WO2021152703A1 - Inverter controller and motor drive unit - Google Patents

Inverter controller and motor drive unit Download PDF

Info

Publication number
WO2021152703A1
WO2021152703A1 PCT/JP2020/003020 JP2020003020W WO2021152703A1 WO 2021152703 A1 WO2021152703 A1 WO 2021152703A1 JP 2020003020 W JP2020003020 W JP 2020003020W WO 2021152703 A1 WO2021152703 A1 WO 2021152703A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
carrier
frequency
control device
inverter control
Prior art date
Application number
PCT/JP2020/003020
Other languages
French (fr)
Japanese (ja)
Inventor
西尾 直樹
伸翼 角井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021573669A priority Critical patent/JP7221424B2/en
Priority to PCT/JP2020/003020 priority patent/WO2021152703A1/en
Priority to DE112020006657.6T priority patent/DE112020006657T5/en
Publication of WO2021152703A1 publication Critical patent/WO2021152703A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/08Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to an inverter control device that controls an inverter and an electric motor drive device including the inverter control device.
  • Patent Document 1 describes that a hollow core made of a ferromagnetic material such as ferrite or amorphous metal is arranged around a wiring connecting an inverter and an electric motor in order to suppress common mode noise. Has been done.
  • the filter characteristics of the filter parts need to be determined according to the impedance including the motor.
  • the manufacturer of the electric motor and the manufacturer of the inverter control device are not always the same. In this case, relying on the additional filter parts increases the design man-hours in the manufacturer of the inverter control device and increases the adjustment work in the actual vehicle. Therefore, it is desired to suppress leakage noise without relying on the addition of filter parts.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain an inverter control device capable of suppressing leakage noise without relying on the addition of filter parts.
  • the present disclosure is an inverter control device that controls an inverter that drives a three-phase motor by pulse width modulation.
  • the inverter control device includes a carrier wave generation unit that generates a three-phase carrier wave, and a pulse width modulation control unit that controls the switching state of the inverter by comparing the carrier wave with the modulated wave.
  • the carrier generation unit includes a phase calculation unit that calculates the first to third carrier phases based on the carrier frequency command and the motor frequency, and a carrier that outputs three-phase carriers based on the first to third carrier phases. It has an output unit.
  • the first to third carrier phases have a phase difference from each other, and the phase difference also changes continuously as the motor frequency changes.
  • Diagram showing a configuration example of a general inverter main circuit The figure which shows the equivalent circuit of FIG. 1 used to explain the leakage current.
  • the figure used for explaining the method of generating the pulse width modulation (PWM) control signal given to the semiconductor element of each arm shown in FIG. The figure which shows the PWM control signal generated by each phase voltage command shown in FIG.
  • the figure which shows the common mode voltage generated by the PWM control signal shown in FIG. The figure which shows the example of each phase voltage command of the modulation factor different from FIG.
  • the figure which shows the example of the harmonic distribution of the motor current which concerns on the conventional control when the carrier wave of each phase is the same.
  • the figure which shows the structural example of the carrier wave generation part which concerns on the modification of Embodiment 1. A block diagram showing an example of a hardware configuration that realizes the function of the inverter control device according to the first embodiment.
  • the figure which shows the detailed structure of the frequency modulation part shown in FIG. 22 The figure which shows the output image of the frequency modulation amount output from the frequency modulation part shown in FIG.
  • FIG. 1 is a diagram showing a configuration example of an electric motor drive device 1 including an inverter control device 5 according to the first embodiment.
  • the motor drive device 1 according to the first embodiment includes a filter capacitor 3, an inverter 4, and an inverter control device 5.
  • the inverter 4 is connected to the motor 105.
  • the electric motor 105 is a three-phase electric motor mounted on an electric vehicle.
  • the DC power supplied from the overhead wire 101 is supplied to the motor drive device 1 via the current collector 102 and the filter reactor 2.
  • the overhead wire voltage which is the voltage of the overhead wire 101 applied to the current collector 102, and the conversion capacity of the inverter 4 differ depending on the drive system.
  • the overhead line voltage range is approximately 600 to 3,000 [V].
  • the conversion capacity range is from several tens to several hundreds [kVA].
  • the positive terminal P of the motor drive device 1 is connected to the filter reactor 2.
  • the negative terminal N of the motor drive device 1 is connected to the rail 104 via the wheel 103.
  • an overhead electric wire is shown as an overhead wire 101
  • a pantograph-shaped current collector is shown as a current collector 102
  • the overhead line 101 may be a third rail used in a subway or the like, and the current collector 102 may use a current collector for the third rail in accordance with this.
  • FIG. 1 shows a case where the overhead wire 101 is a DC overhead wire
  • the overhead wire 101 may be an AC overhead wire.
  • a transformer for stepping down the AC voltage received is provided instead of the filter reactor 2, and the AC voltage output from the transformer is a DC voltage in the subsequent stage of the transformer.
  • a converter is provided to convert to.
  • the filter reactor 2 is shown as an external component of the motor drive device 1, but the present invention is not limited to this.
  • the filter reactor 2 may be provided inside the motor drive device 1.
  • the filter capacitor 3 is connected between the positive terminal P and the negative terminal N inside the motor drive device 1. As a result, the filter capacitor 3 is connected in parallel to both ends of the inverter 4 on the input side of the inverter 4.
  • the filter capacitor 3 smoothes the applied DC voltage. Further, the filter capacitor 3 is connected to the filter reactor 2 and constitutes an LC filter circuit together with the filter reactor 2. This LC filter circuit suppresses the surge voltage flowing in from the overhead wire 101 side. Further, the LC filter circuit suppresses the magnitude of the ripple component of the current flowing through the inverter 4.
  • the inverter 4 is a power conversion circuit that supplies electric power to the electric motor 105.
  • the operation of the inverter 4 is controlled by the inverter control device 5.
  • the inverter 4 converts the DC voltage of the filter capacitor 3 into an AC voltage of an arbitrary frequency having an arbitrary voltage value and applies it to the motor 105.
  • the inverter control device 5 includes a voltage command calculation unit 6, a PWM control unit 7, and a carrier wave generation unit 8. Information on the torque command and information on the motor frequency are input to the inverter control device 5.
  • the voltage command calculation unit 6 calculates the voltage command based on the torque command and the motor frequency.
  • the carrier wave generation unit 8 generates a carrier wave based on the motor frequency.
  • the PWM control unit 7 generates a PWM control signal for controlling the switching element of the inverter 4 based on the voltage command and the carrier wave, and outputs the PWM control signal to the inverter 4.
  • the PWM control signal is generated by comparing the amplitude of the voltage command and the carrier wave. The method for generating the PWM control signal will be described later.
  • FIG. 2 is a diagram showing a configuration example of a general inverter main circuit.
  • the inverter main circuit includes semiconductor elements UPI, VPI, WPI of the upper arm and semiconductor elements UNI, VNI, WNI of the lower arm.
  • the semiconductor element UPI and the semiconductor element UNI are connected in series to form a U-phase leg.
  • the semiconductor element VPI and the semiconductor element VNI are connected in series to form a V-phase leg.
  • the semiconductor element WPI and the semiconductor element WNI are connected in series to form a W-phase leg.
  • the U-phase, V-phase, and W-phase legs are connected in parallel to each other to form a three-phase bridge circuit.
  • FIG. 3 is a diagram showing an equivalent circuit of FIG. 1 used for explaining the leakage current.
  • the motor 105 is represented by an inductance circuit symbol.
  • the neutral point potential of the three-phase motor fluctuates. Therefore, as shown in FIG. 3, an equivalent circuit is formed in which the stray capacitance 34 is connected between the neutral point potential 32 of the motor 105 and the reference potential 31 which is the ground potential.
  • the neutral point potential 32 contains a high frequency component due to PWM control. Therefore, when the U-phase voltage 33U, the V-phase voltage 33V, and the W-phase voltage 33W are applied to the motor 105, the leakage current 35 flows through the floating capacity 34.
  • the potential difference between the neutral point potential 32 and the reference potential 31 is called "common mode voltage".
  • the common mode voltage is calculated as (Vu + Vv + Vw) / 3.
  • Vu has a U-phase voltage of 33U
  • Vv has a V-phase voltage of 33V
  • Vw has a W-phase voltage of 33W.
  • FIG. 4 is a diagram used for explaining a method for generating a PWM control signal given to the semiconductor element of each arm shown in FIG.
  • FIG. 4 shows a U-phase voltage command 26U, a V-phase voltage command 26V, and a W-phase voltage command 26W, which are sine waves, and a carrier wave 28, which is a triangular wave.
  • the horizontal axis represents the phase angle
  • the vertical axis represents the amplitude value.
  • 1 [Vpu] on the vertical axis corresponds to 1/2 of the voltage amplitude applied to the inverter 4, in other words, 1/2 of the DC voltage which is the voltage of the filter capacitor 3.
  • FIG. 5 is a diagram showing a PWM control signal generated by each phase voltage command shown in FIG. From the upper side, the U-phase PWM control signal, the V-phase PWM control signal, and the W-phase PWM control signal are shown in this order.
  • the horizontal axis of FIG. 5 has the same phase angle as that of FIG. FIG. 5 shows the waveform of the PWM control signal when the modulation factor is 0.8.
  • the modulation factor is defined as the ratio of 1/2 of the DC voltage applied to the inverter 4 to the amplitude of the AC phase voltage applied to the motor 105 by the inverter 4.
  • the definition here is an example, and the modulation factor may be defined in any way.
  • the PWM control unit 7 compares the U-phase voltage command 26U with the carrier wave 28 which is a triangular wave signal. When the U-phase voltage command 26U is larger than the carrier wave 28, it is “ON”, and when the U-phase voltage command 26U is the carrier wave 28 or less, it is “OFF”. In this way, the U-phase PWM control signal shown in the upper part of FIG. 5 is generated. Similar to the U-phase PWM control signal, the V-phase PWM control signal and the W-phase PWM control signal are also generated by comparing each of the V-phase voltage command 26V and the W-phase voltage command 26W with the carrier wave 28. The V-phase PWM control signal and the W-phase PWM control signal generated at this time are shown in the middle and lower stages of FIG. 5, respectively.
  • FIG. 6 is a diagram showing a common mode voltage generated by the PWM control signal shown in FIG.
  • the horizontal axis represents the phase angle and the vertical axis represents the amplitude of the common mode voltage.
  • the common mode voltage when the modulation factor is relatively large has a waveform that changes step by step between the levels of ⁇ 1 [Vpu] or ⁇ 1/3 [Vpu].
  • FIG. 7 is a diagram showing an example of each phase voltage command having a modulation factor different from that of FIG.
  • FIG. 7 shows each phase voltage command when the modulation factor is 0.1.
  • the distinction between the solid line, the broken line and the alternate long and short dash line is the same as in FIG. That is, the solid line indicates the U-phase voltage command 26U, the broken line indicates the V-phase voltage command 26V, and the alternate long and short dash line indicates the W-phase voltage command 26W.
  • FIG. 8 is a diagram showing PWM control signals generated by each phase voltage command shown in FIG. 7.
  • FIG. 8 shows the waveform of the PWM control signal when the modulation factor is 0.1.
  • the arrangement of the PWM control signals is the same as that in FIG. 5, and the U-phase PWM control signal, the V-phase PWM control signal, and the W-phase PWM control signal are shown in this order from the upper side.
  • the modulation factor is close to 0, as shown in FIG. 8, the difference between the PWM control signals of each phase becomes small, and the output of the inverter 4 is mostly in the state of zero voltage vector.
  • the state of the zero voltage vector means that either all the upper arm side elements are turned on or all the lower arm elements are turned on.
  • FIG. 9 is a diagram showing a common mode voltage generated by the PWM control signal shown in FIG.
  • the modulation factor when the modulation factor is close to 0, the waveform becomes a waveform that moves back and forth between the levels of the common mode voltage of ⁇ 1 [Vpu] in a short time. Therefore, the voltage change rate becomes larger and the leakage current 35 flowing through the stray capacitance 34 becomes larger than in the case of 0.8 in which the modulation factor is relatively large.
  • FIG. 10 is a diagram showing an example of waveforms when the carrier phases of each phase are shifted by 120 ° from each other in each phase voltage command and carrier shown in FIG. 7.
  • the V-phase carrier 28V shown by the broken line is 120 ° out of phase with the U-phase carrier 28U shown by the solid line.
  • the phase of the W-phase carrier wave 28W indicated by the alternate long and short dash line is 120 ° ahead of the U-phase carrier wave 28U. It should be noted that the fact that the phase is advanced by 120 ° and that the phase is delayed by 240 ° are equivalent.
  • FIG. 11 is a diagram showing PWM control signals generated by each phase voltage command and each phase carrier wave shown in FIG. According to the waveform shown in FIG. 11, it is shown that the ON or OFF timings of the PWM control signals of each phase are deviated from each other. Therefore, it can be understood that when the carrier phases of each phase are shifted by 120 ° from each other, a zero voltage vector is not generated even when the modulation factor takes a value close to 0, unlike in FIG.
  • FIG. 12 is a diagram showing an example of a common mode voltage waveform generated by the PWM control signal shown in FIG. According to FIG. 12, even when the modulation factor is close to 0, the common mode voltage has a waveform that goes back and forth between the levels of ⁇ 1/3 [Vpu]. Therefore, as compared with the example of FIG. 9 in which the carrier phase of each phase is the same, the voltage change rate is smaller, so that the leakage current 35 flowing through the stray capacitance 34 is reduced.
  • FIG. 13 is a diagram showing an example of the harmonic distribution of the motor current related to the conventional control when the carrier waves of each phase are the same.
  • the vertical axis of FIG. 13 represents the current amplitude.
  • the waveform control parameters of FIG. 13 are a carrier frequency of 800 Hz, a drive frequency of 20 Hz, and a modulation factor of 0.2. According to FIG. 13, the 20 Hz component of the drive frequency appears large, and the 2f component (1600 Hz) of the carrier frequency appears, although the amplitude is relatively small.
  • FIG. 14 is a diagram showing an example of the harmonic distribution of the motor current according to the conventional control when the carrier phases of each phase are shifted by 120 ° from each other.
  • the control parameters other than the carrier phase are the same as those in FIG. According to FIG. 14, it is shown that the 1f component (800 Hz) of the carrier frequency is significantly increased.
  • the carrier phase of each phase is shifted by 120 ° from each other, there arises a problem that the electromagnetic noise emitted from the motor increases.
  • FIG. 15 is a diagram showing an example of a common mode voltage waveform according to conventional control when the carrier phase of each phase is shifted by 120 ° from each other.
  • the control parameters other than the carrier phase in the waveform of FIG. 15 are a carrier frequency of 800 Hz, a drive frequency of 20 Hz, and a modulation factor of 0.8.
  • the common mode voltage waveform changes to a level of ⁇ 1 [Vpu] as the modulation factor increases, and the leakage current 35 is reduced. Can be understood to be smaller.
  • FIG. 16 is a diagram used for explaining the concept of the control method in the first embodiment.
  • the horizontal axis represents the modulation factor and the vertical axis represents the noise level. Since the modulation factor increases as the speed of the motor increases, the modulation factor on the horizontal axis may be read as the speed of the motor.
  • the noise level on the vertical axis means the noise level caused by the leakage current 35.
  • the thick solid line K1 represents the noise level when there is a carrier phase difference, that is, when there is a phase difference in the carrier phase of each phase.
  • the thick broken line K2 represents the noise level when there is no carrier phase difference, that is, when there is no phase difference in the carrier phase of each phase.
