WO2021148054A1 - 一种插接件用铜合金线及其制造方法 - Google Patents

一种插接件用铜合金线及其制造方法 Download PDF

Info

Publication number
WO2021148054A1
WO2021148054A1 PCT/CN2021/077965 CN2021077965W WO2021148054A1 WO 2021148054 A1 WO2021148054 A1 WO 2021148054A1 CN 2021077965 W CN2021077965 W CN 2021077965W WO 2021148054 A1 WO2021148054 A1 WO 2021148054A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
copper alloy
vacuum
alloy wire
alloy
Prior art date
Application number
PCT/CN2021/077965
Other languages
English (en)
French (fr)
Inventor
曹军
吴保安
明平美
吴雪峰
张新民
唐会毅
张跃敏
贾智宏
Original Assignee
河南理工大学
重庆材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南理工大学, 重庆材料研究院有限公司 filed Critical 河南理工大学
Publication of WO2021148054A1 publication Critical patent/WO2021148054A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods

Definitions

  • the invention belongs to the technical field of alloy material manufacturing, and in particular relates to a copper alloy wire for a plug connector and a manufacturing method thereof.
  • the existing copper alloys for plug-in parts of new energy electric vehicles mainly include copper-silver alloys, copper-chromium alloys, copper-beryllium alloys and other materials, but the above series of alloys have the following problems: (1) Copper-silver alloys have good electrical conductivity , But its high-temperature strength and hardness are low, and the temperature rise during the current transmission process makes its mechanical properties seriously decrease, and it can only be used in small current occasions; (2) Alloy materials such as copper-chromium alloy and copper-beryllium alloy have excellent properties. Strength and hardness, but its conductivity is too low, and the temperature rises severely during high current transmission. In addition, because chromium, beryllium and other elements are highly toxic elements, they cause serious pollution to the environment and human body, and are strictly restricted during use.
  • the purpose of the present invention is to provide a copper alloy wire for a connector and a manufacturing method thereof, which is used to overcome the above-mentioned problem that copper-silver alloys cannot be used in high-current situations in the prior art, and alloy materials such as copper-chromium alloys and copper-beryllium alloys The conductivity is too low, and the temperature rise is serious in the process of large current transmission.
  • the invention provides a copper alloy wire for a connector.
  • the copper alloy wire includes the following components by mass percentage: silver: 5-15%, zirconium: 0.1-0.9%, rare earth metal: 0.05-0.2%, and the balance is copper ;
  • the rare earth metal is one or more of cerium, lanthanum, and yttrium.
  • the present invention also provides a method for manufacturing the copper alloy wire for the connector.
  • the manufacturing method includes the following steps:
  • S1 weigh the silver, copper, copper-zirconium master alloy and rare earth copper master alloy according to the raw material ratio, mix them and add them to the vacuum melting furnace crucible for smelting.
  • the material of the crucible is graphite crucible, so that the alloy is completely melted and the alloy liquid becomes clear.
  • the alloy liquid is stirred by mechanical stirring, and then cast into a mold for forming and cooling to obtain a copper alloy blank.
  • the preparation method of the copper-zirconium master alloy in step S1 is: putting copper and zirconium layered into a graphite crucible of a vacuum intermediate frequency melting furnace, and evacuating the furnace.
  • the vacuum degree is higher than 1.0 ⁇ 10 -1 Pa
  • the temperature rises and the temperature rises.
  • the temperature is as high as 1800 ⁇ 1900°C
  • the insulation material in the vacuum intermediate frequency melting furnace adopts graphite fiber
  • the temperature measurement adopts infrared temperature measurement method, so that the copper-zirconium intermediate alloy is completely melted and the copper-zirconium intermediate alloy liquid is transparent.
  • the mass ratio of copper and zirconium is 3:2.
  • the copper alloy is a rare earth: copper crucible the feed cassette into a vacuum furnace, the rare earth metal into a vacuum furnace, the furnace of the vacuum furnace is evacuated, a vacuum degree higher than 5 ⁇ 10 - After 1 Pa, fill the shielding gas to a vacuum degree of 0.01 ⁇ 0.05MPa, and evacuate again to a vacuum degree higher than 5 ⁇ 10 -1 Pa, then start to heat up, stop the vacuuming after the temperature rises to 500 ⁇ 900°C, and Fill the vacuum furnace with shielding gas to a vacuum of 0.2 ⁇ 0.4MPa, then continue to heat up to 1150 ⁇ 1450°C, after the copper is completely melted, add the rare earth metal in the feeding box to the crucible, and pour the shielding gas into the crucible Stir for 5-10min under the conditions of, and after cooling, obtain the rare earth copper master alloy;
  • the mass ratio of copper to rare earth metals is 19:1;
  • the protective gas is nitrogen or argon.
  • the smelting in step S1 is specifically: vacuuming the vacuum melting furnace.
  • the vacuum degree is higher than 5.0 ⁇ 10 -1 Pa, the temperature rises, and when the temperature rises to 400-600°C, the vacuuming is stopped, and the vacuum melting furnace is filled with protection
  • the gas is heated to a vacuum degree of 0.01 ⁇ 0.05MPa, and then the temperature is continued to rise to 1400 ⁇ 1750°C, until the alloy is completely melted and the alloy liquid becomes clear;
  • the protective gas is argon or nitrogen
  • the vacuum melting furnace is a vacuum intermediate frequency melting furnace
  • the diameter of the copper alloy blank is 120 mm to 200 mm.
  • step S2 placing the copper alloy billet obtained in step S1 in a vacuum heat treatment furnace for homogenizing heat treatment, and then removing surface oxides of the copper alloy billet by mechanical processing to obtain a copper alloy ingot.
  • the heat treatment in step S2 is specifically: evacuating the vacuum heat treatment furnace , starting to heat when the vacuum degree is higher than 5.0 ⁇ 10 -1 Pa, heating to 780-880°C and holding for 6-9 hours, and then rapidly cooling;
  • the rapid cooling rate is greater than 50°C/min;
  • the diameter of the copper alloy ingot is 118-200 mm.
  • step S3 the copper alloy ingot obtained in step S2 is subjected to hot extrusion processing through a large deformation hot extruder to obtain a copper alloy rod.
  • step S3 the copper alloy ingot is subjected to hot extrusion processing, the extrusion temperature of the hot extrusion is 400-700°C, and the diameter of the obtained copper alloy rod is 15-21 mm.
  • step S4 the copper alloy rod obtained in step S3 is subjected to multi-pass large-deformation cold drawing on a single-die wire drawing machine to obtain a large-deformation copper alloy rod.
  • the single-pass processing rate of the large-deformation cold drawing in step S4 is higher than 25%, and the diameter of the large-deformation copper alloy rod is 8-10 mm.
  • step S5 the large-deformation copper alloy rod obtained in step S4 is subjected to multi-pass small-deformation cold drawing on a straight-forward single-die wire drawing machine to obtain a small-deformation copper alloy rod.
  • step S5 the single-pass processing rate of the small-deformation cold drawing is 15%-25%, and the diameter of the small-deformation copper alloy rod is 2.5-3.5mm.
  • step S6 placing the small deformed copper alloy rod obtained in step S5 in a vacuum heat treatment furnace for solution treatment, and then performing fine drawing on a wire drawing machine, and then performing annealing treatment on a continuous on-line annealing device to prepare a copper alloy wire.
  • the solution treatment in step S6 is specifically that the vacuum heat treatment furnace adopts resistance heating, and the vacuum heat treatment furnace is evacuated.
  • the vacuum degree is higher than 1.0 ⁇ 10 -1 Pa
  • the temperature rises and the temperature rises to 400-550°C
  • the furnace body is heated. After keeping the temperature for 20-50 minutes, stop heating, and then take it out after cooling in a vacuum heat treatment furnace.
  • step S6 the fine drawing is to draw the small deformed copper alloy rod after solution treatment to a diameter of 0.3 ⁇ 0.8mm; the area reduction rate during the fine drawing process is 8.0 ⁇ 13.0%, and the speed of the fine drawing is not high Less than 400m/min; preferably, the concentration of the drawing liquid is higher than 5%.
  • step S6 the temperature of the annealing treatment is 500-750°C, the length of the annealing tube on the annealing equipment is 4-6m, and the speed of the annealing treatment is 60-210m/min;
  • a cooling liquid tank is provided at the exit of the annealing tube, the cooling liquid tank is used to cool the copper alloy wire after annealing treatment, the cooling medium in the cooling liquid tank is an alcohol solution, and the concentration of the alcohol solution is ⁇ 50%;
  • the rear section of the coolant tank is provided with a rubber sheet and an air knife, and the copper alloy wire is passed through the rubber sheet.
  • the thickness of the rubber sheet is 2 to 4 mm.
  • the copper alloy wire for the connector of the present invention includes copper, silver, zirconium, and rare earth metals.
  • the copper alloy wire of this component has high strength, high conductivity, good high temperature stability, good wear resistance, good processing performance, etc.
  • Copper can effectively increase the strength of copper alloys in the matrix, while reducing the conductivity of the alloy materials is limited, but for copper-silver alloys, its high temperature stability and wear resistance are poor, and its mechanical properties are severely reduced under high temperature conditions;
  • the addition of zirconium to the alloy matrix can effectively increase the recrystallization temperature of the alloy, thereby improving the high-temperature stability of the copper alloy, while reducing the alloy conductivity to a limited extent; the addition of trace rare earth metals in the alloy can further refine the alloy grains Moreover, the difference between the size and valence electrons of rare earth element atoms and copper atoms is large, which enhances the interaction force between the grain boundaries and rare earth cerium atoms.
  • rare earth metals especially rare earth cerium
  • the addition of rare earth metals makes the alloy formed Spherical rare earth compounds uniformly distributed in the grain boundary and within the grain can pin the movement of the grain boundary at high temperature, prevent the slip of the grain boundary at high temperature, inhibit the merger and growth of subcrystals in the recovery stage, and delay the subsequent recrystallization process
  • the formation and growth process of the middle-recrystallized nucleus further improves the strength and high temperature stability of the alloy material.
