WO2021152678A1 - 光通信装置 - Google Patents

光通信装置 Download PDF

Info

Publication number
WO2021152678A1
WO2021152678A1 PCT/JP2020/002850 JP2020002850W WO2021152678A1 WO 2021152678 A1 WO2021152678 A1 WO 2021152678A1 JP 2020002850 W JP2020002850 W JP 2020002850W WO 2021152678 A1 WO2021152678 A1 WO 2021152678A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
unit
light intensity
optical fiber
Prior art date
Application number
PCT/JP2020/002850
Other languages
English (en)
French (fr)
Inventor
恵子 佐藤
直喜 西村
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US17/795,345 priority Critical patent/US12034488B2/en
Priority to PCT/JP2020/002850 priority patent/WO2021152678A1/ja
Priority to EP20916302.1A priority patent/EP4099582A4/en
Priority to JP2021573651A priority patent/JP7452557B2/ja
Priority to TW109142403A priority patent/TWI823034B/zh
Publication of WO2021152678A1 publication Critical patent/WO2021152678A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4918Controlling received signal intensity, gain or exposure of sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications

Definitions

  • the present invention relates to an optical communication device.
  • an optical wireless communication system using an optical communication device using visible light has been proposed as an underwater wireless communication means.
  • the optical communication device includes a laser light source that emits a laser beam made of visible light and a light receiving unit that receives the laser beam emitted from the laser light source.
  • communication is performed between a first optical communication device provided in an observation device installed underwater and a second optical communication device provided in a submarine navigating underwater. Examples thereof include a configuration in which wireless communication is performed by transmitting light to each other (for example, Patent Documents 1 and 2).
  • Laser light which is communication light
  • the communication partner is within the optical communication range by acoustic positioning using sound waves.
  • a configuration is adopted in which underwater optical wireless communication is started after confirming that the communication has been entered.
  • the optical communication device requires a device that generates and detects sound waves in addition to the configuration for transmitting communication light. As a result, there is a concern that the optical communication device becomes large and heavy.
  • the present invention has been made in view of such circumstances, and provides an optical communication device capable of performing highly reliable communication while avoiding an increase in size of the device and a decrease in confidentiality of communication.
  • the purpose is.
  • the first aspect of the present invention is a plurality of light receiving elements that receive light and output a light detection signal, and a plurality of light receiving elements that are provided so as to correspond to the plurality of light receiving elements and that guide the light to the plurality of light receiving elements.
  • Optical fiber a plurality of signal processing units provided so as to correspond to the plurality of light receiving elements, and generating optical communication information by performing signal processing on the optical detection signal, and the plurality of optical fibers.
  • the light intensity information collecting unit that collects the intensity of the light received by each as light intensity information and the light intensity information collected by the light intensity information collecting unit, the light that is relatively strong among the plurality of optical fibers.
  • Signal processing that controls the optical fiber identification unit that specifies the optical fiber that is receiving light and the signal processing unit that is provided so as to correspond to the optical fiber specified by the optical fiber identification unit in an on state.
  • the present invention relates to an optical communication device including a control unit.
  • light intensity information that collects as light intensity information the intensity of light received by each of a plurality of optical fibers that guide light to a plurality of light receiving elements that receive light and output a light detection signal. Equipped with a collection unit.
  • the optical fiber specifying unit identifies the optical fiber that receives relatively strong light from the plurality of optical fibers based on the collected light intensity information.
  • the specified optical fiber is an optical fiber that is relatively close to the position of the communication partner that generates light
  • optical communication is performed using an optical fiber that can efficiently process light as a result of control by the signal processing control unit. It can be carried out. Therefore, it is possible to avoid a situation in which the S / N ratio is lowered by using an optical fiber far from the communication partner.
  • the optical fiber relatively close to the communication partner is specified by using the optical communication having high directivity, the reliability of the optical communication can be improved while improving the confidentiality of the communication. Further, since it is not necessary to perform acoustic positioning using an acoustic device, it is possible to easily realize miniaturization and weight reduction of the optical communication device.
  • the second embodiment it is a figure which shows the light intensity of the light received by each optical fiber in a state where a moving body is moving.
  • it is a schematic diagram which shows the state which transmits the optical signal which controls the movement of a moving body.
  • the schematic configuration of the underwater optical communication system 100 including the optical communication device according to the first embodiment will be described with reference to FIG.
  • the two horizontal directions orthogonal to each other are defined as the x direction and the y direction, respectively.
  • the x direction corresponds to the left and right horizontal directions in the drawing.
  • the vertical direction is the z direction.
  • the underwater optical communication system 100 includes a first optical communication device 1 and a second optical communication device 2.
  • the first optical communication device 1 is arranged in a fixed structure 101 installed on the bottom WB.
  • Examples of the fixed structure 101 include a pipeline or an underwater station for observation.
  • the fixed structure 101 is connected to an external station (not shown) via a cable.
  • An example of an external station is a ship located on the water or a ground base installed on the ground.
  • the second optical communication device 2 is arranged on the moving body 102 that moves underwater WA.
  • the moving body 102 inspects an underwater structure or the like by moving an underwater WA as an example in the sea.
  • Examples of the mobile body 102 include ROV (Remotery Operated Vehicle) and AUV (Autonomous Underwater Vehicle). Note that in FIG. 1, the water surface is indicated by reference numeral S.
  • the first optical communication device 1 includes a laser light source 3, an optical receiving unit 5, and a control unit 7.
  • the second optical communication device 2 includes a laser light source 4, an optical receiving unit 6, a control unit 8, and an observation device 9.
  • the first optical communication device 1 corresponds to the optical communication device in the present invention.
  • the laser light source 3 and the laser light source 4 are provided with a semiconductor laser and a collimating lens, respectively, and the laser light generated by the semiconductor laser is adjusted to parallel light by the collimating lens and emitted to the underwater WA.
  • Examples of the light emitted by the laser light source 3 or the laser light source 4 include communication light CL including communication information, exploration light SL not including communication information, and the like.
  • the light receiving unit 5 receives the laser light emitted from the laser light source 4 provided in the second optical communication device 2.
  • the control unit 7 is provided with a central processing unit (CPU: Central Processing Unit) or the like, performs various processes on the information contained in the laser beam received by the optical receiving unit 5, and is the first optical communication device. It controls each configuration provided in 1.
  • CPU Central Processing Unit
  • the light receiving unit 6 receives the laser light emitted from the laser light source 3 provided in the first optical communication device 1.
  • the control unit 8 performs various processes on the information included in the laser beam received by the optical reception unit 6, and controls each configuration provided in the second optical communication device 2 in an integrated manner.
  • the observation device 9 is, for example, an underwater camera, which observes an observation target in an underwater WA and acquires information such as a video or a moving image.
  • the first optical communication device 1 and the second optical communication device 2 can perform optical wireless communication in the underwater WA by transmitting the laser beam from one to the other. It is configured as.
  • the second optical communication device 2 emits a laser beam to the first optical communication device 1 will be described as an example.
  • FIG. 2 shows a schematic configuration of the optical receiver 5.
  • the light receiving unit 5 includes a plurality of light receiving elements 11, a plurality of optical fibers 13, and a protective container 15.
  • Each of the light receiving elements 11 is configured to receive light such as communication light CL or search light SL and perform photoelectric conversion. Examples of the light receiving element 11 include a photomultiplier tube and an avalanche diode.
  • the light receiving unit 5 includes five light receiving elements 11.
  • the five light receiving elements 11 are designated by the reference numerals 11a to 11e to distinguish them from each other.
  • the plurality of optical fibers 13 are provided so as to correspond to the plurality of light receiving elements 11, and are configured to guide light to each of the light receiving elements 11. That is, in the present embodiment in which five light receiving elements 11 are provided, five optical fibers 13 are provided, and one optical fiber 13 is arranged for one light receiving element 11.
  • Each of the optical fibers 13 has an incoming light end portion 16 that allows light to enter and an outgoing light end portion 17 that emits the incoming light.
  • the light emitting end portion 17 is arranged so as to face or contact the light receiving element 11. It is preferable that the light input end portion 16 is provided with a condensing lens that collects light. By providing the light incident end portion 16 with a condensing lens, the condensed light is input to the optical fiber 13, so that the accuracy of optical communication can be further improved.
  • the optical fibers 13 corresponding to the light receiving element 11a are distinguished by adding reference numerals 13a. That is, each of the light receiving elements 11a to 11e is arranged so that each of the optical fibers 13a to 13e corresponds to each of the light receiving elements 11a to 11e.
  • the protective container 15 is a closed type water pressure resistant container arranged in the underwater WA.
  • the plurality of light receiving elements 11 are arranged inside the protective container 15 and are isolated from the external environment such as underwater WA.
  • the protective container 15 includes an insertion portion PH.
  • the insertion portion PH is configured so that a plurality of optical fibers 13 can be inserted while maintaining the inside of the protective container 13 in a hermetically sealed and watertight state.
  • the light emitting end portion 17 is arranged inside the protective container, while the light entering end portion 16 is arranged outside the protective container 13. That is, the light entering end portion 16 is configured to be dispositionable in the underwater WA. That is, by arbitrarily setting the length and the arrangement path of the optical fiber 13, the light entering end portion 16 can be arranged at a desired position in the underwater WA.
  • the light input end portions 16 of the optical fibers 13a to 13e are arranged at five different positions Ra to Re, respectively.
  • the optical receiving unit 5 includes an amplifier 18 that amplifies the photoelectrically converted signal in the light receiving element 11.
  • the amplifier 18 is provided so as to correspond to each of the light receiving elements 11.
  • five amplifiers 18 are provided, and each of them is distinguished as amplifiers 18a to 18e corresponding to the light receiving elements 11a to 11e.
  • the optical communication device 1 further includes an information processing unit 19, a memory unit 21, a switch unit 23, an A / D converter 24, a light intensity information collecting unit 25, an optical fiber specifying unit 27, and a switch control unit. It has 29.
  • the information processing unit 19 generates communication information such as image information by performing various information processing on the signal of the communication optical CL that has been photoelectrically converted and amplified by the light receiving element 11 and the amplifier 18. ..
  • the memory unit 21 stores various types of information, and the communication information generated by the information processing unit 19 is stored in the memory unit 21 via the control unit 7.
  • the switch unit 23 is provided downstream of the amplifier 18 and upstream of the information processing unit 19.
  • the switch unit 23 has a configuration for switching the circuit so that the signal to be transmitted to the information processing unit 19 can be selected from the signals amplified by the amplifier 18. That is, the switch unit 23 can appropriately select a signal transmitted to the information processing unit 19 to be used as communication information among the optical signals received into each of the optical fibers 13a to 13e.
  • the A / D converter 24 is provided downstream of the amplifier 18 so as to be branched from the switch unit 23, and performs A / D conversion on the optical signal amplified by the amplifier 18. By the processing by the A / D converter 24, information on the intensity of the light received by the optical fiber 13 is generated as the light intensity information.
  • the light intensity information collecting unit 25 is provided downstream of the A / D converter 24, and collects light intensity information about the light received by each of the optical fibers 13a to 13e.
  • the optical fiber specifying unit 27 is provided downstream of the light intensity information collecting unit 25, and identifies the optical fiber 13 that receives relatively strong light from the optical fibers 13a to 13e.
  • the optical fiber 13 that receives relatively strong light is specified by comparing the light intensity information of the light received by each of the optical fibers 13a to 13e.
