WO2021152976A1 - コレステリック液晶膜 - Google Patents

コレステリック液晶膜 Download PDF

Info

Publication number
WO2021152976A1
WO2021152976A1 PCT/JP2020/043477 JP2020043477W WO2021152976A1 WO 2021152976 A1 WO2021152976 A1 WO 2021152976A1 JP 2020043477 W JP2020043477 W JP 2020043477W WO 2021152976 A1 WO2021152976 A1 WO 2021152976A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal layer
cholesteric liquid
observed
dark
Prior art date
Application number
PCT/JP2020/043477
Other languages
English (en)
French (fr)
Inventor
卓弘 林
諭司 國安
市橋 光芳
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020227021871A priority Critical patent/KR20220105168A/ko
Priority to CN202080091366.8A priority patent/CN114902098B/zh
Priority to JP2021574482A priority patent/JP7289937B2/ja
Publication of WO2021152976A1 publication Critical patent/WO2021152976A1/ja
Priority to US17/858,561 priority patent/US20220333013A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/36Steroidal liquid crystal compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate

Definitions

  • This disclosure relates to a cholesteric liquid crystal film.
  • the cholesteric liquid crystal layer is known as a layer having a property of selectively reflecting either right-handed circularly polarized light or left-handed circularly polarized light in a specific wavelength range, for example.
  • the cholesteric liquid crystal layer developed for various uses is used as, for example, a projected image display member (for example, a reflecting element). Recently, attempts have been made to impart reflection anisotropy to the cholesteric liquid crystal layer (see, for example, Patent Document 1).
  • a plurality of cholesteric liquid crystal layers may be combined.
  • the wavelength of light reflected by the cholesteric liquid crystal layer depends on the spiral pitch (the length of the spiral axis per rotation of the spiral; the same applies hereinafter). Therefore, for example, a plurality of cholesteric liquid crystal layers having different spiral pitches. By using, the wavelength range of the reflectable light can be widened.
  • One aspect of the present disclosure is to provide a cholesteric liquid crystal film with a small haze.
  • the distance between two adjacent dark portions among the dark portions observed in the second cholesteric liquid crystal layer is the distance between the dark portions observed in the first cholesteric liquid crystal layer.
  • the cholesteric liquid crystal film according to ⁇ 1> which is different from the distance between two adjacent dark areas.
  • the distance between two adjacent dark parts among the dark parts observed in the second cholesteric liquid crystal layer is the distance between the two adjacent dark parts observed in the first cholesteric liquid crystal layer.
  • the cholesteric liquid crystal film according to ⁇ 1> or ⁇ 2> which is larger than the distance between two adjacent dark areas.
  • the dark portion observed in the second cholesteric liquid crystal layer is adjacent to the distance between two adjacent dark portions in the dark portion observed in the first cholesteric liquid crystal layer.
  • the distance between two adjacent dark portions among the dark portions observed in the first cholesteric liquid crystal layer is 0.1 ⁇ m to 2 ⁇ m.
  • the distance between two adjacent dark portions among the dark portions observed in the second cholesteric liquid crystal layer is 0.1 ⁇ m to 5 ⁇ m.
  • the cholesteric according to any one of ⁇ 1> to ⁇ 6>, wherein the ratio of the dark part to be formed is 50% to 100% with respect to the number of the dark parts observed in the second cholesteric liquid crystal layer. Liquid crystal film.
  • the dark portion observed in the first cholesteric liquid crystal layer is inclined with respect to the main surface of the first cholesteric liquid crystal layer, and the second cholesteric liquid crystal layer is inclined.
  • the cholesteric liquid crystal film according to any one of ⁇ 1> to ⁇ 7>, wherein the dark portion observed in the cholesteric liquid crystal layer is inclined with respect to the main surface of the second cholesteric liquid crystal layer.
  • the average angle of the dark portion observed in the first cholesteric liquid crystal layer is 20 ° to 90 ° with respect to the main surface of the first cholesteric liquid crystal layer.
  • the striped pattern of the first cholesteric liquid crystal layer is observed at least in a cross section in the thickness direction of the first cholesteric liquid crystal layer, and the striped pattern of the second cholesteric liquid crystal layer is observed.
  • a cholesteric liquid crystal film having a small haze is provided.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the lower limit value and the upper limit value, respectively.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. ..
  • process is included in the term “process” as long as the intended purpose of the process is achieved, not only in an independent process but also in cases where it cannot be clearly distinguished from other processes. ..
  • ordinal numbers are terms used to distinguish a plurality of components, and limit the number of components and the superiority or inferiority of the components. is not it.
  • the "cross section in the thickness direction” means a surface that appears by cutting an object along the thickness direction.
  • main surface of the liquid crystal layer used with respect to the cross-sectional view in the thickness direction refers to two surfaces (that is, the upper surface) of the liquid crystal layer intersecting the thickness direction in the cross-sectional view in the thickness direction. And the lower surface) are used as a term to refer to at least one surface.
  • the "molecular axis” means an axis that passes through the center of the molecular structure along the longitudinal direction of the molecular structure.
  • the "molecular axis” used for the disk-shaped liquid crystal compound means an axis that intersects the disk surface of the disk-shaped liquid crystal compound at right angles.
  • solid content means a component obtained by removing a solvent from all the components of an object.
  • the "solid content mass” means the mass obtained by subtracting the mass of the solvent from the mass of the object.
  • the cholesteric liquid crystal film according to the present disclosure is arranged in contact with the first cholesteric liquid crystal layer having a striped pattern in which dark parts and bright parts are alternately arranged, which is observed using a microscope, and the first cholesteric liquid crystal layer. It has a second cholesteric liquid crystal layer having a striped pattern in which dark parts and bright parts are alternately arranged, which is observed using a microscope, and is an interface between the first cholesteric liquid crystal layer and the second cholesteric liquid crystal layer. In, the dark portion observed in the second cholesteric liquid crystal layer is connected to the dark portion observed in the first cholesteric liquid crystal layer. According to one aspect of the present disclosure described above, a cholesteric liquid crystal film having a small haze is provided.
  • the cholesteric liquid crystal film according to the present disclosure exerts the above effect is presumed as follows.
  • the orientation of the liquid crystal for example, the orientation of the liquid crystal compound
  • the change in the refractive index becomes large locally, so that the light is scattered and the haze becomes large.
  • the dark portion observed in the second cholesteric liquid crystal layer is the first cholesteric.
  • the first cholesteric liquid crystal layer may be referred to as a "first liquid crystal layer”
  • the second cholesteric liquid crystal layer may be referred to as a "second liquid crystal layer”.
  • the first cholesteric liquid crystal layer and the second cholesteric liquid crystal layer are collectively referred to as a "liquid crystal layer”. In some cases.
  • the cholesteric liquid crystal film according to the present disclosure has a first cholesteric liquid crystal layer having a striped pattern in which dark parts and bright parts are alternately arranged, which is observed using a microscope.
  • Cholesteric liquid crystal which is known as a form of liquid crystal, has a spiral structure formed by spirally arranging a plurality of liquid crystal compounds.
  • the orientation of the molecular axis of the liquid crystal compound in the helical structure changes along the helical axis. Therefore, when the cholesteric liquid crystal is observed using a microscope, the dark part (referred to as a region that looks relatively dark; the same applies hereinafter) and the bright part (relatively) depending on the direction of the molecular axis of the liquid crystal compound with respect to the observation direction. An area that looks bright. The same shall apply hereinafter.) Is observed.
  • a scanning electron microscope or a polarizing microscope is used as the microscope for observing the dark part and the bright part.
  • the striped pattern of the first liquid crystal layer may be observed on the surface of the first liquid crystal layer (for example, the surface of the first liquid crystal layer opposite to the surface in contact with the second liquid crystal layer).
  • the striped pattern of the first liquid crystal layer may be observed in the cross section of the first liquid crystal layer.
  • the striped pattern of the first liquid crystal layer is preferably observed at least in the cross section of the first liquid crystal layer in the thickness direction.
  • the sample used for cross-section observation may be prepared by using, for example, a microtome.
  • the dark portion observed in the first liquid crystal layer is preferably inclined with respect to the main surface of the first liquid crystal layer.
  • the aspect that "the dark part is inclined with respect to the main surface of the liquid crystal layer” is not limited to the state where the dark part is inclined with respect to the main surface of the liquid crystal layer, and the dark part is the main surface of the liquid crystal layer. It includes a state of being orthogonal to the surface (that is, the angle between the dark part and the main surface of the liquid crystal layer is 90 °).
  • the dark portion observed in the first liquid crystal layer is inclined, so that the bright portion and the dark portion are substantially orthogonal to the arrangement direction.
  • the spiral axis also tilts. Therefore, when the angle between the direction of light incident on the first liquid crystal layer from an oblique direction (that is, the incident direction) and the spiral axis is small, the reflecting surface derived from the cholesteric liquid crystal (that is, orthogonal to the spiral axis) is formed.
  • a plane in which the directions of the molecular axes of the liquid crystal compounds existing on the same plane are the same; the same applies hereinafter) increases the degree of circular polarization of the light.
  • the dark portion observed in the first liquid crystal layer is inclined with respect to the main surface of the first liquid crystal layer (hereinafter, referred to as "inclination of the dark portion" in this paragraph). May be observed in at least one cross-sectional view in the thickness direction of the liquid crystal layer. For example, even if the inclination of the dark portion is not observed in any one cross-sectional view, the inclination of the dark portion may be observed in the other cross-sectional view.
  • the angle of the dark part observed in the first liquid crystal layer is not limited.
  • the average angle of the dark portion observed in the first liquid crystal layer is 5 ° with respect to the main surface of the first liquid crystal layer from the viewpoint of the uniformity of the inclination angle of the spiral axis. It is preferably more than that, more preferably 10 ° or more, and particularly preferably 20 ° or more.
  • the average angle of the dark portion observed in the first liquid crystal layer is preferably 90 ° or less with respect to the main surface of the first liquid crystal layer.
  • the average angle of the dark part observed in the first liquid crystal layer in the cross-sectional view in the thickness direction is measured by the following method.
  • the angle formed by the main surface of the first liquid crystal layer (hereinafter referred to as "tilt angle") is measured. Unless the tilt angle is 90 °, an angle smaller than a right angle (that is, an acute angle) is adopted as the tilt angle.
  • the inclination angle is measured for a total of five dark areas. The value obtained by arithmetically averaging the measured values is taken as the average angle of the dark part observed in the first liquid crystal layer.
  • the distance between the dark part observed in the first liquid crystal layer is not limited.
  • the distance between two adjacent dark portions among the dark portions observed in the first liquid crystal layer is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more. It is particularly preferably 0.1 ⁇ m or more.
  • the distance between two adjacent dark parts among the dark parts observed in the first liquid crystal layer is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, and 10 ⁇ m or less. It is more preferably 2 ⁇ m or less, and particularly preferably 2 ⁇ m or less.
  • the distance between two adjacent dark areas may be referred to as "distance between dark areas”.
  • the distance between two adjacent dark parts among the dark parts observed in the first liquid crystal layer is measured by the following method. Based on the cross-sectional image of the first liquid crystal layer in the thickness direction obtained by using a scanning electron microscope or a polarizing microscope, five sets of two adjacent dark parts composed of a total of six dark parts are selected, and 5 The shortest distance between two adjacent dark areas in each of the sets is measured. More specifically, as the shortest distance between two adjacent dark parts in the first set, the shortest distance between the center in the width direction of one dark part and the center in the width direction of one dark part adjacent to the dark part. To measure.
  • the shortest distance between the two adjacent dark areas from the second group to the fifth group is measured according to the above method.
  • the arithmetic mean of the measured values is the distance between two adjacent dark areas of the dark areas observed in the first liquid crystal layer.
  • the liquid crystal compounds observed on the surface of the first liquid crystal layer opposite to the surface in contact with the second liquid crystal layer are arranged while being twisted along one of the in-plane directions of the first liquid crystal layer. It is preferable to have.
  • the linearity of the dark part and the bright part observed in the cross section in the thickness direction becomes high, so that the haze of the cholesteric liquid crystal film can be further reduced.
  • the liquid crystal compounds are arranged while twisting along one of the in-plane directions of the liquid crystal layer.
  • a striped pattern in which bright parts and dark parts are alternately arranged is observed along one of the in-plane directions of the liquid crystal layer.
  • the direction of the molecular axis of the liquid crystal compound changes as the liquid crystal compound proceeds in the above one direction. Therefore, a striped pattern in which bright areas and dark areas are alternately arranged is observed.
  • the thickness of the first liquid crystal layer is not limited.
  • the average thickness of the first liquid crystal layer is 0. From the viewpoint of suppressing the influence of the smoothness of the surface shape of the layer adjacent to the first liquid crystal layer (for example, the base material and the second liquid crystal layer). It is preferably 1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and particularly preferably 1 ⁇ m or more. From the viewpoint of transparency, the average thickness of the first liquid crystal layer is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the average thickness of the first liquid crystal layer is measured by the following method.
  • the thickness at five points is measured based on a cross-sectional image of the first liquid crystal layer in the thickness direction obtained by using a scanning electron microscope or a polarizing microscope.
  • the value obtained by arithmetically averaging the measured values is taken as the average thickness of the first liquid crystal layer.
  • composition The composition of the first liquid crystal layer is not limited as long as a striped pattern in which dark areas and bright areas are alternately arranged is observed.
  • the components of the first liquid crystal layer will be specifically described.
  • the first liquid crystal layer preferably contains a liquid crystal compound.
  • the type of liquid crystal compound is not limited.
  • As the liquid crystal compound for example, a known liquid crystal compound that forms a cholesteric liquid crystal can be used.
  • the liquid crystal compound may have a polymerizable group.
  • the liquid crystal compound may have one kind alone or two or more kinds of polymerizable groups.
  • the liquid crystal compound may have two or more polymerizable groups of the same type.
  • the liquid crystal compound can be polymerized. By polymerizing the liquid crystal compound, the stability of the cholesteric liquid crystal can be improved.
  • Examples of the polymerizable group include a group having an ethylenically unsaturated double bond, a cyclic ether group, and a nitrogen-containing heterocyclic group capable of causing a ring-opening reaction.
  • Examples of the group having an ethylenically unsaturated double bond include an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, a vinyl group, a vinylphenyl group, and an allyl group.
  • Examples of the cyclic ether group include an epoxy group and an oxetanyl group.
  • Examples of the nitrogen-containing heterocyclic group capable of causing a ring-opening reaction include an aziridinyl group.
  • the polymerizable group is preferably at least one selected from the group consisting of a group having an ethylenically unsaturated double bond and a cyclic ether group.
  • the polymerizable group is at least selected from the group consisting of an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, a vinyl group, a vinylphenyl group, an allyl group, an epoxy group, an oxetanyl group, and an aziridinyl group.
  • It is preferably one kind, and more preferably at least one kind selected from the group consisting of an acryloyl group, a methacryloyl group, an acryloyloxy group, and a methacryloyloxy group, and more preferably a group consisting of an acryloyloxy group and a methacryloyloxy group. It is particularly preferable that it is at least one selected more.
  • Liquid crystal compounds are classified into, for example, rod-shaped liquid crystal compounds and disk-shaped liquid crystal compounds according to their chemical structure.
  • the rod-shaped liquid crystal compound is known as a liquid crystal compound having a rod-shaped chemical structure.
  • a known rod-shaped liquid crystal compound can be used.
  • the disk-shaped liquid crystal compound is known as a liquid crystal compound having a disk-shaped chemical structure.
  • a known disk-shaped liquid crystal compound can be used.
  • the liquid crystal compound is preferably a rod-shaped liquid crystal compound, and more preferably a rod-shaped thermotropic liquid crystal compound.
  • the rod-shaped thermotropic liquid crystal compound is a compound having a rod-shaped chemical structure and exhibiting liquid crystallinity in a specific temperature range.
  • a known rod-shaped thermotropic liquid crystal compound can be used as the rod-shaped thermotropic liquid crystal compound.
  • rod-shaped thermotropic liquid crystal compound examples include "Makromol. Chem., 190, 2255 (1989)", “Advanced Materials, 5, 107 (1993)", US Pat. No. 4,683,327, USA.
  • Japanese Patent No. 5622648, US Pat. No. 5,770,107 International Publication No. 95/22586, International Publication No. 95/24455, International Publication No. 97/00600, International Publication No. 98/23580, International Publication No. 98 / 52905, Japanese Patent Application Laid-Open No. 1-272551, Japanese Patent Application Laid-Open No. 6-16616, Japanese Patent Application Laid-Open No. 7-110469, Japanese Patent Application Laid-Open No.
  • thermotropic liquid crystal compound examples include the liquid crystal compound represented by the general formula 1 in JP-A-2016-81035 and the general formula (I) or the general formula (II) in JP-A-2007-279688. The compounds to be used are also mentioned.
  • the rod-shaped thermotropic liquid crystal compound is preferably a compound represented by the following general formula (1).
  • Q 1 and Q 2 each independently represent a polymerizable group
  • L 1 , L 2 , L 3 and L 4 independently represent a single bond or 2 respectively.
  • Representing a valent linking group A 1 and A 2 each independently represent a divalent hydrocarbon group having 2 to 20 carbon atoms, and M represents a mesogen group.
  • Examples of the polymerizable group represented by Q 1 and Q 2 in the general formula (1) include the above-mentioned polymerizable group.
  • the preferred embodiments of the polymerizable group represented by Q 1 and Q 2 are the same as the preferred embodiments of the polymerizable group described above.
  • the divalent linking groups represented by L 1 , L 2 , L 3 , and L 4 are -O-, -S-, -CO-, -NR-, and -CO-O.
  • -, -O-CO-O-, -CO-NR-, -NR-CO-, -O-CO-, -O-CO-NR-, -NR-CO-O-, and NR-CO-NR It is preferably a divalent linking group selected from the group consisting of ⁇ .
  • R in the above-mentioned divalent linking group represents an alkyl group having 1 to 7 carbon atoms or a hydrogen atom.
  • At least one of L 3 and L 4 is preferably —O—CO—O ⁇ .
  • the divalent hydrocarbon group having 2 to 20 carbon atoms represented by A 1 and A 2 has an alkylene group having 2 to 12 carbon atoms and a carbon atom number. It is preferably an alkenylene group having 2 to 12 or an alkynylene group having 2 to 12 carbon atoms, and more preferably an alkylene group having 2 to 12 carbon atoms.
  • the divalent hydrocarbon group is preferably in the form of a chain.
  • the divalent hydrocarbon group may contain oxygen atoms that are not adjacent to each other or sulfur atoms that are not adjacent to each other.
  • the divalent hydrocarbon group may have a substituent. Substituents include, for example, halogen atoms (eg, fluorine, chlorine, and bromine), cyano groups, methyl groups, and ethyl groups.
  • the mesogen group represented by M is a group that forms the main skeleton of a liquid crystal compound that contributes to liquid crystal formation.
  • the mesogen group represented by M for example, the description (particularly, pages 7 to 16) of "Flusige Editorial in Table II" (VEB, Editorial, fur, Grundstoff, Industrie, Leipzig, 1984), and liquid crystal (pages 7 to 16). You can refer to the description (especially Chapter 3) of the Handbook Editorial Committee, edited by Maruzen, 2000).
  • the mesogen group represented by M is a group containing at least one cyclic structure selected from the group consisting of an aromatic hydrocarbon group, a heterocyclic group, and an alicyclic hydrocarbon group. It is preferably a group containing an aromatic hydrocarbon group, and more preferably a group containing an aromatic hydrocarbon group.
  • the mesogen group represented by M is preferably a group containing 2 to 5 aromatic hydrocarbon groups, and is a group containing 3 to 5 aromatic hydrocarbon groups. Is more preferable.
  • the mesogen group represented by M is preferably a group containing 3 to 5 phenylene groups and the phenylene groups are linked to each other by -CO-O-.
  • the cyclic structure (for example, aromatic hydrocarbon group, heterocyclic group, and alicyclic hydrocarbon group) contained in the mesogen group represented by M may have a substituent. good.
  • the substituent include an alkyl group having 1 to 10 carbon atoms (for example, a methyl group).
  • rod-shaped thermotropic liquid crystal compounds are shown below.
  • the rod-shaped thermotropic liquid crystal compound is not limited to the compounds shown below.
  • the liquid crystal compound may be a synthetic product synthesized by a known method or a commercially available product.
  • Commercially available liquid crystal compounds are available from, for example, Tokyo Chemical Industry Co., Ltd. and Merck & Co., Inc.