  • the manufacturing method of the copper alloy wire for the plug connector in the present invention eliminates the oxidation of alloy elements by adopting vacuum casting, and precisely controls the alloy composition and structure; through homogenization heat treatment and large deformation hot extrusion processing, the copper
  • the internal composition of the alloy is uniform, the structure is dense, and a high-performance copper alloy material with good consistency and dense structure is obtained; the structure is stabilized by solution treatment, so that the alloy elements are further precipitated, and the conductivity is further improved under the premise of less reduction in electrical conductivity.
  • Mechanical properties of alloy materials are provided.
  • the high-performance alloy wire for the connector of the present invention not only has high electrical conductivity, but also has high strength and wear resistance, but also has high temperature stability and good processability; the connector of the present invention is used for
  • the manufacturing method of high-performance alloy wire is to eliminate the oxidation of alloying elements by vacuum casting, precisely control the composition of the alloy, and make the internal composition of the copper alloy uniform and dense through the homogenization heat treatment and large deformation hot extrusion processing; Solution heat treatment is used to stabilize the structure, further precipitate the alloy elements, and further improve the mechanical properties of the alloy material under the premise of less reduction in electrical conductivity.
  • the zirconium raw materials and rare earth metal raw materials used in the following embodiments and comparative examples need to be prepared in advance into a copper-zirconium master alloy and a rare-earth copper master alloy, specifically,
  • Preparation of copper-zirconium master alloy Put copper and zirconium into the graphite crucible of a vacuum intermediate frequency smelting furnace in layers according to a mass ratio of 3:2, and vacuum the furnace, starting when the vacuum degree is higher than 1.0 ⁇ 10 -1 Pa Raise the temperature to 1850°C to make the copper-zirconium master alloy completely melt and the copper-zirconium master alloy liquid is transparent. After standing for 15 minutes, cast the copper-zirconium master alloy liquid into the mold, stop heating and cool to obtain the copper-zirconium intermediate alloy alloy;
  • Preparation of rare earth copper master alloy According to the mass ratio of copper to rare earth metal of 19:1, put the copper into the crucible of the vacuum furnace.
  • the crucible is made of graphite or boron nitride, and put the rare earth metal into the vacuum furnace feeding box
  • the furnace chamber of the vacuum furnace is evacuated.
  • nitrogen and argon are filled to the vacuum degree of 0.05 MPa, and then the vacuum degree is higher than 5 ⁇ 10 -1 Pa.
  • the box adds the rare earth metal to the crucible, and stirs for 8 minutes under the condition of nitrogen gas. After cooling, the rare earth copper intermediate alloy is obtained.
  • a copper alloy wire for a connector includes the following components by mass percentage: silver 5%, zirconium 0.1%, cerium 0.05%, and the balance is copper.
  • This embodiment also provides a method for manufacturing a copper alloy wire for a connector, which includes the following steps:
  • step S2 the copper alloy blank with a diameter of 120mm obtained in step S1 is placed in a vacuum heat treatment furnace and evacuated.
  • the vacuum degree is higher than 5.0 ⁇ 10 -1 Pa
  • heating is started, heated to 850°C and held for 8 hours, and then heated to 60°C.
  • step S3 the copper alloy ingot with a diameter of 118 mm obtained in step S2 is subjected to hot extrusion processing through a large deformation hot extruder, and the extrusion temperature of the hot extrusion is 500° C. to obtain a copper alloy rod with a diameter of 15 mm;
  • step S4 the copper alloy rod with a diameter of 15mm obtained in step S3 is performed on a single-die wire drawing machine with a single-pass processing rate of 30%, and multi-pass large-deformation cold drawing is performed to obtain a large-deformation copper alloy rod with a diameter of 8mm ;
  • step S5 the large-deformation copper alloy rod with a diameter of 8mm obtained in step S4 is subjected to multi-pass small-deformation cold drawing on a straight single-die wire drawing machine, and the single-pass processing rate is 20% to obtain a diameter of 2.5mm Small deformation copper alloy rod.
  • step S6 the small deformed copper alloy rod with a diameter of 2.5mm obtained in step S5 is placed in a vacuum heat treatment furnace, and the vacuum heat treatment furnace is evacuated.
  • the vacuum degree is higher than 1.0 ⁇ 10 -1 Pa, the temperature rises and the temperature rises to 500°C, heat the furnace body for 30 minutes, stop heating, then cool in a vacuum heat treatment furnace, and then finely draw the small deformed copper alloy rod after solution treatment.
  • the surface reduction rate during the fine drawing process is 10 %, the concentration of the drawing solution is higher than 5%, the fine drawing speed is 300m/min, and the copper alloy wire with a diameter of 0.3mm is drawn, and then annealed on the continuous on-line annealing equipment, the annealing temperature is 600°C , The length of the annealing tube on the annealing equipment is 5m, the annealing speed is 150m/min, the exit of the annealing tube is provided with a cooling liquid tank, and the back section of the cooling liquid tank is provided with a rubber sheet and an air knife. Through the rubber sheet, the thickness of the rubber sheet is 3mm. When the copper alloy wire passes through the rubber sheet and the air knife, the water on the surface of the copper alloy wire is completely removed, and a copper alloy wire with a diameter of 0.3mm is prepared.
  • the copper alloy wire prepared in the embodiment of the present invention is tested for mechanical properties, electrical conductivity, hardness and softening temperature;
  • the strength test refers to the GB-T 3048.2-2007 wire and cable electrical performance test method, and the electronic strength tester is used for testing;
  • the performance test refers to the GB-T 3048.2-2007 wire and cable electrical performance test method, and the double-arm bridge is used for the test;
  • the hardness test refers to the first part of the GB/T 230.1-2018 Rockwell hardness test of metal materials, and the hardness tester is used to test;
  • the temperature test refers to the GB/T 33370-2016 copper and copper alloy softening temperature determination method, and the Vickers hardness tester is used for the test.
  • the strength of the copper alloy wire prepared in this example is measured to be 420MPa and the elongation rate is 11%.
  • the conductivity is 83% IACS, the hardness is 132HV, and the softening temperature is 380°C, as shown in Table 1.
  • a copper alloy wire for a connector includes the following components by mass percentage: silver 5%, zirconium 0.5%, cerium 0.05%, and the balance is copper.
  • step S1 In the method for manufacturing a copper alloy wire for a connector provided in this embodiment, in step S1, 50g silver, 12.5g copper-zirconium master alloy, 10g cerium-copper master alloy and 927.5g copper are weighed according to the raw material ratio in step S1. Other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this embodiment are tested.
  • the test standards and methods are the same as those in the first embodiment.
  • the measured strength of the copper alloy wire prepared in this example is 470 MPa, the elongation is 11%, the conductivity is 76% IACS, the hardness is 149 HV, and the softening temperature is 460° C., as shown in Table 1.
  • a copper alloy wire for a connector includes the following components by mass percentage: silver 5%, zirconium 0.9%, lanthanum 0.05%, and the balance is copper.
  • step S1 In the method for manufacturing a copper alloy wire for a connector provided in this embodiment, in step S1, 50g silver, 22.5g copper-zirconium master alloy, 10g lanthanum-copper master alloy and 917.5g copper are weighed according to the raw material ratio in step S1. Other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this embodiment are tested.
  • the test standards and methods are the same as those in the first embodiment.
  • the measured strength of the copper alloy wire prepared in this example is 490 MPa, the elongation is 11%, the conductivity is 76% IACS, the hardness is 154 HV, and the softening temperature is 530° C., as shown in Table 1.
  • a copper alloy wire for a connector includes the following components by mass percentage: silver 10%, zirconium 0.1%, lanthanum 0.05%, and the balance is copper.
  • step S1 100g silver, 2.5g copper-zirconium master alloy, 10g lanthanum-copper master alloy and 887.5g copper are weighed according to the raw material ratio in step S1;
  • the single-pass processing rate in S4 is 40%, and multi-pass large-deformation cold drawing is performed to obtain a large-deformation copper alloy rod with a diameter of 9.0mm; in step S5, the single-pass processing rate is 15%, and the diameter is 3.0mm. Small deformed copper alloy rod.
  • Other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this embodiment are tested.
  • the test standards and methods are the same as those in the first embodiment.
  • the strength of the copper alloy wire prepared in this embodiment is 470 MPa, the elongation is 11%, the conductivity is 72% IACS, the hardness is 138 HV, and the softening temperature is 410° C., as shown in Table 1.
  • a copper alloy wire for a connector includes the following components by mass percentage: silver 10%, zirconium 0.5%, lanthanum 0.05%, and the balance is copper.
  • step S1 100g silver, 12.5g copper-zirconium master alloy, 10g lanthanum-copper master alloy and 877.5g copper are weighed according to the raw material ratio in step S1.
  • the other methods and steps are the same as in Embodiment 4, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this embodiment are tested.
  • the test standards and methods are the same as those in the first embodiment.
  • the strength of the copper alloy wire prepared in this embodiment is 511 MPa, the elongation is 11%, the conductivity is 70% IACS, the hardness is 162 HV, and the softening temperature is 510° C., as shown in Table 1.
  • a copper alloy wire for a connector includes the following components by mass percentage: silver 10%, zirconium 0.9%, yttrium 0.08%, and the balance is copper.
  • step S1 100 g of silver, 22.5 g of copper-zirconium master alloy, 16 g of yttrium-copper master alloy, and 861.5 g of copper are weighed according to the raw material ratio in step S1.
  • the other methods and steps are the same as in Embodiment 4, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this embodiment are tested.
  • the test standards and methods are the same as those in the first embodiment.