  • the thin broken line K3 drawn parallel to the horizontal axis represents the noise level limit value.
  • the limit value is a value that changes depending on the vehicle type and route of the electric vehicle.
  • the carrier wave generation unit 8 is configured as shown in FIG.
  • FIG. 17 is a diagram showing a configuration example of the carrier wave generation unit 8 according to the first embodiment.
  • the carrier wave generation unit 8 according to the first embodiment includes a phase calculation unit 81 and a carrier wave output unit 82.
  • the phase calculation unit 81 includes an integrator 811, a phase difference calculation unit 812, a subtractor 813, and an adder 814.
  • the integrator 811 calculates the first carrier phase theta cu based on the carrier frequency command f c.
  • the phase difference calculation unit 812 calculates the phase difference ⁇ c based on the motor frequency.
  • the subtractor 813 calculates the second carrier phase ⁇ cv by subtracting the phase difference ⁇ c from the first carrier phase ⁇ cu.
  • the adder 814 calculates the third carrier phase ⁇ cw by adding the phase difference ⁇ c to the first carrier phase ⁇ cu.
  • the input signal of the phase difference calculation unit 812 is used as the motor frequency, but the frequency is not limited to this.
  • the phase difference calculation unit 812 may be configured to output a phase difference [Delta] [theta] c in accordance with the reference table may be configured to output a phase difference [Delta] [theta] c by the function calculation.
  • the phase difference ⁇ c means the shift width of the carrier wave phase.
  • the shift width of the carrier wave phase between each phase causes a noise problem in relation to the modulation factor. Therefore, it is desirable that the shift width of the carrier phase is minimized.
  • the first carrier wave phase ⁇ cu , the second carrier wave phase ⁇ cv, and the third carrier wave phase ⁇ cw calculated by the phase calculation unit 81 are input to the carrier wave output unit 82.
  • Carrier wave output unit 82 generates and outputs a U-phase carrier c u using a first carrier phase theta cu.
  • Carrier wave output unit 82 generates a V-phase carrier c v outputs using a second carrier phase theta cv.
  • Carrier wave output unit 82 generates a W-phase carrier c w to output using the third carrier phase theta cw.
  • the phase calculation unit 81 calculates the first carrier phase theta cu, second carrier phase theta cv and third carrier phase theta cw based on the carrier frequency command f c and the motor frequency. Further, the carrier wave output unit 82, the first carrier phase theta cu, second carrier phase theta cv and third is the carrier of the three-phase based on the carrier phase theta cw U-phase carrier c u, V-phase carrier c The v and W phase carrier waves c w are output. According to the carrier wave generation unit 8 configured in this way, it is possible to achieve both the suppression of common mode noise in the low speed range and the suppression of noise in the medium to high speed range. In addition, control that does not cause torque shock in the mode transition can be realized.
  • the phase difference between the first carrier wave phase ⁇ cu and the second carrier wave phase ⁇ cv and the phase difference between the first carrier wave phase ⁇ cu and the third carrier wave phase ⁇ cw. are configured to be equal, but their phase differences may be different.
  • Essential point is that the first carrier phase theta cu, the second carrier phase theta cv and third carrier phase theta cw have a phase difference from each other, the phase difference changes in response to changes in the motor frequency It is in. If this point is ensured, it is possible to obtain the effect of the first embodiment described here.
  • FIG. 18 is a diagram showing a configuration example of the carrier wave generation unit 8A according to the modified example of the first embodiment.
  • the phase calculation unit 81 is replaced with the phase calculation unit 81A in the configuration of the carrier wave generation unit 8 shown in FIG.
  • integrators 815 and 816 are added in the configuration of the phase calculation unit 81 shown in FIG.
  • Other configurations are the same as those of the phase calculation unit 81 shown in FIG. 17, and the same reference numerals are given to the equivalent components, and duplicate description will be omitted.
  • the input carrier frequency command f c is the carrier frequency command of each phase inside the phase calculation unit 81A, that is, the U-phase carrier frequency command f cu , the V-phase carrier frequency command f cv , and the W-phase carrier frequency command. It is configured to be branched into three as f cw and input to individual integrators provided for each phase. Since the signals input to the integrators 811, 815, and 816 are the same, the operation equivalent to that in FIG. 17 is performed.
  • the inverter control device includes a carrier wave generation unit that generates a three-phase carrier wave, and the carrier wave generation unit is the first to third based on the carrier wave frequency command and the electric motor frequency. Calculate the carrier phase of.
  • the first to third carrier phases have a phase difference from each other, and this phase difference changes continuously according to a change in the motor frequency.
  • the common mode voltage generated by the PWM control signal can be reduced.
  • the leakage current that can flow through the stray capacitance can be reduced, so that leakage noise can be suppressed without relying on the addition of filter components.
  • the second and third carrier phases each have a phase difference having the opposite sign and the same magnitude with respect to the first carrier phase. In this way, it is possible to enhance the effect of reducing common mode noise.
  • the motor frequency is zero, it is desirable that the mutual phase difference between the first to third carrier phases is 120 °. By doing so, it is possible to further enhance the effect of reducing common mode noise.
  • FIG. 19 is a block diagram showing an example of a hardware configuration that realizes the function of the inverter control device 5 according to the first embodiment.
  • FIG. 20 is a block diagram showing another example of a hardware configuration that realizes the function of the inverter control device 5 according to the first embodiment.
  • the processor 200 that performs the calculation and the memory 202 in which the program read by the processor 200 is stored.
  • the interface 204 for inputting and outputting signals can be included.
  • the processor 200 may be a computing means such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • the memory 202 includes a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Program ROM), and an EEPROM (registered trademark) (Electrically EPROM). Examples thereof include magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital entirely Disc).
  • the memory 202 stores a program that executes the function of the inverter control device 5 according to the first embodiment.
  • the processor 200 sends and receives necessary information via the interface 204, the processor 200 executes a program stored in the memory 202, and the processor 200 refers to a table stored in the memory 202 to perform the above-described processing. It can be carried out.
  • the calculation result by the processor 200 can be stored in the memory 202.
  • the processing circuit 203 shown in FIG. 24 can also be used.
  • the processing circuit 203 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the information input to the processing circuit 203 and the information output from the processing circuit 203 can be obtained via the interface 204.
  • processing in the inverter control device 5 may be performed by the processing circuit 203, and processing that is not performed by the processing circuit 203 may be performed by the processor 200 and the memory 202.
  • FIG. 21 is a diagram showing a configuration example of the carrier wave generation unit 8B according to the second embodiment.
  • a frequency modulation unit 83 and an adder 84 are provided in front of the phase calculation unit 81.
  • the frequency modulation unit 83 is provided for noise reduction.
  • the frequency modulation unit 83 includes a random number generator 831 and an amplifier 832.
  • the adder 84 is configured to input the basic carrier frequency command f c0 and the output of the frequency modulation unit 83.
  • Other configurations are the same as those of the phase calculation unit 81 shown in FIG. 17, and the same reference numerals are given to the equivalent components, and duplicate description will be omitted.
  • Frequency modulation unit 83 is a component that performs so-called random modulation, calculates the amount of frequency modulation Delta] f c on the basis of the output of the random number generator 831.
  • the adder 84 adds the carrier frequency command f c and the frequency modulation amount ⁇ f c, and outputs the addition result to the phase calculation unit 81 as a new carrier frequency command f c1.
  • the frequency modulation amount Delta] f c is generated based on the random number generated by the random number generator 831. Then, the generated amount of frequency modulation Delta] f c is added to a common carrier frequency instruction f c in each phase. Therefore, even if there is a phase difference between each carrier, all carriers are frequency modulated based on a random number generated from a single seed. As a result, the carrier waves of each phase are frequency-modulated while maintaining a state in which the waveforms maintain a phase difference from each other. Therefore, it is possible to suppress deterioration of the common mode noise reduction effect.
  • the carrier wave generator calculates the frequency modulation amount based on the output of the random number generator, and inputs the calculated frequency modulation amount to the phase calculation unit. Add to all carrier frequency commands that are issued. This makes it possible to reduce noise while suppressing deterioration of the common mode noise reduction effect.
  • FIG. 22 is a diagram showing a configuration example of the carrier wave generation unit 8C according to the third embodiment.
  • a frequency modulation unit 85 is provided in front of the phase calculation unit 81A, and the phase calculation unit 81A is replaced with the phase calculation unit 81B.
  • adders 817a, 817b, and 817c are added to the preceding stages of the integrators 811,815,816 in the configuration of the phase calculation unit 81A shown in FIG.
  • the frequency modulation unit 85 is provided in order to effectively reduce noise as compared with the frequency modulation unit 83 of the second embodiment shown in FIG.
  • Other configurations are the same as those of the carrier wave generation unit 8A shown in FIG. 18, and the same components are designated by the same reference numerals and duplicate description will be omitted.
  • FIG. 23 is a diagram showing a detailed configuration of the frequency modulation unit 85 shown in FIG. 22.
  • the frequency modulation unit 85 includes a list 851, an order control unit 852, and switching units 853a, 853b, 853c.
  • the frequency values f i of the n + 1 points are equally spaced, i.e., when the frequency value f i are arranged in ascending or descending order, it is desirable that the difference between adjacent frequency values f i are all such values.
  • the configuration may be set inside the frequency modulation unit 85.
  • the sequence control unit 852 controls the switching units 853a, 853b, and 853c to randomly select one element from each element stored in the list 851 without duplication, and selects the selected element as the first frequency modulation amount ⁇ f cu. outputs a second amount of frequency modulation Delta] f cv, and a third frequency modulation amount Delta] f cw. After selecting all the elements in the list 851, the elements in the list are selected in a random order different from the previous one, and this selection operation is repeated.
  • the elements selected one by one from each element stored in the list 851 in a random first order without duplication are output as the first frequency modulation amount ⁇ f cu, and are output to the adder 817a. Entered. Further, the frequency modulation unit 85 outputs elements selected one by one from each element stored in the list 851 in a random second order without duplication as a second frequency modulation amount ⁇ f cv , and is an adder. It is input to 817b. Further, the frequency modulation unit 85 outputs elements selected one by one from each element stored in the list 851 in a random third order without duplication as a third frequency modulation amount ⁇ f cw , and is an adder. It is input to 817c.
  • the carrier frequency command f c and the first frequency modulation amount ⁇ f cu are added, and the addition result is input to the integrator 811 as the U-phase carrier frequency command f cu.
  • the adder 817b is added to the carrier frequency command f c and a second amount of frequency modulation Delta] f cv, the addition result is input to the integrator 815 as V-phase carrier frequency command f cv.
  • the carrier frequency command f c and the third frequency modulation amount ⁇ f cw are added, and the addition result is input to the integrator 816 as the W phase carrier frequency command f cw. Subsequent operations are as described above, and description thereof will be omitted here.
  • FIG. 24 is a diagram showing an output image of the frequency modulation amount Delta] f c which is output from the frequency modulating unit 85 shown in FIG. 23.
  • Frequency modulation amount Delta] f c represents any of the first amount of frequency modulation Delta] f cu, the second frequency modulation amount Delta] f cv and third frequency modulation amount Delta] f cw.
  • the time when each element of the sequence ⁇ fx ⁇ is output is shown.
  • the output time of each element may be rephrased as the time required for switching the output.
  • the output time of the element f xi is the reciprocal of the element f xi. That is, the time from the selection of the i-th element to the switching to the i + 1-th element is the reciprocal of the i-th element.
  • the time T cyc can be expressed by the following equation (1).
  • Frequency modulation amount Delta] f c is different for each phase, are different only order in which the elements are selected from the list 851. Therefore, no matter what order the elements stored in the list 851 are selected, the time T cyc required to complete the selection of all the elements in the list 851 is always equal. That is, the carrier frequency of each phase is modulated by a different random number, but the carrier phase difference returns to the set value every time T cyc. Therefore, if the frequency modulation unit 85 according to the third embodiment is used, it is possible to achieve both reduction of common mode noise and improvement of audibility. Specifically, the smaller the number of data points n + 1 and the narrower the range of the frequency value stored in the list 851, the priority is given to the effect of reducing common mode noise. On the contrary, the larger the number of data points n + 1 and the wider the range of the frequency value stored in the list 851, the more priority is given to the improvement of the hearing sensation.
  • carrier wave generating unit comprises a first amount of frequency modulation Delta] f cu, the second frequency modulation amount Delta] f cv and third frequency-modulated amount Delta] f cw It is provided with a frequency modulator that outputs.
  • the first frequency modulation amount ⁇ f cu is an element selected one by one from each element stored in the list of first phases in a random first order without duplication.
  • the second frequency modulation amount ⁇ f cv is an element selected one by one from each element stored in the list of the second phase in a random second order without duplication.
  • the third frequency modulation amount ⁇ f cw is an element selected one by one from each element stored in the list of the third phase in a random third order without duplication.
  • the first frequency modulation amount ⁇ f cu , the second frequency modulation amount ⁇ f cv, and the third frequency modulation amount ⁇ f cw are added one-to-one with respect to the carrier frequency command. Further, when these first frequency modulation amount ⁇ f cu , second frequency modulation amount ⁇ f cv and third frequency modulation amount ⁇ f cw are selected from the list of each phase and output, the i-th element is selected.
  • the time from being performed until switching to the i + 1th element is the reciprocal of the i-th element. As a result, it is possible to achieve both reduction of common mode noise and improvement of hearing sensation.
  • the number of data points in the list of each phase may be changed according to the motor frequency. Further, when the minimum value of the element stored in the list of each phase is set as the first value and the maximum value is set as the second value, at least one of these first and second values is the motor frequency. It may be changed according to. By changing the number of data points, the first value, or the second value according to the motor frequency, it is possible to control according to the priority between the effect of reducing common mode noise and the degree of improvement in hearing sensation.
  • the first value and the second value in the list of each phase have the same absolute value and different signs, and each element in the list has values at equal intervals.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and deviates from the gist. It is also possible to omit or change a part of the configuration as long as it is not.
  • the inverter control device has been described as a device included inside the motor drive device, but the present invention is not limited to this. As long as the inverter control device and the inverter are electrically connected, the inverter control device may be configured as a device outside the motor drive device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