  • the first liquid crystal layer may contain one kind alone or two or more kinds of liquid crystal compounds.
  • the content of the liquid crystal compound in the first liquid crystal layer is preferably 70% by mass or more, and preferably 80% by mass or more, based on the total mass of the first liquid crystal layer. It is more preferably 90% by mass or more, and particularly preferably 90% by mass or more.
  • the upper limit of the content of the liquid crystal compound is not limited.
  • the content of the liquid crystal compound in the first liquid crystal layer may be determined in the range of 100% by mass or less with respect to the total mass of the first liquid crystal layer.
  • the content of the liquid crystal compound in the first liquid crystal layer is less than 100% by mass and 99% by mass with respect to the total mass of the first liquid crystal layer. It may be less than or equal to 96% by mass or less.
  • the first liquid crystal layer may contain components other than the liquid crystal compound (hereinafter, referred to as "other components" in this paragraph).
  • Other components include, for example, chiral agents, solvents, orientation regulators, polymerization initiators, leveling agents, orientation aids, and sensitizers.
  • the cholesteric liquid crystal film according to the present disclosure has a second cholesteric liquid crystal layer which is arranged in contact with the first cholesteric liquid crystal layer and has a striped pattern in which dark parts and bright parts observed by a microscope are alternately arranged.
  • the striped pattern of the second liquid crystal layer may be observed on the surface of the second liquid crystal layer (for example, the surface of the second liquid crystal layer opposite to the surface in contact with the first liquid crystal layer).
  • the striped pattern of the second liquid crystal layer may be observed in the cross section of the second liquid crystal layer.
  • the striped pattern of the second liquid crystal layer is preferably observed at least in the cross section of the second liquid crystal layer in the thickness direction.
  • the dark portion observed in the second liquid crystal layer is connected to the dark portion observed in the first liquid crystal layer (hereinafter, "dark portion”).
  • connection means a liquid crystal layer obtained by using a scanning electron microscope or a polarizing microscope. In the cross-sectional image in the thickness direction of the above, it means that the dark part observed in the second liquid crystal layer appears to be connected to the dark part observed in the first liquid crystal layer, and it is necessary that both are strictly connected. It's not a thing.
  • FIG. 1 is a schematic cross-sectional view showing an example of a cholesteric liquid crystal film according to the present disclosure.
  • the cholesteric liquid crystal film 10 shown in FIG. 1 has a first cholesteric liquid crystal layer 20 and a second cholesteric liquid crystal layer 21.
  • the first cholesteric liquid crystal layer 20 and the second cholesteric liquid crystal layer 21 are arranged along the stacking direction Z.
  • the stacking direction Z is parallel to the thickness direction of the cholesteric liquid crystal film 10.
  • the dark portion 30 is inclined with respect to the main surface of the first cholesteric liquid crystal layer 20.
  • the dark portion 30 extends in one of the directions orthogonal to the stacking direction Z toward one of the stacking directions Z.
  • the second cholesteric liquid crystal layer 21 is arranged in contact with the first cholesteric liquid crystal layer 20.
  • a striped pattern in which dark portions 31 and bright portions 41 are alternately arranged is observed.
  • the dark portion 31 is inclined with respect to the main surface of the second cholesteric liquid crystal layer 21.
  • the dark portion 31 extends in one of the directions orthogonal to the stacking direction Z toward one of the stacking directions Z.
  • the dark portion 31 observed in the second cholesteric liquid crystal layer 21 is connected to the dark portion 30 observed in the first cholesteric liquid crystal layer 20. is doing.
  • connection rate of dark areas may be referred to as "connection rate of dark areas"
  • connection rate of dark areas preferably 50% to 100%, and preferably 70% to 100%, based on the number of dark areas observed in the second liquid crystal layer. More preferably, it is particularly preferably 80% to 100%.
  • connection rate of the dark part is measured by the following method. Using a scanning electron microscope or a polarizing microscope, three cross-sectional images in the thickness direction of the liquid crystal layer are acquired. At the interface between the first liquid crystal layer and the second liquid crystal layer observed in each cross-sectional image, the dark portion observed in the second liquid crystal layer connected to the dark portion observed in the first liquid crystal layer. The ratio of is calculated according to the following formula. The value obtained by arithmetically averaging the measured values is taken as the connection rate of the dark part.
  • the dark portion observed in the second liquid crystal layer is preferably inclined with respect to the main surface of the second liquid crystal layer.
  • first cholesteric liquid crystal layer for example, the degree of circular polarization of the light reflected by the reflecting surface derived from the cholesteric liquid crystal is increased.
  • the dark portion observed in the first liquid crystal layer is inclined with respect to the main surface of the first liquid crystal layer and is observed in the second liquid crystal layer. It is more preferable that the dark portion to be formed is inclined with respect to the main surface of the second liquid crystal layer.
  • the inclination direction of the dark portion observed in the second liquid crystal layer is preferably the same as the inclination direction of the dark portion observed in the first liquid crystal layer.
  • the tilting direction of the dark portion observed in the second liquid crystal layer is the same as the tilting direction of the dark portion observed in the first liquid crystal layer.
  • the angle formed by the straight line (virtual line) and the straight line (virtual line) passing through both ends of the dark portion observed in the second liquid crystal layer in the longitudinal direction is in the range of 100 ° to 180 °.
  • the angle formed by the two straight lines is preferably in the range of 120 ° to 180 °, and more preferably in the range of 150 ° to 180 °.
  • the dark portion observed in the second liquid crystal layer is inclined with respect to the main surface of the second liquid crystal layer (hereinafter, referred to as "inclination of the dark portion" in this paragraph). May be observed in at least one cross-sectional view in the thickness direction of the liquid crystal layer. For example, even if the inclination of the dark portion is not observed in any one cross-sectional view, the inclination of the dark portion may be observed in the other cross-sectional view.
  • the angle of the dark part observed in the second liquid crystal layer is not limited.
  • the average angle of the dark portion observed in the second liquid crystal layer is 10 ° with respect to the main surface of the second liquid crystal layer from the viewpoint of the uniformity of the inclination angle of the spiral axis.
  • the above is preferable, 20 ° or more is more preferable, and 30 ° or more is particularly preferable.
  • the average angle of the dark portion observed in the second liquid crystal layer is preferably 90 ° or less with respect to the main surface of the second liquid crystal layer.
  • the average angle of the dark part observed in the second liquid crystal layer is the average angle of the dark part observed in the first liquid crystal layer described in the above section "1st cholesteric liquid crystal layer". Measure by a method similar to the measurement method of.
  • the average angle of the dark part observed in the second liquid crystal layer may be the same as the average angle of the dark part observed in the first liquid crystal layer, or the first liquid crystal layer. It may be different from the average angle of the dark part observed in.
  • the width of the dark part observed in the second liquid crystal layer is not limited.
  • the distance between two adjacent dark portions among the dark portions observed in the second liquid crystal layer is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more. It is particularly preferably 0.15 ⁇ m or more.
  • the distance between two adjacent dark parts among the dark parts observed in the second liquid crystal layer is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, and more preferably 15 ⁇ m or less. It is more preferably 5 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the distance between two adjacent dark parts among the dark parts observed in the second liquid crystal layer is the method for measuring the distance between the dark parts described in the above section "First cholesteric liquid crystal layer”. Measure by the method according to.
  • the distance between the two adjacent dark areas observed in the second liquid crystal layer is the same as the distance between the two adjacent dark areas observed in the first liquid crystal layer. It may be different from the distance between two adjacent dark parts in the dark part observed in the first liquid crystal layer.
  • the distance between two adjacent dark parts among the dark parts observed in the second liquid crystal layer is the distance between the dark parts observed in the first liquid crystal layer from the viewpoint of improving the connection rate of the dark parts. It is preferable that the distance is different from the distance between two adjacent dark areas.
  • the distance between the two adjacent dark parts of the dark part observed in the second liquid crystal layer is the distance between the two adjacent dark parts of the dark part observed in the first liquid crystal layer. It is preferably larger than the distance of.
  • the ratio of the distance between the two adjacent dark parts of the dark part observed in the first liquid crystal layer to the distance of the two adjacent dark parts in the dark part observed in the second liquid crystal layer is From the viewpoint of improving the connection rate of the dark part, it is preferably 0.8 to 5, more preferably 0.9 to 3, and particularly preferably 1 to 2. Further, in the cross-sectional view in the thickness direction, the distance between the two adjacent dark parts of the dark part observed in the first liquid crystal layer is the distance between the two adjacent dark parts of the dark part observed in the second liquid crystal layer.
  • the ratio is preferably 1.1 to 2, more preferably 1.2 to 2, and particularly preferably 1.3 to 2.
  • the liquid crystal compounds observed on the surface of the second liquid crystal layer opposite to the surface in contact with the first liquid crystal layer are arranged while being twisted along one of the in-plane directions of the second liquid crystal layer. It is preferable to have.
  • the linearity of the dark part and the bright part observed in the cross section in the thickness direction becomes high, so that the haze of the cholesteric liquid crystal film can be further reduced.
  • the thickness of the second liquid crystal layer is not limited.
  • the average thickness of the second liquid crystal layer is 0.1 ⁇ m or more from the viewpoint of suppressing the influence of the smoothness of the surface shape of the layer adjacent to the second liquid crystal layer (for example, the first liquid crystal layer). It is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and particularly preferably 1 ⁇ m or more. From the viewpoint of transparency, the average thickness of the second liquid crystal layer is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the average thickness of the second liquid crystal layer is measured by a method according to the method for measuring the average thickness of the first liquid crystal layer described in the above section "First cholesteric liquid crystal layer”.
  • the thickness of the second liquid crystal layer may be the same as the thickness of the first liquid crystal layer, or may be different from the thickness of the first liquid crystal layer.
  • the ratio of the thickness of the second liquid crystal layer to the thickness of the first liquid crystal layer is preferably 0.1 to 10, more preferably 0.2 to 5, and 0.3 to 3. It is particularly preferable to have.
  • composition of the second liquid crystal layer is not limited as long as a striped pattern in which dark areas and bright areas are alternately arranged is observed.
  • components of the second liquid crystal layer will be specifically described.
  • the second liquid crystal layer preferably contains a liquid crystal compound.
  • the liquid crystal compound include the liquid crystal compounds described in the above section "First cholesteric liquid crystal layer".
  • the preferred embodiment of the liquid crystal compound is the same as the preferred embodiment of the liquid crystal compound described in the above section "First cholesteric liquid crystal layer”.
  • the second liquid crystal layer may contain one kind alone or two or more kinds of liquid crystal compounds.
  • the content of the liquid crystal compound in the second liquid crystal layer is preferably 70% by mass or more, and preferably 80% by mass or more, based on the total mass of the second liquid crystal layer. It is more preferably 90% by mass or more, and particularly preferably 90% by mass or more.
  • the upper limit of the content of the liquid crystal compound is not limited.
  • the content of the liquid crystal compound in the second liquid crystal layer may be determined in the range of 100% by mass or less with respect to the total mass of the second liquid crystal layer.
  • the content of the liquid crystal compound in the second liquid crystal layer is less than 100% by mass and 99% by mass with respect to the total mass of the second liquid crystal layer. It may be less than or equal to 96% by mass or less.
  • the second liquid crystal layer may contain components other than the liquid crystal compound (hereinafter, referred to as "other components" in this paragraph).
  • Other components include, for example, chiral agents, solvents, orientation regulators, polymerization initiators, leveling agents, orientation aids, and sensitizers.
  • the components of the cholesteric liquid crystal film according to the present disclosure are not limited as long as the first liquid crystal layer and the second liquid crystal layer are included.
  • the cholesteric liquid crystal film according to the present disclosure may have components other than the first liquid crystal layer and the second liquid crystal layer.
  • the cholesteric liquid crystal film according to the present disclosure may have a cholesteric liquid crystal layer other than the first liquid crystal layer and the second liquid crystal layer (hereinafter, referred to as "another cholesteric liquid crystal layer”), if necessary. good.
  • the cholesteric liquid crystal film according to the present disclosure may have three or more cholesteric liquid crystal layers including a first liquid crystal layer and a second liquid crystal layer.
  • the mode of the other cholesteric liquid crystal layer is limited. Not done.
  • a preferred embodiment of the other cholesteric liquid crystal layer is the first liquid crystal layer described in the above-mentioned "first cholesteric liquid crystal layer” section, or the second liquid crystal layer described in the above-mentioned "second cholesteric liquid crystal layer” section. It is the same as the preferable aspect of.
  • the combination of the first liquid crystal layer and the cholesteric liquid crystal layer corresponding to the second liquid crystal layer may be plural.
  • the first cholesteric liquid crystal layer and the second cholesteric liquid crystal layer are formed on the first liquid crystal layer and the second liquid crystal layer.
  • the second cholesteric liquid crystal layer and the third cholesteric liquid crystal layer may correspond to the first liquid crystal layer and the second liquid crystal layer, respectively.
  • the cholesteric liquid crystal film has three or more cholesteric liquid crystal layers, it is preferable that all the cholesteric liquid crystal layers are stacked.
  • the cholesteric liquid crystal film according to the present disclosure may have a base material. According to the base material, the strength of the cholesteric liquid crystal film can be improved.
  • the base material may be arranged on the surface of the first liquid crystal layer opposite to the surface in contact with the second liquid crystal layer.
  • the base material may be arranged on the surface of the second liquid crystal layer opposite to the surface in contact with the first liquid crystal layer.
  • the cholesteric liquid crystal film according to the present disclosure preferably has a base material, a first liquid crystal layer, and a second liquid crystal layer in this order.
  • the total light transmittance of the base material is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more.
  • the upper limit of the total light transmittance of the base material is not limited.
  • the total light transmittance of the base material may be determined, for example, in the range of 100% or less.
  • the total light transmittance of the base material is measured using a known spectrophotometer (for example, haze meter NDH 2000, Nippon Denshoku Industries Co., Ltd.).
  • the base material is preferably a base material containing a polymer.
  • the base material containing the polymer include a polyester-based base material (for example, polyethylene terephthalate and polyethylene naphthalate), a cellulose-based base material (for example, diacetyl cellulose and triacetyl cellulose (abbreviation: TAC)), and a polycarbonate-based base material.
  • Substrate poly (meth) acrylic substrate (eg, poly (meth) acrylate (eg, polymethylmethacrylate)), polystyrene-based substrate (eg, polystyrene and acrylonitrile styrene copolymer), olefin-based substrate (eg, olefin-based substrate (eg, polystyrene and acrylonitrile styrene copolymer)
  • polyamide-based substrates eg, polyvinyl chloride, nylon, and aromatic polyamides
  • polyimide-based substrates Polysulfone-based base material, polyethersulfone-based base material, polyether etherketone-based base material, polyphenylene sulfide-based base material, vinyl alcohol-based base material, polyvinylid
  • the shape of the base material is not limited.
  • the shape of the base material may be determined, for example, according to the application and the installation location.
  • the base material is preferably a flat base material.
  • the thickness of the base material is preferably in the range of 30 ⁇ m to 250 ⁇ m, more preferably in the range of 40 ⁇ m to 100 ⁇ m, from the viewpoint of manufacturing suitability, manufacturing cost, and optical characteristics.
  • the cholesteric liquid crystal film according to the present disclosure may have an orientation layer. According to the alignment layer, an orientation regulating force can be given to the liquid crystal compound.
  • the alignment layer is preferably arranged between the base material and the cholesteric liquid crystal layer (preferably the first liquid crystal layer or the second liquid crystal layer).
  • the cholesteric liquid crystal film according to the present disclosure preferably has a base material, an alignment layer, a first liquid crystal layer, and a second liquid crystal layer in this order.
  • the alignment layer for example, a known alignment layer having a function of imparting an orientation regulating force to the liquid crystal compound can be used.
  • the alignment layer may be an alignment layer in which an alignment function is generated by applying an electric field, applying a magnetic field, or irradiating light.
  • the thickness of the alignment layer is preferably in the range of 0.1 ⁇ m to 10 ⁇ m, and more preferably in the range of 1 ⁇ m to 5 ⁇ m.
  • the shape of the cholesteric liquid crystal film according to the present disclosure is not limited.
  • Examples of the shape of the cholesteric liquid crystal film in a plan view include a circle (for example, a perfect circle and an ellipse), a polygon (for example, a triangle, a quadrangle, a pentagon, and a hexagon), and an indefinite shape.
  • the thickness of the cholesteric liquid crystal film according to the present disclosure is not limited.
  • the thickness of the cholesteric liquid crystal film according to the present disclosure is preferably in the range of 1 ⁇ m to 500 ⁇ m, more preferably in the range of 2 ⁇ m to 250 ⁇ m, and particularly preferably in the range of 5 ⁇ m to 100 ⁇ m.
  • the use of the cholesteric liquid crystal film according to the present disclosure is not limited.
  • Examples of the use of the cholesteric liquid crystal film according to the present disclosure include an optical film.
  • the cholesteric liquid crystal film according to the present disclosure may be used, for example, as an optical film used for an aerial imaging device, a transparent screen, or an optical sensor member.
  • the method for producing a cholesteric liquid crystal film according to the present disclosure includes a step of applying a first composition containing a liquid crystal compound and a chiral agent on a substrate (hereinafter, may be referred to as “step (A1)”).
  • a step of applying a shearing force to the surface of the first composition applied on the substrate (hereinafter, may be referred to as “step (B1)”) and the first step of applying the shearing force.
  • a step of forming the first cholesteric liquid crystal layer by curing the composition hereinafter, may be referred to as “step (C1)”), and a liquid crystal compound and chiral on the first cholesteric liquid crystal layer.
  • step (A2) The step of applying the second composition containing the agent (hereinafter, may be referred to as “step (A2)”) and the surface of the second composition applied on the first cholesteric liquid crystal layer.
  • step (B2) A step of applying a shearing force (hereinafter, may be referred to as “step (B2)”) and a step of forming a second cholesteric liquid crystal layer by curing the second composition to which the shearing force is applied. (Hereinafter, it may be referred to as “step (C2)").
  • step (C2) a step of cholesteric liquid crystal film having a small haze can be manufactured.
  • the first composition and the second composition may be collectively referred to as "composition”. ..
  • coating the first composition on a base material is not limited to bringing the first composition into direct contact with the base material, and the first is applied to the base material via an arbitrary layer. Includes contacting the compositions. Any layer may be one of the constituents of the substrate, or it may be a layer formed on the substrate prior to application of the composition. As the arbitrary layer, for example, the orientation layer described in the above-mentioned "Orientation layer” section can be mentioned. The method of forming the oriented layer will be described later.
  • the base material examples include the base materials described in the above section “Base material”.
  • Preferred embodiments of the substrate eg, total light transmittance, type, shape, and thickness
  • An alignment layer may be arranged in advance on the surface of the base material. When the alignment layer is arranged on the surface of the substrate, the first composition is applied on the alignment layer.
  • liquid crystal compound for example, the liquid crystal compound described in the above section "First cholesteric liquid crystal layer” can be used.
  • the preferred embodiment of the liquid crystal compound is the same as the preferred embodiment of the liquid crystal compound described in the above section "First cholesteric liquid crystal layer”.
  • the first composition may contain one kind alone or two or more kinds of liquid crystal compounds.
  • the content of the liquid crystal compound in the first composition is preferably 70% by mass or more, preferably 80% by mass or more, based on the solid content mass of the first composition. Is more preferable, and 90% by mass or more is particularly preferable.
