WO2021147871A1 - 一种新能源电动汽车充电插座用液冷线缆 - Google Patents

一种新能源电动汽车充电插座用液冷线缆 Download PDF

Info

Publication number
WO2021147871A1
WO2021147871A1 PCT/CN2021/072764 CN2021072764W WO2021147871A1 WO 2021147871 A1 WO2021147871 A1 WO 2021147871A1 CN 2021072764 W CN2021072764 W CN 2021072764W WO 2021147871 A1 WO2021147871 A1 WO 2021147871A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
electrode
cooled
cone
cooling
Prior art date
Application number
PCT/CN2021/072764
Other languages
English (en)
French (fr)
Inventor
臧昊哲
杨国星
臧重庆
张艳丽
Original Assignee
洛阳正奇机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洛阳正奇机械有限公司 filed Critical 洛阳正奇机械有限公司
Publication of WO2021147871A1 publication Critical patent/WO2021147871A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/5205Sealing means between cable and housing, e.g. grommet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/34Plug-like or socket-like devices specially adapted for contactless inductive charging of electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • H01B7/421Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation
    • H01B7/423Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation using a cooling fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to the technical field of charging for electric vehicles, in particular to a liquid-cooled cable for a new energy electric vehicle charging socket.
  • New energy electric vehicles have developed rapidly because of their no exhaust emissions and no pollution to the environment. At present, there are two main factors restricting the development of new energy electric vehicles: one is the short battery life; the other is the long charging time.
  • the charging pile with the highest power currently in use is a medium-power DC charging pile. Its charging voltage is DC 750V, and the maximum output charging current is DC 250A. Theoretically, it can charge the electric bus.
  • the battery of an electric bus needs at least 2 to 3 hours.
  • the charging socket on the electric vehicle is usually installed on the body shell, and the battery pack is placed in the car body, the socket and the battery pack are connected by two dry-type cables of 70 square millimeters.
  • the user’s feedback is that when the current reaches 250A, the heat generated by the conductive jacks and soft wires cannot be dissipated well, resulting in excessively high cable temperature. .
  • the actual charging current is usually controlled below 180A, causing the actual charging time of the electric bus to be longer than the theoretical charging time.
  • the patent application number is CN201810249723.3, which discloses a DC+ and DC- parallel-cooled liquid-cooled cable for high-power charging piles, which is characterized by the outer diameter of the cable and the dry-type integrated cable used for medium-power DC charging piles.
  • the outer diameter is the same size, and the technical solution adopted is to reduce the cross-sectional area of the dry-type integrated cable soft conductor used in the medium-power DC charging pile.
  • the cross-section of the dry-type integrated cable soft conductor used in the medium-power DC charging pile is 70 square millimeters.
  • the cross-section of the soft wire of the liquid-cooled cable is 35 square millimeters.
  • the space saved is used as a channel for the cooling liquid.
  • a circulating cooling liquid is introduced into the gap of the soft wire.
  • the cooling liquid takes the wire away and produces it during the charging process.
  • the heat can greatly improve the current carrying capacity of the charging cable.
  • the 70 square millimeter dry-type cable can carry a maximum current of 250A. After adopting liquid cooling technology, a 35 square millimeter liquid-cooled cable can carry 600A current and can work safely and reliably for a long time.
  • the high-power DC charging pile currently being developed in China can output 1000 volts, 400A-600A DC. Using high-power charging piles to charge electric buses, it only takes 30 minutes to fully charge the battery pack.
  • the present invention discloses a liquid-cooled cable for a new energy electric vehicle charging socket, which can realize the charging voltage carried by the charging cable without increasing the diameter of the existing cable.
  • Some 750V is increased to 1000V, the charging current is increased from the existing 250A to 600A, and the temperature rise of the charging cable can be ensured to be within a controllable range, to ensure the safe charging of electric vehicles, and long-term reliable operation.
  • a liquid-cooled cable for a new energy electric vehicle charging socket including:
  • the liquid-cooled electrodes are provided with a liquid inlet and a liquid outlet for the cooling liquid to enter and exit.
  • liquid-cooled cables respectively connected between the DC+ liquid-cooled jack and the DC+ liquid-cooled electrode, and between the DC-liquid-cooled jack and the DC-liquid-cooled electrode;
  • the liquid-cooled cable includes an insulating sleeve, and the insulating A soft wire is penetrated in the sleeve, and an inner coolant channel that leads from the liquid-cooled electrode to the liquid-cooled jack along the soft wire is also provided, and an outer coolant channel that leads from the liquid-cooled jack to the liquid-cooled electrode along the soft wire;
  • the end of the inner channel of the cooling liquid and the outer channel of the cooling liquid connected with the liquid-cooled electrode are respectively connected with the liquid inlet and the liquid outlet, and the end connected with the liquid cooling jack is connected with the communicating cavity.
  • the cavity between the edge sleeve and the soft wire is a cooling liquid outer channel, one end of the cooling liquid outer channel connected to the liquid cooling electrode, connected to the liquid outlet, and one end connected to the liquid cooling jack , Communicating with the communicating cavity;
  • the soft wire is a hollow soft wire, a cooling liquid inner tube is set through the inside, the inner cavity of the cooling liquid inner tube is a cooling liquid inner channel, and the cooling liquid inner channel is connected to the liquid cooling electrode One end is connected with the liquid inlet, and the end connected with the liquid cooling jack is connected with the communicating cavity.
  • the liquid-cooled jack is in the shape of a shaft, one end is the jack end corresponding to the terminal of the charging gun, and the other end is the connection end connected with the liquid-cooled cable.
  • a communication cavity is provided on the end surface of the connection end.
  • the inner wall of the communicating cavity is crimped with a soft wire in a semicircle, and an insulating sleeve is sleeved on the outer cylindrical surface of the connecting end.
  • the communicating cavity extends toward the socket end and is enclosed in the outer wall of the socket at the socket end.
  • annular shunt sleeve is provided in the communication cavity, and the annular shunt sleeve divides the communication cavity into two cavities of an inner layer and an outer layer, wherein the inner layer cavity is in communication with the cooling liquid inner channel, and the outer layer cavity is connected with the cooling liquid.
  • the outer channel is connected, and the inner cavity and the outer cavity are connected at the end of the communicating cavity near the jack.
  • the inner cavity is sealed with a socket conduit near the connecting end, the outer diameter of the socket conduit is smaller than the inner diameter of the communicating cavity, the socket conduit extends outwards from the connecting end, and is inserted into the cooling fluid inner pipe .
  • the liquid-cooled electrode is composed of two parts: the front part of the cone head and the tail part of the cone hole; the front part of the cone head is a shaft-shaped body with an outer cone surface at one end, and the end with the outer cone surface is provided with a through hole.
  • One end is the electrode pipe connected with the through hole, and the pipe wall of the electrode pipe is provided with a liquid outlet;
  • the tail of the cone hole is a shaft-shaped body, and one end is provided with an end corresponding to the outer cone surface at the front of the cone
  • the inner cone surface and the counterbore corresponding to the through hole are provided with a liquid inlet on the wall of the counterbore;
  • the outer cone at the front of the cone and the inner cone at the tail of the cone are fit and screwed together
  • a soft wire is crimped on the inner tube wall of the electrode pipe in a semicircle, an insulating sleeve is sleeved on the outer cylindrical surface of the electrode pipe, an electrode catheter is inserted in the through hole, and the electrode catheter extends outward from the electrode pipe , And plugged into the inner tube of the cooling liquid, the inner channel of the cooling liquid is connected with the liquid inlet through the electrode tube and the counterbore, and the outer channel of the cooling liquid is connected with the liquid outlet through
  • the liquid-cooled electrode is composed of two parts: the front part of the cone hole and the rear part of the cone head; the front part of the cone hole is a shaft-shaped body with an inner cone surface at one end, and the end with the inner cone surface is provided with a through hole, The other end is the electrode pipe connected with the through hole, and the pipe wall of the electrode pipe is provided with a liquid outlet; the rear part of the cone head is a shaft-shaped body, and one end is provided with the end of the inner cone surface at the front of the cone hole.
  • the corresponding outer cone surface and the counterbore corresponding to the through hole are provided with a liquid inlet on the wall of the counterbore; the inner cone surface at the front of the cone hole matches the outer cone surface at the rear of the cone head, and the screw Connected together; a soft wire is crimped in a semicircle on the inner tube wall of the electrode pipe, an insulating sleeve is sleeved on the outer cylindrical surface of the electrode pipe, an electrode catheter is inserted in the through hole, and the electrode catheter extends outward
  • the electrode pipe is connected with the inner pipe of the cooling liquid.
  • the inner passage of the cooling liquid is connected with the liquid inlet through the electrode pipe and the counterbore.
  • the outer passage of the cooling liquid is connected with the liquid outlet through the electrode pipe;
  • One end of the tapered surface is also provided with a sealing groove, a sealing ring is arranged in the sealing groove, and a sealing counterbore corresponding to the sealing ring is provided in the front part of the tapered hole.
