WO2021149500A1 - 光電変換装置の製造方法、及び光電変換装置 - Google Patents

光電変換装置の製造方法、及び光電変換装置 Download PDF

Info

Publication number
WO2021149500A1
WO2021149500A1 PCT/JP2021/000347 JP2021000347W WO2021149500A1 WO 2021149500 A1 WO2021149500 A1 WO 2021149500A1 JP 2021000347 W JP2021000347 W JP 2021000347W WO 2021149500 A1 WO2021149500 A1 WO 2021149500A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
light absorption
absorption layer
conversion device
opening
Prior art date
Application number
PCT/JP2021/000347
Other languages
English (en)
French (fr)
Inventor
託也 黒鳥
欣典 小玉
勇樹 宮波
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2021573057A priority Critical patent/JPWO2021149500A1/ja
Priority to US17/758,579 priority patent/US20230036227A1/en
Publication of WO2021149500A1 publication Critical patent/WO2021149500A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors

Definitions

  • the present disclosure relates to a method for manufacturing a photoelectric conversion device and a photoelectric conversion device.
  • the infrared sensor can perform photoelectric conversion of infrared rays by, for example, a photoelectric conversion element using a group III-V compound semiconductor such as InGaAs (indium gallium arsenide) (for example, Patent Document 1).
  • a group III-V compound semiconductor such as InGaAs (indium gallium arsenide)
  • the photoelectric conversion elements that photoelectrically convert infrared rays are two-dimensionally arranged for each pixel, and the signal charge is read out from the photoelectric conversion element for each pixel.
  • the method for manufacturing a photoelectric conversion device is a photoelectric conversion structure in which a first conductive type first semiconductor layer is provided on a non-light receiving surface opposite to a light receiving surface of a light absorption layer containing a compound semiconductor.
  • a body and etching at least a part of the photoelectric conversion structure an opening that separates the photoelectric conversion structure from each pixel is formed, and the exposed portion is exposed.
  • the light absorption layer includes forming a second conductive type pixel separation portion extending in the thickness direction of the light absorption layer.
  • the photoelectric conversion device is a first conductive type first semiconductor provided on a light absorption layer containing a compound semiconductor and a non-light receiving surface opposite to the light receiving surface of the light absorbing layer.
  • a photoelectric conversion structure including a layer, an opening provided through at least a part of the photoelectric conversion structure and separating the photoelectric conversion structure for each pixel, and an opening exposed at the opening. It is provided in the light absorption layer and includes a second conductive type pixel separation portion extending in the thickness direction of the light absorption layer.
  • a light absorbing layer containing a compound semiconductor and a non-light receiving surface on the opposite side of the light absorbing layer to the light receiving surface A photoelectric conversion structure including a first conductive semiconductor layer, an opening provided through at least a part of the photoelectric conversion structure and separating the photoelectric conversion structure for each pixel, and an opening.
  • a second conductive type pixel separation portion is provided on the exposed light absorption layer and extends in the thickness direction of the light absorption layer.
  • FIG. 1 is a vertical cross-sectional view showing an example of the cross-sectional configuration of the photoelectric conversion device 11 according to the present embodiment.
  • the photoelectric conversion device 11 includes, for example, a light absorption layer 20, a pixel separation unit 23, a first semiconductor layer 21, a first electrode 31, a second semiconductor layer 22, and a second electrode. 32, an insulating layer 41, and a protective layer 42 are provided.
  • the light absorption layer 20 and the first semiconductor layer 21 laminated on one main surface (that is, the non-light receiving surface) of the light absorption layer 20 are collectively referred to as a photoelectric conversion structure 24.
  • the photoelectric conversion device 11 can perform photoelectric conversion of light having a wavelength in the visible light region (for example, 380 nm or more and less than 780 nm) to the near infrared region (for example, 780 nm or more and less than 2400 nm). Further, in the photoelectric conversion device 11, a pixel P is provided for each of the first semiconductor layer 21 and the first electrode 31 provided apart from each other, and a signal charge is read from the first electrode 31 for each pixel P.
  • the light absorption layer 20 is a layer that generates a signal charge by absorbing light having a predetermined wavelength.
  • the light absorption layer 20 is composed of, for example, a second conductive type (for example, n type) compound semiconductor, and is provided so as to spread over a plurality of pixels P arranged in two dimensions.
  • the light absorption layer 20 may be composed of an n-type III-V compound semiconductor containing at least one or more of In, Ga, Al, As, P, Sb, or N. ..
  • the III-V compound semiconductor include InGaAs, InGaAsP, InAsSb, InGaP, GaAsSb, and InAlAs.
  • the light absorption layer 20 may be composed of InGaAs containing Si, S, Sn, As, P, Ge, C or the like as n-type impurity atoms.
  • the concentration of the n-type impurity atom in the light absorption layer 20 can be, for example, 1 ⁇ 10 14 cm -3 to 1 ⁇ 10 17 cm -3 .
  • the thickness of the light absorption layer 20 may be, for example, 100 nm to 10000 nm.
  • the first semiconductor layer 21 is provided for each pixel P, for example, on one main surface (that is, a non-light receiving surface) of the light absorption layer 20 separated by an opening 25.
  • the first semiconductor layer 21 is sandwiched between the light absorption layer 20 and the first electrode 31, and the signal charge read from the light absorption layer 20 to the first electrode 31 moves.
  • the first semiconductor layer 21 may be composed of a first conductive type (for example, p type) compound semiconductor.
  • the first semiconductor layer 21 may be composed of, for example, a p-type InP having a bandgap larger than that of the compound semiconductor constituting the light absorption layer 20.
  • the first semiconductor layer 21 may contain, for example, Zn, Ng, Be, or the like as p-type impurity atoms.
  • the opening 25 penetrates the first semiconductor layer 21 of the photoelectric conversion structure 24 including the first semiconductor layer 21 and the light absorption layer 20 to expose the light absorption layer 20. It is provided so as to allow.
  • the opening 25 may be formed by etching the first semiconductor layer 21, and the flat surface of the light absorption layer 20 may be exposed on the bottom surface of the opening 25.
  • the pixel separation portion 23 is a second conductive type (for example, n type) region, and is provided in the light absorption layer 20 exposed at the opening 25 so as to extend in the thickness direction of the light absorption layer 20. Specifically, the pixel separation portion 23 may be provided so that the central portion side of the opening 25 extends to a deeper region of the light absorption layer 20 than the end side of the opening 25. For example, the pixel separation portion 23 may be provided in the light absorption layer 20 so as to spread in a semicircular shape around the central portion of the opening 25.
  • n type for example, n type
  • the pixel separation unit 23 is formed by plasma doping the light absorption layer 20 with a second conductive type (for example, n type) impurity atom. Therefore, the density of the n-type impurity atoms in the pixel separation unit 23 is higher than the density of the n-type impurity atoms in the light absorption layer 20.
  • the pixel separation unit 23 forms a potential barrier B extending in the thickness direction of the light absorption layer 20 between adjacent pixels P, thereby forming a region below the first semiconductor layer 21 surrounded by the pixel separation unit 23. Can induce an electric charge. According to this, the pixel separation unit 23 can suppress the movement of the signal charge to the adjacent pixel P beyond the potential barrier B.
  • n-type impurity atom used for forming the pixel separation unit 23 examples include Si, S, Sn, As, P, Ge, and C.
  • the pixel separation unit 23 may be formed by plasma doping the light absorption layer 20 with a hydride gas of these impurity atoms.
  • the pixel separation unit 23 may be formed by plasma doping the light absorption layer 20 with a gas of SiH 4 , AsH 3 , PH 3 , GeH 4 , or CH 4.
  • the insulating layer 41 is provided with an insulating material so as to cover the inside of the opening 25.
  • the insulating layer 41 is provided, for example, to protect the light absorbing layer 20 exposed at the opening 25.
  • the insulating layer 41 may be provided along the surface of the light absorption layer 20 exposed at the opening 25 and the side surface of the first semiconductor layer 21.
  • the insulating layer 41 may be composed of, for example, an insulating material containing at least one or more of Si, N, Al, Hf, Ta, Ti, Mg, O, La, Gd, or Y.
  • the insulating layer 41 may be composed of SiN, SiO 2 , SiON, AlON, SiAlN, MgO, Al 2 O 3 , AlSiO, HfO 2 , HfAlO, or the like.
  • the thickness of the insulating layer 41 may be, for example, 1 nm or more and 500 nm.
  • the protective layer 42 is made of an insulating material and is provided on a surface opposite to the surface on which the light absorption layer 20 of the first semiconductor layer 21 is laminated.
  • the protective layer 42 is provided in a region corresponding to the pixel P, and functions as a mask that protects the first semiconductor layer 21 in a predetermined region during etching to form the opening 25. Further, the protective layer 42 functions as a mask that protects the first semiconductor layer 21 from impurity atoms during plasma doping that forms the pixel separation portion 23.
  • the protective layer 42 may be composed of, for example, an insulating material containing at least one or more of Si, N, Al, Hf, Ta, Ti, Mg, O, La, Gd, or Y.
  • the protective layer 42 may be composed of SiN, SiO 2 , SiON, AlON, SiAlN, MgO, Al 2 O 3 , AlSiO, HfO 2 , HfAlO, or the like.
  • the thickness of the protective layer 42 may be, for example, 10 nm or more and 5000 nm.
  • the first electrode 31 is provided so as to penetrate the protective layer 42 on the surface opposite to the surface on which the light absorption layer 20 of the first semiconductor layer 21 is laminated.
  • the first electrode 31 is a read electrode that supplies a voltage for reading the signal charge photoelectrically converted by the light absorption layer 20.
  • the first electrode 31 may read holes as a signal charge from the light absorption layer 20, for example.
  • the electric charge read by the first electrode 31 is transferred to a pixel circuit or the like for signal processing via vias or bumps (not shown).
  • the first electrode 31 may be made of, for example, a metal such as Ti, W, Pt, Au, Ge, Pd, Zn, Ni, In, or Al, or an alloy of these metals.
  • the first electrode 31 may be provided as a single-layer film or may be provided as a laminated film composed of a plurality of layers.
  • the second semiconductor layer 22 is provided on the other main surface (that is, the light receiving surface) of the light absorption layer 20 so as to spread over a plurality of pixels P.
  • the second semiconductor layer 22 is a layer sandwiched between the light absorption layer 20 and the second electrode 32, and the electric charge discharged from the light absorption layer 20 to the second electrode 32 moves.
  • the second semiconductor layer 22 may be composed of a second conductive type (for example, n type) compound semiconductor.
  • the second semiconductor layer 22 may be composed of, for example, an n-type InP having a bandgap larger than that of the compound semiconductor constituting the light absorption layer 20.
  • the second semiconductor layer 22 may contain, for example, Si, S, Sn, As, P, Ge, C, or the like as n-type impurity atoms.
  • the second electrode 32 is an electrode that discharges a charge that is not used as a signal charge among the charges photoelectrically converted by the light absorption layer 20. For example, when holes are read out from the light absorption layer 20 as signal charges, the second electrode 32 may emit electrons paired with the holes.
  • the second electrode 32 is provided as a common electrode for the plurality of pixels P, and the second electrode 32 is formed on the plurality of pixels P on the main surface opposite to the main surface on which the light absorption layer 20 of the second semiconductor layer 22 is laminated. It is spread out.
  • the second electrode 32 may be provided as a transparent electrode capable of transmitting incident light such as infrared rays by using a transparent conductive material having a transmittance of 50% or more with respect to light having a wavelength of 1600 nm.
  • the second electrode 32 is, for example, ITO (Indium Tin Oxide), or ITiO (In 2 O 3 -TiO 2 ) may be provided in like.
  • the photoelectric conversion device 11 by using plasma doping, the light absorbing layer 20 exposed at the opening 25 that separates the pixels P has pixels that spread in the thickness direction of the light absorbing layer 20.
  • the separation portion 23 can be formed. According to this, since the photoelectric conversion device 11 can extend the potential barrier B by the pixel separation unit 23 to a deeper region of the light absorption layer 20, the movement of signal charges between the pixels P is more strongly suppressed. It is possible to do. Therefore, the photoelectric conversion device 11 according to the present embodiment can suppress crosstalk between pixels more strongly.
  • FIGS. 2A to 2D are vertical cross-sectional views illustrating each of the steps of the manufacturing method of the photoelectric conversion device 11 according to the present embodiment.
  • a laminated structure including the photoelectric conversion structure 24 is formed. After that, the opening 25 is formed by etching the first semiconductor layer 21 of the photoelectric conversion structure 24.
  • the second semiconductor layer 22, the light absorption layer 20, and the first semiconductor layer 21 are epitaxially grown to form a laminated structure including the photoelectric conversion structure 24.
  • n-InGaAs light absorption layer 20
  • p-InP first semiconductor layer 21
  • InP substrate second semiconductor layer 22
  • a protective layer 42 covering a region corresponding to the pixel P is formed on the first semiconductor layer 21, and the first semiconductor layer 21 is etched using the protective layer 42 as a mask to expose the light absorption layer 20.
  • the opening 25 is formed.
  • the pixel separation portion 23 is formed in the light absorption layer 20 exposed at the opening 25 by plasma doping using a raw material gas containing a second conductive type impurity atom. Specifically, by exposing the light absorption layer 20 exposed at the opening 25 to the plasma DP of SiH 4 gas containing Si which is a second conductive type impurity atom, the Si-doped pixel separation portion 23 is formed. Further, the pixel separation unit 23 can activate the doped Si by heat treatment with H (hydrogen) radicals contained in the plasma DP of SiH 4 gas.
  • H hydrogen
  • the pixel separation unit 23 can also be formed by diffusing As, P, Ge, or C as the second conductive type impurity atom in the light absorption layer 20.
  • AsH 3 , PH 3 , GeH 4 , CH 4 , or the like can be used as the raw material gas for plasma doping.
  • the doping profile of impurity atoms with respect to the light absorption layer 20 can be easily controlled by adjusting the process parameters. Therefore, the photoelectric conversion device 11 can easily form the pixel separation portion 23 to the deeper region of the light absorption layer 20 by using plasma doping, so that the crosstalk between the pixels P is further suppressed. be able to.
  • an insulating layer 41 is formed inside the opening 25.
  • the surface of the light absorption layer 20 inside the opening 25 and the first semiconductor layer 21 are used by using an ALD (Atomic Layer Deposition) method, a polysilicon-CVD (Chemical Vapor Deposition) method, a sputtering method, or the like.
  • the insulating layer 41 is formed by forming a film of SiN, SiO, polysilicon, or the like on the side surface of the surface.
  • the first electrode 31 and the second electrode 32 are formed. Specifically, through lithography and etching are used to form through holes in the protective layer 42 that reach the first semiconductor layer 21. Subsequently, the first electrode 31 is formed by embedding a metal or alloy such as W in the formed through hole. Further, a transparent conductive material such as ITO or the like is formed on the main surface (that is, the light receiving surface) opposite to the main surface of the second semiconductor layer 22 on which the light absorption layer 20 is provided by using sputtering or the like. Then, the second electrode 32 is formed.
  • the photoelectric conversion device 11 according to the present embodiment can be formed.
  • the method for manufacturing the photoelectric conversion device 11 according to the present embodiment it is possible to easily control the doping profile of impurity atoms introduced into the light absorption layer 20 by adjusting the process parameters of plasma doping. Therefore, in the photoelectric conversion device 11, the pixel separation portion 23 can be easily formed to a deeper region in the thickness direction of the light absorption layer 20, so that the movement of the signal charge between the pixels P can be more strongly suppressed. can. Therefore, the photoelectric conversion device 11 can more strongly suppress the crosstalk between the pixels P.
  • FIG. 3 is a vertical cross-sectional view showing an example of the cross-sectional configuration of the photoelectric conversion device 11 according to the modified example.
  • FIG. 4 is a vertical cross-sectional view showing another example of the cross-sectional configuration of the photoelectric conversion device 11 according to the modified example.
  • the opening 25 may be provided so as to penetrate a part of the light absorption layer 20 in addition to the first semiconductor layer 21.
  • the opening 25 may be provided so as to penetrate the first semiconductor layer 21 and the light absorption layer 20.
  • the pixel separation portion 23 is provided on the light absorption layer 20 exposed on the side surface or the bottom surface of the opening 25. According to this, the pixel separation portion 23 can be provided so as to extend in the thickness direction of the light absorption layer 20 along the side surface of the opening 25 dug in the thickness direction of the light absorption layer 20. Therefore, the photoelectric conversion device 11 according to the modified example can form the potential barrier B to a deeper region in the thickness direction of the light absorption layer 20, and thus more strongly suppresses crosstalk between the pixels P. Is possible.