  • the upper limit of the content of the liquid crystal compound is not limited.
  • the content of the liquid crystal compound in the first composition may be less than 100% by mass, 99% by mass or less, or 96% by mass or less with respect to the solid content mass of the first composition.
  • chiral agent The type of chiral auxiliary is not limited.
  • the chiral agent include known chiral agents (for example, "Liquid Crystal Device Handbook, Chapter 3, Section 4-3, Chiral Auxiliary for TN, STN, p. 199, Japan Society for the Promotion of Science, 42nd Committee, 1989".
  • the chiral agent described in 1) can be used.
  • chiral agents contain asymmetric carbon atoms.
  • the chiral agent is not limited to compounds containing an asymmetric carbon atom.
  • examples of the chiral agent include an axial asymmetric compound containing no asymmetric carbon atom and a plane asymmetric compound.
  • Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group.
  • a chiral agent having a polymerizable group by reacting a chiral agent having a polymerizable group with a liquid crystal compound having a polymerizable group, a polymer having a structural unit derived from the chiral agent and a structural unit derived from the liquid crystal compound can be obtained.
  • Examples of the polymerizable group in the chiral agent include the polymerizable group described in the above section "Liquid crystal compound".
  • the preferred embodiment of the polymerizable group in the chiral agent is the same as the preferred embodiment of the polymerizable group described in the above section “Liquid crystal compound”.
  • the type of polymerizable group in the chiral agent is preferably the same as the type of polymerizable group in the liquid crystal compound.
  • Examples of the chiral agent exhibiting a strong twisting force include JP-A-2010-181852, JP-A-2003-287623, JP-A-2002-80851, JP-A-2002-80478, or JP-A-2002-302487. Examples thereof include chiral agents described in Japanese Patent Publication No.
  • isosorbide compounds having a corresponding structure can also be used as a chiral agent.
  • isosorbide compounds having a corresponding structure can also be used as a chiral agent.
  • the first composition may contain one kind alone or two or more kinds of chiral agents.
  • the content of the chiral agent is preferably 0.1% by mass to 20.0% by mass, preferably 0.2% by mass to 15.0% by mass, based on the solid content mass of the first composition. It is more preferable, and it is particularly preferable that it is 0.5% by mass to 10.0% by mass.
  • the first composition may contain components other than the above-mentioned components (hereinafter, referred to as "other components” in this paragraph).
  • Other components include, for example, solvents, orientation regulators, polymerization initiators, leveling agents, orientation aids, and sensitizers.
  • an organic solvent is preferable.
  • the organic solvent include an amide solvent (for example, N, N-dimethylformamide), a sulfoxide solvent (for example, dimethyl sulfoxide), a heterocyclic compound (for example, pyridine), a hydrocarbon solvent (for example, benzene, and hexane), and the like.
  • Alkyl halide solvents eg chloroform, dichloromethane
  • ester solvents eg methyl acetate and butyl acetate
  • ketone solvents eg acetone, methyl ethyl ketone, and cyclohexanone
  • ether solvents eg tetrahydrofuran, and 1, 2 -Dimethoxyethane.
  • the organic solvent is preferably at least one selected from the group consisting of an alkyl halide solvent and a ketone solvent, and more preferably a ketone solvent.
  • the first composition may contain one kind alone or two or more kinds of solvents.
  • the content of the solid content in the first composition is preferably 25% by mass to 40% by mass, and preferably 25% by mass to 35% by mass, based on the total mass of the first composition. More preferred.
  • orientation control agent examples include the compounds described in paragraphs [0012] to [0030] of JP2012-2011306A, and paragraphs [0037] to [0044] of JP2012-101999.
  • Examples include compounds.
  • a polymer containing the polymerization unit of the fluoroaliphatic group-containing monomer in an amount of more than 50% by mass of the total polymerization unit described in JP-A-2004-331812 may be used as the orientation control agent.
  • a vertical alignment agent can also be mentioned as an orientation control agent.
  • Examples of the vertical alignment agent include a boronic acid compound and / or an onium salt described in JP-A-2015-38598, and an onium salt described in JP-A-2008-26730.
  • the content of the orientation control agent is more than 0% by mass and 5.0% by mass or less with respect to the solid content mass of the first composition. It is preferably, and more preferably 0.3% by mass to 2.0% by mass.
  • polymerization initiator examples include a photopolymerization initiator and a thermal polymerization initiator.
  • the polymerization initiator is preferably a photopolymerization initiator from the viewpoint of suppressing deformation of the base material due to heat and deterioration of the first composition.
  • the photopolymerization initiator include an ⁇ -carbonyl compound (for example, the compound described in US Pat. No. 2,376,661 or US Pat. No. 2,376,670) and an acyloin ether (for example, US Pat. No. 2,448,828).
  • ⁇ -carbonyl compound for example, the compound described in US Pat. No. 2,376,661 or US Pat. No. 2,376,670
  • an acyloin ether for example, US Pat. No. 2,448,828.
  • Compounds described in the specification ⁇ -hydrogen-substituted aromatic acidoine compounds (eg, compounds described in US Pat. No. 2,725,212), polynuclear quinone compounds (eg, US Pat. No. 3,46127, or US Pat.
  • Kaisho 60-105667 or a compound described in US Pat. No. 4,239,850
  • a phenazine compound for example, JP-A-60-105667, or a compound described in US Pat. No. 4,239,850
  • Oxaziazole compounds for example, the compounds described in US Pat. No. 4,212,970
  • acylphosphine oxide compounds for example, Japanese Patent Application Laid-Open No. 63-40799, Japanese Patent Application Laid-Open No. 5-29234, JP-A-10- Examples thereof include compounds described in Japanese Patent Application Laid-Open No. 95788 or JP-A-10-29997).
  • the content of the polymerization initiator is 0.5% by mass to 5.0% by mass with respect to the solid content mass of the first composition. It is preferable, and it is more preferable that it is 1.0% by mass to 4.0% by mass.
  • the method for producing the first composition is not limited.
  • Examples of the method for producing the first composition include a method of mixing the above components.
  • As the mixing method a known mixing method can be used.
  • the obtained mixture may be filtered.
  • the method of applying the first composition is not limited.
  • the coating method of the first composition include an extrusion die coater method, a curtain coating method, a dip coating method, a spin coating method, a print coating method, a spray coating method, a slot coating method, a roll coating method, and a slide coating method.
  • Examples include a blade coating method, a gravure coating method, and a wire bar method.
  • the amount of the first composition applied is not limited.
  • the coating amount of the first composition is, for example, the thickness of the target cholesteric liquid crystal layer or the thickness of the first composition before the shearing force described in the section "Step (B1)" below is applied. It may be decided according to.
  • -Means to apply shear force- Means for applying shear force include, for example, blades, air knives, bars, and applicators.
  • the thickness of the first composition may change before and after applying the shearing force.
  • the thickness of the first composition after the shearing force is applied by the blade is 1/2 or less, or 1/3 or less, of the thickness of the first composition before the shearing force is applied. There may be.
  • the thickness of the first composition after the shearing force is applied by the blade is preferably 1/4 or more with respect to the thickness of the first composition before the shearing force is applied.
  • the material of the blade is not limited.
  • the blade material include metals (eg, stainless steel) and resins (eg, Teflon® and polyetheretherketone (PEEK)).
  • the shape of the blade is not limited. Examples of the shape of the blade include a plate shape.
  • the blade is preferably a metal plate-shaped member from the viewpoint that a shearing force is easily applied to the first composition.
  • the thickness of the tip of the blade in contact with the first composition is preferably 0.1 mm or more, and preferably 1 mm or more, from the viewpoint of easily applying a shearing force to the first composition. More preferred. There is no upper limit to the thickness of the blade. The thickness of the blade may be determined in the range of, for example, 10 mm or less.
  • the shearing force is applied to the surface of the first composition by blowing compressed air on the surface of the first composition with an air knife.
  • the shear rate applied to the first composition can be adjusted according to the rate at which the compressed air is blown (that is, the flow velocity).
  • the direction in which the compressed air is blown by the air knife may be the same direction or the opposite direction to the transport direction of the first composition.
  • the blowing direction of the compressed air by the air knife is a first composition from the viewpoint of preventing fragments of the first composition scraped by the compressed air from adhering to the first composition remaining on the substrate. It is preferable that the direction is the same as the transport direction of.
  • the shear rate in the step (B1) the higher the orientation accuracy of the cholesteric liquid crystal layer can be formed.
  • the shear rate is preferably 1,000 seconds-1 or more, more preferably 10,000 seconds- 1 or more, and particularly preferably 30,000 seconds-1 or more.
  • the upper limit of shear rate is not limited. Shear rate, for example, may be determined in the range of 1.0 ⁇ 10 6 sec -1 or less.
  • the shear rate is such that the shortest distance between the blade and the base material is "d", and the transfer rate of the first composition in contact with the blade (that is, the first composition).
  • the relative speed between the blade and the blade is "V”
  • the shear rate is the relative speed between the surface of the first composition and the surface of the base material, where the thickness of the first composition after the application of shear is "h”.
  • V it is obtained by "V / 2h".
  • the surface temperature of the first composition when a shearing force is applied may be determined according to the phase transition temperature of the liquid crystal compound contained in the first composition.
  • the surface temperature of the first composition when a shearing force is applied is preferably 50 ° C. to 120 ° C., more preferably 60 ° C. to 100 ° C.
  • the surface temperature of the first composition is measured using a radiation thermometer whose emissivity is calibrated by the temperature value measured by a non-contact thermometer.
  • the surface temperature of the first composition is measured within 10 cm from the surface on the side opposite to the measurement surface (that is, the back side) in the absence of reflectors.
  • the thickness of the first composition before the shearing force is applied is preferably in the range of 30 ⁇ m or less, preferably in the range of 15 ⁇ m to 25 ⁇ m, from the viewpoint of forming a cholesteric liquid crystal layer having high orientation accuracy. More preferred.
  • the thickness of the first composition after the shearing force is applied is preferably in the range of 10 ⁇ m or less, and preferably in the range of 7 ⁇ m or less, from the viewpoint of forming a cholesteric liquid crystal layer having high orientation accuracy. More preferred.
  • the lower limit of the thickness of the first composition after the shear force is applied is not limited.
  • the thickness of the first composition after the shearing force is applied is preferably in the range of 5 ⁇ m or more.
  • the first cholesteric liquid crystal layer is formed by curing the first composition to which the shearing force is applied.
  • Examples of the method for curing the first composition include heating and irradiation with active energy rays.
  • the step (C1) from the viewpoint of production suitability, it is preferable to cure the composition by applying a shearing force and irradiating the first composition with active energy rays.
  • active energy rays examples include ⁇ -rays, ⁇ -rays, X-rays, ultraviolet rays, infrared rays, visible rays, and electron beams.
  • the active energy ray is preferably ultraviolet rays from the viewpoint of curing sensitivity and availability of the apparatus.
  • Light sources of ultraviolet rays include, for example, lamps (eg, tungsten lamps, halogen lamps, xenon lamps, xenon flash lamps, mercury lamps, mercury xenon lamps, and carbon arc lamps), lasers (eg, semiconductor lasers, helium neon lasers, argons). Examples thereof include an ion laser, a helium cadmium laser, and a YAG (Ytrium Aluminum Garnet) laser, a light emitting diode, and a cathode line tube.
  • lamps eg, tungsten lamps, halogen lamps, xenon lamps, xenon flash lamps, mercury lamps, mercury xenon lamps, and carbon arc lamps
  • lasers eg, semiconductor lasers, helium neon lasers, argons. Examples thereof include an ion laser, a helium cadmium laser, and a YAG (Ytrium Aluminum Garnet) laser, a light emitting diode, and a cathode
  • the peak wavelength of ultraviolet rays emitted from the light source of ultraviolet rays is preferably 200 nm to 400 nm.
  • the exposure amount of ultraviolet rays (also referred to as integrated light amount) is preferably 100 mJ / cm 2 to 500 mJ / cm 2.
  • a second composition containing a liquid crystal compound and a chiral agent is applied onto the first cholesteric liquid crystal layer.
  • process (A1) The items described in the above "process (A1)" section (excluding items related to the base material) are applied to the process (A2).
  • the preferred embodiment of the step (A2) is the same as the preferred embodiment of the step (A1).
  • process (B1) The matters described in the above "process (B1)" section are applied to the process (B2).
  • the preferred embodiment of the step (B2) is the same as the preferred embodiment of the step (B1).
  • the second cholesteric liquid crystal layer is formed by curing the second composition to which the shearing force is applied.
  • process (C1) The matters described in the above "process (C1)" section are applied to the process (C2).
  • the preferred embodiment of the step (C2) is the same as the preferred embodiment of the step (C1).
  • the method for producing a cholesteric liquid crystal film according to the present disclosure may include steps other than the above-mentioned steps.
  • the method for producing a cholesteric liquid crystal film according to the present disclosure may include, for example, a step of forming an alignment layer on a substrate (hereinafter, may be referred to as “step (D)”).
  • step (D) is preferably carried out before the step (A1).
  • Examples of the method for forming the oriented layer include rubbing treatment of an organic compound (preferably a polymer), oblique vapor deposition of an inorganic compound, and formation of a layer having microgrooves.
  • the method for producing a cholesteric liquid crystal film according to the present disclosure determines the content of the solvent in the composition with respect to the total mass of the composition before applying a shearing force to the surface of the composition. It is preferable to have a step of adjusting to a range of 50% by mass or less (hereinafter, may be referred to as "step (E)"). Specifically, in the method for producing a cholesteric liquid crystal film according to the present disclosure, the content of the solvent in the first composition applied on the substrate is described above between the step (A1) and the step (B1).
  • a step of adjusting the composition it is preferable to have a step of adjusting the composition to a range of 50% by mass or less with respect to the total mass of the composition.
  • the content of the solvent in the second composition coated on the first cholesteric liquid crystal layer between the steps (A2) and the step (B2) is described above. It is preferable to have a step of adjusting the composition to a range of 50% by mass or less with respect to the total mass of the composition.
  • the step (E) may be carried out between the step (A1) and the step (B1), or between the step (A2) and the step (B2).
  • the step (E) may be carried out between the step (A1) and the step (B1), and between the step (A2) and the step (B2).
  • the content of the solvent in the composition is preferably 40% by mass or less, more preferably 30% by mass or less, based on the total mass of the composition.
  • the lower limit of the solvent content in the composition is not limited.
  • the content of the solvent in the composition may be 0% by mass or may exceed 0% by mass with respect to the total mass of the composition.
  • the content of the solvent in the composition is preferably 10% by mass or more from the viewpoint of easily suppressing deterioration of the surface state of the composition.
  • the content of the solvent in the composition is measured by the absolute drying method.
  • the sample collected from the composition is dried at 60 ° C. for 24 hours, and then the mass change of the sample before and after drying (that is, the difference between the mass of the sample after drying and the mass of the sample before drying) is determined.
  • the arithmetic mean of the values obtained by performing the above operation three times is taken as the solvent content.
  • step (E) as a method for adjusting the content of the solvent in the composition, for example, drying can be mentioned.
  • Drying means include, for example, ovens, hot air blowers, and infrared (IR) heaters.
  • warm air may be directly applied to the composition, or warm air may be applied to the surface opposite to the surface on which the composition of the base material is arranged. Further, a diffusion plate may be installed in order to prevent the surface of the composition from flowing due to warm air.
  • Drying may be done by inhalation.
  • a decompression chamber having an exhaust mechanism can be used. By inhaling the gas around the composition, the content of the solvent in the composition can be reduced.
  • the drying conditions are not limited as long as the content of the solvent in the composition can be adjusted in the range of 50% by mass or less.
  • the drying conditions may be determined, for example, according to the components contained in the composition, the coating amount of the composition, and the transport speed.
  • the method for producing a cholesteric liquid crystal film according to the present disclosure may be carried out by a roll-to-roll method.
  • each step is carried out while continuously transporting a long base material.
  • the method for producing a cholesteric liquid crystal film according to the present disclosure may be carried out using a base material that is conveyed one by one.
  • the cholesteric liquid crystal film of Example 1 was produced by the following procedure.
  • the cholesteric liquid crystal film of Example 1 has a base material, an alignment layer, a first cholesteric liquid crystal layer, and a second cholesteric liquid crystal layer in this order.
  • a triacetyl cellulose (TAC) film (FUJIFILM Corporation, refractive index: 1.48, thickness: 40 ⁇ m) was prepared.
  • the composition for forming an orientation layer is prepared by stirring a mixture containing pure water (96 parts by mass) and PVA-205 (4 parts by mass, Kuraray Co., Ltd., polyvinyl alcohol) in a container kept warm at 80 ° C. Prepared. Using a bar (bar count: 6), the composition for forming an orientation layer was applied onto a substrate (triacetyl cellulose film), and then dried in an oven at 100 ° C. for 10 minutes. By the above procedure, an orientation layer (thickness: 2 ⁇ m) was formed on the base material.
  • a first cholesteric liquid crystal layer (thickness: 8 ⁇ m) was formed on the oriented layer by the following procedure.
  • a coating liquid (1) for forming a liquid crystal layer was prepared by filtering using a polypropylene filter (pore diameter: 0.2 ⁇ m).
  • Rod-shaped thermotropic liquid crystal compound (compound (A) below): 100 parts by mass (2) Chiral agent (compound (B) below, Palicol® LC756, BASF): 1.7 parts by mass (3) Photopolymerization initiator (IRGACURE (registered trademark) 907, BASF): 3 parts by mass (4) Photopolymerization initiator (PM758, Nippon Kayaku Co., Ltd.): 1 part by mass (5) Orientation regulator (the following compound (C) )): 0.5 parts by mass (6) Solvent (methyl ethyl ketone): 184 parts by mass (7) Solvent (cyclohexanone): 31 parts by mass
  • Compound (A) is a mixture of the following three compounds.
  • the content of each compound in the mixture is 84% by mass, 14% by mass, and 2% by mass in this order from the top.
  • the base material having the alignment layer was heated at 70 ° C., and then the liquid crystal layer forming coating liquid (1) was applied onto the alignment layer using a bar (bar number: 18).
  • the liquid crystal layer forming coating liquid (1) coated on the alignment layer is dried in an oven at 70 ° C. for 1 minute to form a coating film (thickness: 10 ⁇ m, solvent content: 1% by mass or less). Formed.
  • the coating film to which the shearing force was applied was irradiated with ultraviolet rays (exposure amount: 500 mJ / cm 2 ) using a metal halide lamp to cure the coating film.
  • a second cholesteric liquid crystal layer (thickness: 8 ⁇ m) was formed on the first cholesteric liquid crystal layer by the following procedure.
  • a coating liquid (2) for forming a liquid crystal layer was prepared by filtering using a polypropylene filter (pore diameter: 0.2 ⁇ m).
  • Rod-shaped thermotropic liquid crystal compound (Compound (A)): 100 parts by mass (2) Chiral agent (Compound (B), Policolor (registered trademark) LC756, BASF): 1.2 parts by mass (3) Photopolymerization Initiator (IRGACURE® 907, BASF): 1 part by mass (4) Photopolymerization initiator (PM758, Nippon Kayaku Co., Ltd.): 1 part by mass (5) Orientation control agent (Compound (C)): 0.5 parts by mass (6) Solvent (methyl ethyl ketone): 184 parts by mass (7) Solvent (cyclohexanone): 31 parts by mass
  • the base material having the first cholesteric liquid crystal layer is heated at 70 ° C., and then the liquid crystal layer forming coating liquid (2) is applied onto the first cholesteric liquid crystal layer using a bar (bar count: 18). It was applied.
  • the liquid crystal layer forming coating liquid (2) coated on the first cholesteric liquid crystal layer is dried in an oven at 70 ° C. for 1 minute to obtain a coating film (thickness: 10 ⁇ m, solvent content: 1 mass). % Or less) was formed.
  • the coating film to which the shearing force was applied was irradiated with ultraviolet rays (exposure amount: 500 mJ / cm 2 ) using a metal halide lamp to cure the coating film.
  • Example 2 The cholesteric liquid crystal film of Example 2 was produced by the same procedure as in Example 1 except that the amount of the chiral agent added in the liquid crystal layer forming coating liquid (1) was changed to 1.2 parts by mass.
  • the cross section of the cholesteric liquid crystal film of Example 2 in the thickness direction was observed by the same procedure as in Example 1.
  • a striped pattern in which dark areas and bright areas were alternately arranged was observed.
  • the dark portion observed in the second cholesteric liquid crystal layer was connected to the dark portion observed in the first cholesteric liquid crystal layer.
  • the cross section of the cholesteric liquid crystal film of Comparative Example 1 in the thickness direction was observed by the same procedure as in Example 1.
  • the directions of the spiral axes in the second cholesteric liquid crystal layer are different, and the dark portion observed in the second cholesteric liquid crystal layer at the interface between the first cholesteric liquid crystal layer and the second cholesteric liquid crystal layer is the above-mentioned second cholesteric liquid crystal layer. It was not connected to the dark part observed in the cholesteric liquid crystal layer of 1.
  • Table 1 shows that the haze of Examples 1 and 2 is smaller than the haze of Comparative Example 1.

