preheated to 125 to 135° C.
  • the temperature holding time in step 8 is preferably 4 to 6 hours.
  • the temperature holding time is 4 hours or less, the curing reactivity of the epoxy resin is lowered due to insufficient curing time, and when it is 6 hours or more, the curing time is excessive. Since the unit price increases due to an increase in the overall process time, the temperature holding time is preferably 4 to 6 hours.
  • Step 9 is as follows.
  • the curing temperature is preheated to 95 ⁇ 105 ° C.
  • the temperature is 95 ° C or less, thermal shock of the epoxy resin due to low temperature occurs, and when it is 105 ° C or more, the temperature difference with the outside air is large. It is preferable to preheat the curing temperature to 95 ⁇ 105 °C because thermal shock occurs when the curing furnace is taken out from the curing furnace into the room after curing is completed.
  • the temperature drop time in step 9 is preferably 1 to 3 hours. In this case, when the temperature drop time is less than 1 hour, a thermal shock occurs due to a sudden temperature change. Since the unit price increases by
  • the common temperature rise time of the present invention is as follows.
  • the failure rate of the equipment rises due to rapid temperature change control, and when the temperature rise time is longer than the reference value, hardening occurs during the temperature rise, so that the stress according to the temperature change in the product is reduced. It may accumulate and cause cracks.
  • FIG. 5 of the present invention is a photograph showing the entire molded transformer to which the eco-friendly hybrid epoxy resin composition is applied
  • FIG. 6 is a photograph showing the main part of the molded transformer to which the eco-friendly hybrid epoxy resin composition applied to the present invention is applied
  • FIG. This is a photograph showing the plane of a molded transformer to which the eco-friendly hybrid epoxy resin composition applied to the invention is applied, and provides the effect that there is no crack generation part and no shrinkage part as in the prior art.
  • FIG. 8 is a graph showing the curing process program of the conventional product and the product of the present invention, at 80° C. (holding time: 4 hours) at which initial curing starts and 130° C. (holding time: 5 hours) at which main curing starts. The holding time was increased compared to existing products and other temperature sections so that complete curing could proceed.
  • the present invention solves the occurrence of a curing deviation due to a sudden change in curing temperature, solves the problems caused by the high curing initial temperature and curing end temperature, and enables the removal of moisture due to the filler drying operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulating Of Coils (AREA)

Abstract

본 발명은 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조 및 이의 제조방법에 관한 것이다. 본 발명은 이를 위해 금형 세척상태 및 카운터 체크 후 금형을 권선기에 장착하는 권선 금형을 준비하는 단계(S110); 이후 금형에 도체 및 절연지를 감는 단계(S111); 이어서 필러를 건조하는 단계(S112); 이후 에폭시주제와 경화제 및 필러를 혼합 한 친환경 하이브리드 에폭시 수지 조성물을 배합하는 단계(S113); 이어서 친환경 하이브리드 에폭시 수지 조성물을 권선에 주입하는 단계(S114); 및 이후 친환경 하이브리드 에폭시 수지 조성물을 주입한 권선을 열로 굳혀 경화시키는 단계(S115);가 포함됨을 특징으로 하는 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선 구조의 제조방법을 제공한다.

