WO2021147022A1 - 心肺复苏操作检测系统、标定装置、检测终端及检测方法 - Google Patents

心肺复苏操作检测系统、标定装置、检测终端及检测方法 Download PDF

Info

Publication number
WO2021147022A1
WO2021147022A1 PCT/CN2020/073887 CN2020073887W WO2021147022A1 WO 2021147022 A1 WO2021147022 A1 WO 2021147022A1 CN 2020073887 W CN2020073887 W CN 2020073887W WO 2021147022 A1 WO2021147022 A1 WO 2021147022A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration device
cardiopulmonary resuscitation
detection terminal
module
component
Prior art date
Application number
PCT/CN2020/073887
Other languages
English (en)
French (fr)
Inventor
焦旭
沈洪
Original Assignee
焦旭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 焦旭 filed Critical 焦旭
Priority to CN202080000222.7A priority Critical patent/CN111278400B/zh
Priority to PCT/CN2020/073887 priority patent/WO2021147022A1/zh
Priority to TW109107718A priority patent/TWI735177B/zh
Publication of WO2021147022A1 publication Critical patent/WO2021147022A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H31/00Artificial respiration or heart stimulation, e.g. heart massage
    • A61H31/004Heart stimulation
    • A61H31/005Heart stimulation with feedback for the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H31/00Artificial respiration or heart stimulation, e.g. heart massage
    • A61H31/004Heart stimulation
    • A61H31/007Manual driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5023Interfaces to the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/04Heartbeat characteristics, e.g. E.G.C., blood pressure modulation