  • the cooling liquid inner tube is a polytetrafluoroethylene tube
  • the soft wire includes a soft conductor and a protective copper mesh
  • the soft conductor is a copper wire stranded and wound and braided on the outer wall of the polytetrafluoroethylene tube.
  • the protective copper net is a protective net made of copper wires woven across the outer wall of the soft conductor.
  • the present invention has the following beneficial effects:
  • the invention provides a high-current charging solution for electric vehicle charging cables by cooling the two charging cables DC+ and DC- in parallel. Without increasing the diameter of the existing charging cables, the cross-sectional area of the wires is only The charging voltage carried by the liquid-cooled cable of 35 square millimeters is increased from the existing 750V to 1000V, and the charging current is increased from the existing 250A to 600A, and the liquid-cooled cable can be guaranteed to be within the controllable temperature rise range. Ensure that electric vehicles are safely charged and can work reliably for a long time.
  • the charging time of electric vehicles can be greatly shortened when used in conjunction with the high-power charging pile, and the time is only three times that of the existing medium-power dry cable with a conductor cross-sectional area of 70 square millimeters.
  • One part of it satisfies the user's requirements for the charging time of electric vehicles, and contributes to the rapid development of new energy electric vehicles.
  • Figure 1 is a schematic diagram of the structure of the present invention.
  • Figure 2 is a schematic diagram of the structure of a liquid-cooled cable.
  • Figure 3 is a schematic diagram of the structure of the liquid-cooled jack.
  • Fig. 4 is a schematic diagram of the A-A cross-sectional structure of Fig. 1.
  • Figure 5 is a schematic diagram of the structure of the DC+ liquid-cooled electrode.
  • Figure 6 is a schematic diagram of the structure of the DC-liquid-cooled electrode.
  • Fig. 7 is a schematic diagram of the B-B cross-sectional structure of Fig. 1.
  • Fig. 8 is a schematic diagram of the working principle of the present invention.
  • Figure 9 is a schematic diagram of another structure of the DC+ liquid-cooled electrode.
  • Figure 10 is a schematic diagram of another structure of a DC-liquid-cooled electrode.
  • Liquid-cooled jack 1.1, communicating cavity; 1.11, annular shunt sleeve; 1.12, inner cavity; 1.13, outer cavity; 1.2, jack end; 1.3, connecting end; 1.4, jack Catheter; 1.5. Crown spring; 2. Liquid-cooled electrode; 2.1. Liquid inlet; 2.2. Liquid outlet; 2.3. Through hole; 2.4. Electrode pipe; 2.5. Counterbore; 2.6. Electrode catheter; 2.7. Seal ring; 2.8. Connecting pipe; 2.9. Connecting nut; 3. Liquid-cooled cable; 3.1. Coolant inner channel; 3.2. Coolant outer channel; 3.3. Soft wire; 3.4. Coolant inner tube; 3.5. Insulating sleeve; 4. Socket shell; 5. Vehicle-mounted coolant circulating cooling device.
  • the country has standard definitions for electric vehicle charging cables and multiple cables in charging sockets.
  • the two charging cables DC+ and DC- there are also multiple weak current cables such as signal cables and communication cables.
  • the invention is mainly aimed at the DC+ and DC- charging cables with large charging current and large heat generation.
  • Figure 1 shows a schematic diagram of the structure of the present invention, including a socket housing 4 and two DC+ and DC- liquid-cooled jacks 1 arranged in the socket housing 4, as well as the DC+ and DC- poles connected to the vehicle battery pack.
  • the liquid-cooled jack 1 is provided with a communicating cavity 1.1
  • the liquid-cooled electrode 2 is provided with a liquid inlet 2.1 and a liquid outlet 2.2 for cooling liquid in and out.
  • the two liquid-cooled jacks 1 of DC+ and DC- arranged in the housing 4 of the electric vehicle charging socket are connected to the charging terminals in the high-power DC charging gun.
  • FIG. 2 shows a schematic structural diagram of a liquid-cooled cable.
  • the liquid-cooled cable 3 includes an insulating sleeve 3.5.
  • the insulating sleeve 3.5 is provided with a soft wire 3.3 passing through it, and is also provided with a soft wire 3.3 from the liquid cooling.
  • the electrode 2 leads to the cooling liquid inner channel 3.1 of the liquid cooling jack 1 and the cooling liquid outer channel 3.2 which leads from the liquid cooling jack 1 to the liquid cooling electrode 2 along the soft wire 3.3.
  • Coolant is introduced into the cooling liquid inner channel 3.1 and the cooling liquid outer channel 3.2.
  • the "direction" here is only for ease of expression, and is not a limitation on the direction of the cooling liquid.
  • the cooling liquid in the cooling liquid inner channel 3.1 can also be used.
  • the coolant in the outer coolant channel 3.2 leads from the liquid-cooled electrode 2 to the liquid-cooled jack 1 along the soft wire 3.3.
  • the cavity between the insulating sleeve 3.5 and the soft wire 3.3 is a cooling liquid outer channel 3.2.
  • the cooling liquid outer channel 3.2 is connected to the liquid-cooled electrode 2 at one end connected to the liquid outlet 2.2 and connected to the liquid The connected end of the cold jack 1 is in communication with the communicating cavity 1.1.
  • the soft wire 3.3 is a hollow soft wire with a cooling liquid inner tube 3.4 running through the inside.
  • the inner cavity of the cooling liquid inner tube 3.4 is a cooling liquid inner channel 3.1, and the cooling liquid inner channel 3.1 is connected to the liquid-cooled electrode 2.
  • One end is connected to the liquid inlet 2.1, and the end connected to the liquid cooling jack 1 is connected to the communicating cavity 1.1.
  • the "liquid inlet 2.1" of the liquid-cooled electrode 2 is only for ease of description, and it is not limited to the “liquid inlet 2.1" as the inlet for the cooling liquid to enter the liquid-cooled cable, and the "liquid inlet 2.1" can also be understood as cooling The outlet where the liquid flows from the liquid-cooled cable.
  • the internal coolant channel 3.1 is connected to the "liquid inlet 2.1", and it is not limited to the external coolant flowing into the coolant internal channel 3.1 through the "liquid inlet 2.1". It can also be understood that the coolant in the coolant internal channel 3.1 passes through the "liquid inlet 2.1".
  • the liquid port 2.1" flows out of the liquid-cooled cable.
  • the “liquid outlet 2.2” of the liquid-cooled electrode 2 is not limited to the outlet through which the cooling liquid flows out of the liquid-cooled cable, and the “liquid outlet 2.2” can also be understood as the inlet through which the cooling liquid enters the liquid-cooled cable.
  • the cooling liquid outer channel 3.2 is connected to the "liquid outlet 2.2", and it is not limited to the cooling liquid in the cooling liquid outer channel 3.2 flowing out through the "liquid outlet 2.2". It can also be understood that the cooling liquid enters the cooling through the "liquid outlet 2.2" Outer liquid channel 3.2.
  • the coolant inner tube 3.4 is a polytetrafluoroethylene tube
  • the soft wire 3.3 includes a soft conductor and a protective copper mesh.
  • the soft conductor is a copper wire twisted and braided on the outer wall of the polytetrafluoroethylene tube.
  • Stranded copper wire, the protective copper mesh is a layer of protective mesh that is cross-woven by copper wires on the outer wall of the soft conductor. One is to assist conduction, and the other is to prevent loosening of the soft conductor.
  • the soft wire 3.3 runs through the cooling liquid inner channel 3.1 and the cooling liquid outer channel 3.2.
  • the soft wire 3.3 is immersed in the cooling liquid, the cooling liquid can fully contact the surface of the soft wire 3.3, and it is easy to conduct heat and dissipate heat.
  • the coolant inner pipe 3.4 is a high temperature resistant PTFE pipe, which has good chemical stability under high temperature working environment.
  • the soft wire 3.3, the coolant inner tube 3.4, and the insulating sleeve 3.5 all have good bending performance, which is convenient for the bending and wiring of the liquid-cooled cable 3 in the electric vehicle.
  • the soft wire 3.3 is a hollow soft wire
  • the coolant inner tube 3.4 is set inside the soft wire 3.3, that is to say, the coolant inner channel 3.1 is located in the coolant outer channel 3.2, and the coolant inner channel 3.1 and the coolant outer channel 3.2 are
  • the cooling liquid inside is isolated from each other, forming independent channels for the cooling liquid to enter and exit.
  • FIG. 3 shows a schematic structural diagram of the liquid-cooled jack.
  • the liquid-cooled jack 1 is in the shape of a shaft, one end is the jack end 1.2 corresponding to the charging gun terminal, and the other end is connected to the liquid-cooled cable 3.
  • the connecting end 1.3 is provided with a connecting cavity 1.1 on the end face of the connecting end 1.3, a soft wire 3.3 is crimped on the inner wall of the connecting cavity 1.1 in a semicircle, and an insulating sleeve 3.5 is sleeved on the outer cylindrical surface of the connecting end 1.3.
  • a crown spring 1.5 is provided in the jack for clamping the charging gun terminal and establishing the electrical connection between the charging gun terminal and the liquid-cooled jack 1. Sexual connection.
  • the patent application number CN201820408462.0 discloses a semicircular crimping method for establishing an electrical connection between a soft wire and a liquid-cooled terminal, which can realize a reliable electrical connection between the soft wire and the liquid-cooled terminal without affecting the coolant.
  • the connection between the inner tube and the liquid-cooled terminal As shown in Figures 1 and 4, in this embodiment, the soft wire 3.3 is crimped in a semicircle on the inner wall of the communicating cavity 1.1, and the non-semicircular crimped cavity in the communicating cavity 1.1 can realize the communicating cavity 1.1 and the coolant inner channel 3.1,
  • the external cooling fluid channels 3.2 communicate with each other.
  • the semicircular crimping increases the contact area between the soft wire 3.3 and the communicating cavity 1.1, which can withstand larger currents.
  • the strong pressure makes the soft wire 3.3 and the liquid-cooled jack 1 crimp into one body, which can withstand larger The axial pulling force. Therefore, by crimping the soft wire 3.3 on the inner wall of the communicating cavity 1.1 in a semicircle, a reliable electrical connection between the soft wire 3.3 and the liquid cooling jack 1 can be realized without affecting the cooling liquid inner channel 3.1 and the cooling liquid outer channel 3.2.