An inverter controller (5) comprises: a carrier-wave generation unit (8) for generating a three-phase carrier wave; and a PWM control unit (7) for controlling a switching state of an inverter by comparing the carrier wave and a modulated wave. The carrier-wave generation unit (8) comprises: a phase arithmetic unit (81) for calculating first to third carrier-wave phases on the basis of a carrier-wave frequency command and a motor frequency; and a carrier-wave output unit (82) for outputting the three-phase carrier wave on the basis of the first to third carrier-wave phases. The first to third carrier-wave phases have phase differences that vary continuously according to a change in motor frequency.

Description

インバータ制御装置及び電動機駆動装置Inverter control device and motor drive device
 本開示は、インバータを制御するインバータ制御装置、及びインバータ制御装置を備えた電動機駆動装置に関する。 The present disclosure relates to an inverter control device that controls an inverter and an electric motor drive device including the inverter control device.
 電気車に推進力を付与する電動機は、インバータによって駆動される。電気車が走行する軌道上には、各種信号機の受信機である地上子が配置される。これらの地上子を誤動作させないよう、電気車には、漏洩ノイズに対する規制が定められている。下記特許文献1には、コモンモードノイズを抑制するために、インバータと電動機とを繋ぐ配線の周囲に、フェライト又はアモルファス金属等の強磁性体を素材とする中空形状のコアを配置することが記載されている。 The electric motor that gives propulsion to the electric vehicle is driven by an inverter. Ground elements, which are receivers for various traffic lights, are placed on the track on which the electric vehicle travels. To prevent these ground elements from malfunctioning, electric vehicles have regulations on leakage noise. Patent Document 1 below describes that a hollow core made of a ferromagnetic material such as ferrite or amorphous metal is arranged around a wiring connecting an inverter and an electric motor in order to suppress common mode noise. Has been done.
特開2004-187368号公報Japanese Unexamined Patent Publication No. 2004-187368
 しかしながら、電気車の床下のスペースは限られている。このため、上記特許文献1に記載のコアのようなフィルタ部品を追設するための十分なスペースがない場合がある。このような場合、フィルタ部品を追設するためのスペースを確保するために、インバータ制御装置の仕様の見直しを余儀なくされることがある。 However, the space under the floor of the electric car is limited. Therefore, there may be insufficient space for adding a filter component such as the core described in Patent Document 1. In such a case, the specifications of the inverter control device may have to be reviewed in order to secure a space for adding the filter parts.
 また、フィルタ部品のフィルタ特性は、電動機を含めたインピーダンスに従って決定する必要がある。ところが、電動機の製造者と、インバータ制御装置の製造者とが同じであるとは限らない。この場合、フィルタ部品の追設に頼ることは、インバータ制御装置の製造者において設計工数を増大させ、実車両での調整作業を増大させる。このため、フィルタ部品の追設に頼らずに漏洩ノイズを抑制することが望まれる。 In addition, the filter characteristics of the filter parts need to be determined according to the impedance including the motor. However, the manufacturer of the electric motor and the manufacturer of the inverter control device are not always the same. In this case, relying on the additional filter parts increases the design man-hours in the manufacturer of the inverter control device and increases the adjustment work in the actual vehicle. Therefore, it is desired to suppress leakage noise without relying on the addition of filter parts.
 本開示は、上記に鑑みてなされたものであって、フィルタ部品の追設に頼らずに漏洩ノイズを抑制することができるインバータ制御装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain an inverter control device capable of suppressing leakage noise without relying on the addition of filter parts.
 上述した課題を解決し、目的を達成するために、本開示は、パルス幅変調により三相の電動機を駆動するインバータを制御するインバータ制御装置である。インバータ制御装置は、三相の搬送波を生成する搬送波生成部と、搬送波と変調波との比較によりインバータのスイッチング状態を制御するパルス幅変調制御部と、を備える。搬送波生成部は、搬送波周波数指令と電動機周波数とに基づいて第一から第三の搬送波位相を演算する位相演算部と、第一から第三の搬送波位相に基づいて三相の搬送波を出力する搬送波出力部と、を備える。第一から第三の搬送波位相は互いに位相差を有し、電動機周波数の変化に応じて位相差も連続的に変化する。 In order to solve the above-mentioned problems and achieve the object, the present disclosure is an inverter control device that controls an inverter that drives a three-phase motor by pulse width modulation. The inverter control device includes a carrier wave generation unit that generates a three-phase carrier wave, and a pulse width modulation control unit that controls the switching state of the inverter by comparing the carrier wave with the modulated wave. The carrier generation unit includes a phase calculation unit that calculates the first to third carrier phases based on the carrier frequency command and the motor frequency, and a carrier that outputs three-phase carriers based on the first to third carrier phases. It has an output unit. The first to third carrier phases have a phase difference from each other, and the phase difference also changes continuously as the motor frequency changes.
 本開示に係るインバータ制御装置によれば、フィルタ部品の追設に頼らずに漏洩ノイズを抑制することができるという効果を奏する。 According to the inverter control device according to the present disclosure, there is an effect that leakage noise can be suppressed without relying on the addition of filter parts.
実施の形態1に係るインバータ制御装置を含む電動機駆動装置の構成例を示す図The figure which shows the structural example of the electric motor drive device which includes the inverter control device which concerns on Embodiment 1. 一般的なインバータ主回路の構成例を示す図Diagram showing a configuration example of a general inverter main circuit 漏洩電流の説明に用いる図1の等価回路を示す図The figure which shows the equivalent circuit of FIG. 1 used to explain the leakage current. 図2に示す各アームの半導体素子に与えるパルス幅変調(Pulse Width Modulation:PWM)制御信号の生成手法の説明に用いる図The figure used for explaining the method of generating the pulse width modulation (PWM) control signal given to the semiconductor element of each arm shown in FIG. 図4に示す各相電圧指令によって生成されるPWM制御信号を示す図The figure which shows the PWM control signal generated by each phase voltage command shown in FIG. 図5に示すPWM制御信号によって生ずるコモンモード電圧を示す図The figure which shows the common mode voltage generated by the PWM control signal shown in FIG. 図4とは異なる変調率の各相電圧指令の例を示す図The figure which shows the example of each phase voltage command of the modulation factor different from FIG. 図7に示す各相電圧指令によって生成されるPWM制御信号を示す図The figure which shows the PWM control signal generated by each phase voltage command shown in FIG. 図8に示すPWM制御信号によって生ずるコモンモード電圧を示す図The figure which shows the common mode voltage generated by the PWM control signal shown in FIG. 図7に示す各相電圧指令及び搬送波において各相の搬送波位相を互いに120°ずらした場合の波形例を示す図The figure which shows the waveform example when the carrier wave phase of each phase is shifted 120 ° from each other in each phase voltage command and the carrier wave shown in FIG. 図10に示す各相電圧指令及び各相搬送波によって生成されるPWM制御信号を示す図The figure which shows the PWM control signal generated by each phase voltage command and each phase carrier wave shown in FIG. 図11に示すPWM制御信号によって生ずるコモンモード電圧波形の例を示す図The figure which shows the example of the common mode voltage waveform generated by the PWM control signal shown in FIG. 各相の搬送波が同一であるときの従来制御に係る電動機電流の高調波分布の例を示す図The figure which shows the example of the harmonic distribution of the motor current which concerns on the conventional control when the carrier wave of each phase is the same. 各相の搬送波位相を互いに120°ずらした場合の従来制御に係る電動機電流の高調波分布の例を示す図The figure which shows the example of the harmonic distribution of the motor current which concerns on the conventional control when the carrier phase of each phase is shifted 120 ° from each other. 各相の搬送波位相を互いに120°ずらした場合の従来制御に係るコモンモード電圧波形の例を示す図The figure which shows the example of the common mode voltage waveform which concerns on the conventional control when the carrier phase of each phase is shifted 120 ° from each other. 実施の形態1における制御手法の概念の説明に使用する図The figure used for explaining the concept of the control method in Embodiment 1. 実施の形態1に係る搬送波生成部の構成例を示す図The figure which shows the structural example of the carrier wave generation part which concerns on Embodiment 1. 実施の形態1の変形例に係る搬送波生成部の構成例を示す図The figure which shows the structural example of the carrier wave generation part which concerns on the modification of Embodiment 1. 実施の形態1におけるインバータ制御装置の機能を実現するハードウェア構成の一例を示すブロック図A block diagram showing an example of a hardware configuration that realizes the function of the inverter control device according to the first embodiment. 実施の形態1におけるインバータ制御装置の機能を実現するハードウェア構成の他の例を示すブロック図A block diagram showing another example of a hardware configuration that realizes the function of the inverter control device according to the first embodiment. 実施の形態2に係る搬送波生成部の構成例を示す図The figure which shows the structural example of the carrier wave generation part which concerns on Embodiment 2. 実施の形態3に係る搬送波生成部の構成例を示す図The figure which shows the structural example of the carrier wave generation part which concerns on Embodiment 3. 図22に示す周波数変調部の詳細構成を示す図The figure which shows the detailed structure of the frequency modulation part shown in FIG. 22 図23に示す周波数変調部から出力される周波数変調量の出力イメージを示す図The figure which shows the output image of the frequency modulation amount output from the frequency modulation part shown in FIG.
 以下に添付図面を参照し、本開示の実施の形態に係るインバータ制御装置及び電動機駆動装置について詳細に説明する。なお、以下の実施の形態では、鉄道システムに適用される電動機駆動装置を例示して説明するが、他の用途への適用を除外する意図ではない。 The inverter control device and the motor drive device according to the embodiment of the present disclosure will be described in detail with reference to the accompanying drawings below. In the following embodiments, the motor drive device applied to the railway system will be described as an example, but it is not intended to exclude the application to other uses.
実施の形態1.
 図1は、実施の形態1に係るインバータ制御装置5を含む電動機駆動装置1の構成例を示す図である。実施の形態1に係る電動機駆動装置1は、図1に示すように、フィルタコンデンサ3と、インバータ4と、インバータ制御装置5とを備える。インバータ4は、電動機105と接続されている。電動機105は、電気車に搭載される三相の電動機である。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of an electric motor drive device 1 including an inverter control device 5 according to the first embodiment. As shown in FIG. 1, the motor drive device 1 according to the first embodiment includes a filter capacitor 3, an inverter 4, and an inverter control device 5. The inverter 4 is connected to the motor 105. The electric motor 105 is a three-phase electric motor mounted on an electric vehicle.
 架線101から供給される直流電力は、集電装置102及びフィルタリアクトル2を介し、電動機駆動装置1に供給される。架線101の先には、図示しない変電所があり、架線101は、電動機駆動装置1から見て、外部電源という位置づけである。なお、集電装置102に印加される架線101の電圧である架線電圧、及びインバータ4の各変換容量は、駆動方式によって異なる。架線電圧の範囲は、おおよそ6百から3千[V]である。また、変換容量の範囲は、数十から数百[kVA]である。 The DC power supplied from the overhead wire 101 is supplied to the motor drive device 1 via the current collector 102 and the filter reactor 2. There is a substation (not shown) at the end of the overhead wire 101, and the overhead wire 101 is positioned as an external power source when viewed from the motor drive device 1. The overhead wire voltage, which is the voltage of the overhead wire 101 applied to the current collector 102, and the conversion capacity of the inverter 4 differ depending on the drive system. The overhead line voltage range is approximately 600 to 3,000 [V]. The conversion capacity range is from several tens to several hundreds [kVA].
 電動機駆動装置1の正側端子Pは、フィルタリアクトル2に接続される。電動機駆動装置1の負側端子Nは、車輪103を介してレール104に接続される。これにより、架線101から供給される直流電力による直流電流は、フィルタリアクトル2、電動機駆動装置1、電動機105、車輪103及びレール104を介して流れ、変電所に戻る。 The positive terminal P of the motor drive device 1 is connected to the filter reactor 2. The negative terminal N of the motor drive device 1 is connected to the rail 104 via the wheel 103. As a result, the direct current due to the direct current supplied from the overhead wire 101 flows through the filter reactor 2, the motor drive device 1, the motor 105, the wheels 103, and the rail 104, and returns to the substation.
 なお、図1では、架線101として架空電線を示し、集電装置102としてパンタグラフ状の集電装置をそれぞれ示しているが、これらに限定されない。架線101としては、地下鉄等で使用されている第三軌条でもよく、これに合わせ、集電装置102は第三軌条用の集電装置を用いてもよい。また、図1では、架線101が直流架線である場合を示しているが、架線101は交流架線でもよい。なお、架線101が交流架線である場合、フィルタリアクトル2の代わりに、受電する交流電圧を降圧するための変圧器が設けられ、変圧器の後段には変圧器から出力される交流電圧を直流電圧に変換するコンバータが設けられる。 Note that, in FIG. 1, an overhead electric wire is shown as an overhead wire 101, and a pantograph-shaped current collector is shown as a current collector 102, but the present invention is not limited thereto. The overhead line 101 may be a third rail used in a subway or the like, and the current collector 102 may use a current collector for the third rail in accordance with this. Further, although FIG. 1 shows a case where the overhead wire 101 is a DC overhead wire, the overhead wire 101 may be an AC overhead wire. When the overhead wire 101 is an AC overhead wire, a transformer for stepping down the AC voltage received is provided instead of the filter reactor 2, and the AC voltage output from the transformer is a DC voltage in the subsequent stage of the transformer. A converter is provided to convert to.
 また、図1では、フィルタリアクトル2は、電動機駆動装置1の外部の構成要素として示しているが、これに限定されない。フィルタリアクトル2は、電動機駆動装置1の内部に設けられる場合もある。 Further, in FIG. 1, the filter reactor 2 is shown as an external component of the motor drive device 1, but the present invention is not limited to this. The filter reactor 2 may be provided inside the motor drive device 1.
 フィルタコンデンサ3は、電動機駆動装置1の内部において、正側端子Pと負側端子Nとの間に接続される。これにより、フィルタコンデンサ3は、インバータ4の入力側において、インバータ4の各両端に並列に接続される。 The filter capacitor 3 is connected between the positive terminal P and the negative terminal N inside the motor drive device 1. As a result, the filter capacitor 3 is connected in parallel to both ends of the inverter 4 on the input side of the inverter 4.
 フィルタコンデンサ3は、印加される直流電圧を平滑する。また、フィルタコンデンサ3は、フィルタリアクトル2に接続され、フィルタリアクトル2と共にLCフィルタ回路を構成する。このLCフィルタ回路は、架線101側から流入するサージ電圧を抑制する。また、LCフィルタ回路は、インバータ4に流れる電流のリプル成分の大きさを抑制する。インバータ4は、電動機105に電力を供給する電力変換回路である。 The filter capacitor 3 smoothes the applied DC voltage. Further, the filter capacitor 3 is connected to the filter reactor 2 and constitutes an LC filter circuit together with the filter reactor 2. This LC filter circuit suppresses the surge voltage flowing in from the overhead wire 101 side. Further, the LC filter circuit suppresses the magnitude of the ripple component of the current flowing through the inverter 4. The inverter 4 is a power conversion circuit that supplies electric power to the electric motor 105.
 インバータ4の動作は、インバータ制御装置5によって制御される。インバータ4は、フィルタコンデンサ3の直流電圧を任意の電圧値を有する任意の周波数の交流電圧に変換して電動機105に印加する。 The operation of the inverter 4 is controlled by the inverter control device 5. The inverter 4 converts the DC voltage of the filter capacitor 3 into an AC voltage of an arbitrary frequency having an arbitrary voltage value and applies it to the motor 105.
 インバータ制御装置5は、電圧指令演算部6と、PWM制御部7と、搬送波生成部8と、を備える。インバータ制御装置5には、トルク指令に関する情報と、電動機周波数に関する情報とが入力される。電圧指令演算部6は、トルク指令及び電動機周波数に基づいて電圧指令を演算する。搬送波生成部8は、電動機周波数に基づいて搬送波を生成する。PWM制御部7は、電圧指令と搬送波とに基づいて、インバータ4のスイッチング素子を制御するためのPWM制御信号を生成してインバータ4に出力する。PWM制御信号は、電圧指令と搬送波とを振幅比較することで生成される。PWM制御信号の生成手法については後述する。 The inverter control device 5 includes a voltage command calculation unit 6, a PWM control unit 7, and a carrier wave generation unit 8. Information on the torque command and information on the motor frequency are input to the inverter control device 5. The voltage command calculation unit 6 calculates the voltage command based on the torque command and the motor frequency. The carrier wave generation unit 8 generates a carrier wave based on the motor frequency. The PWM control unit 7 generates a PWM control signal for controlling the switching element of the inverter 4 based on the voltage command and the carrier wave, and outputs the PWM control signal to the inverter 4. The PWM control signal is generated by comparing the amplitude of the voltage command and the carrier wave. The method for generating the PWM control signal will be described later.
 図2は、一般的なインバータ主回路の構成例を示す図である。インバータ主回路は、上アームの半導体素子UPI,VPI,WPIと、下アームの半導体素子UNI,VNI,WNIと、を備える。 FIG. 2 is a diagram showing a configuration example of a general inverter main circuit. The inverter main circuit includes semiconductor elements UPI, VPI, WPI of the upper arm and semiconductor elements UNI, VNI, WNI of the lower arm.