Abstract

本開示は、顕微鏡を用いて観察される暗部及び明部が交互に並んだ縞模様を有する第1のコレステリック液晶層と、上記第1のコレステリック液晶層に接して配置され、顕微鏡を用いて観察される暗部及び明部が交互に並んだ縞模様を有する第2のコレステリック液晶層と、を有し、上記第1のコレステリック液晶層と上記第2のコレステリック液晶層との界面において、上記第2のコレステリック液晶層で観察される上記暗部が、上記第1のコレステリック液晶層で観察される上記暗部に接続しているコレステリック液晶膜を提供する。

Description

コレステリック液晶膜
 本開示は、コレステリック液晶膜に関する。
 コレステリック液晶層は、例えば、特定の波長域において右円偏光及び左円偏光のいずれか一方を選択的に反射させる性質を有する層として知られている。種々の用途へ展開されているコレステリック液晶層は、例えば、投映像表示用部材(例えば、反射素子)として用いられている。昨今では、コレステリック液晶層に反射異方性を付与する試みもなされている(例えば、特許文献1参照)。
特開2005-37735号公報
 コレステリック液晶層の用途に応じて、複数のコレステリック液晶層を組み合わせることがある。コレステリック液晶層が反射する光の波長は、らせんピッチ(らせんの一回転あたりにおけるらせん軸の長さをいう。以下同じ。)に依存するため、例えば、互いに異なるらせんピッチを有する複数のコレステリック液晶層を用いることで、反射可能な光の波長域を広くすることができる。
 複数のコレステリック液晶層の使用においては、製造原価の観点から、複数のコレステリック液晶層を積み重ね、コレステリック液晶層同士を直接接触させることが好ましい。しかしながら、上記のように複数のコレステリック液晶層を積み重ねる場合、積層界面で液晶層の分子軸の向きが乱れると、得られるコレステリック液晶膜のヘイズが大きくなるという問題がある。
 本開示は、上記の事情に鑑みてなされたものである。
 本開示の一態様は、ヘイズが小さいコレステリック液晶膜を提供することを目的とする。
 本開示は、以下の態様を含む。
<1> 顕微鏡を用いて観察される暗部及び明部が交互に並んだ縞模様を有する第1のコレステリック液晶層と、上記第1のコレステリック液晶層に接して配置され、顕微鏡を用いて観察される暗部及び明部が交互に並んだ縞模様を有する第2のコレステリック液晶層と、を有し、上記第1のコレステリック液晶層と上記第2のコレステリック液晶層との界面において、上記第2のコレステリック液晶層で観察される上記暗部が、上記第1のコレステリック液晶層で観察される上記暗部に接続しているコレステリック液晶膜。
<2> 厚さ方向の断面視において、上記第2のコレステリック液晶層で観察される上記暗部のうち隣り合う2つの暗部の距離が、上記第1のコレステリック液晶層で観察される上記暗部のうち隣り合う2つの暗部の距離と異なる<1>に記載のコレステリック液晶膜。
<3> 厚さ方向の断面視において、上記第2のコレステリック液晶層で観察される上記暗部のうち隣り合う2つの暗部の距離が、上記第1のコレステリック液晶層で観察される上記暗部のうち隣り合う2つの暗部の距離よりも大きい<1>又は<2>に記載のコレステリック液晶膜。
<4> 厚さ方向の断面視において、上記第1のコレステリック液晶層で観察される上記暗部のうち隣り合う2つの暗部の距離に対する上記第2のコレステリック液晶層で観察される上記暗部のうち隣り合う2つの暗部の距離の比が、1~2である<1>に記載のコレステリック液晶膜。
<5> 厚さ方向の断面視において、上記第1のコレステリック液晶層で観察される上記暗部のうち隣り合う2つの暗部の距離が、0.1μm~2μmである<1>~<4>のいずれか1つに記載のコレステリック液晶膜。
<6> 厚さ方向の断面視において、上記第2のコレステリック液晶層で観察される上記暗部のうち隣り合う2つの暗部の距離が、0.1μm~5μmである<1>~<5>のいずれか1つに記載のコレステリック液晶膜。
<7> 上記第1のコレステリック液晶層と上記第2のコレステリック液晶層との界面において、上記第1のコレステリック液晶層で観察される上記暗部に接続している上記第2のコレステリック液晶層で観察される上記暗部の割合が、上記第2のコレステリック液晶層で観察される上記暗部の数に対して、50%~100%である<1>~<6>のいずれか1つに記載のコレステリック液晶膜。
<8> 厚さ方向の断面視において、上記第1のコレステリック液晶層で観察される上記暗部が、上記第1のコレステリック液晶層の主面に対して傾斜しており、かつ、上記第2のコレステリック液晶層で観察される上記暗部が、上記第2のコレステリック液晶層の主面に対して傾斜している<1>~<7>のいずれか1つに記載のコレステリック液晶膜。
<9> 厚さ方向の断面視において、上記第1のコレステリック液晶層で観察される上記暗部の平均角度が、上記第1のコレステリック液晶層の主面に対して、20°~90°である<1>~<8>のいずれか1つに記載のコレステリック液晶膜。
<10> 厚さ方向の断面視において、上記第2のコレステリック液晶層で観察される上記暗部の平均角度が、上記第2のコレステリック液晶層の主面に対して、30°~90°である<1>~<9>のいずれか1つに記載のコレステリック液晶膜。
<11> 上記第1のコレステリック液晶層の上記縞模様が、少なくとも、上記第1のコレステリック液晶層の厚さ方向の断面で観察され、かつ、上記第2のコレステリック液晶層の上記縞模様が、少なくとも、上記第2のコレステリック液晶層の厚さ方向の断面で観察される<1>~<10>のいずれか1つに記載のコレステリック液晶膜。
 本開示の一態様によれば、ヘイズが小さいコレステリック液晶膜が提供される。
本開示に係るコレステリック液晶膜の一例を示す概略断面図である。
 以下、本開示の実施形態について詳細に説明する。本開示は、以下の実施形態に何ら制限されず、本開示の目的の範囲内において、適宜変更を加えて実施することができる。図面における寸法の比率は、必ずしも実際の寸法の比率を表すものではない。
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を示す。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本開示において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、序数詞(例えば、「第1」、及び「第2」)は、複数の構成要素を区別するために使用する用語であり、構成要素の数、及び構成要素の優劣を制限するものではない。
 本開示において、「厚さ方向の断面」とは、対象物を厚さ方向に沿って切断することによって現れる面を意味する。
 本開示において、厚さ方向の断面視に関して使用される「液晶層の主面」という用語は、厚さ方向の断面視において、厚さ方向と交差する液晶層の2つの面(すなわち、上面、及び下面)のうち少なくとも1つの面を指す用語として使用される。
 本開示において、「分子軸」とは、分子構造の中心を分子構造の長手方向に沿って通る軸を意味する。ただし、円盤状液晶化合物に関して用いられる「分子軸」は、円盤状液晶化合物の円盤面と直角に交わる軸を意味する。
 本開示において、「固形分」とは、対象物の全成分から溶媒を除いた成分を意味する。
 本開示において、「固形分質量」とは、対象物の質量から溶媒の質量を除いた質量を意味する。
<コレステリック液晶膜>
 本開示に係るコレステリック液晶膜は、顕微鏡を用いて観察される暗部及び明部が交互に並んだ縞模様を有する第1のコレステリック液晶層と、上記第1のコレステリック液晶層に接して配置され、顕微鏡を用いて観察される暗部及び明部が交互に並んだ縞模様を有する第2のコレステリック液晶層と、を有し、上記第1のコレステリック液晶層と上記第2のコレステリック液晶層との界面において、上記第2のコレステリック液晶層で観察される上記暗部が、上記第1のコレステリック液晶層で観察される上記暗部に接続している。上記した本開示の一態様によれば、ヘイズが小さいコレステリック液晶膜が提供される。
 本開示に係るコレステリック液晶膜が上記効果を奏する理由は、以下のように推察される。複数のコレステリック液晶層を積み重ねると、隣接する2つのコレステリック液晶層の界面での分子間相互作用によって液晶の配向(例えば、液晶化合物の配向)が乱れることがある。液晶の配向が乱れると、局所的に屈折率変化が大きくなることで光が散乱し、ヘイズが大きくなると考えられる。一方、本開示に係るコレステリック液晶膜によれば、第1のコレステリック液晶層と第2のコレステリック液晶層との界面において、上記第2のコレステリック液晶層で観察される暗部が、上記第1のコレステリック液晶層で観察される暗部に接続していることで、複数のコレステリック液晶層を積み重ねても、液晶の配向の乱れを抑制することができる。よって、本開示に係るコレステリック液晶膜のヘイズが小さくなる。
 以下の説明において、第1のコレステリック液晶層を「第1の液晶層」といい、第2のコレステリック液晶層を「第2の液晶層」という場合がある。以下の説明において、第1のコレステリック液晶層、及び第2のコレステリック液晶層を明確に区別する必要がない場合、第1のコレステリック液晶層、及び第2のコレステリック液晶層をあわせて「液晶層」という場合がある。
[第1のコレステリック液晶層]
 本開示に係るコレステリック液晶膜は、顕微鏡を用いて観察される暗部及び明部が交互に並んだ縞模様を有する第1のコレステリック液晶層を有する。
(縞模様)
 液晶の一形態として知られるコレステリック液晶は、複数の液晶化合物がらせん状に配列することによって形成されるらせん構造を有する。らせん構造における液晶化合物の分子軸の向きは、らせん軸に沿って変化している。このため、顕微鏡を用いてコレステリック液晶を観察すると、観察方向に対する液晶化合物の分子軸の向きに応じて、暗部(相対的に暗く見える領域をいう。以下同じ。)、及び明部(相対的に明るく見える領域をいう。以下同じ。)が観察される。本開示において、暗部、及び明部を観察するための顕微鏡としては、特に断りのない限り、走査型電子顕微鏡、又は偏光顕微鏡を用いる。
 第1の液晶層の縞模様は、上記第1の液晶層の表面(例えば、第1の液晶層の第2の液晶層に接する面とは反対側の面)で観察されてもよい。第1の液晶層の縞模様は、上記第1の液晶層の断面で観察されてもよい。第1の液晶層の縞模様は、少なくとも、上記第1の液晶層の厚さ方向の断面で観察されることが好ましい。本開示において、断面観察に用いる試料は、例えば、ミクロトームを用いて作製すればよい。
 厚さ方向の断面視において、第1の液晶層で観察される暗部は、上記第1の液晶層の主面に対して傾斜していることが好ましい。本開示において、「暗部が液晶層の主面に対して傾斜している」という態様は、暗部が液晶層の主面に対して斜めになっている状態に限られず、暗部が液晶層の主面に対して直交している(すなわち、暗部と液晶層の主面とのなす角が90°である)状態を包含する。例えば、第1の液晶層の厚さ方向の断面で縞模様が観察される場合、第1の液晶層で観察される暗部が傾斜することで、明部、及び暗部の配列方向と略直交するらせん軸も傾斜する。このため、斜め方向から第1の液晶層に入射する光の方向(すなわち、入射方向)とらせん軸とのなす角が小さい場合、コレステリック液晶に由来する反射面(らせん軸に直交しており、同一平面上に存在する液晶化合物の分子軸の向きが同じである面をいう。以下同じ。)で反射される光の円偏光度が高くなる。
 厚さ方向の断面視において、第1の液晶層で観察される暗部が上記第1の液晶層の主面に対して傾斜していること(以下、本段落において「暗部の傾斜」という。)は、液晶層の厚さ方向の少なくとも1つの断面視において観察されればよい。例えば、任意の1つの断面視において暗部の傾斜が観察されない場合であっても、他の断面視において暗部の傾斜が観察されればよい。
 第1の液晶層で観察される暗部の角度は、制限されない。厚さ方向の断面視において、第1の液晶層で観察される暗部の平均角度は、らせん軸の傾斜角度の均一性の観点から、上記第1の液晶層の主面に対して、5°以上であることが好ましく、10°以上であることがより好ましく、20°以上であることが特に好ましい。厚さ方向の断面視において、第1の液晶層で観察される暗部の平均角度は、上記第1の液晶層の主面に対して、90°以下であることが好ましい。
 厚さ方向の断面視において、第1の液晶層で観察される暗部の平均角度は、以下の方法によって測定する。走査型電子顕微鏡、又は偏光顕微鏡を用いて得られる第1の液晶層の厚さ方向の断面画像に基づいて、任意に選択される1つの暗部の長手方向の両端を通る直線(仮想線)と第1の液晶層の主面とのなす角(以下、「傾斜角」という。)を測定する。傾斜角が90°である場合を除き、直角よりも小さい角度(すなわち、鋭角)を傾斜角として採用する。合計5つの暗部を対象に傾斜角を測定する。測定値を算術平均することによって得られた値を、第1の液晶層で観察される暗部の平均角度とする。
 第1の液晶層で観察される暗部と暗部との間の距離は、制限されない。厚さ方向の断面視において、第1の液晶層で観察される暗部のうち隣り合う2つの暗部の距離は、0.01μm以上であることが好ましく、0.05μm以上であることがより好ましく、0.1μm以上であることが特に好ましい。厚さ方向の断面視において、第1の液晶層で観察される暗部のうち隣り合う2つの暗部の距離は、500μm以下であることが好ましく、100μm以下であることがより好ましく、10μm以下であることが更に好ましく、2μm以下であることが特に好ましい。らせんピッチが大きくなると、隣り合う2つの暗部の距離は大きくなる傾向にある。一方、らせんピッチが小さくなると、隣り合う2つの暗部の距離は小さくなる傾向にある。以下、隣り合う2つの暗部の距離を「暗部間の距離」という場合がある。
 厚さ方向の断面視において、第1の液晶層で観察される暗部のうち隣り合う2つの暗部の距離は、以下の方法によって測定する。走査型電子顕微鏡、又は偏光顕微鏡を用いて得られる第1の液晶層の厚さ方向の断面画像に基づいて、合計6つの暗部から構成される5組の隣り合う2つの暗部を選択し、5組の各々において隣り合う2つの暗部の最短距離を測定する。より具体的にいえば、1組目の隣り合う2つの暗部の最短距離として、ある1つの暗部の幅方向の中心と、上記暗部と隣り合う1つの暗部の幅方向の中心と、の最短距離を測定する。次に、測定対象となる2つの暗部の組み合わせを都度変更しながら、上記した方法に従って、2組目から5組目までの隣り合う2つの暗部の最短距離を測定する。測定値の算術平均を、第1の液晶層で観察される暗部のうち隣り合う2つの暗部の距離とする。
 第1の液晶層の第2の液晶層に接する面とは反対側の面で観察される液晶化合物は、上記第1の液晶層の面内方向のうち一方向に沿ってねじれながら配列していることが好ましい。上記のように液晶化合物が配列していることで、厚さ方向の断面で観察される暗部、及び明部の直線性が高くなるため、コレステリック液晶膜のヘイズをより小さくすることができる。
 本開示において、「液晶化合物が液晶層の面内方向のうち一方向に沿ってねじれながら配列している」とは、走査型電子顕微鏡、又は偏光顕微鏡を用いて液晶層の表面(観察対象となる面に限る。)を観察(すなわち、平面視)した場合に、液晶層の面内方向のうち一方向に沿って、明部、及び暗部が交互に並んだ縞模様が観察されることを意味する。液晶化合物が液晶層の面内方向のうち一方向に沿ってねじれながら配列していることで、上記一方向へ進むにつれて液晶化合物の分子軸の向きが変化する。このため、明部、及び暗部が交互に並んだ縞模様が観察される。
(厚さ)
 第1の液晶層の厚さは、制限されない。第1の液晶層の平均厚さは、第1の液晶層に隣接する層(例えば、基材、及び第2の液晶層)の表面形状の平滑性による影響を抑制するという観点から、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、1μm以上であることが特に好ましい。第1の液晶層の平均厚さは、透明性の観点から、500μm以下であることが好ましく、100μm以下であることがより好ましく、20μm以下であることが特に好ましい。
 第1の液晶層の平均厚さは、以下の方法によって測定する。走査型電子顕微鏡、又は偏光顕微鏡を用いて得られる第1の液晶層の厚さ方向の断面画像に基づいて、5箇所の厚さを測定する。測定値を算術平均することによって得られた値を、第1の液晶層の平均厚さとする。
(組成)
 第1の液晶層の組成は、暗部及び明部が交互に並んだ縞模様が観察される限り、制限されない。以下、第1の液晶層の成分について具体的に説明する。
-液晶化合物-
 第1の液晶層は、液晶化合物を含むことが好ましい。液晶化合物の種類は、制限されない。液晶化合物としては、例えば、コレステリック液晶を形成する公知の液晶化合物を利用することができる。
 液晶化合物は、重合性基を有していてもよい。液晶化合物は、1種単独、又は2種以上の重合性基を有していてもよい。液晶化合物は、同種の2つ以上の重合性基を有していてもよい。液晶化合物が重合性基を有することで、液晶化合物を重合させることができる。液晶化合物を重合させることで、コレステリック液晶の安定性を向上させることができる。
 重合性基としては、例えば、エチレン性不飽和二重結合を有する基、環状エーテル基、及び開環反応を起こすことが可能な含窒素複素環基が挙げられる。
 エチレン性不飽和二重結合を有する基としては、例えば、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、ビニルフェニル基、及びアリル基が挙げられる。
 環状エーテル基としては、例えば、エポキシ基、及びオキセタニル基が挙げられる。
 開環反応を起こすことが可能な含窒素複素環基としては、例えば、アジリジニル基が挙げられる。
 重合性基は、エチレン性不飽和二重結合を有する基、及び環状エーテル基からなる群より選択される少なくとも1種であることが好ましい。具体的に、重合性基は、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、ビニルフェニル基、アリル基、エポキシ基、オキセタニル基、及びアジリジニル基からなる群より選択される少なくとも1種であることが好ましく、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、及びメタクリロイルオキシ基からなる群より選択される少なくとも1種であることがより好ましく、アクリロイルオキシ基、及びメタクリロイルオキシ基からなる群より選択される少なくとも1種であることが特に好ましい。