  • the liquid-cooled jack 1 communicates with each other.
  • the communicating cavity 1.1 extends to the socket end 1.2 and is enclosed in the outer wall of the socket end 1.2 for alignment Cooling of the socket end 1.2. Since the cooling fluid in the part of the cavity of the communicating cavity 1.1 close to the socket end 1.2 has poor fluidity and poor cooling effect, which affects the cooling of the socket end 1.2, an annular shunt 1.11 is provided in the communicating cavity 1.1 , The annular shunt sleeve 1.11 divides the communicating cavity 1.1 into two cavities, an inner layer and an outer layer.
  • the inner layer cavity 1.12 communicates with the cooling liquid inner channel 3.1
  • the outer layer cavity 1.13 communicates with the cooling liquid outer channel 3.2
  • the inner layer is empty.
  • the cavity 1.12 and the outer cavity 1.13 communicate with the communicating cavity 1.1 near the socket end 1.2.
  • the cooling liquid in the cooling liquid inner channel 3.1 enters the communicating cavity 1.1 on the side close to the socket end 1.2 through the inner cavity 1.12, and then returns from the outer cavity 1.13 to the cooling liquid outer channel 3.2, thereby realizing the alignment of the socket Flow cooling at end 1.2.
  • the inner cavity 1.12 is sealed with a socket conduit 1.4 close to the connecting end 1.3.
  • the outer diameter of the socket conduit 1.4 is smaller than the inner diameter of the communicating cavity 1.1.
  • 1.4 Extend the connecting end 1.3 outward.
  • the coolant inner pipe 3.4 at the end of the liquid cooling socket 1 penetrates the annular stranded copper wire net of the soft wire 3.3 and is plugged into the socket conduit 1.4 to connect the coolant inner channel 3.1 with the inner cavity 1.12 .
  • the liquid-cooled electrode 2 is divided into two parts: a cone part and a cone part, and two charging cables DC+ and DC- The taper head part and taper hole part of the liquid-cooled electrode 2 are different from each other.
  • Figure 5 shows a schematic diagram of the structure of the DC+ liquid-cooled electrode.
  • the DC+ liquid-cooled electrode connected to the DC+ liquid-cooled jack in the electric vehicle charging socket and the DC+ pole of the on-board battery pack is composed of the front of the cone and the tail of the cone.
  • the front of the cone is a shaft-shaped body with an outer cone surface at one end, one end with an outer cone surface is provided with a through hole 2.3, and the other end is an electrode tube 2.4 connected to the through hole 2.3.
  • the pipe wall is provided with a liquid outlet 2.2; the tail of the cone hole is a shaft-shaped body, one end of which is provided with an inner cone surface corresponding to the end of the cone head with an outer cone surface, and a counterbore 2.5 corresponding to the through hole 2.3 , There is a liquid inlet 2.1 on the wall of the counterbore 2.5; the outer cone at the front of the cone and the inner cone at the tail of the cone are fitted and screwed together; on the inner wall of the electrode pipe 2.4
  • the upper semicircle crimping has a soft wire 3.3.
  • the structure and principle of the semicircular crimping in the electrode pipe are the same as the structure and principle of the semicircular crimping in the liquid-cooled jack, which will not be repeated here; on the outer cylinder of the electrode pipe 2.4 An insulating sleeve 3.5 is sleeved on the surface, and an electrode catheter 2.6 is inserted into the through hole 2.3.
  • the electrode catheter 2.6 extends outwards from the electrode pipe 2.4, and is inserted into the cooling liquid inner pipe 3.4, and the cooling liquid inner channel 3.1 passes through
  • the electrode conduit 2.6 and the counterbore 2.5 are communicated with the liquid inlet 2.1, and the coolant outer channel 3.2 is communicated with the liquid outlet 2.2 through the electrode pipe 2.4.
  • the outer tube wall of the electrode pipe 2.4 is also provided with horse teeth to prevent the insulating sleeve 3.5 from slipping off, and a clamp (not shown) is set on the insulating sleeve 3.5 to cooperate and lock with the horse teeth to ensure that the insulating sleeve 3.5 and Electrode pipe 2.4 The tightness between the outer pipe walls.
  • the end of the front of the cone with the outer cone is also provided with a sealing groove, and a sealing ring 2.7 is arranged in the sealing groove, and the tail of the cone is provided with a sealing groove.
  • the sealing counterbore corresponding to the sealing ring 2.7, the front part of the cone head and the tail part of the cone hole are sealed by the sealing ring 2.7.
  • a flat mounting seat is provided at the end of the cone hole opposite to the cone hole, and a mounting hole is provided on the mounting seat.
  • the DC+ liquid-cooled electrode is connected to the DC+ pole of the vehicle battery pack through the mounting base.
  • the DC-liquid-cooled electrode connected to the DC-liquid-cooled jack in the electric vehicle charging socket and the DC-pole of the on-board battery pack, as shown in Figure 6, consists of two parts: the front of the cone and the rear of the cone. Composition; the front part of the cone hole is a shaft-shaped body with an inner cone surface at one end, one end with an inner cone surface is provided with a through hole 2.3, and the other end is an electrode pipe 2.4 connected to the through hole 2.3.
  • the wall is provided with a liquid outlet 2.2; the back of the cone is a shaft-shaped body, one end of which is provided with an outer cone corresponding to the end with an inner cone in the front of the cone, and a counterbore 2.5 corresponding to the through hole 2.3 , There is a liquid inlet 2.1 on the wall of the counterbore 2.5; the inner cone surface of the front part of the cone hole fits with the outer cone surface of the rear part of the cone head, and they are screwed together; the inner tube of the electrode pipe 2.4 A soft wire 3.3 is crimped on the semicircle on the wall, and an insulating sleeve 3.5 is sleeved on the outer cylindrical surface of the electrode tube 2.4.
  • the electrode tube 2.6 is inserted into the through hole 2.3, and the electrode tube 2.6 extends outward from the electrode tube 2.4.
  • the cooling liquid inner channel 3.1 communicates with the liquid inlet 2.1 through the electrode pipe 2.6 and the counterbore 2.5
  • the cooling liquid outer channel 3.2 communicates with the liquid outlet 2.2 through the electrode pipe 2.4.
  • the outer tube wall of the electrode pipe 2.4 is also provided with horse teeth to prevent the insulating sleeve 3.5 from slipping off, and a clamp (not shown) is set on the insulating sleeve 3.5 to cooperate and lock with the horse teeth to ensure that the insulating sleeve 3.5 and Electrode pipe 2.4 The tightness between the outer pipe walls.
  • the end of the cone head with the outer cone surface is also provided with a sealing groove, and a sealing ring 2.7 is arranged in the sealing groove.
  • the front part of the hole is provided with a sealed counterbore corresponding to the sealing ring 2.7.
  • a flat mounting seat is provided at the end of the back of the cone head opposite to the cone head, and a mounting hole is provided on the mounting seat. The DC-liquid-cooled electrode is connected to the DC-pole of the vehicle battery pack through the mounting base.
  • the electrode pipeline 2.6 adopts segmented processing. As shown in Figures 9 and 10, the outer end of the electrode pipe 2.6 is screwed with a connecting pipe 2.8, wherein the connecting pipe 2.8 is provided with an external thread, and the electrode pipe 2.6 is provided with an internal thread corresponding to the external thread. In order to ensure the tightness of the connection, a nut is screwed on the external thread of the connecting pipe 2.8, and an O-ring is arranged between the nut and the electrode pipe 2.6.
  • the outer tube diameter of the electrode catheter 2.6 is smaller than the inner tube diameter of the connecting tube 2.8.
  • the electrode catheter 2.6 extends outward from the connecting tube 2.8.
  • the front and rear parts of the DC+ liquid-cooled electrode and the DC- liquid-cooled electrode are connected together by a connecting nut 2.9.
  • Such a split processing method can reduce the cost of processing materials.
  • the soft wire 3.3 is crimped semicircle on the inner wall of the electrode pipe 2.4, and the cavity of the electrode pipe 2.4 is not semicircular crimped. It can realize the communication between the outlet 2.2 and the outer coolant channel 3.2; the coolant inner pipe 3.4 at the end of the liquid-cooled electrode 2 penetrates the ring-shaped twisted copper wire net of the soft wire 3.3, and is plugged into the electrode catheter 2.6 to make The coolant inner channel 3.1 is in communication with the liquid inlet 2.1.
  • the semicircular crimping increases the contact area between the soft wire 3.3 and the electrode pipe 2.4, which can withstand larger currents.
  • the strong pressure makes the soft wire 3.3 and the liquid-cooled electrode 2 crimp into one body, which can withstand larger Axial pulling force. Therefore, the semicircular crimping can realize a reliable electrical connection between the soft wire 3.3 and the liquid-cooled electrode 2 and isolate the coolant in the coolant inner channel 3.1 and the coolant outer channel 3.2 in the liquid-cooled electrode 2.
  • an on-board cooling liquid circulating cooling device 5 is installed on an electric vehicle, which provides circulating power to the cooling liquid on the one hand, and dissipates and cools the cooling liquid on the other hand.
  • the coolant cooled by the on-board coolant circulating cooling device 5 enters the coolant inner channel 3.1 from the liquid-cooled electrode 2’s liquid inlet 2.1 and the electrode conduit 2.6, and then enters the coolant through the inner cavity 1.12 and the outer cavity 1.13 Channel 3.2. Finally, it flows out through the liquid outlet 2.2 of the liquid-cooled electrode 2 and returns to the vehicle-mounted cooling liquid circulating cooling device 5 to realize the circulating cooling of the liquid-cooled charging socket.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种新能源电动汽车充电插座用液冷线缆,包括插座壳体(4)和设置在插座壳体(4)内的DC+、DC-两个液冷插孔(1)、以及若干信号线,还包括用于与车载电池组DC+、DC-极柱连接的两个液冷电极(2),以及分别连接在DC+液冷插孔(1)与DC+液冷电极(2)、DC-液冷插孔(1)与DC-液冷电极(2)之间的两根液冷电缆(3)。所述液冷电缆(3)包括用于导电的软体导线(3.3),用于冷却软体导线(3.3)的冷却液内通道(3.1)及冷却液外通道(3.2);所述冷却液内通道(3.1)、冷却液外通道(3.2)与液冷电极(2)连接的一端,分别与进液口(2.1)、出液口(2.2)连通,与液冷插孔(1)连接的一端与连通腔(1.1)连通。在不增加现有电缆直径的前提下,使充电线缆承载的电流由现有的250A增加到600A,且可保证充电线缆的温升在可控范围内,同时,满足了用户对电动汽车在充电时间上的要求。