  • the first semiconductor layer 21 and the opening 25 penetrating a part or all of the light absorption layer 20 are embedded in the embedded insulating layer 43 after the pixel separation portion 23 is formed in the light absorption layer 20 by plasma doping. It may be.
  • the embedded insulating layer 43 in which the opening 25 is embedded is, for example, of Si, N, Al, Hf, Ta, Ti, Mg, O, La, Gd, or Y, similarly to the insulating layer 41 and the protective layer 42. It may be composed of an insulating material containing at least one or more.
  • the embedded insulating layer 43 may be composed of SiN, SiO 2 , SiON, AlON, SiAlN, MgO, Al 2 O 3 , AlSiO, HfO 2 , HfAlO, or the like.
  • the pixel separation unit 23 can also be expected to have the effect of suppressing the dark current generated at the interface between the light absorption layer 20 and the embedded insulation layer 43.
  • FIG. 5 is a vertical cross-sectional view showing an example of the cross-sectional configuration of the photoelectric conversion device 12 according to the present embodiment.
  • the photoelectric conversion device 12 includes, for example, a light absorption layer 20, a pixel separation unit 23, first semiconductor layers 21A and 21B, a first electrode 31, a second semiconductor layer 22, and a second.
  • the two electrodes 32, the protective layer 42, and the embedded insulating layer 44 are provided.
  • the light absorption layer 20 and the first semiconductor layers 21A and 21B laminated on one main surface (that is, the non-light receiving surface) of the light absorption layer 20 are collectively referred to as a photoelectric conversion structure 24.
  • the photoelectric conversion device 12 has, for example, light having a wavelength in the visible light region (for example, 380 nm or more and less than 780 nm) to the near infrared region (for example, 780 nm or more and less than 2400 nm). Can be photoelectrically converted. Further, in the photoelectric conversion device 12, pixels P are provided for each of the first semiconductor layers 21A and 21B and the first electrode 31 provided apart from each other, and the signal charge is read from the first electrode 31 for each pixel P. ..
  • the light absorption layer 20 is a layer that generates a signal charge by absorbing light having a predetermined wavelength.
  • the light absorption layer 20 is composed of, for example, a second conductive type (for example, n type) compound semiconductor, and is provided so as to spread over a plurality of pixels P.
  • the light absorption layer 20 may be composed of an n-type III-V compound semiconductor containing at least one or more of In, Ga, Al, As, P, Sb, or N. ..
  • the light absorption layer 20 may be made of n-type InGaAs.
  • the light absorption layer 20 may contain, for example, Si, S, Sn, As, P, Ge or C as n-type impurity atoms.
  • the concentration of the n-type impurity atom in the light absorption layer 20 can be, for example, 1 ⁇ 10 14 cm -3 to 1 ⁇ 10 17 cm -3 .
  • the thickness of the light absorption layer 20 may be, for example, 100 nm to 10000 nm.
  • the first semiconductor layers 21A and 21B are provided, for example, on one main surface (that is, a non-light receiving surface) of the light absorption layer 20 at the opening 25 so as to be separated from each other for each pixel P.
  • the first semiconductor layers 21A and 21B are sandwiched between the light absorption layer 20 and the first electrode 31, and the signal charge read from the light absorption layer 20 to the first electrode 31 moves.
  • the first semiconductor layers 21A and 21B are provided as layers in which the densities of p-type impurity atoms are different from each other in order to more easily read the signal charge to the first electrode 31.
  • the first semiconductor layer 21B provided on the first electrode 31 side is provided as a layer having a higher concentration of p-type impurity atoms than the first semiconductor layer 21A provided on the light absorption layer 20 side. You may.
  • the first semiconductor layers 21A and 21B may be composed of a first conductive type (for example, p type) compound semiconductor.
  • the first semiconductor layers 21A and 21B may be composed of, for example, a p-type InP having a bandgap larger than that of the compound semiconductor constituting the light absorption layer 20.
  • the first semiconductor layers 21A and 21B may contain, for example, Zn, Ng, Be, etc. as p-type impurity atoms.
  • the opening 25 is provided so as to penetrate the first semiconductor layers 21A and 21B of the photoelectric conversion structure 24 and dig a part of the light absorption layer 20.
  • the opening 25 is formed by etching a part of the first semiconductor layers 21A and 21B and the light absorbing layer 20, and even if the light absorbing layer 20 is exposed on the bottom surface and the side surface of the opening 25. good.
  • the pixel separation portion 23 is a second conductive type (for example, n type) region, and is provided on the light absorption layer 20 exposed on the side surface or the bottom surface of the opening 25 so as to extend in the thickness direction of the light absorption layer 20. Be done. Specifically, the pixel separation portion 23 may be provided so as to extend in the thickness direction of the light absorption layer 20 along the side surface of the opening 25 dug in the thickness direction of the light absorption layer 20.
  • n type for example, n type
  • the pixel separation unit 23 is formed by epitaxially growing a compound semiconductor containing a second conductive type (for example, n type) impurity atom. Specifically, the pixel separation unit 23 selectively epitaxially grows an n-type InP having a bandgap larger than that of the compound semiconductor constituting the light absorption layer 20 on the light absorption layer 20 inside the opening 25. It may be formed by.
  • the pixel separation unit 23 may contain, for example, Si, S, Sn, As, P, Ge, C, or the like as n-type impurity atoms.
  • the pixel separation unit 23 forms a potential barrier B extending in the thickness direction of the light absorption layer 20 between adjacent pixels P, thereby forming a potential barrier B below the first semiconductor layers 21A and 21B surrounded by the pixel separation unit 23. Charges can be induced in the region of. According to this, the pixel separation unit 23 can suppress the movement of the signal charge to the adjacent pixel P beyond the potential barrier B.
  • the protective layer 42 is provided on the first semiconductor layers 21A and 21B with an insulating material so as to cover the first semiconductor layers 21A and 21B. By being provided on the first semiconductor layers 21A and 21B, the protective layer 42 functions as a mask when the pixel separation portion 23 is selectively epitaxially grown.
  • the protective layer 42 may be composed of, for example, an insulating material containing at least one or more of Si, N, Al, Hf, Ta, Ti, Mg, O, La, Gd, or Y.
  • the protective layer 42 may be composed of SiN, SiO 2 , SiON, AlON, SiAlN, MgO, Al 2 O 3 , AlSiO, HfO 2 , HfAlO, or the like.
  • the embedded insulating layer 44 is made of an insulating material, and by embedding an opening 25 that penetrates up to a part of the first semiconductor layers 21A and 21B and the light absorbing layer 20, the unevenness due to the opening 25 is flattened. do.
  • the embedded insulating layer 44 is, for example, an insulating material containing at least one or more of Si, N, Al, Hf, Ta, Ti, Mg, O, La, Gd, or Y, similarly to the protective layer 42. It may be composed of.
  • the embedded insulating layer 44 may be composed of SiN, SiO 2 , SiON, AlON, SiAlN, MgO, Al 2 O 3 , AlSiO, HfO 2 , HfAlO, or the like.
  • the first electrode 31 is provided on the first semiconductor layer 21B so as to penetrate the protective layer 42.
  • the first electrode 31 is a read electrode that supplies a voltage for reading the signal charge photoelectrically converted by the light absorption layer 20.
  • the first electrode 31 may read holes from the light absorption layer 20 as a signal charge, for example.
  • the electric charge read by the first electrode 31 is transferred to a pixel circuit or the like for signal processing via vias or bumps (not shown).
  • the first electrode 31 may be made of, for example, a metal such as Ti, W, Pt, Au, Ge, Pd, Zn, Ni, In, or Al, or an alloy of these metals.
  • the first electrode 31 may be provided as a single-layer film or may be provided as a laminated film composed of a plurality of layers.
  • the second semiconductor layer 22 is provided on the other main surface (that is, the light receiving surface) of the light absorption layer 20 so as to spread over a plurality of pixels P.
  • the second semiconductor layer 22 is a layer sandwiched between the light absorption layer 20 and the second electrode 32, and the electric charge discharged from the light absorption layer 20 to the second electrode 32 moves.
  • the second semiconductor layer 22 may be composed of a second conductive type (for example, n type) compound semiconductor.
  • the second semiconductor layer 22 may be composed of, for example, an n-type InP having a bandgap larger than that of the compound semiconductor constituting the light absorption layer 20.
  • the second semiconductor layer 22 may contain, for example, Si, S, Sn, As, P, Ge, C, or the like as n-type impurity atoms.
  • the second electrode 32 is an electrode that discharges a charge that is not used as a signal charge among the charges photoelectrically converted by the light absorption layer 20. For example, when holes are read out from the light absorption layer 20 as signal charges, the second electrode 32 may emit electrons paired with the holes.
  • the second electrode 32 is provided as a common electrode for the plurality of pixels P, and the second electrode 32 is formed on the plurality of pixels P on the main surface opposite to the main surface on which the light absorption layer 20 of the second semiconductor layer 22 is laminated. It is spread out.
  • the second electrode 32 may be provided as a transparent electrode capable of transmitting incident light such as infrared rays by using a transparent conductive material having a transmittance of 50% or more with respect to light having a wavelength of 1600 nm.
  • the second electrode 32 is, for example, ITO (Indium Tin Oxide), or ITiO (In 2 O 3 -TiO 2 ) may be provided in like.
  • the photoelectric conversion device 12 by using the selective epitaxial growth of the semiconductor compound, the pixels are separated into the light absorption layer 20 exposed on the side surface and the bottom surface of the opening 25 that separates the pixels P.
  • the portion 23 can be formed.
  • the photoelectric conversion device 12 can extend the potential barrier to a deeper region of the light absorption layer 20 along the opening 25 dug in the thickness direction of the light absorption layer 20, so that the pixel P It is possible to more strongly suppress the movement of signal charges between. Therefore, the photoelectric conversion device 12 according to the present embodiment can suppress crosstalk between pixels more strongly.
  • FIGS. 6A to 6E are vertical cross-sectional views illustrating each of the steps of the manufacturing method of the photoelectric conversion device 12 according to the present embodiment.
  • a laminated structure including the photoelectric conversion structure 24 is formed.
  • the opening 25 is formed by etching a part of the first semiconductor layers 21A and 21B of the photoelectric conversion structure 24 and the light absorption layer 20.
  • the light absorption layer 20 and the first semiconductor layers 21A and 21B are epitaxially grown on the second semiconductor layer 22 to form a laminated structure including the photoelectric conversion structure 24.
  • n-InGaAs light absorption layer 20
  • p-InP first semiconductor layer 21A
  • p + InP It may be formed by epitaxially growing the first semiconductor layer 21B.
  • an opening for digging a part of the light absorption layer 20 by etching a part of the first semiconductor layers 21A and 21B and the light absorption layer 20 with a mask covering the region corresponding to the pixel P. 25 is formed.
  • a transparent conductive material such as ITO is formed on the main surface (that is, the light receiving surface) of the second semiconductor layer 22 opposite to the main surface provided with the light absorption layer 20 by using sputtering or the like in advance. May be done.
  • the second electrode 32 can be formed as a transparent electrode.
  • the insulating material deposited in the opening 25 is removed.
  • the protective layer 42 that covers the first semiconductor layers 21A and 21B is formed.
  • an n-type compound semiconductor for example, n-InP
  • n-InP n-InP
  • the pixel separation unit 23 is formed.
  • the n-type impurity atom is, for example, Si, S, Sn, As, P, Ge or C.
  • the pixel separation unit 23 may be formed by epitaxially growing InP while incorporating these impurity atoms.
  • the embedded insulating layer 44 is formed so as to embed the opening 25 in which the pixel separating portion 23 is formed.
  • SiO 2 is formed so as to embed the opening 25 in which the pixel separation portion 23 is formed by using a CVD (Chemical Vapor Deposition) method or the like.
  • the surface of the embedded insulating layer 44 is flattened by using an etch back or a CMP (Chemical mechanical polishing) method or the like.
  • the first electrode 31 penetrating the protective layer 42 is formed. Specifically, through lithography and etching are used to form through holes in the protective layer 42 that reach the first semiconductor layer 21B. Subsequently, the first electrode 31 is formed by embedding a metal or alloy such as W in the formed through hole.
  • the photoelectric conversion device 12 can be formed.
  • the pixel separation section 23 can be formed of an n-type compound semiconductor by using selective epitaxial growth, so that the pixel separation section 23 can be formed in a more appropriate region. Can be formed. Therefore, the photoelectric conversion device 12 can form the n-type pixel separation unit 23 and the p-type first semiconductor layers 21A and 21B on the light absorption layer 20, respectively. According to this, in the photoelectric conversion device 12, the first semiconductor layers 21A and 21B realize good contact characteristics to the first electrode 31, and the pixel separation unit 23 suppresses crosstalk between the pixels P. And the dark current can be reduced.
  • FIG. 7 is a vertical cross-sectional view showing an example of the cross-sectional configuration of the photoelectric conversion device 12 according to the first modification.
  • FIG. 8 is a vertical cross-sectional view showing an example of the cross-sectional configuration of the photoelectric conversion device 12 according to the second modification.
  • the pixel separation unit 23 may further have a facet unit 23A at the upper end.
  • the facet portion 23A is provided at the upper end of the pixel separation portion 23 epitaxially grown on the inner side surface of the opening 25, and has a shape in which the corner of the upper end is chamfered (the corner is cut off).
  • the n-type pixel separation portion 23 can reduce the volume of the depletion layer formed between the p-type first semiconductor layers 21A and 21B. As a result, the pixel separation unit 23 can further suppress the generation of dark current.
  • the opening 25 may be further provided with a metal layer 45 in addition to the embedded insulating layer 44.
  • the metal layer 45 is provided with a metal such as W so as not to come into contact with the first semiconductor layers 21A and 21B and the pixel separating portion 23.
  • a through hole is provided in the region corresponding to the opening 25 so as not to come into contact with the pixel separation portion 23, and the through hole is provided.
  • a metal such as W can be formed by embedding with a metal such as W.
  • FIG. 9 is a vertical cross-sectional view showing an example of the cross-sectional configuration of the photoelectric conversion device 13 according to the present embodiment.
  • the photoelectric conversion device 13 includes, for example, a multilayer wiring board 160, a first electrode 131, a first protective layer 161, a first semiconductor layer 121, a light absorption layer 120, and a pixel separation unit. It includes 123, a substrate 150, an insulating layer 151, a light-shielding structure 152, a second protective layer 153, a color filter 154, and an on-chip lens 155.
  • the light absorption layer 20 and the first semiconductor layer 121 provided on one main surface (that is, the non-light receiving surface) of the light absorption layer 20 are collectively referred to as a photoelectric conversion structure 124.
  • the substrate 150 is composed of, for example, a first conductive type (for example, p type) or a second conductive type (for example, n type) compound semiconductor. Specifically, the substrate 150 may be an n-type InP substrate. The substrate 150 may contain, for example, Si, S, Sn, As, P, Ge, C, or the like as n-type impurity atoms.
  • the light absorption layer 120 is a layer that generates a signal charge by absorbing light having a predetermined wavelength.
  • the light absorption layer 120 is a layer commonly provided to the plurality of pixels P, and is continuously provided on one main surface (that is, a non-light receiving surface) of the substrate 150 so as to spread over the plurality of pixels P.
  • the light absorption layer 120 may be made of, for example, a group III-V compound semiconductor.
  • the light absorption layer 120 may be made of n-type InGaAs (indium gallium arsenide).
  • the light absorption layer 120 may contain Si, S, Sn, As, P, Ge, C and the like as n-type impurities.
  • the pixel separation unit 123 extends in the thickness direction of the light absorption layer 120 and is provided between each of the adjacent pixels P. Specifically, the pixel separation portion 123 is provided so as to extend in the thickness direction of the light absorption layer 120 along the side surface of the opening 125 provided so as to penetrate the substrate 150 and the light absorption layer 120 in the thickness direction. .. According to this, the pixel separation unit 123 can suppress the movement of the signal charge between the pixels P via the light absorption layer 120.
  • the pixel separation unit 123 may be provided by introducing a high-concentration second conductive type (for example, n type) impurity atom into the light absorption layer 120 via the opening 125. Examples of the n-type impurity atom introduced into the pixel separation unit 123 include Si, S, Sn, As, P, Ge, and C.
  • the pixel separation unit 123 is formed by introducing n-type impurity atoms into the chamber to be etched when the opening 125 is formed in the light absorption layer 120 by etching or the like. .. Specifically, the pixel separation unit 123 is executed in the same chamber while repeating etching of the light absorption layer 120 and diffusion and activation of impurity atoms in parallel with the formation of the opening 125. Can be formed. Such etching can be performed in an etching apparatus capable of temperature control for heat treatment and plasma etching.