Definitions

  • the present disclosure belongs to the field of detection equipment, and specifically relates to a cardiopulmonary resuscitation operation detection system, a calibration device, a detection terminal and a detection method.
  • Cardiopulmonary arrest is the most urgent clinical situation, and emergency cardiopulmonary resuscitation operations are widely used in emergency scenarios of cardiopulmonary arrest.
  • emergency compression two parameters are more important, one is the frequency of compression, and the other is the depth of compression.
  • the standards proposed by the International Resuscitation Federation and the American Heart Association are to ensure that the frequency of chest compressions is more than 100 times per minute, and the compression depth is more than 5 cm.
  • the present disclosure proposes a cardiopulmonary resuscitation operation detection system, a calibration device, a detection terminal, and a detection method.
  • the calibration device and the detection terminal Through the cooperation of the calibration device and the detection terminal, the error of compression depth detection is reduced, and the requirements for cardiopulmonary resuscitation are met.
  • An embodiment of the present disclosure provides a cardiopulmonary resuscitation operation detection system, which includes a calibration device and a detection terminal;
  • the calibration device includes: a fixing component for fixing the calibration device on the rescuer's wrist; a marking component is provided Is formed on the fixed component and formed into a figure with predetermined size parameters, the marking component includes a self-luminous structure and/or a reflective structure;
  • the detection terminal includes a camera module, which photographs the calibration device, and obtains The video image of the calibration device; a processing module that determines the moving distance of the calibration device according to the size of the marking component and the video image of the calibration device.
  • the marking member includes a diffuse transmission bar and a first light source
  • the diffuse transmission bar forms the pattern on the fixing member
  • the first light source is disposed in the fixing member
  • the brightness of the first light source is adjustable
  • the calibration device further includes a brightness sensor arranged on the fixing component, and the brightness sensor is used to detect environmental brightness.
  • the marking component includes a reflective strip and/or a fluorescent strip, and the reflective strip and/or the fluorescent strip form the pattern on the fixing component.
  • the calibration device further includes an orientation marking component provided on the fixing component, and the orientation marking component is used to distinguish the graphic direction of the marking component.
  • the calibration device further includes a three-axis acceleration sensor for measuring the pressing force.
  • the calibration device further includes a Bluetooth module for connecting the detection terminal with Bluetooth; and/or a voice output module for outputting voice; and/or a vibration module for generating vibration.
  • the cardiopulmonary resuscitation operation detection system further includes a server, and the detection terminal is connected to the server through a communication module.
  • the cardiopulmonary resuscitation operation detection system further includes a detection terminal support, and the detection terminal support supports the detection terminal so that the detection terminal maintains a posture and a position.
  • a light guide plate is provided on the top of the detection terminal support, and the light guide plate is used to illuminate the illumination light of the detection terminal in a specified direction.
  • the detection terminal bracket includes a power supply and a single-lead ECG module, and the single-lead ECG module is used to monitor the heartbeat.
  • the detection terminal bracket includes a data line for connecting the detection terminal.
  • the detection terminal support includes a foldable leg, and a damping component is provided on the shaft of the leg.
  • An embodiment of the present disclosure provides a calibration device for cardiopulmonary resuscitation operation detection, including: a fixing component for fixing the calibration device on the rescuer's wrist; a marking component arranged on the fixing component, and Formed as a pattern with predetermined size parameters, the marking component includes a self-luminous structure and/or a light-reflecting structure.
  • the marking member includes a diffuse transmission bar and a first light source
  • the diffuse transmission bar forms the pattern on the fixing member
  • the first light source is disposed in the fixing member
  • the brightness of the first light source is adjustable
  • the calibration device further includes a brightness sensor arranged on the fixing component, and the brightness sensor is used to detect environmental brightness.
  • the marking component includes a reflective strip and/or a fluorescent strip, and the reflective strip and/or the fluorescent strip form the pattern on the fixing component.
  • the calibration device further includes an orientation marking component provided on the fixing component, and the orientation marking component is used to distinguish the graphic direction of the marking component.
  • the calibration device further includes a three-axis acceleration sensor for measuring the pressing force.
  • the calibration device further includes a Bluetooth module for connecting the detection terminal with Bluetooth; and/or a voice output module for outputting voice; and/or a vibration module for generating vibration.
  • An embodiment of the present disclosure provides a detection terminal, including: a camera module, which takes a picture of a calibration device to obtain a video image of the calibration device; a processing module, according to the size of the marking component on the calibration device and the calibration The video image of the device determines the movement distance of the calibration device.
  • the processing module includes: a first sub-module, when the calibration device is not moving, the first sub-module is based on the size of the marking component and the mark in the video image of the calibration device.
  • the first pixel number corresponding to the size of the component determines the actual distance corresponding to the pixel in the video image of the calibration device;
  • the second sub-module when the calibration device moves, the second sub-module is determined by the video of the calibration device
  • the upper limit image frame and the lower limit image frame are determined in the image, and the second pixel number corresponding to the movement distance of the calibration device is determined according to the upper limit image frame and the lower limit image frame;
  • the third sub-module is based on the video image of the calibration device The actual distance corresponding to the middle pixel and the second pixel number determine the movement distance of the calibration device.
  • the detection terminal further includes: a communication module for connecting to a server; and/or a positioning module for locating the position of the detection terminal; and/or a Bluetooth module for connecting to a Bluetooth station The calibration device; and/or a voice input module for inputting voice; and/or a voice output module for outputting voice; and/or a display module for displaying image information.
  • An embodiment of the present disclosure provides a method for detecting a cardiopulmonary resuscitation operation, including: taking a picture of a calibration device to obtain a video image of the calibration device; according to the size of a marking component on the calibration device and the video image of the calibration device , Determine the movement distance of the calibration device; determine whether the movement distance of the calibration device is within a preset range; and send a prompt message in response to the movement distance of the calibration device deviating from the preset range.
  • the determining the movement distance of the calibration device according to the size of the marking component on the calibration device and the video image of the calibration device includes: when the calibration device is not moving, according to the size and the size of the marking component The first pixel number corresponding to the size of the marking component in the video image of the calibration device determines the actual distance corresponding to the pixel in the video image of the calibration device; when the calibration device moves, the video of the calibration device The upper limit image frame and the lower limit image frame are determined in the image, and the second pixel number corresponding to the movement distance of the calibration device is determined according to the upper limit image frame and the lower limit image frame; according to the actual pixel corresponding to the pixel in the video image of the calibration device The distance and the second number of pixels determine the movement distance of the calibration device.
  • the cardiopulmonary resuscitation operation detection method further includes informing the calibration device to turn on the first light source or adjust the The brightness of the first light source.
  • the cardiopulmonary resuscitation operation detection method further includes receiving the pressing force value measured by the calibration device, and sending the detected movement distance of the calibration device and the pressing force value to the server.
  • the cardiopulmonary resuscitation operation detection method further includes receiving the guidance voice information and/or image information sent by the server, and outputting the voice and/or displaying the image.
  • the cardiopulmonary resuscitation operation detection method further includes determining the compression frequency according to the video image of the calibration device.
  • the cardiopulmonary resuscitation operation detection system and method disclosed in the present disclosure When performing cardiopulmonary resuscitation operations, the calibration device is worn by rescuers.
  • the calibration device is provided with a marking component.
  • the detection terminal shoots the image of the calibration device according to the size of the marking component and the image of the calibration device. Determine the movement distance of the calibration device, the movement distance of the calibration device is the compression depth; through the cooperation of the calibration device and the detection terminal, the detection error of the compression depth is reduced, and the accuracy of the cardiopulmonary resuscitation operation detection is improved.
  • Figure 1 is a schematic diagram of a cardiopulmonary resuscitation operation detection system according to an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of a calibration device according to an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of a diffuse transmission strip, a reflective strip and a fluorescent strip according to an embodiment of the present disclosure
  • FIG. 4 is another schematic diagram of the calibration device according to the embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram of an orientation calibration component of an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of detecting a terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a processing module of an embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of a square marking component of an embodiment of the present disclosure.
  • Fig. 9 is a schematic diagram of the up and down movement of the marking member in the embodiment of the present disclosure.
  • FIG. 10 is a diagram of a folded state of detecting a terminal stand according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a process of detecting the deployment of a terminal stand according to an embodiment of the present disclosure
  • FIG. 12 is a diagram of an unfolded state of the detection terminal bracket according to an embodiment of the present disclosure.
  • FIG. 13 is a flowchart of a method for detecting cardiopulmonary resuscitation operation according to an embodiment of the present disclosure
  • FIG. 14 is a flowchart of the processing module determining the movement distance of the calibration device according to an embodiment of the present disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present disclosure, “plurality” means two or more than two, unless otherwise specifically defined.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, they can be fixed or detachable.
  • Connected or integrally connected It can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication of two components or the interaction of two components relation.
  • an intermediate medium which can be the internal communication of two components or the interaction of two components relation.
  • the "on” or “under” of the first feature of the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • the "above”, “above”, and “above” of the first feature on the second feature include the first feature directly above and diagonally above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the first feature of the second feature include the first feature directly above and diagonally above the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • an embodiment of the present disclosure provides a cardiopulmonary resuscitation operation detection system.
  • the cardiopulmonary resuscitation operation detection system can detect the parameters during the cardiopulmonary resuscitation operation.