  • the switch control unit 29 is provided downstream of the optical fiber specifying unit 27, and among the optical fibers 13a to 13e, the one specified as the optical fiber 13 that allows relatively strong light to enter is referred to as the information processing unit 19.
  • the switch unit 23 is switched and controlled so as to be connected in a circuit.
  • the optical signal transmitted by the optical fiber 13 that allows relatively weak light to enter is excluded from the processing target as communication information by the control performed by the switch control unit 29. As a result, the signal-to-noise ratio (S / N value) of communication can be improved.
  • the pipeline PL is arranged along the x direction, and the moving body 102 is inspected while moving along the pipeline PL, and the second optical communication device is used.
  • optical wireless communication shall be performed.
  • the position of the laser light source 4 arranged on the moving body 102 in the x direction is defined as R1.
  • the light input end portions 16 of the optical fibers 13a to 13e are arranged at five different positions Ra to Re arranged in the x direction, respectively. That is, the optical fiber 13a corresponding to the light receiving element 11a is fixed to the pillar 39 via the fixture 41 so that the light incoming end portion 16 is arranged at the position Ra. Further, the optical fiber 13b corresponding to the light receiving element 11b is fixed to the pillar 39 via the fixture 41 so that the light incoming end portion 16 is arranged at the position Rb.
  • the light input end portions 16 of the optical fibers 13c to 13e are fixedly arranged at the positions Rc to Re.
  • the light input end portions 16 of the optical fibers 13a to 13e are fixedly arranged at distant places. Therefore, when the information processing unit 19 generates communication information using all the optical signals transmitted from the optical fibers 13a to 13e, the accuracy of the generated communication information tends to decrease due to noise components.
  • the optical signal detected by the light receiving element 11 corresponding to the optical fiber 13 has a relatively high S / N value.
  • the light entering the optical fiber 13 far from the laser light source 4 has poor intensity. Therefore, the optical signal detected by the light receiving element 11 corresponding to the optical fiber 13 far from the laser light source 4 is low quality information having a low S / N value. Therefore, if the communication information is generated by adding up all the optical signals transmitted from the optical fibers 13a to 13e, the S / N value of the communication information will decrease.
  • an operation of specifying the optical fiber 13 suitable for the optical wireless communication among the optical fibers 13c to 13e is performed. Each operation will be described below.
  • all the switch units 23 are controlled to be turned off.
  • Step S1 the light used for identifying the optical fiber 13 is emitted from the second optical communication device 2 on the transmitting side to the first optical communication device 1. That is, as shown in FIG. 4, the search light SL is emitted from the laser light source 4 mounted on the moving body 102 toward the incoming light end portions 16 of the optical fibers 13a to 13e.
  • the search optical SL used for identifying the optical fiber 13 in the present embodiment is light that does not include communication information unlike the communication optical CL.
  • the search light SL received at each of the incoming light end portions 16 of the optical fibers 13a to 13e is transmitted to the light emitting end portion 17, and is detected by each of the light receiving elements 11a to 11e.
  • Step S2 selection of light intensity information
  • the optical signals detected by each of the light receiving elements 11a to 11e are photoelectrically converted and amplified by the amplifiers 18a to 18e.
  • the amplified signal is converted into digital information by the A / D converter 24.
  • information on the intensity of the search light SL input to each of the optical fibers 13a to 13e is acquired as light intensity information.
  • Each of the acquired light intensity information is collected by the light intensity information collecting unit 25.
  • Step S3 Specific of optical fiber
  • the light intensity information of the search light SL collected by the light intensity information collecting unit 25 and received into each of the optical fibers 13a to 13e is transmitted to the optical fiber specifying unit 27.
  • the optical fiber specifying unit 27 identifies the optical fiber 13 into which relatively strong light is received by comparing the respective light intensity information.
  • FIG. 5 shows the light intensity information of the search light SL collected in a state where the moving body 102 is moving as shown in FIG.
  • the light intensity of the search light SL input to each of the optical fibers 13a to 13e is referred to as light intensity information La to Le, respectively.
  • the position Rb is closest to the position R1 of the laser light source 4, and then the position Rc is closest. And the position Re is the farthest.
  • the intensity of the light entering the light entering end portion 16 of the optical fiber 13 decreases as the distance from the laser light source 4 that emits the light to the light entering end portion 16 increases. Therefore, among the light intensity information La to Le, the light intensity information Lb corresponding to the optical fiber 13b closest to the laser light source 4 is the highest.
  • the optical fiber specifying unit 27 identifies the optical fiber 13 into which relatively strong light is input by comparing the collected light intensity information La to Le and specifying the information of the highest light intensity. can.
  • the value of the collected light intensity information is as shown in FIG. 5, it is determined that the light intensity information Lb is the highest, so that the optical fiber 13 receiving strong light is the optical fiber 13b.
  • the fiber identification unit 27 is specified.
  • Step S4 Switch control
  • the switch control unit 29 performs switching control of the switch unit 23 based on the information of the optical fiber 13 specified by the optical fiber specifying unit 27.
  • the switch control unit 29 switches the switch unit 23 so that the amplifier 18b corresponding to the optical fiber 13b is turned on.
  • a signal having a relatively high noise transmitted by the optical fiber 13 far from the laser light source 4 can be blocked from the information processing unit 19.
  • Step S5 (Emission of communication light)
  • the switching control of the switch unit 23 is performed, and the optical wireless communication by the first optical communication device 1 and the second optical communication device 2 is started. That is, the second optical communication device 2 emits the communication light CL, which is the light including the communication information, from the laser light source 4 to the first optical communication device 1.
  • the communication optical CL receives light into each of the optical fibers 13a to 13e and is detected by each of the light receiving elements 11a to 11e.
  • steps S1 to S4 only the amplifier 18b of the amplifiers 18 is turned on. Therefore, only the detection signal which is photoelectrically converted by the light receiving element 11b and amplified by the amplifier 18b is transmitted to the information processing unit 19.
  • Step S6 Generation of communication information
  • the information processing unit 19 performs various information processing on the detection signal transmitted via the amplifier 18b, and generates communication information based on the communication optical CL. Since the signal detected by the light receiving element 11b has a higher S / N value than the other light receiving element 11, the information processing unit 19 provides highly reliable communication information based on the detected signal having a high S / N value. Can be generated.
  • the generated communication information is stored in the memory unit 21 and used as appropriate. For example, by connecting the fixed structure 101 to a ship on the water in advance with a wired cable or the like, the information observed by the mobile body 102 can be transmitted to the ship by the underwater optical communication system 100. By the above operation, underwater optical wireless communication according to the present embodiment is performed.
  • a plurality of light receiving elements 11 that receive light and output a light detection signal, and a plurality of light receiving elements 11 are provided so as to correspond to the plurality of light receiving elements 11, and light is transmitted to the plurality of light receiving elements 11.
  • the optical fiber specifying unit 27 that identifies the optical fiber 13 that receives relatively strong light and the amplifier 18 that is provided so as to correspond to the optical fiber 13 specified by the optical fiber specifying unit 27 are turned on.
  • a switch control unit 29 for controlling the state is provided.
  • the optical fiber 13 specified by the optical fiber specifying unit 27 is an optical fiber 13 capable of transmitting an optical signal having a relatively high S / N value. Therefore, by selectively using the detection signal based on the light guided to the light receiving element 11 by the specified optical fiber 13 to generate optical communication information, it is possible to perform high-precision optical wireless communication with a low noise component. can. Further, the operation of specifying the optical fiber 13 is performed by using the search optical SL. That is, since all the various operations are performed using light with high directivity, the accuracy of optical communication can be improved while improving the confidentiality of communication. Further, since it is not necessary to perform acoustic positioning using an acoustic device, it is possible to easily realize miniaturization and weight reduction of the optical communication device.
  • each of the light input end portions 16 is arranged at different positions in water. Since the optical fiber 13 is highly flexible and the arrangement path can be flexibly selected, the plurality of light incoming end portions 16 can be arranged at desired positions in water. Therefore, the receivable range of optical wireless communication can be expanded.
  • the plurality of optical fibers 13 included in the first optical communication device 1 are arranged in the fixed structure 101 which is fixedly installed. Since the positions of the plurality of optical fibers 13 are fixed, the reliability of the light intensity information La to Le collected by the optical intensity information collecting unit 25 and the information of the optical fiber 13 specified by the optical fiber specifying unit 27 can be improved. Can be improved.
  • FIG. 6 is a functional block diagram showing a main part of the first optical communication device 1 according to the second embodiment.
  • the first optical communication device 1 according to the second embodiment further includes a position calculation unit 51, a movement parameter calculation unit 53, and a mobile body control unit 55.
  • the position calculation unit 51 is provided downstream of the light intensity information collecting unit 25, and generates light input to the optical fiber 13 based on the light intensity information obtained for each of the plurality of optical fibers 13a to 13e.
  • the position information of the source (here, the laser light source 4) is calculated.
  • the movement parameter calculation unit 53 is provided downstream of the position calculation unit 51, and the movement speed of the source of the light input to the optical fiber 13 based on the transition of the position information obtained by the position calculation unit 51. And calculate the moving direction. In other words, the relative movement speed and movement direction of the second optical communication device 2 with respect to the first optical communication device 1 are calculated by the movement parameter calculation unit 53.
  • the moving body control unit 55 controls the moving speed or moving direction of the moving body 102 equipped with the laser light source 4 based on the moving speed and moving direction information calculated by the moving parameter calculation unit 53. That is, the moving body control unit 55 controls the operation of the laser light source 3 included in the first optical communication device 1, so that the communication light CL for controlling the moving speed or the moving direction of the moving body 102 is the laser light source. It is emitted from 3.
  • the following is an example of a specific configuration for controlling the moving speed or moving direction of the moving body 102. That is, information on the relative moving speed and moving direction of the second optical communication device 2 is transmitted from the moving parameter 53 to the external station via the control unit 7 and the cable. Then, the content of the command for controlling the moving speed or the moving direction of the moving body 102 is determined by the external station. After that, the information regarding the command is transmitted from the external station to the mobile control unit 55 via the cable and the control unit 7.
  • the laser light source 4 is at the position R1 as shown in FIG. 4 at the time Ta. Then, when the time elapses from the time Ta and reaches the time Tb, as shown in FIG. 7, the moving body 101 moves according to the arrow indicated by the symbol V, so that the laser light source 4 moves to the position R2. It is assumed that Of the positions Ra to Re, the position Rc is the closest, and the position Rd is the next closest. And the position Ra is the farthest from the position R2.
  • Step SA1 (Calculation of the position of the communication partner)
  • the operation according to step S3 is performed using the light intensity information.
  • the operation related to step SA1 is performed. That is, the light intensity information of the search light SL input to each of the optical fibers 13a to 13e is transmitted to the optical fiber identification unit 27 and also to the position calculation unit 51.
  • the position calculation unit 51 performs arithmetic processing for calculating the current position of the second optical communication device 2 which is the communication partner based on each of the transmitted light intensity information.
  • the light intensity is attenuated according to the propagation distance. That is, the intensity of the light that enters the incoming light end portion 16 of the optical fiber 13 that is close to the laser light source 4 that is the source of the search light SL is relatively high, and the light that enters the incoming light end portion 16 that is far from the laser light source 4 The strength of is relatively low.
  • the position Ra of the incoming light end portions 16 of the optical fibers 13a to 13e is transmitted from the laser light source 4 which is the source of the search light SL.
  • the position of the laser light source 4 can be calculated between 1 and Re.
  • the light intensity information is the numerical value shown in FIG. 5
  • the light intensity information Lb is the highest
  • the light intensity information Lc is the second highest.