Description

친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조 및 이의 제조방법
본 발명의 실시예는 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조 및 이의 제조방법에 관한 것으로, 보다 상세하게는 급격한 경화 온도 변화로 인한 경화 편차 발생을 해결하고, 높은 경화 초기 온도 및 경화 종료 온도로 인한 문제점을 해결하고, 필러 건조 작업 실시로 인한 수분을 제거하고, 이로 인해 몰드 변압기 권선 구조의 품질과 신뢰성을 대록 향상시켜 내구 수명을 증대할 수 있도록 한 것이다.
주지하다시피 몰드 변압기(molded transformer, castcoil dry transformer)는 전기·전자·수지 속에 매입하여 굳힌 변압기로, 습기나 진동에 의한 변압기의 열화나 고장 발생을 방지하는 것이 목적이며, 폴리에스테르 따위의 주형 수지를 사용한다.
특히 몰드 변압기는 권선 부분을 에폭시수지로 굳혀 절연한 건식 변압기로, 바니스함침 타입의 H종 건식변압기에 비하여 내습성이 있다. 절연방식으로는 철형에 의한 주형 타입, 철형이 없는 프리프레그 타입이 있다.
상기한 종래 몰드 변압기는 급격한 경화 온도 변화로 인한 경화 편차 발생을 해결하지 못하고, 높은 경화 초기 온도 및 경화 종료 온도로 인한 문제점을 해결하지 못하고, 경화제 변경에 따른 수분을 완전히 제거하지 못하는 커다란 문제점이 발생 되었다.
즉, 상기한 종래 기술의 문제점을 구체적으로 설명하면 다음과 같다.
첫째, 종래 기술의 경화 공정은 급격한 경화온도 변화로 인해 권선의 얇은곳과 두꺼운 곳의 경계면에 응력이 누적되어 향후 시간이 경과함에 따라 도 1 과 같이 크랙이 발생하게 되는 커다란 문제점이 발생 되었다.
둘째, 종래 기술의 경화 공정은 높은 경화 초기 및 종료 온도로 인해 이상 촉진 반응 및 도 2 와 같이 크랙이 진행될 수 있고, 급격한 경화 온도 변화 사이클로 인해 온도 단계별 건조 시간이 부족하여 수분이 제대로 빠지지 못해 변압기 절연 성능 저하가 발생 되었다.
셋째, 종래 기술은 짧은 시간에 많은량을 반응 시키기 위해 반응성이 높은 에피클로로히드린계 경화제를 사용하였다. 이는 일부 주제 배합량이 작을 때 속경화로 인해 제품에 도 3 과 같이 수축 현상(줄무늬 모양)을 야기 하였고, 속경화로 인해 수분이 충분히 배출되지 못해 절연 성능 저하가 발생 하였다.
넷째, 종래 기술은 필러의 건조를 별도로 실시하지 않아 우기에 필러에 수분이 많이 함유되어 있는 경우 최종 배합품에도 수분이 다량 존재하여 절연 성능의 저하가 발생하였다.
상기한 문제점을 해결하기 위해 종래에는 아래와 같은 선행기술문헌들이 개발되었으나, 여전히 상기한 종래 기술의 문제점을 일거에 해결하지 못하는 커다란 문제점이 발생 되었다.
본 발명은 상기와 같은 종래 기술의 제반 문제점을 해소하기 위하여 안출한 것으로, 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기가 구비됨을 제1목적으로 한 것이고, 상기한 기술적 구성에 의한 본 발명의 제2목적은 급격한 경화 온도 변화로 인한 경화 편차 발생을 해결하고, 높은 경화 초기 온도 및 경화 종료 온도로 인한 문제점을 해결하고, 필러 건조 작업 실시로 인한 수분을 제거할 수 있도록 한 것이고, 특히 이를 위해 제3목적은 경화 온도별(예: 70℃, 80℃, 100℃, 130℃ 등)로 온도 유지 구간을 두어서 해당 온도 범위에서 두꺼운 곳까지 완전 경화 반응이 진행될 수 있도록 9단계 경화 공정을 실시한 것이고, 제4목적은 초기 경화가 시작되는 80℃(유지시간 : 4시간)와 본 경화가 시작되는 130℃(유지시간 : 5시간)의 유지시간을 기존품 및 타 온도구간 대비 증가시켜 완전 경화가 진행될 수 있도록 한 것이고, 제5목적은 경화 초기 온도를 기존 대비 낮추고 일정시간 유지시키는 건조 및 예비 반응 단계를 추가하여 분자간 이상 촉진 반응 및 수분을 최소화 시키는 초기 안정화 구간을 추가한 것이고, 제6목적은 경화 종료 후 권선을 경화로에서 꺼내는 과정에서 외기와 접촉시 경화로 온도와 실내 온도와의 차이에 의한 열충격으로 크랙이 발생되는 현상을 해결하기 위해 경화 종료 온도도 종래 기술에 대비 낮추었고, 제7목적은 반응성은 낮고 외부 요인의 영향을 적게 받으며 주제에 포함되어 있는 수분 및 유해물질을 흡수하여 경화시 온도가 올라가면 바로 기체로 휘발되는 성질로 인해 수분 및 유해물질을 다시 외부로 배출하는 나프탈렌계 경화제를 사용하여 속경화로 인한 수축 현상 및 수분에 의한 절연 성능 저하 방지 및 유해물질을 저감하였고, 제8목적은 에폭시 수지 최종 배합품의 가장 많은 비율(60~70%)을 차지하는 필러의 수분 관리는 중요하기 때문에 필러의 수분 제거 공정을 추가하였고, 제9목적은 이로 인해 몰드 변압기 권선 구조의 품질과 신뢰성을 대폭 향상시켜 내구 수명이 증대될 수 있도록 한 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조 및 이의 제조방법을 제공한다.