  • the pixel separation unit 123 can be formed while controlling the concentration gradient of impurity atoms in the thickness direction of the light absorption layer 120. Further, since the pixel separation portion 123 is formed at the same time as the opening portion 125, process damage to the light absorption layer 120 can be suppressed.
  • the pixel separation unit 123 can also be formed by introducing a p-type impurity atom instead of the n-type impurity atom.
  • a p-type impurity atom Zn, Mg, Be, or the like can be used. These p-type impurity atoms can be introduced into the pixel separation unit 123 by using Zn (CH 2 ) 2 gas, for example, at the time of etching.
  • the first semiconductor layer 121 is provided for each pixel P on, for example, one main surface (that is, a non-light receiving surface) of the light absorption layer 120.
  • the first semiconductor layer 121 is provided between the light absorption layer 120 and the first electrode 131, and is a layer on which the signal charge read from the light absorption layer 120 to the first electrode 131 moves.
  • the first semiconductor layer 121 may be composed of a first conductive type (for example, p type) compound semiconductor.
  • the first semiconductor layer 121 may be composed of, for example, a p-type InP having a bandgap larger than that of the compound semiconductor constituting the light absorption layer 120.
  • the first semiconductor layer 121 may contain, for example, Zn, Ng, Be, or the like as p-type impurity atoms.
  • the first protective layer 161 is made of an insulating material and is provided between the first semiconductor layer 121 and the multilayer wiring board 160.
  • the first protective layer 161 may be made of an insulating material such as SiN, SiO 2 , SiON, AlON, SiAlN, MgO, Al 2 O 3 , AlSiO, HfO 2, or HfAlO.
  • the first protective layer 161 is provided with an opening for each pixel P, and a signal charge is read from the light absorption layer 120 via the first electrode 131 provided in the opening.
  • the first electrode 131 is provided so as to penetrate the first protective layer 161 and is electrically connected to the first semiconductor layer 121.
  • the first electrode 131 is provided for each pixel P, supplies a voltage for reading the signal charge generated by the light absorption layer 120, and supplies the read signal charge to the pixel circuit provided on the multilayer wiring board 160 (FIG. (Not shown) etc.
  • One first electrode 131 may be provided for one pixel P, or a plurality of first electrodes 131 may be provided for one pixel P.
  • the light-shielding structure 152 is provided on the interlayer insulating layer 151B between the pixels P, and prevents crosstalk from occurring between adjacent pixels P due to incident light from an angle. Specifically, the light-shielding structure 152 may be provided on the interlayer insulating layer 151B in the region corresponding to the opening 125 that separates the adjacent pixels P from each other.
  • the light-shielding structure 152 may be made of, for example, a metal such as Ti, W, Pt, Au or Cr, or an alloy or metal compound thereof, or may be made of an organic material such as carbon. Further, the light-shielding structure 152 may be provided as a single-layer film or may be provided as a laminated film of a plurality of materials.
  • the second protective layer 153 is provided on the main surface (that is, the light receiving surface) opposite to the main surface of the interlayer insulating layer 151B on which the substrate 150 is provided, covering the light-shielding structure 152 and spreading over the entire surface.
  • the second protective layer 153 protects each configuration of the photoelectric conversion device 13 from the external environment.
  • the second protective layer 153 may be made of an insulating material such as SiN, SiO 2 , SiON, AlON, SiAlN, MgO, Al 2 O 3 , AlSiO, HfO 2, or HfAlO.
  • the color filter 154 is, for example, a red filter, a green filter, a blue filter, a white filter, an IR (InfraRed) filter, or the like, and is provided on the second protective layer 153.
  • the color filter 154 can control the wavelength of light incident on the light absorption layer 120 by transmitting or absorbing light in a predetermined wavelength band.
  • the color filter 154 may be provided for each pixel P, for example, based on a predetermined regular arrangement (for example, a Bayer arrangement).
  • the on-chip lens 155 has a function of condensing light toward the light absorption layer 120 provided for each pixel P.
  • the on-chip lens 155 may be made of, for example, an organic material such as an acrylic resin or an inorganic material such as silicon oxide.
  • the photoelectric conversion device 13 when the light absorption layer 120 is etched to form the opening 125, a gas containing a second conductive type impurity atom is also introduced. According to this, the photoelectric conversion device 13 can form the pixel separation portion 123 extending in the thickness direction of the light absorption layer 120 along the side surface of the opening 125. Further, the photoelectric conversion device 13 controls the amount of gas containing the second conductive type impurity atom as the amount of digging in the opening 125 increases, so that the impurity atom in the thickness direction of the light absorption layer 120 is controlled. It is possible to form the pixel separation unit 123 having the density gradient of. Further, since the photoelectric conversion device 13 can be formed at the same time as the formation of the opening 125 and the formation of the pixel separation portion 123, the number of steps in the manufacturing process can be reduced.
  • the light absorption layer 120 is etched using a mask 170 that covers a region other than the region forming the opening 125.
  • etching is performed by introducing a gas containing a second conductive type (for example, n type) impurity atom 172 in addition to the etching gas.
  • n-type impurity atoms 172 are also shot into the light absorption layer 120, so that the opening 125 is formed and the bottom surface and the side surface of the opening 125 are formed.
  • N-type impurity atoms 172 are diffused in the light absorption layer 120.
  • etching to the light absorption layer 120 proceeds, and the opening 125 is formed by sequentially extending in the thickness direction of the light absorption layer 120.
  • the pixel separation portion 123 is sequentially formed by diffusing the n-type impurity atom 172 on the side surface and the bottom surface of the formed opening 125.
  • the pixel separation unit 123 may be formed by repeatedly forming the opening 125 and heat-diffusing the impurity atom 172, and after forming all the openings 125, heat-diffuse the impurity atom 172 collectively. May be formed with.
  • the concentration profile of the impurity atom 172 contained in the pixel separation unit 123 can be controlled by adjusting the flow rate of the gas containing the impurity atom 172 introduced at the time of etching and the time of thermal diffusion of the impurity atom 172.
  • the pixel separation unit 123 in the photoelectric conversion device 13 according to the present embodiment can be formed.
  • the opening 125 extending in the thickness direction of the light absorbing layer 120 and the pixel separating portion 123 provided in the light absorbing layer 120 exposed by the opening 125 Can be formed at the same time. Therefore, the photoelectric conversion device 13 can reduce the number of steps in the manufacturing process. Further, since the photoelectric conversion device 13 can form the opening 125 and the pixel separation unit 123 in sequence, it is possible to form the pixel separation unit 123 having a density gradient of impurity atoms in the thickness direction of the light absorption layer 120. ..
  • the user instructs the start of light reception by operating the operation unit 947 (S101).
  • the operation unit 947 transmits a light receiving command to the light receiving device 10 (S102).
  • the light receiving device 10 starts receiving light in a predetermined manner (S103).
  • the light receiving device 10 outputs image data corresponding to the received light to the DSP circuit 943.
  • the DSP circuit 943 performs predetermined signal processing (for example, noise reduction processing) on the image data output from the light receiving device 10 (S104).
  • the DSP circuit 943 holds the image data to which the predetermined signal processing has been performed in the frame memory 944.
  • the frame memory 944 stores the image data in the storage unit 946 (S105). In this way, the operation of the imaging system 900 is performed.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is applied to a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
  • FIG. 13 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether or not the driver has fallen asleep.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
  • FIG. 14 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has image pickup units 12101, 12102, 12103, 12104, 12105 as the image pickup unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100, for example.
  • the imaging unit 12101 provided on the front nose and the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100.
  • the imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the images in front acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 14 shows an example of the photographing range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is used via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • FIG. 15 shows a surgeon (doctor) 11131 performing surgery on patient 11132 on patient bed 11133 using the endoscopic surgery system 11000.
  • the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as an abdominal tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100.
  • a cart 11200 equipped with various devices for endoscopic surgery.
  • the endoscope 11100 is composed of a lens barrel 11101 in which a region having a predetermined length from the tip is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the base end of the lens barrel 11101.
  • the endoscope 11100 configured as a so-called rigid mirror having a rigid barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible barrel. good.
  • An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101 to be an objective. It is irradiated toward the observation target in the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an imaging element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the imaging element by the optical system.
  • the observation light is photoelectrically converted by the image sensor, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted as RAW data to the camera control unit (CCU: Camera Control Unit) 11201.
  • CCU Camera Control Unit
  • the CCU11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal for displaying an image based on the image signal, such as development processing (demosaic processing).
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on the image signal processed by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 is composed of, for example, a light source such as an LED (Light Emitting Diode), and supplies irradiation light to the endoscope 11100 when photographing an operating part or the like.
  • a light source such as an LED (Light Emitting Diode)
  • LED Light Emitting Diode
  • the treatment tool control device 11205 controls the drive of the energy treatment tool 11112 for cauterizing, incising, sealing a blood vessel, or the like of a tissue.
  • the pneumoperitoneum device 11206 uses a gas in the pneumoperitoneum tube 11111 to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the work space of the operator.
  • the recorder 11207 is a device capable of recording various information related to surgery.
  • the printer 11208 is a device capable of printing various information related to surgery in various formats such as texts, images, and graphs.
  • the drive of the light source device 11203 may be controlled so as to change the intensity of the output light at predetermined time intervals.
  • the drive of the image sensor of the camera head 11102 in synchronization with the timing of changing the light intensity to acquire an image in a time-divided manner and synthesizing the image, so-called high dynamic without blackout and overexposure. A range image can be generated.
  • the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 may be configured to be capable of supplying narrow band light and / or excitation light corresponding to such special light observation.
  • FIG. 16 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU11201 shown in FIG.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a driving unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • CCU11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and CCU11201 are communicatively connected to each other by a transmission cable 11400.
  • the lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101.
  • the observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and incident on the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the image pickup unit 11402 is composed of an image pickup element.
  • the image sensor constituting the image pickup unit 11402 may be one (so-called single plate type) or a plurality (so-called multi-plate type).
  • each image pickup element may generate an image signal corresponding to each of RGB, and a color image may be obtained by synthesizing them.
  • the image pickup unit 11402 may be configured to have a pair of image pickup elements for acquiring image signals for the right eye and the left eye corresponding to 3D (Dimensional) display, respectively.
  • the 3D display enables the operator 11131 to more accurately grasp the depth of the biological tissue in the surgical site.
  • a plurality of lens units 11401 may be provided corresponding to each image pickup element.
  • the imaging unit 11402 does not necessarily have to be provided on the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is composed of an actuator, and the zoom lens and focus lens of the lens unit 11401 are moved by a predetermined distance along the optical axis under the control of the camera head control unit 11405. As a result, the magnification and focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU11201.
  • the communication unit 11404 transmits the image signal obtained from the image pickup unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and / or information to specify the magnification and focus of the captured image, and the like. Contains information about the condition.
  • the camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102.
  • Image signals and control signals can be transmitted by telecommunications, optical communication, or the like.
  • the image processing unit 11412 performs various image processing on the image signal which is the RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various controls related to the imaging of the surgical site and the like by the endoscope 11100 and the display of the captured image obtained by the imaging of the surgical site and the like. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display an image captured by the surgical unit or the like based on the image signal processed by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image by using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edge of an object included in the captured image to remove surgical tools such as forceps, a specific biological part, bleeding, and mist when using the energy treatment tool 11112. Can be recognized.
  • the control unit 11413 may superimpose and display various surgical support information on the image of the surgical unit by using the recognition result. By superimposing and displaying the surgical support information and presenting it to the surgeon 11131, it is possible to reduce the burden on the surgeon 11131 and to allow the surgeon 11131 to proceed with the surgery reliably.
  • the transmission cable 11400 that connects the camera head 11102 and CCU11201 is an electric signal cable that supports electric signal communication, an optical fiber that supports optical communication, or a composite cable thereof.
  • the communication is performed by wire using the transmission cable 11400, but the communication between the camera head 11102 and the CCU11201 may be performed wirelessly.
  • the technique according to the present disclosure can be suitably applied to the imaging unit 11402 provided on the camera head 11102 of the endoscope 11100. According to the technique according to the present disclosure, since the imaging unit 11402 can obtain a surgical site image by infrared rays with higher accuracy, it is possible to provide the operator with more accurate information on the surgical site.
  • the technique according to the present disclosure may be applied to other, for example, a microscopic surgery system.
  • the technology according to the present disclosure can also have the following configuration. According to the technique according to the present disclosure having the following configuration, since the potential barrier due to the pixel separation portion extends to a deeper region of the light absorption layer, the movement of signal charges between pixels is more strongly suppressed. Therefore, the photoelectric conversion device can more strongly suppress crosstalk between pixels.
  • the effects produced by the techniques according to the present disclosure are not necessarily limited to the effects described herein, and may be any of the effects described in the present disclosure. (1) To form a photoelectric conversion structure in which a first conductive type first semiconductor layer is provided on a non-light receiving surface opposite to a light receiving surface of a light absorption layer containing a compound semiconductor.
  • a method for manufacturing a photoelectric conversion device which comprises forming a second conductive type pixel separation portion extending in the thickness direction of the light absorption layer on the light absorption layer exposed at the opening.
  • the photoelectric conversion structure includes the light absorbing layer, the first semiconductor layer laminated on the non-light receiving surface of the light absorbing layer, and the second conductive type laminated on the light receiving surface of the light absorbing layer.
  • the opening is formed by etching the first semiconductor layer and the light absorption layer.
  • the opening is formed by etching the light absorption layer from the light receiving surface side.
  • a photoelectric conversion structure including a light absorbing layer containing a compound semiconductor and a first conductive type first semiconductor layer provided on a non-light receiving surface opposite to the light receiving surface of the light absorbing layer. An opening that is provided so as to penetrate at least a part of the photoelectric conversion structure and separates the photoelectric conversion structure for each pixel.
  • a photoelectric conversion device provided on the light absorbing layer exposed at the opening and provided with a second conductive type pixel separating portion extending in the thickness direction of the light absorbing layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