  • the cardiopulmonary resuscitation operation detection system includes a calibration device 100 and a detection terminal 200.
  • the calibration device 100 for detecting the cardiopulmonary resuscitation operation includes a fixing part 101 and a marking part 102.
  • the fixing component 101 is used to fix the calibration device 100 to the rescuer's wrist.
  • the marking component 102 is arranged on the fixing component 101 and is formed into a figure with predetermined size parameters, which serves as an optical beacon to facilitate identification in the video image of the calibration device 100.
  • the marking member 102 includes a self-luminous structure and/or a light-reflecting structure.
  • the figure formed by the marking component 102 and the size of the figure are pre-stored in the detection terminal to facilitate subsequent processing by the detection terminal.
  • the figure formed by the marking member 102 is a circle, the diameter of the circle is determined, and the diameter of the circle is pre-stored in the detection terminal.
  • the graphic of the marking component 102 may be a rectangle or a square, and the side length of the rectangle or the square is stored in the detection terminal in advance.
  • the graphic of the marking component 102 may also be of other specific shapes, as long as it has a certain size.
  • the marking member 102 includes a diffuse transmission strip 102 a and a first light source 103.
  • the diffuse transmission bar 102a can make the transmitted light form diffuse light, and the brightness of the light will not be too high.
  • a first light source 103 is provided in the fixing part 101 of the calibration device.
  • the first light source 103 is an LED lamp. The light emitted by the LED lamp emits diffused light after passing through the diffuse transmission strip 102a, so that the brightness of the marking component 102 is greater than the brightness of the surrounding environment, which facilitates the identification of the marking component 102 in the video image of the calibration device 100.
  • the diffused light will not be very bright, which can ensure accurate focus when shooting the calibration device 100.
  • the number of the marking components 102 is multiple, which are arranged in sequence on the fixed component 101, so as to facilitate the recognition of the spatial posture of the calibration device 100.
  • the multiple marking components 102 can also be set to different colors to improve the accuracy of spatial gesture recognition.
  • the brightness of the first light source 103 is adjustable.
  • the calibration device 100 further includes a brightness sensor 104 arranged on the fixing part 101 of the calibration device, and the brightness sensor 104 is used to detect the brightness of the environment.
  • the microprocessor 105 of the calibration device controls the brightness of the first light source 103 or controls the opening and closing of the first light source 103 according to the environmental brightness detected by the brightness sensor 104. For example, if the ambient brightness is lower than the preset threshold, the first light source 103 is turned on, and the ambient brightness is higher than the preset threshold, the first light source 103 is turned off.
  • the marking component 102 further includes a reflective strip 102b and/or a fluorescent strip 102c.
  • the reflective strip 102b and/or the fluorescent strip 102c form the pattern on the fixing part of the calibration device.
  • the reflective strip 102b and/or the fluorescent strip 102c can be used as optical beacons.
  • the calibration device 100 further includes an orientation marking component 110 provided on the fixing component 101.
  • the graphic of the marking component 102 is a polygon
  • the orientation marking component 110 is used to distinguish the direction of the graphic.
  • the graphic of the marking member 102 is a rectangle, and the long side or the short side is set as a double strip, so that the long side and the short side can be distinguished for easy identification.
  • the calibration device 100 further includes a three-axis acceleration sensor 106.
  • the three-axis acceleration sensor 106 is arranged in the fixing part 101 of the calibration device, and can measure the pressing force during cardiopulmonary resuscitation. If the measured pressing force is too large, the calibration device 100 can give a reminder to the rescuer to avoid secondary injuries such as fractures.
  • the three-axis acceleration sensor 106 can also confirm whether the cardiopulmonary resuscitation process is in progress, and record the duration of the cardiopulmonary resuscitation.
  • the calibration device 100 further includes a Bluetooth module 107.
  • the Bluetooth module 107 is used for Bluetooth connection with the detection terminal and data interaction.
  • the calibration device 100 further includes a voice output module 108 and/or a vibration module 109.
  • the voice output module 108 can output a prompt voice
  • the vibration module 109 can generate vibration to prompt the rescuer.
  • the calibration device 100 may also be provided with operation buttons, such as up, down, left, and right buttons, confirmation keys, and cancel keys, which are used to select and confirm/cancel preset functions or operations in the calibration device 100.
  • operation buttons such as up, down, left, and right buttons, confirmation keys, and cancel keys, which are used to select and confirm/cancel preset functions or operations in the calibration device 100.
  • the calibration device 100 may be a wristband, which is worn on the wrist of the rescuer during cardiopulmonary resuscitation.
  • the calibration device 100 may also be a device that can be fixed to an arm, such as a watch or an arm guard.
  • the calibration device 100 is used to be worn on the wrist, because in this case the error between the movement distance of the bracelet and the movement distance of the palm is the smallest.
  • the detection terminal 200 includes a camera module 201 and a processing module 202.
  • the camera module 201 may be a camera, which is used to photograph the calibration device 100 and obtain real-time video images of the calibration device 100.
  • the camera is preferably a high-definition camera, which can ensure the clarity of shooting the scene.
  • the detection terminal 200 may be fixed first to avoid unnecessary movement of the detection terminal 200 during the shooting process.
  • the normal line of the marking component 102 is basically aligned with the detection terminal 200.
  • the processing module 202 determines the moving distance of the calibration device 100 according to the size of the marking component 102 and the video image of the calibration device.
  • the movement distance of the calibration device 100 is the compression depth during cardiopulmonary resuscitation, and the compression depth measurement is achieved through the cooperation of the calibration device 100 and the detection terminal 200.
  • the size of the marking component 102 is a certain value
  • the camera module 201 takes pictures of the calibration device 100.
  • the size parameters of the pattern formed by the marking component 102 are pre-stored in the detection terminal 200.
  • the first sub-module 202a of the processing module 202 recognizes the image of the marking component 102 from the video image of the calibration device, and determines the first number of pixels corresponding to the size of the marking component 102. According to the size of the marking component 102 and the first number of pixels corresponding to the size of the marking component 102, the actual distance corresponding to the pixel in the video image of the calibration device is determined.
  • the graphic shape of the marking member 102 is a square.
  • the side length L of the marking member 102 is 2 cm.
  • the first sub-module 202a of the processing module 202 determines from the video image of the calibration device that the side of the square corresponds to the first pixel number as 100, and the actual distance corresponding to the pixel in the video image of the calibration device is 0.02 cm.
  • the second sub-module 202b of the processing module 202 determines the upper limit image frame and the lower limit image frame from the video image of the calibration device.
  • the second pixel number corresponding to the movement distance of the calibration device is determined according to the upper limit image frame and the lower limit image frame.
  • the second sub-module 202b of the processing module 202 can identify the upper limit image frame and the lower limit image frame of a pressing operation from each image frame of the video image of the calibration device.
  • the number of pixels between the upper limit position and the lower limit position of the marking component 102 in the upper limit image frame and the lower limit image frame is used as the second number of pixels corresponding to the movement distance of the calibration device 100.
  • the image frame in the image when the calibration device 100 is not moving is used as the upper limit image frame of the first press; as the calibration device 100 moves down, the pixels corresponding to the marking component 102 in the video image continue to move down; processing module When the second sub-module 202b of 202 recognizes that the pixel corresponding to the marking component 102 no longer moves downward, it uses an image frame at this time as the lower limit image frame of the first press.
  • the second sub-module of the processing module 202 uses an image frame at this time as the upper limit image frame of the second press;
  • the second sub-module 202b of the processing module 202 recognizes that the pixel corresponding to the marking component 102 no longer moves down, it uses an image frame at this time as the lower limit image frame of the second press.
  • the second sub-module 202b of the processing module 202 can identify the upper limit image frame and the lower limit image frame corresponding to each press. According to the upper limit image frame and the lower limit image frame, the second number of pixels corresponding to the movement distance of the calibration device 100 is determined each time it is pressed.
  • the third sub-module 202c of the processing module 202 determines the movement distance of the calibration device according to the actual distance corresponding to the pixel in the video image of the calibration device and the second pixel number.
  • the processing module 202 determines that the second pixel number corresponding to the movement distance S of the calibration device 100 is 200, the actual distance corresponding to the pixel in the video image of the calibration device is 0.02cm, and the movement distance S of the calibration device is calculated to be 4cm. . Let 4cm be the compression depth this time.
  • the normal line of the marking component 102 on the calibration device may not point to the detection terminal 200, that is, the detection terminal 200 photographs the calibration device from an oblique direction.
  • the processing module 202 can determine which direction the detection terminal 200 shoots the calibration device 100 from according to the amount of image deformation of the marking component; according to the cosine relationship conversion of the corresponding angle, the processing module 202 determines the actual distance corresponding to the pixel in the video image of the calibration device.
  • This design mainly relates to when a person wears the calibration device 100 for treatment, the plane where the marking member 102 of the calibration device is located is not necessarily perpendicular to the connection direction of the calibration device 100 and the detection terminal 200.
  • the marking component 102 detected by the detection terminal 200 will form a certain distortion.
  • the marking component when the marking component is originally circular, when the plane of the marking component of the calibration device is not perpendicular to the connecting direction of the calibration device and the detection terminal, the detected marking component takes an oval shape.
  • the detection terminal knows the size of the marking component, for example, the diameter of the circle is 2 cm, but in the detected image, the long axis of the ellipse is 2 cm, and the short axis is less than 2 cm.
  • the detection terminal needs to recognize the size of the actual marking component according to the actual image captured, for example, the long axis of the ellipse is used to represent the diameter of the circle.
  • a rectangle When a circle becomes an ellipse, it is relatively simple, but when a rectangle or polygon is used, for example, the distortion becomes complicated.
  • a rectangle When it is not perpendicular, it may be a parallelogram. At this time, it is necessary to determine the angle between the plane of the rectangle and the connection line (between the calibration device and the detection terminal) based on the angle between the two adjacent sides of the parallelogram, and then convert and calculate the captured parallel according to the cosine relationship. The length of the object represented by each side of the quadrilateral, and then the actual distance represented by each pixel in the pressing direction is calculated.
  • the detection terminal 200 includes a communication module 203.
  • the cardiopulmonary resuscitation operation detection system also includes a server 300 and a command center with 300 servers.
  • the detection terminal 200 can connect to the server 300 through the communication module 203 for data exchange.