이러한 목적 달성을 위하여 본 발명은 금형 세척상태 및 카운터 체크 후 금형을 권선기에 장착하는 권선 금형을 준비하는 단계(S110); 이후 금형에 도체 및 절연지를 감는 단계(S111); 이어서 필러를 건조하는 단계(S112); 이후 에폭시주제와 경화제 및 필러를 혼합 한 친환경 하이브리드 에폭시 수지 조성물을 배합하는 단계(S113); 이어서 친환경 하이브리드 에폭시 수지 조성물을 권선에 주입하는 단계(S114); 및 이후 친환경 하이브리드 에폭시 수지 조성물을 주입한 권선을 열로 굳혀 경화시키는 단계(S115);가 포함되고, 아울러 본 발명은 상기 열로 굳히는 단계 이후 권선 모서리를 사상한 후 표면을 청소하고 이형제를 바르는 단계(116)가 더 포함될 수 있음은 물론이다. 더하여 본 발명은 상기 각 단계의 제조방법으로 이루어진 몰드 변압기 권선 구조에 관한 것으로, 급격한 경화 온도 변화로 인한 경화 편차 발생을 해결하고, 높은 경화 초기 온도 및 경화 종료 온도로 인한 문제점을 해결하고, 필러 건조 작업 실시로 인한 수분을 제거함을 특징으로 하는 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조를 제공한다.
또한 본 발명은 금형 세척상태 및 카운터 체크 후 금형을 권선기에 장착하는 권선 금형을 준비하는 단계(S110); 이후 금형에 도체 및 절연지를 감는 단계(S111); 이어서 필러를 건조하는 단계(S112); 이후 에폭시주제와 경화제 및 필러를 혼합 한 친환경 하이브리드 에폭시 수지 조성물을 배합하는 단계(S113); 이어서 친환경 하이브리드 에폭시 수지 조성물을 권선에 주입하는 단계(S114); 및 이후 친환경 하이브리드 에폭시 수지 조성물을 주입한 권선을 열로 굳혀 경화시키는 단계(S115);가 포함됨을 특징으로 하는 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선 구조의 제조방법을 제공한다.
상기에서 상세히 살펴본 바와 같이 본 발명은 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기가 구비되도록 한 것이다.
상기한 기술적 구성에 의한 본 발명은 급격한 경화 온도 변화로 인한 경화 편차 발생을 해결하고, 높은 경화 초기 온도 및 경화 종료 온도로 인한 문제점을 해결하고, 필러 건조 작업 실시로 인한 수분을 제거할 수 있도록 한 것이다.
특히 이를 위해 발명은 경화 온도별(예: 70℃, 80℃, 100℃, 130℃ 등)로 온도 유지 구간을 두어서 해당 온도 범위에서 두꺼운 곳까지 완전 경화 반응이 진행될 수 있도록 9단계 경화 공정을 실시한 것이다.
그리고 본 발명은 초기 경화가 시작되는 80℃(유지시간 : 4시간)와 본 경화가 시작되는 130℃(유지시간 : 5시간)의 유지시간을 기존품 및 타 온도구간 대비 증가시켜 완전 경화가 진행될 수 있도록 한 것이다.
또한 본 발명은 경화 초기 온도를 기존 대비 낮추고 일정시간 유지시키는 건조 및 예비 반응 단계를 추가하여 분자간 이상 촉진 반응 및 수분을 최소화 시키는 초기 안정화 구간을 추가한 것이다.
그리고 본 발명은 경화 종료 후 권선을 경화로에서 꺼내는 과정에서 외기와 접촉시 경화로 온도와 실내 온도와의 차이에 의한 열충격으로 크랙이 발생되는 현상을 해결하기 위해 경화 종료 온도도 종래 기술에 대비 낮추었다.
아울러 본 발명은 반응성은 낮고 외부 요인의 영향을 적게 받으며 주제에 포함되어 있는 수분 및 유해물질을 흡수하여 경화시 온도가 올라가면 바로 기체로 휘발되는 성질로 인해 수분 및 유해물질을 다시 외부로 배출하는 나프탈렌계 경화제를 사용하여 속경화로 인한 수축 현상 및 수분에 의한 절연 성능 저하 방지 및 유해물질을 저감하였다.
더하여 본 발명은 에폭시 수지 최종 배합품의 가장 많은 비율(60~70%)을 차지하는 필러의 수분 관리는 중요하기 때문에 필러의 수분 제거 공정을 추가하였다.
본 발명은 상기한 효과로 인해 몰드 변압기 권선 구조의 품질과 신뢰성을 대폭 향상시켜 내구 수명을 증대한 매우 유용한 발명인 것이다.
도 1 은 종래 경화 프로그램 적용시 얇은 곳과 두꺼운 곳의 경계면에 크랙
발생 사례를 보인 사진.
도 2 는 종래 경화로에서 꺼내는 과정에서 실내와의 온도차에 의한 크랙 발
생 사례를 보인 사진.
도 3 은 종래 속경화로 인한 수축 현상 발생 사례를 보인 사진.
도 4 는 본 발명에 적용된 친환경 하이브리드 에폭시 수지 조성물을 적용한
몰드 변압기 권선의 구조의 제조방법을 보인 흐름도.
도 5 는 본 발명에 적용된 친환경 하이브리드 에폭시 수지 조성물을 적용한
몰드 변압기의 전체를 보인 사진.