 半導体素子UPIと半導体素子UNIとは直列に接続されてU相レグとなる。半導体素子VPIと半導体素子VNIとは直列に接続されてV相レグとなる。半導体素子WPIと半導体素子WNIとは直列に接続されてW相レグとなる。U相、V相及びW相の各レグは、互いに並列に接続されて三相のブリッジ回路を構成する。 The semiconductor element UPI and the semiconductor element UNI are connected in series to form a U-phase leg. The semiconductor element VPI and the semiconductor element VNI are connected in series to form a V-phase leg. The semiconductor element WPI and the semiconductor element WNI are connected in series to form a W-phase leg. The U-phase, V-phase, and W-phase legs are connected in parallel to each other to form a three-phase bridge circuit.
 図3は、漏洩電流の説明に用いる図1の等価回路を示す図である。図3では、電動機105をインダクタンスの回路記号で表している。電動機の種類に依らず、三相インバータで三相モータを駆動する場合、三相モータの中性点電位は変動する。このため、図3に示すように、電動機105の中性点電位32と接地電位である基準電位31との間に浮遊容量34が接続される等価回路が形成される。中性点電位32は、PWM制御に起因する高周波成分を含んでいる。従って、電動機105にU相電圧33U、V相電圧33V及びW相電圧33Wが印加されると、浮遊容量34を介して漏洩電流35が流れる。 FIG. 3 is a diagram showing an equivalent circuit of FIG. 1 used for explaining the leakage current. In FIG. 3, the motor 105 is represented by an inductance circuit symbol. When a three-phase motor is driven by a three-phase inverter regardless of the type of motor, the neutral point potential of the three-phase motor fluctuates. Therefore, as shown in FIG. 3, an equivalent circuit is formed in which the stray capacitance 34 is connected between the neutral point potential 32 of the motor 105 and the reference potential 31 which is the ground potential. The neutral point potential 32 contains a high frequency component due to PWM control. Therefore, when the U-phase voltage 33U, the V-phase voltage 33V, and the W-phase voltage 33W are applied to the motor 105, the leakage current 35 flows through the floating capacity 34.
 なお、中性点電位32と基準電位31との間の電位差は、「コモンモード電圧」と呼ばれる。三相インバータの場合、コモンモード電圧は、(Vu+Vv+Vw)/3と計算される。但し、VuはU相電圧33Uであり、VvはV相電圧33Vであり、VwはW相電圧33Wである。 The potential difference between the neutral point potential 32 and the reference potential 31 is called "common mode voltage". In the case of a three-phase inverter, the common mode voltage is calculated as (Vu + Vv + Vw) / 3. However, Vu has a U-phase voltage of 33U, Vv has a V-phase voltage of 33V, and Vw has a W-phase voltage of 33W.
 図4は、図2に示す各アームの半導体素子に与えるPWM制御信号の生成手法の説明に用いる図である。図4には、正弦波であるU相電圧指令26U、V相電圧指令26V及びW相電圧指令26Wと、三角波である搬送波28とが示されている。横軸は位相角であり、縦軸は振幅値を表している。縦軸の1[Vpu]は、インバータ4に印加される電圧振幅の1/2、言い替えるとフィルタコンデンサ3の電圧である直流電圧の1/2に相当する。 FIG. 4 is a diagram used for explaining a method for generating a PWM control signal given to the semiconductor element of each arm shown in FIG. FIG. 4 shows a U-phase voltage command 26U, a V-phase voltage command 26V, and a W-phase voltage command 26W, which are sine waves, and a carrier wave 28, which is a triangular wave. The horizontal axis represents the phase angle, and the vertical axis represents the amplitude value. 1 [Vpu] on the vertical axis corresponds to 1/2 of the voltage amplitude applied to the inverter 4, in other words, 1/2 of the DC voltage which is the voltage of the filter capacitor 3.
 図5は、図4に示す各相電圧指令によって生成されるPWM制御信号を示す図である。上段側から、U相PWM制御信号、V相PWM制御信号及びW相PWM制御信号の順で示している。図5の横軸は、図4と同じ位相角である。図5には、変調率が0.8であるときのPWM制御信号の波形が示されている。本明細書において、変調率は、インバータ4に印加される直流電圧の1/2と、インバータ4が電動機105に印加する交流相電圧の振幅との比であると定義する。なお、ここでの定義は一例であり、変調率は、どのように定義されていてもよい。 FIG. 5 is a diagram showing a PWM control signal generated by each phase voltage command shown in FIG. From the upper side, the U-phase PWM control signal, the V-phase PWM control signal, and the W-phase PWM control signal are shown in this order. The horizontal axis of FIG. 5 has the same phase angle as that of FIG. FIG. 5 shows the waveform of the PWM control signal when the modulation factor is 0.8. In the present specification, the modulation factor is defined as the ratio of 1/2 of the DC voltage applied to the inverter 4 to the amplitude of the AC phase voltage applied to the motor 105 by the inverter 4. The definition here is an example, and the modulation factor may be defined in any way.
 PWM制御部7は、U相電圧指令26Uと三角波信号である搬送波28を比較する。U相電圧指令26Uが搬送波28よりも大きいときは「ON」、U相電圧指令26Uが搬送波28以下のときは「OFF」となる。このようにして、図5の上段部に示されるU相PWM制御信号が生成される。V相PWM制御信号及びW相PWM制御信号もU相PWM制御信号と同様に、V相電圧指令26V及びW相電圧指令26Wのそれぞれと、搬送波28との比較によって生成される。このときに生成されるV相PWM制御信号及びW相PWM制御信号は、それぞれ図5の中段部及び下段部に示されている。 The PWM control unit 7 compares the U-phase voltage command 26U with the carrier wave 28 which is a triangular wave signal. When the U-phase voltage command 26U is larger than the carrier wave 28, it is “ON”, and when the U-phase voltage command 26U is the carrier wave 28 or less, it is “OFF”. In this way, the U-phase PWM control signal shown in the upper part of FIG. 5 is generated. Similar to the U-phase PWM control signal, the V-phase PWM control signal and the W-phase PWM control signal are also generated by comparing each of the V-phase voltage command 26V and the W-phase voltage command 26W with the carrier wave 28. The V-phase PWM control signal and the W-phase PWM control signal generated at this time are shown in the middle and lower stages of FIG. 5, respectively.
 図6は、図5に示すPWM制御信号によって生ずるコモンモード電圧を示す図である。図6において、横軸は位相角、縦軸はコモンモード電圧の振幅を表している。図6に示されるように、変調率が比較的大きいときのコモンモード電圧は、±1[Vpu]又は±1/3[Vpu]のレベル間を1ステップずつ変化する波形となる。 FIG. 6 is a diagram showing a common mode voltage generated by the PWM control signal shown in FIG. In FIG. 6, the horizontal axis represents the phase angle and the vertical axis represents the amplitude of the common mode voltage. As shown in FIG. 6, the common mode voltage when the modulation factor is relatively large has a waveform that changes step by step between the levels of ± 1 [Vpu] or ± 1/3 [Vpu].
 漏洩電流は、コモンモード電圧に変化がある度に流れる。また、コモンモード電圧の単位時間あたりの変化量(電圧変化率)が大きいほど、漏洩電流の振幅も大きくなる。従って、浮遊容量34を介して流れる漏洩電流35の抑制には、コモンモードの変化率の低減が重要となる。 Leakage current flows every time there is a change in the common mode voltage. Further, the larger the amount of change (voltage change rate) per unit time of the common mode voltage, the larger the amplitude of the leakage current. Therefore, in order to suppress the leakage current 35 flowing through the stray capacitance 34, it is important to reduce the rate of change in the common mode.
 図7は、図4とは異なる変調率の各相電圧指令の例を示す図である。図7には、変調率が0.1であるときの各相電圧指令が示されている。実線、破線及び一点鎖線の区別は、図4と同じである。即ち、実線はU相電圧指令26Uを示し、破線はV相電圧指令26Vを示し、一点鎖線はW相電圧指令26Wを示している。 FIG. 7 is a diagram showing an example of each phase voltage command having a modulation factor different from that of FIG. FIG. 7 shows each phase voltage command when the modulation factor is 0.1. The distinction between the solid line, the broken line and the alternate long and short dash line is the same as in FIG. That is, the solid line indicates the U-phase voltage command 26U, the broken line indicates the V-phase voltage command 26V, and the alternate long and short dash line indicates the W-phase voltage command 26W.
 図8は、図7に示す各相電圧指令によって生成されるPWM制御信号を示す図である。図8には、変調率が0.1であるときのPWM制御信号の波形が示されている。PWM制御信号の並びは図5と同じであり、上段側から、U相PWM制御信号、V相PWM制御信号及びW相PWM制御信号の順で示されている。 FIG. 8 is a diagram showing PWM control signals generated by each phase voltage command shown in FIG. 7. FIG. 8 shows the waveform of the PWM control signal when the modulation factor is 0.1. The arrangement of the PWM control signals is the same as that in FIG. 5, and the U-phase PWM control signal, the V-phase PWM control signal, and the W-phase PWM control signal are shown in this order from the upper side.
 変調率が0に近い値のときには、図8に示されるように、各相のPWM制御信号は互いの差が小さくなり、インバータ4の出力は、ゼロ電圧ベクトルの状態が大半となる。ここで、ゼロ電圧ベクトルの状態とは、全ての上アーム側素子がオンとなるか、若しくは、全ての下アーム素子がオンとなるかの何れかの状態であることを意味する。 When the modulation factor is close to 0, as shown in FIG. 8, the difference between the PWM control signals of each phase becomes small, and the output of the inverter 4 is mostly in the state of zero voltage vector. Here, the state of the zero voltage vector means that either all the upper arm side elements are turned on or all the lower arm elements are turned on.
 図9は、図8に示すPWM制御信号によって生ずるコモンモード電圧を示す図である。図9に示されるように、変調率が0に近いときには、コモンモード電圧が±1[Vpu]のレベル間を短時間で往来する波形となる。このため、変調率が比較的大きい0.8の場合と比べて、電圧変化率が大きくなり、浮遊容量34を介して流れる漏洩電流35が大きくなる。 FIG. 9 is a diagram showing a common mode voltage generated by the PWM control signal shown in FIG. As shown in FIG. 9, when the modulation factor is close to 0, the waveform becomes a waveform that moves back and forth between the levels of the common mode voltage of ± 1 [Vpu] in a short time. Therefore, the voltage change rate becomes larger and the leakage current 35 flowing through the stray capacitance 34 becomes larger than in the case of 0.8 in which the modulation factor is relatively large.
 図10は、図7に示す各相電圧指令及び搬送波において各相の搬送波位相を互いに120°ずらした場合の波形例を示す図である。図10に示す例では、破線で示されるV相搬送波28Vは、実線で示されるU相搬送波28Uに対して位相が120°遅れている。また、一点鎖線で示されるW相搬送波28Wは、U相搬送波28Uに対して位相が120°進んでいる。なお、位相が120°進んでいることと、位相が240°遅れていることは、等価である。 FIG. 10 is a diagram showing an example of waveforms when the carrier phases of each phase are shifted by 120 ° from each other in each phase voltage command and carrier shown in FIG. 7. In the example shown in FIG. 10, the V-phase carrier 28V shown by the broken line is 120 ° out of phase with the U-phase carrier 28U shown by the solid line. Further, the phase of the W-phase carrier wave 28W indicated by the alternate long and short dash line is 120 ° ahead of the U-phase carrier wave 28U. It should be noted that the fact that the phase is advanced by 120 ° and that the phase is delayed by 240 ° are equivalent.
 図11は、図10に示す各相電圧指令及び各相搬送波によって生成されるPWM制御信号を示す図である。図11に示される波形によれば、各相のPWM制御信号のオン又はオフのタイミングが互いにずれていることが示されている。このため、各相の搬送波位相を互いに120°ずらした場合には、図8とは異なり、変調率が0に近い値をとる場合でも、ゼロ電圧ベクトルを生じないことが理解できる。 FIG. 11 is a diagram showing PWM control signals generated by each phase voltage command and each phase carrier wave shown in FIG. According to the waveform shown in FIG. 11, it is shown that the ON or OFF timings of the PWM control signals of each phase are deviated from each other. Therefore, it can be understood that when the carrier phases of each phase are shifted by 120 ° from each other, a zero voltage vector is not generated even when the modulation factor takes a value close to 0, unlike in FIG.
 図12は、図11に示すPWM制御信号によって生ずるコモンモード電圧波形の例を示す図である。図12によれば、変調率が0に近い場合であっても、コモンモード電圧は±1/3[Vpu]のレベル間を往来する波形となる。このため、各相の搬送波位相が同じである図9の例と比べて、電圧変化率が小さくなるので、浮遊容量34を介して流れる漏洩電流35が低減される。 FIG. 12 is a diagram showing an example of a common mode voltage waveform generated by the PWM control signal shown in FIG. According to FIG. 12, even when the modulation factor is close to 0, the common mode voltage has a waveform that goes back and forth between the levels of ± 1/3 [Vpu]. Therefore, as compared with the example of FIG. 9 in which the carrier phase of each phase is the same, the voltage change rate is smaller, so that the leakage current 35 flowing through the stray capacitance 34 is reduced.
 図13は、各相の搬送波が同一であるときの従来制御に係る電動機電流の高調波分布の例を示す図である。図13の縦軸は電流振幅を表す。図13の波形の制御パラメータは、搬送波周波数が800Hz、駆動周波数が20Hz、変調率が0.2である。図13によれば、駆動周波数の20Hz成分が大きく現れると共に、振幅は比較的小さいものの、搬送波周波数の2f成分(1600Hz)が現れている。 FIG. 13 is a diagram showing an example of the harmonic distribution of the motor current related to the conventional control when the carrier waves of each phase are the same. The vertical axis of FIG. 13 represents the current amplitude. The waveform control parameters of FIG. 13 are a carrier frequency of 800 Hz, a drive frequency of 20 Hz, and a modulation factor of 0.2. According to FIG. 13, the 20 Hz component of the drive frequency appears large, and the 2f component (1600 Hz) of the carrier frequency appears, although the amplitude is relatively small.
 図14は、各相の搬送波位相を互いに120°ずらした場合の従来制御に係る電動機電流の高調波分布の例を示す図である。なお、搬送波位相以外の制御パラメータは、図13の例と同一である。図14によれば、搬送波周波数の1f成分(800Hz)が顕著に増加していることが示されている。この結果から理解できるように、各相の搬送波位相を互いに120°ずらした場合には、電動機から発せられる電磁騒音が増大するという課題が生ずる。 FIG. 14 is a diagram showing an example of the harmonic distribution of the motor current according to the conventional control when the carrier phases of each phase are shifted by 120 ° from each other. The control parameters other than the carrier phase are the same as those in FIG. According to FIG. 14, it is shown that the 1f component (800 Hz) of the carrier frequency is significantly increased. As can be understood from this result, when the carrier phase of each phase is shifted by 120 ° from each other, there arises a problem that the electromagnetic noise emitted from the motor increases.
 図12では、各相の搬送波位相を互いに120°ずらした場合には、浮遊容量34を介して流れる漏洩電流35が低減されることについて説明した。しかしながら、各相の搬送波位相を互いに120°ずらした場合において、変調率の値が比較的に大きい場合には、浮遊容量34を介して流れる漏洩電流35の低減効果が小さくなることが、本願の開示者らによって見出された。以下、この点について説明する。 In FIG. 12, it has been explained that when the carrier phase of each phase is shifted by 120 ° from each other, the leakage current 35 flowing through the stray capacitance 34 is reduced. However, when the carrier phases of each phase are shifted by 120 ° from each other and the value of the modulation factor is relatively large, the effect of reducing the leakage current 35 flowing through the stray capacitance 34 is reduced. Found by the disclosers. This point will be described below.
 図15は、各相の搬送波位相を互いに120°ずらした場合の従来制御に係るコモンモード電圧波形の例を示す図である。図15の波形における搬送波位相以外の制御パラメータは、搬送波周波数が800Hz、駆動周波数が20Hz、変調率が0.8である。図15によれば、搬送波位相を120°ずらした状態であっても、変調率が増加するとコモンモード電圧波形が、±1[Vpu」のレベルに変化するようになり、漏洩電流35の低減効果が小さくなることが理解できる。 FIG. 15 is a diagram showing an example of a common mode voltage waveform according to conventional control when the carrier phase of each phase is shifted by 120 ° from each other. The control parameters other than the carrier phase in the waveform of FIG. 15 are a carrier frequency of 800 Hz, a drive frequency of 20 Hz, and a modulation factor of 0.8. According to FIG. 15, even when the carrier phase is shifted by 120 °, the common mode voltage waveform changes to a level of ± 1 [Vpu] as the modulation factor increases, and the leakage current 35 is reduced. Can be understood to be smaller.
 図16は、実施の形態1における制御手法の概念の説明に使用する図である。横軸は変調率であり、縦軸はノイズレベルを表している。電動機の速度が大きいほど変調率も大きくなるので、横軸の変調率は電動機の速度と読み替えてもよい。縦軸のノイズレベルは、漏洩電流35に起因するノイズレベルを意味している。太実線K1は、搬送波位相差がある場合、即ち各相の搬送波位相に位相差がある場合のノイズレベルを表している。太破線K2は、搬送波位相差がない場合、即ち各相の搬送波位相に位相差がない場合のノイズレベルを表している。また、横軸に平行に引かれている細破線K3は、ノイズレベルの制限値を表している。なお、制限値は、電気車の車種及び路線によって変化する値である。 FIG. 16 is a diagram used for explaining the concept of the control method in the first embodiment. The horizontal axis represents the modulation factor and the vertical axis represents the noise level. Since the modulation factor increases as the speed of the motor increases, the modulation factor on the horizontal axis may be read as the speed of the motor. The noise level on the vertical axis means the noise level caused by the leakage current 35. The thick solid line K1 represents the noise level when there is a carrier phase difference, that is, when there is a phase difference in the carrier phase of each phase. The thick broken line K2 represents the noise level when there is no carrier phase difference, that is, when there is no phase difference in the carrier phase of each phase. The thin broken line K3 drawn parallel to the horizontal axis represents the noise level limit value. The limit value is a value that changes depending on the vehicle type and route of the electric vehicle.