化合物半導体を含む光吸収層の受光面と反対側の非受光面に第1導電型の第1半導体層が設けられた光電変換構造体を形成することと、前記光電変換構造体の少なくとも一部をエッチングすることで、前記光電変換構造体を画素ごとに離隔する開口部を形成することと、前記開口部にて露出された前記光吸収層に、前記光吸収層の厚み方向に向かって延在する第2導電型の画素分離部を形成することとを含む、光電変換装置の製造方法。

Description

光電変換装置の製造方法、及び光電変換装置
 本開示は、光電変換装置の製造方法、及び光電変換装置に関する。
 近年、赤外線領域に感度を有するセンサ(いわゆる赤外線センサ)が実用化されている。赤外線センサは、例えば、InGaAs(インジウムガリウム砒素)などのIII-V族化合物半導体を用いた光電変換素子によって、赤外線を光電変換することができる(例えば、特許文献1)。
 このような赤外線センサでは、赤外線を光電変換する光電変換素子は、画素ごとに二次元配列されており、信号電荷は画素ごとに光電変換素子から読み出される。
国際公開第2018/212175号
 このような赤外線センサに設けられた光電変換素子では、隣接する画素間での信号電荷の移動を抑制することで、隣接する画素間でのクロストークを抑制することが望まれている。
 よって、隣接する画素間でのクロストークを抑制することが可能な光電変換装置の製造方法、及び光電変換装置を提供することが望ましい。
 本開示の一実施形態に係る光電変換装置の製造方法は、化合物半導体を含む光吸収層の受光面と反対側の非受光面に第1導電型の第1半導体層が設けられた光電変換構造体を形成することと、前記光電変換構造体の少なくとも一部をエッチングすることで、前記光電変換構造体を画素ごとに離隔する開口部を形成することと、前記開口部にて露出された前記光吸収層に、前記光吸収層の厚み方向に向かって延在する第2導電型の画素分離部を形成することとを含む。
 また、本開示の一実施形態に係る光電変換装置は、化合物半導体を含む光吸収層と、前記光吸収層の受光面と反対側の非受光面に設けられた第1導電型の第1半導体層とを含む光電変換構造体と、前記光電変換構造体の少なくとも一部を貫通して設けられ、前記光電変換構造体を画素ごとに離隔する開口部と、前記開口部にて露出された前記光吸収層に設けられ、前記光吸収層の厚み方向に向かって延在する第2導電型の画素分離部とを備える。
 本開示の一実施形態に係る光電変換装置の製造方法、及び光電変換装置によれば、化合物半導体を含む光吸収層、及び光吸収層の受光面と反対側の非受光面に設けられた第1導電型の第1半導体層とを含む光電変換構造体と、光電変換構造体の少なくとも一部を貫通して設けられ、光電変換構造体を画素ごとに離隔する開口部と、開口部にて露出された光吸収層に設けられ、光吸収層の厚み方向に向かって延在する第2導電型の画素分離部とが設けられる。これにより、例えば、光電変換装置は、画素分離部によるポテンシャル障壁を光吸収層のより深い領域まで広げることができるため、画素の間で信号電荷が移動することをより強く抑制することが可能である。
本開示の第1の実施形態に係る光電変換装置の断面構成の一例を示す縦断面図である。 同実施形態に係る光電変換装置の製造方法の工程の各々を説明する縦断面図である。 同実施形態に係る光電変換装置の製造方法の工程の各々を説明する縦断面図である。 同実施形態に係る光電変換装置の製造方法の工程の各々を説明する縦断面図である。 同実施形態に係る光電変換装置の製造方法の工程の各々を説明する縦断面図である。 同実施形態の変形例に係る光電変換装置の断面構成の一例を示す縦断面図である。 同実施形態の変形例に係る光電変換装置の断面構成の他の例を示す縦断面図である。 本開示の第2の実施形態に係る光電変換装置の断面構成の一例を示す縦断面図である。 同実施形態に係る光電変換装置の製造方法の工程の各々を説明する縦断面図である。 同実施形態に係る光電変換装置の製造方法の工程の各々を説明する縦断面図である。 同実施形態に係る光電変換装置の製造方法の工程の各々を説明する縦断面図である。 同実施形態に係る光電変換装置の製造方法の工程の各々を説明する縦断面図である。 同実施形態に係る光電変換装置の製造方法の工程の各々を説明する縦断面図である。 同実施形態の第1の変形例に係る光電変換装置の断面構成の一例を示す縦断面図である。 同実施形態の第2の変形例に係る光電変換装置の断面構成の一例を示す縦断面図である。 本開示の第3の実施形態に係る光電変換装置の断面構成の一例を示す縦断面図である。 同実施形態に係る光電変換装置における画素分離部の形成を段階的に説明する縦断面図である。 同実施形態に係る光電変換装置における画素分離部の形成を段階的に説明する縦断面図である。 同実施形態に係る光電変換装置における画素分離部の形成を段階的に説明する縦断面図である。 本開示の一実施形態に係る光電変換装置を含む受光装置を備えた撮像システムの概略構成の一例を示すブロック図である。 撮像システムにおける撮像動作の流れを示すフローチャート図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。 内視鏡手術システムの概略的な構成の一例を示す図である。 カメラヘッド及びCCUの機能構成の一例を示すブロック図である。
 以下、本開示における実施形態について、図面を参照して詳細に説明する。以下で説明する実施形態は本開示の一具体例であって、本開示にかかる技術が以下の態様に限定されるわけではない。また、本開示の各構成要素の配置、寸法、及び寸法比等についても、各図に示す様態に限定されるわけではない。
 なお、説明は以下の順序で行う。
 1.第1の実施形態
  1.1.構成例
  1.2.製造方法例
  1.3.変形例
 2.第2の実施形態
  2.1.構成例
  2.2.製造方法例
  2.3.変形例
 3.第3の実施形態
  3.1.構成例
  3.2.製造方法例
 4.応用例
 <1.第1の実施形態>
 (1.1.構成例)
 まず、図1を参照して、本開示の第1の実施形態に係る光電変換装置の構成例について説明する。図1は、本実施形態に係る光電変換装置11の断面構成の一例を示す縦断面図である。
 図1に示すように、光電変換装置11は、例えば、光吸収層20と、画素分離部23と、第1半導体層21と、第1電極31と、第2半導体層22と、第2電極32と、絶縁層41と、保護層42とを備える。本実施形態では、光吸収層20と、光吸収層20の一方の主面(すなわち、非受光面)に積層された第1半導体層21とをまとめて光電変換構造体24とも称する。
 光電変換装置11は、例えば、可視光領域(例えば、380nm以上780nm未満)~近赤外線領域(例えば、780nm以上2400nm未満)の波長の光を光電変換することができる。また、光電変換装置11では、互いに離隔して設けられた第1半導体層21及び第1電極31ごとに画素Pが設けられ、画素Pごとに第1電極31から信号電荷が読み出される。
 光吸収層20は、所定の波長の光を吸収することで、信号電荷を発生させる層である。光吸収層20は、例えば、第2導電型(例えば、n型)の化合物半導体にて構成され、二次元配列された複数の画素Pに広がって設けられる。
 具体的には、光吸収層20は、In、Ga、Al、As、P、Sb、又はNの少なくともいずれか1つ以上を含むn型のIII-V族化合物半導体にて構成されてもよい。III-V族化合物半導体の具体例としては、InGaAs、InGaAsP、InAsSb、InGaP、GaAsSb、又はInAlAsなどを例示することができる。例えば、光吸収層20は、n型の不純物原子としてSi、S、Sn、As、P、Ge又はCなどを含むInGaAsにて構成されてもよい。光吸収層20におけるn型の不純物原子の濃度は、例えば、1×1014cm-3~1×1017cm-3とすることができる。光吸収層20の厚みは、例えば、100nm~10000nmであってもよい。
 第1半導体層21は、例えば、光吸収層20の一方の主面(すなわち、非受光面)に、開口部25にて離隔されて画素Pごとに設けられる。第1半導体層21は、光吸収層20、及び第1電極31にて挟持され、光吸収層20から第1電極31へ読み出される信号電荷が移動する層である。第1半導体層21は、第1導電型(例えば、p型)の化合物半導体にて構成されてもよい。第1半導体層21は、例えば、光吸収層20を構成する化合物半導体よりもバンドギャップが大きいp型のInPにて構成されてもよい。第1半導体層21は、p型の不純物原子として、例えば、Zn、Ng、又はBeなどを含んでもよい。
 本実施形態に係る光電変換装置11では、開口部25は、第1半導体層21及び光吸収層20を含む光電変換構造体24の第1半導体層21を貫通して、光吸収層20を露出させるように設けられる。例えば、開口部25は、第1半導体層21をエッチングすることで形成され、開口部25の底面にて光吸収層20の平坦な表面を露出させてもよい。
 画素分離部23は、第2導電型(例えば、n型)の領域であり、開口部25にて露出された光吸収層20に光吸収層20の厚み方向に延在して設けられる。具体的には、画素分離部23は、開口部25の端部側よりも開口部25の中央部側のほうが光吸収層20のより深い領域まで広がるように設けられてもよい。例えば、画素分離部23は、開口部25の中央部を中心として半円状に広がるように光吸収層20に設けられてもよい。
 本実施形態では、画素分離部23は、第2導電型(例えば、n型)の不純物原子を光吸収層20にプラズマドーピングすることで形成される。そのため、画素分離部23におけるn型の不純物原子の密度は、光吸収層20におけるn型の不純物原子の密度よりも高くなる。画素分離部23は、隣接する画素Pの間に、光吸収層20の厚み方向に広がるポテンシャル障壁Bを形成することで、画素分離部23にて囲まれた第1半導体層21の下方の領域に電荷を誘導することができる。これによれば、画素分離部23は、ポテンシャル障壁Bを越えて隣接する画素Pに信号電荷が移動することを抑制することができる。
 画素分離部23の形成に用いられるn型の不純物原子としては、例えば、Si、S、Sn、As、P、Ge又はCなどを例示することができる。画素分離部23は、これらの不純物原子の水素化物ガスを光吸収層20にプラズマドーピングすることで形成されてもよい。例えば、画素分離部23は、SiH4、AsH3、PH3、GeH4、又はCH4のガスを光吸収層20にプラズマドーピングすることによって形成されてもよい。
 絶縁層41は、絶縁性材料にて、開口部25の内部を覆うように設けられる。絶縁層41は、例えば、開口部25にて露出された光吸収層20を保護するために設けられる。具体的には、絶縁層41は、開口部25にて露出された光吸収層20の表面、及び第1半導体層21の側面に沿って設けられてもよい。
 絶縁層41は、例えば、Si、N、Al、Hf、Ta、Ti、Mg、O、La、Gd、又はYのうちの少なくとも1つ以上を含む絶縁性材料にて構成されてもよい。例えば、絶縁層41は、SiN、SiO2、SiON、AlON、SiAlN、MgO、Al23、AlSiO、HfO2、又はHfAlOなどにて構成されてもよい。また、絶縁層41の厚みは、例えば、1nm以上500nmであってもよい。
 保護層42は、絶縁性材料にて、第1半導体層21の光吸収層20が積層された面と反対側の面に設けられる。保護層42は、画素Pに対応した領域に設けられ、開口部25を形成するエッチングの際に所定の領域の第1半導体層21を保護するマスクとして機能する。また、保護層42は、画素分離部23を形成するプラズマドーピングの際に不純物原子から第1半導体層21を保護するマスクとして機能する。
 保護層42は、例えば、Si、N、Al、Hf、Ta、Ti、Mg、O、La、Gd、又はYのうちの少なくとも1つ以上を含む絶縁性材料にて構成されてもよい。例えば、保護層42は、SiN、SiO2、SiON、AlON、SiAlN、MgO、Al23、AlSiO、HfO2、又はHfAlOなどにて構成されてもよい。また、保護層42の厚みは、例えば、10nm以上5000nmであってもよい。
 第1電極31は、第1半導体層21の光吸収層20が積層された面と反対側の面に保護層42を貫通して設けられる。第1電極31は、光吸収層20で光電変換された信号電荷を読み出す電圧を供給する読出電極である。第1電極31は、例えば、光吸収層20から信号電荷として正孔を読み出してもよい。第1電極31にて読み出された電荷は、図示しないビア又はバンプ等を介して、信号処理を行うための画素回路等に転送される。第1電極31は、例えば、Ti、W、Pt、Au、Ge、Pd、Zn、Ni、In、若しくはAlなどの金属、又はこれらの金属の合金にて構成されてもよい。第1電極31は、単層膜として設けられてもよく、複数の層による積層膜として設けられてもよい。
 第2半導体層22は、光吸収層20の他方の主面(すなわち、受光面)に、複数の画素Pに広がって設けられる。第2半導体層22は、光吸収層20及び第2電極32にて挟持され、光吸収層20から第2電極32へ排出される電荷が移動する層である。第2半導体層22は、第2導電型(例えば、n型)の化合物半導体にて構成されてもよい。第2半導体層22は、例えば、光吸収層20を構成する化合物半導体よりもバンドギャップが大きいn型のInPにて構成されてもよい。第2半導体層22は、n型の不純物原子として、例えば、Si、S、Sn、As、P、Ge又はCなどを含んでもよい。
 第2電極32は、光吸収層20で光電変換された電荷のうち信号電荷として用いられない電荷を排出する電極である。例えば、光吸収層20から信号電荷として正孔が読み出される場合、第2電極32は、正孔と対となる電子を排出してもよい。具体的には、第2電極32は、複数の画素Pの共通電極として設けられ、第2半導体層22の光吸収層20が積層された主面と反対側の主面に複数の画素Pに広がって設けられる。第2電極32は、波長1600nmの光に対して50%以上の透過率を有する透明導電材料を用いて、赤外線などの入射光が透過可能な透明電極として設けられてもよい。第2電極32は、例えば、ITO(Indium Tin Oxide)、又はITiO(In23-TiO2)等で設けられてもよい。
 本実施形態に係る光電変換装置11の製造方法では、プラズマドーピングを用いることで、画素Pを離隔する開口部25にて露出される光吸収層20に、光吸収層20の厚み方向に広がる画素分離部23を形成することができる。これによれば、光電変換装置11は、画素分離部23によるポテンシャル障壁Bを光吸収層20のより深い領域まで広げることができるため、画素Pの間で信号電荷が移動することをより強く抑制することが可能である。したがって、本実施形態に係る光電変換装置11は、画素間でのクロストークをより強く抑制することが可能である。
 (1.2.製造方法例)
 次に、図2A~図2Dを参照して、本実施形態に係る光電変換装置11の製造方法について説明する。図2A~図2Dは、本実施形態に係る光電変換装置11の製造方法の工程の各々を説明する縦断面図である。
 まず、図2Aに示すように、光電変換構造体24を含む積層構造を形成する。その後、光電変換構造体24の第1半導体層21をエッチングすることで、開口部25を形成する。
 具体的には、第2半導体層22、光吸収層20、及び第1半導体層21をエピタキシャル成長させることで、光電変換構造体24を含む積層構造を形成する。例えば、光電変換構造体24を含む積層構造は、InP基板(第2半導体層22)の上にn-InGaAs(光吸収層20)、及びp-InP(第1半導体層21)をエピタキシャル成長させることで形成されてもよい。続いて、画素Pに対応する領域を覆う保護層42を第1半導体層21の上に形成し、保護層42をマスクとして第1半導体層21をエッチングすることで、光吸収層20を露出させる開口部25を形成する。
 続いて、図2Bに示すように、第2導電型の不純物原子を含む原料ガスを用いたプラズマドーピングによって、開口部25にて露出された光吸収層20に画素分離部23を形成する。具体的には、開口部25にて露出された光吸収層20を第2導電型の不純物原子であるSiを含むSiH4ガスのプラズマDPに暴露させることで、Siがドーピングされた画素分離部23を形成する。さらに、画素分離部23は、SiH4ガスのプラズマDPに含まれるH(水素)ラジカルによる熱処理によって、ドーピングされたSiを活性化させることができる。
 なお、画素分離部23は、第2導電型の不純物原子としてAs、P、Ge、又はCを光吸収層20に拡散させることでも形成することが可能である。このような場合、プラズマドーピングの原料ガスとして、AsH3、PH3、GeH4、又はCH4などを用いることができる。
 プラズマドーピングでは、プロセスパラメータを調整することで、光吸収層20に対する不純物原子のドーピングプロファイルを容易に制御することができる。したがって、光電変換装置11は、プラズマドーピングを用いることで、光吸収層20のより深い領域まで画素分離部23を容易に形成することができるため、画素Pの間でのクロストークをより抑制することができる。
 次に、図2Cに示すように、開口部25の内側に絶縁層41を形成する。具体的には、ALD(Atomic Layer Deposition)法、Cyclic-CVD(Chemical Vapor Deposition)法、又はスパッタ法などを用いて、開口部25の内側の光吸収層20の表面、及び第1半導体層21の側面にSiN、SiO、又はポリシリコンなどを成膜することで、絶縁層41を形成する。
 その後、図2Dに示すように、第1電極31及び第2電極32を形成する。具体的には、リソグラフィ及びエッチングを用いて保護層42に第1半導体層21まで達する貫通孔を形成する。続いて、形成した貫通孔にW等の金属又は合金を埋め込むことで第1電極31を形成する。また、第2半導体層22の光吸収層20が設けられた主面と反対側の主面(すなわち、受光面)に、スパッタ等を用いて、透明導電材料であるITOなどを成膜することで、第2電極32を形成する。
 以上の製造方法を用いることで、本実施形態に係る光電変換装置11を形成することができる。本実施形態に係る光電変換装置11の製造方法では、プラズマドーピングのプロセスパラメータを調整することで、光吸収層20に導入される不純物原子のドーピングプロファイルを容易に制御することが可能である。したがって、光電変換装置11では、画素分離部23を光吸収層20の厚み方向により深い領域まで容易に形成することができるため、画素Pの間での信号電荷の移動をより強く抑制することができる。よって、光電変換装置11は、画素Pの間でのクロストークをより強く抑制することができる。
 (1.3.変形例)
 続いて、図3及び図4を参照して、本実施形態に係る光電変換装置11の変形例について説明する。図3は、変形例に係る光電変換装置11の断面構成の一例を示す縦断面図である。図4は、変形例に係る光電変換装置11の断面構成の他の例を示す縦断面図である。
 図3に示すように、開口部25は、第1半導体層21に加えて、光吸収層20の一部を貫通して設けられてもよい。または、図4に示すように、開口部25は、第1半導体層21及び光吸収層20を貫通して設けられてもよい。
 このような場合、画素分離部23は、開口部25の側面又は底面に露出された光吸収層20に設けられる。これによれば、画素分離部23は、光吸収層20の厚み方向に掘り込まれた開口部25の側面に沿って、光吸収層20の厚み方向に延在して設けられることができる。したがって、変形例に係る光電変換装置11は、光吸収層20の厚み方向に、より深い領域までポテンシャル障壁Bを形成することができるため、画素Pの間でのクロストークをより強く抑制することが可能である。