도 6 은 본 발명에 적용된 친환경 하이브리드 에폭시 수지 조성물을 적용한
몰드 변압기의 요부를 보인 사진.
도 7 은 본 발명에 적용된 친환경 하이브리드 에폭시 수지 조성물을 적용한
몰드 변압기의 평면을 보인 사진.
도 8 은 종래 제품과 본 발명 제품의 경화공정 프로그램을 보인 그래프.
본 발명에 적용된 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조 및 이의 제조방법은 도 4 내지 도 8 에 도시된 바와 같이 구성되는 것이다.
하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 설정된 용어들로서 이는 생산자의 의도 또는 관례에 따라 달라질 수 있으므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
또한 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도면에 도시된 바에 한정되지 않는다.
먼저, 본 발명은 금형 세척상태 및 카운터 체크 후 금형을 권선기에 장착하는 권선 금형을 준비하는 단계(S110); 이후 금형에 도체 및 절연지를 감는 단계(S111); 이어서 필러를 건조하는 단계(S112); 이후 에폭시주제와 경화제 및 필러를 혼합 한 친환경 하이브리드 에폭시 수지 조성물을 배합하는 단계(S113); 이어서 친환경 하이브리드 에폭시 수지 조성물을 권선에 주입하는 단계(S114); 및 이후 친환경 하이브리드 에폭시 수지 조성물을 주입한 권선을 열로 굳혀 경화시키는 단계(S115);가 포함되고, 아울러 본 발명은 상기 열로 굳히는 단계 이후 권선 모서리를 사상한 후 표면을 청소하고 이형제를 바르는 단계(116)가 더 포함될 수 있음은 물론이다. 더하여 본 발명은 상기 각 단계의 제조방법으로 이루어진 몰드 변압기(100) 권선 구조에 관한 것으로, 급격한 경화 온도 변화로 인한 경화 편차 발생을 해결하고, 높은 경화 초기 온도 및 경화 종료 온도로 인한 문제점을 해결하고, 필러 건조 작업 실시로 인한 수분을 제거함을 특징으로 하는 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조를 제공한다.
본 발명에 적용된 상기 에폭시주제는 비스페놀계가 사용되는 것으로 주로, 비스페놀 A 또는 비스페놀 F가 포함될 수 있다.
그리고 본 발명에 적용된 상기 경화제는 나프탈렌계가 포함될 수 있다.
또한 본 발명에 적용된 상기 필러는 석회가루 또는 실리카가 포함될 수 있다.
한편 본 발명은 상기의 구성부를 적용함에 있어 다양하게 변형될 수 있고 여러 가지 형태를 취할 수 있다.
그리고 본 발명은 상기의 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.
상기와 같이 구성된 본 발명 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조 및 이의 제조방법의 작용효과를 설명하면 다음과 같다.
우선, 본 발명은 급격한 경화 온도 변화로 인한 경화 편차 발생을 해결하고, 높은 경화 초기 온도 및 경화 종료 온도로 인한 문제점을 해결하고, 필러 건조 작업 실시로 인한 수분을 제거하는 것이다.
이를 위해 본 발명에 적용된 도 4 는 본 발명에 적용된 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조의 제조방법을 보인 흐름도로 다음과 같은 각 단계를 거치게 된다.
즉, 본 발명은 금형 세척상태 및 카운터 체크 후 금형을 권선기에 장착하는 권선 금형을 준비하는 단계(S110)를 거친다.
이후 본 발명은 금형에 도체 및 절연지를 감는 단계(S111)를 거친다.
이어서 본 발명은 필러를 건조하는 단계(S112)를 거친다.
이후 본 발명은 에폭시주제와 경화제 및 필러를 혼합 한 친환경 하이브리드 에폭시 수지 조성물을 배합하는 단계(S113)를 거친다.
이어서 본 발명은 친환경 하이브리드 에폭시 수지 조성물을 권선에 주입하는 단계(S114)를 거친다.
이후 본 발명은 친환경 하이브리드 에폭시 수지 조성물을 주입한 권선을 열로 굳혀 경화시키는 단계(S115)를 거쳐 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기(100) 권선 구조의 제조방법을 제공한다.
본 발명은 상기 열로 굳히는 단계 이후 권선 모서리를 사상한 후 표면을 청소하고 이형제를 바르는 단계(116)가 더 포함될 수 있음은 물론이다.
한편, 본 발명에 적용된 상기 에폭시주제는 15~25 중량%, 경화제는 10~20 중량%, 필러는 60~70 중량%가 포함됨을 특징으로 하는 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선 구조의 제조방법을 제공한다.
이때 상기 에폭시주제가 15 중량% 이하일 경우 절연특성이 저하되고, 25 중량% 이상일 경우 경화시간 증대에 따른 공수 증가 및 유독물질이 증가하기 때문에 상기 에폭시주제는 15~25 중량%가 바람직하다.