  • the detection terminal 200 further includes a positioning module 204, such as a GPS module, for positioning the position of the detection terminal 200.
  • the detection terminal 200 further includes a Bluetooth module 205 for the Bluetooth connection calibration device 100.
  • the detection terminal 200 further includes a voice input module 206 for inputting voice.
  • the detection terminal 200 further includes a voice output module 207 for outputting voice.
  • the detection terminal 200 further includes a display module 208 for displaying image information.
  • the calibration device 100 and the detection terminal 200 can interact with each other. For example, various parameters detected by the calibration device 100 can be sent to the detection terminal 200.
  • the detection terminal 200 can send various parameters to the server 300, including the location of the detection terminal 200, the detected pressing depth, and so on.
  • the relevant personnel of the command center can guide the rescue work, such as instructing rescuers to perform cardiopulmonary resuscitation operations.
  • the voice input module 206, voice output module 207, and display module 208 of the detection terminal 200 facilitate voice and video communication between rescuers and the command center.
  • the command center can also conduct other first aid instructions such as airway opening procedures and artificial respiration.
  • the detection terminal 200 may be a smart device such as a mobile phone or an iPad. Taking a mobile phone as an example, the front camera is preferably used as the camera module 201, so that the rescuer can check whether the pressing part and the range of the pressing action are better placed in the shooting area.
  • An acceleration sensor may be provided in the detection terminal 200 to ensure that the placement posture of the detection terminal 200 is kept as vertical as possible.
  • the detection terminal support 400 includes a housing 410.
  • the housing 410 is provided with a groove 411 for fixing the detection terminal 200.
  • the detection terminal 200 is placed in the groove 411 of the housing 410.
  • the detection terminal 200 is fixed to avoid unnecessary movement of the detection terminal 200 during the treatment process.
  • a light guide plate 420 is provided on the top of the detection terminal bracket 400 for illuminating the illumination light of the detection terminal 200 in a specified direction.
  • the detection terminal 200 is provided with a second light source 209 capable of illuminating the light guide plate 420.
  • the rear camera of the mobile phone can be used as the second light source 209.
  • the light from the second light source 209 is emitted in the form of diffused light.
  • the light emitted from the light guide plate 420 can increase the brightness of the marking member 102.
  • the light guide plate 420 can be connected to the housing 410 via a rotating shaft, and when the light guide plate 420 is not used, it will rotate to the rear side of the housing 410.
  • the detection terminal support 400 further includes a single-lead ECG module 430.
  • the single-lead ECG module 430 is used to monitor the heartbeat. If a person in need of rescue is found, the rescuer can measure the heartbeat of the rescued person through the single-lead ECG module 430 to determine whether cardiopulmonary resuscitation is required.
  • the detection terminal bracket 400 is used to supply power to various components of the detection terminal bracket 400.
  • the detection terminal bracket 400 includes a data line 450 for connecting the detection terminal 200.
  • the data line can be type-c, micro-usb or the data line of the interface used by iphone, etc.
  • the detection terminal support 400 includes a foldable leg 440.
  • the leg 440 When the leg 440 is not in use, the leg 440 is folded and folded on the rear side of the housing 410.
  • the outrigger 440 When the outrigger 440 needs to be used, the outrigger 440 is unfolded, and the outrigger 440 cooperates to form a stable support. If the detection terminal 200 is a mobile phone, when the legs 440 are stowed, the detection terminal support 400 can be used as a mobile phone case.
  • the leg 440 includes a first folding board 441 and a plurality of second folding boards 442.
  • the number of the first folding plate 441 may be one or more.
  • the shaft of the leg 440 is provided with a damping component, that is, the adopted damping shaft.
  • first folding plate 441 When the number of the first folding plate 441 is one, one end of the first folding plate 441 is connected to the bottom end of the housing 410 through the first damping shaft.
  • the plurality of second folding plates 442 are connected to the first folding plate 441 through a second damping shaft. Through the cooperation of the stop structure, the first folding board 441 and the second folding board 442 can be unfolded at a preset angle to form a stable supporting structure.
  • the multiple first folding plates 441 are foldably connected by the first damping shaft in turn.
  • the uppermost first folding plate 441 is connected to the bottom end of the housing 410 through a first damping shaft.
  • the plurality of second folding plates 442 are connected to the lowermost first folding plate 441 through a second damping shaft.
  • the first folding board 441 and the second folding board 442 can be unfolded at a preset angle to form a stable supporting structure.
  • the first damping shaft and the second damping shaft in this embodiment can use existing models.
  • the legs 440 can also be in other foldable forms.
  • the rescuer can monitor the heartbeat and breathing of the rescued in real time through the blood oxygen detector.
  • the blood oxygen detector may be a Bluetooth blood oxygen detector, which is connected to the detection terminal 200 or the detection terminal bracket 400 through a Bluetooth connection.
  • an embodiment of the present disclosure provides a method for detecting a cardiopulmonary resuscitation operation, including:
  • S12 Determine the movement distance of the calibration device according to the size of the marking component on the calibration device and the video image of the calibration device.
  • the processing module of the detection terminal is called to determine the movement distance of the calibration device according to the size of the marking component on the calibration device and the video image of the calibration device.
  • the detected movement distance of the calibration device is regarded as the compression depth of the cardiopulmonary resuscitation.
  • a prompt message is issued.
  • the processing module of the detection terminal determines that the movement distance of the calibration device is out of the preset range, and then sends out a prompt message, and the calibration device sends out a prompt after receiving the prompt information.
  • step S12 includes:
  • the processing module is called to determine the first pixel number corresponding to the size of the marking component from the video image of the calibration device, and determine the pixel corresponding to the pixel in the video image of the calibration device according to the size of the marking component and the first pixel number Actual distance.
  • the size of the marking component is a certain value, and the calibration device is photographed.
  • the processing module recognizes the image of the marking component from the video image of the calibration device, and determines the first number of pixels corresponding to the size of the marking component. According to the size of the marking component and the first number of pixels corresponding to the size of the marking component, the actual distance corresponding to the pixel in the video image of the calibration device is determined.
  • the processing module is called to determine the upper limit image frame and the lower limit image frame of each press from the video image of the calibration device; according to the upper limit image frame and the lower limit image frame, it is determined that the calibration device moves each time it is pressed The second number of pixels corresponding to the distance.
  • the processing module can identify the upper limit image frame and the lower limit image frame of a single pressing operation from each image frame of the video image of the calibration device.
  • the number of pixels between the upper limit position and the lower limit position of the marking component in the upper limit image frame and the lower limit image frame is used as the second pixel number corresponding to the movement distance of the calibration device.
  • the processing module is called to determine the movement distance of the calibration device according to the actual distance corresponding to the pixel in the video image of the calibration device and the second pixel number.
  • the cardiopulmonary resuscitation operation detection method further includes: wirelessly connecting the calibration device, and in the case that the image of the marking component cannot be recognized in the image of the calibration device, informing the calibration device to turn on the first light source or adjust the first light source.
  • the brightness of a light source is not limited to: wirelessly connecting the calibration device, and in the case that the image of the marking component cannot be recognized in the image of the calibration device, informing the calibration device to turn on the first light source or adjust the first light source. The brightness of a light source.
  • the detection terminal when the calibration device cannot be identified, if the calibration device is blocked, the detection terminal considers the target to be lost and issues an alarm.
  • the alarm can be in the form of voice, vibration, or screen flicker of the detection terminal.
  • the cardiopulmonary resuscitation operation detection method further includes: receiving the pressing force value measured by the calibration device, and sending the detected treatment information such as the movement distance, pressing force value, and positioning position of the calibration device to the server.
  • the cardiopulmonary resuscitation operation detection method further includes the detection terminal receiving the guidance voice information and/or image information sent by the server, and outputting the voice and/or displaying the image.
  • the rescuer can communicate with the command center and improve the accuracy of the rescue.
  • the cardiopulmonary resuscitation operation detection method further includes: the processing module determines the compression frequency according to the video image of the calibration device. Determining the compression frequency through the video image of the calibration device can support different rescuers to wear different calibration devices for relay rescue, avoiding the Bluetooth connection of different calibration devices to the detection terminal and affecting the rescue process.
  • the detection terminal automatically detects a wristband with a predetermined pressing action in the field of view (that is, the viewing angle range that can be photographed), without the need for a cumbersome pairing process between the wristband and the detection terminal. If multiple bracelets are detected at the same time, the movement of the bracelet closest to the specified pressing frequency will be detected first.
  • An embodiment of the present disclosure provides an electronic device including a memory, a processor, and a computer program stored in the memory and capable of being run on the processor, wherein the processor implements the cardiopulmonary resuscitation operation described above when the program is executed Detection method.
  • An embodiment of the present disclosure provides a computer-readable storage medium on which a processor program is stored, wherein the processor program is used to execute the above-mentioned cardiopulmonary resuscitation operation detection method.
  • the detection terminal can also be used to warn the surrounding people.
  • the second light source continuously flashes and emits a flashing light to remind the surrounding people that there is an emergency, so as to avoid the surrounding people from interfering with the treatment process.
  • the detection terminal is a mobile phone, preferably, after the mobile phone starts to record the pressing situation, no other calls can be answered except the call of the command center to avoid interference.
  • the related control of the detection terminal can be realized through APP.
  • An emergency APP is installed on the detection terminal, and rescuers use the emergency APP to control the corresponding modules of the detection terminal to realize cardiopulmonary resuscitation operation detection.
  • the pressing process is monitored through the detection terminal to determine whether the relevant parameters such as the pressing depth and the pressing frequency meet the requirements. If the requirements are not met, a prompt will be output.
  • the cardiopulmonary resuscitation operation detection method and system of the present disclosure reduces the detection error of the compression depth to less than ⁇ 0.3 mm through the cooperation of a calibration device, a detection terminal, a server, a detection terminal bracket, etc., and meets the requirements of cardiopulmonary resuscitation. At the same time, it can also detect the size of the pressing force, the pressing frequency, the pressing duration, etc., to achieve comprehensive cardiopulmonary resuscitation parameter detection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Percussion Or Vibration Massage (AREA)