  • the strength of the copper alloy wire prepared in this embodiment is 521 MPa, the elongation is 11%, the conductivity is 67% IACS, the hardness is 164 HV, and the softening temperature is 570° C., as shown in Table 1.
  • a copper alloy wire for a connector includes the following components by mass percentage: 15% silver, 0.1% zirconium, 0.05% yttrium, and the balance is copper.
  • step S6 the small deformed copper alloy rod is placed in a vacuum heat treatment furnace, and the vacuum heat treatment furnace is evacuated.
  • the vacuum degree is higher than 1.0 ⁇ 10 -1 Pa, the temperature starts to rise, and the temperature rises to 400°C.
  • Stop heating then cool in a vacuum heat treatment furnace, and then finely draw the small deformed copper alloy rod after solution treatment.
  • the surface reduction rate during the fine drawing process is 8%, and the wire drawing liquid concentration is higher than 5%.
  • the fine drawing speed is 200m/min, and the copper alloy wire with a diameter of 0.5mm is drawn, and then annealed on the continuous on-line annealing equipment.
  • the annealing temperature is 750°C.
  • the length of the annealing tube on the annealing equipment is 5m, the annealing speed is 60m/min, and a copper alloy wire with a diameter of 0.5mm is prepared.
  • Other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this embodiment are tested.
  • the test standards and methods are the same as those in the first embodiment.
  • the strength of the copper alloy wire prepared in this example is 480 MPa, the elongation is 11.5%, the conductivity is 70% IACS, the hardness is 148 HV, and the softening temperature is 415° C., as shown in Table 1.
  • a copper alloy wire for a connector includes the following components by mass percentage: silver 15%, zirconium 0.5%, yttrium 0.08%, and the balance is copper.
  • step S1 In the method for manufacturing a copper alloy wire for a connector provided in this embodiment, 150g of silver, 12.5g of copper-zirconium master alloy, 16g of yttrium-copper master alloy and 821.5g of copper are weighed according to the raw material ratio in step S1. Other methods and steps are the same as in Embodiment 7, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this embodiment are tested.
  • the test standards and methods are the same as those in the first embodiment.
  • the strength of the copper alloy wire prepared in this embodiment is 531 MPa
  • the elongation is 10.5%
  • the conductivity is 68% IACS
  • the hardness is 166 HV
  • the softening temperature is 530° C., as shown in Table 1.
  • a copper alloy wire for a connector is provided.
  • the copper alloy wire includes the following components by mass percentage: 15% silver, 0.9% zirconium, 0.1% cerium, and the balance is copper.
  • step S1 In the method for manufacturing a copper alloy wire for a connector provided in this embodiment, 150g of silver, 22.5g of copper-zirconium master alloy, 20g of cerium-copper master alloy and 807.5g of copper are weighed according to the raw material ratio in step S1. Other methods and steps are the same as in Embodiment 7, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this embodiment are tested.
  • the test standards and methods are the same as those in the first embodiment.
  • the strength of the copper alloy wire prepared in this embodiment is 542 MPa
  • the elongation rate is 11%
  • the conductivity is 65% IACS
  • the hardness is 170 HV
  • the softening temperature is 585° C., as shown in Table 1.
  • a copper alloy wire for a connector includes the following components by mass percentage: silver 5%, zirconium 0.1%, cerium 0.1%, and the balance is copper.
  • step S1 In the method for manufacturing a copper alloy wire for a connector provided in this embodiment, in step S1, 50g silver, 2.5g copper-zirconium master alloy, 20g cerium-copper master alloy and 927.5g copper are weighed according to the raw material ratio in step S1. Other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this embodiment are tested.
  • the test standards and methods are the same as those in the first embodiment.
  • the strength of the copper alloy wire prepared in this embodiment is 425 MPa
  • the elongation rate is 11%
  • the conductivity is 80% IACS
  • the hardness is 138 HV
  • the softening temperature is 380° C., as shown in Table 1.
  • a copper alloy wire for a connector includes the following components by mass percentage: silver 10%, zirconium 0.5%, lanthanum 0.1%, and the balance is copper.
  • step S1 100g silver, 12.5g copper-zirconium master alloy, 20g lanthanum-copper master alloy and 867.5g copper are weighed according to the raw material ratio in step S1.
  • the other methods and steps are the same as in Embodiment 5, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this embodiment are tested.
  • the test standards and methods are the same as those in the first embodiment.
  • the strength of the copper alloy wire prepared in this example is 519 MPa, the elongation is 11%, the conductivity is 69% IACS, the hardness is 164 HV, and the softening temperature is 510° C., as shown in Table 1.
  • a copper alloy wire for a connector is provided.
  • the copper alloy wire includes the following components by mass percentage: 15% silver, 0.9% zirconium, 0.1% cerium, and the balance is copper.
  • step S1 150g of silver, 22.5g of copper-zirconium master alloy, 20g of cerium-copper master alloy and 807.5g of copper are weighed according to the raw material ratio in step S1. Other methods and steps are the same as in Embodiment 9, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this embodiment are tested.
  • the test standards and methods are the same as those in the first embodiment.
  • the strength of the copper alloy wire prepared in this example is 550 MPa, the elongation is 11%, the conductivity is 63% IACS, the hardness is 175 HV, and the softening temperature is 595° C., as shown in Table 1.
  • a copper alloy wire for a connector includes the following components by mass percentage: silver 5%, zirconium 0.1%, cerium 0.05%, and the balance is copper.
  • This embodiment also provides a method for manufacturing a copper alloy wire for a connector.
  • the uniform post-treatment temperature in step S2 is heating to 800° C. and holding for 7 hours.
  • the other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this embodiment are tested.
  • the test standards and methods are the same as those in the first embodiment.
  • the strength of the copper alloy wire prepared in this embodiment is 416 MPa
  • the elongation is 11%
  • the conductivity is 81% IACS
  • the hardness is 130 HV
  • the softening temperature is 375° C., as shown in Table 1.
  • a copper alloy wire for a connector includes the following components by mass percentage: silver 5%, zirconium 0.1%, cerium 0.05%, and the balance is copper.
  • This embodiment also provides a method for manufacturing a copper alloy wire for a connector.
  • step S4 the cold-working single-pass processing rate is changed, and the single-pass processing rate is 45%.
  • the other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this embodiment are tested.
  • the test standards and methods are the same as those in the first embodiment.
  • the strength of the copper alloy wire prepared in this example is 425 MPa, the elongation is 11%, the conductivity is 83% IACS, the hardness is 134 HV, and the softening temperature is 385° C., as shown in Table 1.
  • This comparative example provides a copper alloy wire for a connector.
  • the copper alloy wire includes the following components by mass percentage: silver 5%, cerium 0.05%, and the balance is copper.
  • step S1 In the method for manufacturing a copper alloy wire for a connector provided in this comparative example, in step S1, 50 g of silver, 10 g of cerium-copper master alloy and 940 g of copper are weighed according to the raw material ratio. Other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this comparative example were tested.
  • the test standards and methods are the same as in Example 1.
  • the measured strength of the copper alloy wire prepared in this comparative example is 380 MPa, the elongation is 11%, the conductivity is 83% IACS, the hardness is 110 HV, and the softening temperature is 320° C., as shown in Table 1.
  • This comparative example provides a copper alloy wire for a connector.
  • the copper alloy wire includes the following components by mass percentage: 15% silver, 0.05% yttrium, and the balance is copper.
  • step S1 In the method for manufacturing a copper alloy wire for a connector provided in this comparative example, 150 g of silver, 10 g of yttrium copper master alloy and 840 g of copper are weighed according to the raw material ratio in step S1. Other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this comparative example were tested.
  • the test standards and methods are the same as in Example 1.
  • the measured strength of the copper alloy wire prepared in this comparative example is 450 MPa, the elongation is 11%, the conductivity is 71% IACS, the hardness is 124 HV, and the softening temperature is 380° C., as shown in Table 1.
  • This comparative example provides a copper alloy wire for a connector.
  • the copper alloy wire includes the following components by mass percentage: zirconium 0.9%, cerium 0.1%, and the balance is copper.
  • step S1 In the method for manufacturing a copper alloy wire for a connector provided in this comparative example, in step S1, 22.5g copper-zirconium master alloy, 20g cerium-copper master alloy and 957.5g copper are weighed according to the raw material ratio. Other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this comparative example were tested.
  • the test standards and methods are the same as in Example 1.
  • the measured strength of the copper alloy wire prepared in this comparative example is 460 MPa, the elongation is 11%, the conductivity is 68% IACS, the hardness is 148 HV, and the softening temperature is 505° C., as shown in Table 1.
  • This comparative example provides a copper alloy wire for a connector.
  • the copper alloy wire includes the following components by mass percentage: 10% silver, and the balance is copper.
  • step S1 100 g of silver and 900 g of copper are weighed according to the raw material ratio. Other methods and steps are the same as in Embodiment 1, and will not be repeated here.
  • the mechanical properties, electrical conductivity, hardness, and softening temperature of the copper alloy wire for the connector prepared in this comparative example were tested.
  • the test standards and methods are the same as in Example 1.
  • the measured strength of the copper alloy wire prepared in this comparative example is 435 MPa, the elongation is 11%, the conductivity is 74% IACS, the hardness is 118 HV, and the softening temperature is 340° C., as shown in Table 1.
  • Table 1 below is the performance data of the copper alloy wires prepared in each embodiment and comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