Description

一种新能源电动汽车充电插座用液冷线缆 技术领域
本发明涉及用于电动汽车充电技术领域,尤其是涉及一种新能源电动汽车充电插座用液冷线缆。
背景技术
新能源电动汽车因其无尾气排放,不污染环境而得到快速发展。目前制约新能源电动汽车发展的主要因素有两个:一是电池续航能力短;二是充电用时长。以电动公交车充电为例,目前使用的最大功率的充电桩是中功率直流充电桩,它的充电电压是直流750伏,输出的最大充电电流是直流250A,理论上给电动公交车充电,充满电动公交车的电池至少需要2~3个小时。但是由于电动汽车上的充电插座通常安装在车身外壳上,而电池组则是放置在车体内,由两根70平方毫米的干式线缆连接插座和电池组。由于干式线缆走线空间狭小,散热差,用户反馈的信息是:当电流达到250A时,由于导电插孔、软体导线产生的的热不能很好地散去,而造成线缆温度过高。为了避免线缆因过热而造成事故,实际的充电电流通常控制在180A以下,造成电动公交车的实际充电时间要比理论充电时间更长。
专利申请号为CN201810249723.3的专利,公开了一种大功率充电桩专用DC+与DC-并冷液冷电缆,其特点是电缆的外径尺寸与中功率直流充电桩所用的干式集成电缆的外径尺寸一样大,其采用的技术方案是减小中功率直流充电桩所用的干式集成电缆软体导线截面面积,中功率直流充电桩所用的干式集成电缆软体导线的截面是70平方毫米,而液冷电缆软体 导线的截面是35平方毫米,将省出来的空间做为冷却液的通道,在软体导线的间隙内通入循环流动的冷却液,由冷却液带走导线在充电过程中产生的热,可以大幅度地提高充电电缆承载电流的能力。70平方毫米的干式电缆最大承载的电流是250A,采用液冷技术后,35平方毫米的液冷电缆可以承载600A电流,并且能够安全可靠的长期工作。目前国内正在研发的大功率直流充电桩可输出1000伏、400A~600A的直流电,使用大功率充电桩给电动公交车充电,充满电池组最快只需要30分钟就可以了。
使用大功率直流充电桩给新能源电动汽车充电,可以有效缓解新能源电动汽车充电用时长的瓶颈问题,但这也是一个系统工程。虽然有大功率充电桩专用的液冷电缆和液冷充电枪,但是新能源电动汽车上必须安装能与大功率直流液冷充电枪配套的大功率充电插座才可以实现。新能源电动汽车若仍使用250A中功率插座、70平方毫米的干式线缆及干式导电插孔,在充电过程中,如果充电电流大于250A,线缆产生的热又不能很好的散去,会因过热而酿成事故,严重者会造成火灾,烧毁车辆。因此,新能源电动汽车的快速发展,迫切需要一种能在新能源电动汽车上使用的大功率专用充电插座。
发明内容
为了克服背景技术中的不足,本发明公开了一种新能源电动汽车充电插座用液冷线缆,可实现在不增加现有线缆直径的前提下,使充电线缆承载的充电电压由现有的750V增加到1000V,充电电流由现有的250A增加到600A,且可保证充电线缆的温升在可控范围内,保证电动汽车安全充电,并能长期可靠地工作。
为实现上述发明目的,本发明采用如下技术方案:
一种新能源电动汽车充电插座用液冷线缆,包括:
插座壳体和设置在插座壳体内的DC+、DC-两个液冷插孔、以及若干信号线;所述液冷插孔设有连通腔。
还包括用于与车载电池组DC+、DC-极柱连接的两个液冷电极:所述液冷电极设有用于冷却液出入的进液口、出液口。
以及,分别连接在DC+液冷插孔与DC+液冷电极、DC-液冷插孔与DC-液冷电极之间的两根液冷电缆;所述液冷电缆包括绝缘套管,所述绝缘套管内贯穿设置有软体导线,还设置有沿软体导线从液冷电极通向液冷插孔的冷却液内通道、以及沿软体导线从液冷插孔通向液冷电极的冷却液外通道;所述冷却液内通道、冷却液外通道与液冷电极连接的一端,分别与进液口、出液口连通,与液冷插孔连接的一端,与连通腔连通。
优选的,所述缘套管与软体导线之间的空腔为冷却液外通道,所述冷却液外通道与液冷电极连接的一端,与出液口连通,与液冷插孔连接的一端,与连通腔连通;所述软体导线为中空软体导线,内部贯穿设置有冷却液内管,冷却液内管的内空腔为冷却液内通道,所述冷却液内通道与液冷电极连接的一端,与进液口连通,与液冷插孔连接的一端,与连通腔连通。
优选的,所述液冷插孔为轴状,一端为与充电枪端子对应插接的插孔端,另一端为与液冷电缆连接的连接端,在连接端的端面上设有连通腔,在连通腔的内壁上半圆压接有软体导线,在连接端的外圆柱面上套接有绝缘套管。
优选的,所述连通腔向插孔端延伸,且封闭于插孔端插孔的外壁内。
优选的,所述连通腔内设有环形分流套,环形分流套将连通腔分成内、外层两个空腔,其中,内层空腔与冷却液内通道连通,外层空腔与冷却液外通道连通,内层空腔、外层空腔在连通腔靠近插孔端处连通。
优选的,所述内层空腔在靠近连接端密封连接有插孔导管,插孔导管的外径小于连通腔的内径,插孔导管向外伸出连接端,且与冷却液内管插接。
优选的,所述液冷电极由锥头前部与锥孔尾部两部分组成;锥头前部为一端带有外锥面的轴状体,带有外锥面的一端设有通孔,另一端为与通孔连通的电极管道,在电极管道的管壁上设有出液口;锥孔尾部为轴状体,其一端设有与锥头前部带有外锥面的一端相对应的内锥面、与通孔对应的沉孔,在沉孔的孔壁上设有进液口;锥头前部的外锥面与锥孔尾部的内锥面配合贴合、且螺接在一起;在电极管道的内管壁上半圆压接有软体导线,在电极管道的外圆柱面上套接有绝缘套管,所述通孔内插接有电极导管,电极导管向外伸出电极管道,且与冷却液内管插接,冷却液内通道通过电极导管、沉孔与进液口连通,冷却液外通道通过电极管道与出液口连通;所述锥头前部带有外锥面的一端还设有密封槽,在密封槽内设置有密封圈,所述锥孔尾部设有与密封圈对应的密封沉孔。
优选的,所述液冷电极由锥孔前部与锥头后部两部分组成;锥孔前部为一端带有内锥面的轴状体,带有内锥面的一端设有通孔,另一端为与通孔连通的电极管道,在电极管道的管壁上设有出液口;锥头后部为轴状体,其一端设有与锥孔前部带有内锥面的一端相对应的外锥面、与通孔对应的沉孔,在沉孔的孔壁上设有进液口;锥孔前部的内锥面与锥头后部的外锥 面配合贴合,且螺接在一起;在电极管道的内管壁上半圆压接有软体导线,在电极管道的外圆柱面上套接有绝缘套管,所述通孔内插接有电极导管,电极导管向外伸出电极管道,且与冷却液内管连接,冷却液内通道通过电极导管、沉孔与进液口连通,冷却液外通道通过电极管道与出液口连通;所述锥头后部带有外锥面的一端还设有密封槽,在密封槽内设置有密封圈,所述锥孔前部设有与密封圈对应的密封沉孔。
优选的,所述冷却液内管为聚四氟乙烯管,所述软体导线包括软导体和防护铜网,软导体为铜丝线合股后在聚四氟乙烯管外壁缠绕编织的多股铜线,防护铜网为铜丝交叉编织在软导体外壁上的一层防护网。
由于采用上述技术方案,相比背景技术,本发明具有如下有益效果:
本发明通过对DC+、DC-两根充电线缆的并联冷却,提供了一种电动汽车充电线缆的大电流充电解决方案,在不增加现有充电电缆直径的前提下,使导线截面面积仅为35平方毫米的本液冷线缆承载的充电电压由现有的750V增加到1000V,充电电流由现有的250A增加到600A,且可保证本液冷线缆在可控温升范围内,保证电动汽车安全充电,并能长期可靠地工作。
由于本发明所承载的充电功率大幅提升,与大功率充电桩配合使用可使电动汽车的充电时间大幅缩短,用时仅为现有的导线截面面积为70平方毫米的中功率干式线缆的三分之一,满足了用户对电动汽车在充电时间上的要求,有助于新能源电动汽车的快速发展。
附图说明
图1为本发明的结构示意图。
图2为液冷电缆的结构示意图。
图3为液冷插孔的结构示意图。
图4为图1的A-A剖面结构示意图。
图5为DC+液冷电极的结构示意图。
图6为DC-液冷电极的结构示意图。
图7为图1的B-B剖面结构示意图。
图8为本发明的工作原理示意图。
图9为DC+液冷电极的另一种结构示意图。
图10为DC-液冷电极的另一种结构示意图。
图中:1、液冷插孔;1.1、连通腔;1.11、环形分流套;1.12、内层空腔;1.13、外层空腔;1.2、插孔端;1.3、连接端;1.4、插孔导管;1.5、冠簧;2、液冷电极;2.1、进液口;2.2、出液口;2.3、通孔;2.4、电极管道;2.5、沉孔;2.6、电极导管;2.7、密封圈;2.8、连接管;2.9、连接螺母;3、液冷电缆;3.1、冷却液内通道;3.2、冷却液外通道;3.3、软体导线;3.4、冷却液内管;3.5、绝缘套管;4、插座壳体;5、车载冷却液循环冷却装置。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接, 也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
目前,国家对电动汽车充电线缆、充电插座内的多根线缆已有标准定义,除DC+、DC-两个充电线缆外,还有多根信号线、通讯线等弱电线缆,本发明主要针对充电电流大、发热量大的DC+、DC-两根充电线缆。
图1示出的是本发明的结构示意图,包括插座壳体4和设置在插座壳体4内的DC+、DC-两个液冷插孔1,还包括与车载电池组DC+、DC-极柱连接的两个液冷电极2,以及分别连接在DC+液冷插孔1与DC+液冷电极2、DC-液冷插孔1与DC-液冷电极2之间的两根液冷电缆3。其中,液冷插孔1设有连通腔1.1,液冷电极2设有用于冷却液出入的进液口2.1、出液口2.2。设置在电动汽车充电插座壳体4内的DC+、DC-两个液冷插孔1与大功率直流充电枪内的充电端子连接。
如图2示出的是液冷电缆的结构示意图,所述液冷电缆3包括绝缘套管3.5,所述绝缘套管3.5内贯穿设置有软体导线3.3,还设置有沿软体导线3.3从液冷电极2通向液冷插孔1的冷却液内通道3.1、以及沿软体导线3.3从液冷插孔1通向液冷电极2的冷却液外通道3.2。在冷却液内通道3.1、冷却液外通道3.2内通入有冷却液,这里的“通向”只是为了便于表述,并非对冷却液通向的限定,冷却液内通道3.1内的冷却液也可以沿软体导线3.3从液冷插孔1通向液冷电极2,相应的,冷却液外通道3.2内的冷却液沿软体导线3.3从液冷电极2通向液冷插孔1。本实施例中,绝缘套管3.5与软体导线3.3之间的空腔为冷却液外通道3.2,所述 冷却液外通道3.2与液冷电极2连接的一端,与出液口2.2连通,与液冷插孔1连接的一端,与连通腔1.1连通。
所述软体导线3.3为中空软体导线,内部贯穿设置有冷却液内管3.4,冷却液内管3.4的内空腔为冷却液内通道3.1,所述冷却液内通道3.1与液冷电极2连接的一端,与进液口2.1连通,与液冷插孔1连接的一端,与连通腔1.1连通。应当理解的是,液冷电极2的“进液口2.1”只是为了便于描述,并非限定“进液口2.1”为冷却液进入液冷电缆的进口,“进液口2.1”也可以理解为冷却液从液冷电缆流出的出口。冷却液内通道3.1与“进液口2.1”连通,也并非限定外部冷却液通过“进液口2.1”流入冷却液内通道3.1,也可以理解为冷却液内通道3.1内的冷却液通过“进液口2.1”流出液冷电缆。同理,液冷电极2的“出液口2.2”并非限定为冷却液从液冷电缆流出的出口,“出液口2.2”也可以理解为冷却液进入液冷电缆的进口。冷却液外通道3.2与“出液口2.2”连通,也并非限定冷却液外通道3.2内的冷却液通过“出液口2.2”流出,也可以理解为冷却液通过“出液口2.2”进入冷却液外通道3.2。
本实施例中,所述冷却液内管3.4为聚四氟乙烯管,所述软体导线3.3包括软导体和防护铜网,软导体为铜丝线合股后在聚四氟乙烯管外壁缠绕编织的多股铜线,防护铜网为铜丝交叉编织在软导体外壁上的一层防护网,一是辅助导电,二是起到防止软导体松散的作用。软体导线3.3贯穿于冷却液内通道3.1、冷却液外通道3.2之间。软体导线3.3浸泡在冷却液内,冷却液能充分地与软体导线3.3的表面接触,易于导热散热。冷却液内管3.4为耐高温的聚四氟乙烯管,聚四氟乙烯管在高温工作环境 下具有良好的化学稳定性。软体导线3.3、冷却液内管3.4、以及绝缘套管3.5均具有较好的弯曲性能,便于液冷电缆3在电动汽车内的弯曲布线。
软体导线3.3为中空软体导线,冷却液内管3.4设置在软体导线3.3内部,也就是说,冷却液内通道3.1位于冷却液外通道3.2之内,冷却液内通道3.1、冷却液外通道3.2之内的冷却液相互隔离,形成了各自独立的冷却液进、出的通道。
图3示出的是液冷插孔的结构示意图,所述液冷插孔1为轴状,一端为与充电枪端子对应插接的插孔端1.2,另一端为与液冷电缆3连接的连接端1.3,在连接端1.3的端面设有连通腔1.1,在连通腔1.1的内壁上半圆压接有软体导线3.3,在连接端1.3的外圆柱面上套接有绝缘套管3.5。在插孔端1.2的端面上设有与充电枪端子相对应的插孔,插孔内设置有冠簧1.5,用于夹紧充电枪端子,并建立充电枪端子与液冷插孔1的电性连接。
专利申请号为CN201820408462.0的专利公开了一种软体导线与液冷端子之间建立电性连接的半圆压接方式,可实现软体导线与液冷端子的可靠电性连接,且不影响冷却液内管与液冷端子的连通。如图1、4所示,本实施例中,在连通腔1.1的内壁上半圆压接软体导线3.3,连通腔1.1内非半圆压接的空腔可以实现连通腔1.1与冷却液内通道3.1、冷却液外通道3.2的相互连通。半圆压接一方面增大了软体导线3.3与连通腔1.1的接触面积,可以承受较大电流,另一方面强大的压力使软体导线3.3与液冷插孔1压接成一体,可以承受较大的轴向拉拽力。因此,在连通腔1.1的内壁上半圆压接软体导线3.3,可实现软体导线3.3与液冷插孔1 之间可靠的电性连接,且不影响冷却液内通道3.1、冷却液外通道3.2在液冷插孔1内的相互连通。