Abstract

一种心肺复苏操作检测系统、标定装置(100)、检测终端(200)及检测方法。心肺复苏操作检测系统包括标定装置(100)和检测终端(200),心肺复苏操作检测方法包括对标定装置(100)进行拍摄,获取标定装置(100)的视频图像(S11);根据标定装置(100)上标记部件(102)的尺寸和标定装置(100)的视频图像,确定标定装置(100)移动距离(S12)。通过图像检测心肺复苏的按压深度,检测精度高,满足心肺复苏的要求。

Description

心肺复苏操作检测系统、标定装置、检测终端及检测方法 技术领域
本公开属于检测设备领域,具体涉及一种心肺复苏操作检测系统、标定装置、检测终端及检测方法。
背景技术
心肺骤停是临床上最紧急的情况,心肺复苏急救操作广泛应用于心肺骤停的急救场景中。在急救按压时,有两个参数比较重要,一个是按压的频率,一个是按压的深度。2010年国际复苏联合会和美国心脏协会提出的标准是,保证胸外按压的频率为>100次/分钟,按压深度要>5㎝。
针对按压频率的检测,目前可以做到较好的统计。而针对按压的深度,现在有一些技术是靠加速度传感器配合运动时间进行积分来进行计算,由于加速度传感器的加工精度、按压的方向多变以及重力的干扰,利用加速度传感器检测按压深度存在着精度不足的问题。例如按压深度>5㎝时,要求检测的误差<±0.5㎝,目前加速度传感器的精度往往很难确保达到所需的检测精度。如果使用精度较高的传感器,检测装置的成本会大幅增加。高成本的检测装置难以普及,从而在实际场景中,检测急救时的按压深度很难得到较高的精度。
发明内容
本公开提出心肺复苏操作检测系统、标定装置、检测终端及检测方法,通过标定装置和检测终端的配合,减小按压深度检测的误差,满足心肺复苏的要求。
本公开的一个实施例提供一种心肺复苏操作检测系统,包括标定装置和检测终端;所述标定装置包括:固定部件,用于将所述标定装置固定于施救者手腕部;标记部件,设置于所述固定部件上,并形成为具有预定尺寸参数的图形,所述标记部件包括自发光结构和/或反光结构;所述检测终端包括:摄像模块,对所述标定装置进行拍摄,获取所述标定装置的视频图像;处理模块,根据所述标记部件的尺寸和所述标定装置的视频图像,确定所述标定装置移动距离。
根据本公开的一些实施例,所述标记部件包括漫透射条和第一光源,所述漫透射条在所述固定部件上形成所述图形,所述第一光源设置于所述固定部件内。
根据本公开的一些实施例,所述第一光源的亮度可调,并且所述标定装置还包括设置于所述固定部件上的亮度传感器,所述亮度传感器用于检测环境亮度。
根据本公开的一些实施例,所述标记部件包括反光条,和/或荧光条,所述反光条和/或荧光条在所述固定部件上形成所述图形。
根据本公开的一些实施例,所述标定装置还包括设置于所述固定部件上的定向标记部件,所述定向标记部件用于对所述标记部件的图形方向进行区分。
根据本公开的一些实施例,所述标定装置还包括用于测量按压力的三轴加速度传感器。
根据本公开的一些实施例,所述标定装置还包括蓝牙模块,用于蓝牙连接所述检测终端;和/或语音输出模块,用于输出语音;和/或振动模块,用于产生振动。
根据本公开的一些实施例,心肺复苏操作检测系统还包括服务器,所述检测终端通过通信模块连接所述服务器。
根据本公开的一些实施例,心肺复苏操作检测系统还包括检测终端支架,所述检测终端支架支撑所述检测终端,以使所述检测终端保持姿态和位置。
根据本公开的一些实施例,所述检测终端支架的顶部设有导光板,所述导光板用于使所述检测终端的照明光按照指定方向进行照射。
根据本公开的一些实施例,所述检测终端支架包括电源以及单导心电模块,所述单导心电模块用于监测心跳。
根据本公开的一些实施例,所述检测终端支架包括用于连接所述检测终端的数据线。
根据本公开的一些实施例,所述检测终端支架包括可折叠的支腿,所述支腿的轴上设置有阻尼部件。
本公开的一个实施例提供一种心肺复苏操作检测用的标定装置,包括:固定部件,用于将所述标定装置固定于施救者手腕部;标记部件,设置于所述固定部件上,并形成为具有预定尺寸参数的图形,所述标记部件包括自发光结构和/或反光结构。
根据本公开的一些实施例,所述标记部件包括漫透射条和第一光源,所述漫透射条在所述固定部件上形成所述图形,所述第一光源设置于所述固定部件内。
根据本公开的一些实施例,所述第一光源的亮度可调,并且所述标定装置还包括设置于所述固定部件上的亮度传感器,所述亮度传感器用于检测环境亮度。
根据本公开的一些实施例,所述标记部件包括反光条,和/或荧光条,所述反光条和/或荧光条在所述固定部件上形成所述图形。
根据本公开的一些实施例,所述标定装置还包括设置于所述固定部件上的定向标记部件,所述定向标记部件用于对所述标记部件的图形方向进行区分。
根据本公开的一些实施例,所述标定装置还包括用于测量按压力的三轴加速度传感器。
根据本公开的一些实施例,所述标定装置还包括蓝牙模块,用于蓝牙连接所述检测终端;和/或语音输出模块,用于输出语音;和/或振动模块,用于产生振动。
本公开的一个实施例提供一种检测终端,包括:摄像模块,对标定装置进行拍摄,获取所述标定装置的视频图像;处理模块,根据所述标定装置上的标记部件的尺寸和所述标定装置的视频图像,确定所述标定装置移动距离。
根据本公开的一些实施例,所述处理模块包括:第一子模块,所述标定装置未移动时,所述第一子模块根据标记部件的尺寸及所述标定装置的视频图像中所 述标记部件的尺寸对应的第一像素数,确定所述标定装置的视频图像中像素对应的实际距离;第二子模块,所述标定装置移动时,所述第二子模块由所述标定装置的视频图像中确定上极限图像帧和下极限图像帧,根据所述上极限图像帧和下极限图像帧确定标定装置移动距离对应的第二像素数;第三子模块,根据所述标定装置的视频图像中像素对应的实际距离和第二像素数确定标定装置移动距离。根据本公开的一些实施例,所述检测终端还包括:通信模块,用于连接服务器;和/或定位模块,用于定位所述检测终端的位置;和/或蓝牙模块,用于蓝牙连接所述标定装置;和/或语音输入模块,用于输入语音;和/或语音输出模块,用于输出语音;和/或显示模块,用于图像信息的显示。
本公开的一个实施例提供一种心肺复苏操作检测方法,包括:对标定装置进行拍摄,获取所述标定装置的视频图像;根据所述标定装置上标记部件的尺寸和所述标定装置的视频图像,确定标定装置移动距离;判断所述标定装置移动距离是否在预设范围;响应于所述标定装置移动距离脱离所述预设范围,发出提示信息。
根据本公开的一些实施例,所述根据所述标定装置上标记部件的尺寸和所述标定装置的视频图像,确定标定装置移动距离包括:所述标定装置未移动时,根据标记部件的尺寸及所述标定装置的视频图像中所述标记部件的尺寸对应的第一像素数,确定所述标定装置的视频图像中像素对应的实际距离;所述标定装置移动时,由所述标定装置的视频图像中确定上极限图像帧和下极限图像帧,根据所述上极限图像帧和下极限图像帧确定标定装置移动距离对应的第二像素数;根据所述标定装置的视频图像中像素对应的实际距离和第二像素数确定标定装置移动距离。
根据本公开的一些实施例,心肺复苏操作检测方法还包括在不能由所述标定装置的图像中识别出所述标记部件的图像的情况下,通知所述标定装置开启第一光源或调节所述第一光源的亮度。
根据本公开的一些实施例,心肺复苏操作检测方法还包括接收所述标定装置测量的按压力值,将检测的所述标定装置移动距离和所述按压力值发送给服务器。
根据本公开的一些实施例,心肺复苏操作检测方法还包括接收所述服务器发送的指导语音信息和/或图像信息,输出语音和/或显示图像。
根据本公开的一些实施例,心肺复苏操作检测方法还包括根据所述标定装置的视频图像确定按压频率。
本公开心肺复苏操作检测系统及方法,进行心肺复苏操作时,标定装置由施救人员佩戴,标定装置上设有标记部件,检测终端拍摄标定装置的图像,根据标记部件的尺寸和标定装置的图像确定标定装置的移动距离,标定装置的移动距离即为按压深度;通过标定装置和检测终端的配合,降低按压深度的检测误差,提高心肺复苏操作检测的准确性。
附图说明
图1是本公开实施例心肺复苏操作检测系统的示意图;
图2是本公开实施例标定装置的示意图;
图3是本公开实施例漫透射条、反光条及荧光条的示意图;
图4是本公开实施例标定装置的另一示意图;
图5是本公开实施例定向标定部件的示意图;
图6是本公开实施例检测终端的示意图;
图7是本公开实施例处理模块的示意图;
图8是本公开实施例正方形标记部件的示意图;
图9是本公开实施例标记部件上下移动的示意图;
图10是本公开实施例检测终端支架折叠状态图;
图11是本公开实施例检测终端支架展开过程示意图;
图12是本公开实施例检测终端支架展开状态图;
图13是本公开实施例心肺复苏操作检测方法的流程图;
图14是本公开实施例处理模块确定标定装置移动距离的流程图。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本公开的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本公开的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、"长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"坚直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本公开的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接:可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征之"上"或之" 下"可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征"之上"、"上方"和"上面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征"之下"、"下方"和"下面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本公开的不同结构。为了简化本公开的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本公开。此外,本公开可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本公开提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
以下结合附图对本公开的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本公开,并不用于限定本公开。
如图1所示,本公开的实施例提供一种心肺复苏操作检测系统。心肺复苏操作检测系统可检测心肺复苏操作过程中的参数。心肺复苏操作检测系统包括标定装置100和检测终端200。
如图2所示,心肺复苏操作检测用的标定装置100包括固定部件101和标记部件102。进行心肺复苏时,固定部件101用于将标定装置100固定于施救者手腕部。标记部件102设置于固定部件101上,并形成为具有预定尺寸参数的图形,作为光学信标,便于在标定装置100的视频图像中进行识别。标记部件102包括自发光结构和/或反光结构。
标记部件102形成的图形及图形的尺寸预先存储于检测终端中,便于检测终端进行后续的处理。本实施例中,标记部件102形成的图形为圆形,圆形的直径是确定的,将圆形的直径预先存储于检测终端中。另一种方案中,标记部件102的图形可为矩形或正方形,将矩形或正方形的边长预先存储于检测终端中。标记部件102的图形也可以为其他特定的形状,具有确定的尺寸即可。
如图3和图4所示,标记部件102包括漫透射条102a和第一光源103。漫透射条102a可使透过的光线形成漫射光,光线亮度不会太高。在标定装置固定部件101内设置第一光源103。可选地,第一光源103为LED灯。LED灯发出的光线经过漫透射条102a后射出漫射光,使得标记部件102的亮度大于周边环境的亮度,便于在标定装置100的视频图像中识别标记部件102。漫射的光不会很亮,可确保拍摄标定装置100时准确的对焦。
根据本公开一个可选的技术方案,标记部件102的数量为多个,在固定部件101上依次设置,便于对标定装置100的空间姿态进行识别。多个标记部件102还可设置为不同的颜色,提高空间姿态识别的准确性。
根据本公开一个可选的技术方案,第一光源103的亮度可调。标定装置100还包括设置于标定装置固定部件101上的亮度传感器104,亮度传感器104用于检 测环境亮度。标定装置的微处理器105根据亮度传感器104检测的环境亮度,控制第一光源103的亮度,或控制第一光源103的开闭。例如,环境亮度低于预设阈值,开启第一光源103,环境亮度高于预设阈值,关闭第一光源103。
根据本公开一个可选的技术方案,标记部件102还包括反光条102b,和/或荧光条102c。反光条102b和/或荧光条102c在标定装置固定部件上形成所述图形。标定装置100的电力不足,无法开启第一光源103时,反光条102b,和/或荧光条102c可作为光学信标。
如图5所示,根据本公开一个可选的技术方案,标定装置100还包括设置于固定部件101上的定向标记部件110。若标记部件102的图形为多边形,定向标记部件110用于对图形的方向进行区分。例如,标记部件102的图形为矩形,将长边或短边设置为双条,以便对长边和短边进行区分,便于识别。
根据本公开一个可选的技术方案,标定装置100还包括三轴加速度传感器106。三轴加速度传感器106设置于标定装置固定部件101内,在心肺复苏按压时,可测量按压力的大小。若测量的按压力过大,标定装置100可向施救人员发出提示,避免造成骨折等二次伤害。通过三轴加速度传感器106还可确认心肺复苏过程是否在进行,并记录心肺复苏的持续时间。
根据本公开一个可选的技术方案,标定装置100还包括蓝牙模块107。蓝牙模块107用于与检测终端进行蓝牙连接,进行数据的交互。标定装置100还包括语音输出模块108和/或振动模块109。需要对施救人员进行提示时,语音输出模块108可输出提示语音,振动模块109可产生振动,对施救人员进行提示。
标定装置100上还可以设置有操作按钮,例如上下左右按键及确认键、取消键等,用于对标定装置100中的预置功能或操作进行选择和确认/取消。
标定装置100可以为手环,进行心肺复苏时,将手环带在施救人员的手腕上。标定装置100也可以为手表或护臂套等可相对手臂进行固定的设备。优选地,标定装置100用于佩戴于手腕处,因为这种情况下手环的移动距离与手掌的移动距离之间的误差最小。