  • the light intensity information Le is the lowest. Therefore, it can be specified that the position of the laser light source 4 in the x direction is the position R1 that is between the position Rb and the position Rc and is relatively close to the position Rb.
  • the specific position of the position R1 between the position Rb and the position Rc can be specified by the ratio of the light intensity information Lb and the light intensity information Lc.
  • the information regarding the specified position R1 is transmitted to the movement parameter calculation unit 53.
  • Step SA2 (calculation of movement parameters)
  • the position calculation unit 51 calculates the position information of the laser light source 4 at a plurality of time points.
  • the movement parameter calculation unit 53 calculates the movement speed and the movement direction of the laser light source 4 based on the position information of the laser light source 4 related to the plurality of time points.
  • the position calculation unit 51 calculates the position of the laser light source 4 at the time Ta and the time Tb.
  • the light intensity information La to Le collected at the time Ta is as shown in FIG.
  • the position calculation unit 51 can calculate that the position of the laser light source 4 is R1.
  • the position of the moving body 102 at the time Tb is as shown in FIG. 7, and the light intensity information La to Le obtained in the positional relationship is as shown in FIG.
  • the position calculation unit 51 can calculate that the position of the laser light source 4 at the time Tb is R2 based on the light intensity information La to Le related to the time Tb.
  • the movement parameter calculation unit 53 can calculate information on the movement speed and movement direction of the laser light source 4 as the movement parameters of the laser light source 4 based on the difference between the distance and direction from the position R2 to the position R1 and the time Tb and the time Ta. ..
  • the calculated information also corresponds to the moving speed and moving direction of the moving body 102 equipped with the laser light source 4.
  • Step SA3 motion control of moving body
  • the operation of the moving body 102 is controlled based on the moving parameters of the laser light source 4.
  • Information regarding the movement parameters of the laser light source 4 is transmitted from the movement parameter calculation unit 53 to the moving body control unit 55.
  • the mobile body control unit 55 predicts the position of the mobile body 102 after the time Tb based on the movement parameters of the laser light source 4.
  • the mobile body control unit 55 controls the laser light source 3 based on the result of predicting the position of the mobile body 102, and as shown in FIG. 9, the first communication optical CL having a content of controlling the operation of the mobile body 102.
  • the light is transmitted from the optical communication device 1 to the second optical communication device 2.
  • Examples of prediction and control by the mobile control unit 55 include the following. As an example, when the locations to be inspected in the pipeline PL are the positions R3 and R4, the moving body control unit 55 moves the moving body 102 to each of the positions R3 and R4 according to the movement parameters of the laser light source 4. You can predict the time. Then, based on the prediction, the mobile body control unit 55 lasers the communication optical CL to operate the observation device 9 to inspect the pipeline PL at the scheduled arrival time of the position R3 and the scheduled arrival time of the position R4. It is possible to execute control for emitting light from the light source 3 to the receiving device 6.
  • the moving body control unit 55 uses the laser light source 3 for the communication light CL including the information that the moving speed of the moving body 102 is slowed down. Controls the output from.
  • Step SA4 Predictive control of switch section
  • the movement parameter of the laser light source 4 obtained in step SA2 it is also possible to perform predictive control of the switch unit 23. That is, from the movement parameter of the laser light source 4, it is possible to predict the time zone in which the specific optical fiber 13 of the optical fibers 13a to 13e is closest to the laser light source 4 after the time Tb.
  • the optical fiber identification unit 27 emits relatively strong light after the time Tb even if the search light SL is not emitted.
  • the optical fiber 13 to be illuminated can be specified.
  • the time when the optical fiber 13 closest to the laser light source 4 is the optical fiber 13d is defined as the time Tc to Td
  • the time when the optical fiber 13 closest to the laser light source 4 is the optical fiber 13e is defined as the time Td to Te.
  • the light intensity information Lc based on the optical fiber 13c is the highest due to the identification of the optical fiber 13 using the search optical SL (see FIG. 8). Therefore, the switch unit 23 is switched and controlled so that the amplification unit 18c is turned on.
  • the operation of specifying the optical fiber 13 using the search optical SL is stopped, and the operation of specifying the optical fiber 13 is performed according to the prediction based on the movement parameter. That is, when the time has passed from the time Tb and the time has reached the time Tc, the optical fiber specifying unit 27 automatically identifies the optical fiber 13 that receives relatively strong light as the optical fiber 13d. Then, at times Tc to Td, the switch control unit 29 controls the switch unit 23 by switching so that the amplification unit 18d is in the ON state.
  • the optical fiber specifying unit 27 automatically identifies the optical fiber 13 that receives relatively strong light as the optical fiber 13e. Then, at times Td to Te, the switch control unit 29 controls the switch unit 23 by switching so that the amplification unit 18e is in the ON state.
  • the moving body 102 moves out of the communicable range of the first optical communication device 1 after a lapse of time
  • the moving parameter calculation unit 53 predicts the time of the movement in advance, and underwater optical communication is performed at the predicted time. The operation of optical wireless communication by the system 100 can be stopped. Therefore, it is possible to avoid a situation in which power is unnecessarily consumed due to continuous unnecessary operation even after the distance between the first optical communication device 1 and the second optical communication device 2 is increased.
  • the optical communication device 1 detects a transition of light intensity information over time, and calculates the relative movement speed of the second optical communication device 2 with respect to the plurality of optical fibers 13 based on the transition. It includes a movement parameter calculation unit 53 and a moving body control unit 55 that transmits an optical signal for controlling the movement of the second optical communication device 2 to the second optical communication device 2 based on the relative movement speed.
  • the search light SL is a step before emitting the communication light CL every time optical wireless communication is performed. Need to be emitted.
  • predictive control of the switch unit 23 it is not necessary to use the search optical SL to specify the optical fiber 13 after acquiring the movement parameter. Therefore, it is possible to avoid a lag between the time when the optical fiber 13 is specified and the time when the communication optical CL is irradiated and the optical wireless communication is started.
  • the optical communication device includes a plurality of light receiving elements that receive light and output a light detection signal, and a plurality of light receiving elements that are provided so as to correspond to the plurality of light receiving elements and that guide the light to the plurality of light receiving elements.
  • Optical fiber a plurality of signal processing units provided so as to correspond to the plurality of light receiving elements, and generating optical communication information by performing signal processing on the optical detection signal, and the plurality of optical fibers.
  • the light intensity information collecting unit that collects the intensity of the light received by each as light intensity information and the light intensity information collected by the light intensity information collecting unit, the light that is relatively strong among the plurality of optical fibers.
  • Signal processing that controls the optical fiber identification unit that specifies the optical fiber that is receiving light and the signal processing unit that is provided so as to correspond to the optical fiber specified by the optical fiber identification unit in an on state. It may be provided with a control unit.
  • the intensity of light received by each of a plurality of optical fibers that guide light to a plurality of light receiving elements that receive light and output a light detection signal is collected as light intensity information. It is equipped with a light intensity information collecting unit.
  • the optical fiber identification unit identifies an optical fiber that receives relatively strong light from a plurality of optical fibers based on the collected light intensity information.
  • the specified optical fiber is an optical fiber that is relatively close to the position of the communication partner that generates light
  • optical communication is performed using an optical fiber that can efficiently process light as a result of control by the signal processing control unit. It can be carried out. Therefore, it is possible to avoid a situation in which the S / N ratio is lowered by using an optical fiber far from the communication partner.
  • the optical fiber relatively close to the communication partner is specified by using the optical communication having high directivity, the reliability of the optical communication can be improved while improving the confidentiality of the communication. Further, since it is not necessary to perform acoustic positioning using an acoustic device, it is possible to easily realize miniaturization and weight reduction of the optical communication device.
  • (Section 2) In the optical communication device according to the first item, based on a light intensity transition detection unit that detects a transition of the light intensity information over time and a transition of the light intensity information detected by the light intensity transition detection unit over time.
  • a movement speed calculation unit that calculates the relative movement speed of the light emitting body with respect to the plurality of optical fibers, and an optical signal that controls the movement of the light emitting body based on the relative moving speed are emitted. It may be provided with an optical signal transmitting unit that transmits light to the body.
  • the optical communication device described in the second item by calculating the moving speed of the light emitting body, it is possible to easily grasp whether or not the movement control of the light emitting body is necessary, and the movement of the light emitting body is performed. Can be controlled. Further, since the timing at which the light emitting body goes out of the communicable range of the optical communication device can be accurately predicted based on the moving speed of the light emitting body, the accuracy of the timing at which the underwater optical wireless communication is started and stopped can be improved.
  • the plurality of optical fibers may be arranged in a fixed structure which is fixedly installed.
  • the optical intensity information collected by the optical intensity information collecting unit and the optical fiber information specified by the optical fiber specifying unit can be obtained.
  • the reliability can be further improved.
  • the plurality of optical fibers may be arranged in a moving structure.
  • optical communication device even when underwater optical wireless communication is performed between moving structures, the reliability of optical communication can be improved while improving the confidentiality of communication.
  • each of the plurality of optical fibers 13 is arranged by using the pillar 39 and the fixture 41 so that the light input end portions 16 of the plurality of optical fibers 13 are arranged in a two-dimensional matrix. You may. In this case, the position of the moving body 102 can be detected not only in the x direction but also in the y direction by collecting the light intensity information of the light entering each of the optical fibers 13 arranged in the two-dimensional matrix.
  • the light incoming end portion holder 43 may be further arranged on the side of the incoming light end portion 16 as shown in FIG.
  • the light entrance end holder 43 is configured to be able to hold the plurality of light entrance end portions 16 in a state in which they are facing different directions.
  • each of the plurality of (here, five) optical fibers 13 arranged at the position Ra is an optical fiber 13a.
  • Each of the five optical fibers 13a is fixed in different directions so as to spread by the light receiving end holder 43.
  • the second optical communication device 2 may include the configuration provided by the first optical communication device 1.
  • the configuration in which the light input end portions 16 of the optical fiber 13 are distributed and arranged at a plurality of locations in water is not limited to the configuration applied to the fixed structure 101, and the moving body 102 may be provided.
  • FIG. 12 illustrates a configuration in which the light input end portions 16 of the five optical fibers 13 are arranged at five locations around the moving body 102.
  • the configuration and operation according to each embodiment can be applied even when the mobile bodies 102 perform underwater optical wireless communication. That is, even when underwater optical wireless communication is performed between moving structures, the reliability of optical communication can be improved while improving the confidentiality of communication.
  • the relative moving speed and moving direction of the other moving body 102 with respect to one moving body 102 are calculated, and the moving speed and moving direction information is obtained. Based on the above, optical wireless communication to perform mobile control so as to avoid interference can be executed with each other.
  • the underwater optical communication system 100 is configured to perform optical wireless communication between two optical communication devices, but optical wireless communication is performed between three or more optical communication devices. It is also good.
  • the number of optical fibers 13 specified by the optical fiber specifying unit 27 is not limited to one. As an example, two or three or more optical fibers 13 having a large value of light intensity information may be specified. Further, all the optical fibers 13 in which the value of the light intensity information is larger than a predetermined value may be specified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Communication System (AREA)