 第1半導体層21、及び光吸収層20の一部又は全部を貫通する開口部25は、プラズマドーピングによって光吸収層20に画素分離部23が形成された後、埋込絶縁層43にて埋め込まれてもよい。開口部25を埋め込む埋込絶縁層43は、例えば、絶縁層41及び保護層42と同様に、Si、N、Al、Hf、Ta、Ti、Mg、O、La、Gd、又はYのうちの少なくとも1つ以上を含む絶縁性材料にて構成されてもよい。例えば、埋込絶縁層43は、SiN、SiO2、SiON、AlON、SiAlN、MgO、Al23、AlSiO、HfO2、又はHfAlOなどにて構成されてもよい。このような場合、画素分離部23は、光吸収層20と埋込絶縁層43との界面で発生する暗電流を抑制する効果も期待することができる。
 <2.第2の実施形態>
 (2.1.構成例)
 次に、図5を参照して、本開示の第2の実施形態に係る光電変換装置の構成例について説明する。図5は、本実施形態に係る光電変換装置12の断面構成の一例を示す縦断面図である。
 図5に示すように、光電変換装置12は、例えば、光吸収層20と、画素分離部23と、第1半導体層21A、21Bと、第1電極31と、第2半導体層22と、第2電極32と、保護層42と、埋込絶縁層44とを備える。本実施形態では、光吸収層20と、光吸収層20の一方の主面(すなわち、非受光面)に積層された第1半導体層21A、21Bとをまとめて光電変換構造体24とも称する。
 光電変換装置12は、第1の実施形態に係る光電変換装置11と同様に、例えば、可視光領域(例えば、380nm以上780nm未満)~近赤外線領域(例えば、780nm以上2400nm未満)の波長の光を光電変換することができる。また、光電変換装置12では、互いに離隔して設けられた第1半導体層21A、21B、及び第1電極31ごとに画素Pが設けられ、画素Pごとに第1電極31から信号電荷が読み出される。
 光吸収層20は、所定の波長の光を吸収することで、信号電荷を発生させる層である。光吸収層20は、例えば、第2導電型(例えば、n型)の化合物半導体にて構成され、複数の画素Pに広がって設けられる。具体的には、光吸収層20は、In、Ga、Al、As、P、Sb、又はNの少なくともいずれか1つ以上を含むn型のIII-V族化合物半導体にて構成されてもよい。例えば、光吸収層20は、n型のInGaAsにて構成されてもよい。また、光吸収層20は、n型の不純物原子として、例えば、Si、S、Sn、As、P、Ge又はCなどを含んでもよい。光吸収層20におけるn型の不純物原子の濃度は、例えば、1×1014cm-3~1×1017cm-3とすることができる。光吸収層20の厚みは、例えば、100nm~10000nmであってもよい。
 第1半導体層21A、21Bは、例えば、光吸収層20の一方の主面(すなわち、非受光面)に、開口部25にて画素Pごとに離隔されて設けられる。第1半導体層21A、21Bは、光吸収層20、及び第1電極31にて挟持され、光吸収層20から第1電極31へ読み出される信号電荷が移動する層である。第1半導体層21A、21Bは、第1電極31への信号電荷の読み出しをより容易に行うために、p型の不純物原子の密度が互いに異なる層として設けられる。具体的には、第1電極31側に設けられた第1半導体層21Bは、光吸収層20側に設けられた第1半導体層21Aよりもp型の不純物原子の濃度が高い層として設けられてもよい。
 第1半導体層21A、21Bは、第1導電型(例えば、p型)の化合物半導体にて構成されてもよい。第1半導体層21A、21Bは、例えば、光吸収層20を構成する化合物半導体よりもバンドギャップが大きいp型のInPにて構成されてもよい。第1半導体層21A、21Bは、p型の不純物原子として、例えば、Zn、Ng、又はBeなどを含んでもよい。
 本実施形態に係る光電変換装置12では、開口部25は、光電変換構造体24の第1半導体層21A、21Bを貫通し、かつ光吸収層20の一部を掘り込むように設けられる。例えば、開口部25は、第1半導体層21A、21B、及び光吸収層20の一部をエッチングすることで形成され、開口部25の底面及び側面にて光吸収層20を露出させていてもよい。
 画素分離部23は、第2導電型(例えば、n型)の領域であり、開口部25の側面又は底面に露出された光吸収層20に光吸収層20の厚み方向に延在して設けられる。具体的には、画素分離部23は、光吸収層20の厚み方向に掘り込まれた開口部25の側面に沿って、光吸収層20の厚み方向に延在して設けられてもよい。
 本実施形態では、画素分離部23は、第2導電型(例えば、n型)の不純物原子を含む化合物半導体をエピタキシャル成長させることで形成される。具体的には、画素分離部23は、開口部25の内側の光吸収層20の上に、光吸収層20を構成する化合物半導体よりもバンドギャップが大きいn型のInPを選択的にエピタキシャル成長させることで形成されてもよい。画素分離部23は、n型の不純物原子として、例えば、Si、S、Sn、As、P、Ge又はCなどを含んでもよい。
 画素分離部23は、隣接する画素Pの間に、光吸収層20の厚み方向に広がるポテンシャル障壁Bを形成することで、画素分離部23にて囲まれた第1半導体層21A、21Bの下方の領域に電荷を誘導することができる。これによれば、画素分離部23は、ポテンシャル障壁Bを越えて隣接する画素Pに信号電荷が移動することを抑制することができる。
 保護層42は、絶縁性材料にて、第1半導体層21A、21Bを覆うように、第1半導体層21A、21Bの上に設けられる。保護層42は、第1半導体層21A、21Bの上に設けられることで、画素分離部23を選択的にエピタキシャル成長させる際のマスクとして機能する。保護層42は、例えば、Si、N、Al、Hf、Ta、Ti、Mg、O、La、Gd、又はYのうちの少なくとも1つ以上を含む絶縁性材料にて構成されてもよい。例えば、保護層42は、SiN、SiO2、SiON、AlON、SiAlN、MgO、Al23、AlSiO、HfO2、又はHfAlOなどにて構成されてもよい。
 埋込絶縁層44は、絶縁性材料にて構成され、第1半導体層21A、21B及び光吸収層20の一部までを貫通する開口部25を埋め込むことで、開口部25による凹凸を平坦化する。埋込絶縁層44は、例えば、保護層42と同様に、Si、N、Al、Hf、Ta、Ti、Mg、O、La、Gd、又はYのうちの少なくとも1つ以上を含む絶縁性材料にて構成されてもよい。例えば、埋込絶縁層44は、SiN、SiO2、SiON、AlON、SiAlN、MgO、Al23、AlSiO、HfO2、又はHfAlOなどにて構成されてもよい。
 第1電極31は、第1半導体層21Bの上に保護層42を貫通して設けられる。第1電極31は、光吸収層20で光電変換された信号電荷を読み出す電圧を供給する読出電極である。第1電極31は、例えば、信号電荷として光吸収層20から正孔を読み出してもよい。第1電極31にて読み出された電荷は、図示しないビア又はバンプ等を介して、信号処理を行うための画素回路等に転送される。第1電極31は、例えば、Ti、W、Pt、Au、Ge、Pd、Zn、Ni、In、若しくはAlなどの金属、又はこれらの金属の合金にて構成されてもよい。第1電極31は、単層膜として設けられてもよく、複数の層による積層膜として設けられてもよい。
 第2半導体層22は、光吸収層20の他方の主面(すなわち、受光面)に、複数の画素Pに広がって設けられる。第2半導体層22は、光吸収層20、及び第2電極32にて挟持され、光吸収層20から第2電極32へ排出される電荷が移動する層である。第2半導体層22は、第2導電型(例えば、n型)の化合物半導体にて構成されてもよい。第2半導体層22は、例えば、光吸収層20を構成する化合物半導体よりもバンドギャップが大きいn型のInPにて構成されてもよい。第2半導体層22は、n型の不純物原子として、例えば、Si、S、Sn、As、P、Ge又はCなどを含んでもよい。
 第2電極32は、光吸収層20で光電変換された電荷のうち信号電荷として用いられない電荷を排出する電極である。例えば、光吸収層20から信号電荷として正孔が読み出される場合、第2電極32は、正孔と対となる電子を排出してもよい。具体的には、第2電極32は、複数の画素Pの共通電極として設けられ、第2半導体層22の光吸収層20が積層された主面と反対側の主面に複数の画素Pに広がって設けられる。第2電極32は、波長1600nmの光に対して50%以上の透過率を有する透明導電材料を用いて、赤外線などの入射光が透過可能な透明電極として設けられてもよい。第2電極32は、例えば、ITO(Indium Tin Oxide)、又はITiO(In23-TiO2)等で設けられてもよい。
 本実施形態に係る光電変換装置12の製造方法では、半導体化合物の選択的なエピタキシャル成長を用いることで、画素Pを離隔する開口部25の側面及び底面に露出された光吸収層20に、画素分離部23を形成することができる。これによれば、光電変換装置12は、光吸収層20の厚み方向に掘り込まれた開口部25に沿って、光吸収層20のより深い領域までポテンシャル障壁を広げることができるため、画素Pの間で信号電荷が移動することをより強く抑制することが可能である。したがって、本実施形態に係る光電変換装置12は、画素間でのクロストークをより強く抑制することが可能である。
 (2.2.製造方法例)
 続いて、図6A~図6Eを参照して、本実施形態に係る光電変換装置12の製造方法について説明する。図6A~図6Eは、本実施形態に係る光電変換装置12の製造方法の工程の各々を説明する縦断面図である。
 まず、図6Aに示すように、光電変換構造体24を含む積層構造を形成する。その後、光電変換構造体24の第1半導体層21A、21B、及び光吸収層20の一部をエッチングすることで、開口部25を形成する。
 具体的には、第2半導体層22の上に、光吸収層20、及び第1半導体層21A、21Bをエピタキシャル成長させることで、光電変換構造体24を含む積層構造を形成する。例えば、光電変換構造体24を含む積層構造は、InP基板(第2半導体層22)の上に、n-InGaAs(光吸収層20)、p-InP(第1半導体層21A)、及びp+InP(第1半導体層21B)をエピタキシャル成長させることで形成されてもよい。続いて、画素Pに対応する領域を覆うマスクを用いて、第1半導体層21A、21B、及び光吸収層20の一部をエッチングすることで、光吸収層20の一部を掘り込む開口部25を形成する。
 なお、第2半導体層22の光吸収層20が設けられた主面と反対側の主面(すなわち、受光面)には、あらかじめスパッタ等を用いて、透明導電材料であるITOなどが成膜されてもよい。これにより、第2電極32が透明電極として形成され得る。
 続いて、図6Bに示すように、第1半導体層21A、21Bの上にSiNなどの絶縁性材料を成膜した後、開口部25に堆積した絶縁性材料を除去する。これにより、第1半導体層21A、21Bを覆う保護層42が形成される。
 次に、図6Cに示すように、開口部25の内側の側面及び底面に露出された光吸収層20の上にn型の化合物半導体(例えば、n-InP)を選択的にエピタキシャル成長させることで、画素分離部23を形成する。n型の不純物原子は、例えば、Si、S、Sn、As、P、Ge又はCなどである。画素分離部23は、これらの不純物原子を取り込みながらInPをエピタキシャル成長させることで形成されてもよい。
 続いて、図6Dに示すように、画素分離部23が形成された開口部25を埋め込むように埋込絶縁層44を形成する。具体的には、CVD(Chemical Vapor Deposition)法などを用いて、画素分離部23が形成された開口部25を埋め込むようにSiO2を成膜する。その後、エッチバック又はCMP(Chemical mechanical polishing)法等を用いることで、埋込絶縁層44の表面を平坦化する。
 その後、図6Eに示すように、保護層42を貫通する第1電極31を形成する。具体的には、リソグラフィ及びエッチングを用いて保護層42に第1半導体層21Bまで達する貫通孔を形成する。続いて、形成した貫通孔にW等の金属又は合金を埋め込むことで第1電極31を形成する。
 以上の製造方法を用いることで、本実施形態に係る光電変換装置12を形成することができる。本実施形態に係る光電変換装置12の製造方法では、選択的なエピタキシャル成長を用いて、n型の化合物半導体にて画素分離部23を形成することができるため、より適切な領域に画素分離部23を形成することができる。したがって、光電変換装置12は光吸収層20の上にn型である画素分離部23と、p型である第1半導体層21A、21Bとをそれぞれ作り分けることができる。これによれば、光電変換装置12は、第1半導体層21A、21Bによって第1電極31への良好なコンタクト特性を実現しつつ、画素分離部23によって画素Pの間でのクロストークを抑制し、かつ暗電流を低減することができる。
 (2.3.変形例)
 次に、図7及び図8を参照して、本実施形態に係る光電変換装置12の変形例について説明する。図7は、第1の変形例に係る光電変換装置12の断面構成の一例を示す縦断面図である。図8は、第2の変形例に係る光電変換装置12の断面構成の一例を示す縦断面図である。
 (第1の変形例)
 図7に示すように、画素分離部23は、上端にファセット部23Aをさらに有してもよい。ファセット部23Aは、開口部25の内側の側面にエピタキシャル成長した画素分離部23の上端に設けられ、上端の角を面取りした(角を切り落とした)形状を有する。ファセット部23Aを有することによって、n型である画素分離部23は、p型である第1半導体層21A、21Bとの間で形成される空乏層の体積を低減することができる。これにより、画素分離部23は、暗電流の発生をより抑制することができる。
 (第2の変形例)
 図8に示すように、開口部25には、埋込絶縁層44に加えて、メタル層45がさらに設けられていてもよい。メタル層45は、Wなどの金属にて第1半導体層21A、21B、及び画素分離部23と接触しないように設けられる。具体的には、メタル層45は、開口部25を埋込絶縁層44にて埋め込んだ後、開口部25に対応する領域に画素分離部23と接触しないように貫通孔を設け、該貫通孔をWなどの金属で埋め込むことで形成され得る。メタル層45を設けることによって、光電変換装置12は、画素Pの間でのクロストークをさらに強く抑制することができる。
 <3.第3の実施形態>
 (3.1.構成例)
 続いて、図9を参照して、本開示の第3の実施形態に係る光電変換装置13の構成例について説明する。図9は、本実施形態に係る光電変換装置13の断面構成の一例を示す縦断面図である。
 図9に示すように、光電変換装置13は、例えば、多層配線基板160と、第1電極131と、第1保護層161と、第1半導体層121と、光吸収層120と、画素分離部123と、基板150と、絶縁層151と、遮光構造体152と、第2保護層153と、カラーフィルタ154と、オンチップレンズ155とを備える。本実施形態では、光吸収層20と、光吸収層20の一方の主面(すなわち、非受光面)に設けられた第1半導体層121とをまとめて光電変換構造体124とも称する。
 光電変換装置13は、例えば、可視光領域(例えば、380nm以上780nm未満)~近赤外線領域(例えば、780nm以上2400nm未満)の波長の光を光電変換することができる。光電変換装置13は、二次元配列された複数の画素Pを含み、画素Pごとに光電変換した信号電荷を読み出すことができる。
 基板150は、例えば、第1導電型(例えば、p型)、又は第2導電型(例えば、n型)の化合物半導体にて構成される。具体的には、基板150は、n型のInP基板であってもよい。基板150は、例えば、n型の不純物原子として、Si、S、Sn、As、P、Ge又はCなどを含んでもよい。
 光吸収層120は、所定の波長の光を吸収することで、信号電荷を発生させる層である。光吸収層120は、複数の画素Pに共通して設けられた層であり、基板150の一方の主面(すなわち、非受光面)に複数の画素Pに広がって連続して設けられる。光吸収層120は、例えば、III-V族化合物半導体にて構成されてもよい。具体的には、光吸収層120は、n型のInGaAs(インジウムガリウム砒素)で構成されてもよい。また、光吸収層120は、n型不純物として、Si、S、Sn、As、P、Ge又はCなどを含んでもよい。
 本実施形態に係る光電変換装置13では、開口部125は、光電変換構造体124の光吸収層120を貫通して設けられる。例えば、開口部125は、基板150及び光吸収層120をエッチングすることで形成され、開口部125の側面にて光吸収層120を露出させてもよい。
 画素分離部123は、光吸収層120の厚み方向に延在して、隣接する画素Pの各々の間に設けられる。具体的には、画素分離部123は、基板150及び光吸収層120を厚み方向に貫通して設けられる開口部125の側面に沿って、光吸収層120の厚み方向に延在して設けられる。これによれば、画素分離部123は、画素Pの間で光吸収層120を介して信号電荷が移動してしまうことを抑制することができる。例えば、画素分離部123は、開口部125を介して、光吸収層120に高濃度の第2導電型(例えば、n型)の不純物原子を導入することで設けられてもよい。画素分離部123に導入されるn型の不純物原子としては、例えば、Si、S、Sn、As、P、Ge又はCなどを例示することができる。
 本実施形態では、画素分離部123は、エッチング等にて光吸収層120に開口部125を形成する際に、エッチングが行われるチャンバーにn型の不純物原子を一緒に導入することで形成される。具体的には、画素分離部123は、同一チャンバー内にて、光吸収層120のエッチングと、不純物原子の拡散及び活性化とを繰り返しながら実行されることで、開口部125の形成と並行して形成され得る。このようなエッチングは、熱処理のための温度調節可能であり、かつプラズマエッチングが可能なエッチング装置にて実行することが可能である。
 これによれば、画素分離部123は、光吸収層120の厚み方向に不純物原子の濃度勾配を制御しながら形成されることができる。また、画素分離部123は、開口部125と同時に形成されるため、光吸収層120へのプロセスダメージを抑制することができる。
 例えば、n型の不純物原子としては、C、Si、S、又はSnなどを用いることができる。これらのn型の不純物原子は、例えば、エッチング時に、CF系ガス、CO系ガス、SiF系ガス、SiCl系ガス、SF6系ガス、又はCOSガスを用いることで、画素分離部123に導入され得る。
 また、画素分離部123は、n型の不純物原子に替えてp型の不純物原子を導入することでも形成され得る。p型の不純物原子としては、Zn、Mg、又はBeなどを用いることができる。これらのp型の不純物原子は、例えば、エッチング時に、Zn(CH22ガスを用いることで、画素分離部123に導入され得る。
 第1半導体層121は、例えば、光吸収層120の一方の主面(すなわち、非受光面)に画素Pごとに設けられる。第1半導体層121は、光吸収層120、及び第1電極131の間に設けられ、光吸収層120から第1電極131へ読み出される信号電荷が移動する層である。第1半導体層121は、第1導電型(例えば、p型)の化合物半導体にて構成されてもよい。第1半導体層121は、例えば、光吸収層120を構成する化合物半導体よりもバンドギャップが大きいp型のInPにて構成されてもよい。第1半導体層121は、p型の不純物原子として、例えば、Zn、Ng、又はBeなどを含んでもよい。
