WO2021147810A1 - 一种耐热铸钢及其制备方法和用途 - Google Patents

一种耐热铸钢及其制备方法和用途 Download PDF

Info

Publication number
WO2021147810A1
WO2021147810A1 PCT/CN2021/072446 CN2021072446W WO2021147810A1 WO 2021147810 A1 WO2021147810 A1 WO 2021147810A1 CN 2021072446 W CN2021072446 W CN 2021072446W WO 2021147810 A1 WO2021147810 A1 WO 2021147810A1
Authority
WO
WIPO (PCT)
Prior art keywords
cast steel
heat
resistant cast
content
steel
Prior art date
Application number
PCT/CN2021/072446
Other languages
English (en)
French (fr)
Inventor
师帅
梅林波
孙林根
安春香
王煜
刘霞
沈红卫
Original Assignee
上海电气电站设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海电气电站设备有限公司 filed Critical 上海电气电站设备有限公司
Priority to US17/793,482 priority Critical patent/US20230074936A1/en
Priority to DE112021000275.9T priority patent/DE112021000275T5/de
Publication of WO2021147810A1 publication Critical patent/WO2021147810A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt

Definitions

  • the invention relates to the field of metal materials, in particular to a heat-resistant cast steel and a preparation method and application thereof.
  • the steam turbine in the turbomachinery is also called a steam turbine engine. It is a rotary steam power device. High temperature and high pressure steam passes through a fixed nozzle to become an accelerated airflow and then sprays onto the blades, causing the rotor with blade rows to rotate, and at the same time externally. acting. Steam turbines are the main equipment of modern thermal power plants.
  • Increasing the steam temperature parameters of thermal power coal-fired units can improve unit efficiency, reduce fossil fuel consumption, and achieve energy saving and emission reduction.
  • the operating temperature of steam turbines is limited by the maximum use temperature of materials for key components (cylinders, valves, rotors, blades, etc.).
  • High-temperature casting materials for steam turbine cylinders and valve housings have developed from Cr-Mo steel to various 9%-12% Cr ferritic steels; among the existing high-temperature casting materials, ZG12Cr10Mo1W1VNbN and ZG13Cr9Mo2Co1NiVNbNB are currently available for selection. Wait. Among them, the maximum working temperature of ZG12Cr10Mo1W1VNbN steel grade cannot exceed 610°C, and the maximum working temperature of ZG13Cr9Mo2Co1NiVNbNB steel grade cannot exceed 625°C. At present, there is no heat-resistant cast steel material for steam turbine castings that can meet the working temperature of 635°C.
  • the purpose of the present invention is to provide a heat-resistant cast steel and a preparation method and application thereof to solve the problems in the prior art.
  • the present invention provides a heat-resistant cast steel, based on the total mass of the heat-resistant cast steel, including the following elements and mass percentages:
  • the Fe is 79 wt% to 85.5 wt%.
  • the Fe is 81 wt% to 83.8 wt%.
  • the heat-resistant cast steel further contains impurities, and the impurities include one or more of Al, P, S, Cu, Ti, and Sn.
  • the heat-resistant cast steel includes the following elements and mass percentages: C 0.10wt% ⁇ 0.16wt% , Si 0.20wt% ⁇ 0.30wt%, Mn 0.40wt% ⁇ 0.60wt%, Cr 10.00wt% ⁇ 10.50wt%, Co 3.10wt% ⁇ 3.40wt%, W 1.65wt% ⁇ 1.90wt%, Mo 0.55wt% ⁇ 0.75wt%, V 0.15wt% ⁇ 0.25wt%, Nb 0.03wt% ⁇ 0.07wt%, N 0.015wt% ⁇ 0.030wt%, B 0.002wt% ⁇ 0.008wt%, Ni ⁇ 0.10wt%, Fe and impurities
  • the element is the remainder.
  • the invention also discloses the use of the heat-resistant cast steel as described above as a casting material in turbomachinery, especially in the field of steam turbines.
  • Carbon (C) The C element ensures hardenability.
  • M 23 C 6 carbide is formed at the grain boundary and martensite boundary.
  • MX carbon and nitrogen are formed in the martensite. ⁇ .
  • C is also an indispensable element that inhibits the formation of the harmful phase ⁇ -ferrite and BN.
  • the C content should be above 0.08%.
  • the toughness will be reduced instead.
  • the M 23 C 6 carbides are excessively precipitated, the alloy strength will be reduced and the high temperature strength of long-term use will be impaired. Therefore, the C content is limited to 0.08% to 0.18%.
  • the optimal content of C element should be limited to 0.10% ⁇ 0.16%;
  • Si element is an effective element for deoxidation of molten steel, and can work together with Cr to improve the oxidation resistance of steel.
  • Si promotes the precipitation of the Laves phase, which is not conducive to the toughness of the steel, and has an adverse effect on the creep strength. Therefore, the Si content is limited to 0.10% to 0.40%.
  • the optimal content of Si element should be limited to 0.20% ⁇ 0.30%;
  • Mn Manganese (Mn): Mn can remove oxygen and sulfur elements in molten steel and improve the hardenability of steel. But with the increase of Mn content, the creep rupture strength decreases. Therefore, the Mn content is limited to 0.30% to 0.70%. Furthermore, the optimal content of Mn element should be limited to 0.40% ⁇ 0.60%;
  • Chromium (Cr) The main function of Cr in steel is to improve oxidation resistance and corrosion resistance. As a constituent element of M 23 C 6 carbide that improves high-temperature strength through precipitation strengthening, it is an indispensable element.