또한 상기 경화제가 10 중량% 이하일 경우 경화시간 증대에 따른 공수가 증가하고, 20 중량% 이상일 경우 속경화 진행에 따른 수축 현상이 발생하기 때문에 상기 경화제는 10~20 중량%가 바람직하다.
그리고 상기 필러가 60 중량% 이하일 경우 기계적 강도가 저하되고, 70 중량% 이상일 경우 점도 증가에 따른 속경화 진행으로 수축 현상이 발생하기 때문에 상기 필러는 60~70 중량%가 바람직하다.
또한 본 발명은 상기 필러를 건조하는 단계에서 다음의 특징을 갖게 된다.
즉, 본 발명의 건조 온도는 120~140℃이고, 건조 시간은 6시간 이상임을 특징으로 하는 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선 구조의 제조방법을 제공한다.
이때 상기 건조 온도가 120℃ 이하일 경우에는 열풍 건조의 특성상 건조 성능이 저하되고, 건조 온도가 140℃ 이상일 경우에는 필러의 내열 온도 초과로 물성이 변하기 때문에 상기 건조 온도는 120~140℃가 바람직하다.
그리고 상기 건조 시간이 6시간 이하일 경우에는 건조 성능이 저하되기 때문에 상기 건조 시간은 6시간 이상이 바람직하다.
또 한편, 본 발명의 상기 열로 굳혀 경화시키는 단계는 다음의 특징을 갖게 된다.
즉, 본 발명은 경화 온도별로 온도 유지 구간을 두어서 해당 온도 범위에서 두꺼운 곳까지 완전 경화 반응이 진행될 수 있도록 9단계 경화 공정을 실시함을 특징으로 하는 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선 구조의 제조방법을 제공한다.
이때 상기 9단계 경화 공정은 다음과 같다.
1단계는 다음과 같다.
즉, 본 발명은 열충격을 최소화하기 위해 경화로내 공기를 65~75℃로 예열하는 것으로, 이때 상기 온도가 65℃ 이하일 경우에는 저온에 의한 에폭시 수지 특성이 저하되고, 75℃ 이상일 경우에는 예열이 아닌 본 경화가 진행되어 속경화가 발생하기 때문에 상기 온도는 65~75℃가 바람직하다.
2단계는 다음과 같다.
즉, 본 발명은 사전 경화(제품 예열)로 2~4시간 동안 온도를 65~75℃로 예열하는 것으로, 이때 상기 온도가 65℃ 이하일 경우에는 저온에 의한 에폭시 수지 특성이 저하되고, 75℃ 이상일 경우에는 사전 경화가 아닌 본 경화가 진행되어 속경화가 발생하기 때문에 상기 온도는 65~75℃가 바람직하다.
그리고 상기 경화 시간이 2시간 미만일 경우 제품이 충분히 예열이 되지 못해 본 경화시 반응성 저하가 발생되고, 4시간 초과시에는 사전 경화 시간대로 전체 공정 시간 증가에 의한 단가 상승이 발생하기 때문에 상기 경화 시간은 2~4시간이 바람직하다.
3단계는 다음과 같다.
즉, 본 발명은 1차온도 상승 단계로 경화온도를 75~85℃로 예열하는 것으로, 이때 상기 온도가 75℃ 이하일 경우에는 1차 경화온도까지 도달하지 못해 반응성 저하가 발생하고, 85℃ 이상일 경우에는 경화 초기 반응이 아닌 본 경화가 진행되어 속경화가 발생하기 때문에 상기 경화온도는 75~85℃가 바람직하다.
그리고 상기 3단계의 온도상승 시간은 30분~1시간30분이 바람직한 것으로, 이때 온도 상승 시간이 30분 이하일 경우에는 급격한 온도 변화에 의한 열충격이 발생하고, 1시간30분 경과할 경우에는 경화 시간 과대로 전체 공정 시간 증가에 의한 단가 상승이 발생하기 때문에 상기 온도상승 시간은 30분~1시간30분이 바람직하다.
4단계는 다음과 같다.
즉, 본 발명은 1차 경화인 에폭시 수지와 경화제 반응 시작으로 경화온도를 75~85℃로 예열하는 것으로, 이때 상기 온도가 75℃ 이하일 경우에는 1차 경화 온도까지 도달하지 못해 반응성 저하가 발생하고, 85℃ 이상일 경우에는 경화초기 반응이 아닌 본 경화가 진행되어 속경화가 발생하기 때문에 상기 경화 온도는 75~85℃가 바람직하다.
그리고 상기 4단계의 온도유지 시간은 3~5시간이 바람직한 것으로, 이때 온도유지 시간이 3시간 이하일 경우에는 경화시간 부족으로 에폭시 수지의 경와 반응성 저하가 발생하고, 5시간 이상일 경우에는 경화시간 과대로 전체 공정 시간 증가에 의한 단가 상승이 발생하기 때문에 상기 온도유지 시간은 3~5시간이 바람직하다.
5단계는 다음과 같다.
즉, 본 발명은 2차 온도 상승이고, 경화온도는 95~105℃로 예열하는 것으로, 이때 상기 온도가 95℃ 이하일 경우에는 2차 경화온도까지 도달하지 못해 반응성 저하가 발생하고, 105℃ 이상일 경우에는 고온에 의한 얇은 부분의 속경화가 발생(응력 누적)하기 때문에 상기 경화온도는 95~105℃로 예열하는 것이 바람직하다.