 第1保護層161は、絶縁性材料にて、第1半導体層121と多層配線基板160との間に設けられる。例えば、第1保護層161は、SiN、SiO2、SiON、AlON、SiAlN、MgO、Al23、AlSiO、HfO2、又はHfAlOなどの絶縁性材料にて構成されてもよい。第1保護層161には、画素Pごとに開口が設けられ、該開口に設けられた第1電極131を介して、光吸収層120から信号電荷が読み出される。
 第1電極131は、第1保護層161を貫通して設けられ、第1半導体層121と電気的に接続する。第1電極131は、画素Pごとに設けられ、光吸収層120にて生成された信号電荷を読み出すための電圧を供給し、読み出した信号電荷を多層配線基板160に設けられた画素回路(図示せず)等に出力する。第1電極131は、1つの画素Pに対して1つ設けられてもよく、1つの画素Pに対して複数設けられてもよい。
 第1電極131は、例えば、Ti、W、Pt、Au、Ge、Pd、Zn、Ni、In、若しくはAlなどの金属、又はこれらの金属の合金にて構成されてもよい。第1電極131は、単層膜として設けられてもよく、複数の層による積層膜として設けられてもよい。
 多層配線基板160は、所定の回路を含み、絶縁層と配線層とを積層することで設けられる。例えば、多層配線基板160は、画素Pの各々から読み出した信号電荷を処理する画素回路等を1つ又は複数の画素ごとに含んでもよい。
 絶縁層151は、開口部125を埋め込む埋込絶縁層151Aと、基板150の光吸収層120が設けられた主面と反対側の主面(すなわち、受光面)に設けられた層間絶縁層151Bとを含む。埋込絶縁層151Aは、基板150、光吸収層120、及び第1半導体層121を貫通して設けられた開口部125を埋め込む。また、層間絶縁層151Bは、基板150の光吸収層120が設けられた主面と反対側の主面の全面に広がって設けられることで、開口部125等による凹凸を平坦化する。絶縁層151は、例えば、SiN、SiO2、SiON、AlON、SiAlN、MgO、Al23、AlSiO、HfO2、又はHfAlOなどの絶縁性材料にて構成されてもよい。
 遮光構造体152は、画素Pの間の層間絶縁層151Bの上に設けられ、斜めからの入射光によって隣接する画素Pの間でクロストークが発生することを防止する。具体的には、遮光構造体152は、隣接する画素Pを互いに離隔する開口部125に対応する領域の層間絶縁層151Bの上に設けられてもよい。遮光構造体152は、例えば、Ti、W、Pt、Au若しくはCr等の金属、又はこれらの合金若しくは金属化合物にて構成されてもよく、カーボン等の有機材料にて構成されてもよい。また、遮光構造体152は、単層膜で設けられてもよく、複数の材料の積層膜として設けられてもよい。
 第2保護層153は、層間絶縁層151Bの基板150が設けられた主面と反対側の主面(すなわち、受光面)に、遮光構造体152を覆って全面に広がって設けられる。第2保護層153は、光電変換装置13の各構成を外部環境から保護する。第2保護層153は、例えば、SiN、SiO2、SiON、AlON、SiAlN、MgO、Al23、AlSiO、HfO2、又はHfAlOなどの絶縁性材料にて構成されてもよい。
 カラーフィルタ154は、例えば、赤色フィルタ、緑色フィルタ、青色フィルタ、白色フィルタ、又はIR(InfraRed)フィルタなどであり、第2保護層153の上に設けられる。カラーフィルタ154は、所定の波長帯域の光を透過又は吸収することで、光吸収層120に入射する光の波長等を制御することができる。カラーフィルタ154は、例えば、所定の規則的な配列(例えば、ベイヤー配列)に基づいて、画素Pごとに設けられてもよい。
 オンチップレンズ155は、画素Pごとに設けられた光吸収層120に向かって光を集光させる機能を有する。オンチップレンズ155は、例えば、アクリル樹脂等の有機材料、又は酸化シリコン等の無機材料にて構成されてもよい。
 本実施形態に係る光電変換装置13の製造方法では、開口部125を形成するために光吸収層120をエッチングする際に、第2導電型の不純物原子を含むガスを併せて導入する。これによれば、光電変換装置13は、開口部125の側面に沿って光吸収層120の厚み方向に広がる画素分離部123を形成することができる。また、光電変換装置13は、開口部125の掘り込み量の増大に伴って、第2導電型の不純物原子を含むガスの導入量を制御することで、光吸収層120の厚み方向に不純物原子の濃度勾配を有する画素分離部123を形成することができる。さらに、光電変換装置13は、開口部125の形成と、画素分離部123の形成と同時進行で行うことができるため、製造プロセスの工程数を削減することができる。
 (3.2.製造方法例)
 次に、図10A~図10Cを参照して、本実施形態に係る光電変換装置13における画素分離部123の形成方法について説明する。図10A~図10Cは、光電変換装置13における画素分離部123の形成を段階的に説明する縦断面図である。
 図10Aに示すように、開口部125を形成する領域以外を覆うマスク170を用いて、光吸収層120をエッチングする。このとき、本実施形態に係る光電変換装置13の製造方法では、エッチングガスに加えて、第2導電型(例えば、n型)の不純物原子172を含むガスを導入してエッチングが行われる。これにより、光吸収層120には、エッチングガスに含まれるエッチング原子171に加えて、n型の不純物原子172も撃ち込まれるため、開口部125が形成されると共に、開口部125の底面及び側面の光吸収層120には、n型の不純物原子172が拡散する。
 その後、図10B及び図10Cに示すように、光吸収層120へのエッチングが進行し、開口部125が光吸収層120の厚み方向に順次延伸して形成される。これに伴って、形成された開口部125の側面及び底面には、n型の不純物原子172が拡散することで、画素分離部123が順次形成される。
 画素分離部123は、開口部125の形成と、不純物原子172の熱拡散とを繰り返し行うことで形成されてもよく、開口部125をすべて形成した後、まとめて不純物原子172を熱拡散させることで形成されてもよい。画素分離部123に含まれる不純物原子172の濃度プロファイルは、エッチング時に導入される不純物原子172を含むガスの流量と、不純物原子172の熱拡散の時間とを調整することで制御することができる。したがって、開口部125の形成と、不純物原子172の熱拡散とを繰り返し行うことで画素分離部123を形成する場合、画素分離部123は、光吸収層120の厚み方向に勾配を持った不純物原子172の濃度プロファイルを有することができる。
 以上の製造方法を用いることで、本実施形態に係る光電変換装置13における画素分離部123を形成することができる。本実施形態に係る光電変換装置13の製造方法では、光吸収層120の厚み方向に延在する開口部125と、開口部125にて露出された光吸収層120に設けられた画素分離部123とを同時に形成することができる。したがって、光電変換装置13は、製造プロセスの工程数を削減することができる。また、光電変換装置13は、開口部125と画素分離部123と順次形成することができるため、光吸収層120の厚み方向に不純物原子の濃度勾配を有する画素分離部123を形成することができる。
 <4.応用例>
 以下では、図11~図16を参照して、本開示の一実施形態に係る光電変換装置を含む受光装置10の応用例について説明する。
 (撮像システムへの応用)
 まず、図11及び図12を参照して、受光装置10の撮像システムへの応用について説明する。図11は、受光装置10を備えた撮像システム900の概略構成の一例を示すブロック図である。図12は、撮像システム900における撮像動作の流れを示すフローチャート図である。
 図11に示すように、撮像システム900は、例えば、デジタルスチルカメラ若しくはビデオカメラ等の撮像装置、スマートフォン若しくはタブレット型端末等の撮像機能を有する携帯端末装置、又は撮像機能を有する産業機械又は輸送機械などである。
 撮像システム900は、例えば、レンズ群941と、シャッタ942と、受光装置10と、DSP回路943と、フレームメモリ944と、表示部945と、記憶部946と、操作部947と、電源部948とを備える。撮像システム900において、受光装置10、DSP回路943、フレームメモリ944、表示部945、記憶部946、操作部947、及び電源部948は、バスライン949を介して相互に接続されている。
 受光装置10は、レンズ群941、及びシャッタ942を通過した入射光を受光し、受光した光に応じたセンサ信号(すなわち、画像データ)を出力する。DSP回路943は、受光装置10から出力される画像データを処理する信号処理回路である。フレームメモリ944は、DSP回路943により処理された画像データをフレーム単位で一時的に保持する。表示部945は、例えば、液晶パネル、又は有機EL(Electro Luminescence)パネル等のパネル型表示装置であり、DSP回路943により処理された画像データを表示する。記憶部946は、半導体メモリやハードディスク等の記録媒体を含み、受光装置10から出力された画像データ、又はDSP回路943により処理された画像データを記録する。操作部947は、ユーザによる操作に基づいて、撮像システム900が有する各種の機能についての操作指令を出力する。電源部948は、受光装置10、DSP回路943、フレームメモリ944、表示部945、記憶部946、及び操作部947の動作電力を供給する各種電源である。
 次に、撮像システム900の動作手順について説明する。
 図12に示すように、ユーザは、操作部947を操作することにより受光開始を指示する(S101)。これにより、操作部947は、受光指令を受光装置10に送信する(S102)。受光装置10は、受光指令を受けると、所定の方式で受光を開始する(S103)。
 続いて、受光装置10は、受光した光に応じた画像データをDSP回路943に出力する。DSP回路943は、受光装置10から出力された画像データに所定の信号処理(例えば、ノイズ低減処理など)を行う(S104)。DSP回路943は、所定の信号処理がなされた画像データをフレームメモリ944に保持させる。その後、フレームメモリ944は、画像データを記憶部946に記憶させる(S105)。このようにして、撮像システム900の動作が行われる。
 (移動体制御システムへの応用)
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置に適用されてもよい。
 図13は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図13に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図13の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図14は、撮像部12031の設置位置の例を示す図である。
 図14では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図14には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る移動体制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。本開示に係る技術によれば、撮像部12031の画素間でのクロストークを抑制することができるため、撮像部12031は、より高画質の赤外線による画像データを取得することができる。これによれば、例えば、マイクロコンピュータ12051等は、車両をより高精度で制御することが可能となる。
 (内視鏡手術システムへの応用)
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
 図15は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図15では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図16は、図15に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、内視鏡11100のカメラヘッド11102に設けられた撮像部11402に好適に適用され得る。本開示に係る技術によれば、撮像部11402は、より高精度の赤外線による術部画像を得ることができるため、術者に術部のより高精度な情報を提供することができる。
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。
 以上、第1~第3の実施形態、及び変形例を挙げて、本開示にかかる技術を説明した。ただし、本開示にかかる技術は、上記実施の形態等に限定されるわけではなく、種々の変形が可能である。
 さらに、各実施形態で説明した構成および動作の全てが本開示の構成および動作として必須であるとは限らない。たとえば、各実施形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素は、任意の構成要素として理解されるべきである。
 本明細書および添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるとして記載された様態に限定されない」と解釈されるべきである。「有する」という用語は、「有するとして記載された様態に限定されない」と解釈されるべきである。
 本明細書で使用した用語には、単に説明の便宜のために用いており、構成及び動作を限定する目的で使用したわけではない用語が含まれる。たとえば、「右」、「左」、「上」、「下」などの用語は、参照している図面上での方向を示しているにすぎない。また、「内側」、「外側」という用語は、それぞれ、注目要素の中心に向かう方向、注目要素の中心から離れる方向を示しているにすぎない。これらに類似する用語や同様の趣旨の用語についても同様である。
 なお、本開示にかかる技術は、以下のような構成を取ることも可能である。以下の構成を備える本開示にかかる技術によれば、画素分離部によるポテンシャル障壁が光吸収層のより深い領域まで広がるため、画素間での信号電荷の移動がより強く抑制されるようになる。よって、光電変換装置は、画素間でのクロストークをより強く抑制することが可能となる。本開示にかかる技術が奏する効果は、ここに記載された効果に必ずしも限定されるわけではなく、本開示中に記載されたいずれの効果であってもよい。
(1)
 化合物半導体を含む光吸収層の受光面と反対側の非受光面に第1導電型の第1半導体層が設けられた光電変換構造体を形成することと、
 前記光電変換構造体の少なくとも一部をエッチングすることで、前記光電変換構造体を画素ごとに離隔する開口部を形成することと、
 前記開口部にて露出された前記光吸収層に、前記光吸収層の厚み方向に向かって延在する第2導電型の画素分離部を形成することと
を含む、光電変換装置の製造方法。
(2)
 前記光電変換構造体は、前記光吸収層と、前記光吸収層の前記非受光面に積層された前記第1半導体層と、前記光吸収層の前記受光面に積層された前記第2導電型の第2半導体層とを含む、上記(1)に記載の光電変換装置の製造方法。
(3)
 前記開口部は、前記光電変換構造体のうち少なくとも前記第1半導体層をエッチングすることで形成される、上記(2)に記載の光電変換装置の製造方法。
(4)
 前記画素分離部は、前記第2導電型の不純物原子を含む原料ガスを前記光吸収層にプラズマドーピングすることで形成される、上記(3)に記載の光電変換装置の製造方法。
(5)
 前記原料ガスは、Si、As、P、Ge、又はCの水素化物ガスを含む、上記(4)に記載の光電変換装置の製造方法。
(6)
 前記開口部にて露出された前記光吸収層の面は平坦であり、
 前記画素分離部は、前記開口部の端部よりも前記開口部の中央部のほうが前記光吸収層のより深い領域まで延在して形成される、上記(3)~(5)のいずれか一項に記載の光電変換装置の製造方法。
(7)
 前記開口部は、前記第1半導体層及び前記光吸収層をエッチングすることで形成され、
 前記画素分離部は、前記開口部の側面に露出された前記光吸収層に形成される、上記(3)~(6)のいずれか一項に記載の光電変換装置の製造方法。
(8)
 前記開口部は、前記光吸収層を貫通して形成される、上記(7)に記載の光電変換装置の製造方法。
(9)
 前記開口部は、前記第1半導体層及び前記光吸収層をエッチングすることで形成され、
 前記画素分離部は、前記開口部の側面及び底面に前記第2導電型の再成長層をエピタキシャル成長させることで形成される、上記(3)に記載の光電変換装置の製造方法。
(10)
 前記開口部の内側の側面に形成された前記画素分離部の上端は、角が面取りされる、上記(9)に記載の光電変換装置の製造方法。
(11)
 前記開口部は、前記受光面側から前記光吸収層をエッチングすることで形成され、
 前記画素分離部は、前記エッチングの際に、前記第2導電型の不純物原子を含むガスを導入することで形成される、上記(2)に記載の光電変換装置の製造方法。
(12)
 前記不純物原子は、C、Si、S、若しくはSnを含むn型不純物原子、又はZn、Mg、若しくはBeを含むp型不純物原子である、上記(11)に記載の光電変換装置の製造方法。
(13)
 前記画素分離部は、前記光吸収層の厚み方向に前記不純物原子の濃度勾配を有するように形成される、上記(11)又は(12)に記載の光電変換装置の製造方法。
(14)
 前記開口部は、前記光吸収層を貫通して形成される、上記(11)~(13)のいずれか一項に記載の光電変換装置の製造方法。
(15)
 前記画素分離部は、前記光吸収層の前記エッチング、及び前記光吸収層への前記不純物原子のドーピングを同じチャンバー内で交互に繰り返し行うことで形成される、上記(11)~(14)のいずれか一項に記載の光電変換装置の製造方法。
(16)
 前記画素分離部を形成した後、前記開口部を絶縁性材料にて埋め込むことをさらに含む、上記(1)~(15)のいずれか一項に記載の光電変換装置の製造方法。
(17)
 前記開口部の前記画素分離部が露出した領域を前記絶縁性材料にて埋め込んだ後、さらに前記開口部を金属材料にて埋め込むことをさらに含む、上記(16)に記載の光電変換装置の製造方法。
(18)
 前記化合物半導体は、III-V族化合物半導体である、上記(1)~(17)のいずれか一項に記載の光電変換装置の製造方法。
(19)
 前記第1半導体層のバンドギャップエネルギーは、前記光吸収層のバンドギャップエネルギーよりも大きい、上記(1)~(18)のいずれか一項に記載の製造方法。
(20)
 化合物半導体を含む光吸収層と、前記光吸収層の受光面と反対側の非受光面に設けられた第1導電型の第1半導体層とを含む光電変換構造体と、
 前記光電変換構造体の少なくとも一部を貫通して設けられ、前記光電変換構造体を画素ごとに離隔する開口部と、
 前記開口部にて露出された前記光吸収層に設けられ、前記光吸収層の厚み方向に向かって延在する第2導電型の画素分離部と
を備える、光電変換装置。
 本出願は、日本国特許庁において2020年1月20日に出願された日本特許出願番号第2020-007097号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (20)