  • the Cr content of the heat-resistant cast steel of the present invention is at least 9.80%. However, if it exceeds 10.70%, ⁇ -ferrite is likely to be formed, lowering the high strength temperature and toughness. Therefore, the Cr content is limited to 9.80% to 10.70%. Furthermore, the optimal content of Cr element should be limited to 10.00% ⁇ 10.50%;
  • Mo Molybdenum
  • the addition of Mo is mainly to increase the tempering stability of steel and strengthen the secondary hardening effect.
  • Mo segregates at the grain boundary to increase the bonding force of the grain boundary, so that the strength of the steel is increased while the loss of toughness is reduced.
  • excessive Mo results in the formation of ⁇ -ferrite and the precipitation of the inter-gold Laves phase, which significantly reduces the toughness. Therefore, the Mo content is limited to 0.45% to 0.85%.
  • the optimal content of Mo element should be limited to 0.55% ⁇ 0.75%;
  • Tungsten (W) W is very effective in suppressing the coarsening of M 23 C 6 carbides, and its effect exceeds that of Mo. Add W to replace part of Mo to ensure that the Mo equivalent (Mo+1/2W) is about 1.5%, the creep strength is the best, and it will not form too much ⁇ -ferrite. If the amount of W added exceeds 2%, segregation is likely to occur in the casting. Therefore, the W content is limited to 1.60% to 2.00%. Furthermore, the optimal content of W element should be limited to 1.65% to 1.90%;
  • Co Co
  • Mo Mo
  • W are other important elements distinguishing the present invention.
  • Co can inhibit the formation of ⁇ -ferrite in high-chromium ferritic steel after high-temperature normalization or quenching, and can fully exert the solid solution strengthening effect of Mo and W elements, and improve the toughness of steel. This is useful for the invention with higher W content.
  • Heat-resistant cast steel is critical.
  • the Co content is limited to 3.00% to 3.50%.
  • the optimal content of Co element should be limited to 3.10% ⁇ 3.40%;
  • V and Nb are easily combined with C and N to form MX carbonitrides in the martensite.
  • the fine and dispersed precipitation greatly improves the strength and is stable in long-term creep.
  • the strengthening phase too much V and Nb will excessively fix the carbon content, reduce the precipitation of M 23 C 6 carbides, and cause the high temperature strength to decrease.
  • Nb is easy to segregate in castings. Therefore, the V content is limited to 0.10 to 0.30%, and the Nb content is limited to 0.02% to 0.08%.
  • the optimal content of V element should be limited to 0.15% to 0.25%, and the optimal content of Nb element should be limited to 0.03% to 0.07%;
  • Nickel (Ni) An appropriate amount of Ni can increase the hardenability of steel, inhibit the formation of ⁇ -ferrite and BN, and improve the strength and toughness at room temperature. However, excessive addition is not conducive to the high temperature creep performance of steel. Therefore, the added Ni content should be as low as possible, and it is expected that it should not exceed 0.20%, and it is best that it should not exceed 0.10%;
  • B has a grain boundary strengthening effect, can be dissolved in M 23 C 6 carbides, has the effect of inhibiting the coarsening of M 23 C 6 carbides, and can improve high-temperature strength.
  • the minimum additive content should be 0.001%. However, if it is 0.010% or more, the castability and weldability are impaired. Therefore, the B content is limited to 0.001% to 0.010%. Furthermore, the optimal content of element B should be limited to 0.002% ⁇ 0.008%;
  • N Nitrogen (N): N can precipitate VN nitrides with V, and combine with Mo and W in a solid solution state to improve high temperature strength.
  • the minimum content should be 0.01%. However, adding more than 0.04% will easily combine with the B element to precipitate BN, which will impair the creep performance of the steel. Therefore, the N content is limited to 0.010% to 0.035%. Furthermore, the optimum content of N element should be limited to 0.015% to 0.030%.
  • the impurities include P and/or S and/or Al and/or Cu and/or Ti and/or Sn.
  • S is a harmful impurity element in steel, which will reduce the thermoplasticity of steel, affect hot workability, and reduce corrosion resistance. S element segregates the grain boundaries, reducing the bonding force of the grain boundaries, resulting in lower high temperature strength; P is also a harmful impurity element in steel, and high content will cause steel to produce a certain degree of brittleness; Al element is very easy to form precipitation phase AlN with N element.
  • the plastic toughness and long-term creep properties of steel have an adverse effect; Sn elements tend to segregate at the grain boundaries, which significantly reduces the high temperature strength of the alloy.
  • P, S, Al, Cu, Ti and Sn as impurity elements have an adverse effect on the mechanical properties of the heat-resistant cast steel and alloy, and their content should be reduced as much as possible.
  • Table 1 is a comparison of the composition range of the heat-resistant cast steel for castings of the present invention and the ZG12Cr10Mo1W1VNbN and ZG13Cr9Mo2Co1NiVNbNB specified in the industry standard JB/T 11018-2010.
  • the invention also discloses a method for preparing the heat-resistant steel casting as described above, which includes the following steps:
  • the temperature of the quenching treatment is 1080 ⁇ 1180
  • tempering treatment 700 ⁇ 780°C, tempering one or more times.
  • the invention also discloses the use of the heat-resistant cast steel as described above for the preparation of turbomachinery.
  • the invention also discloses the use of the heat-resistant cast steel as mentioned above as a casting material in the field of steam turbines.
  • the present invention adds Co and B to the composition, adjusts the ratio of solid solution strengthening elements Mo and W, reduces the content of Mn, N and Ni elements, and improves the high-temperature creep strength.
  • W is added, the ratio of B and N is adjusted, the content of Cr and Co is increased, the content of Mn, Mo and Ni is reduced, and the high temperature creep strength and resistance are improved. Oxidation performance, which will increase the use temperature of casting materials, thereby increasing the thermal efficiency of the generator set, reducing coal consumption and carbon dioxide emissions.
  • the material grade of the new heat-resistant cast steel is determined to be ZG12Cr10Co3W2MoVNbNB, or CW2 for short.
  • the heat-resistant cast steel provided by the present invention can be used to prepare turbomachinery, especially steam turbine castings.
  • the prepared steam turbine castings have good high-temperature strength and oxidation resistance in a high-temperature environment of 635°C and below 635°C. It meets the requirements for the use of steam turbines with operating temperatures of 635°C and below.
  • Figure 1 shows the results of the oxidation weight gain test at 635°C for the materials in the examples of the present invention.
  • the ratio of the raw materials is determined according to the ratio of each component in the formula, and the raw materials are smelted; re-refining, casting and forming; then quenching or normalizing treatment, and finally tempering heat treatment.
  • the electrolytic cobalt is the raw material as the source of Co
  • the tungsten bar is the raw material as the source of W
  • the metal vanadium is the raw material as the source of V
  • the niobium bar is the raw material as the source of Nb
  • chromium nitride is the raw material as the source of N.
  • Boron is the raw material as the source of B
  • electrolytic nickel is the raw material as the source of Ni.
  • Example 1 The chemical composition analysis of the heat-resistant cast steel in Example 1 and Example 2 was performed.
  • the analysis results are shown in Table 2, and the unit is wt%, which meets the requirements of the chemical composition index.
  • Example 2 C 0.08 ⁇ 0.18 0.15 0.11 Si 0.10 ⁇ 0.40 0.32 0.21 Mn 0.30 ⁇ 0.70 0.40 0.55 P ⁇ 0.030 0.006 0.005 S ⁇ 0.020 0.005 0.003 Cr 9.80 ⁇ 10.70 10.10 10.35 Co 3.00 ⁇ 3.50 3.15 3.35 Mo 0.45 ⁇ 0.85 0.58 0.69 W 1.60 ⁇ 2.00 1.85 1.70 V 0.10 ⁇ 0.30 0.15 0.21 Nb 0.02 ⁇ 0.08 0.04 0.06 N 0.010 ⁇ 0.035 0.015 0.025 B 0.001 ⁇ 0.010 0.0026 0.0060 Ni ⁇ 0.20 0.10 0.05 Al ⁇ 0.030 0.015 0.010
  • the mechanical properties of the existing casting materials ZG12Cr10Mo1W1VNbN and ZG13Cr9Mo2Co1NiVNbNB are listed. See Table 3 for specific data.
  • the heat-resistant cast steel materials obtained in Examples 1 and 2 were subjected to a room temperature tensile test in accordance with the GB/T 228.1 standard, and a creep rupture strength test in accordance with the GB/T 2039 standard, and then in accordance with the GB/T 2039 standard.
  • the specified extrapolation method derives the creep rupture strength limit R u 100000h/635°C under the condition of 635°C/100,000 hours, and compares it with the creep rupture strength of ZG12Cr10Mo1W1VNbN and ZG13Cr9Mo2Co1NiVNbNB under the condition of 635°C/100,000 hours.
  • the results are shown in Table 3.
  • R p0.2 is the yield strength
  • R m is the tensile strength.
  • the strengths (including R p0.2 yield strength and R m tensile strength) obtained in Example 1 and Example 2 of the present invention meet the index requirements of ZG12Cr10Mo1W1VNbN and ZG13Cr9Mo2Co1NiVNbNB.
  • the extrapolated value of creep rupture strength of the material of the present invention is higher than 80MPa
  • the extrapolated value of creep rupture strength of the comparative casting material ZG12Cr10Mo1W1VNbN is increased by more than 30%
  • the extrapolated value of creep rupture strength of ZG13Cr9Mo2Co1NiVNbNB is increased by more than 20%.
  • the strengthening effect is obvious, and it can meet the use requirements of the steam turbine cylinder and valve housing at 635°C.
  • Examples 1 and 2 and ZG12Cr10Mo1W1VNbN and ZG13Cr9Mo2Co1NiVNbNB were subjected to an oxidation weight gain test at 635°C.
  • the samples of the four materials were placed in a flowing water vapor environment at 635°C and 27MPa for the longest time of 2000h. This time period was tested.
  • the test results are shown in Figure 1. It can be seen from Figure 1 that the oxidation resistance of Examples 1 and 2 is significantly better than that of ZG12Cr10Mo1W1VNbN and ZG13Cr9Mo2Co1NiVNbNB.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明提供一种耐热铸钢及其制备方法和用途,以耐热铸钢的总质量为基准计,包括如下元素及质量百分含量:C 0.08wt%~0.18wt%,Si 0.10wt%~0.40wt%,Mn 0.30wt%~0.70wt%,Cr 9.80wt%~10.70wt%,Co 3.00wt%~3.50wt%,W 1.60wt%~2.00wt%,Mo 0.45wt%~0.85wt%,V 0.10wt%~0.30wt%,Nb 0.02wt%~0.08wt%,N 0.010wt%~0.035wt%,B 0.001wt%~0.010wt%,Ni≤0.20wt%,Fe 79wt%~85.5wt%。其能满足635℃及635℃以下透平零部件的使用要求。