 液晶化合物は、化学構造に応じて、例えば、棒状液晶化合物、及び円盤状液晶化合物に分類される。棒状液晶化合物は、棒状の化学構造を有する液晶化合物として知られている。棒状液晶化合物としては、例えば、公知の棒状液晶化合物を利用することができる。円盤状液晶化合物は、円盤状の化学構造を有する液晶化合物として知られている。円盤状液晶化合物としては、例えば、公知の円盤状液晶化合物を利用することができる。
 液晶化合物は、製造コストの観点から、棒状液晶化合物であることが好ましく、棒状サーモトロピック液晶化合物であることがより好ましい。
 棒状サーモトロピック液晶化合物は、棒状の化学構造を有し、かつ、特定の温度範囲で液晶性を示す化合物である。棒状サーモトロピック液晶化合物としては、例えば、公知の棒状サーモトロピック液晶化合物を利用することができる。
 棒状サーモトロピック液晶化合物としては、例えば、「Makromol. Chem.,190巻、2255頁(1989年)」、「Advanced Materials 5巻、107頁(1993年)」、米国特許第4683327号明細書、米国特許第5622648号明細書、米国特許第5770107明細書、国際公開第95/22586号、国際公開第95/24455号、国際公開第97/00600号、国際公開第98/23580号、国際公開第98/52905号、特開平1-272551号公報、特開平6-16616号公報、特開平7-110469号公報、特表平11-513019号公報、特開平11-80081号公報、特開2001-328973号公報、又は特開2007-279688号公報に記載された化合物が挙げられる。棒状サーモトロピック液晶化合物としては、例えば、特開2016-81035号公報において一般式1で表される液晶化合物、及び特開2007-279688号公報において一般式(I)又は一般式(II)で表される化合物も挙げられる。
 棒状サーモトロピック液晶化合物は、下記一般式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Q、及びQは、それぞれ独立して、重合性基を表し、L、L、L、及びLは、それぞれ独立して、単結合、又は2価の連結基を表し、A、及びAは、それぞれ独立して、炭素原子数が2~20である2価の炭化水素基を表し、Mは、メソゲン基を表す。
 一般式(1)中、Q、及びQで表される重合性基としては、例えば、既述の重合性基が挙げられる。Q、及びQで表される重合性基の好ましい態様は、既述の重合性基の好ましい態様と同様である。
 一般式(1)中、L、L、L、及びLで表される2価の連結基は、-O-、-S-、-CO-、-NR-、-CO-O-、-O-CO-O-、-CO-NR-、-NR-CO-、-O-CO-、-O-CO-NR-、-NR-CO-O-、及びNR-CO-NR-からなる群より選択される2価の連結基であることが好ましい。上記した2価の連結基におけるRは、炭素原子数が1~7であるアルキル基、又は水素原子を表す。
 一般式(1)中、L、及びLの少なくとも一方は、-O-CO-O-であることが好ましい。
 一般式(1)中、Q-L-、及びQ-L-は、それぞれ独立して、CH=CH-CO-O-、CH=C(CH)-CO-O-、又はCH=C(Cl)-CO-O-であることが好ましく、CH=CH-CO-O-であることがより好ましい。
 一般式(1)中、A、及びAで表される、炭素原子数が2~20である2価の炭化水素基は、炭素原子数が2~12であるアルキレン基、炭素原子数が2~12であるアルケニレン基、又は炭素原子数が2~12であるアルキニレン基であることが好ましく、炭素原子数が2~12であるアルキレン基であることがより好ましい。2価の炭化水素基は、鎖状であることが好ましい。2価の炭化水素基は、互いに隣接していない酸素原子、又は互いに隣接していない硫黄原子を含んでいてもよい。2価の炭化水素基は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子(例えば、フッ素、塩素、及び臭素)、シアノ基、メチル基、及びエチル基が挙げられる。
 一般式(1)中、Mで表されるメソゲン基は、液晶形成に寄与する液晶化合物の主要骨格を形成する基である。Mで表されるメソゲン基については、例えば、「FlussigeKristalle in Tabellen II」(VEB DeutscheVerlag fur Grundstoff Industrie,Leipzig、1984年刊)の記載(特に第7頁~第16頁)、及び「液晶便覧」(液晶便覧編集委員会編、丸善、2000年刊)の記載(特に第3章)を参照することができる。
 一般式(1)中、Mで表されるメソゲン基の具体的な構造としては、例えば、特開2007-279688号公報の段落[0086]に記載された構造が挙げられる。
 一般式(1)中、Mで表されるメソゲン基は、芳香族炭化水素基、複素環基、及び脂環式炭化水素基からなる群より選択される少なくとも1種の環状構造を含む基であることが好ましく、芳香族炭化水素基を含む基であることがより好ましい。
 一般式(1)中、Mで表されるメソゲン基は、2個~5個の芳香族炭化水素基を含む基であることが好ましく、3個~5個の芳香族炭化水素基を含む基であることがより好ましい。
 一般式(1)中、Mで表されるメソゲン基は、3個~5個のフェニレン基を含み、かつ、上記フェニレン基が互いに-CO-O-によって連結された基であることが好ましい。
 一般式(1)中、Mで表されるメソゲン基に含まれる環状構造(例えば、芳香族炭化水素基、複素環基、及び脂環式炭化水素基)は、置換基を有していてもよい。置換基としては、例えば、炭素数が1~10であるアルキル基(例えば、メチル基)が挙げられる。
 一般式(1)で表される化合物の具体例を以下に示す。ただし、一般式(1)で表される化合物は、以下に示す化合物に制限されるものではない。以下に示す化合物の化学構造において、「-Me」は、メチル基を表す。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 棒状サーモトロピック液晶化合物の具体例を以下に示す。ただし、棒状サーモトロピック液晶化合物は、以下に示す化合物に制限されるものではない。
Figure JPOXMLDOC01-appb-C000004
 液晶化合物は、公知の方法によって合成した合成品、又は市販品であってもよい。液晶化合物の市販品は、例えば、東京化成工業株式会社、及びメルク社から入手可能である。
 第1の液晶層は、1種単独、又は2種以上の液晶化合物を含んでいてもよい。
 第1の液晶層における液晶化合物の含有率は、耐熱性の観点から、上記第1の液晶層の全質量に対して、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。液晶化合物の含有率の上限は、制限されない。第1の液晶層における液晶化合物の含有率は、上記第1の液晶層の全質量に対して、100質量%以下の範囲で決定すればよい。第1の液晶層が液晶化合物以外の成分を含む場合、上記第1の液晶層における液晶化合物の含有率は、上記第1の液晶層の全質量に対して、100質量%未満、99質量%以下、又は96質量%以下であってもよい。
-他の成分-
 第1の液晶層は、液晶化合物以外の成分(以下、本段落において「他の成分」という。)を含んでいてもよい。他の成分としては、例えば、キラル剤、溶媒、配向規制剤、重合開始剤、レベリング剤、配向助剤、及び増感剤が挙げられる。
[第2のコレステリック液晶層]
 本開示に係るコレステリック液晶膜は、第1のコレステリック液晶層に接して配置され、顕微鏡を用いて観察される暗部及び明部が交互に並んだ縞模様を有する第2のコレステリック液晶層を有する。
(縞模様)
 第2の液晶層で縞模様が観察される原理は、上記「第1のコレステリック液晶層」の項において説明した原理と同様である。
 第2の液晶層の縞模様は、上記第2の液晶層の表面(例えば、第2の液晶層の第1の液晶層に接する面とは反対側の面)で観察されてもよい。第2の液晶層の縞模様は、上記第2の液晶層の断面で観察されてもよい。第2の液晶層の縞模様は、少なくとも、上記第2の液晶層の厚さ方向の断面で観察されることが好ましい。
 第1の液晶層と第2の液晶層との界面において、上記第2の液晶層で観察される暗部は、上記第1の液晶層で観察される暗部に接続している(以下、「暗部の接続」という場合がある。)。本開示において、「第2の液晶層で観察される暗部が第1の液晶層で観察される暗部に接続している」とは、走査型電子顕微鏡、又は偏光顕微鏡を用いて得られる液晶層の厚さ方向の断面画像において、第2の液晶層で観察される暗部が、第1の液晶層で観察される暗部につながって見えることを意味し、両者が厳密につながっていることを要するものではない。
 暗部の接続について図1を参照して説明する。図1は、本開示に係るコレステリック液晶膜の一例を示す概略断面図である。
 図1に示されるコレステリック液晶膜10は、第1のコレステリック液晶層20と、第2のコレステリック液晶層21と、を有する。第1のコレステリック液晶層20、及び第2のコレステリック液晶層21は、積層方向Zに沿って並んでいる。積層方向Zは、コレステリック液晶膜10の厚さ方向に平行である。
 第1のコレステリック液晶層20において、暗部30、及び明部40が交互に並んだ縞模様が観察される。暗部30は、第1のコレステリック液晶層20の主面に対して傾斜している。暗部30は、積層方向Zの一方へ向かうに従って、積層方向Zと直交する方向の一方へ延びている。
 第2のコレステリック液晶層21は、第1のコレステリック液晶層20に接して配置されている。第2のコレステリック液晶層21において、暗部31、及び明部41が交互に並んだ縞模様が観察される。暗部31は、第2のコレステリック液晶層21の主面に対して傾斜している。暗部31は、積層方向Zの一方へ向かうに従って、積層方向Zと直交する方向の一方へ延びている。
 第1のコレステリック液晶層20と第2のコレステリック液晶層21との界面において、第2のコレステリック液晶層21で観察される暗部31は、第1のコレステリック液晶層20で観察される暗部30に接続している。
 第1の液晶層と第2の液晶層との界面において、上記第2の液晶層で観察される暗部は、上記第1の液晶層で観察される暗部の一部又は全部に接続していてもよい。第1の液晶層と第2の液晶層との界面において、上記第1の液晶層で観察される暗部に接続している上記第2のコレステリック液晶層で観察される暗部の割合(以下、「暗部の接続率」という場合がある。)は、上記第2の液晶層で観察される暗部の数に対して、50%~100%であることが好ましく、70%~100%であることがより好ましく、80%~100%であることが特に好ましい。暗部の接続率が上記範囲であることで、液晶の配向が乱れることをより抑制することができるため、コレステリック液晶膜のヘイズをより小さくすることができる。
 暗部の接続率は、以下の方法によって測定する。走査型電子顕微鏡、又は偏光顕微鏡を用いて、液晶層の厚さ方向の断面画像を3つ取得する。各断面画像で観察される第1の液晶層と第2の液晶層との界面において、上記第1の液晶層で観察される暗部に接続している上記第2の液晶層で観察される暗部の割合を下記式にしたがって求める。測定値を算術平均することによって得られた値を、暗部の接続率とする。
 式:([第1の液晶層で観察される暗部に接続している第2の液晶層で観察される暗部の数]/[第2の液晶層で観察される暗部の数])×100
 厚さ方向の断面視において、第2の液晶層で観察される暗部は、上記第2の液晶層の主面に対して傾斜していることが好ましい。上記「第1のコレステリック液晶層」の項において説明したとおり、上記態様によれば、例えば、コレステリック液晶に由来する反射面で反射される光の円偏光度が高くなる。同様の観点から、厚さ方向の断面視において、第1の液晶層で観察される暗部は、第1の液晶層の主面に対して傾斜しており、かつ、第2の液晶層で観察される暗部は、上記第2の液晶層の主面に対して傾斜していることがより好ましい。さらに、厚さ方向の断面視において、第2の液晶層で観察される暗部の傾斜方向は、第1の液晶層で観察される暗部の傾斜方向と同じであることが好ましい。本開示において、「第2の液晶層で観察される暗部の傾斜方向が第1の液晶層で観察される暗部の傾斜方向と同じである」とは、第1の液晶層と第2の液晶層との界面において互いに接続している第1の液晶層で観察される暗部と第2の液晶層で観察される暗部において、第1の液晶層で観察される暗部の長手方向の両端を通る直線(仮想線)と第2の液晶層で観察される暗部の長手方向の両端を通る直線(仮想線)とのなす角が、100°~180°の範囲であることを意味する。上記2直線のなす角は、120°~180°の範囲であることが好ましく、150°~180°の範囲であることがより好ましい。
 厚さ方向の断面視において、第2の液晶層で観察される暗部が上記第2の液晶層の主面に対して傾斜していること(以下、本段落において「暗部の傾斜」という。)は、液晶層の厚さ方向の少なくとも1つの断面視において観察されればよい。例えば、任意の1つの断面視において暗部の傾斜が観察されない場合であっても、他の断面視において暗部の傾斜が観察されればよい。
 第2の液晶層で観察される暗部の角度は、制限されない。厚さ方向の断面視において、第2の液晶層で観察される暗部の平均角度は、らせん軸の傾斜角度の均一性の観点から、上記第2の液晶層の主面に対して、10°以上であることが好ましく、20°以上であることがより好ましく、30°以上であることが特に好ましい。厚さ方向の断面視において、第2の液晶層で観察される暗部の平均角度は、上記第2の液晶層の主面に対して、90°以下であることが好ましい。
 厚さ方向の断面視において、第2の液晶層で観察される暗部の平均角度は、上記「第1のコレステリック液晶層」の項において説明した第1の液晶層で観察される暗部の平均角度の測定方法に準ずる方法によって測定する。
 厚さ方向の断面視において、第2の液晶層で観察される暗部の平均角度は、第1の液晶層で観察される暗部の平均角度と同じであってもよく、又は第1の液晶層で観察される暗部の平均角度と異なっていてもよい。
 第2の液晶層で観察される暗部の幅は、制限されない。厚さ方向の断面視において、第2の液晶層で観察される暗部のうち隣り合う2つの暗部の距離は、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.15μm以上であることが特に好ましい。厚さ方向の断面視において、第2の液晶層で観察される暗部のうち隣り合う2つの暗部の距離は、500μm以下であることが好ましく、100μm以下であることがより好ましく、15μm以下であることが更に好ましく、5μm以下であることが特に好ましい。
 厚さ方向の断面視において、第2の液晶層で観察される暗部のうち隣り合う2つの暗部の距離は、上記「第1のコレステリック液晶層」の項において説明した暗部間の距離の測定方法に準ずる方法によって測定する。
 厚さ方向の断面視において、第2の液晶層で観察される暗部のうち隣り合う2つの暗部の距離は、第1の液晶層で観察される暗部のうち隣り合う2つの暗部の距離と同じであってもよく、又は第1の液晶層で観察される暗部のうち隣り合う2つの暗部の距離と異なっていてもよい。厚さ方向の断面視において、第2の液晶層で観察される暗部のうち隣り合う2つの暗部の距離は、暗部の接続率の向上という観点から、第1の液晶層で観察される暗部のうち隣り合う2つの暗部の距離と異なることが好ましい。具体的に、厚さ方向の断面視において、第2の液晶層で観察される暗部のうち隣り合う2つの暗部の距離は、第1の液晶層で観察される暗部のうち隣り合う2つの暗部の距離よりも大きいことが好ましい。
 厚さ方向の断面視において、第1の液晶層で観察される暗部のうち隣り合う2つの暗部の距離に対する第2の液晶層で観察される暗部のうち隣り合う2つの暗部の距離の比は、暗部の接続率の向上という観点から、0.8~5であることが好ましく、0.9~3であることがより好ましく、1~2であることが特に好ましい。さらに、厚さ方向の断面視において、第1の液晶層で観察される暗部のうち隣り合う2つの暗部の距離に対する第2の液晶層で観察される暗部のうち隣り合う2つの暗部の距離の比は、1.1~2であることが好ましく、1.2~2であることがより好ましく、1.3~2であることが特に好ましい。
 第2の液晶層の第1の液晶層に接する面とは反対側の面で観察される液晶化合物は、上記第2の液晶層の面内方向のうち一方向に沿ってねじれながら配列していることが好ましい。上記のように液晶化合物が配列していることで、厚さ方向の断面で観察される暗部、及び明部の直線性が高くなるため、コレステリック液晶膜のヘイズをより小さくすることができる。
(厚さ)
 第2の液晶層の厚さは、制限されない。第2の液晶層の平均厚さは、第2の液晶層に隣接する層(例えば、第1の液晶層)の表面形状の平滑性による影響を抑制するという観点から、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、1μm以上であることが特に好ましい。第2の液晶層の平均厚さは、透明性の観点から、500μm以下であることが好ましく、100μm以下であることがより好ましく、20μm以下であることが特に好ましい。
 第2の液晶層の平均厚さは、上記「第1のコレステリック液晶層」の項において説明した第1の液晶層の平均厚さの測定方法に準ずる方法によって測定する。
 第2の液晶層の厚さは、第1の液晶層の厚さと同じであってもよく、又は第1の液晶層の厚さと異なっていてもよい。第1の液晶層の厚さに対する第2の液晶層の厚さの比は、0.1~10であることが好ましく、0.2~5であることがより好ましく、0.3~3であることが特に好ましい。
(組成)
 第2の液晶層の組成は、暗部及び明部が交互に並んだ縞模様が観察される限り、制限されない。以下、第2の液晶層の成分について具体的に説明する。
-液晶化合物-
 第2の液晶層は、液晶化合物を含むことが好ましい。液晶化合物としては、例えば、上記「第1のコレステリック液晶層」の項において説明した液晶化合物が挙げられる。液晶化合物の好ましい態様は、上記「第1のコレステリック液晶層」の項において説明した液晶化合物の好ましい態様と同様である。