Abstract

光通信装置1は、光を受光して光検出信号を出力する複数の受光素子11と、複数の受光素子11に対応するように設けられ、複数の受光素子11に光を導く複数の光ファイバ13と、複数の受光素子11に対応するように設けられ、光検出信号に対して信号処理を行うことにより光通信情報を生成する複数の増幅器18と、複数の光ファイバ13の各々が受光する光の強度を光強度情報La~Leとして収集する光強度情報収集部25と、光強度情報収集部25が収集する光強度情報La~Leに基づいて、複数の光ファイバ13のうち比較的強い光を入光させている光ファイバ13を特定する光ファイバ特定部27と、光ファイバ特定部27が特定した光ファイバ13に対応するように設けられている増幅器18をオンの状態に制御するスイッチ制御部29と、を備える。

Description

光通信装置
 本発明は、光通信装置に関する。
 従来、水中探査を行う水中ビークルなどからデータを送信させるための水中無線通信手段として、水中における減衰が小さい音波を利用した通信が用いられていた。このような音波による無線通信は、音波の水中伝播速度の低さおよび音波の周波数の低さに起因して、数十kbps程度の低い通信速度しか実現できないという問題があった。
 そこで近年では水中無線通信手段として、可視光を利用した光通信装置を用いた光無線通信システムが提案されている。光通信装置は、可視光からなるレーザ光を出射するレーザ光源と、レーザ光源から出射されたレーザ光を受光する受光部とを備えている。光無線通信システムの一例として、水中に設置された観測装置に設けられている第1の光通信装置と、水中を航行する潜水艇に設けられている第2の光通信装置との間で通信光を互いに伝送することによって無線通信を行う構成が挙げられる(例えば、特許文献1、2)。
 通信光であるレーザ光は、水中を伝播できる距離に一定の制限がある。そこで従来の光無線通信システムでは、特に水中に固定設置されている固定体と水中を移動する移動体との間で通信を行う場合、音波を用いた音響測位によって通信相手が光通信可能範囲に入ったことを確認してから水中光無線通信を開始する構成が採用されている。
特開2018-007069号公報 特開2019-186595号公報
 しかしながら、このような構成を有する従来例の場合には、次のような問題がある。
 音響測位によって通信相手の位置を確認する従来構成は、通信の秘匿性を向上させることが困難である。すなわち、音波は指向性が低いので、傍受される可能性が高くなる。また、音響測位を用いる場合は光通信装置において、通信光を伝送する構成と別に音波の発生および検出を行う装置が必要となる。その結果、光通信装置が大型化および重量化するという問題も懸念される。
 本発明は、このような事情に鑑みてなされたものであって、装置の大型化および通信の秘匿性の低下を回避しつつ、信頼性の高い通信を行うことができる光通信装置を提供することを目的とする。
 本発明の第1の態様は、光を受光して光検出信号を出力する複数の受光素子と、前記複数の受光素子に対応するように設けられ、前記複数の受光素子に前記光を導く複数の光ファイバと、前記複数の受光素子に対応するように設けられ、前記光検出信号に対して信号処理を行うことにより光通信情報を生成する複数の信号処理部と、前記複数の光ファイバの各々が受光する前記光の強度を光強度情報として収集する光強度情報収集部と、光強度情報収集部が収集する前記光強度情報に基づいて、前記複数の光ファイバのうち比較的強い前記光を入光させている前記光ファイバを特定する光ファイバ特定部と、光ファイバ特定部が特定した前記光ファイバに対応するように設けられている前記信号処理部をオンの状態に制御する信号処理制御部と、を備える光通信装置に関する。
 本発明に係る光通信装置では、光を受光して光検出信号を出力する複数の受光素子に光を導く複数の光ファイバの各々が受光する光の強度を光強度情報として収集する光強度情報収集部を備える。光ファイバ特定部は収集された光強度情報に基づいて、複数の光ファイバのうち比較的強い光を入光させている前記光ファイバを特定する。
 当該特定された光ファイバは、光を発生させる通信相手の位置に比較的近い光ファイバであるので、信号処理制御部による制御の結果、光を効率良く信号処理できる光ファイバを用いて光通信を行うことができる。よって、通信相手から遠い光ファイバを用いることによってS/N比が低下するという事態を回避できる。また、指向性が高い光通信を用いて、通信相手に比較的近い光ファイバを特定するので、通信の秘匿性を向上させつつ光通信の信頼性を向上できる。さらに、音響装置を用いた音響測位を行う必要がないので、光通信装置の小型化および軽量化を容易に実現できる。
第1実施形態に係る光通信装置の概略構成を説明するブロック図である。 第1実施形態に係る光受信部の概略構成を説明する図である。 第1実施形態に係る光通信装置の構成を説明する機能ブロック図である。 第1実施形態において、光ファイバの配設例および移動体の位置を示す模式図である。 第1実施形態において、各光ファイバが受光する光の光強度を示す図である。 第2実施形態に係る光通信装置の要部を説明する機能ブロック図である。 第2実施形態において、移動体が移動した状態を示す模式図である。 第2実施形態において、移動体が移動した状態で各光ファイバが受光する光の光強度を示す図である。 第2実施形態において、移動体の移動を制御する光信号を発信する状態を示す模式図である。 変形例に係る、複数の光ファイバの配設パターンを示す図である。 変形例に係る、光ファイバの受光端部側の構成を示す図である。 変形例に係る、光ファイバの配設例を示す模式図である。
 以下、図面を参照して本発明の実施形態を説明する。
第1実施形態
<全体構成の説明>
 図1を用いて、第1実施形態による光通信装置を備える水中光通信システム100の概略構成について説明する。なお、図1などに示すように、互いに直交する2つの水平方向をそれぞれx方向およびy方向とする。x方向は図面における左右の水平方向に相当するものとする。また、鉛直方向をz方向とする。
 図1に示すように、水中WAにおいて、水中光通信システム100は第1の光通信装置1と第2の光通信装置2とを備えている。第1の光通信装置1は、水底WBに設置されている固定構造体101に配設されている。固定構造体101の例としては、パイプラインまたは観測用水中基地などが挙げられる。固定構造体101は、図示しない外部局とケーブルを介して接続されている。外部局の一例として、水上に位置する艦船または地上に設置されている地上基地などが挙げられる。
 第2の光通信装置2は、水中WAを移動する移動体102に配設されている。移動体102は、海中を例とする水中WAを移動することにより、水中構造物の検査などを行う。移動体102の例としては、ROV(Remotely Operated Vehicle)またはAUV(Autonomous Underwater Vehicle)などが挙げられる。なお図1において、水面は符号Sを用いて示されている。
 図1に示すように、第1の光通信装置1はレーザ光源3、光受信部5、および制御部7を備えている。第2の光通信装置2はレーザ光源4、光受信部6、制御部8、および観測装置9を備えている。第1の光通信装置1は、本発明における光通信装置に相当する。
 レーザ光源3およびレーザ光源4は、それぞれ半導体レーザおよびコリメートレンズを備えており、半導体レーザによって発生されたレーザ光をコリメートレンズで平行光に調整して水中WAへと出射する。レーザ光源3またはレーザ光源4によって出射される光として、通信情報を含む通信光CLの他、通信情報を含まない探査光SLなどが挙げられる。
 光受信部5は、第2の光通信装置2に設けられているレーザ光源4から出射されたレーザ光を受信する。制御部7は中央演算処理装置(CPU:Central Processing Unit)などを備えており、光受信部5によって受信されたレーザ光に含まれる情報に対して各種処理を行うとともに、第1の光通信装置1に設けられる各構成を統括制御する。
 光受信部6は、第1の光通信装置1に設けられているレーザ光源3から出射されたレーザ光を受信する。制御部8は、光受信部6によって受信されたレーザ光に含まれる情報に対して各種処理を行うとともに、第2の光通信装置2に設けられる各構成を統括制御する。観測装置9は一例として水中カメラであり、水中WAにおける観測対象を観測し、映像または動画などの情報を取得する。
 このように、水中光通信システム100は、第1の光通信装置1および第2の光通信装置2がレーザ光を一方から他方に送信することによって、水中WAにおいて光無線通信を行うことができるように構成されている。第1実施形態では、第2の光通信装置2が第1の光通信装置1に対してレーザ光を発信する場合を例にとって説明を行う。
 図2は、光受信部5の概略構成を示している。光受信部5は、複数の受光素子11と、複数の光ファイバ13と、保護容器15とを備えている。受光素子11の各々は、通信光CLまたは探索光SLを例とする光を受光して光電変換を行うように構成されている。受光素子11の例として、光電子増倍管またはアバランシェダイオードなどが挙げられる。本実施形態において、光受信部5は5つの受光素子11を備えているものとする。5つの受光素子11については受光素子11a~11eの符号を付して各々を区別する。
 複数の光ファイバ13は、複数の受光素子11に対応するように設けられており、受光素子11の各々に光を導くように構成されている。すなわち、受光素子11が5つ設けられている本実施形態では5本の光ファイバ13が設けられており、1つの受光素子11に対して1本の光ファイバ13が配設されている。
 光ファイバ13の各々は、光を入光させる入光端部16と、入光された光を出光させる出光端部17を有する。出光端部17は受光素子11に対向または接触するように配置されている。入光端部16には光を集光させる集光レンズが設けられていることが好ましい。集光レンズを入光端部16に備えることにより、集光された光が光ファイバ13に入光されるので、光通信の精度をより向上できる。
 複数の光ファイバ13について、受光素子11aに対応する光ファイバ13については符号13aを付して区別する。すなわち、受光素子11a~11eの各々には、光ファイバ13a~13eの各々が対応するように配設されている。
 保護容器15は水中WAに配設されている密閉型の耐水圧容器である。複数の受光素子11は保護容器15の内部に配設されており、水中WAなどの外部環境から隔離される。保護容器15は、挿通部PHを備えている。挿通部PHは、保護容器13の内部を密閉された水密状態に維持しつつ、複数の光ファイバ13を挿通可能に構成されている。