 図16によれば、搬送波位相差がない場合、変調率が大きくなるほど漏洩電流35に起因するノイズレベルは小さくなることが示されている。一方、搬送波位相差がある場合は、変調率が大きくなるほど漏洩電流35に起因するノイズレベルは大きくなることが示されている。従って、搬送波位相差なしでノイズレベルの制限値を満足できる範囲では、搬送波位相差のない従来の変調方式を選択するのが騒音の観点で望ましいと言える。 According to FIG. 16, it is shown that when there is no carrier phase difference, the noise level caused by the leakage current 35 becomes smaller as the modulation factor becomes larger. On the other hand, when there is a carrier phase difference, it is shown that the noise level caused by the leakage current 35 increases as the modulation factor increases. Therefore, it can be said that it is desirable from the viewpoint of noise to select a conventional modulation method having no carrier phase difference within a range in which the noise level limit value can be satisfied without the carrier phase difference.
 以上に説明した事項を踏まえ、実施の形態1に係るインバータ制御装置5では、搬送波生成部8を図17のように構成する。図17は、実施の形態1に係る搬送波生成部8の構成例を示す図である。実施の形態1に係る搬送波生成部8は、図17に示すように、位相演算部81と、搬送波出力部82とを備える。 Based on the matters described above, in the inverter control device 5 according to the first embodiment, the carrier wave generation unit 8 is configured as shown in FIG. FIG. 17 is a diagram showing a configuration example of the carrier wave generation unit 8 according to the first embodiment. As shown in FIG. 17, the carrier wave generation unit 8 according to the first embodiment includes a phase calculation unit 81 and a carrier wave output unit 82.
 位相演算部81は、積分器811と、位相差演算部812と、減算器813と、加算器814とを備える。積分器811は、搬送波周波数指令fに基づいて第一の搬送波位相θcuを演算する。位相差演算部812は、電動機周波数に基づいて位相差Δθを演算する。減算器813は、第一の搬送波位相θcuから位相差Δθを減算することで第二の搬送波位相θcvを演算する。加算器814は、第一の搬送波位相θcuに位相差Δθを加算することで第三の搬送波位相θcwを演算する。なお、図17では、位相差演算部812の入力信号を電動機周波数としているが、これに限定されない。電動機周波数に代えて、変調率又は電気車の速度情報を用いてもよい。また、位相差演算部812は、参照テーブルに従って位相差Δθを出力する構成でもよいし、関数演算によって位相差Δθを出力する構成でもよい。 The phase calculation unit 81 includes an integrator 811, a phase difference calculation unit 812, a subtractor 813, and an adder 814. The integrator 811 calculates the first carrier phase theta cu based on the carrier frequency command f c. The phase difference calculation unit 812 calculates the phase difference Δθ c based on the motor frequency. The subtractor 813 calculates the second carrier phase θ cv by subtracting the phase difference Δθ c from the first carrier phase θ cu. The adder 814 calculates the third carrier phase θ cw by adding the phase difference Δθ c to the first carrier phase θ cu. In FIG. 17, the input signal of the phase difference calculation unit 812 is used as the motor frequency, but the frequency is not limited to this. Instead of the motor frequency, the modulation factor or the speed information of the electric train may be used. The phase difference calculation unit 812 may be configured to output a phase difference [Delta] [theta] c in accordance with the reference table may be configured to output a phase difference [Delta] [theta] c by the function calculation.
 図17の処理において、位相差Δθは、搬送波位相のずらし幅を意味している。図16を用いて説明したように、各相間における搬送波位相のずらし幅は、変調率との関係で騒音の問題が生ずる。このため、搬送波位相のずらし幅は、必要最小限とすることが望ましい。また、動作モードを設け、動作モードの切り替えによって搬送波位相のずらし幅を制御する構成も考えられる。しかしながら、動作モードを切り替える構成では、トルクショックを生じる懸念がある。そこで、実施の形態1では、搬送波位相のずらし幅を連続的に変化させる構成にすると共に、電動機周波数が増加するほど、搬送波位相のずらし幅を漸減させる構成としている。 In the process of FIG. 17, the phase difference Δθ c means the shift width of the carrier wave phase. As described with reference to FIG. 16, the shift width of the carrier wave phase between each phase causes a noise problem in relation to the modulation factor. Therefore, it is desirable that the shift width of the carrier phase is minimized. It is also conceivable to provide an operation mode and control the shift width of the carrier wave phase by switching the operation mode. However, in the configuration of switching the operation mode, there is a concern that torque shock may occur. Therefore, in the first embodiment, the shift width of the carrier wave phase is continuously changed, and the shift width of the carrier wave phase is gradually reduced as the motor frequency increases.
 位相演算部81によって演算された第一の搬送波位相θcu、第二の搬送波位相θcv及び第三の搬送波位相θcwは、搬送波出力部82に入力される。搬送波出力部82は、第一の搬送波位相θcuを用いてU相搬送波cを生成して出力する。搬送波出力部82は、第二の搬送波位相θcvを用いてV相搬送波cを生成して出力する。搬送波出力部82は、第三の搬送波位相θcwを用いてW相搬送波cを生成して出力する。 The first carrier wave phase θ cu , the second carrier wave phase θ cv, and the third carrier wave phase θ cw calculated by the phase calculation unit 81 are input to the carrier wave output unit 82. Carrier wave output unit 82 generates and outputs a U-phase carrier c u using a first carrier phase theta cu. Carrier wave output unit 82 generates a V-phase carrier c v outputs using a second carrier phase theta cv. Carrier wave output unit 82 generates a W-phase carrier c w to output using the third carrier phase theta cw.
 以上のように、位相演算部81は、搬送波周波数指令fと電動機周波数とに基づいて第一の搬送波位相θcu、第二の搬送波位相θcv及び第三の搬送波位相θcwを演算する。また、搬送波出力部82は、第一の搬送波位相θcu、第二の搬送波位相θcv及び第三の搬送波位相θcwに基づいて三相の搬送波であるU相搬送波c、V相搬送波c及びW相搬送波cを出力する。このように構成された搬送波生成部8によれば、低速域でのコモンモードノイズ抑制と、中~高速域での騒音抑制との両立を図ることができる。また、モード遷移でトルクショックを生じさせない制御を実現することができる。 As described above, the phase calculation unit 81 calculates the first carrier phase theta cu, second carrier phase theta cv and third carrier phase theta cw based on the carrier frequency command f c and the motor frequency. Further, the carrier wave output unit 82, the first carrier phase theta cu, second carrier phase theta cv and third is the carrier of the three-phase based on the carrier phase theta cw U-phase carrier c u, V-phase carrier c The v and W phase carrier waves c w are output. According to the carrier wave generation unit 8 configured in this way, it is possible to achieve both the suppression of common mode noise in the low speed range and the suppression of noise in the medium to high speed range. In addition, control that does not cause torque shock in the mode transition can be realized.
 なお、図17では、第一の搬送波位相θcuと第二の搬送波位相θcvとの間の位相差と、第一の搬送波位相θcuと第三の搬送波位相θcwとの間の位相差とが等しくなるように構成されているが、これらの位相差は異なっていてもよい。肝要な点は、第一の搬送波位相θcu、第二の搬送波位相θcv及び第三の搬送波位相θcwが互いに位相差を有し、この位相差が電動機周波数の変化に応じて変化することにある。この点が担保されれば、ここで説明した実施の形態1の効果を得ることが可能である。 In FIG. 17, the phase difference between the first carrier wave phase θ cu and the second carrier wave phase θ cv and the phase difference between the first carrier wave phase θ cu and the third carrier wave phase θ cw. Are configured to be equal, but their phase differences may be different. Essential point is that the first carrier phase theta cu, the second carrier phase theta cv and third carrier phase theta cw have a phase difference from each other, the phase difference changes in response to changes in the motor frequency It is in. If this point is ensured, it is possible to obtain the effect of the first embodiment described here.
 また、図17に示す搬送波生成部8は、図18に示すように構成してもよい。図18は、実施の形態1の変形例に係る搬送波生成部8Aの構成例を示す図である。図18に示す搬送波生成部8Aでは、図17に示す搬送波生成部8の構成において、位相演算部81が位相演算部81Aに置き替えられている。また、位相演算部81Aでは、図17に示す位相演算部81の構成において、積分器815,816が追加されている。その他の構成については、図17に示す位相演算部81の構成と同等であり、同等の構成部には同一の符号を付して重複する説明は省略する。 Further, the carrier wave generation unit 8 shown in FIG. 17 may be configured as shown in FIG. FIG. 18 is a diagram showing a configuration example of the carrier wave generation unit 8A according to the modified example of the first embodiment. In the carrier wave generation unit 8A shown in FIG. 18, the phase calculation unit 81 is replaced with the phase calculation unit 81A in the configuration of the carrier wave generation unit 8 shown in FIG. Further, in the phase calculation unit 81A, integrators 815 and 816 are added in the configuration of the phase calculation unit 81 shown in FIG. Other configurations are the same as those of the phase calculation unit 81 shown in FIG. 17, and the same reference numerals are given to the equivalent components, and duplicate description will be omitted.
 図18では、入力された搬送波周波数指令fが位相演算部81Aの内部において、各相の搬送波周波数指令、即ちU相搬送波周波数指令fcu、V相搬送波周波数指令fcv、W相搬送波周波数指令fcwとして3分岐され、相ごとに設けられた個々の積分器に入力される構成である。積分器811,815,816のそれぞれに入力される信号が同一であるため、図17と等価な動作が行われる。 In FIG. 18, the input carrier frequency command f c is the carrier frequency command of each phase inside the phase calculation unit 81A, that is, the U-phase carrier frequency command f cu , the V-phase carrier frequency command f cv , and the W-phase carrier frequency command. It is configured to be branched into three as f cw and input to individual integrators provided for each phase. Since the signals input to the integrators 811, 815, and 816 are the same, the operation equivalent to that in FIG. 17 is performed.
 以上説明したように、実施の形態1に係るインバータ制御装置は、三相の搬送波を生成する搬送波生成部を備え、搬送波生成部は、搬送波周波数指令と電動機周波数とに基づいて第一から第三の搬送波位相を演算する。第一から第三の搬送波位相は互いに位相差を有し、この位相差は電動機周波数の変化に応じて連続的に変化する。これにより、PWM制御信号によって生ずるコモンモード電圧を低減することができる。その結果、浮遊容量を介して流れ得る漏洩電流を低減することができるので、フィルタ部品の追設に頼らずに漏洩ノイズを抑制することが可能となる。 As described above, the inverter control device according to the first embodiment includes a carrier wave generation unit that generates a three-phase carrier wave, and the carrier wave generation unit is the first to third based on the carrier wave frequency command and the electric motor frequency. Calculate the carrier phase of. The first to third carrier phases have a phase difference from each other, and this phase difference changes continuously according to a change in the motor frequency. Thereby, the common mode voltage generated by the PWM control signal can be reduced. As a result, the leakage current that can flow through the stray capacitance can be reduced, so that leakage noise can be suppressed without relying on the addition of filter components.
 なお、第二及び第三の搬送波位相はそれぞれ、第一の搬送波位相に対して符号が逆で大きさの等しい位相差を有することが望ましい。このようにすれば、コモンモードノイズの低減効果を高めることが可能となる。 It is desirable that the second and third carrier phases each have a phase difference having the opposite sign and the same magnitude with respect to the first carrier phase. In this way, it is possible to enhance the effect of reducing common mode noise.
 また、電動機周波数がゼロのとき、第一から第三の搬送波位相間の相互の位相差は、120°であることが望ましい。このようにすれば、コモンモードノイズの低減効果を更に高めることが可能となる。 Further, when the motor frequency is zero, it is desirable that the mutual phase difference between the first to third carrier phases is 120 °. By doing so, it is possible to further enhance the effect of reducing common mode noise.
 次に、実施の形態1におけるインバータ制御装置5の機能を実現するためのハードウェア構成について、図19及び図20の図面を参照して説明する。図19は、実施の形態1におけるインバータ制御装置5の機能を実現するハードウェア構成の一例を示すブロック図である。図20は、実施の形態1におけるインバータ制御装置5の機能を実現するハードウェア構成の他の例を示すブロック図である。 Next, the hardware configuration for realizing the function of the inverter control device 5 in the first embodiment will be described with reference to the drawings of FIGS. 19 and 20. FIG. 19 is a block diagram showing an example of a hardware configuration that realizes the function of the inverter control device 5 according to the first embodiment. FIG. 20 is a block diagram showing another example of a hardware configuration that realizes the function of the inverter control device 5 according to the first embodiment.
 実施の形態1におけるインバータ制御装置5の機能の一部又は全部を実現する場合には、図20に示されるように、演算を行うプロセッサ200、プロセッサ200によって読みとられるプログラムが保存されるメモリ202、及び信号の入出力を行うインタフェース204を含む構成とすることができる。 When a part or all of the functions of the inverter control device 5 according to the first embodiment are realized, as shown in FIG. 20, the processor 200 that performs the calculation and the memory 202 in which the program read by the processor 200 is stored. , And the interface 204 for inputting and outputting signals can be included.
 プロセッサ200は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ202には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)を例示することができる。 The processor 200 may be a computing means such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor). Further, the memory 202 includes a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Program ROM), and an EEPROM (registered trademark) (Electrically EPROM). Examples thereof include magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital Versailles Disc).
 メモリ202には、実施の形態1におけるインバータ制御装置5の機能を実行するプログラムが格納されている。プロセッサ200は、インタフェース204を介して必要な情報を授受し、メモリ202に格納されたプログラムをプロセッサ200が実行し、メモリ202に格納されたテーブルをプロセッサ200が参照することにより、上述した処理を行うことができる。プロセッサ200による演算結果は、メモリ202に記憶することができる。 The memory 202 stores a program that executes the function of the inverter control device 5 according to the first embodiment. The processor 200 sends and receives necessary information via the interface 204, the processor 200 executes a program stored in the memory 202, and the processor 200 refers to a table stored in the memory 202 to perform the above-described processing. It can be carried out. The calculation result by the processor 200 can be stored in the memory 202.
 また、実施の形態1におけるインバータ制御装置5の機能の一部を実現する場合には、図24に示す処理回路203を用いることもできる。処理回路203は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。処理回路203に入力する情報、及び処理回路203から出力する情報は、インタフェース204を介して入手することができる。 Further, when a part of the functions of the inverter control device 5 in the first embodiment is realized, the processing circuit 203 shown in FIG. 24 can also be used. The processing circuit 203 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. The information input to the processing circuit 203 and the information output from the processing circuit 203 can be obtained via the interface 204.
 なお、インバータ制御装置5における一部の処理を処理回路203で実施し、処理回路203で実施しない処理をプロセッサ200及びメモリ202で実施してもよい。 Note that some processing in the inverter control device 5 may be performed by the processing circuit 203, and processing that is not performed by the processing circuit 203 may be performed by the processor 200 and the memory 202.
実施の形態2.
 図21は、実施の形態2に係る搬送波生成部8Bの構成例を示す図である。図21に示す搬送波生成部8Bでは、図17に示す搬送波生成部8の構成において、位相演算部81の前段に周波数変調部83と、加算器84とが設けられている。周波数変調部83は、騒音の低減のために設けられている。
Embodiment 2.
FIG. 21 is a diagram showing a configuration example of the carrier wave generation unit 8B according to the second embodiment. In the carrier wave generation unit 8B shown in FIG. 21, in the configuration of the carrier wave generation unit 8 shown in FIG. 17, a frequency modulation unit 83 and an adder 84 are provided in front of the phase calculation unit 81. The frequency modulation unit 83 is provided for noise reduction.
 周波数変調部83は、乱数発生器831と、増幅器832とを備える。加算器84には、基本搬送波周波数指令fc0と、周波数変調部83の出力とが入力される構成である。その他の構成については、図17に示す位相演算部81の構成と同等であり、同等の構成部には同一の符号を付して重複する説明は省略する。 The frequency modulation unit 83 includes a random number generator 831 and an amplifier 832. The adder 84 is configured to input the basic carrier frequency command f c0 and the output of the frequency modulation unit 83. Other configurations are the same as those of the phase calculation unit 81 shown in FIG. 17, and the same reference numerals are given to the equivalent components, and duplicate description will be omitted.
 図21において、周波数変調部83では、乱数発生器831の出力に対して増幅器832でゲインが付与される。増幅器832の出力は、周波数変調量Δfとして加算器84に入力される。周波数変調部83は、いわゆるランダム変調を行う構成部であり、乱数発生器831の出力に基づいて周波数変調量Δfを演算する。加算器84は、搬送波周波数指令fと、周波数変調量Δfとを加算し、その加算結果を新たな搬送波周波数指令fc1として位相演算部81に出力する。 In FIG. 21, in the frequency modulation unit 83, a gain is applied by the amplifier 832 to the output of the random number generator 831. The output of the amplifier 832 is input to the adder 84 as the frequency modulation amount Delta] f c. Frequency modulation unit 83 is a component that performs so-called random modulation, calculates the amount of frequency modulation Delta] f c on the basis of the output of the random number generator 831. The adder 84 adds the carrier frequency command f c and the frequency modulation amount Δf c, and outputs the addition result to the phase calculation unit 81 as a new carrier frequency command f c1.