그리고 상기 5간계의 온도유지 시간은 30분~1시간30분이 바람직한 것으로, 이때 온도 상승 시간이 30분 이하일 경우에는 급격한 온도 변화에 의한 열충격이 발생하고, 1시간30분 경과할 경우에는 경화 시간 과대로 전체 공정 시간 증가에 의한 단가 상승이 발생하기 때문에 상기 온도상승 시간은 30분~1시간30분이 바람직하다.
6단계는 다음과 같다.
즉, 본 발명은 2차 경화로 비중이 큰 필러가 하부로 침전되어 뭉치는 것을 막기 위해 1차 고형화 진행(반고체 상태)하는 것이고, 경화온도는 95~105℃로 예열하는 것으로, 이때 상기 온도가 95℃ 이하일 경우에는 2차 경화 속도 지연에 따른 필러 침전이 발생하고, 105℃ 이상일 경우에는 고온에 의한 얇은 부분의 속경화가 발생하기 때문에 상기 경화온도는 95~105℃로 예열하는 것이 바람직하다.
그리고 상기 6단계의 온도유지 시간은 2~4시간이 바람직한 것으로, 이때 온도 상승 시간이 2시간 미만일 경우에는 경화시간 부족으로 에폭시 수지의 경화 진행 속도가 저하되고, 4시간 이상일 경우에는 경화시간 과대로 전체 공정시간 증가에 의한 단가 상승이 발생하기 때문에 상기 온도유지 시간은 2~4시간이 바람직하다.
7단계는 다음과 같다.
즉, 본 발명은 2차온도 상승이며 경화온도는 125~135℃로 예열하는 것으로, 이때 상기 온도가 125℃ 이하일 경우에는 3차 경화 온도까지 도달하지 못해 반응성 저하가 발생하고, 135℃ 이상일 경우에는 고온에 의해 얇은 부분의 속경화가 발생(응력 누적)하기 때문에 상기 경화온도는 125~135℃로 예열하는 것이 바람직하다.
그리고 상기 7단계의 온도유지 시간은 1~3시간이 바람직한 것으로, 이때 온도유지 시간이 1시간 이하일 경우에는 급격한 온도 변화에 의한 열충격이 발생하고, 3시간 이상일 경우에는 경화시간 과대로 전체 공정 시간 증가에 의한 단가 상승이 발생하기 때문에 상기 온도유지 시간은 1~3시간이 바람직하다.
8단계는 다음과 같다.
즉, 본 발명은 3차 경화이고 전체 고형화 진행(완전 고체 상태)이며, 경화온도는 125~135℃로 예열하는 것으로, 이때 상기 온도가 125℃ 이하일 경우에는 3차 경화 속도 지연에 따라 두께에 따른 경화 편차 발생으로 경계면에 응력이 누적되고, 135℃ 이상일 경우에는 고온에 의해 얇은 부분의 속경화가 발생(응력 누적)하기 때문에 상기 경화온도는 125~135℃로 예열하는 것이 바람직하다.
그리고 상기 8단계의 온도유지 시간은 4~6시간이 바람직한 것으로, 이때 온도유지 시간이 4시간 이하일 경우에는 경화시간 부족으로 에폭시 수지의 경화 반응성 저하가 발생되고, 6시간 이상일 경우에는 경화시간 과대로 전체 공정 시간 증가에 의한 단가 상승이 발생하기 때문에 상기 온도유지 시간은 4~6시간이 바람직하다.
9단계는 다음과 같다.
즉, 본 발명은 경화 종료이고 경화온도는 95~105℃로 예열하는 것으로, 이때 상기 온도가 95℃ 이하일 경우에는 저온에 의한 에폭시 수지 열충격이 발생하고, 105℃ 이상일 경우에는 외기와의 온도차가 커서 경화 완료 후 경화로에서 실내로 꺼낼시 열충격이 발생하기 때문에 상기 경화온도는 95~105℃로 예열하는 것이 바람직하다.
상기 9단계의 온도하강 시간은 1~3시간이 바람직한 것으로, 이때 온도하가 시간이 1시간 이하일 경우에는 급격한 온도 변화에 의한 열충격이 발생하고, 3시간 이상일 경우에는 경화시간 과대로 전체 공정 시간 증가에 의한 단가 상승이 발생하기 때문에 상기 온도하강 시간은 1~3시간이 바람직하다.
한편, 본 발명의 상기 공통된 온도 상승 시간은 다음과 같다.
즉, 본 발명은 온도 상승시간이 기준치 보다 작을 경우 급속한 온도 변화 컨트롤로 인한 설비의 고장률 상승이 나타나고, 온도 상승 시간이 기준치 보다 많을 경우 온도 상승 진행중에 경화가 일어남으로 제품에 온도 변화에 따른 응력이 누적되어 크랙이 발생될 수 있다.
따라서 본 발명의 도 5 는 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기의 전체를 보인 사진이고, 도 6 은 본 발명에 적용된 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기의 요부를 보인 사진이고, 도 7 은 본 발명에 적용된 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기의 평면을 보인 사진으로, 종래와 같이 크랙 발생부가 없고, 수축부도 발생하지 않게 되는 효과를 제공하게 된다.
마지막으로 도 8 은 종래 제품과 본 발명 제품의 경화공정 프로그램을 보인 그래프로, 초기 경화가 시작되는 80℃(유지시간 : 4시간)와 본 경화가 시작되는 130℃(유지시간 : 5시간)의 유지시간을 기존품 및 타 온도구간 대비 증가시켜 완전 경화가 진행될 수 있도록 하였다.
상기한 결과 본 발명은 급격한 경화 온도 변화로 인한 경화 편차 발생을 해결하고, 높은 경화 초기 온도 및 경화 종료 온도로 인한 문제점을 해결하고, 필러 건조 작업 실시로 인한 수분을 제거할 수 있도록 하였다.