 第2の液晶層は、1種単独、又は2種以上の液晶化合物を含んでいてもよい。
 第2の液晶層における液晶化合物の含有率は、耐熱性の観点から、上記第2の液晶層の全質量に対して、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。液晶化合物の含有率の上限は、制限されない。第2の液晶層における液晶化合物の含有率は、上記第2の液晶層の全質量に対して、100質量%以下の範囲で決定すればよい。第2の液晶層が液晶化合物以外の成分を含む場合、上記第2の液晶層における液晶化合物の含有率は、上記第2の液晶層の全質量に対して、100質量%未満、99質量%以下、又は96質量%以下であってもよい。
-他の成分-
 第2の液晶層は、液晶化合物以外の成分(以下、本段落において「他の成分」という。)を含んでいてもよい。他の成分としては、例えば、キラル剤、溶媒、配向規制剤、重合開始剤、レベリング剤、配向助剤、及び増感剤が挙げられる。
[他の構成要素]
 本開示に係るコレステリック液晶膜の構成要素は、第1の液晶層、及び第2の液晶層を含む限り、制限されない。本開示に係るコレステリック液晶膜は、第1の液晶層、及び第2の液晶層以外の構成要素を有していてもよい。
(他のコレステリック液晶層)
 本開示に係るコレステリック液晶膜は、必要に応じて、第1の液晶層、及び第2の液晶層以外のコレステリック液晶層(以下、「他のコレステリック液晶層」という。)を有していてもよい。言い換えると、本開示に係るコレステリック液晶膜は、第1の液晶層、及び第2の液晶層を含む、3つ以上のコレステリック液晶層を有していてもよい。
 3つ以上のコレステリック液晶層を有するコレステリック液晶膜においては、少なくとも2つのコレステリック液晶層が、第1の液晶層、及び第2の液晶層にそれぞれ該当する限り、他のコレステリック液晶層の態様は制限されない。他のコレステリック液晶層の好ましい態様は、上記「第1のコレステリック液晶層」の項において説明した第1の液晶層、又は上記「第2のコレステリック液晶層」の項において説明した第2の液晶層の好ましい態様と同様である。
 3つ以上のコレステリック液晶層を有するコレステリック液晶膜において、第1の液晶層、及び第2の液晶層に該当するコレステリック液晶層の組み合わせは、複数であってもよい。例えば、3つのコレステリック液晶層が積み重ねられた構造を有するコレステリック液晶膜において、1つ目のコレステリック液晶層、及び2つ目のコレステリック液晶層が、第1の液晶層、及び第2の液晶層にそれぞれ該当し、かつ、2つ目のコレステリック液晶層、及び3つ目のコレステリック液晶層が、第1の液晶層、及び第2の液晶層にそれぞれ該当していてもよい。
 コレステリック液晶膜が3つ以上のコレステリック液晶層を有する場合、全てのコレステリック液晶層は、積み重ねられていることが好ましい。
(基材)
 本開示に係るコレステリック液晶膜は、基材を有していてもよい。基材によれば、コレステリック液晶膜の強度を向上させることができる。
 基材は、第1の液晶層の第2の液晶層と接する面とは反対側の面に配置されてもよい。基材は、第2の液晶層の第1の液晶層と接する面とは反対側の面に配置されてもよい。本開示に係るコレステリック液晶膜は、基材と、第1の液晶層と、第2の液晶層と、をこの順で有することが好ましい。
 基材の全光線透過率は、80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることが特に好ましい。基材の全光線透過率の上限は、制限されない。基材の全光線透過率は、例えば、100%以下の範囲で決定すればよい。基材の全光線透過率は、公知の分光光度計(例えば、ヘイズメーター NDH 2000、日本電色工業株式会社)を用いて測定する。
 基材としては、重合体を含む基材であることが好ましい。重合体を含む基材としては、例えば、ポリエステル系基材(例えば、ポリエチレンテレフタレート、及びポリエチレンナフタレート)、セルロース系基材(例えば、ジアセチルセルロース、及びトリアセチルセルロース(略称:TAC))、ポリカーボネート系基材、ポリ(メタ)アクリル系基材(例えば、ポリ(メタ)アクリレート(例えば、ポリメチルメタクリレート))、ポリスチレン系基材(例えば、ポリスチレン、及びアクリロニトリルスチレン共重合体)、オレフィン系基材(例えば、ポリエチレン、ポリプロピレン、環状構造(例えば、ノルボルネン構造)を有するポリオレフィン、及びエチレンプロピレン共重合体)、ポリアミド系基材(例えば、ポリ塩化ビニル、ナイロン、及び芳香族ポリアミド)、ポリイミド系基材、ポリスルホン系基材、ポリエーテルスルホン系基材、ポリエーテルエーテルケトン系基材、ポリフェニレンスルフィド系基材、ビニルアルコール系基材、ポリ塩化ビニリデン系基材、ポリビニルブチラール系基材、ポリオキシメチレン系基材、及びエポキシ樹脂系基材が挙げられる。基材は、2種以上の重合体(すなわち、ブレンドポリマー)を含む基材であってもよい。基材は、セルロース系基材であることが好ましく、トリアセチルセルロースを含む基材であることがより好ましい。
 基材の形状は、制限されない。基材の形状は、例えば、用途、及び設置場所に応じて決定すればよい。基材は、平板状の基材であることが好ましい。
 基材の厚さは、製造適性、製造原価、及び光学特性の観点から、30μm~250μmの範囲であることが好ましく、40μm~100μmの範囲であることがより好ましい。
(配向層)
 本開示に係るコレステリック液晶膜は、配向層を有していてもよい。配向層によれば、液晶化合物に対して配向規制力を与えることができる。
 配向層は、基材とコレステリック液晶層(好ましくは、第1の液晶層、又は第2の液晶層)との間に配置されることが好ましい。本開示に係るコレステリック液晶膜は、基材と、配向層と、第1の液晶層と、第2の液晶層と、をこの順で有することが好ましい。
 配向層としては、例えば、液晶化合物に対して配向規制力を与える機能を有する公知の配向層を利用することができる。配向層は、電場の付与、磁場の付与、又は光照射によって配向機能が生じる配向層であってもよい。
 配向層の厚さは、0.1μm~10μmの範囲であることが好ましく、1μm~5μmの範囲であることがより好ましい。
[形状]
 本開示に係るコレステリック液晶膜の形状は、制限されない。平面視におけるコレステリック液晶膜の形状としては、例えば、円形(例えば、真円、及び楕円)、多角形(例えば、三角形、四角形、五角形、及び六角形)、及び不定形が挙げられる。
[厚さ]
 本開示に係るコレステリック液晶膜の厚さは、制限されない。本開示に係るコレステリック液晶膜の厚さは、1μm~500μmの範囲であることが好ましく、2μm~250μmの範囲であることがより好ましく、5μm~100μmの範囲であることが特に好ましい。
[用途]
 本開示に係るコレステリック液晶膜の用途は、制限されない。本開示に係るコレステリック液晶膜の用途としては、例えば、光学フィルムが挙げられる。本開示に係るコレステリック液晶膜は、例えば、空中結像装置、透明スクリーン、又は光学センサー部材に用いられる光学フィルムとして用いてもよい。
[製造方法]
 以下、本開示に係るコレステリック液晶膜の製造方法について説明する。ただし、本開示に係るコレステリック液晶膜の製造方法は、以下に説明する方法に制限されるものではない。
 本開示に係るコレステリック液晶膜の製造方法は、基材上に、液晶化合物、及びキラル剤を含む第1の組成物を塗布する工程(以下、「工程(A1)」という場合がある。)と、上記基材上に塗布された上記第1の組成物の表面にせん断力を与える工程(以下、「工程(B1)」という場合がある。)と、上記せん断力が与えられた上記第1の組成物を硬化させることによって第1のコレステリック液晶層を形成する工程(以下、「工程(C1)」という場合がある。)と、上記第1のコレステリック液晶層上に、液晶化合物、及びキラル剤を含む第2の組成物を塗布する工程(以下、「工程(A2)」という場合がある。)と、上記第1のコレステリック液晶層上に塗布された上記第2の組成物の表面にせん断力を与える工程(以下、「工程(B2)」という場合がある。)と、上記せん断力が与えられた上記第2の組成物を硬化させることによって第2のコレステリック液晶層を形成する工程(以下、「工程(C2)」という場合がある。)と、を含むことが好ましい。上記した工程を含む製造方法によれば、ヘイズが小さいコレステリック液晶膜を製造することができる。以下の説明において、第1の組成物、及び第2の組成物を明確に区別する必要がない場合、第1の組成物、及び第2の組成物をあわせて「組成物」という場合がある。
(工程(A1))
 工程(A1)においては、基材上に、液晶化合物、及びキラル剤を含む第1の組成物を塗布する。
 本開示において、「基材上に第1の組成物を塗布する」とは、基材に第1の組成物を直接接触させることに限られず、基材に任意の層を介して第1の組成物を接触させることを包含する。任意の層は、基材の構成要素の1つであってもよく、又は組成物の塗布前に基材上に形成された層であってもよい。任意の層としては、例えば、上記「配向層」の項において説明した配向層が挙げられる。配向層の形成方法については後述する。
-基材-
 基材としては、例えば、上記「基材」の項において説明した基材が挙げられる。基材の好ましい態様(例えば、全光線透過率、種類、形状、及び厚さ)は、上記「基材」の項において説明した基材の好ましい態様と同様である。基材の表面に、予め配向層が配置されていてもよい。基材の表面に配向層が配置されている場合、第1の組成物は、配向層上に塗布される。
-液晶化合物-
 液晶化合物としては、例えば、上記「第1のコレステリック液晶層」の項において説明した液晶化合物を利用することができる。液晶化合物の好ましい態様は、上記「第1のコレステリック液晶層」の項において説明した液晶化合物の好ましい態様と同様である。
 第1の組成物は、1種単独、又は2種以上の液晶化合物を含んでいてもよい。
 第1の組成物における液晶化合物の含有率は、耐熱性の観点から、上記第1の組成物の固形分質量に対して、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。液晶化合物の含有率の上限は、制限されない。第1の組成物における液晶化合物の含有率は、上記第1の組成物の固形分質量に対して、100質量%未満、99質量%以下、又は96質量%以下であってもよい。
-キラル剤-
 キラル剤の種類は、制限されない。キラル剤としては、例えば、公知のキラル剤(例えば、「液晶デバイスハンドブック、第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第一42委員会編、1989」に記載されたキラル剤)を利用することができる。
 キラル剤の多くは、不斉炭素原子を含む。ただし、キラル剤は、不斉炭素原子を含む化合物に制限されない。キラル剤としては、例えば、不斉炭素原子を含まない軸性不斉化合物、及び面性不斉化合物も挙げられる。軸性不斉化合物、又は面性不斉化合物としては、例えば、ビナフチル、ヘリセン、パラシクロファン、及びこれらの誘導体が挙げられる。
 キラル剤は、重合性基を有していてもよい。例えば、重合性基を有するキラル剤と、重合性基を有する液晶化合物との反応により、上記キラル剤に由来する構成単位と、上記液晶化合物に由来する構成単位とを有する重合体が得られる。
 キラル剤における重合性基としては、例えば、上記「液晶化合物」の項において説明した重合性基が挙げられる。キラル剤における重合性基の好ましい態様は、上記「液晶化合物」の項において説明した重合性基の好ましい態様と同様である。キラル剤における重合性基の種類は、液晶化合物における重合性基の種類と同じであることが好ましい。
 強いねじれ力を示すキラル剤としては、例えば、特開2010-181852号公報、特開2003-287623号公報、特開2002-80851号公報、特開2002-80478号公報、又は特開2002-302487号公報に記載されているキラル剤が挙げられる。上記のような文献に記載されているイソソルビド化合物類については、対応する構造のイソマンニド化合物類をキラル剤として用いることもできる。また、上記のような文献に記載されているイソマンニド化合物類については、対応する構造のイソソルビド化合物類をキラル剤として用いることもできる。
 第1の組成物は、1種単独、又は2種以上のキラル剤を含んでいてもよい。
 キラル剤の含有率は、第1の組成物の固形分質量に対して、0.1質量%~20.0質量%であることが好ましく、0.2質量%~15.0質量%であることがより好ましく、0.5質量%~10.0質量%であることが特に好ましい。
-他の成分-
 第1の組成物は、上記した成分以外の成分(以下、本段落において「他の成分」という。)を含んでいてもよい。他の成分としては、例えば、溶媒、配向規制剤、重合開始剤、レベリング剤、配向助剤、及び増感剤が挙げられる。
 溶媒としては、有機溶媒が好ましい。有機溶媒としては、例えば、アミド溶媒(例えば、N,N-ジメチルホルムアミド)、スルホキシド溶媒(例えば、ジメチルスルホキシド)、ヘテロ環化合物(例えば、ピリジン)、炭化水素溶媒(例えば、ベンゼン、及びヘキサン)、ハロゲン化アルキル溶媒(例えば、クロロホルム、ジクロロメタン)、エステル溶媒(例えば、酢酸メチル、及び酢酸ブチル)、ケトン溶媒(例えば、アセトン、メチルエチルケトン、及びシクロヘキサノン)、及びエーテル溶媒(例えば、テトラヒドロフラン、及び1、2-ジメトキシエタン)が挙げられる。有機溶媒は、ハロゲン化アルキル溶媒、及びケトン溶媒からなる群より選択される少なくとも1種であることが好ましく、ケトン溶媒であることがより好ましい。
 第1の組成物は、1種単独、又は2種以上の溶媒を含んでいてもよい。
 第1の組成物中の固形分の含有率は、第1の組成物の全質量に対して、25質量%~40質量%であることが好ましく、25質量%~35質量%であることがより好ましい。
 配向規制剤としては、例えば、特開2012-211306号公報の段落[0012]~段落[0030]に記載された化合物、特開2012-101999号公報の段落[0037]~段落[0044]に記載された化合物、特開2007-272185号公報の段落[0018]~段落[0043]に記載された含フッ素(メタ)アクリレートポリマー、及び特開2005-099258号公報に合成方法と共に詳細に記載された化合物が挙げられる。特開2004-331812号公報に記載されている、フルオロ脂肪族基含有モノマーの重合単位を全重合単位の50質量%超で含むポリマーを配向規制剤として用いてもよい。
 配向規制剤としては、垂直配向剤も挙げられる。垂直配向剤としては、例えば、特開2015-38598号公報に記載されたボロン酸化合物及び/又はオニウム塩、並びに特開2008-26730号公報に記載されたオニウム塩が挙げられる。
 第1の組成物が配向規制剤を含有する場合においては、配向規制剤の含有率は、第1の組成物の固形分質量に対して、0質量%を超えて5.0質量%以下であることが好ましく、0.3質量%~2.0質量%であることがより好ましい。
 重合開始剤としては、例えば、光重合開始剤、及び熱重合開始剤が挙げられる。
 重合開始剤は、熱による基材の変形、及び第1の組成物の変質を抑制する観点から、光重合開始剤であることが好ましい。光重合開始剤としては、例えば、α-カルボニル化合物(例えば、米国特許第2367661号明細書、又は米国特許第2367670号明細書に記載された化合物)、アシロインエーテル(例えば、米国特許第2448828号明細書に記載された化合物)、α-炭化水素置換芳香族アシロイン化合物(例えば、米国特許第2722512号明細書に記載された化合物)、多核キノン化合物(例えば、米国特許第3046127号明細書、又は米国特許第2951758号明細書に記載された化合物)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(例えば、米国特許第3549367号明細書に記載された化合物)、アクリジン化合物(例えば、特開昭60-105667号公報、又は米国特許第4239850号明細書に記載された化合物)、フェナジン化合物(例えば、特開昭60-105667号公報、又は米国特許第4239850号明細書に記載された化合物)、オキサジアゾール化合物(例えば、米国特許第4212970号明細書記載の化合物)、及びアシルフォスフィンオキシド化合物(例えば、特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、又は特開平10-29997号公報に記載された化合物)が挙げられる。
 第1の組成物が重合開始剤を含有する場合においては、重合開始剤の含有率は、第1の組成物の固形分質量に対して、0.5質量%~5.0質量%であることが好ましく、1.0質量%~4.0質量%であることがより好ましい。
-第1の組成物の製造方法-
 第1の組成物の製造方法は、制限されない。第1の組成物の製造方法としては、例えば、上記各成分を混合する方法が挙げられる。混合方法としては、公知の混合方法を利用することができる。第1の組成物の製造方法においては、上記各成分を混合した後、得られた混合物をろ過してもよい。
-塗布方法-
 第1の組成物の塗布方法は、制限されない。第1の組成物の塗布方法としては、例えば、エクストルージョンダイコータ法、カーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーティング法、ブレードコーティング法、グラビアコーティング法、及びワイヤーバー法が挙げられる。
-塗布量-
 第1の組成物の塗布量は、制限されない。第1の組成物の塗布量は、例えば、目的とするコレステリック液晶層の厚さ、又は下記「工程(B1)」の項において説明するせん断力が与えられる前の第1の組成物の厚さに応じて決定すればよい。
(工程(B1))
 工程(B1)においては、基材上に塗布された第1の組成物の表面にせん断力を与える。工程(B1)によれば、らせん軸の向きのばらつきを低減することができる。
-せん断力を付与する手段-
 せん断力を付与する手段としては、例えば、ブレード、エアナイフ、バー、及びアプリケーターが挙げられる。工程(B1)においては、ブレード、又はエアナイフを用いて組成物の表面にせん断力を与えることが好ましく、ブレードを用いて第1の組成物の表面にせん断力を与えることがより好ましい。