本发明提供一种插接件用铜合金线及其制造方法,本发明中的铜合金线采用真空浇铸,精确控制合金成分和组织结构;通过均匀化热处理和热挤压加工,获得一致性好、组织致密的高性能铜合金材料;通过固溶处理稳定组织,进一步提升合金材料的力学性能,最终得到强度高、导电率高、高温稳定性好、耐磨性好、加工性能好的铜合金线。

Description

一种插接件用铜合金线及其制造方法 技术领域
本发明属于合金材料制造技术领域,具体涉及一种插接件用铜合金线及其制造方法。
背景技术
目前,现有新能源电动汽车插接件用铜合金主要有铜银合金、铜铬合金、铜铍合金等材料,但对上述系列合金存在如下问题:(1)铜银合金具有良好的导电性,但其高温强度和硬度较低,在电流传输过程中的温升使其力学性能严重下降,只能在小电流场合下使用;(2)铜铬合金、铜铍合金等合金材料具有优良的强度和硬度,但其导电率过低,大电流传输过程中温升严重;此外,由于铬、铍等元素属于剧毒元素,对环境和人体造成严重污染,在使用过程中受到严格限制。
因此,需要提供一种针对上述现有技术不足的改进技术方案。
发明内容
本发明的目的提供一种插接件用铜合金线及其制造方法,用于克服上述现有技术中铜银合金无法在大电流场合下使用的问题以及铜铬合金、铜铍合金等合金材料导电率过低,在大电流传输过程中温升严重的问题。
为了实现上述目的,本发明提供如下技术方案:
本发明提供一种插接件用铜合金线,铜合金线包括以下质量百分比的组份:银:5~15%,锆:0.1~0.9%,稀土金属:0.05~0.2%,余量为铜;
优选地,稀土金属为铈、镧、钇中的一种或多种。
为了进一步理解本发明的插接件用铜合金线,本发明还提供了一种插接件用铜合金线的制造方法,制造方法包括以下步骤:
S1,按原料配比称取银、铜、铜锆中间合金和稀土铜中间合金,混合后 加入真空熔炼炉坩埚中进行熔炼,坩埚的材料为石墨坩埚,使合金完全熔融且合金液变清澈,通过机械搅拌方式对合金液进行搅拌,然后浇铸到模具中成型并冷却,得到铜合金坯料。
步骤S1中铜锆中间合金的制备方法为:将铜和锆分层放入真空中频熔炼炉的石墨坩埚中,对炉膛抽真空,真空度高于1.0×10 -1Pa时开始升温,温度升高至1800~1900℃,真空中频熔炼炉中的保温材料采用石墨纤维,测温采用红外测温方式,使铜锆中间合金完全熔融且铜锆中间合金液透亮,静置保温10~20min后,将铜锆中间合金液浇铸到模具中,停止加热并冷却,得到铜锆中间合金;
优选地,铜和锆的质量比为3:2。
步骤S1中稀土铜中间合金的制备方法为:将铜放入真空炉的坩埚中,将稀土金属放入真空炉的加料盒中,对真空炉的炉膛抽真空,真空度高于5×10 -1Pa后,充入保护气体至真空度为0.01~0.05MPa,再次抽真空至真空度高于5×10 -1Pa后,开始升温,温度升至500~900℃后停止抽真空,并向真空炉中充入保护气体至真空度为0.2~0.4MPa,然后继续升温至1150~1450℃,待铜完全熔融后,将加料盒中的稀土金属加入到坩埚中,在坩埚中冲入保护气体的条件下搅拌5~10min,经冷却后,得到稀土铜中间合金;
优选地,铜与稀土金属都质量比为19:1;
优选地,保护气体为氮气或氩气。
步骤S1中熔炼具体为,对真空熔炼炉抽真空,真空度高于5.0×10 -1Pa时开始升温,温度升至400~600℃后,停止抽真空,并向真空熔炼炉中充入保护气体至真空度为0.01~0.05MPa,然后继续升温至1400~1750℃,待合金完全熔融且合金液变清澈;
优选地,保护气体为氩气或氮气;
更优选地,真空熔炼炉为真空中频熔炼炉;
更优选地,铜合金坯料的直径为120mm~200mm。
S2,将步骤S1中得到的铜合金坯料放置于真空热处理炉中,进行均匀化热处理,然后通过机械加工的方式去除铜合金坯料的表面氧化物,得到铜合金铸锭。
步骤S2中热处理具体为,对真空热处理炉抽真空,当真空度高于5.0× 10 -1Pa时开始加热,加热至780~880℃并保温6~9h,然后快速冷却;
优选地,快速冷却的速率大于50℃/min;
更优选地,铜合金铸锭的直径为118~200mm。
S3,将步骤S2中得到的铜合金铸锭通过大变形热挤压机进行热挤压加工,得到铜合金杆。
步骤S3中对铜合金铸锭进行热挤压加工,热挤压的挤压温度为400~700℃,得到的铜合金杆的直径为15~21mm。
S4,将步骤S3中得到的铜合金杆在单模具拉丝机上进行多道次大变形冷拉拔,得到大变形铜合金杆。
步骤S4中的大变形冷拉拔的单道次加工率高于25%,大变形铜合金杆的直径为8~10mm。
S5,将步骤S4中得到的大变形铜合金杆在直进式单模具拉丝机上进行多道次小变形冷拉拔,得到小变形铜合金杆。
步骤S5中小变形冷拉拔的单道次加工率为15%~25%,小变形铜合金杆的直径为2.5~3.5mm。
S6,将步骤S5中得到的小变形铜合金杆置于真空热处理炉中进行固溶处理后,在拉丝机上进行微细拉制,然后在连续在线退火设备上进行退火处理,制备出铜合金线。
步骤S6中固溶处理具体为,真空热处理炉采用电阻加热,对真空热处理炉抽真空,真空度高于1.0×10 -1Pa时开始升温,温度升高至400~550℃,对炉体进行保温20~50min后,停止加热,然后在真空热处理炉中冷却后取出。
步骤S6中微细拉制是将固溶处理后的小变形铜合金杆拉制到直径为0.3~0.8mm;微细拉制过程中的减面率为8.0~13.0%,微细拉制的速度不高于400m/min;优选地,拉丝液的浓度高于5%。
步骤S6中退火处理的温度为500~750℃,退火设备上的退火管的长度为4~6m,退火处理的速度为60~210m/min;
优选地,退火管的出口处设置有冷却液槽,冷却液槽用于冷却退火处理后的铜合金线,冷却液槽内的冷却介质为酒精溶液,酒精溶液的浓度≥50%;
更优选地,冷却液槽的后段设置有橡胶片和风刀,将铜合金线在橡胶片 中穿过,橡胶片的厚度为2~4mm,当铜合金线经过橡胶片和风刀后,铜合金线表面的水分被完全去除。
有益效果:
本发明中的插接件用铜合金线包括铜、银、锆、稀土金属,该组份的铜合金线具有强度高、导电率高、高温稳定性好、耐磨性好、加工性能好等优点;铜在基体中可以有效提升铜合金的强度,同时对合金材料的电导率降低有限,但对于铜银合金,其高温稳定性和耐磨性较差,在高温条件下力学性能下降严重;锆添加到合金基体中,可以有效提升合金的再结晶温度,进而提升铜合金的高温稳定性,同时对合金导电率降低有限;合金中微量稀土金属的加入,可以进一步使合金晶粒得到细化,再者稀土元素原子与铜的原子大小及价电子的差别较大,使晶界与稀土铈原子之间的相互作用力增强,特别是稀土金属(特别是稀土铈)的加入使合金中形成均匀分布于晶界和晶内的球状稀土化合物,在高温下能够钉扎住晶界的运动,阻止高温下晶界的滑移,抑制回复阶段亚晶的合并与长大,推迟随后再结晶过程中再结晶晶核的形成和长大过程,进一步提升了合金材料的强度和高温稳定性。
本发明中的插接件用铜合金线的制造方法,通过采用真空浇铸,消除了合金元素的氧化,精确控制了合金成分和组织结构;通过均匀化热处理和大变形热挤压加工,使得铜合金内部的成分均匀、组织致密,获得了一致性好、组织致密的高性能铜合金材料;通过固溶处理来稳定组织,使合金元素进一步析出,在导电率降低较少的前提下进一步提升了合金材料的力学性能。
具体实施方式
本发明中的插接件用高性能合金线,不仅具有高的导电性,同时具有高的强度和耐磨性,还具有高温稳定性和良好的可加工性能;本发明中的插接件用高性能合金线的制造方法是通过采用真空浇铸来消除合金元素的氧化,精确控制了合金的组份,通过均匀化热处理和大变形热挤压加工,使得铜合金内部成分均匀、组织致密;通过固溶热处理来稳定组织,使合金元素进一步析出,在导电率降低较少的前提下进一步提升了合金材料的力学性能。
以下各实施例与对照例中采用的锆原料和稀土金属原料需要预先制成铜锆中间合金和稀土铜中间合金,具体为,
铜锆中间合金的制备:按照质量比为3:2的比例将铜和锆分层放入真空中频熔炼炉的石墨坩埚中,对炉膛抽真空,真空度高于1.0×10 -1Pa时开始升温,温度升高至1850℃,使铜锆中间合金完全熔融且铜锆中间合金液透亮,静置保温15min后,将铜锆中间合金液浇铸到模具中,停止加热并冷却,得到铜锆中间合金;