如图6所示,检测终端200包括摄像模块201和处理模块202。摄像模块201可以为摄像头,用于对标定装置100进行拍摄,获取标定装置100的实时视频图像。摄像头优选为高清摄像头,可确保对场景拍摄的清晰度。使用检测终端200拍摄标定装置100时,可先对检测终端200进行固定,避免检测终端200在拍摄过程中出现不必要的移动。通常情况下,标记部件102的法线基本对准检测终端200。处理模块202根据标记部件102的尺寸和标定装置的视频图像,确定标定装置100移动距离。标定装置100移动距离即为心肺复苏时的按压深度,通过标定装置100和检测终端200的配合,实现对按压深度的测量。
如图7所示,具体的,标记部件102的尺寸为确定值,摄像模块201对标定装置100进行拍摄。检测终端200中预存有标记部件102形成图形的尺寸参数。标定装置100未移动时,处理模块202的第一子模块202a由标定装置的视频图像中识别出标记部件102的图像,并确定标记部件102的尺寸对应的第一像素数。根据标记部件102的尺寸和标记部件102的尺寸对应的第一像素数,确定标定装 置的视频图像中像素对应的实际距离。
如图8所示,以标记部件102的图形形状为正方形为例。标记部件102的边长L为2cm。处理模块202的第一子模块202a由标定装置的视频图像中确定正方形的边对应第一像素数为100,则标定装置的视频图像中像素对应的实际距离为0.02cm。
施救人员进行按压,标定装置100移动时,处理模块202的第二子模块202b由标定装置的视频图像中确定上极限图像帧和下极限图像帧。根据上极限图像帧和下极限图像帧确定标定装置移动距离对应的第二像素数。
如图9所示,标定装置100移动时,处理模块202的第二子模块202b由标定装置的视频图像的各个图像帧中可识别出一次按压操作的上极限图像帧和下极限图像帧。上极限图像帧和下极限图像帧中标记部件102的上极限位和下极限位之间的像素数作为标定装置100移动距离对应的第二像素数。
进行初次按压时,将标定装置100未移动时图像中的图像帧作为初次按压的上极限图像帧;随着标定装置100的下移,视频图像中标记部件102对应的像素不断下移;处理模块202的第二子模块202b识别到标记部件102对应的像素不再下移时,将此时的一图像帧作为初次按压的下极限图像帧。随着标定装置100的上移,处理模块202的第二子模块识别到标记部件102对应的像素不再上移时,将此时的一图像帧作为二次按压的上极限图像帧;之后标定装置100下移,处理模块202的第二子模块202b识别到标记部件102对应的像素不再下移时,将此时的一图像帧作为二次按压的下极限图像帧。如此循环,处理模块202的第二子模块202b可识别出每次按压对应的上极限图像帧和下极限图像帧。通过上极限图像帧和下极限图像帧,确定每次按压时标定装置100移动距离对应的第二像素数。
处理模块202的第三子模块202c根据述标定装置的视频图像中像素对应的实际距离和第二像素数确定标定装置移动距离。
例如,一次按压中,处理模块202确定标定装置100移动距离S对应的第二像素数为200,标定装置的视频图像中像素对应的实际距离为0.02cm,计算得出标定装置移动距离S为4cm。将4cm作为此次的按压深度。
在实际场景中,标定装置上的标记部件102的法线可能并不指向检测终端200,即检测终端200由斜向拍摄标定装置。此时,处理模块202可根据标记部件的图像变形量确定检测终端200由哪个方向拍摄标定装置100;根据相应角度的余弦关系转换,处理模块202确定标定装置的视频图像中像素对应的实际距离。此设计主要是涉及到人在佩戴标定装置100进行救治时,标定装置的标记部件102所在平面不一定与标定装置100与检测终端200的连线方向是垂直的。当不垂直时,检测终端200检测到的标记部件102就会形成一定的畸变。例如本来标记部件是圆形时,在标定装置的标记部件所在平面与标定装置和检测终端的连线方向不垂直时,检测到的标记部件就呈现椭圆形。此时虽然检测终端知道标记部件的尺寸,例如圆的直径是2㎝,但在其检测到的图像中椭圆的长轴是2厘米,而短轴不到2㎝。此时,检测终端就要根据其实际拍摄到的图形来识别出实际的标记部件的尺寸,例如以椭圆的长轴来代表圆形的直径。在圆变为椭圆的情况下,还相对比较 简单,而在例如使用矩形、多边形等情况下,畸变会变得复杂。例如矩形包括长、短边,在不垂直时,可能拍摄到的是一个平行四边形。此时需要根据平行四边形的两条相邻边的夹角,判断出该矩形所在平面与(标定装置与检测终端之间的)连线的夹角,进而根据余弦关系转换计算所拍摄到的平行四边形的各边所代表的实物的长度,进而计算出在按压方向上,各像素代表的实际距离。
根据本公开一个可选的技术方案,检测终端200包括通信模块203。心肺复苏操作检测系统还包括服务器300,服务器300位指挥中心。检测终端200可通过通信模块203连接服务器300,进行数据交换。
根据本公开一个可选的技术方案,检测终端200还包括定位模块204,如GPS模块,用于定位检测终端200的位置。可选地,检测终端200还包括蓝牙模块205,用于蓝牙连接标定装置100。可选地,检测终端200还包括语音输入模块206,用于输入语音。可选地检测终端200还包括语音输出模块207,用于输出语音。可选地,检测终端200还包括显示模块208,用于图像信息的显示。
检测终端200与标定装置100蓝牙连接后,标定装置100与检测终端200可进行数据交互,如标定装置100检测的各项参数可发送给检测终端200。检测终端200可将各项参数发送给服务器300,包括检测终端200所在位置,检测的按压深度等。指挥中心的相关人员根据服务器300接收到的数据,可对救护工作进行指导,如指导施救人员进行心肺复苏操作。检测终端200的语音输入模块206、语音输出模块207和显示模块208便于施救人员与指挥中心进行语音及视频沟通。通过检测终端200,指挥中心还可进行开放气道过程、人工呼吸等其他急救的指导。
检测终端200可以为手机、iPad等智能设备。以手机为例,优选地将前置摄像头作为摄像模块201,便于施救人员查看是否将按压部位及按压动作的范围较好地置于拍摄区域中。检测终端200中可设置加速度传感器,以便于确保检测终端200安放姿态保持为尽可能竖直。
如图10~12所示,检测终端支架400包括壳体410,壳体410上设有用于固定检测终端200的凹槽411,使用时将检测终端200放置在壳体410的凹槽411中,实现检测终端200的固定,避免检测终端200在救治过程中出现不必要的移动。
根据本公开一个可选的技术方案,检测终端支架400的顶部设有导光板420,用于使检测终端200的照明光按照指定方向进行照射。检测终端200上设有可照射导光板420的第二光源209。以手机为例,手机的后置摄像头可作为第二光源209。第二光源209的光线通过导光板420的反射后,以漫射光的形式射出。导光板420射出的光线可提高标记部件102的亮度。导光板420可通过转轴连接于壳体410,不使用导光板420时,将旋转至壳体410的后侧。
根据本公开一个可选的技术方案,检测终端支架400还包括单导心电模块430。单导心电模块430用于监测心跳。如发现需救助的人员,施救人员可通过单导心电模块430测量被救助人的心跳,以确定是否需进行心肺复苏。检测终端支架400用于为检测终端支架400的各个部件供电。
可选地,检测终端支架400包括用于连接检测终端200的数据线450。通过数据线450,实现检测终端200与检测终端支架400的数据交互。数据线可以为type-c, micro-usb或iphone所用接口的数据线等。
根据本公开一个可选的技术方案,检测终端支架400包括可折叠的支腿440。不使用支腿440时,支腿440收起,折叠于壳体410的后侧。需使用支腿440时,将支腿440展开,支腿440配合形成稳固的支撑。若检测终端200为手机,支腿440收起时,检测终端支架400可作为手机壳使用。
支腿440包括第一折叠板441和多个第二折叠板442。第一折叠板441的数量可以为一个也可以为多个。支腿440的轴上设有阻尼部件,即采用的阻尼轴。
第一折叠板441的数量为一个时,第一折叠板441的一端通过第一阻尼轴与壳体410的底端相连。多个第二折叠板442通过第二阻尼轴与第一折叠板441相连。通过止当结构的配合,第一折叠板441和第二折叠板442可在预设的角度展开,形成稳固的支撑结构。
第一折叠板441的数量为多个时,多个第一折叠板441依次通过第一阻尼轴可折叠的连接。最上端的第一折叠板441与壳体410的底端通过第一阻尼轴相连。多个第二折叠板442通过第二阻尼轴与最下端的第一折叠板441相连。通过止挡结构的配合,第一折叠板441和第二折叠板442可在预设的角度展开,形成稳固的支撑结构。本实施例中的第一阻尼轴和第二阻尼轴可选用已有的型号。支腿440也可以为其他可折叠的形式。
根据本公开一个可选的技术方案,施救人员可通过血氧检测器实时监测被救人员的心跳和呼吸情况。血氧检测器可以是蓝牙血氧检测器,通过蓝牙连接的方式与检测终端200或检测终端支架400连接。
如图13所示,本公开的实施例提供一种心肺复苏操作检测方法,包括:
S11、对标定装置进行拍摄,获取标定装置的视频图像。具体为,启动检测终端的摄像模块对标定装置进行拍摄,获取标定装置的视频图像。
S12、根据标定装置上标记部件的尺寸和标定装置的视频图像,确定标定装置移动距离。具体为,调用检测终端的处理模块根据标定装置上标记部件的尺寸和标定装置的视频图像,确定标定装置移动距离。将检测的标定装置移动距离作为心肺复苏的按压深度。
S13、判断标定装置移动距离是否在预设范围。
S14、响应于标定装置移动距离脱离预设范围,发出提示信息。例如,检测终端的处理模块判定标定装置移动距离脱离预设范围,则发出提示信息,标定装置接收到提示信息后,发出提示。
如图14所示,上述的步骤S12包括:
S21、标定装置未移动时,调用处理模块由标定装置的视频图像中确定标记部件的尺寸对应的第一像素数,根据标记部件的尺寸及第一像素数确定标定装置的视频图像中像素对应的实际距离。
具体的,标记部件的尺寸为确定值,对标定装置进行拍摄。标定装置未移动时,处理模块由标定装置的视频图像中识别出标记部件的图像,并确定标记部件的尺寸对应的第一像素数。根据标记部件的尺寸和标记部件的尺寸对应的第一像素数,确定标定装置的视频图像中像素对应的实际距离。
S22、标定装置移动时,调用处理模块由标定装置的视频图像中确定每次按压的上极限图像帧和下极限图像帧;根据上极限图像帧和下极限图像帧确定每次按压时标定装置移动距离对应的第二像素数。
施救人员进行按压,标定装置移动时,处理模块由标定装置的视频图像的各个图像帧中可识别出一次按压操作的上极限图像帧和下极限图像帧。上极限图像帧和下极限图像帧中标记部件的上极限位和下极限位之间的像素数作为标定装置移动距离对应的第二像素数。
S23、调用处理模块根据标定装置的视频图像中像素对应的实际距离和第二像素数确定标定装置移动距离。
根据本公开一个可选的技术方案,心肺复苏操作检测方法还包括:无线连接标定装置,由标定装置的图像中不能识别出标记部件的图像的情况下,通知标定装置开启第一光源或调节第一光源的亮度。
根据本公开一个可选的技术方案,不能识别到标定装置时,如标定装置被遮挡,检测终端认为目标丢失,发出报警。报警可以为语音的形式,或振动的形式,或检测终端的屏幕闪烁等。
根据本公开一个可选的技术方案,心肺复苏操作检测方法还包括:接收标定装置测量的按压力值,将检测的标定装置移动距离、按压力值、定位的位置等救治信息发送给服务器。
根据本公开一个可选的技术方案,心肺复苏操作检测方法还包括检测终端接收服务器发送的指导语音信息和/或图像信息,输出语音和/或显示图像。通过检测终端与服务器的交互,实现施救人员与指挥中心的沟通,提高救治的准确性。
根据本公开一个可选的技术方案,心肺复苏操作检测方法还包括:处理模块根据标定装置的视频图像确定按压频率。通过标定装置的视频图像确定按压频率,可支持不同施救人员佩戴不同的标定装置进行接力施救,避免不同标定装置蓝牙连接检测终端,影响救治过程。例如,检测终端对视场(即能够拍摄到的视角范围)内的具有预定按压动作的手环自动进行检测,而不需要繁琐的手环与检测终端的配对过程。如果同时检测到多个手环,则优先检测离规定的按压频率最接近的手环的运动。如果检测到多个手环均以接近规定的按压频率在往复运动,则同时记录多个手环的按压动作参数,并同时发出提示告警,直到视场内只有一个手环在以接近规定按压频率的频率操作。通过这样的设定,可以允许多个救助者进行接力,而不需要中途打断检测终端的记录过程,从而使救助过程更顺畅。
本公开的实施例提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如上所述心肺复苏操作检测方法。
本公开的实施例提供一种计算机可读存储介质,其上存储有处理器程序,其中,该处理器程序用于执行上述心肺复苏操作检测方法。
救治过程中,还可通过检测终端向周围人群发出警示,如通过第二光源不断闪烁,发出闪烁光,提示周围人群有紧急情况,避免周围人群干扰救治过程。如果检测终端为手机,优选地,手机在开始记录按压情况之后,除了指挥中心的电 话,不能再接其他电话,避免干扰。
检测终端的相关控制可通过APP实现。在检测终端上安装急救APP,施救人员通过急救APP控制检测终端相应模块实现心肺复苏操作检测。
本实施例的心肺复苏操作检测系统的使用流程为:
1、发现需救治人员;
2、展开检测终端支架的支腿,通过数据线连接检测终端支架和检测终端,启动急救APP;
3、通过单导心电模块或其他设备确认需要心肺复苏按压急救;
4、将标定装置待在施救人员手臂上,调整检测终端摆放位置,开始按压急救;
5、通过检测终端对按压过程进行监测,判断相关参数如按压深度、按压频率等是否满足要求,若不满足要求输出提示。
6、实时向服务器上传心肺复苏操作的各项参数,也可在救治结束后向服务器上相关参数。必要时,通过检测终端接受指挥中心的指导。
本公开的心肺复苏操作检测方法及系统,通过标定装置、检测终端、服务器、检测终端支架等的配合,将按压深度的检测误差缩小至小于±0.3㎜,满足心肺复苏的要求。同时,还可检测按压力的大小、按压频率、按压持续时间等,实现综合性的心肺复苏参数检测。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
最后应说明的是:以上所述仅为本公开的优选实施例而已,并不用于限制本公开,尽管参照前述实施例对本公开进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (26)