Description

一种耐热铸钢及其制备方法和用途 技术领域
本发明涉及一种金属材料领域,特别是涉及一种耐热铸钢及其制备方法和用途。
背景技术
透平机械中的汽轮机也称蒸汽透平发动机,是一种旋转式蒸汽动力装置,高温高压蒸汽穿过固定喷嘴成为加速的气流后喷射到叶片上,使得装有叶片排的转子旋转,同时对外做功。汽轮机是现代火力发电厂的主要设备。
提高火电燃煤机组的蒸汽温度参数可以提高机组效率,减少化石燃料的消耗,实现节能减排。而汽轮机运行温度受限于关键部件(汽缸、阀门、转子和叶片等)材料的最高使用温度。
汽轮机的汽缸和阀壳等部件用高温铸件材料从Cr-Mo钢发展成各类9%~12%Cr铁素体钢;在现有的高温铸件材料中,目前可供选用的有ZG12Cr10Mo1W1VNbN和ZG13Cr9Mo2Co1NiVNbNB等。其中ZG12Cr10Mo1W1VNbN钢种的最高工作温度不能超过610℃,ZG13Cr9Mo2Co1NiVNbNB钢种的最高工作温度不能超过625℃,目前没有能够满足工作温度为635℃的汽轮机铸件用耐热铸钢材料。
发明的公开
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种耐热铸钢及其制备方法和用途,用于解决现有技术中的问题。
为实现上述目的及其他相关目的,本发明是通过包括以下技术方案获得的。
本发明提供一种耐热铸钢,以耐热铸钢的总质量为基准计,包括如下元素及质量百分含量:
C 0.08wt%~0.18wt%,Si 0.10wt%~0.40wt%,Mn 0.30wt%~0.70wt%,Cr 9.80wt%~10.70wt%,Co 3.00wt%~3.50wt%,W 1.60wt%~2.00wt%,Mo 0.45wt%~0.85wt%,V 0.10wt%~0.30wt%,Nb 0.02wt%~0.08wt%,N 0.010wt%~0.035wt%,B 0.001wt%~0.010wt%,Ni≤0.20wt%。
根据本申请上述所述的技术方案,所述Fe为79wt%~85.5wt%。
根据本申请上述所述的技术方案,所述Fe为81wt%~83.8wt%。
根据本申请上述所述的耐热铸钢的技术方案,所述耐热铸钢还含有杂质,杂质包括Al、P、S、Cu、Ti和Sn中的一种或多种。
根据本申请上述所述的耐热铸钢的技术方案,以耐热铸钢的总质量为基准计,Al≤0.030wt%,P≤0.030wt%,S≤0.020wt%,Cu≤0.25wt%,Ti≤0.030wt%,Sn≤0.030wt%。更优选地,Al≤0.020wt%,P≤0.020wt%,S≤0.015wt%,Cu≤0.15wt%,Ti≤0.020wt%,Sn≤0.020wt%。
根据本申请上述所述的耐热铸钢的技术方案,以耐热铸钢的总质量为基准计,所述耐热铸钢包括如下元素及质量百分含量:C 0.10wt%~0.16wt%,Si 0.20wt%~0.30wt%,Mn 0.40wt%~0.60wt%,Cr 10.00wt%~10.50wt%,Co 3.10wt%~3.40wt%,W 1.65wt%~1.90wt%,Mo 0.55wt%~0.75wt%,V 0.15wt%~0.25wt%,Nb 0.03wt%~0.07wt%,N 0.015wt%~0.030wt%,B 0.002wt%~0.008wt%,Ni≤0.10wt%,Fe和杂质元素为余量。
本发明还公开了如上述所述的耐热铸钢在透平机械,尤其在汽轮机领域用作铸件材料的用途。
本发明所提供的耐热铸钢各元素质量百分含量的限定原因如下:
碳(C):C元素确保淬透性。在回火过程中,与Mo、W等元素组合后,在晶界和马氏体边界形成M 23C 6碳化物,C与Nb、V等元素组合后,在马氏体内形成MX型碳氮化物。在上述M 23C 6碳化物和MX型碳氮化物析出强化后,可提高高温强度。除了确保强度和韧性外,C也是抑制有害相δ-铁素体和BN生成的不可或缺的元素。为使本发明的耐热铸钢具有所需的强度和韧性,C含量应在0.08%以上。但是,如果添加过量,反而会降低韧性,M 23C 6碳化物被过度析出时,降低合金强度,损害长期使用的高温强度。所以,C含量限定在0.08%~0.18%。进一步来说,C元素的最佳含量应限定在0.10%~0.16%;
硅(Si):Si元素是钢水脱氧的有效元素,与Cr共同作用可提高钢的抗氧化性。但Si促进Laves相析出,不利于钢的韧性,且对蠕变强度产生不利影响。所以,Si含量限定在0.10%~0.40%。进一步来说,Si元素的最佳含量应限定在0.20%~0.30%;
锰(Mn):Mn可以脱除钢水中的氧和硫元素,提高钢的淬透性。但随Mn含量增加,蠕变断裂强度降低。所以Mn含量限定在0.30%~0.70%。进一步来说,Mn元素的最佳含量应限定在0.40%~0.60%;
铬(Cr):Cr在钢中的主要作用是提高抗氧化性和耐腐蚀性,作为通过析出强化提高高温强度的M 23C 6碳化物的组成元素,是不可缺少的一种元素。为取得上述效果,本发明耐热铸钢的Cr含量最低为9.80%。但是,如果超过10.70%,则易生成δ-铁素体,降低高强温度和韧性。因而,Cr含量限定在9.80%~10.70%。进一步来说,Cr元素的最佳含量应限定在10.00%~10.50%;