稀土铜中间合金的制备:按照铜与稀土金属的质量比为19:1的比例,将铜放入真空炉的坩埚中,坩埚采用石墨或氮化硼材料,将稀土金属放入真空炉加料盒中,对真空炉的炉膛抽真空,真空度高于5×10 -1Pa后,充入氮气、氩气至真空度为0.05MPa,然后抽真空至真空度高于5×10 -1Pa后,开始升温,待温度升至800℃后,停止抽真空并向真空炉中充入氮气至真空度为0.3MPa,然后继续升温至1400℃,待铜完全熔融且铜液变清澈后,移动加料盒将稀土金属加入到坩埚中,并在充入氮气都条件下搅拌8min,经冷却后,得到稀土铜中间合金。
实施例1
本实施例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:银5%,锆0.1%,铈0.05%,余量为铜。
本实施例中还提供一种插接件用铜合金线的制造方法,包括以下步骤:
S1,按原料配比称取50g银、2.5g铜锆中间合金、10g铈铜中间合金和937.5g铜,混合后加入真空中频熔炼炉坩埚中,真空度高于5.0×10 -1Pa时开始升温,温度升至500℃后,停止抽真空,并向真空中频熔炼炉中充入氩气至真空度为0.03MPa,然后继续升温至1600℃,待合金完全熔融且合金液变清澈,通过机械搅拌方式对合金液进行搅拌,然后浇铸到模具中成型并冷却,得到直径为120mm的铜合金坯料;
S2,将步骤S1中得到的直径为120mm的铜合金坯料放置于真空热处理炉中抽真空,当真空度高于5.0×10 -1Pa时开始加热,加热至850℃并保温8h,然后以60℃/min的速率进行快速冷却,然后通过机械加工的方式去除铜合金坯料的表面氧化物,得到直径为118mm的铜合金铸锭;
S3,将步骤S2中得到的直径为118mm的铜合金铸锭通过大变形热挤压机进行热挤压加工,热挤压的挤压温度为500℃,得到直径为15mm的铜合金杆;
S4,将步骤S3中得到的直径为15mm的铜合金杆在单模具拉丝机上以单道次加工率为30%,进行多道次大变形冷拉拔,得到直径为8mm的大变形铜合金杆;
S5,将步骤S4中得到的直径为8mm的大变形铜合金杆在直进式单模具拉丝机上进行多道次小变形冷拉拔,单道次加工率为20%,得到直径为2.5mm的小变形铜合金杆。
S6,将步骤S5中得到的直径为2.5mm的小变形铜合金杆置于真空热处理炉中,对真空热处理炉抽真空,真空度高于1.0×10 -1Pa时开始升温,温度升高至500℃,对炉体进行保温30min后,停止加热,然后在真空热处理炉中冷却,然后将固溶处理后的小变形铜合金杆进行微细拉制,微细拉制过程中的减面率为10%,拉丝液浓度高于5%,微细拉制的速度为300m/min,拉制成直径为0.3mm的铜合金线,然后在连续在线退火设备上进行退火处理,退火处理的温度为600℃,退火设备上的退火管的长度为5m,退火处理的速度为150m/min,退火管的出口处设置有冷却液槽,冷却液槽的后段设置有橡胶片和风刀,将铜合金线在橡胶片中穿过,橡胶片的厚度为3mm,当铜合金线经过橡胶片和风刀后,铜合金线表面的水分被完全去除,制备出直径为0.3mm的铜合金线。
性能测试:
将本发明实施例中制备的铜合金线进行力学性能、导电性能、硬度以及软化温度的测试;强度测试参照GB-T 3048.2-2007电线电缆电性能试验方法,采用电子强度测试仪进行测试;导电性能测试参照GB-T 3048.2-2007电线电缆电性能试验方法,采用双臂电桥进行测试;硬度测试参照GB/T 230.1-2018金属材料洛氏硬度试验第1部分,采用硬度计进行测试;软化温度测试参照GB/T 33370-2016铜及铜合金软化温度的测定方法,采用维氏硬度计进行测试。
通过对所制备的插接件用铜合金线进行力学性能、导电性能、硬度及软化温度的测试,测得本实施例中所制备的铜合金线的强度为420MPa,伸长率为11%,导电率为83%IACS,硬度为132HV,软化温度为380℃,如表1所示。实施例2
本实施例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分 比的组份:银5%,锆0.5%,铈0.05%,余量为铜。
本实施例中提供的一种插接件用铜合金线的制造方法中,步骤S1中按原料配比称取50g银、12.5g铜锆中间合金、10g铈铜中间合金和927.5g铜。其他方法和步骤与实施例1相同,在此不再赘述。
对本实施例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本实施例中所制备的铜合金线的强度为470MPa,伸长率为11%,导电率为76%IACS,硬度为149HV,软化温度为460℃,如表1所示。
实施例3
本实施例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:银5%,锆0.9%,镧0.05%,余量为铜。
本实施例中提供的一种插接件用铜合金线的制造方法中,步骤S1中按原料配比称取50g银、22.5g铜锆中间合金、10g镧铜中间合金和917.5g铜。其他方法和步骤与实施例1相同,在此不再赘述。
对本实施例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本实施例中所制备的铜合金线的强度为490MPa,伸长率为11%,导电率为76%IACS,硬度为154HV,软化温度为530℃,如表1所示。
实施例4
本实施例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:银10%,锆0.1%,镧0.05%,余量为铜。
本实施例中提供的一种插接件用铜合金线的制造方法中,步骤S1中按原料配比称取100g银、2.5g铜锆中间合金、10g镧铜中间合金和887.5g铜;步骤S4中单道次加工率为40%,进行多道次大变形冷拉拔,得到直径为9.0mm的大变形铜合金杆;步骤S5中单道次加工率为15%,得到直径为3.0mm的小变形铜合金杆。其他方法和步骤与实施例1相同,在此不再赘述。
对本实施例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本实施例中所制备的铜合金线的强度为470MPa,伸长率为11%,导电率为72%IACS,硬度为138HV,软化温度为410℃,如表1所示。
实施例5
本实施例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:银10%,锆0.5%,镧0.05%,余量为铜。
本实施例中提供的一种插接件用铜合金线的制造方法中,步骤S1中按原料配比称取100g银、12.5g铜锆中间合金、10g镧铜中间合金和877.5g铜。其他方法和步骤与实施例4相同,在此不再赘述。
对本实施例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本实施例中所制备的铜合金线的强度为511MPa,伸长率为11%,导电率为70%IACS,硬度为162HV,软化温度为510℃,如表1所示。
实施例6
本实施例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:银10%,锆0.9%,钇0.08%,余量为铜。
本实施例中提供的一种插接件用铜合金线的制造方法中,步骤S1中按原料配比称取100g银、22.5g铜锆中间合金、16g钇铜中间合金和861.5g铜。其他方法和步骤与实施例4相同,在此不再赘述。
对本实施例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本实施例中所制备的铜合金线的强度为521MPa,伸长率为11%,导电率为67%IACS,硬度为164HV,软化温度为570℃,如表1所示。
实施例7
本实施例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:银15%,锆0.1%,钇0.05%,余量为铜。
本实施例中提供的一种插接件用铜合金线的制造方法中,步骤S1中按原料配比称取150g银、2.5g铜锆中间合金、10g钇铜中间合金和837.5g铜;步骤S6中将小变形铜合金杆置于真空热处理炉中,对真空热处理炉抽真空,真空度高于1.0×10 -1Pa时开始升温,温度升高至400℃,对炉体进行保温50min后,停止加热,然后在真空热处理炉中冷却,然后将固溶处理后的小变形铜合金杆进行微细拉制,微细拉制过程中的减面率为8%,拉丝液浓度高于5%,微细拉制的速度为200m/min,拉制成直径为0.5mm的铜合金线, 然后在连续在线退火设备上进行退火处理,退火处理的温度为750℃,退火设备上的退火管的长度为5m,退火处理的速度为60m/min,制备出直径为0.5mm的铜合金线。其他方法和步骤与实施例1相同,在此不再赘述。