 図21に示される搬送波生成部8Bによれば、乱数発生器831で生成された乱数に基づいて周波数変調量Δfが生成される。そして、生成された周波数変調量Δfが各相に共通の搬送波周波数指令fに加算される。従って、各搬送波間に位相差を設けた場合であっても、全ての搬送波は、唯一のシードから生成される乱数に基づいて周波数変調される。その結果、各相の搬送波は、周波数変調されつつも、波形が互いの位相差を保った状態が維持される。このため、コモンモードノイズの低減効果の劣化を抑制することが可能となる。 According to the carrier generating unit 8B shown in Figure 21, the frequency modulation amount Delta] f c is generated based on the random number generated by the random number generator 831. Then, the generated amount of frequency modulation Delta] f c is added to a common carrier frequency instruction f c in each phase. Therefore, even if there is a phase difference between each carrier, all carriers are frequency modulated based on a random number generated from a single seed. As a result, the carrier waves of each phase are frequency-modulated while maintaining a state in which the waveforms maintain a phase difference from each other. Therefore, it is possible to suppress deterioration of the common mode noise reduction effect.
 以上説明したように、実施の形態2に係るインバータ制御装置によれば、搬送波生成部は、乱数発生器の出力に基づいて周波数変調量を演算し、演算した周波数変調量を位相演算部へ入力される全ての搬送波周波数指令に加算する。これにより、コモンモードノイズの低減効果の劣化を抑制しつつ、騒音の低減を図ることが可能となる。 As described above, according to the inverter control device according to the second embodiment, the carrier wave generator calculates the frequency modulation amount based on the output of the random number generator, and inputs the calculated frequency modulation amount to the phase calculation unit. Add to all carrier frequency commands that are issued. This makes it possible to reduce noise while suppressing deterioration of the common mode noise reduction effect.
実施の形態3.
 図22は、実施の形態3に係る搬送波生成部8Cの構成例を示す図である。図22に示す搬送波生成部8Cでは、図18に示す搬送波生成部8Aの構成において、位相演算部81Aの前段に周波数変調部85が設けられると共に、位相演算部81Aが位相演算部81Bに置き替えられている。図22に示す位相演算部81Bでは、図18に示す位相演算部81Aの構成において、積分器811,815,816の各前段に、それぞれ加算器817a,817b,817cが追加されている。周波数変調部85は、図21に示す実施の形態2の周波数変調部83よりも、騒音の低減を効果的に行うために設けられている。その他の構成については、図18に示す搬送波生成部8Aの構成と同等であり、同等の構成部には同一の符号を付して重複する説明は省略する。
Embodiment 3.
FIG. 22 is a diagram showing a configuration example of the carrier wave generation unit 8C according to the third embodiment. In the carrier wave generation unit 8C shown in FIG. 22, in the configuration of the carrier wave generation unit 8A shown in FIG. 18, a frequency modulation unit 85 is provided in front of the phase calculation unit 81A, and the phase calculation unit 81A is replaced with the phase calculation unit 81B. Has been done. In the phase calculation unit 81B shown in FIG. 22, adders 817a, 817b, and 817c are added to the preceding stages of the integrators 811,815,816 in the configuration of the phase calculation unit 81A shown in FIG. The frequency modulation unit 85 is provided in order to effectively reduce noise as compared with the frequency modulation unit 83 of the second embodiment shown in FIG. Other configurations are the same as those of the carrier wave generation unit 8A shown in FIG. 18, and the same components are designated by the same reference numerals and duplicate description will be omitted.
 図23は、図22に示す周波数変調部85の詳細構成を示す図である。周波数変調部85は、リスト851と、順序制御部852と、切替部853a,853b,853cとを備える。リスト851には、複数のデータ点数の周波数値が格納される。より詳細に説明すると、リスト851には、-f以上、且つ+f以下の値を有して任意に選択されるn+1点の周波数値f(f_,f_,…,f_)が格納される。n+1はデータ点数である。n,f,fは、任意の設定値である。なお、望ましくは、f=fである。また、n+1点の周波数値fは等間隔であること、即ち周波数値fを昇順又は降順に並べたときに、隣接する周波数値f間の差分が全て等値であることが望ましい。また、図23では、周波数変調部85の外部からn,f,fを付与するように図示されているが、周波数変調部85の内部で設定される構成でもよい。 FIG. 23 is a diagram showing a detailed configuration of the frequency modulation unit 85 shown in FIG. 22. The frequency modulation unit 85 includes a list 851, an order control unit 852, and switching units 853a, 853b, 853c. The frequency values of a plurality of data points are stored in the list 851. More particularly, the list 851, -f L or more and + f H have the following values frequency values of arbitrarily chosen by n + 1 points f i (f_ 0, f_ 1 , ..., f_ n) Is stored. n + 1 is the number of data points. n, f L , and f H are arbitrary set values. Desirably, f L = f H. Further, that the frequency values f i of the n + 1 points are equally spaced, i.e., when the frequency value f i are arranged in ascending or descending order, it is desirable that the difference between adjacent frequency values f i are all such values. Further, in FIG. 23, although it is shown that n, f L , and f H are applied from the outside of the frequency modulation unit 85, the configuration may be set inside the frequency modulation unit 85.
 順序制御部852は、切替部853a,853b,853cを制御してリスト851に格納された各要素から一つの要素を重複なく無作為に選択し、選択した要素を第一の周波数変調量Δfcu、第二の周波数変調量Δfcv、及び第三の周波数変調量Δfcwとして出力する。また、リスト851内の要素を全て選択し終えた後は、先ほどとは異なる無作為な順序でリスト内の要素を選択していき、この選択動作を繰り返す。 The sequence control unit 852 controls the switching units 853a, 853b, and 853c to randomly select one element from each element stored in the list 851 without duplication, and selects the selected element as the first frequency modulation amount Δf cu. outputs a second amount of frequency modulation Delta] f cv, and a third frequency modulation amount Delta] f cw. After selecting all the elements in the list 851, the elements in the list are selected in a random order different from the previous one, and this selection operation is repeated.
 周波数変調部85からは、リスト851に格納された各要素から重複なく無作為な第一の順序で一つずつ選択された要素が第一の周波数変調量Δfcuとして出力され、加算器817aに入力される。また、周波数変調部85からは、リスト851に格納された各要素から重複なく無作為な第二の順序で一つずつ選択された要素が第二の周波数変調量Δfcvとして出力され、加算器817bに入力される。更に、周波数変調部85からは、リスト851に格納された各要素から重複なく無作為な第三の順序で一つずつ選択された要素が第三の周波数変調量Δfcwとして出力され、加算器817cに入力される。 From the frequency modulation unit 85, the elements selected one by one from each element stored in the list 851 in a random first order without duplication are output as the first frequency modulation amount Δf cu, and are output to the adder 817a. Entered. Further, the frequency modulation unit 85 outputs elements selected one by one from each element stored in the list 851 in a random second order without duplication as a second frequency modulation amount Δf cv , and is an adder. It is input to 817b. Further, the frequency modulation unit 85 outputs elements selected one by one from each element stored in the list 851 in a random third order without duplication as a third frequency modulation amount Δf cw , and is an adder. It is input to 817c.
 図22において、加算器817aでは、搬送波周波数指令fと第一の周波数変調量Δfcuとが加算され、その加算結果がU相搬送波周波数指令fcuとして積分器811に入力される。加算器817bでは、搬送波周波数指令fと第二の周波数変調量Δfcvとが加算され、その加算結果がV相搬送波周波数指令fcvとして積分器815に入力される。加算器817cでは、搬送波周波数指令fと第三の周波数変調量Δfcwとが加算され、その加算結果がW相搬送波周波数指令fcwとして積分器816に入力される。その後の動作は前述した通りであり、ここでの説明は省略する。 In FIG. 22, in the adder 817a, the carrier frequency command f c and the first frequency modulation amount Δf cu are added, and the addition result is input to the integrator 811 as the U-phase carrier frequency command f cu. The adder 817b, is added to the carrier frequency command f c and a second amount of frequency modulation Delta] f cv, the addition result is input to the integrator 815 as V-phase carrier frequency command f cv. In the adder 817c, the carrier frequency command f c and the third frequency modulation amount Δf cw are added, and the addition result is input to the integrator 816 as the W phase carrier frequency command f cw. Subsequent operations are as described above, and description thereof will be omitted here.
 図24は、図23に示す周波数変調部85から出力される周波数変調量Δfの出力イメージを示す図である。周波数変調量Δfは、第一の周波数変調量Δfcu、第二の周波数変調量Δfcv及び第三の周波数変調量Δfcwのうちの何れかを表す。図24の上段部には、周波数変調部85から出力される周波数変調量Δfが、数列{fxi}={fx0,fx1,fx2,…,fxn}(i=0,1,2,…,n)で表されている。また、図24の下段部には、数列{fxi}の各要素が出力される時間が示されている。各要素の出力時間は、出力の切り替えに要する時間と言い替えてもよい。図24によれば、要素fxiの出力時間は、要素fxiの逆数とされている。即ち、i番目の要素が選択されてからi+1番目の要素に切り替えられるまでの時間は、i番目の要素の逆数とされている。リスト851において、最初の要素が出力されてから、最後の要素が出力されるまでの時間をTcycとすると、時間Tcycは、以下の(1)式で表すことができる。 Figure 24 is a diagram showing an output image of the frequency modulation amount Delta] f c which is output from the frequency modulating unit 85 shown in FIG. 23. Frequency modulation amount Delta] f c represents any of the first amount of frequency modulation Delta] f cu, the second frequency modulation amount Delta] f cv and third frequency modulation amount Delta] f cw. In the upper part of FIG. 24, the frequency modulation amount Δf c output from the frequency modulation unit 85 is a sequence {f xi } = {f x0 , f x1 , f x2 , ..., F xn } (i = 0, 1). , 2, ..., N). Further, in the lower part of FIG. 24, the time when each element of the sequence {fx } is output is shown. The output time of each element may be rephrased as the time required for switching the output. According to FIG. 24, the output time of the element f xi is the reciprocal of the element f xi. That is, the time from the selection of the i-th element to the switching to the i + 1-th element is the reciprocal of the i-th element. In Listing 851, assuming that the time from the output of the first element to the output of the last element is T cyc, the time T cyc can be expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 周波数変調量Δfは、相ごとに異なっているが、リスト851から要素が選択される順序が異なるのみである。従って、リスト851に格納された各要素をどのような順序で選択しても、リスト851内の全ての要素を選択し終えるまでに要する時間Tcycは、常に等しくなる。つまり、各相の搬送波周波数は異なる乱数によって変調されるが、時間Tcycごとに搬送波位相差が設定値に戻る。従って、実施の形態3に係る周波数変調部85を用いれば、コモンモードノイズの低減と聴感の改善との両立を図ることができる。具体的に、データ点数n+1が少なく、リスト851に格納される周波数値の変域が狭いほど、コモンモードノイズの低減効果が優先される。逆に、データ点数n+1が多く、リスト851に格納される周波数値の変域が広いほど、聴感の改善が優先される。 Frequency modulation amount Delta] f c is different for each phase, are different only order in which the elements are selected from the list 851. Therefore, no matter what order the elements stored in the list 851 are selected, the time T cyc required to complete the selection of all the elements in the list 851 is always equal. That is, the carrier frequency of each phase is modulated by a different random number, but the carrier phase difference returns to the set value every time T cyc. Therefore, if the frequency modulation unit 85 according to the third embodiment is used, it is possible to achieve both reduction of common mode noise and improvement of audibility. Specifically, the smaller the number of data points n + 1 and the narrower the range of the frequency value stored in the list 851, the priority is given to the effect of reducing common mode noise. On the contrary, the larger the number of data points n + 1 and the wider the range of the frequency value stored in the list 851, the more priority is given to the improvement of the hearing sensation.
 以上説明したように、実施の形態3に係るインバータ制御装置によれば、搬送波生成部は、第一の周波数変調量Δfcu、第二の周波数変調量Δfcv及び第三の周波数変調量Δfcwを出力する周波数変調部を備える。第一の周波数変調量Δfcuは、第一の相のリストに格納された各要素から重複なく無作為な第一の順序で一つずつ選択された要素である。また、第二の周波数変調量Δfcvは、第二の相のリストに格納された各要素から重複なく無作為な第二の順序で一つずつ選択された要素である。第三の周波数変調量Δfcwは、第三の相のリストに格納された各要素から重複なく無作為な第三の順序で一つずつ選択された要素である。これらの第一の周波数変調量Δfcu、第二の周波数変調量Δfcv及び第三の周波数変調量Δfcwは、搬送波周波数指令に対して一対一で加算される。また、これらの第一の周波数変調量Δfcu、第二の周波数変調量Δfcv及び第三の周波数変調量Δfcwが各相のリストから選択されて出力されるとき、i番目の要素が選択されてからi+1番目の要素に切り替えられるまでの時間は、i番目の要素の逆数とされる。これらにより、コモンモードノイズの低減と聴感の改善との両立を図ることができる。 As described above, according to the inverter control device according to the third embodiment, carrier wave generating unit comprises a first amount of frequency modulation Delta] f cu, the second frequency modulation amount Delta] f cv and third frequency-modulated amount Delta] f cw It is provided with a frequency modulator that outputs. The first frequency modulation amount Δf cu is an element selected one by one from each element stored in the list of first phases in a random first order without duplication. Further, the second frequency modulation amount Δf cv is an element selected one by one from each element stored in the list of the second phase in a random second order without duplication. The third frequency modulation amount Δf cw is an element selected one by one from each element stored in the list of the third phase in a random third order without duplication. The first frequency modulation amount Δf cu , the second frequency modulation amount Δf cv, and the third frequency modulation amount Δf cw are added one-to-one with respect to the carrier frequency command. Further, when these first frequency modulation amount Δf cu , second frequency modulation amount Δf cv and third frequency modulation amount Δf cw are selected from the list of each phase and output, the i-th element is selected. The time from being performed until switching to the i + 1th element is the reciprocal of the i-th element. As a result, it is possible to achieve both reduction of common mode noise and improvement of hearing sensation.
 なお、各相のリストにおけるデータ点数は、電動機周波数に応じて変化させてもよい。また、各相のリストに格納される要素の最小値を第一の値とし、最大値を第二の値とするとき、これら第一及び第二の値のうちの少なくとも一つは、電動機周波数に応じて変化させてもよい。データ点数、第一の値、又は第二の値を電動機周波数に応じて変化させることにより、コモンモードノイズの低減効果と聴感の改善度との間の優先度に応じた制御が可能となる。 The number of data points in the list of each phase may be changed according to the motor frequency. Further, when the minimum value of the element stored in the list of each phase is set as the first value and the maximum value is set as the second value, at least one of these first and second values is the motor frequency. It may be changed according to. By changing the number of data points, the first value, or the second value according to the motor frequency, it is possible to control according to the priority between the effect of reducing common mode noise and the degree of improvement in hearing sensation.
 また、各相のリストにおける第一の値と第二の値は絶対値が等しく、且つ異符号であり、リストにおける各要素は等間隔の値を有することが望ましい。このように設定すれば、インバータ4で生じるスイッチング損失の総量を変化させずに、コモンモードノイズの低減と聴感の改善との間の優先度に応じた制御が可能となる。 Further, it is desirable that the first value and the second value in the list of each phase have the same absolute value and different signs, and each element in the list has values at equal intervals. With this setting, it is possible to control according to the priority between the reduction of common mode noise and the improvement of hearing without changing the total amount of switching loss generated in the inverter 4.
 なお、以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and deviates from the gist. It is also possible to omit or change a part of the configuration as long as it is not.
 例えば、インバータ制御装置は、電動機駆動装置の内部に含まれる装置として説明したが、これに限定されない。インバータ制御装置とインバータとが電気的に接続されていればよく、インバータ制御装置を電動機駆動装置外の装置として構成してもよい。 For example, the inverter control device has been described as a device included inside the motor drive device, but the present invention is not limited to this. As long as the inverter control device and the inverter are electrically connected, the inverter control device may be configured as a device outside the motor drive device.
 1 電動機駆動装置、2 フィルタリアクトル、3 フィルタコンデンサ、4 インバータ、5 インバータ制御装置、6 電圧指令演算部、7 PWM制御部、8,8A,8B,8C 搬送波生成部、26U U相電圧指令、26V V相電圧指令、26W W相電圧指令、28 搬送波、28U U相搬送波、28V V相搬送波、28W W相搬送波、31 基準電位、32 中性点電位、33U U相電圧、33V V相電圧、33W W相電圧、34 浮遊容量、35 漏洩電流、81,81A,81B 位相演算部、82 搬送波出力部、83,85 周波数変調部、84,814,817a,817b,817c 加算器、101 架線、102 集電装置、103 車輪、104 レール、105 電動機、200 プロセッサ、202 メモリ、203 処理回路、204 インタフェース、811,815,816 積分器、812 位相差演算部、813 減算器、831 乱数発生器、832 増幅器、851 リスト、852 順序制御部、853a,853b,853c 切替部、N 負側端子、P 正側端子、UNI,UPI,VNI,VPI,WNI,WPI 半導体素子。 1 Electric drive device, 2 Filter reactor, 3 Filter capacitor, 4 Inverter, 5 Inverter control device, 6 Voltage command calculation unit, 7 PWM control unit, 8,8A, 8B, 8C carrier generator, 26U U phase voltage command, 26V V-phase voltage command, 26W W-phase voltage command, 28 carrier, 28U U-phase carrier, 28V V-phase carrier, 28W W-phase carrier, 31 reference potential, 32 neutral point potential, 33U U-phase voltage, 33V V-phase voltage, 33W W phase voltage, 34 stray capacitance, 35 leakage current, 81, 81A, 81B phase calculation unit, 82 carrier output unit, 83, 85 frequency modulation unit, 84,814,817a, 817b, 817c adder, 101 overhead wire, 102 collection Electric device, 103 wheels, 104 rails, 105 electric motor, 200 processor, 202 memory, 203 processing circuit, 204 interface, 811,815,816 integrator, 812 phase difference calculation unit, 813 subtractor, 831 random number generator, 832 amplifier , 851 list, 852 order control unit, 853a, 853b, 853c switching unit, N negative side terminal, P positive side terminal, UNI, UPI, VNI, VPI, WNI, WPI semiconductor element.