 複数の光ファイバ13の各々は、出光端部17が保護容器の内部に配置される一方で、入光端部16は保護容器13の外部に配置される。すなわち、入光端部16は水中WAに配置可能に構成される。すなわち、光ファイバ13の長さおよび配設経路を任意に設定することにより、入光端部16を水中WAにおける所望の位置に配置できる。本実施形態では図4に示すように、光ファイバ13a~13eの各々の入光端部16は、異なる5つの位置Ra~Reにそれぞれ配置されている。
 また光受信部5は図3に示すように、受光素子11において光電変換された信号を増幅する増幅器18を備えている。増幅器18は受光素子11の各々に対応するように設けられている。本実施形態では5つの増幅器18を備えており、受光素子11a~11eに対応する増幅器18a~18eとして各々を区別する。
 光通信装置1は図3に示すように、さらに情報処理部19、メモリ部21、スイッチ部23、A/D変換器24、光強度情報収集部25、光ファイバ特定部27、およびスイッチ制御部29を備えている。
 情報処理部19は、受光素子11および増幅器18によって光電変換および増幅処理が行われた通信光CLの信号に対して各種情報処理を行うことにより、画像情報などを例とする通信情報を生成する。メモリ部21は各種情報を記憶するものであり、情報処理部19によって生成された通信情報は制御部7を介してメモリ部21に記憶される。
 スイッチ部23は、増幅器18の下流かつ情報処理部19の上流に設けられている。スイッチ部23は、増幅器18によって増幅された信号のうち情報処理部19に送信する信号を選択できるように回路を切り換える構成を有している。すなわちスイッチ部23によって、光ファイバ13a~13eの各々に入光された光信号のうち、情報処理部19に送信して通信情報とさせる信号を適宜選択できる。
 A/D変換器24は増幅器18の下流にスイッチ部23とは分岐して設けられており、増幅器18が増幅した光信号に対してA/D変換を行う。A/D変換器24による処理により、光ファイバ13が受光した光の強度に関する情報が光強度情報として生成される。光強度情報収集部25はA/D変換器24の下流に設けられており、光ファイバ13a~13eの各々が受光した光について、光強度情報を収集する。
 光ファイバ特定部27は光強度情報収集部25の下流に設けられており、光ファイバ13a~13eのうち比較的強い光を入光させている光ファイバ13を特定する。第1実施形態では、光ファイバ13a~13eの各々が受光した光の光強度情報を比較することにより、比較的強い光を入光させている光ファイバ13を特定する。
 スイッチ制御部29は光ファイバ特定部27の下流に設けられており、光ファイバ13a~13eのうち、比較的強い光を入光させている光ファイバ13として特定されたものが情報処理部19と回路的に接続されるようにスイッチ部23を切り換え制御する。スイッチ制御部29が行う制御により、比較的弱い光を入光させている光ファイバ13によって伝送された光信号は通信情報としての処理対象から除外している。これにより通信の信号対雑音比(S/N値)を向上することができる。
<第1実施形態の使用例>
 次に、第1実施形態に係る第1の光通信装置1および第2の光通信装置2の使用例について説明する。本実施形態では図4に示すように、x方向に沿ってパイプラインPLが配設されており、移動体102はパイプラインPLに沿って移動しながら検査を行いつつ、第2の光通信装置から第1の光通信装置1へと光無線通信を行うものとする。なお、移動体102に配設されているレーザ光源4のx方向における位置を、R1とする。
 光ファイバ13a~13eの各々の入光端部16は、x方向に並ぶ5つの異なる位置Ra~Reにそれぞれ配設されている。すなわち受光素子11aに対応する光ファイバ13aは、入光端部16が位置Raに配置されるように、固定具41を介して柱39に固定されている。また受光素子11bに対応する光ファイバ13bは、入光端部16が位置Rbに配置されるように、固定具41を介して柱39に固定されている。以下、柱39および固定具41を用いることによって、光ファイバ13c~13eの入光端部16は位置Rc~Reに固定配置される。
 受信側である第1の光通信装置1において、光ファイバ13a~13eの入光端部16はそれぞれ離れた場所に固定配置されている。そのため、光ファイバ13a~13eから伝送される光信号を全て利用して情報処理部19による通信情報の生成を行う場合、生成された通信情報はノイズ成分によって精度が低下しやすい。
 すなわち、光信号を送信するレーザ光源4に比較的近い光ファイバ13は、入光端部16に比較的強い光が入光される。そのため、当該光ファイバ13に対応する受光素子11が検出する光信号はS/N値が比較的高い。一方、レーザ光源4から遠い光ファイバ13に入光する光は強度が乏しい。よって、レーザ光源4から遠い光ファイバ13に対応する受光素子11によって検出される光信号はS/N値が低い低品質の情報となる。よって、光ファイバ13a~13eから伝送される光信号を全て合算して通信情報を生成すると、通信情報のS/N値が低下することとなる。
 そこで本実施形態では、通信光CLを出射して光無線通信を行う前の段階として、光ファイバ13c~13eのうち光無線通信に適した光ファイバ13を特定する動作を行う。以下、各動作について説明する。なお初期状態において、スイッチ部23は全てオフになるように制御されている。
 ステップS1(光の出射)
 まず、送信側である第2の光通信装置2から、光ファイバ13の特定に用いる光を第1の光通信装置1へと出射する。すなわち図4に示すように、移動体102に搭載されているレーザ光源4から、探索光SLを光ファイバ13a~13eの入光端部16へ向けて出射する。本実施形態において光ファイバ13の特定に用いる探索光SLは、通信光CLと異なり通信情報を含まない光である。光ファイバ13a~13eの入光端部16においてそれぞれ入光された探索光SLは出光端部17へと伝送され、受光素子11a~11eの各々によって検出される。
 ステップS2(光強度情報の収集)
 受光素子11a~11eの各々によって検出された光信号は光電変換されるとともに、増幅器18a~18eのよって増幅される。増幅された信号はA/D変換器24によってデジタル情報に変換される。デジタル変換により、光ファイバ13a~13eの各々に入光された探索光SLの強度に関する情報が、光強度情報として取得される。取得された光強度情報の各々は、光強度情報収集部25によって収集される。
 ステップS3(光ファイバの特定)
 光強度情報収集部25によって収集された、光ファイバ13a~13eの各々に入光された探索光SLの光強度情報は光ファイバ特定部27へと送信される。光ファイバ特定部27は各々の光強度情報を比較することにより、比較的強い光が入光されている光ファイバ13を特定する。
 図5は、図4に示されるように移動体102が移動している状態において収集される、探索光SLの光強度情報を示すものである。ここで、光ファイバ13a~13eの各々に入光された探索光SLの光強度を、それぞれ光強度情報La~Leとする。
 図4の状態において、入項端部16が配置されている位置Ra~Reのうち、位置Rbがレーザ光源4の位置R1に最も近く、次いで位置Rcが近い。そして位置Reが最も遠い。光ファイバ13の入光端部16に入光される光の強度は、光を出射するレーザ光源4から当該入光端部16までの距離が長くなるにつれて低下する。よって光強度情報La~Leのうち、レーザ光源4に最も近い光ファイバ13bに対応する光強度情報Lbが最も高くなる。
 すなわち、光ファイバ特定部27は収集された光強度情報La~Leの情報を比較し、最も高い光強度の情報を特定することによって、比較的強い光が入光されている光ファイバ13を特定できる。収集された光強度情報の値が図5に示されるような場合、光強度情報Lbが最も高いと判定することによって、強い光が入光されている光ファイバ13は光ファイバ13bであると光ファイバ特定部27は特定する。
 ステップS4(スイッチの制御)
 スイッチ制御部29は光ファイバ特定部27が特定した光ファイバ13の情報に基づいて、スイッチ部23の切換え制御を行う。光ファイバ特定部27が特定した光ファイバ13が光ファイバ13bであった場合、スイッチ制御部29は光ファイバ13bに対応する増幅器18bがオンの状態となるようにスイッチ部23を切り換える。当該切り換え制御により、レーザ光源4から遠い光ファイバ13によって伝送される、比較的ノイズが高い信号を情報処理部19から遮断できる。
 ステップS5(通信光の出射)
 スイッチ部23の切り換え制御が行われるとともに、第1の光通信装置1および第2の光通信装置2による光無線通信を開始する。すなわち、第2の光通信装置2はレーザ光源4から、通信情報を含む光である通信光CLを第1の光通信装置1へと出射させる。
 通信光CLは光ファイバ13a~13eの各々に入光され、受光素子11a~11eの各々に検出される。ここでステップS1~S4までの動作により、増幅器18のうち増幅器18bのみがオンの状態となっている。そのため受光素子11bによって光電変換されて増幅器18bによって増幅された検出信号のみが情報処理部19へと送信される。
 ステップS6(通信情報の生成)
 情報処理部19は、増幅器18bを介して送信された検出信号に対して各種情報処理を行い、通信光CLに基づく通信情報を生成する。他の受光素子11と比べて、受光素子11bによって検出された信号はS/N値が高いので、情報処理部19は当該S/N値が高い検出信号に基づいて信頼性が高い通信情報を生成できる。
 生成された通信情報はメモリ部21に記憶され、適宜利用される。例えば、固定構造体101を予め有線ケーブルなどによって水上の艦船に接続しておくことにより、移動体102によって観測された情報を水中光通信システム100によって当該艦船へと送信できる。以上の動作によって、本実施形態による水中光無線通信が行われる。
 <第1実施形態による効果>
 本実施形態に係る光通信装置1では、光を受光して光検出信号を出力する複数の受光素子11と、複数の受光素子11に対応するように設けられ、複数の受光素子11に光を導く複数の光ファイバ13と、複数の受光素子11に対応するように設けられ、光検出信号に対して信号処理を行うことにより光通信情報を生成する複数の増幅器18と、複数の光ファイバ13の各々が受光する光の強度を光強度情報La~Leとして収集する光強度情報収集部25と、光強度情報収集部25が収集する光強度情報La~Leに基づいて、複数の光ファイバ13のうち比較的強い光を入光させている光ファイバ13を特定する光ファイバ特定部27と、光ファイバ特定部27が特定した光ファイバ13に対応するように設けられている増幅器18をオンの状態に制御するスイッチ制御部29と、を備える。