对本实施例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本实施例中所制备的铜合金线的强度为480MPa,伸长率为11.5%,导电率为70%IACS,硬度为148HV,软化温度为415℃,如表1所示。
实施例8
本实施例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:银15%,锆0.5%,钇0.08%,余量为铜。
本实施例中提供的一种插接件用铜合金线的制造方法中,步骤S1中按原料配比称取150g银、12.5g铜锆中间合金、16g钇铜中间合金和821.5g铜。其他方法和步骤与实施例7相同,在此不再赘述。
对本实施例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本实施例中所制备的铜合金线的强度为531MPa,伸长率为10.5%,导电率为68%IACS,硬度为166HV,软化温度为530℃,如表1所示。
实施例9
本实施例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:银15%,锆0.9%,铈0.1%,余量为铜。
本实施例中提供的一种插接件用铜合金线的制造方法中,步骤S1中按原料配比称取150g银、22.5g铜锆中间合金、20g铈铜中间合金和807.5g铜。其他方法和步骤与实施例7相同,在此不再赘述。
对本实施例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本实施例中所制备的铜合金线的强度为542MPa,伸长率为11%,导电率为65%IACS,硬度为170HV,软化温度为585℃,如表1所示。
实施例10
本实施例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:银5%,锆0.1%,铈0.1%,余量为铜。
本实施例中提供的一种插接件用铜合金线的制造方法中,步骤S1中按原料配比称取50g银、2.5g铜锆中间合金、20g铈铜中间合金和927.5g铜。其他方法和步骤与实施例1相同,在此不再赘述。
对本实施例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本实施例中所制备的铜合金线的强度为425MPa,伸长率为11%,导电率为80%IACS,硬度为138HV,软化温度为380℃,如表1所示。
实施例11
本实施例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:银10%,锆0.5%,镧0.1%,余量为铜。
本实施例中提供的一种插接件用铜合金线的制造方法中,步骤S1中按原料配比称取100g银、12.5g铜锆中间合金、20g镧铜中间合金和867.5g铜。其他方法和步骤与实施例5相同,在此不再赘述。
对本实施例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本实施例中所制备的铜合金线的强度为519MPa,伸长率为11%,导电率为69%IACS,硬度为164HV,软化温度为510℃,如表1所示。
实施例12
本实施例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:银15%,锆0.9%,铈0.1%,余量为铜。
本实施例中提供的一种插接件用铜合金线的制造方法中,步骤S1中按原料配比称取150g银、22.5g铜锆中间合金、20g铈铜中间合金和807.5g铜。其他方法和步骤与实施例9相同,在此不再赘述。
对本实施例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本实施例中所制备的铜合金线的强度为550MPa,伸长率为11%,导电率为63%IACS,硬度为175HV,软化温度为595℃,如表1所示。
实施例13
本实施例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:银5%,锆0.1%,铈0.05%,余量为铜。
本实施例中还提供一种插接件用铜合金线的制造方法中,步骤S2中的均匀后处理温度为,加热至800℃并保温7h。其它方法和步骤与实施例1相同,在此不再赘述。
对本实施例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本实施例中所制备的铜合金线的强度为416MPa,伸长率为11%,导电率为81%IACS,硬度为130HV,软化温度为375℃,如表1所示。
实施例14
本实施例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:银5%,锆0.1%,铈0.05%,余量为铜。
本实施例中还提供一种插接件用铜合金线的制造方法中,步骤S4中更改了冷加工单道次加工率,单道次加工率为45%。其它方法和步骤与实施例1相同,在此不再赘述。
对本实施例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本实施例中所制备的铜合金线的强度为425MPa,伸长率为11%,导电率为83%IACS,硬度为134HV,软化温度为385℃,如表1所示。
对照例1
本对照例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:银5%,铈0.05%,余量为铜。
本对照例中提供的一种插接件用铜合金线的制造方法中,步骤S1中按原料配比称取50g银、10g铈铜中间合金和940g铜。其他方法和步骤与实施例1相同,在此不再赘述。
对本对照例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本对照例中所制备的铜合金线的强度为380MPa,伸长率为11%,导电率为83%IACS,硬度为110HV,软化温度为320℃,如表1所示。
对照例2
本对照例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:银15%,钇0.05%,余量为铜。
本对照例中提供的一种插接件用铜合金线的制造方法中,步骤S1中按原料配比称取150g银、10g钇铜中间合金和840g铜。其他方法和步骤与实施例1相同,在此不再赘述。
对本对照例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本对照例中所制备的铜合金线的强度为450MPa,伸长率为11%,导电率为71%IACS,硬度为124HV,软化温度为380℃,如表1所示。
对照例3
本对照例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:锆0.9%,铈0.1%,余量为铜。
本对照例中提供的一种插接件用铜合金线的制造方法中,步骤S1中按原料配比称取22.5g铜锆中间合金、20g铈铜中间合金和957.5g铜。其他方法和步骤与实施例1相同,在此不再赘述。
对本对照例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本对照例中所制备的铜合金线的强度为460MPa,伸长率为11%,导电率为68%IACS,硬度为148HV,软化温度为505℃,如表1所示。
对照例4
本对照例中提供一种插接件用铜合金线,该铜合金线包括以下质量百分比的组份:银10%,余量为铜。
本对照例中提供的一种插接件用铜合金线的制造方法中,步骤S1中按原料配比称取100g银和900g铜。其他方法和步骤与实施例1相同,在此不再赘述。
对本对照例中所制备的插接件用铜合金线进行力学性能、导电性能、硬度以及软化温度的测试,测试标准和方法与实施例1相同。
测得本对照例中所制备的铜合金线的强度为435MPa,伸长率为11%,导电率为74%IACS,硬度为118HV,软化温度为340℃,如表1所示。
下表1为各实施例和对照例中所制备的铜合金线的性能数据。
表1、各实施例和对照例中所制备的铜合金线的性能
Figure PCTCN2021077965-appb-000001