由于与充电枪端子接触连接的冠簧1.5会因不良接触产生大量的热量,因此,所述连通腔1.1向插孔端1.2延伸,且封闭于插孔端1.2插孔的外壁内,用于对插孔端1.2的冷却。由于在连通腔1.1靠近插孔端1.2的部分空腔内的冷却液流动性差,冷却效果不佳,影响对插孔端1.2的冷却,因此,在所述连通腔1.1内设有环形分流套1.11,环形分流套1.11将连通腔1.1分成内、外层两个空腔,其中,内层空腔1.12与冷却液内通道3.1连通,外层空腔1.13与冷却液外通道3.2连通,内层空腔1.12、外层空腔1.13在连通腔1.1靠近插孔端1.2处连通。这样,冷却液内通道3.1内的冷却液通过内层空腔1.12进入连通腔1.1靠近插孔端1.2的一侧,再从外层空腔1.13返回到冷却液外通道3.2,从而实现对插孔端1.2的流动冷却。
为了降低环形分流套1.11的加工难度、便于装配,所述内层空腔1.12在靠近连接端1.3密封连接有插孔导管1.4,插孔导管1.4的外径小于连通腔1.1的内径,插孔导管1.4向外伸出连接端1.3。位于液冷插孔1端的冷却液内管3.4,穿透软体导线3.3的圆环形绞合铜线网,与插孔导管1.4插接,使冷却液内通道3.1与内层空腔1.12的连通。
本新能源电动汽车充电插座用液冷线缆一端与充电插座连接,另一端与车载电池组连接。为方便安装、区别DC+、DC-两根充电线缆对应连接车载电池组的正、负极,液冷电极2分为由锥头部分、锥孔部分两部分,DC+、DC-两根充电线缆的液冷电极2的锥头部分、锥孔部分各不相同,互 不通用。
图5示出的是DC+液冷电极的结构示意图,与电动汽车充电插座内的DC+液冷插孔、车载电池组DC+极柱连接的DC+液冷电极,由锥头前部与锥孔尾部两部分组成;锥头前部为一端带有外锥面的轴状体,带有外锥面的一端设有通孔2.3,另一端为与通孔2.3连通的电极管道2.4,在电极管道2.4的管壁上设有出液口2.2;锥孔尾部为轴状体,其一端设有与锥头前部带有外锥面的一端相对应的内锥面、与通孔2.3对应的沉孔2.5,在沉孔2.5的孔壁上设有进液口2.1;锥头前部的外锥面与锥孔尾部的内锥面配合贴合、且螺接在一起;在电极管道2.4的内管壁上半圆压接有软体导线3.3,电极管道内的半圆压接在结构和原理上与在液冷插孔内的半圆压接结构和原理相同,这里不再累述;在电极管道2.4的外圆柱面上套接有绝缘套管3.5,所述通孔2.3内插接有电极导管2.6,电极导管2.6向外伸出电极管道2.4,且与冷却液内管3.4插接,冷却液内通道3.1通过电极导管2.6、沉孔2.5与进液口2.1连通,冷却液外通道3.2通过电极管道2.4与出液口2.2连通。在电极管道2.4的外管壁上还设有防止绝缘套管3.5滑脱的马牙齿,在绝缘套管3.5上设置卡箍(图未示出)与马牙齿配合锁紧,保证绝缘套管3.5与电极管道2.4外管壁之间的密封性。
为了增加锥头前部与锥孔尾部的密封性,所述锥头前部带有外锥面的一端还设有密封槽,在密封槽内设置有密封圈2.7,所述锥孔尾部设有与密封圈2.7对应的密封沉孔,锥头前部与锥孔尾部通过密封圈2.7进行密封。
为了便于DC+液冷电极与车载电池组DC+极柱连接,在锥孔尾部与锥 孔相对的一端设有扁平状的安装座,在安装座上设有安装孔。DC+液冷电极通过安装座与车载电池组DC+极柱连接。
相反的,与电动汽车充电插座内的DC-液冷插孔、车载电池组DC-极柱连接的DC-液冷电极,如图6所示,由锥孔前部与锥头后部两部分组成;锥孔前部为一端带有内锥面的轴状体,带有内锥面的一端设有通孔2.3,另一端为与通孔2.3连通的电极管道2.4,在电极管道2.4的管壁上设有出液口2.2;锥头后部为轴状体,其一端设有与锥孔前部带有内锥面的一端相对应的外锥面、与通孔2.3对应的沉孔2.5,在沉孔2.5的孔壁上设有进液口2.1;锥孔前部的内锥面与锥头后部的外锥面配合贴合,且螺接在一起;在电极管道2.4的内管壁上半圆压接有软体导线3.3,在电极管道2.4的外圆柱面上套接有绝缘套管3.5,所述通孔2.3内插接有电极导管2.6,电极导管2.6向外伸出电极管道2.4,且与冷却液内管3.4连接,冷却液内通道3.1通过电极导管2.6、沉孔2.5与进液口2.1连通,冷却液外通道3.2通过电极管道2.4与出液口2.2连通。在电极管道2.4的外管壁上还设有防止绝缘套管3.5滑脱的马牙齿,在绝缘套管3.5上设置卡箍(图未示出)与马牙齿配合锁紧,保证绝缘套管3.5与电极管道2.4外管壁之间的密封性。
同样的,为了增加锥孔前部与锥头后部的密封性,所述锥头后部带有外锥面的一端还设有密封槽,在密封槽内设置有密封圈2.7,所述锥孔前部设有与密封圈2.7对应的密封沉孔。为了便于DC-液冷电极与车载电池组DC-极柱连接,在锥头后部与锥头相对的一端设有扁平状的安装座,在安装座上设有安装孔。DC-液冷电极通过安装座与车载电池组DC-极柱连 接。
由于紫铜材料成本较高,为了降低材料成本,电极管道2.6采取分段加工。如图9、10所示,电极管道2.6向外的一端螺接有连接管2.8,其中,连接管2.8设有外螺纹,电极管道2.6设有与外螺纹对应的内螺纹。为了保证连接的密封性,在连接管2.8的外螺纹上还螺接有螺母,在螺母与电极管道2.6之间设置有O型圈。电极导管2.6的外管径小于连接管2.8的内管径,为了便于装配,电极导管2.6向外伸出连接管2.8。同样的,DC+液冷电极、DC-液冷电极的前后部通过连接螺母2.9连接在一起。这样的分体加工方式,可以降低加工材料的成本。
为了建立液冷电极2与软体导线3.3的电性连接,如图1、7所示,在电极管道2.4的内管壁上半圆压接软体导线3.3,电极管道2.4内非半圆压接的空腔可以实现出液口2.2与冷却液外通道3.2的连通;位于液冷电极2端的冷却液内管3.4,穿透软体导线3.3的圆环形绞合铜线网,与电极导管2.6插接,使冷却液内通道3.1与进液口2.1连通。半圆压接一方面增大了软体导线3.3与电极管道2.4的接触面积,可以承受较大电流,另一方面强大的压力使软体导线3.3与液冷电极2压接成一体,可以承受较大的轴向拉拽力。因此,半圆压接可实现软体导线3.3与液冷电极2之间可靠的电性连接,且使冷却液内通道3.1、冷却液外通道3.2内的冷却液在液冷电极2内相互隔离。
工作原理:如图8所示,在电动汽车上设置有车载冷却液循环冷却装置5,一方面对冷却液提供循环流动的动力,另一方面对冷却液进行散热冷却。经车载冷却液循环冷却装置5冷却的冷却液从液冷电极2的进液口 2.1、电极导管2.6进入冷却液内通道3.1,再通过内层空腔1.12、外层空腔1.13进入冷却液外通道3.2,最后,经液冷电极2的出液口2.2流出,返回车载冷却液循环冷却装置5,实现对本液冷充电插座的循环冷却。
本发明未详述部分为现有技术。尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (9)