  1.  化合物半導体を含む光吸収層の受光面と反対側の非受光面に第1導電型の第1半導体層が設けられた光電変換構造体を形成することと、
     前記光電変換構造体の少なくとも一部をエッチングすることで、前記光電変換構造体を画素ごとに離隔する開口部を形成することと、
     前記開口部にて露出された前記光吸収層に、前記光吸収層の厚み方向に向かって延在する第2導電型の画素分離部を形成することと
    を含む、光電変換装置の製造方法。
  2.  前記光電変換構造体は、前記光吸収層と、前記光吸収層の前記非受光面に積層された前記第1半導体層と、前記光吸収層の前記受光面に積層された前記第2導電型の第2半導体層とを含む、請求項1に記載の光電変換装置の製造方法。
  3.  前記開口部は、前記光電変換構造体のうち少なくとも前記第1半導体層をエッチングすることで形成される、請求項2に記載の光電変換装置の製造方法。
  4.  前記画素分離部は、前記第2導電型の不純物原子を含む原料ガスを前記光吸収層にプラズマドーピングすることで形成される、請求項3に記載の光電変換装置の製造方法。
  5.  前記原料ガスは、Si、As、P、Ge、又はCの水素化物ガスを含む、請求項4に記載の光電変換装置の製造方法。
  6.  前記開口部にて露出された前記光吸収層の面は平坦であり、
     前記画素分離部は、前記開口部の端部よりも前記開口部の中央部のほうが前記光吸収層のより深い領域まで延在して形成される、請求項3に記載の光電変換装置の製造方法。
  7.  前記開口部は、前記第1半導体層及び前記光吸収層をエッチングすることで形成され、
     前記画素分離部は、前記開口部の側面に露出された前記光吸収層に形成される、請求項3に記載の光電変換装置の製造方法。
  8.  前記開口部は、前記光吸収層を貫通して形成される、請求項7に記載の光電変換装置の製造方法。
  9.  前記開口部は、前記第1半導体層及び前記光吸収層をエッチングすることで形成され、
     前記画素分離部は、前記開口部の側面及び底面に前記第2導電型の再成長層をエピタキシャル成長させることで形成される、請求項3に記載の光電変換装置の製造方法。
  10.  前記開口部の内側の側面に形成された前記画素分離部の上端は、角が面取りされる、請求項9に記載の光電変換装置の製造方法。
  11.  前記開口部は、前記受光面側から前記光吸収層をエッチングすることで形成され、
     前記画素分離部は、前記エッチングの際に、前記第2導電型の不純物原子を含むガスを導入することで形成される、請求項2に記載の光電変換装置の製造方法。
  12.  前記不純物原子は、C、Si、S、若しくはSnを含むn型不純物原子、又はZn、Mg、若しくはBeを含むp型不純物原子である、請求項11に記載の光電変換装置の製造方法。
  13.  前記画素分離部は、前記光吸収層の厚み方向に前記不純物原子の濃度勾配を有するように形成される、請求項11に記載の光電変換装置の製造方法。
  14.  前記開口部は、前記光吸収層を貫通して形成される、請求項11に記載の光電変換装置の製造方法。
  15.  前記画素分離部は、前記光吸収層の前記エッチング、及び前記光吸収層への前記不純物原子のドーピングを同じチャンバー内で交互に繰り返し行うことで形成される、請求項11に記載の光電変換装置の製造方法。
  16.  前記画素分離部を形成した後、前記開口部を絶縁性材料にて埋め込むことをさらに含む、請求項1に記載の光電変換装置の製造方法。
  17.  前記開口部の前記画素分離部が露出した領域を前記絶縁性材料にて埋め込んだ後、さらに前記開口部を金属材料にて埋め込むことをさらに含む、請求項16に記載の光電変換装置の製造方法。
  18.  前記化合物半導体は、III-V族化合物半導体である、請求項1に記載の光電変換装置の製造方法。
  19.  前記第1半導体層のバンドギャップエネルギーは、前記光吸収層のバンドギャップエネルギーよりも大きい、請求項1に記載の光電変換装置の製造方法。
  20.  化合物半導体を含む光吸収層と、前記光吸収層の受光面と反対側の非受光面に設けられた第1導電型の第1半導体層とを含む光電変換構造体と、
     前記光電変換構造体の少なくとも一部を貫通して設けられ、前記光電変換構造体を画素ごとに離隔する開口部と、
     前記開口部にて露出された前記光吸収層に設けられ、前記光吸収層の厚み方向に向かって延在する第2導電型の画素分離部と
    を備える、光電変換装置。
PCT/JP2021/000347 2020-01-20 2021-01-07 光電変換装置の製造方法、及び光電変換装置 WO2021149500A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021573057A JPWO2021149500A1 (ja) 2020-01-20 2021-01-07
US17/758,579 US20230036227A1 (en) 2020-01-20 2021-01-07 Method of manufacturing photoelectric conversion device, and photoelectric conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020007097 2020-01-20
JP2020-007097 2020-01-20