Claims (5)

  1. 금형 세척상태 및 카운터 체크 후 금형을 권선기에 장착하는 권선 금형을 준비하는 단계(S110);
    이후 금형에 도체 및 절연지를 감는 단계(S111);
    이어서 필러를 건조하는 단계(S112);
    이후 에폭시주제와 경화제 및 필러를 혼합 한 친환경 하이브리드 에폭시 수지 조성물을 배합하는 단계(S113);
    이어서 친환경 하이브리드 에폭시 수지 조성물을 권선에 주입하는 단계(S114); 및
    이후 친환경 하이브리드 에폭시 수지 조성물을 주입한 권선을 열로 굳혀 경화시키는 단계(S115);가 포함되되,
    상기 열로 굳혀 경화시키는 단계는, 경화 온도별로 온도 유지 구간을 두어서 해당 온도 범위에서 두꺼운 곳까지 완전 경화 반응이 진행될 수 있도록 9단계 경화 공정을 실시함을 특징으로 하는 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기(100) 권선 구조의 제조방법.
  2. 청구항 1 에 있어서,
    상기 에폭시주제는 15~25 중량%, 경화제는 10~20 중량%, 필러는 60~70 중량%가 포함됨을 특징으로 하는 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선 구조의 제조방법.
  3. 청구항 1 에 있어서,
    상기 필러를 건조하는 단계에서,
    건조 온도는 120~140℃이고, 건조 시간은 6시간 이상임을 특징으로 하는 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선 구조의 제조방법.
  4. 청구항 1 에 있어서,
    상기 열로 굳혀 경화시키는 단계 이후 권선 모서리를 사상한 후 표면을 청소하고 이형제를 바르는 단계가 더 포함됨을 특징으로 하는 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선 구조의 제조방법.
  5. 청구항 1 의 각 단계의 제조방법으로 이루어진 몰드 변압기(100) 권선 구조에 관한 것으로,
    급격한 경화 온도 변화로 인한 경화 편차 발생을 해결하고, 높은 경화 초기 온도 및 경화 종료 온도로 인한 문제점을 해결하고, 필러 건조 작업 실시로 인한 수분을 제거함을 특징으로 하는 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조.
PCT/KR2021/002982 2020-01-29 2021-03-10 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조 및 이의 제조방법 WO2021154062A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200010649A KR102100495B1 (ko) 2020-01-29 2020-01-29 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조 및 이의 제조방법
KR10-2020-0010649 2020-01-29