Claims (9)

  1.  パルス幅変調により三相の電動機を駆動するインバータを制御するインバータ制御装置であって、
     三相の搬送波を生成する搬送波生成部と、
     前記搬送波と変調波との比較により前記インバータのスイッチング状態を制御するパルス幅変調制御部と、を備え、
     前記搬送波生成部は、
     搬送波周波数指令と電動機周波数とに基づいて第一から第三の搬送波位相を演算する位相演算部と、
     前記第一から第三の搬送波位相に基づいて三相の前記搬送波を出力する搬送波出力部と、を備え、
     前記第一から第三の搬送波位相は互いに位相差を有し、
     前記電動機周波数の変化に応じて前記位相差も連続的に変化する
     ことを特徴とするインバータ制御装置。
    An inverter control device that controls an inverter that drives a three-phase motor by pulse width modulation.
    A carrier wave generator that generates a three-phase carrier wave,
    A pulse width modulation control unit that controls the switching state of the inverter by comparing the carrier wave with the modulated wave is provided.
    The carrier wave generator
    A phase calculation unit that calculates the first to third carrier phases based on the carrier frequency command and the motor frequency,
    A carrier output unit for outputting the three-phase carrier based on the first to third carrier phases is provided.
    The first to third carrier phases have a phase difference from each other and
    An inverter control device characterized in that the phase difference also changes continuously in response to a change in the motor frequency.
  2.  前記第二及び第三の搬送波位相はそれぞれ、前記第一の搬送波位相に対して符号が逆で大きさの等しい位相差を有する
     ことを特徴とする請求項1に記載のインバータ制御装置。
    The inverter control device according to claim 1, wherein each of the second and third carrier phases has a phase difference having the opposite sign and the same magnitude with respect to the first carrier phase.
  3.  前記電動機周波数がゼロのときの前記位相差は120°である
     ことを特徴とする請求項2に記載のインバータ制御装置。
    The inverter control device according to claim 2, wherein the phase difference is 120 ° when the motor frequency is zero.
  4.  前記搬送波生成部は、乱数発生器の出力に基づいて周波数変調量を演算する周波数変調部を備え、前記位相演算部へ入力される全ての前記搬送波周波数指令に、前記周波数変調量を加算する
     ことを特徴とする請求項1から3の何れか1項に記載のインバータ制御装置。
    The carrier wave generation unit includes a frequency modulation unit that calculates a frequency modulation amount based on the output of a random number generator, and adds the frequency modulation amount to all the carrier wave frequency commands input to the phase calculation unit. The inverter control device according to any one of claims 1 to 3, wherein the inverter control device is characterized.
  5.  前記搬送波生成部は、第一から第三の周波数変調量を演算する周波数変調部を備え、
     前記周波数変調部は、複数のデータ点数の周波数値が格納されるリストを備え、
     前記リストに格納される各要素は、第一の値以上、且つ第二の値以下であり、
     前記リストに格納された各要素から重複なく無作為な第一の順序で一つずつ選択された要素が前記第一の周波数変調量として出力され、
     前記リストに格納された各要素から重複なく無作為な第二の順序で一つずつ選択された要素が前記第二の周波数変調量として出力され、
     前記リストに格納された各要素から重複なく無作為な第三の順序で一つずつ選択された要素が前記第三の周波数変調量として出力され、
     前記データ点数をn+1とし、且つ、iを1以上、n以下の整数とするときに、
     i番目の要素が選択されてからi+1番目の要素に切り替えられるまでの時間は、i番目の要素の逆数であり、
     前記第一から第三の周波数変調量は、前記搬送波周波数指令に一対一で加算される
     ことを特徴とする請求項1から3の何れか1項に記載のインバータ制御装置。
    The carrier wave generation unit includes a frequency modulation unit that calculates the first to third frequency modulation amounts.
    The frequency modulator includes a list in which frequency values of a plurality of data points are stored.
    Each element stored in the list is greater than or equal to the first value and less than or equal to the second value.
    Elements selected one by one from each element stored in the list in a random first order without duplication are output as the first frequency modulation amount.
    The elements selected one by one from each element stored in the list in a second order without duplication are output as the second frequency modulation amount.
    Elements selected one by one from each element stored in the list in a random third order without duplication are output as the third frequency modulation amount.
    When the number of data points is n + 1 and i is an integer of 1 or more and n or less,
    The time from the selection of the i-th element to the switching to the i + 1-th element is the reciprocal of the i-th element.
    The inverter control device according to any one of claims 1 to 3, wherein the first to third frequency modulation amounts are added one-to-one to the carrier frequency command.
  6.  前記電動機周波数に応じて前記リストの前記データ点数を変化させる
     ことを特徴とする請求項5に記載のインバータ制御装置。
    The inverter control device according to claim 5, wherein the number of data points in the list is changed according to the frequency of the motor.
  7.  前記電動機周波数に応じて前記第一の値及び前記第二の値のうちの少なくとも一つの値を変化させる
     ことを特徴とする請求項5又は6に記載のインバータ制御装置。
    The inverter control device according to claim 5 or 6, wherein at least one of the first value and the second value is changed according to the motor frequency.
  8.  前記リストにおける前記第一の値と前記第二の値は絶対値が等しく、且つ異符号であり、前記リストにおける各要素は等間隔の値を有する
     ことを特徴とする請求項5から7の何れか1項に記載のインバータ制御装置。
    Any of claims 5 to 7, wherein the first value and the second value in the list have equal absolute values and different signs, and each element in the list has values at equal intervals. The inverter control device according to item 1.
  9.  請求項1から8の何れか1項に記載のインバータ制御装置と、
     前記インバータ制御装置によって制御されるインバータと、
     を備えた電動機駆動装置。
    The inverter control device according to any one of claims 1 to 8.
    The inverter controlled by the inverter control device and
    Motor drive device equipped with.
PCT/JP2020/003020 2020-01-28 2020-01-28 Inverter controller and motor drive unit WO2021152703A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021573669A JP7221424B2 (en) 2020-01-28 2020-01-28 Inverter control device and motor drive device
PCT/JP2020/003020 WO2021152703A1 (en) 2020-01-28 2020-01-28 Inverter controller and motor drive unit
DE112020006657.6T DE112020006657T5 (en) 2020-01-28 2020-01-28 INVERTER CONTROL DEVICE AND ELECTRIC MOTOR DRIVE DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003020 WO2021152703A1 (en) 2020-01-28 2020-01-28 Inverter controller and motor drive unit