钼(Mo):Mo的加入主要是增加钢的回火稳定性、强化二次硬化效应。且Mo在晶界偏聚提高晶界结合力,使得增加钢的强度的同时减少韧性的损失。但Mo过量,则导致生成δ-铁素体和金间化合物Laves相的析出,明显降低韧性。所以Mo含量限定在0.45%~0.85%。进一步来说,Mo元素的最佳含量应限定在0.55%~0.75%;
钨(W):W对于抑制M 23C 6碳化物的粗化很有效,其作用超过Mo元素。添加W取代部分Mo,保证Mo当量(Mo+1/2W)为1.5%左右,蠕变强度最好,且不至于形成过多δ-铁素体。若W添加量超过2%时,铸件容易出现偏析。因此,W的含量限定在1.60%~2.00%。进一步来说,W元素的最佳含量应限定在1.65%~1.90%;
钴(Co):Co、Mo和W是本发明区分其他的重要元素。Co能抑制高铬铁素体钢高温正火或淬火后δ-铁素体的生成,可完全发挥Mo和W元素的固溶强化作用,提高钢的韧性,这对W含量较高的本发明耐热铸钢十分关键。Co含量限定在3.00%~3.50%。进一步来说,Co元素的最佳含量应限定在3.10%~3.40%;
钒(V)、铌(Nb):V和Nb在马氏体内易与C、N结合成MX碳氮化物,细小弥散的析出对强度提升很大,且在长时蠕变中稳定,是主要的强化 相。但V、Nb过多会过度固定碳含量,减少M 23C 6碳化物的析出量,引起高温强度下降。且Nb在铸件中易偏析。所以V含量限定在0.10~0.30%,Nb含量限定在0.02%~0.08%。进一步来说,V元素的最佳含量应限定在0.15%~0.25%,Nb元素的最佳含量应限定在0.03%~0.07%;
镍(Ni):适量的Ni可以增加钢的淬透性,抑制δ-铁素体和BN生成,提高室温下的强度和韧性。但添加过量又不利于钢的高温蠕变性能。故添加Ni含量应尽可能低,期望不超过0.20%,不超过0.10%为最佳;
硼(B):B具有晶界强化作用,可在M 23C 6碳化物中固溶,具有抑制M 23C 6碳化物粗化的作用,可提高高温强度。添加含量最低应为0.001%。但是,若在0.010%以上时,则有损于铸造性和焊接性。因而,B含量限定在0.001%~0.010%。进一步来说,B元素的最佳含量应限定在0.002%~0.008%;
氮(N):N可与V析出VN氮化物,固溶状态与Mo和W组合,提高高温强度,含量最低应为0.01%。但添加超过0.04%,易与B元素结合析出BN,损害钢的蠕变性能。所以N含量限定在0.010%~0.035%。进一步来说,N元素的最佳含量应限定在0.015%~0.030%。
本发明所提供的铸件用耐热铸钢中,所述的杂质包括P和/或S和/或Al和/或Cu和/或Ti和/或Sn。S在钢中是有害杂质元素,会降低钢的热塑性,影响热加工性,降低耐腐蚀性。S元素偏聚晶界,降低晶界结合力,致使高温强度降低;P也是钢中有害杂质元素,含量高时会使钢产生一定的脆性;Al元素极易与N元素形成析出相AlN,对钢的塑韧性及长时蠕变性能产生不利影响;Sn元素易在晶界偏聚,显著降低了合金的高温强度。P、S、Al、Cu、Ti和Sn作为杂质元素对本耐热铸钢及合金的力学性能有不利影响,应尽量降低其含量。
表1为本发明铸件用耐热铸钢与行业标准JB/T 11018-2010中规定的ZG12Cr10Mo1W1VNbN,以及ZG13Cr9Mo2Co1NiVNbNB的成分范围中值对比。
表1化学成分对比(wt.%)
元素 本发明耐热铸钢CW2 ZG12Cr10Mo1W1VNbN ZG13Cr9Mo2Co1NiVNbNB
C 0.08~0.18 0.12 0.13
Si 0.10~0.40 0.30 0.25
Mn 0.30~0.70 1.00 0.90
P ≤0.030 ≤0.020 ≤0.020
S ≤0.020 ≤0.010 ≤0.010
Cr 9.80~10.70 9.70 9.25
Co 3.00~3.50 - 1.10
W 1.60~2.00 1.00 -
Mo 0.45~0.85 1.00 1.60
V 0.10~0.30 0.20 0.20
Nb 0.02~0.08 0.06 0.06
N 0.010~0.035 0.050 0.0225
B 0.001~0.010 - 0.0115
Ni ≤0.20 0.70 0.35
Al ≤0.030 ≤0.020 ≤0.020
本发明还公开了一种如上述所述耐热钢铸件的制备方法,包括如下步骤:
按照配方中各组分的配比确定原料配比并将原料熔炼;再精炼,浇铸成型;然后淬火或正火处理,最后回火热处理。
根据上述所述的制备方法的技术方案,淬火处理的温度为1080~1180
℃;回火处理的温度为700~780℃,回火一次或多次。
本发明还公开了如上述所述的耐热铸钢用于制备透平机械的用途。
本发明还公开了如上述所述的耐热铸钢在汽轮机领域作为铸件材料的用途。