 ブレードを用いて第1の組成物の表面にせん断力を与える方法においては、ブレードによって第1の組成物の表面を掻き取ることが好ましい。上記方法においては、せん断力を付与する前後で第1の組成物の厚さが変化する場合がある。ブレードによってせん断力が与えられた後の第1の組成物の厚さは、せん断力が与えられる前の第1の組成物の厚さに対して、1/2以下、又は1/3以下であってもよい。ブレードによってせん断力が与えられた後の第1の組成物の厚さは、せん断力が与えられる前の第1の組成物の厚さに対して、1/4以上であることが好ましい。
 ブレードの材料は、制限されない。ブレードの材料としては、例えば、金属(例えば、ステンレス)、及び樹脂(例えば、テフロン(登録商標)、及びポリエーテルエーテルケトン(PEEK))が挙げられる。
 ブレードの形状は、制限されない。ブレードの形状としては、例えば、板状が挙げられる。
 ブレードは、第1の組成物に対してせん断力を与えやすいという観点から、金属製の板状部材であることが好ましい。
 第1の組成物に接触するブレードの先端部の厚さは、第1の組成物に対してせん断力を与えやすいという観点から、0.1mm以上であることが好ましく、1mm以上であることがより好ましい。ブレードの厚さの上限は、制限されない。ブレードの厚さは、例えば、10mm以下の範囲で決定すればよい。
 エアナイフを用いて第1の組成物の表面にせん断力を与える方法においては、第1の組成物の表面にエアナイフによって圧縮空気を吹き付けることで、第1の組成物の表面にせん断力が付与される。圧縮空気を吹き付ける速度(すなわち、流速)に応じて、第1の組成物に付与するせん断速度を調整することができる。
 エアナイフによる圧縮空気の吹き付け方向は、第1の組成物の搬送方向に対して、同じ方向、又は反対方向であってもよい。エアナイフによる圧縮空気の吹き付け方向は、圧縮空気によって掻き取られた第1の組成物の断片が基材上に残る第1の組成物に付着することを防止するという観点から、第1の組成物の搬送方向と同じ方向であることが好ましい。
-せん断速度-
 工程(B1)におけるせん断速度が大きいほど、配向精度が高いコレステリック液晶層を形成することができる。せん断速度は、1,000秒-1以上であることが好ましく、10,000秒-1以上であることがより好ましく、30,000秒-1以上であることが特に好ましい。せん断速度の上限は、制限されない。せん断速度は、例えば、1.0×10-1以下の範囲で決定すればよい。
 以下、せん断速度の求め方について説明する。例えば、ブレードを用いてせん断力を与える場合、せん断速度は、ブレードと基材との最短距離を「d」とし、ブレードに接触する第1の組成物の搬送速度(すなわち、第1の組成物とブレードとの相対速度)を「V」としたとき、「V/d」によって求められる。また、例えば、エアナイフを用いてせん断力を与える場合、せん断速度は、せん断付与後の第1の組成物の厚さを「h」とし、第1の組成物表面と基材表面との相対速度を「V」としたとき、「V/2h」によって求められる。
-第1の組成物の表面温度-
 せん断力が与えられる際の第1の組成物の表面温度は、第1の組成物に含まれる液晶化合物の相転移温度に応じて決定すればよい。せん断力が与えられる際の第1の組成物の表面温度は、50℃~120℃であることが好ましく、60℃~100℃であることがより好ましい。第1の組成物の表面温度を上記範囲に調整することで、配向精度が高いコレステリック液晶層を得ることができる。第1の組成物の表面温度は、非接触式温度計で測定した温度値によって放射率が校正された放射温度計を用いて測定する。第1の組成物の表面温度は、測定面とは反対側(すなわち、裏側)の表面から10cm以内に反射物がない状態で測定する。
-第1の組成物の厚さ-
 せん断力が与えられる前の第1の組成物の厚さは、配向精度が高いコレステリック液晶層を形成するという観点から、30μm以下の範囲であることが好ましく、15μm~25μmの範囲であることがより好ましい。
 せん断力が与えられた後の第1の組成物の厚さは、配向精度が高いコレステリック液晶層を形成するという観点から、10μm以下の範囲であることが好ましく、7μm以下の範囲であることがより好ましい。せん断力が与えられた後の第1の組成物の厚さの下限は、制限されない。せん断力が与えられた後の第1の組成物の厚さは、5μm以上の範囲であることが好ましい。
(工程(C1))
 工程(C1)においては、せん断力が与えられた第1の組成物を硬化させることによって第1のコレステリック液晶層を形成する。
 第1の組成物を硬化させる方法としては、例えば、加熱、及び活性エネルギー線の照射が挙げられる。工程(C1)においては、製造適性の観点から、せん断力が与えられ第1の組成物に活性エネルギー線を照射することによって、上記組成物を硬化させることが好ましい。
 活性エネルギー線としては、例えば、α線、γ線、X線、紫外線、赤外線、可視光線、及び電子線が挙げられる。活性エネルギー線は、硬化感度、及び装置の入手容易性の観点から、紫外線であることが好ましい。
 紫外線の光源としては、例えば、ランプ(例えば、タングステンランプ、ハロゲンランプ、キセノンランプ、キセノンフラッシュランプ、水銀ランプ、水銀キセノンランプ、及びカーボンアークランプ)、レーザー(例えば、半導体レーザー、ヘリウムネオンレーザー、アルゴンイオンレーザー、ヘリウムカドミウムレーザー、及びYAG(Yttrium Aluminum Garnet)レーザー)、発光ダイオード、及び陰極線管が挙げられる。
 紫外線の光源から発せられる紫外線のピーク波長は、200nm~400nmであることが好ましい。
 紫外線の露光量(積算光量ともいう。)は、100mJ/cm~500mJ/cmであることが好ましい。
(工程(A2))
 工程(A2)においては、第1のコレステリック液晶層上に、液晶化合物、及びキラル剤を含む第2の組成物を塗布する。
 上記「工程(A1)」の項において説明した事項(基材に関する事項を除く。)は、工程(A2)に適用される。工程(A2)の好ましい態様は、工程(A1)の好ましい態様と同様である。
(工程(B2))
 工程(B2)においては、第1のコレステリック液晶層上に塗布された第2の組成物の表面にせん断力を与える。工程(B2)によれば、らせん軸の向きのばらつきを低減することができるため、暗部の接続率を向上させることができる。
 上記「工程(B1)」の項において説明した事項は、工程(B2)に適用される。工程(B2)の好ましい態様は、工程(B1)の好ましい態様と同様である。
(工程(C2))
 工程(C2)においては、せん断力が与えられた第2の組成物を硬化させることによって第2のコレステリック液晶層を形成する。
 上記「工程(C1)」の項において説明した事項は、工程(C2)に適用される。工程(C2)の好ましい態様は、工程(C1)の好ましい態様と同様である。
(他の工程)
 本開示に係るコレステリック液晶膜の製造方法は、上記した工程以外の工程を有していてもよい。
-工程(D)-
 本開示に係るコレステリック液晶膜の製造方法は、例えば、基材上に配向層を形成する工程(以下、「工程(D)」という場合がある。)を有していてもよい。工程(D)は、工程(A1)の前に実施されることが好ましい。
 配向層の形成方法としては、例えば、有機化合物(好ましくは重合体)のラビング処理、無機化合物の斜方蒸着、及びマイクログルーブを有する層の形成が挙げられる。
-工程(E)-
 組成物が溶媒を含む場合、本開示に係るコレステリック液晶膜の製造方法は、組成物の表面にせん断力を与える前に、組成物中の溶媒の含有率を上記組成物の全質量に対して50質量%以下の範囲に調整する工程(以下、「工程(E)」という場合がある。)を有することが好ましい。具体的に、本開示に係るコレステリック液晶膜の製造方法は、工程(A1)と工程(B1)との間に、基材上に塗布された第1の組成物中の溶媒の含有率を上記組成物の全質量に対して50質量%以下の範囲に調整する工程を有することが好ましい。本開示に係るコレステリック液晶膜の製造方法は、工程(A2)と工程(B2)との間に、第1のコレステリック液晶層上に塗布された第2の組成物中の溶媒の含有率を上記組成物の全質量に対して50質量%以下の範囲に調整する工程を有することが好ましい。
 工程(E)は、工程(A1)と工程(B1)との間、又は工程(A2)と工程(B2)との間に実施されてもよい。工程(E)は、工程(A1)と工程(B1)との間、及び工程(A2)と工程(B2)との間に実施されてもよい。
 工程(E)において、組成物中の溶媒の含有率は、上記組成物の全質量に対して、40質量%以下であることが好ましく、30質量%以下であることがより好ましい。組成物中の溶媒の含有率の下限は、制限されない。組成物中の溶媒の含有率は、上記組成物の全質量に対して、0質量%であってもよく、又は0質量%を超えてもよい。組成物中の溶媒の含有率は、組成物の表面状態の悪化を抑制しやすいという観点から、10質量%以上であることが好ましい。
 組成物中の溶媒の含有率は、絶乾法によって測定する。以下、測定方法の具体的な手順を説明する。組成物から採取した試料を、60℃で24時間乾燥した後、乾燥前後の試料の質量変化(すなわち、乾燥後の試料の質量と乾燥前の試料の質量との差)を求める。上記操作を3回行うことで得られた値の算術平均を、溶媒の含有率とする。
 工程(E)において、組成物中の溶媒の含有率を調整する方法としては、例えば、乾燥が挙げられる。
 組成物の乾燥手段としては、公知の乾燥手段を利用することができる。乾燥手段として、例えば、オーブン、温風機、及び赤外線(IR)ヒーターが挙げられる。
 温風機を用いる乾燥においては、組成物に対して温風を直接当ててもよく、又は基材の組成物が配置された面とは反対側の面に対して温風を当ててもよい。また、組成物の表面が温風によって流動することを抑制するために、拡散板を設置してもよい。
 乾燥は、吸気によって行ってもよい。吸気による乾燥においては、例えば、排気機構を有する減圧室を用いることができる。組成物の周囲の気体を吸気することで、組成物中の溶媒の含有率を低減することができる。
 乾燥条件は、組成物中の溶媒の含有率を50質量%以下の範囲に調整することができれば制限されない。乾燥条件は、例えば、組成物に含まれる成分、組成物の塗布量、及び搬送速度に応じて決定すればよい。
(製造方式)
 本開示に係るコレステリック液晶膜の製造方法は、ロールトゥロール(Roll to Roll)方式によって実施してもよい。ロールトゥロール方式においては、例えば、長尺の基材を連続搬送しながら各工程を実施する。本開示に係るコレステリック液晶膜の製造方法は、1つずつ搬送される基材を用いて実施してもよい。
 以下、実施例により本開示を詳細に説明する。ただし、本開示は、以下の実施例に制限されるものではない。
<実施例1>
 以下の手順によって、実施例1のコレステリック液晶膜を製造した。実施例1のコレステリック液晶膜は、基材と、配向層と、第1のコレステリック液晶層と、第2のコレステリック液晶層と、をこの順で有する。
[基材の用意]
 基材として、トリアセチルセルロース(TAC)フィルム(富士フイルム株式会社、屈折率:1.48、厚さ:40μm)を用意した。
[配向層の形成]
 80℃で保温された容器中で、純水(96質量部)、及びPVA-205(4質量部、株式会社クラレ、ポリビニルアルコール)を含む混合物を撹拌することによって、配向層形成用組成物を調製した。バー(バーの番手:6)を用いて、基材(トリアセチルセルロースフィルム)上に上記配向層形成用組成物を塗布し、次いで、100℃のオーブン内で10分間乾燥した。以上の手順によって、基材の上に配向層(厚さ:2μm)を形成した。
[第1のコレステリック液晶層の形成]
 以下の手順によって、配向層の上に第1のコレステリック液晶層(厚さ:8μm)を形成した。
(液晶層形成用塗布液(1)の調製)
 下記に示す各成分を混合した後、ポリプロピレン製フィルター(孔径:0.2μm)を用いてろ過することによって、液晶層形成用塗布液(1)を調製した。
-成分-
 (1)棒状サーモトロピック液晶化合物(下記化合物(A)):100質量部
 (2)キラル剤(下記化合物(B)、Palicolor(登録商標) LC756、BASF社):1.7質量部
 (3)光重合開始剤(IRGACURE(登録商標) 907、BASF社):3質量部
 (4)光重合開始剤(PM758、日本化薬株式会社):1質量部
 (5)配向規制剤(下記化合物(C)):0.5質量部
 (6)溶媒(メチルエチルケトン):184質量部
 (7)溶媒(シクロヘキサノン):31質量部
 化合物(A)は、以下に示す3つの化合物の混合物である。混合物中の各化合物の含有率は、上から順に、84質量%、14質量%、及び2質量%である。
Figure JPOXMLDOC01-appb-C000005
 化合物(B)の化学構造を以下に示す。
Figure JPOXMLDOC01-appb-C000006
 化合物(C)の化学構造を以下に示す。
Figure JPOXMLDOC01-appb-C000007
(塗布)
 配向層を有する基材を70℃で加熱し、次いで、バー(バーの番号:18)を用いて、配向層の上に液晶層形成用塗布液(1)を塗布した。
(乾燥)
 配向層の上に塗布された液晶層形成用塗布液(1)を、70℃のオーブン内で1分間乾燥することによって塗膜(厚さ:10μm、溶媒の含有率:1質量%以下)を形成した。
(せん断力の付与)
 塗膜を80℃に加熱した状態で、80℃に加熱したステンレス製ブレードを塗膜に接触させ、次いで、上記塗膜に接触させたまま、上記ブレードを3.0m/分の速度で移動させることによって、上記塗膜に対してせん断力を与えた。上記ブレードの塗膜との接触部の長さは、30mmであった。せん断速度は、2,500秒-1であった。
(硬化)
 せん断力を与えた塗膜に対して、メタルハライドランプを用いて紫外線(露光量:500mJ/cm)を照射することによって、上記塗膜を硬化させた。
[第2のコレステリック液晶層の形成]
 以下の手順によって、第1のコレステリック液晶層の上に第2のコレステリック液晶層(厚さ:8μm)を形成した。
(液晶層形成用塗布液(2)の調製)
 下記に示す各成分を混合した後、ポリプロピレン製フィルター(孔径:0.2μm)を用いてろ過することによって、液晶層形成用塗布液(2)を調製した。
-成分-
 (1)棒状サーモトロピック液晶化合物(化合物(A)):100質量部
 (2)キラル剤(化合物(B)、Palicolor(登録商標) LC756、BASF社):1.2質量部
 (3)光重合開始剤(IRGACURE(登録商標) 907、BASF社):1質量部
 (4)光重合開始剤(PM758、日本化薬株式会社):1質量部
 (5)配向規制剤(化合物(C)):0.5質量部
 (6)溶媒(メチルエチルケトン):184質量部
 (7)溶媒(シクロヘキサノン):31質量部
(塗布)
 第1のコレステリック液晶層を有する基材を70℃で加熱し、次いで、バー(バーの番手:18)を用いて、第1のコレステリック液晶層の上に液晶層形成用塗布液(2)を塗布した。
(乾燥)
 第1のコレステリック液晶層の上に塗布された液晶層形成用塗布液(2)を、70℃のオーブン内で1分間乾燥することによって塗膜(厚さ:10μm、溶媒の含有率:1質量%以下)を形成した。
(せん断力の付与)
 塗膜を70℃に加熱した状態で、70℃に加熱したステンレス製ブレードを塗膜に接触させ、次いで、上記塗膜に接触させたまま、上記ブレードを1.5m/分の速度で移動させることによって、上記塗膜に対してせん断力を与えた。上記ブレードの塗膜との接触部の長さは、30mmであった。せん断速度は、2,500秒-1であった。
(硬化)
 せん断力を与えた塗膜に対して、メタルハライドランプを用いて紫外線(露光量:500mJ/cm)を照射することによって、上記塗膜を硬化させた。
[断面観察]
 偏光顕微鏡を用いて、実施例1のコレステリック液晶膜の厚さ方向の断面を観察した。各コレステリック液晶層において、暗部及び明部が交互に並んだ縞模様が観察された。第1のコレステリック液晶層と第2のコレステリック液晶層の界面において、上記第2のコレステリック液晶層で観察される暗部は、上記第1のコレステリック液晶層で観察される暗部に接続していた。
<実施例2>
 液晶層形成用塗布液(1)におけるキラル剤の添加量を1.2質量部に変更したこと以外は、実施例1と同様の手順によって、実施例2のコレステリック液晶膜を製造した。
 実施例1と同様の手順によって、実施例2のコレステリック液晶膜の厚さ方向の断面を観察した。各コレステリック液晶層において、暗部及び明部が交互に並んだ縞模様が観察された。第1のコレステリック液晶層と第2のコレステリック液晶層の界面において、上記第2のコレステリック液晶層で観察される暗部は、上記第1のコレステリック液晶層で観察される暗部に接続していた。
<比較例1>
 第2のコレステリック液晶層の形成において、塗膜に対してせん断力を与えずに、乾燥後の塗膜を硬化させたこと以外は、実施例1と同様の手順によって、比較例1のコレステリック液晶膜を製造した。
 実施例1と同様の手順によって、比較例1のコレステリック液晶膜の厚さ方向の断面を観察した。第2のコレステリック液晶層におけるらせん軸の向きは、ばらばらであり、第1のコレステリック液晶層と第2のコレステリック液晶層の界面において、上記第2のコレステリック液晶層で観察される暗部は、上記第1のコレステリック液晶層で観察される暗部に接続していなかった。
<ヘイズ>
 ヘイズメーター(NDH 2000、日本電色工業株式会社)を用いて、各コレステリック液晶膜のヘイズを測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008
 表1は、実施例1~2のヘイズが、比較例1のヘイズよりも小さいことを示す。
 表1において、「暗部の接続率」、「暗部間の距離」、及び「暗部の平均角度」に記載された数値は、それぞれ、既述の方法によって測定した。表1において、「-」は、測定不可を意味する。
 2020年1月28日に出願された日本国特許出願2020-011540号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。
 10:コレステリック液晶膜
 20:第1のコレステリック液晶層
 21:第2のコレステリック液晶層
 30、31:暗部
 40、41:明部
 Z:積層方向