  1. 一种心肺复苏操作检测系统,其特征在于,包括标定装置和检测终端;
    所述标定装置包括:
    固定部件,用于将所述标定装置固定于施救者手腕部;
    标记部件,设置于所述固定部件上,并形成为具有预定尺寸参数的图形,所述标记部件包括自发光结构和/或反光结构;
    所述检测终端包括:
    摄像模块,对所述标定装置进行拍摄,获取所述标定装置的视频图像;
    处理模块,根据所述标记部件的尺寸和所述标定装置的视频图像,确定所述标定装置移动距离。
  2. 根据权利要求1所述的心肺复苏操作检测系统,其特征在于,所述标记部件包括漫透射条和第一光源,所述漫透射条在所述固定部件上形成所述图形,所述第一光源设置于所述固定部件内。
  3. 根据权利要求2所述的心肺复苏操作检测系统,其特征在于,所述第一光源的亮度可调,并且所述标定装置还包括设置于所述固定部件上的亮度传感器,所述亮度传感器用于检测环境亮度。
  4. 根据权利要求1所述的心肺复苏操作检测系统,其特征在于,所述标记部件包括反光条,和/或荧光条,所述反光条和/或荧光条在所述固定部件上形成所述图形。
  5. 根据权利要求1所述的心肺复苏操作检测系统,其特征在于,所述标定装置还包括设置于所述固定部件上的定向标记部件,所述定向标记部件用于对所述标记部件的图形的方向进行区分。
  6. 根据权利要求1所述的心肺复苏操作检测系统,其特征在于,所述标定装置还包括用于测量按压力的三轴加速度传感器。
  7. 根据权利要求1所述的心肺复苏操作检测系统,其特征在于,所述标定装置还包括
    蓝牙模块,用于蓝牙连接所述检测终端;和/或
    语音输出模块,用于输出语音;和/或
    振动模块,用于产生振动。
  8. 根据权利要求1所述的心肺复苏操作检测系统,其特征在于,还包括服务器,所述检测终端通过通信模块连接所述服务器。
  9. 根据权利要求1所述的心肺复苏操作检测系统,其特征在于,还包括检测终端支架,所述检测终端支架支撑所述检测终端,以使所述检测终端保持姿态和位置。
  10. 根据权利要求9所述的心肺复苏操作检测系统,其特征在于,所述检测终端支架的顶部设有导光板,所述导光板用于使所述检测终端的照明光按照指定方向进行照射。
  11. 根据权利要求9所述的心肺复苏操作检测系统,其特征在于,所述检测终端支架包括电源以及单导心电模块,所述单导心电模块用于监测心跳。
  12. 根据权利要求11所述的心肺复苏操作检测系统,其特征在于,所述检测终端支架包括用于连接所述检测终端的数据线。
  13. 根据权利要求9所述的心肺复苏操作检测系统,其特征在于,所述检测终端支架包括可折叠的支腿,所述支腿的轴上设置有阻尼部件。
  14. 一种心肺复苏操作检测用的标定装置,其特征在于,包括:
    固定部件,用于将所述标定装置固定于施救者手腕部;
    标记部件,设置于所述固定部件上,并形成为具有预定尺寸参数的图形,所述标记部件包括自发光结构和/或反光结构。
  15. 根据权利要求14所述的心肺复苏操作检测用的标定装置,其特征在于,所述标记部件包括漫透射条和第一光源,所述漫透射条在所述固定部件上形成所述图形,所述第一光源设置于所述固定部件内。
  16. 根据权利要求15所述的心肺复苏操作检测用的标定装置,其特征在于,所述第一光源的亮度可调,并且所述标定装置还包括设置于所述固定部件上的亮度传感器,所述亮度传感器用于检测环境亮度。
  17. 根据权利要求14所述的心肺复苏操作检测用的标定装置,其特征在于,所述标定装置还包括设置于所述固定部件上的定向标记部件,所述定向标记部件用于对所述标记部件的图形方向进行区分。
  18. 一种检测终端,其特征在于,包括:
    摄像模块,对标定装置进行拍摄,获取所述标定装置的视频图像;
    处理模块,根据所述标定装置上的标记部件的尺寸和所述标定装置的视频图 像,确定所述标定装置移动距离。
  19. 根据权利要求18所述的检测终端,其特征在于,所述处理模块包括:
    第一子模块,所述标定装置未移动时,所述第一子模块根据标记部件的尺寸及所述标定装置的视频图像中所述标记部件的尺寸对应的第一像素数,确定所述标定装置的视频图像中像素对应的实际距离;
    第二子模块,所述标定装置移动时,所述第二子模块由所述标定装置的视频图像中确定上极限图像帧和下极限图像帧,根据所述上极限图像帧和下极限图像帧确定标定装置移动距离对应的第二像素数;
    第三子模块,根据所述标定装置的视频图像中像素对应的实际距离和第二像素数确定标定装置移动距离。
  20. 根据权利要求18所述的检测终端,其特征在于,所述检测终端还包括:
    通信模块,用于连接服务器;和/或
    定位模块,用于定位所述检测终端的位置;和/或
    蓝牙模块,用于蓝牙连接所述标定装置;和/或
    语音输入模块,用于输入语音;和/或
    语音输出模块,用于输出语音;和/或
    显示模块,用于图像信息的显示。
  21. 一种心肺复苏操作检测方法,其特征在于,包括:
    对标定装置进行拍摄,获取所述标定装置的视频图像;
    根据所述标定装置上标记部件的尺寸和所述标定装置的视频图像,确定标定装置移动距离;
    判断所述标定装置移动距离是否在预设范围;
    响应于所述标定装置移动距离脱离所述预设范围,发出提示信息。
  22. 根据权利要求21所述的心肺复苏操作检测方法,其特征在于,所述根据所述标定装置上标记部件的尺寸和所述标定装置的视频图像,确定标定装置移动距离包括:
    所述标定装置未移动时,根据标记部件的尺寸及所述标定装置的视频图像中所述标记部件的尺寸对应的第一像素数,确定所述标定装置的视频图像中像素对应的实际距离;
    所述标定装置移动时,由所述标定装置的视频图像中确定上极限图像帧和下 极限图像帧,根据所述上极限图像帧和下极限图像帧确定标定装置移动距离对应的第二像素数;
    根据所述标定装置的视频图像中像素对应的实际距离和第二像素数确定标定装置移动距离。
  23. 根据权利要求21所述的心肺复苏操作检测方法,其特征在于,还包括在不能由所述标定装置的图像中识别出所述标记部件的图像的情况下,通知所述标定装置开启第一光源或调节所述第一光源的亮度。
  24. 根据权利要求21所述的心肺复苏操作检测方法,其特征在于,还包括接收所述标定装置测量的按压力值,将检测的所述标定装置移动距离和所述按压力值发送给服务器。
  25. 根据权利要求24所述的心肺复苏操作检测方法,其特征在于,还包括接收所述服务器发送的指导语音信息和/或图像信息,输出语音和/或显示图像。
  26. 根据权利要求21所述的心肺复苏操作检测方法,其特征在于,还包括根据所述标定装置的视频图像确定按压频率。
PCT/CN2020/073887 2020-01-22 2020-01-22 心肺复苏操作检测系统、标定装置、检测终端及检测方法 WO2021147022A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080000222.7A CN111278400B (zh) 2020-01-22 2020-01-22 心肺复苏操作检测系统、标定装置、检测终端及检测方法
PCT/CN2020/073887 WO2021147022A1 (zh) 2020-01-22 2020-01-22 心肺复苏操作检测系统、标定装置、检测终端及检测方法
TW109107718A TWI735177B (zh) 2020-01-22 2020-03-09 心肺復甦操作檢測系統、檢測終端及檢測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073887 WO2021147022A1 (zh) 2020-01-22 2020-01-22 心肺复苏操作检测系统、标定装置、检测终端及检测方法