本发明与现有的铸件材料ZG12Cr10Mo1W1VNbN相比,成分上添加了Co和B,调整固溶强化元素Mo和W的比例,降低了Mn、N和Ni元素的含量,提高了高温蠕变强度。与现有铸件材料ZG13Cr9Mo2Co1NiVNbNB相比,添加了W元素,调整了B和N的比例,提高了Cr和Co元素的含量,降低了Mn、Mo和Ni元素的含量,提高了高温蠕变强度和抗氧化性能,这将使得铸件材料的使用温度提高,从而提高发电机组的热效率,降低煤炭消耗和二氧化碳排放。该新型耐热铸钢的材料牌号确定为ZG12Cr10Co3W2MoVNbNB,简称CW2。
本发明所提供的耐热铸钢可以被用于制备透平机械,尤其是汽轮机铸件,制备获得的汽轮机铸件在635℃及635℃以下的高温环境中具有良好的高温强度和抗氧化性能,可以满足工作温度为635℃及635℃以下的汽轮机的使 用要求。
附图的简要说明
图1显示为本发明实施例中材料在635℃下的氧化增重试验结果图。
实现本发明的最佳方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
在进一步描述本发明具体实施方式之前,应理解,本发明的保护范围不局限于下述特定的具体实施方案;还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或者按照各制造商所建议的条件。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域技术人员通常理解的意义相同。除实施例中使用的具体方法、设备、材料外,根据本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
本申请实施例中,按照配方中各组分的配比确定原料配比并将原料熔炼;再精炼,浇铸成型;然后淬火或正火处理,最后回火热处理。
其中,以工业纯铁为原料作为Fe的来源,单质碳为原料作为C的来源,工业硅为原料作为Si的来源,电解锰为原料作为Mn的来源,金属铬和氮化铬为原料作为Cr的来源,电解钴为原料作为Co的来源,钨条为原料作为W的来源,金属钒为原料作为V的来源,铌条为原料作为Nb的来源,氮化铬为原料作为N的来源,单质硼为原料作为B的来源,电解镍为原料作为Ni的来源。
实施例1
根据理论计算将一定量的合金熔炼;再精炼;浇铸成型形成汽轮机汽缸, 采用1150℃淬火,并采用730℃回火热处理。
实施例2
根据上述理论计算将一定量的原料熔炼;再精炼;浇铸成型形成汽轮机阀壳,采用1120℃淬火,并采用755℃回火热处理。
对实施例1和实施例2中的耐热铸钢进行化学成分分析,分析结果如表2所示,单位为wt%,均满足化学成分指标要求。
表2实施例1、2汽轮机铸件用耐热铸钢的化成分分析结果(wt.%)
  本发明耐热铸钢CW2 实施例1 实施例2
C 0.08~0.18 0.15 0.11
Si 0.10~0.40 0.32 0.21
Mn 0.30~0.70 0.40 0.55
P ≤0.030 0.006 0.005
S ≤0.020 0.005 0.003
Cr 9.80~10.70 10.10 10.35
Co 3.00~3.50 3.15 3.35
Mo 0.45~0.85 0.58 0.69
W 1.60~2.00 1.85 1.70
V 0.10~0.30 0.15 0.21
Nb 0.02~0.08 0.04 0.06
N 0.010~0.035 0.015 0.025
B 0.001~0.010 0.0026 0.0060
Ni ≤0.20 0.10 0.05
Al ≤0.030 0.015 0.010
根据行业标准JB/T 11018-2010,将现有铸件材料ZG12Cr10Mo1W1VNbN及ZG13Cr9Mo2Co1NiVNbNB的力学性能指标列出,具体数据见表3。同时,对实施例1和2获得的耐热铸钢材料按照GB/T 228.1标准进行了室温拉伸试验,按照GB/T 2039标准进行了蠕变断裂强度试验,然后按照GB/T 2039 标准中规定的外推方法推导出635℃/10万小时条件下的蠕变断裂强度极限R u 100000h/635℃,并与ZG12Cr10Mo1W1VNbN及ZG13Cr9Mo2Co1NiVNbNB在635℃/10万小时条件下的蠕变断裂强度进行比较,结果如表3所示,其中,表3中R p0.2为屈服强度,R m为抗拉强度。可以发现:本发明实施例1和实施例2获得的强度(包括R p0.2屈服强度和R m抗拉强度)满足ZG12Cr10Mo1W1VNbN和ZG13Cr9Mo2Co1NiVNbNB的指标要求。同时,本发明材料蠕变断裂强度外推值高于80MPa,对比铸件材料ZG12Cr10Mo1W1VNbN的蠕变断裂强度外推值提高了30%以上,对比ZG13Cr9Mo2Co1NiVNbNB的蠕变断裂强度外推值提高了20%以上,强化效果明显,可满足635℃下汽轮机汽缸和阀壳的使用要求。
表3实施例1、2汽轮机铸件用耐热铸钢的力学性能
Figure PCTCN2021072446-appb-000001