Publications (1)

Publication Number Publication Date
WO2021152703A1 true WO2021152703A1 (en) 2021-08-05

Family

ID=77078690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003020 WO2021152703A1 (en) 2020-01-28 2020-01-28 Inverter controller and motor drive unit

Country Status (3)

Country Link
JP (1) JP7221424B2 (en)
DE (1) DE112020006657T5 (en)
WO (1) WO2021152703A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126368A (en) * 1994-10-24 1996-05-17 Yaskawa Electric Corp Control method for inverter driven ac motor
JP2004208413A (en) * 2002-12-25 2004-07-22 Toyota Industries Corp Inverter device and motor current detecting method
JP2008271617A (en) * 2007-04-16 2008-11-06 Hitachi Ltd Power conversion device and control method therefor
JP2009278731A (en) * 2008-05-13 2009-11-26 Nissan Motor Co Ltd Device and method for controlling power conversion device
JP2018007294A (en) * 2016-06-27 2018-01-11 東芝三菱電機産業システム株式会社 Power conversion device and control method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187368A (en) 2002-12-02 2004-07-02 Toshiba Corp Power converter for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126368A (en) * 1994-10-24 1996-05-17 Yaskawa Electric Corp Control method for inverter driven ac motor
JP2004208413A (en) * 2002-12-25 2004-07-22 Toyota Industries Corp Inverter device and motor current detecting method
JP2008271617A (en) * 2007-04-16 2008-11-06 Hitachi Ltd Power conversion device and control method therefor
JP2009278731A (en) * 2008-05-13 2009-11-26 Nissan Motor Co Ltd Device and method for controlling power conversion device
JP2018007294A (en) * 2016-06-27 2018-01-11 東芝三菱電機産業システム株式会社 Power conversion device and control method therefor

Also Published As

Publication number Publication date
JPWO2021152703A1 (en) 2021-08-05
DE112020006657T5 (en) 2022-11-24
JP7221424B2 (en) 2023-02-13

Similar Documents

Publication Publication Date Title
EP0597132B1 (en) Power converter
Agelidis et al. A five-level symmetrically defined selective harmonic elimination PWM strategy: Analysis and experimental validation
JP5689557B2 (en) Power converter
EP0571755A2 (en) Power converter for converting DC voltage into AC phase voltage having three levels of positive, zero and negative voltage
JPH05227796A (en) Controller for power converter
JPH11318086A (en) Stationary power converter supplied with unlimited voltage
US10075097B2 (en) Power conversion device and AC electric-vehicle drive system
KR20100055281A (en) The control method for overmodulation operation of npc type 3-level inverter
JP3455788B2 (en) Power converter
JP3755089B2 (en) Electric vehicle control device
JP4058742B2 (en) 3-level power converter
WO2021152703A1 (en) Inverter controller and motor drive unit
EP4084324A1 (en) Rotary electric machine control device
JP7086302B2 (en) Electric vehicle control device
Li et al. Neutral point voltage balance and surge voltage reduction for three-level converters in PMSM starting process based on narrow pulse suppression
Cheok et al. AC drive with particular reference to traction drives
JP4277360B2 (en) 3-level inverter controller
JP4029429B2 (en) 3-level power converter
JP3811899B2 (en) Electric vehicle power converter
JP3643902B2 (en) Electric vehicle power converter
WO2024042942A1 (en) Drive control apparatus and drive control method for rotating electrical machine
JP3463169B2 (en) Power converter
Lee et al. Overmodulation strategy of NPC type 3-level inverter for traction drives
JPH10323055A (en) Power converter
JP3232615B2 (en) Inverter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573669

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20916368

Country of ref document: EP

Kind code of ref document: A1