Claims (8)

  1. 一种插接件用铜合金线的制造方法,其特征在于,所述制造方法包括以下步骤:
    S1,按原料配比称取银、铜、铜锆中间合金和稀土铜中间合金,混合后加入真空炉中进行熔炼,使合金完全熔融后,对合金液进行搅拌,然后浇铸成型并冷却,得到铜合金坯料;
    S2,将步骤S1中得到的所述铜合金坯料放置于真空热处理炉中,进行均匀化热处理,然后通过机械加工的方式去除所述铜合金坯料的表面氧化物,得到铜合金铸锭;
    S3,将步骤S2中得到的所述铜合金铸锭进行热挤压加工,所述热挤压的挤压温度为400~700℃,得到的所述铜合金杆的直径为15~21mm;
    S4,将步骤S3中得到的所述铜合金杆在拉丝机上进行多道次大变形冷拉拔,得到直径为8~10mm大变形铜合金杆;
    S5,将步骤S4中得到的所述大变形铜合金杆在拉丝机上进行多道次小变形冷拉拔,得到直径为2.5~3.5mm小变形铜合金杆;
    S6,将步骤S5中得到的所述小变形铜合金杆置于真空热处理炉中进行固溶处理后,在拉丝机上进行微细拉制,然后在退火设备上进行退火处理,制备出铜合金线。
  2. 如权利要求1所述的插接件用铜合金线的制造方法,其特征在于,步骤S1中所述铜锆中间合金的制备方法为:将铜和锆分层放入真空熔炼炉中,抽真空,真空度高于1.0×10 -1Pa时开始升温,温度升高至1800~1900℃,使铜锆中间合金完全熔融且铜锆中间合金液透亮,静置保温10~20min后,将所述铜锆中间合金液浇铸到模具中,停止加热并冷却,得到铜锆中间合金。
  3. 如权利要求1所述的插接件用铜合金线的制造方法,其特征在于,步骤S1中所述稀土铜中间合金的制备方法为:将铜放入真空炉的坩埚中,将稀土金属放入真空炉的加料盒中,对真空炉的炉膛抽真空,真空度高于5×10 -1Pa后,充入保护气体至真空度为0.01~0.05MPa,再次抽真空至真空度高于5×10 -1Pa后,开始升温,温度升至500~900℃后停止抽真空,并向真空炉中充入保护气体至真空度为0.2~0.4MPa,然后继续升温至1150~1450℃, 待铜完全熔融后,将加料盒中的稀土金属加入到坩埚中,在坩埚中充入保护气体的条件下搅拌5~10min,经冷却后,得到稀土铜中间合金。
  4. 如权利要求1所述的插接件用铜合金线的制造方法,其特征在于,步骤S1中所述熔炼具体为,对真空炉抽真空,真空度高于5.0×10 -1Pa时开始升温,温度升至400~600℃后,停止抽真空,并向真空炉中充入保护气体至真空度为0.01~0.05MPa,然后继续升温至1400~1750℃,待合金完全熔融且合金液变清澈。
  5. 如权利要求1所述的插接件用铜合金线的制造方法,其特征在于,步骤S6中所述固溶处理具体为,对真空热处理炉抽真空,真空度高于1.0×10 -1Pa时开始升温,温度升高至400~550℃,保温20~50min后,停止加热,然后随炉冷却后取出。
  6. 如权利要求5所述的插接件用铜合金线的制造方法,其特征在于,步骤S6中所述微细拉制是将固溶处理后的小变形铜合金杆拉制到直径为0.3~0.8mm;所述微细拉制过程中的减面率为8.0~13.0%,所述微细拉制的速度不高于400m/min。
  7. 如权利要求6所述的插接件用铜合金线的制造方法,其特征在于,步骤S6中所述退火处理的温度为500~750℃,所述退火设备上的退火管的长度为4~6m,所述退火处理的速度为60~210m/min。
  8. 一种如权利要求1~7中任一项所述的插接件用铜合金线,其特征在于,所述铜合金线包括以下质量百分比的组份:银:5~15%,锆:0.1~0.9%,稀土金属:0.05~0.2%,余量为铜;所述稀土金属为铈、镧、钇中的一种或多种。
PCT/CN2021/077965 2020-03-19 2021-02-25 一种插接件用铜合金线及其制造方法 WO2021148054A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010198013.XA CN111363937B (zh) 2020-03-19 2020-03-19 一种插接件用铜合金线及其制造方法
CN202010198013.X 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021148054A1 true WO2021148054A1 (zh) 2021-07-29