对实施例1和2以及ZG12Cr10Mo1W1VNbN和ZG13Cr9Mo2Co1NiVNbNB进行635℃下的氧化增重试验,将四个材料的试样置于635℃和27MPa流动的水蒸汽环境中,时间最长至2000h,测试这个时间段内各试样增重变化,氧化增重越小说明材料抗氧化性越好。试验结果如图1所示。由图1可知,实施例1和2的抗氧化性明显好于ZG12Cr10Mo1W1VNbN和ZG13Cr9Mo2Co1NiVNbNB。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 一种耐热铸钢,其特征在于,以耐热铸钢的总质量为基准计,所述耐热铸钢包括如下元素及质量百分含量:
    C 0.08wt%~0.18wt%,Si 0.10wt%~0.40wt%,Mn 0.30wt%~0.70wt%,Cr 9.80wt%~10.70wt%,Co 3.00wt%~3.50wt%,W 1.60wt%~2.00wt%,Mo 0.45wt%~0.85wt%,V 0.10wt%~0.30wt%,Nb 0.02wt%~0.08wt%,N 0.010wt%~0.035wt%,B 0.001wt%~0.010wt%,Ni≤0.20wt%,Fe 79wt%~85.5wt%。
  2. 根据权利要求1所述的耐热铸钢,其特征在于,所述耐热铸钢还含有杂质,杂质包括Al、P、S、Cu、Ti和Sn中的一种或多种。
  3. 根据权利要求1~2所述的耐热铸钢,其特征在于,以耐热铸钢的总质量为基准计,所述Al、P、S、Cu、Ti和Sn对应的质量百分数分别是:Al≤0.030wt%,P≤0.030wt%,S≤0.020wt%,Cu≤0.25wt%,Ti≤0.030wt%,Sn≤0.030wt%。
  4. 根据权利要求1~3所述的耐热铸钢,其特征在于,以耐热铸钢的总质量为基准计,所述耐热铸钢包括如下元素及质量百分含量:C 0.10wt%~0.16wt%,Si 0.20wt%~0.30wt%,Mn 0.40wt%~0.60wt%,Cr 10.00wt%~10.50wt%,Co 3.10wt%~3.40wt%,W 1.65wt%~1.90wt%,Mo 0.55wt%~0.75wt%,V 0.15wt%~0.25wt%,Nb 0.03wt%~0.07wt%,N 0.015wt%~0.030wt%,B 0.002wt%~0.008wt%,Ni≤0.10wt%,Fe 81wt%~83.8wt%。
  5. 根据权利要求1~4所述的耐热铸钢,其特征在于,所述耐热铸钢还含有杂质,杂质包括Al、P、S、Cu、Ti和Sn中的一种或多种。
  6. 根据权利要求1~5所述的耐热铸钢,其特征在于,以耐热铸钢的总质量为基准计,所述Al、P、S、Cu、Ti和Sn对应的质量百分数分别是:Al≤0.020wt%,P≤0.020wt%,S≤0.015wt%,Cu≤0.15wt%,Ti≤0.020wt%,Sn≤0.020wt%。
  7. 一种如权利要求1~6任一项所述的耐热铸钢的制备方法,特征在于, 根据理论计算将一定量的合金熔炼,精炼,浇铸成型;然后淬火或正火处理,最后回火处理。
  8. 根据权利要求7所述的制备方法,其特征在于,淬火或正火处理的温度为1080~1180℃,然后回火处理的温度为700~780℃,回火一次或多次。
  9. 一种如权利要求1~6任一项所述的耐热铸钢在透平机械,尤其在汽轮机领域作为铸件材料的用途。
  10. 一种如权利要求1~6任一项所述的耐热铸钢在汽轮机领域作为铸件材料的用途。
PCT/CN2021/072446 2020-01-21 2021-01-18 一种耐热铸钢及其制备方法和用途 WO2021147810A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/793,482 US20230074936A1 (en) 2020-01-21 2021-01-18 Heat-resistant cast steel, and preparation method and use thereof
DE112021000275.9T DE112021000275T5 (de) 2020-01-21 2021-01-18 Hitzebeständiger Stahlguss und Verfahren zur Herstellung und deren Verwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010070597.2 2020-01-21
CN202010070597.2A CN111139409A (zh) 2020-01-21 2020-01-21 一种耐热铸钢及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2021147810A1 true WO2021147810A1 (zh) 2021-07-29