 当該構成により、複数の光ファイバ13のうち、光を発生させる通信相手である第2の光通信装置2に比較的近い光ファイバ13を特定できる。光ファイバ特定部27によって特定された光ファイバ13は、比較的S/N値の高い光信号を伝送できる光ファイバ13である。従って、特定された当該光ファイバ13によって受光素子11に導かれる光に基づく検出信号を選択的に用いて光通信情報を生成することにより、ノイズ成分が低い高精度の光無線通信を行うことができる。また、光ファイバ13を特定する動作は探索光SLを用いて行う。すなわち、指向性が高い光を用いて各種動作を全て行うので、通信の秘匿性を向上させつつ光通信の精度を向上できる。さらに、音響装置を用いた音響測位を行う必要がないので、光通信装置の小型化および軽量化を容易に実現できる。
 そして、複数の光ファイバ13は、入光端部16の各々が、水中においてそれぞれ異なる位置に配設されている。光ファイバ13は可撓性が高く配設経路を柔軟に選択できるので、複数の入光端部16をそれぞれ水中における所望の位置に配設できる。よって、光無線通信の受信可能範囲を広げることが可能となる。
 複数の光ファイバ13をそれぞれ離れた場所に配置することによって光無線通信の受信可能範囲を広げた場合、各々の光ファイバ13から伝送される光信号を全て合算させて光通信情報を生成するとノイズに起因する情報精度の低下が発生することがわかった。これに対し、光ファイバ特定部27によって特定された光ファイバ13に対応する信号を選択して光通信情報の生成を行うことにより、通信相手である第2の光通信装置2から比較的遠い光ファイバ13によって取得された高ノイズの信号を除外して光通信情報を生成できる。従って、光無線通信の受信可能範囲を広げつつ光通信情報の精度を向上することが可能となる。
 また、第1の光通信装置1が備える複数の光ファイバ13は、固定設置されている固定構造体101に配設されている。複数の光ファイバ13の位置が固定されていることにより、光強度情報収集部25が収集する光強度情報La~Le、および光ファイバ特定部27が特定する光ファイバ13の情報の信頼度をより向上できる。
第2実施形態
 次に、本発明の第2実施形態について説明する。第2実施形態では、第1実施形態に加えて位置算出部および移動パラメータ算出部などをさらに備える例について説明する。なお、第1実施形態と共通する構成については同一の符号を付して図示し、その説明を省略する。
 図6は、第2実施形態に係る第1の光通信装置1の要部を示す機能ブロック図である。第2実施形態に係る第1の光通信装置1は、さらに位置算出部51と、移動パラメータ算出部53と、移動体制御部55とを備えている。
 位置算出部51は光強度情報収集部25の下流に設けられており、複数の光ファイバ13a~13eの各々について得られた光強度情報に基づいて、光ファイバ13に入光された光の発生源(ここではレーザ光源4)の位置情報を算出する。移動パラメータ算出部53は、位置算出部51の下流に設けられており、位置算出部51によって得られた位置情報の遷移に基づいて、光ファイバ13に入光された光の発生源の移動速度および移動方向を算出する。言い換えれば、第1の光通信装置1に対する第2の光通信装置2の相対的な移動速度および移動方向が移動パラメータ算出部53によって算出される。
 移動体制御部55は、移動パラメータ算出部53によって算出された移動速度および移動方向の情報に基づいて、レーザ光源4を搭載している移動体102の移動速度または移動方向を制御する。すなわち、第1の光通信装置1が備えているレーザ光源3の動作を移動体制御部55が制御することにより、移動体102の移動速度または移動方向を制御するための通信光CLをレーザ光源3から出射させる。
 移動体102の移動速度または移動方向を制御する具体的な構成の一例として以下のようなものが挙げられる。すなわち、第2の光通信装置2の相対的な移動速度および移動方向の情報が、移動パラメータ53から制御部7およびケーブルを介して外部局へ送信される。そして外部局において移動体102の移動速度または移動方向を制御する指令の内容が決定される。その後、当該指令に関する情報が外部局からケーブルおよび制御部7を介して移動体制御部55へと送信される。
<第2実施形態の使用例>
 ここで、第2実施形態に係る第1の光通信装置1および第2の光通信装置2の使用例について説明する。
 なお、第2実施形態では、時刻Taの時点においてレーザ光源4は図4に示すように位置R1にあるものとする。そして、時刻Taから時間が経過して時刻Tbとなった時点において、図7に示すように、移動体101が符号Vで示される矢印に従って移動することによって、レーザ光源4は位置R2に移動しているものとする。位置Ra~Reのうち位置Rcに最も近く、位置Rdが次いで近い。そして、位置Raが最も位置R2から遠い。
 第2実施形態では、第1実施形態において行われたステップS1~S6の動作に加えて、以下に説明するステップSA1~SA4の動作を併せて行う。
 ステップSA1(通信相手の位置の算出)
 第2実施形態では、ステップS2に係る動作によって光ファイバ13a~13eの各々に入光された探索光SLの光強度情報が収集された後、当該光強度情報を用いてステップS3に係る動作を行うとともにステップSA1に係る動作を行う。すなわち、光ファイバ13a~13eの各々に入光された探索光SLの光強度情報は、光ファイバ特定部27へと送信されるとともに位置算出部51へと送信される。
 位置算出部51は、送信された光強度情報の各々に基づいて、通信相手である第2の光通信装置2の現在位置を算出する演算処理を行う。光は水中を伝播する際に、伝播距離に応じて光強度が減衰する。すなわち、探索光SLの発生源であるレーザ光源4から近い光ファイバ13の入光端部16に入光した光の強度は比較的高く、レーザ光源4から遠い入光端部16入光した光の強度は比較的低い。
 すなわち、図5に示される光強度情報La~Leの各々の値を比較することによって、探索光SLの発生源であるレーザ光源4から、光ファイバ13a~13eの入光端部16の位置Ra~Reの間における、レーザ光源4の位置を算出できる。光強度情報が図5に示される数値である場合、光強度情報Lbが最も高く、光強度情報Lcが次いで高い。そして光強度情報Leが最も低い。従って、x方向におけるレーザ光源4の位置は、位置Rbと位置Rcとの間にあり、かつ比較的位置Rbに近い位置R1であることが特定できる。位置Rbと位置Rcとの間における位置R1の具体的な位置は、光強度情報Lbと光強度情報Lcとの比によって特定できる。特定された位置R1に関する情報は、移動パラメータ算出部53へと送信される。
 ステップSA2(移動パラメータの算出)
 位置算出部51は、複数の時点においてレーザ光源4の位置情報を算出する。そして複数の時点に係るレーザ光源4の位置情報に基づいて、移動パラメータ算出部53はレーザ光源4の移動速度および移動方向を算出する。
 第2実施形態において、位置算出部51は時刻Taおよび時刻Tbにおいてレーザ光源4の位置を算出する場合を例示する。時刻Taにおいて収集された光強度情報La~Leは、図5に示される通りである。この場合、レーザ光源4の位置がR1であることを位置算出部51は算出できる。次に、時刻Tbにおける移動体102の位置は図7に示す通りであり、当該位置関係において得られる光強度情報La~Leは、図8に示される通りである。この場合、位置算出部51は時刻Tbに係る光強度情報La~Leに基づいて、時刻Tbにおけるレーザ光源4の位置がR2であることを算出できる。
 移動パラメータ算出部53は、位置R2から位置R1までの距離および方向と、時刻Tbと時刻Taとの差によって、レーザ光源4の移動速度および移動方向に関する情報をレーザ光源4の移動パラメータとして算出できる。算出された情報は、レーザ光源4を搭載している移動体102の移動速度および移動方向にも相当する。
 ステップSA3(移動体の動作制御)
 ステップSA2において得られたレーザ光源4の移動パラメータを用いて、ステップSA3およびステップSA4に係る動作の少なくとも一方を行うことができる。ステップSA3では、レーザ光源4の移動パラメータに基づいて、移動体102の動作制御を行う。レーザ光源4の移動パラメータに関する情報は、移動パラ-メタ算出部53から移動体制御部55へ送信される。移動体制御部55は、レーザ光源4の移動パラメータに基づいて、時刻Tb以降における移動体102の位置を予測する。
 移動体制御部55は、移動体102の位置を予測した結果に基づいてレーザ光源3を制御し、図9に示すように、移動体102の動作を制御する内容の通信光CLを第1の光通信装置1から第2の光通信装置2へと送信させる。
 移動体制御部55による予測および制御の例としては、以下のようなものが挙げられる。一例としてパイプラインPLにおいて検査対象となる場所が位置R3および位置R4である場合、移動体制御部55は、レーザ光源4の移動パラメータによって、移動体102が位置R3および位置R4の各々に移動する時刻を予測できる。そして移動体制御部55は当該予測に基づいて、位置R3の到達予定時刻および位置R4の到達予定時刻において、観測装置9を作動させてパイプラインPLの検査を行わせる旨の通信光CLをレーザ光源3から受信装置6へと出射させる制御を実行できる。
 移動体制御部55による移動体102の動作制御の他の例としては、移動体102の移動速度または移動方向を変更させる制御が挙げられる。すなわち、移動パラメータ算出部53が算出した移動体102の移動速度が想定外に大きい場合、移動体制御部55は移動体102の移動速度を遅くする旨の情報を含む通信光CLをレーザ光源3から出射させる制御を行う。
 ステップSA4(スイッチ部の予測制御)
 ステップSA2において得られたレーザ光源4の移動パラメータを用いることにより、スイッチ部23の予測制御を行うことも可能である。すなわちレーザ光源4の移動パラメータから、時刻Tb以降において、光ファイバ13a~13eのうち特定の光ファイバ13がレーザ光源4に最も近くなる時間帯をそれぞれ予測できる。予測された時間帯の情報を移動パラメータ算出部53から光ファイバ特定部27へ送信することにより、光ファイバ特定部27は時刻Tb以降において、探索光SLの出射を行わなくとも比較的強い光が入光される光ファイバ13を特定できる。
 一例として、レーザ光源4に最も近い光ファイバ13が光ファイバ13dである時間を時刻Tc~Td、レーザ光源4に最も近い光ファイバ13が光ファイバ13eである時間を時刻Td~Teとする。時刻Tbにおいては、探索光SLを用いた光ファイバ13の特定によって、光ファイバ13cに基づく光強度情報Lcが最も高い(図8を参照)。そのため、スイッチ部23は増幅部18cがオンとなるように切り変え制御が行われる。