Claims (11)

  1.  顕微鏡を用いて観察される暗部及び明部が交互に並んだ縞模様を有する第1のコレステリック液晶層と、
     前記第1のコレステリック液晶層に接して配置され、顕微鏡を用いて観察される暗部及び明部が交互に並んだ縞模様を有する第2のコレステリック液晶層と、を有し、
     前記第1のコレステリック液晶層と前記第2のコレステリック液晶層との界面において、前記第2のコレステリック液晶層で観察される前記暗部が、前記第1のコレステリック液晶層で観察される前記暗部に接続している
     コレステリック液晶膜。
  2.  厚さ方向の断面視において、前記第2のコレステリック液晶層で観察される前記暗部のうち隣り合う2つの暗部の距離が、前記第1のコレステリック液晶層で観察される前記暗部のうち隣り合う2つの暗部の距離と異なる請求項1に記載のコレステリック液晶膜。
  3.  厚さ方向の断面視において、前記第2のコレステリック液晶層で観察される前記暗部のうち隣り合う2つの暗部の距離が、前記第1のコレステリック液晶層で観察される前記暗部のうち隣り合う2つの暗部の距離よりも大きい請求項1又は請求項2に記載のコレステリック液晶膜。
  4.  厚さ方向の断面視において、前記第1のコレステリック液晶層で観察される前記暗部のうち隣り合う2つの暗部の距離に対する前記第2のコレステリック液晶層で観察される前記暗部のうち隣り合う2つの暗部の距離の比が、1~2である請求項1に記載のコレステリック液晶膜。
  5.  厚さ方向の断面視において、前記第1のコレステリック液晶層で観察される前記暗部のうち隣り合う2つの暗部の距離が、0.1μm~2μmである請求項1~請求項4のいずれか1項に記載のコレステリック液晶膜。
  6.  厚さ方向の断面視において、前記第2のコレステリック液晶層で観察される前記暗部のうち隣り合う2つの暗部の距離が、0.1μm~5μmである請求項1~請求項5のいずれか1項に記載のコレステリック液晶膜。
  7.  前記第1のコレステリック液晶層と前記第2のコレステリック液晶層との界面において、前記第1のコレステリック液晶層で観察される前記暗部に接続している前記第2のコレステリック液晶層で観察される前記暗部の割合が、前記第2のコレステリック液晶層で観察される前記暗部の数に対して、50%~100%である請求項1~請求項6のいずれか1項に記載のコレステリック液晶膜。
  8.  厚さ方向の断面視において、前記第1のコレステリック液晶層で観察される前記暗部が、前記第1のコレステリック液晶層の主面に対して傾斜しており、かつ、前記第2のコレステリック液晶層で観察される前記暗部が、前記第2のコレステリック液晶層の主面に対して傾斜している請求項1~請求項7のいずれか1項に記載のコレステリック液晶膜。
  9.  厚さ方向の断面視において、前記第1のコレステリック液晶層で観察される前記暗部の平均角度が、前記第1のコレステリック液晶層の主面に対して、20°~90°である請求項1~請求項8のいずれか1項に記載のコレステリック液晶膜。
  10.  厚さ方向の断面視において、前記第2のコレステリック液晶層で観察される前記暗部の平均角度が、前記第2のコレステリック液晶層の主面に対して、30°~90°である請求項1~請求項9のいずれか1項に記載のコレステリック液晶膜。
  11.  前記第1のコレステリック液晶層の前記縞模様が、少なくとも、前記第1のコレステリック液晶層の厚さ方向の断面で観察され、かつ、前記第2のコレステリック液晶層の前記縞模様が、少なくとも、前記第2のコレステリック液晶層の厚さ方向の断面で観察される請求項1~請求項10のいずれか1項に記載のコレステリック液晶膜。
PCT/JP2020/043477 2020-01-28 2020-11-20 コレステリック液晶膜 WO2021152976A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227021871A KR20220105168A (ko) 2020-01-28 2020-11-20 콜레스테릭 액정막
CN202080091366.8A CN114902098B (zh) 2020-01-28 2020-11-20 胆甾醇型液晶膜
JP2021574482A JP7289937B2 (ja) 2020-01-28 2020-11-20 コレステリック液晶膜
US17/858,561 US20220333013A1 (en) 2020-01-28 2022-07-06 Cholesteric liquid crystal film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-011540 2020-01-28
JP2020011540 2020-01-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/858,561 Continuation US20220333013A1 (en) 2020-01-28 2022-07-06 Cholesteric liquid crystal film

Publications (1)

Publication Number Publication Date
WO2021152976A1 true WO2021152976A1 (ja) 2021-08-05

Family

ID=77078171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043477 WO2021152976A1 (ja) 2020-01-28 2020-11-20 コレステリック液晶膜

Country Status (5)

Country Link
US (1) US20220333013A1 (ja)
JP (1) JP7289937B2 (ja)
KR (1) KR20220105168A (ja)
CN (1) CN114902098B (ja)
WO (1) WO2021152976A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7293403B2 (ja) * 2019-12-26 2023-06-19 富士フイルム株式会社 透明スクリーン
CN115053157A (zh) * 2020-01-31 2022-09-13 富士胶片株式会社 胆甾醇型液晶膜及其制造方法
WO2021153096A1 (ja) * 2020-01-31 2021-08-05 富士フイルム株式会社 コレステリック液晶膜及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189124A (ja) * 2000-12-20 2002-07-05 Dainippon Printing Co Ltd 円偏光抽出光学素子及びその製造方法、偏光光源装置、液晶表示装置
JP2018180122A (ja) * 2017-04-06 2018-11-15 富士フイルム株式会社 積層体、スクリーン、透明スクリーンおよび明室用スクリーン、ならびに、積層体の製造方法
WO2019182052A1 (ja) * 2018-03-23 2019-09-26 富士フイルム株式会社 コレステリック液晶層の製造方法、コレステリック液晶層、液晶組成物、硬化物、光学異方体、反射層
WO2019181247A1 (ja) * 2018-03-23 2019-09-26 富士フイルム株式会社 コレステリック液晶層、積層体、光学異方体、反射膜、コレステリック液晶層の製造方法、偽造防止媒体、および、判定方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6917399B2 (en) * 2001-02-22 2005-07-12 3M Innovative Properties Company Optical bodies containing cholesteric liquid crystal material and methods of manufacture
US6952252B2 (en) * 2001-10-02 2005-10-04 Fujitsu Display Technologies Corporation Substrate for liquid crystal display and liquid crystal display utilizing the same
JP4346016B2 (ja) 2003-07-16 2009-10-14 大日本印刷株式会社 偏光選択反射層形成用塗工液、それを用いた投影スクリーンおよび投影スクリーンの製造方法
CN101398502B (zh) * 2003-07-17 2010-12-01 大日本印刷株式会社 相位差光学元件的制造方法
JP6486116B2 (ja) * 2014-10-31 2019-03-20 富士フイルム株式会社 光学部材および光学部材を有する画像表示装置
JP6481018B2 (ja) * 2015-02-20 2019-03-13 富士フイルム株式会社 透明スクリーン
WO2018043678A1 (ja) * 2016-09-01 2018-03-08 富士フイルム株式会社 加飾シート、液晶表示装置および自動車車内用内装
WO2021153096A1 (ja) * 2020-01-31 2021-08-05 富士フイルム株式会社 コレステリック液晶膜及びその製造方法
CN115053157A (zh) * 2020-01-31 2022-09-13 富士胶片株式会社 胆甾醇型液晶膜及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189124A (ja) * 2000-12-20 2002-07-05 Dainippon Printing Co Ltd 円偏光抽出光学素子及びその製造方法、偏光光源装置、液晶表示装置
JP2018180122A (ja) * 2017-04-06 2018-11-15 富士フイルム株式会社 積層体、スクリーン、透明スクリーンおよび明室用スクリーン、ならびに、積層体の製造方法
WO2019182052A1 (ja) * 2018-03-23 2019-09-26 富士フイルム株式会社 コレステリック液晶層の製造方法、コレステリック液晶層、液晶組成物、硬化物、光学異方体、反射層
WO2019181247A1 (ja) * 2018-03-23 2019-09-26 富士フイルム株式会社 コレステリック液晶層、積層体、光学異方体、反射膜、コレステリック液晶層の製造方法、偽造防止媒体、および、判定方法

Also Published As

Publication number Publication date
CN114902098B (zh) 2024-04-02
JPWO2021152976A1 (ja) 2021-08-05
JP7289937B2 (ja) 2023-06-12
KR20220105168A (ko) 2022-07-26
CN114902098A (zh) 2022-08-12
US20220333013A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
WO2021152976A1 (ja) コレステリック液晶膜
WO2021153095A1 (ja) コレステリック液晶膜及びその製造方法
WO2021153096A1 (ja) コレステリック液晶膜及びその製造方法
WO2019181247A1 (ja) コレステリック液晶層、積層体、光学異方体、反射膜、コレステリック液晶層の製造方法、偽造防止媒体、および、判定方法
TW200417597A (en) Process of preparing films comprising polymerised liguid crystal material
JP7113962B2 (ja) コレステリック液晶膜の製造方法
JP2003139953A (ja) 光学素子の製造方法、光学素子、光学フィルム並びにこれらを用いた照明装置及び液晶表示装置
WO2021132113A1 (ja) 透明スクリーン
JP7420833B2 (ja) コレステリック液晶層の製造方法
WO2021033631A1 (ja) 光学異方性層の製造方法、積層体の製造方法、偏光子付き光学異方性層の製造方法、偏光子付き積層体の製造方法、組成物、光学異方性層
JP2016004212A (ja) 反射フィルムおよび反射フィルムを有するディスプレイ
WO2022059287A1 (ja) コレステリック液晶層の製造方法及び塗布装置
WO2023190196A1 (ja) リアプロジェクション用表示システム
WO2023190134A1 (ja) リアプロジェクション用表示システム
WO2023190125A1 (ja) リアプロジェクション用表示システム
WO2020196658A1 (ja) コレステリック液晶膜の製造方法
WO2022030218A1 (ja) 光学異方性層
WO2022209937A1 (ja) 光学素子、積層体、画像表示装置
WO2022054556A1 (ja) 偏光板、有機エレクトロルミネッセンス表示装置
WO2023127537A1 (ja) 積層体、光学素子、導光素子
JP2020160404A (ja) 画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574482

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227021871

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916813

Country of ref document: EP

Kind code of ref document: A1