Family

ID=70526657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072446 WO2021147810A1 (zh) 2020-01-21 2021-01-18 一种耐热铸钢及其制备方法和用途

Country Status (4)

Country Link
US (1) US20230074936A1 (zh)
CN (1) CN111139409A (zh)
DE (1) DE112021000275T5 (zh)
WO (1) WO2021147810A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023093923A1 (en) * 2022-04-27 2023-06-01 Comtes Fht A.S. High-chrome steel resistant to creep at temperatures up to 650 °c

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111139409A (zh) * 2020-01-21 2020-05-12 上海电气电站设备有限公司 一种耐热铸钢及其制备方法和用途
CN114058940A (zh) * 2020-07-30 2022-02-18 上海电气电站设备有限公司 一种锻件用耐热钢
CN114058939A (zh) * 2020-07-30 2022-02-18 上海电气电站设备有限公司 一种钢管和铸件用耐热钢

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784503A (zh) * 2003-03-31 2006-06-07 独立行政法人物质·材料研究机构 回火马氏体类耐热钢的焊接接头
CN102560275A (zh) * 2010-12-28 2012-07-11 株式会社东芝 耐热铸钢及其制造方法、汽轮机的铸造部件及其制造方法
JP2016065265A (ja) * 2014-09-22 2016-04-28 株式会社東芝 蒸気タービン動翼用耐熱鋼および蒸気タービン動翼
JP2016176119A (ja) * 2015-03-20 2016-10-06 新日鐵住金株式会社 フェライト系耐熱鋼
CN109943783A (zh) * 2017-12-20 2019-06-28 上海电气电站设备有限公司 一种汽轮机高温铸件材料
CN111139409A (zh) * 2020-01-21 2020-05-12 上海电气电站设备有限公司 一种耐热铸钢及其制备方法和用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3539338A (en) * 1966-06-28 1970-11-10 Nippon Kokan Kk High-temperature alloy steel containing cr and mo
JPH0830251B2 (ja) * 1989-02-23 1996-03-27 日立金属株式会社 高温強度の優れたフェライト系耐熱鋼
US5415706A (en) * 1993-05-28 1995-05-16 Abb Management Ag Heat- and creep-resistant steel having a martensitic microstructure produced by a heat-treatment process
CN102041450A (zh) * 2009-10-23 2011-05-04 宝山钢铁股份有限公司 一种铁素体耐热钢及其制造方法
CN106191701A (zh) * 2016-08-30 2016-12-07 四川六合锻造股份有限公司 一种用作汽轮机叶片的耐热钢材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784503A (zh) * 2003-03-31 2006-06-07 独立行政法人物质·材料研究机构 回火马氏体类耐热钢的焊接接头
CN102560275A (zh) * 2010-12-28 2012-07-11 株式会社东芝 耐热铸钢及其制造方法、汽轮机的铸造部件及其制造方法
JP2016065265A (ja) * 2014-09-22 2016-04-28 株式会社東芝 蒸気タービン動翼用耐熱鋼および蒸気タービン動翼
JP2016176119A (ja) * 2015-03-20 2016-10-06 新日鐵住金株式会社 フェライト系耐熱鋼
CN109943783A (zh) * 2017-12-20 2019-06-28 上海电气电站设备有限公司 一种汽轮机高温铸件材料
CN111139409A (zh) * 2020-01-21 2020-05-12 上海电气电站设备有限公司 一种耐热铸钢及其制备方法和用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023093923A1 (en) * 2022-04-27 2023-06-01 Comtes Fht A.S. High-chrome steel resistant to creep at temperatures up to 650 °c

Also Published As

Publication number Publication date
CN111139409A (zh) 2020-05-12
US20230074936A1 (en) 2023-03-09
DE112021000275T5 (de) 2022-11-17

Similar Documents

Publication Publication Date Title
WO2021147810A1 (zh) 一种耐热铸钢及其制备方法和用途
JP7428822B2 (ja) 鋼管及び鋳造品用耐熱鋼
CN109763066B (zh) 一种超高参数汽轮机关键热端部件用耐热钢
CN111363905B (zh) 一种铸造合金化高锰钢辙叉的热处理方法
RU2655496C1 (ru) Жаропрочная сталь мартенситного класса
JP5137934B2 (ja) フェライト系耐熱鋼
CN109112424A (zh) 一种汽轮机用耐热钢
CN102517507A (zh) 超超临界火电机组汽轮机叶片用钢及制造方法
CN114622133B (zh) 一种超超临界汽轮机转子锻件用耐热钢及其制备方法
JP5265325B2 (ja) クリープ強度に優れる耐熱鋼およびその製造方法
JP3955719B2 (ja) 耐熱鋼、耐熱鋼の熱処理方法および耐熱鋼部品
CN115976426A (zh) 一种高强韧马氏体耐热钢
JPS616256A (ja) 12%Cr耐熱鋼
JPS60165358A (ja) 蒸気タ−ビン高中圧ロ−タ用高強度高靭性鋼
JPS6031898B2 (ja) タ−ビンロ−タ材
CN109487169A (zh) 一种耐高温耐腐蚀钢材及其制备方法
JP3662151B2 (ja) 耐熱鋳鋼及びその熱処理方法
JPH1036944A (ja) マルテンサイト系耐熱鋼
RU2806682C1 (ru) Высокопрочная коррозионностойкая азотосодержащая мартенситно-аустенитно-ферритная сталь
CN117385284A (zh) 一种火电机组用铁素体耐热钢及生产方法
JPS5824497B2 (ja) 耐熱鋼
JPS60165360A (ja) 高強度・高靭性蒸気タ−ビンロ−タ
JPH09291308A (ja) 高Crフェライト系耐熱鋼の製造方法
KR100290653B1 (ko) 650℃급 증기터빈 로터용15Cr 26Ni 1.25Mo 내열강
JP6289873B2 (ja) 析出強化型フェライト系耐熱鋼、該耐熱鋼を用いたタービン高温部材、および該タービン高温部材を用いたタービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21743812

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21743812

Country of ref document: EP

Kind code of ref document: A1