 一方で時刻Tbにおいて移動パラメータが取得された後は、探索光SLを用いて光ファイバ13を特定する動作を停止し、移動パラメータに基づく予測に従って光ファイバ13を特定する動作を行う。すなわち時刻Tbから時間が経過して時刻Tcとなった時点で、光ファイバ特定部27は比較的強い光を入光する光ファイバ13が光ファイバ13dであると自動的に特定する。そして時刻Tc~Tdにおいて、スイッチ制御部29はスイッチ部23に対して、増幅部18dがオンの状態となるように切り変え制御を行う。
 さらに時間が経過して時刻Tdとなると、光ファイバ特定部27は比較的強い光を入光する光ファイバ13が光ファイバ13eであると自動的に特定する。そして時刻Td~Teにおいて、スイッチ制御部29はスイッチ部23に対して、増幅部18eがオンの状態となるように切り変え制御を行う。さらに時間が経過して移動体102が第1の光通信装置1の通信可能範囲外に移動した場合、移動パラメータ算出部53は予め当該移動した時刻を予測し、予測された時刻において水中光通信システム100による光無線通信の動作を停止できる。従って、第1の光通信装置1および第2の光通信装置2の距離が離れた後も無用な動作を続けることに起因して、動力を無為に消耗する事態を回避できる。
 <第2実施形態による効果>
 本実施形態に係る光通信装置1では、光強度情報の経時的な遷移を検出し、当該遷移に基づいて、複数の光ファイバ13に対する第2の光通信装置2の相対的移動速度を算出する移動パラメータ算出部53と、相対的移動速度に基づいて、第2の光通信装置2の移動を制御する光信号を第2の光通信装置2へ発信させる移動体制御部55とを備える。
 この構成によれば、第2の光通信装置2の移動速度を算出することにより、第2の光通信装置2の移動制御が必要であるか否かを容易に把握し、第2の光通信装置2の移動を制御することができる。また、第2の光通信装置2の移動速度に基づいて、第2の光通信装置2が第1の光通信装置1の通信可能範囲から外れるタイミングを正確に予測できるので、水中光無線通信を開始および停止させるタイミングの精度を向上できる。
 第1実施形態のように所定時刻において各位置で得られる光強度情報を比較して光ファイバ13を特定する場合、光無線通信を行う度に、通信光CLを出射する前段階として探索光SLを出射する必要がある。一方で、移動パラメータを用いてスイッチ部23の予測制御を行う場合、移動パラメータを取得した後は光ファイバ13の特定に探索光SLを用いる必要がない。そのため、光ファイバ13を特定する時刻と通信光CLを照射して光無線通信を開始する時刻との間にラグが発生することを回避できる。
<態様>
 上記した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
(第1項)
 一態様に係る光通信装置は、光を受光して光検出信号を出力する複数の受光素子と、前記複数の受光素子に対応するように設けられ、前記複数の受光素子に前記光を導く複数の光ファイバと、前記複数の受光素子に対応するように設けられ、前記光検出信号に対して信号処理を行うことにより光通信情報を生成する複数の信号処理部と、前記複数の光ファイバの各々が受光する前記光の強度を光強度情報として収集する光強度情報収集部と、光強度情報収集部が収集する前記光強度情報に基づいて、前記複数の光ファイバのうち比較的強い前記光を入光させている前記光ファイバを特定する光ファイバ特定部と、光ファイバ特定部が特定した前記光ファイバに対応するように設けられている前記信号処理部をオンの状態に制御する信号処理制御部と、を備えていてよい。
 第1項に記載の光通信装置によれば、光を受光して光検出信号を出力する複数の受光素子に光を導く複数の光ファイバの各々が受光する光の強度を光強度情報として収集する光強度情報収集部を備える。光ファイバ特定部は収集された光強度情報に基づいて、複数の光ファイバのうち比較的強い光を入光させている光ファイバを特定する。
 当該特定された光ファイバは、光を発生させる通信相手の位置に比較的近い光ファイバであるので、信号処理制御部による制御の結果、光を効率良く信号処理できる光ファイバを用いて光通信を行うことができる。よって、通信相手から遠い光ファイバを用いることによってS/N比が低下するという事態を回避できる。また、指向性が高い光通信を用いて、通信相手に比較的近い光ファイバを特定するので、通信の秘匿性を向上させつつ光通信の信頼性を向上できる。さらに、音響装置を用いた音響測位を行う必要がないので、光通信装置の小型化および軽量化を容易に実現できる。
(第2項)
 第1項に記載の光通信装置において、前記光強度情報の経時的な遷移を検出する光強度遷移検出部と、前記光強度遷移検出部が検出した前記光強度情報の経時的な遷移に基づいて、前記複数の光ファイバに対する前記光出射体の相対的移動速度を算出する移動速度算出部と、前記相対的移動速度に基づいて、前記光出射体の移動を制御する光信号を前記光出射体へ発信させる光信号発信部と、を備えていてよい。
 第2項に記載の光通信装置によれば、光出射体の移動速度を算出することにより、光出射体の移動制御が必要であるか否かを容易に把握し、光出射体の移動を制御することができる。また、光出射体の移動速度に基づいて、光出射体が光通信装置の通信可能範囲から外れるタイミングを正確に予測できるので、水中光無線通信を開始および停止させるタイミングの精度を向上できる。
(第3項)
 第1項または第2項に記載の光通信装置において、前記複数の光ファイバは、固定設置されている固定構造体に配設されてもよい。
 第3項に記載の光通信装置によれば、複数の光ファイバが固定されていることにより、光強度情報収集部が収集する光強度情報、および光ファイバ特定部が特定する光ファイバの情報の信頼度をより向上できる。
(第4項)
 第1項または第2項に記載の光通信装置において、前記複数の光ファイバは、移動する構造体に配設されてもよい。
 第4項に記載の光通信装置によれば、移動する構造体同士で水中光無線通信を行う場合においても、通信の秘匿性を向上させつつ光通信の信頼性を向上できる。
<他の実施形態>
 なお、今回開示された実施例は、すべての点で例示であって制限的なものではない。本発明の範囲は、特許請求の範囲、並びに、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。例として、本発明は下記のように変形実施することができる。
 (1)上述の各実施形態において、説明の便宜上、複数の光ファイバ13の入光端部16が一方向(x方向)に沿って並列配置されるとともに、移動体102が当該方向に沿って移動する場合を例示したが、これに限られない。すなわち図10に示すように、複数の光ファイバ13の入光端部16が二次元マトリクス状に配列されるように、柱39および固定具41を用いて複数の光ファイバ13の各々を配置してもよい。この場合、二次元マトリクス状に配列された光ファイバ13の各々に入光される光の光強度情報を収集することにより、x方向のみならずy方向についても移動体102の位置を検出できる。
 (2)上述の各実施形態において、位置Ra~Reの各々にはそれぞれ1本の光ファイバ13が配置される構成を例示したが、これに限られない。すなわち位置Raに複数の光ファイバ13が配設され、位置Rb~Reの各々にも複数の光ファイバ13が配設されてもよい。この場合、位置Raに配設されている複数の光ファイバ13の各々に入射された光の光強度を一例として合算または平均化した情報が、光強度情報Laとして取得される。
 なお、1カ所に複数の光ファイバ13を配置させる上述の変形例において、さらに図11に示すように入光端部16の側に入光端部保持具43を配設してもよい。入光端部保持具43は、複数の入光端部16を、各々が異なる方向を向いている状態で保持できるように構成される。図11では、位置Raに配置される複数(ここでは5本)の光ファイバ13の各々を、光ファイバ13aとしている。入光端部保持具43によって、5本の光ファイバ13aの各々の入光端部16は広がるようにそれぞれ異なる方向に固定されている。複数の入光端部16をそれぞれ異なる方向に固定配置することにより、より広範囲について光を受光することが可能となる。
 (3)上述の各実施形態において、第1の光通信装置1が備える構成を第2の光通信装置2が備えてもよい。特に、光ファイバ13の入光端部16を水中における複数の場所に分散配置させる構成は固定構造体101に適用される構成に限ることはなく、移動体102が備えていてもよい。図12は、5本の光ファイバ13の入光端部16が、移動体102の周囲5カ所に配設されている構成を例示している。
 移動体102の周囲に複数の光ファイバ13を分散配置させることにより、移動体102同士で水中光無線通信を行う場合においても各実施形態に係る構成および動作を適用することができる。すなわち、移動する構造体同士で水中光無線通信を行う場合においても、通信の秘匿性を向上させつつ光通信の信頼性を向上できる。一例として、移動体102同士ですれ違いながら光無線通信を行う場合において、一方の移動体102に対する他方の移動体102の相対的な移動速度および移動方向を算出し、当該移動速度および移動方向の情報に基づいて、干渉を回避できるような移動制御を行う旨の光無線通信を互いに実行できる。
 (4)上述の各実施形態において、水中光通信システム100は2つの光通信装置の間で光無線通信を行う構成であったが、3以上の光通信装置の間で光無線通信を行ってもよい。
 (5)上述の各実施形態において、光ファイバ特定部27が特定している光ファイバ13の数は1つに限られない。一例として、光強度情報の値が多い2または3以上の光ファイバ13を特定してもよい。また、光強度情報の値が予め定められた所定の値より大きい光ファイバ13を全て特定する構成であってもよい。
  1  … 第1の光通信装置
  2  … 第2の光通信装置
  3  … レーザ光源
  4  … レーザ光源
  5  … 光受信部
  6  … 光受信部
  7  … 制御部
  8  … 制御部
  9  … 観測装置
 11  … 受光素子
 13  … 光ファイバ
 16  … 入光端部
 17  … 出光端部
 18  … 増幅器
 19  … 情報処理部
 21  … メモリ部
 23  … スイッチ部
 24  … A/D変換器
 25  … 光強度情報収集部
 27  … 光ファイバ特定部
 29  … スイッチ制御部
 51  … 位置算出部
 53  … 移動パラメータ算出部
 55  … 移動体制御部