  1. 一种新能源电动汽车充电插座用液冷线缆,其特征在于,包括:
    插座壳体(4)和设置在插座壳体(4)内的DC+、DC-两个液冷插孔(1)、以及若干信号线;所述液冷插孔(1)设有连通腔(1.1);还包括用于与车载电池组DC+、DC-极柱连接的两个液冷电极(2),所述液冷电极(2)设有用于冷却液出入的进液口(2.1)、出液口(2.2);
    以及,分别连接在DC+液冷插孔(1)与DC+液冷电极(2)、DC-液冷插孔(1)与DC-液冷电极(2)之间的两根液冷电缆(3);所述液冷电缆(3)包括绝缘套管(3.5),所述绝缘套管(3.5)内贯穿设置有软体导线(3.3),还设置有沿软体导线(3.3)从液冷电极(2)通向液冷插孔(1)的冷却液内通道(3.1)、以及沿软体导线(3.3)从液冷插孔(1)通向液冷电极(2)的冷却液外通道(3.2);所述冷却液内通道(3.1)、冷却液外通道(3.2)与液冷电极(2)连接的一端,分别与进液口(2.1)、出液口(2.2)连通,与液冷插孔(1)连接的一端,与连通腔(1.1)连通。
  2. 如权利要求1所述的一种新能源电动汽车充电插座用液冷线缆,其特征是:所述绝缘套管(3.5)与软体导线(3.3)之间的空腔为冷却液外通道(3.2),所述冷却液外通道(3.2)与液冷电极(2)连接的一端,与出液口(2.2)连通,与液冷插孔(1)连接的一端,与连通腔(1.1)连通;所述软体导线(3.3)为中空软体导线,内部贯穿设置有冷却液内管(3.4),冷却液内管(3.4)的内空腔为冷却液内通道(3.1),所述冷却液内通道(3.1)与液冷电极(2)连接的一端,与进液口(2.1)连通,与液冷插孔(1)连接的一端,与连通腔(1.1)连通。
  3. 如权利要求2所述的一种新能源电动汽车充电插座用液冷线缆,其特征是:所述液冷插孔(1)为轴状,一端为与充电枪端子对应插接的插孔端(1.2),另一端为与液冷电缆(3)连接的连接端(1.3),在连接端(1.3)的端面上设有连通腔(1.1),在连通腔(1.1)的内壁上半圆压接有软体导线(3.3),在连接端(1.3)的外圆柱面上套接有绝缘套管(3.5)。
  4. 如权利要求3所述的一种新能源电动汽车充电插座用液冷线缆,其特征是:所述连通腔(1.1)向插孔端(1.2)延伸,且封闭于插孔端(1.2)插孔的外壁内。
  5. 如权利要求3或4所述的一种新能源电动汽车充电插座用液冷线缆,其特征是:所述连通腔(1.1)内设有环形分流套(1.11),环形分流套(1.11)将连通腔(1.1)分成内、外层两个空腔,其中,内层空腔(1.12)与冷却液内通道(3.1)连通,外层空腔(1.13)与冷却液外通道(3.2)连通,内层空腔(1.12)、外层空腔(1.13)在连通腔(1.1)靠近插孔端(1.2)处连通。
  6. 如权利要求5所述的一种新能源电动汽车充电插座用液冷线缆,其特征是:所述内层空腔(1.12)在靠近连接端(1.3)密封连接有插孔导管(1.4),插孔导管(1.4)的外径小于连通腔(1.1)的内径,插孔导管(1.4)向外伸出连接端(1.3),且与冷却液内管(3.4)插接。
  7. 如权利要求2所述的一种新能源电动汽车充电插座用液冷线缆,其特征是:所述液冷电极(2)由锥头前部与锥孔尾部两部分组成;锥头前部为一端带有外锥面的轴状体,带有外锥面的一端设有通孔(2.3),另一端为与通孔(2.3)连通的电极管道(2.4),在电极管道(2.4)的管壁上 设有出液口(2.2);锥孔尾部为轴状体,其一端设有与锥头前部带有外锥面的一端相对应的内锥面、与通孔(2.3)对应的沉孔(2.5),在沉孔(2.5)的孔壁上设有进液口(2.1);锥头前部的外锥面与锥孔尾部的内锥面配合贴合、且螺接在一起;在电极管道(2.4)的内管壁上半圆压接有软体导线(3.3),在电极管道(2.4)的外圆柱面上套接有绝缘套管(3.5),所述通孔(2.3)内插接有电极导管(2.6),电极导管(2.6)向外伸出电极管道(2.4),且与冷却液内管(3.4)插接,冷却液内通道(3.1)通过电极导管(2.6)、沉孔(2.5)与进液口(2.1)连通,冷却液外通道(3.2)通过电极管道(2.4)与出液口(2.2)连通;所述锥头前部带有外锥面的一端还设有密封槽,在密封槽内设置有密封圈(2.7),所述锥孔尾部设有与密封圈(2.7)对应的密封沉孔。
  8. 如权利要求2所述的一种新能源电动汽车充电插座用液冷线缆,其特征是:所述液冷电极(2)由锥孔前部与锥头后部两部分组成;锥孔前部为一端带有内锥面的轴状体,带有内锥面的一端设有通孔(2.3),另一端为与通孔(2.3)连通的电极管道(2.4),在电极管道(2.4)的管壁上设有出液口(2.2);锥头后部为轴状体,其一端设有与锥孔前部带有内锥面的一端相对应的外锥面、与通孔(2.3)对应的沉孔(2.5),在沉孔(2.5)的孔壁上设有进液口(2.1);锥孔前部的内锥面与锥头后部的外锥面配合贴合,且螺接在一起;在电极管道(2.4)的内管壁上半圆压接有软体导线(3.3),在电极管道(2.4)的外圆柱面上套接有绝缘套管(3.5),所述通孔(2.3)内插接有电极导管(2.6),电极导管(2.6)向外伸出电极管道(2.4),且与冷却液内管(3.4)连接,冷却液内通道(3.1)通过电极导管(2.6)、沉孔(2.5)与进液口(2.1)连通,冷却液外通 道(3.2)通过电极管道(2.4)与出液口(2.2)连通;所述锥头后部带有外锥面的一端还设有密封槽,在密封槽内设置有密封圈(2.7),所述锥孔前部设有与密封圈(2.7)对应的密封沉孔。
  9. 如权利要求2所述的一种新能源电动汽车充电插座用液冷线缆,其特征是:所述冷却液内管(3.4)为聚四氟乙烯管,所述软体导线(3.3)包括软导体和防护铜网,软导体为铜丝线合股后在聚四氟乙烯管外壁缠绕编织的多股铜线,防护铜网为铜丝交叉编织在软导体外壁上的一层防护网。
PCT/CN2021/072764 2020-01-20 2021-01-19 一种新能源电动汽车充电插座用液冷线缆 WO2021147871A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010063850.1A CN111129856A (zh) 2020-01-20 2020-01-20 一种新能源电动汽车充电插座用液冷线缆
CN202010063850.1 2020-01-20