Publications (1)

Publication Number Publication Date
WO2021154062A1 true WO2021154062A1 (ko) 2021-08-05

Family

ID=70914987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002982 WO2021154062A1 (ko) 2020-01-29 2021-03-10 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR102100495B1 (ko)
WO (1) WO2021154062A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102100495B1 (ko) * 2020-01-29 2020-05-26 제룡전기 주식회사 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조 및 이의 제조방법
KR20230139983A (ko) * 2022-03-29 2023-10-06 엘에스일렉트릭(주) 몰드 변압기용 금형 및 이를 이용한 몰드 변압기의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243236A (ja) * 2002-02-15 2003-08-29 Kyocera Chemical Corp 高圧トランスおよびその製造方法
KR20100121062A (ko) * 2009-05-08 2010-11-17 동우전기 주식회사 부분방전 검출용 센서를 내장한 고전압 옥외용 에폭시수지 몰드형 계기용변압기
JP2018166164A (ja) * 2017-03-28 2018-10-25 株式会社日立産機システム モールド変圧器
KR20190064787A (ko) * 2017-12-01 2019-06-11 엘에스산전 주식회사 에폭시 수지 조성물 및 이를 포함하는 변압기
KR102008964B1 (ko) * 2019-03-04 2019-10-23 제룡전기 주식회사 몰드 변압기용 친환경 하이브리드수지 조성물 및 그 제조방법
KR102100495B1 (ko) * 2020-01-29 2020-05-26 제룡전기 주식회사 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조 및 이의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7398589B2 (en) 2003-06-27 2008-07-15 Abb Technology Ag Method for manufacturing a transformer winding
JP6101122B2 (ja) * 2013-03-15 2017-03-22 京セラ株式会社 モールドトランス用エポキシ樹脂組成物、モールドトランスおよびモールドトランスの製造方法
JP2016201460A (ja) * 2015-04-10 2016-12-01 株式会社日立産機システム 劣化診断機能を有するモールド機器
KR20160121966A (ko) 2015-04-13 2016-10-21 엘에스산전 주식회사 변압기의 권선 절연 구조
KR101964569B1 (ko) 2018-12-03 2019-04-01 이주엽 충격분산성 및 냉각효율이 향상된 코어보호체를 구비한 코어변압기 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243236A (ja) * 2002-02-15 2003-08-29 Kyocera Chemical Corp 高圧トランスおよびその製造方法
KR20100121062A (ko) * 2009-05-08 2010-11-17 동우전기 주식회사 부분방전 검출용 센서를 내장한 고전압 옥외용 에폭시수지 몰드형 계기용변압기
JP2018166164A (ja) * 2017-03-28 2018-10-25 株式会社日立産機システム モールド変圧器
KR20190064787A (ko) * 2017-12-01 2019-06-11 엘에스산전 주식회사 에폭시 수지 조성물 및 이를 포함하는 변압기
KR102008964B1 (ko) * 2019-03-04 2019-10-23 제룡전기 주식회사 몰드 변압기용 친환경 하이브리드수지 조성물 및 그 제조방법
KR102100495B1 (ko) * 2020-01-29 2020-05-26 제룡전기 주식회사 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조 및 이의 제조방법

Also Published As

Publication number Publication date
KR102100495B1 (ko) 2020-05-26

Similar Documents

Publication Publication Date Title
WO2021154062A1 (ko) 친환경 하이브리드 에폭시 수지 조성물을 적용한 몰드 변압기 권선의 구조 및 이의 제조방법
JPS6311780B2 (ko)
US4514588A (en) Encapsulated electronic components and encapsulation compositions
CN110769527B (zh) 一种有机高温电热复合膜及制备方法
CN112679961A (zh) 一种高强度阻燃电缆专用料及其制备方法
CN105440599A (zh) 一种高效复合pbt导散热材料及其制备方法和应用
CN109265791B (zh) 一种高压直流电缆绝缘材料及其制备方法
KR102279438B1 (ko) 에폭시 수지 조성물 및 이를 포함하는 변압기
WO2013162232A1 (ko) 에폭시몰딩컴파운드용 자기소화성 에폭시 수지 및 그 제법, 에폭시몰딩컴파운드용 에폭시 수지 조성물
CN105112005A (zh) 高强度阻燃导热缩合型电源密封胶及其制备方法
WO2021015446A1 (ko) 에폭시 수지 조성물
CN101722589B (zh) 利用半导电橡胶对真空浇注及apg工艺中嵌件进行表面处理的方法
CN111056772A (zh) 一种高强度水泥电阻灌封材料及其加工工艺
JPS6069129A (ja) エポキシ樹脂組成物
WO2014073753A1 (ko) 입자 강화 셀룰러 폼 및 그 제조방법
CN115662677B (zh) 一种陶瓷化隔离剂及其制备方法和一种陶瓷化高温耐火云母带
CN115742160A (zh) 一种混合绝缘子的瓷件表面包覆硅橡胶的方法
JP2857444B2 (ja) 封止用樹脂組成物および半導体封止装置
JPS63219146A (ja) Pps封止電子部品
CN107561337B (zh) 光纤电流互感器的制备方法及其所制备的光纤电流互感器
WO2023128247A1 (ko) 과립형 에폭시 수지 조성물
WO2020179988A1 (ko) 에폭시 수지 조성물
WO2018062637A1 (ko) 전도성 필름 및 이의 제조방법
CN104592739A (zh) 一种点火线圈骨架用ppo合金材料及其制备方法
JPS6222822A (ja) 封止用樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747865

Country of ref document: EP

Kind code of ref document: A1