Claims (4)

  1.  光を受光して光検出信号を出力する複数の受光素子と、
     前記複数の受光素子に対応するように設けられ、前記複数の受光素子に前記光を導く複数の光ファイバと、
     前記複数の受光素子に対応するように設けられ、前記光検出信号に対して信号処理を行うことにより光通信情報を生成する複数の信号処理部と、
     前記複数の光ファイバの各々が受光する前記光の強度を光強度情報として収集する光強度情報収集部と、
     前記光強度情報収集部が収集する前記光強度情報に基づいて、前記複数の光ファイバのうち比較的強い前記光を入光させている前記光ファイバを特定する光ファイバ特定部と、
     前記光ファイバ特定部が特定した前記光ファイバに対応するように設けられている前記信号処理部をオンの状態に制御する信号処理制御部と、
     を備える光通信装置。
  2.  請求項1に記載の光通信装置において、
     前記光強度情報の経時的な遷移を検出する光強度遷移検出部と、
     前記光強度遷移検出部が検出した前記光強度情報の経時的な遷移に基づいて、前記複数の光ファイバに対する光出射体の相対的移動速度を算出する移動速度算出部と、
     前記相対的移動速度に基づいて、前記光出射体の移動を制御する光信号を前記光出射体へ発信させる光信号発信部と、
     を備える光通信装置。
  3.  請求項1または請求項2に記載の光通信装置において、
     前記複数の光ファイバは、固定設置されている固定構造体に配設される光通信装置。
  4.  請求項1または請求項2に記載の光通信装置において、
     前記複数の光ファイバは、移動する構造体に配設される光通信装置。
PCT/JP2020/002850 2020-01-27 2020-01-27 光通信装置 WO2021152678A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/795,345 US12034488B2 (en) 2020-01-27 2020-01-27 Optical communication device
PCT/JP2020/002850 WO2021152678A1 (ja) 2020-01-27 2020-01-27 光通信装置
EP20916302.1A EP4099582A4 (en) 2020-01-27 2020-01-27 OPTICAL COMMUNICATION DEVICE
JP2021573651A JP7452557B2 (ja) 2020-01-27 2020-01-27 光通信装置
TW109142403A TWI823034B (zh) 2020-01-27 2020-12-02 光通訊裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/002850 WO2021152678A1 (ja) 2020-01-27 2020-01-27 光通信装置

Publications (1)

Publication Number Publication Date
WO2021152678A1 true WO2021152678A1 (ja) 2021-08-05

Family

ID=77079340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002850 WO2021152678A1 (ja) 2020-01-27 2020-01-27 光通信装置

Country Status (5)

Country Link
US (1) US12034488B2 (ja)
EP (1) EP4099582A4 (ja)
JP (1) JP7452557B2 (ja)
TW (1) TWI823034B (ja)
WO (1) WO2021152678A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013188A1 (ja) * 2014-07-22 2016-01-28 日本電気株式会社 空間光受信装置および空間光受信方法
WO2016047100A1 (ja) * 2014-09-25 2016-03-31 日本電気株式会社 空間光受信装置、空間光通信システムおよび空間光通信方法
WO2017013864A1 (ja) * 2015-07-17 2017-01-26 日本電気株式会社 光通信装置、光通信システムおよび光通信方法
JP2018007069A (ja) 2016-07-04 2018-01-11 ダイトロンテクノロジー株式会社 水中光通信装置
JP2019186595A (ja) 2018-04-02 2019-10-24 株式会社島津製作所 光通信装置の受光装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105642A (ja) * 1981-12-17 1983-06-23 Fujitsu Ltd 光信号空間伝播方式
JPH0362637A (ja) * 1989-07-31 1991-03-18 Fujitsu Ten Ltd 赤外線通信方式
JPH06188791A (ja) * 1992-12-22 1994-07-08 Nippon Telegr & Teleph Corp <Ntt> ダイバーシチ信号伝送方式
EP1860800A1 (en) * 2002-10-24 2007-11-28 Nakagawa Laboratories, Inc. Illumination light communication device
CN101908926A (zh) * 2006-02-03 2010-12-08 株式会社藤仓 光线路监视装置和光线路监视方法
CN203675113U (zh) 2013-12-13 2014-06-25 国家电网公司 一种光纤监测系统
US10153849B2 (en) * 2013-12-24 2018-12-11 Telefonaktiebolaget Lm Ericsson (Publ) FSO communications terminals for connecting telecommunications cards
CN105871604A (zh) * 2016-03-29 2016-08-17 国网河北省电力公司衡水供电分公司 一种光纤衰耗全程在线监测系统及监测方法
CN110350970B (zh) * 2019-07-31 2024-05-17 深圳市亚派光电器件有限公司 光线路终端的测试装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013188A1 (ja) * 2014-07-22 2016-01-28 日本電気株式会社 空間光受信装置および空間光受信方法
WO2016047100A1 (ja) * 2014-09-25 2016-03-31 日本電気株式会社 空間光受信装置、空間光通信システムおよび空間光通信方法
WO2017013864A1 (ja) * 2015-07-17 2017-01-26 日本電気株式会社 光通信装置、光通信システムおよび光通信方法
JP2018007069A (ja) 2016-07-04 2018-01-11 ダイトロンテクノロジー株式会社 水中光通信装置
JP2019186595A (ja) 2018-04-02 2019-10-24 株式会社島津製作所 光通信装置の受光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4099582A4

Also Published As

Publication number Publication date
EP4099582A4 (en) 2023-10-25
TWI823034B (zh) 2023-11-21
US20230054439A1 (en) 2023-02-23
JP7452557B2 (ja) 2024-03-19
US12034488B2 (en) 2024-07-09
EP4099582A1 (en) 2022-12-07
TW202130140A (zh) 2021-08-01
JPWO2021152678A1 (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
US9231708B2 (en) Optical communication systems and methods
US8995841B1 (en) Beam path adaptation system and method for free space optical communications systems
RU2371738C1 (ru) Гидроакустическая навигационная система
JP5051545B2 (ja) 水中可視光通信システム及び水中可視光通信方法
KR20140079090A (ko) 레이저 방출기 모듈 및 그것이 적용된 레이저 감지 시스템
JP2006220465A (ja) 位置特定システム
WO2021152678A1 (ja) 光通信装置
JP2018007069A (ja) 水中光通信装置
KR101921113B1 (ko) 탐지용 하이브리드 가시광 rfid 태그 및 이에 사용되는 로봇시스템
RU154324U1 (ru) Устройство контроля положения и управления движением мобильных технологических машин и роботов
RU2724145C1 (ru) Гидроакустическая станция контроля подводной обстановки
EP4099586A1 (en) Underwater optical communication device and underwater examination system
JP5262148B2 (ja) ランドマーク検出装置および方法ならびにプログラム
JP2009276248A (ja) レーザレーダ装置
EP1401125A2 (en) Optical wireless communication system
US11695473B2 (en) Time comparison system, time comparison device, and time comparison method
KR101631937B1 (ko) 수중 가시광 송수신 단말기 및 그 단말기를 이용한 정보 송수신 시스템
MX2023012471A (es) Radar laser.
WO2021229708A1 (ja) 位置測定システム、位置測定装置、及び位置測定方法
RU2680673C1 (ru) Гидроакустическая станция для обнаружения малоразмерных объектов
KR101404840B1 (ko) 로봇의 위치 추정 시스템 및 방법
KR102523656B1 (ko) 선 배열 예인 소나 소음 감소 장치 및 이의 소음 감소 방법
WO2021220415A1 (ja) 位置測定システム、位置測定装置、及び位置測定方法
KR102097279B1 (ko) 수중 광통신 장치 간의 통신 거리를 늘리는 장치
KR102037946B1 (ko) 복합 광학 시스템의 다중 표적 탐지 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020916302

Country of ref document: EP

Effective date: 20220829