Family

ID=71204642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077965 WO2021148054A1 (zh) 2020-03-19 2021-02-25 一种插接件用铜合金线及其制造方法

Country Status (3)

Country Link
CN (1) CN111363937B (zh)
LU (1) LU500862B1 (zh)
WO (1) WO2021148054A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113976656A (zh) * 2021-10-26 2022-01-28 江西云泰铜业有限公司 一种高强度耐弯折铜线的制备方法
CN114345973A (zh) * 2021-12-24 2022-04-15 通鼎互联信息股份有限公司 一种成品铜丝氧化后清理方法
CN114472578A (zh) * 2022-01-13 2022-05-13 武汉正威新材料科技有限公司 一种掺Re铜锡合金接触线及其制备方法
CN114649109A (zh) * 2022-04-24 2022-06-21 福建南新电缆有限公司 一种高导电率抗氧化电缆及其制作方法
CN116020988A (zh) * 2023-02-07 2023-04-28 虹华科技股份有限公司 一种6n以上高纯无氧铜棒的加工工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363937B (zh) * 2020-03-19 2021-09-21 河南理工大学 一种插接件用铜合金线及其制造方法
CN113560365B (zh) * 2021-07-22 2023-08-15 诺克威新材料(江苏)有限公司 一种提高铜合金拉丝强度的加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941889A (zh) * 1972-08-31 1974-04-19
CN105088000A (zh) * 2015-09-02 2015-11-25 河南科技大学 一种高强高导接触线用稀土铜合金及其制备方法
CN105925923A (zh) * 2016-05-16 2016-09-07 浙江大学 用作时速400公里以上高速铁路接触线材料的高强高导铜合金的制备方法
CN106011517A (zh) * 2016-05-16 2016-10-12 浙江大学 高强高导铜合金及其作为时速400公里以上高速铁路接触线材料的应用
CN111363937A (zh) * 2020-03-19 2020-07-03 河南理工大学 一种插接件用铜合金线及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088010B (zh) * 2015-08-31 2017-08-25 河南科技大学 一种高强高导稀土铜锆合金及其制备方法
CN105088001B (zh) * 2015-09-02 2017-05-10 河南科技大学 一种高强高导接触线用铜合金及其制备方法
CN105970016B (zh) * 2016-05-06 2017-08-25 河南理工大学 一种传输用高导电耐弯曲铜合金线及其制备方法
CN106435249B (zh) * 2016-12-07 2018-12-11 常州恒丰特导股份有限公司 一种多元微合金化高强高导铜合金及其制备工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941889A (zh) * 1972-08-31 1974-04-19
CN105088000A (zh) * 2015-09-02 2015-11-25 河南科技大学 一种高强高导接触线用稀土铜合金及其制备方法
CN105925923A (zh) * 2016-05-16 2016-09-07 浙江大学 用作时速400公里以上高速铁路接触线材料的高强高导铜合金的制备方法
CN106011517A (zh) * 2016-05-16 2016-10-12 浙江大学 高强高导铜合金及其作为时速400公里以上高速铁路接触线材料的应用
CN111363937A (zh) * 2020-03-19 2020-07-03 河南理工大学 一种插接件用铜合金线及其制造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113976656A (zh) * 2021-10-26 2022-01-28 江西云泰铜业有限公司 一种高强度耐弯折铜线的制备方法
CN114345973A (zh) * 2021-12-24 2022-04-15 通鼎互联信息股份有限公司 一种成品铜丝氧化后清理方法
CN114472578A (zh) * 2022-01-13 2022-05-13 武汉正威新材料科技有限公司 一种掺Re铜锡合金接触线及其制备方法
CN114649109A (zh) * 2022-04-24 2022-06-21 福建南新电缆有限公司 一种高导电率抗氧化电缆及其制作方法
CN114649109B (zh) * 2022-04-24 2023-12-29 福建南新电缆有限公司 一种高导电率抗氧化电缆及其制作方法
CN116020988A (zh) * 2023-02-07 2023-04-28 虹华科技股份有限公司 一种6n以上高纯无氧铜棒的加工工艺

Also Published As

Publication number Publication date
CN111363937A (zh) 2020-07-03
LU500862B1 (en) 2021-11-24
CN111363937B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2021148054A1 (zh) 一种插接件用铜合金线及其制造方法
CN111363948B (zh) 一种高强高导铜合金的高效短流程制备方法
WO2017198127A1 (zh) 高强高导铜合金及其作为时速400公里以上高速铁路接触线材料的应用
CN111394609B (zh) 一种高强高导铜合金的连续挤压工艺及其应用和模具材料
CN110468306B (zh) 铝合金线材及其制造方法
CN112159911B (zh) 一种高强度高导电耐疲劳铜合金及其制备方法和应用
CN110983124A (zh) 一种高导电率6系铝合金及其生产工艺
CN111621668B (zh) 一种镍硅系铜合金带材及其制备方法
CN108315581B (zh) 一种高强度高软化温度的低铍铜合金及其制备方法
CN115287495B (zh) 一种半蚀刻引线框架用铜合金带材
CN109295346B (zh) 一种高导电率的柔软铝合金及其制备方法和应用
JP6222885B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金
CN102586655A (zh) Al-Sc-Zr导电合金强化和导电性优化工艺
CN111575528A (zh) 含Zr铜合金材料的制造方法及其铜合金材料
CN114277280B (zh) 一种析出强化型锡黄铜合金及其制备方法
CN109439955B (zh) 一种采用定向凝固制备高强度、高导电性超细丝合金材料的方法
CN116287854A (zh) 一种电连接器用黄铜及其制备方法
CN115198133A (zh) 一种高强耐热导电铜合金管材及其制备方法
JP2012229468A (ja) 電子材料用Cu−Ni−Si−Co系銅合金
CN114990376B (zh) 一种三元高强高导铜合金及其制备方法
CN117403096B (zh) 高强高导耐高温铜锆系合金材料及其制备方法
TW201907019A (zh) 彈簧用銅合金極細線及其製造方法
JP7311651B1 (ja) 電子材料用銅合金及び電子部品
JP2016183418A (ja) 電子材料用Cu−Ni−Si−Co系銅合金
CN104726801A (zh) 一种熔炼铝合金的方法及其制备的铝合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744795

Country of ref document: EP

Kind code of ref document: A1