Publications (1)

Publication Number Publication Date
WO2021149500A1 true WO2021149500A1 (ja) 2021-07-29

Family

ID=76992299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000347 WO2021149500A1 (ja) 2020-01-20 2021-01-07 光電変換装置の製造方法、及び光電変換装置

Country Status (3)

Country Link
US (1) US20230036227A1 (ja)
JP (1) JPWO2021149500A1 (ja)
WO (1) WO2021149500A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230010538A1 (en) * 2021-06-23 2023-01-12 Aeluma, Inc. Photodetector module comprising emitter and receiver
US20220413101A1 (en) * 2021-06-23 2022-12-29 Aeluma, Inc. Lidar sensor for mobile device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128507A (ja) * 2004-10-29 2006-05-18 Toyota Motor Corp 絶縁ゲート型半導体装置およびその製造方法
JP2008508700A (ja) * 2004-07-30 2008-03-21 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ パッシベーション層を備えた半導体素子および該半導体素子の製造方法
JP2011216651A (ja) * 2010-03-31 2011-10-27 Renesas Electronics Corp 半導体装置の製造方法
JP2011243671A (ja) * 2010-05-17 2011-12-01 Fuji Electric Co Ltd トレンチ分離型逆阻止mos型半導体装置およびその製造方法
JP2013093385A (ja) * 2011-10-24 2013-05-16 Sumitomo Electric Ind Ltd 受光素子、およびその製造方法
WO2017126204A1 (ja) * 2016-01-20 2017-07-27 ソニー株式会社 受光素子、受光素子の製造方法、撮像素子および電子機器
WO2018212175A1 (ja) * 2017-05-15 2018-11-22 ソニーセミコンダクタソリューションズ株式会社 光電変換素子および撮像素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508700A (ja) * 2004-07-30 2008-03-21 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ パッシベーション層を備えた半導体素子および該半導体素子の製造方法
JP2006128507A (ja) * 2004-10-29 2006-05-18 Toyota Motor Corp 絶縁ゲート型半導体装置およびその製造方法
JP2011216651A (ja) * 2010-03-31 2011-10-27 Renesas Electronics Corp 半導体装置の製造方法
JP2011243671A (ja) * 2010-05-17 2011-12-01 Fuji Electric Co Ltd トレンチ分離型逆阻止mos型半導体装置およびその製造方法
JP2013093385A (ja) * 2011-10-24 2013-05-16 Sumitomo Electric Ind Ltd 受光素子、およびその製造方法
WO2017126204A1 (ja) * 2016-01-20 2017-07-27 ソニー株式会社 受光素子、受光素子の製造方法、撮像素子および電子機器
WO2018212175A1 (ja) * 2017-05-15 2018-11-22 ソニーセミコンダクタソリューションズ株式会社 光電変換素子および撮像素子

Also Published As

Publication number Publication date
JPWO2021149500A1 (ja) 2021-07-29
US20230036227A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
JP7014785B2 (ja) 光電変換素子および撮像素子
JP7007088B2 (ja) 受光素子、撮像素子および電子機器
JP6903896B2 (ja) 受光素子の製造方法
JP6979974B2 (ja) 受光素子の製造方法
JPWO2020059702A1 (ja) 撮像装置
WO2021149500A1 (ja) 光電変換装置の製造方法、及び光電変換装置
WO2021124974A1 (ja) 撮像装置
EP3404715B1 (en) Light receiving element, method for manufacturing light receiving element, image capturing element and electronic device
WO2022004172A1 (ja) 撮像装置及び電子機器
WO2021070586A1 (ja) 光電変換素子および撮像素子
WO2021149380A1 (ja) 撮像装置及び撮像装置の製造方法、電子機器
WO2021015011A1 (ja) 撮像装置
WO2021172121A1 (ja) 多層膜および撮像素子
WO2020189179A1 (ja) 受光素子および受光素子の製造方法ならびに撮像装置
WO2020012842A1 (ja) 光電変換素子
US20200286936A1 (en) Semiconductor device and manufacturing method of semiconductor device
WO2021084983A1 (ja) 受光素子、受光素子の製造方法及び固体撮像装置
WO2021059676A1 (ja) 撮像装置及び電子機器
WO2023021787A1 (ja) 光検出装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573057

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744431

Country of ref document: EP

Kind code of ref document: A1