Publications (1)

Publication Number Publication Date
WO2021147871A1 true WO2021147871A1 (zh) 2021-07-29

Family

ID=70492298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072764 WO2021147871A1 (zh) 2020-01-20 2021-01-19 一种新能源电动汽车充电插座用液冷线缆

Country Status (2)

Country Link
CN (1) CN111129856A (zh)
WO (1) WO2021147871A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114368298A (zh) * 2021-12-30 2022-04-19 华为数字能源技术有限公司 一种散热设备、终端设备和充电系统
US11855383B2 (en) 2020-05-22 2023-12-26 Te Connectivity Germany Gmbh Cooling device for a connector element and connector element for high-voltage applications

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129856A (zh) * 2020-01-20 2020-05-08 洛阳正奇机械有限公司 一种新能源电动汽车充电插座用液冷线缆
CN111200200B (zh) * 2020-01-20 2021-02-09 洛阳正奇机械有限公司 一种新能源电动汽车液冷充电插座用液冷线缆
CN114391211A (zh) * 2020-08-17 2022-04-22 华为数字能源技术有限公司 传导件、液冷导电结构、电机及电动汽车动力总成
CN113257468A (zh) * 2021-05-20 2021-08-13 万智豹 一种可吸热控温的大功率充电线缆
CN114709689A (zh) * 2022-03-14 2022-07-05 长春捷翼汽车零部件有限公司 一种具有液冷功能的连接器总成及一种车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054588A (ja) * 1996-08-13 1998-02-24 Hitoyoshi Aizawa 熱交換装置の冷媒配管接続具
CN106876029A (zh) * 2017-04-21 2017-06-20 欧阳和平 一种可以减小电流损耗的大功率水冷电缆
CN107887731A (zh) * 2017-09-29 2018-04-06 深圳市沃尔新能源电气科技股份有限公司 液冷端子和充电枪
CN207664267U (zh) * 2017-12-22 2018-07-27 深圳市沃尔新能源电气科技股份有限公司 液冷充电插座
CN108847316A (zh) * 2018-06-06 2018-11-20 洛阳正奇机械有限公司 一种600a直流充电桩专用液冷电缆dc+和dc-的并冷冷却方式
CN111129856A (zh) * 2020-01-20 2020-05-08 洛阳正奇机械有限公司 一种新能源电动汽车充电插座用液冷线缆
CN211295534U (zh) * 2020-01-20 2020-08-18 洛阳正奇机械有限公司 一种新能源电动汽车充电插座用液冷线缆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054588A (ja) * 1996-08-13 1998-02-24 Hitoyoshi Aizawa 熱交換装置の冷媒配管接続具
CN106876029A (zh) * 2017-04-21 2017-06-20 欧阳和平 一种可以减小电流损耗的大功率水冷电缆
CN107887731A (zh) * 2017-09-29 2018-04-06 深圳市沃尔新能源电气科技股份有限公司 液冷端子和充电枪
CN207664267U (zh) * 2017-12-22 2018-07-27 深圳市沃尔新能源电气科技股份有限公司 液冷充电插座
CN108847316A (zh) * 2018-06-06 2018-11-20 洛阳正奇机械有限公司 一种600a直流充电桩专用液冷电缆dc+和dc-的并冷冷却方式
CN111129856A (zh) * 2020-01-20 2020-05-08 洛阳正奇机械有限公司 一种新能源电动汽车充电插座用液冷线缆
CN211295534U (zh) * 2020-01-20 2020-08-18 洛阳正奇机械有限公司 一种新能源电动汽车充电插座用液冷线缆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11855383B2 (en) 2020-05-22 2023-12-26 Te Connectivity Germany Gmbh Cooling device for a connector element and connector element for high-voltage applications
CN114368298A (zh) * 2021-12-30 2022-04-19 华为数字能源技术有限公司 一种散热设备、终端设备和充电系统

Also Published As

Publication number Publication date
CN111129856A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2021147871A1 (zh) 一种新能源电动汽车充电插座用液冷线缆
WO2021147872A1 (zh) 一种新能源电动汽车液冷充电插座用液冷线缆
WO2021147867A1 (zh) 一种新能源电动汽车液冷充电插座用液冷导电插孔
WO2019184883A1 (zh) 一种大功率充电桩的正负极液冷电缆串联冷却结构
JP7075143B2 (ja) 一種の大電力充電スタンド正極及び負極専用パラレル冷却液冷電気ケーブル
CN211295534U (zh) 一种新能源电动汽车充电插座用液冷线缆
CN211294720U (zh) 一种新能源电动汽车液冷充电插座用液冷线缆本体
CN207416561U (zh) 具有散热功能的充电枪
CN211605534U (zh) 一种新能源电动汽车液冷充电插座用液冷导电插孔
CN109788713B (zh) 一种流体冷却充电装置
CN109727713B (zh) 一种紫铜波纹管结构的大功率充电桩串冷电缆
CN111105899A (zh) 一种欧洲标准直流充电枪液冷电缆
CN211295493U (zh) 一种新能源电动汽车液冷充电插座用液冷线缆的锥孔电极
CN109887670B (zh) 一种紫铜波纹管结构的大功率充电桩并冷电缆
CN109768405B (zh) 一种大功率充电桩用液冷电缆电极的冷却液双通道结构
CN211294719U (zh) 一种欧洲标准直流充电枪液冷电缆
CN213322710U (zh) 一种中国大陆的电动汽车用的液冷直流充电插座
CN218257763U (zh) 一种大功率液冷超级充电的直流接插装置
CN213183715U (zh) 电动车辆欧标直流充电插座用的液冷电缆
CN213322709U (zh) 一种美国标准液冷直流充电枪
CN213183714U (zh) 一种美国标准的直流充电枪用液冷电缆
CN108493655A (zh) 一种大功率充电桩专用液冷电缆dc+与dc-并冷液冷电极
CN213183716U (zh) 电动车辆美标直流充电插座用液冷电缆
CN209282447U (zh) 一种大功率直流充电枪液冷端子的开槽内冷却管
CN109755785B (zh) 一种大功率充电桩用液冷电缆电极的内部冷却结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744965

Country of ref document: EP

Kind code of ref document: A1