Publications (1)

Publication Number Publication Date
WO2021147022A1 true WO2021147022A1 (zh) 2021-07-29

Family

ID=70999859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073887 WO2021147022A1 (zh) 2020-01-22 2020-01-22 心肺复苏操作检测系统、标定装置、检测终端及检测方法

Country Status (3)

Country Link
CN (1) CN111278400B (zh)
TW (1) TWI735177B (zh)
WO (1) WO2021147022A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117958794A (zh) * 2024-03-28 2024-05-03 深圳市艾利特医疗科技有限公司 用于心肺功能测试设备的精准定标和校准方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111862758A (zh) * 2020-09-02 2020-10-30 思迈(青岛)防护科技有限公司 一种基于人工智能的心肺复苏培训与考核系统及方法
CN113570746B (zh) * 2021-07-14 2023-05-12 河南金芯数联电子科技有限公司 一种cpr反馈垫标定系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105184274A (zh) * 2015-09-21 2015-12-23 魏运 一种基于深度图像获取客流速度和密度参数的方法
US20170143584A1 (en) * 2009-07-22 2017-05-25 Physio-Control, Inc. Optical techniques for the measurement of chest compression depth and other parameters during cpr
CN107041839A (zh) * 2017-04-06 2017-08-15 秦非 具有胸外按压辅助功能的腕部佩戴装置及辅助系统
CN109172334A (zh) * 2018-10-25 2019-01-11 深圳市智城华业科技有限公司 一种心肺复苏辅助装置和按压深度测量方法
US20190318645A1 (en) * 2016-12-27 2019-10-17 Coaido Inc. Measurement device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101496767B (zh) * 2009-02-27 2010-08-18 武汉依瑞德医疗设备新技术有限公司 胸外心脏按压节律提示器及其方法
WO2013169346A1 (en) * 2012-05-07 2013-11-14 Zoll Medical Corporation Rescue performance metric
CA2875142A1 (en) * 2012-06-01 2013-12-05 Zoll Medical Corporation Chest compression belt with belt position monitoring system
JP2016517317A (ja) * 2013-03-15 2016-06-16 プロテウス デジタル ヘルス, インコーポレイテッド 再装着型無線デバイス
CN111228102B (zh) * 2014-05-26 2022-10-04 纽莱斯科公司 在心脏骤停中提供复苏或暂停状态的装置
US10709383B2 (en) * 2015-04-02 2020-07-14 Microsoft Technology Licnesing, Llc Wrist-worn pulse transit time sensor
CN104840350A (zh) * 2015-05-22 2015-08-19 京东方科技集团股份有限公司 心肺复苏辅助装置、智能终端和心肺复苏辅助系统
KR101950028B1 (ko) * 2015-06-12 2019-03-08 주식회사메디아나 자동 심폐소생술장치
CN105853136B (zh) * 2016-04-21 2018-05-25 北京小米移动软件有限公司 目标按摩设备的控制方法及装置
JP7063818B6 (ja) * 2016-05-06 2022-06-06 コーニンクレッカ フィリップス エヌ ヴェ Cpr支援装置および患者の胸部圧迫深度を決定するための方法
CN110384495B (zh) * 2019-06-18 2021-06-04 华为技术有限公司 一种ecg检测方法与穿戴设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170143584A1 (en) * 2009-07-22 2017-05-25 Physio-Control, Inc. Optical techniques for the measurement of chest compression depth and other parameters during cpr
CN105184274A (zh) * 2015-09-21 2015-12-23 魏运 一种基于深度图像获取客流速度和密度参数的方法
US20190318645A1 (en) * 2016-12-27 2019-10-17 Coaido Inc. Measurement device
CN107041839A (zh) * 2017-04-06 2017-08-15 秦非 具有胸外按压辅助功能的腕部佩戴装置及辅助系统
CN109172334A (zh) * 2018-10-25 2019-01-11 深圳市智城华业科技有限公司 一种心肺复苏辅助装置和按压深度测量方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117958794A (zh) * 2024-03-28 2024-05-03 深圳市艾利特医疗科技有限公司 用于心肺功能测试设备的精准定标和校准方法及系统

Also Published As

Publication number Publication date
TWI735177B (zh) 2021-08-01
CN111278400A (zh) 2020-06-12
CN111278400B (zh) 2022-10-04
TW202128111A (zh) 2021-08-01

Similar Documents

Publication Publication Date Title
TWI735177B (zh) 心肺復甦操作檢測系統、檢測終端及檢測方法
US20210038069A1 (en) Systems and methods for determining distance from an object
CN106621284B (zh) 一种智能的体质检测平台
EP3285635B1 (en) Systems and methods for determining distance from an object
CN106774868B (zh) 一种无线演示装置
KR101570712B1 (ko) 체형 측정 방법 및 이를 이용한 체형 관리 시스템
EP2903496A1 (en) Gaze guidance arrangement
JP2009172181A (ja) 健康診断方法、および健康診断装置
KR20180089646A (ko) 다기능 스마트 거울
JP2013198587A (ja) 眼底撮影システム、眼底撮影装置、及び眼底画像管理システム
JP2019164028A (ja) アルコール測定システムおよびアルコール測定器
TWM598679U (zh) 心肺復甦操作檢測輔助系統及標定裝置
AU2020412363A1 (en) Enhanced oculomotor testing device and method using an add-on structure for a mobile device
CN112190228B (zh) 眼底相机及其检测方法
EP3870045B1 (en) Device, system and method for monitoring a subject
ES2724212A1 (es) Metodo implementado en ordenador y sistema para la prevencion del deterioro de la vision causado por el uso prolongado de pantallas electronicas en condiciones de baja iluminacion.
CN206608801U (zh) 一种智能台灯
JPH09234186A (ja) 検眼装置
JP7219508B2 (ja) アルコール測定システムおよびアルコール測定器
CN110889331B (zh) 基于虹膜识别的照相机及识别方法
JP4485933B2 (ja) 遠隔コミュニケーションシステムとこのシステムで使用される方向提示方法及び方向提示プログラム
JP2016036411A (ja) 生体情報測定装置および生体情報測定方法
CN209932706U (zh) 一种带焦距提示功能的血管显像仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915257

Country of ref document: EP

Kind code of ref document: A1